
Chapter 8

Failure Theories of Piezoelectric Materials

Abstract In this chapter failure experiments and theories in piezoelectric materials

are discussed. In present time the precision of experiments should still be improved.

The failure theory in solids is very complicated and there is no unified critical

criterion. It is clear that the critical energy for different failure version is different.

Especially the version of brittle tension failure is significantly different with other

versions. In piezoelectric ceramics the failure energy density of an electric field

is much higher than that in mechanical loading. In this chapter the generalized

stress intensity factor criterions; total, mechanical, and local energy release rate

criterions; strain energy density factor criterion; modal strain energy density factor

theory; small-scale domain switching theory; failure criterion of conductive cracks

with charge-free zone model are studied. Some simple electric breakdown theories

of solid dielectrics are also discussed.

Keywords Failure theories • Generalized stress intensity factor • Energy release

rate • Modal strain energy • Charge-free zone model • Electric breakdown

8.1 Experimental Studies

The change of the microstructure, including plastic yielding, phase transformation,

and failure theory, in solids is very complicated, and in present time there is no

unified critical criterion to show these changes exactly. In general the change

of the internal microstructure in the materials is caused by deformation, electromag-

netic field and temperature. Experiments show that except the failure under tension,

before failure the continuous deformation is revealed and then follows the change of

the microstructure, so the failure and plastic yielding, etc. often posses the similar

criterion. However, the failure of a brittle material under tension is less connected to

the continuous deformation, so it should often be discussed in different theory. The

experiments are necessary to get the practical failure criterions in engineering. Many

experiments for failure have been carried out. Because the piezoelectric specimens

are thin and small, manufacturing an ideal crack is very difficult. Usually the crack
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is a narrow slit with a circular end. The precision of the experimental results is not

very well, and the experiments are needed in the future. The fatigue failure is not

discussed in this book.

8.1.1 Test on Compact Tension Specimens

Park and Sun (1995) carried out the mode-I fracture tests of the compact tension (CT)

specimen for PZT-4 ceramic. Two silver-coated faces at the upper and

lower surfaces of the sample were used as electrodes. The sizes of the specimen

are 25:5� 19:1� 5:1mm3 with crack length 11.5 mm as shown in Fig. 8.1. The

polarization x3-axis is perpendicular to the crack. The crack was created by cutting

with a 0.46 mm thick diamond wheel and further cut by a sharp razor blade with

diamond abrasive. Because the electric field exceeded 5Kv m= the electric

discharging between electrodes through the air was observed, the specimen was

immersed in a tube filled with silicone oil. The tests were to increase the tensile load

until failure occurred under a certain electric field. Some experimental results can

be found in Fig. 8.13. The results showed that the positive electric fields enforce the

crack propagation or decrease the apparent fracture toughness KIc, while negative

electric field impede crack propagation or increase the apparent fracture toughness.

Fang et al. (2004) carried out the tensile tests of the plate specimen with a central

crack for PZT-5 ceramic. The sizes of the specimen are 40� 20� 3mm3 with the

polarization x3-axis. Their results are similar to that of Park and Sun.

8.1.2 Three-Point Bending Test with Asymmetric Crack

Park and Sun (1995) carried out the mixed-mode fracture tests on the three-point

bend specimen with unsymmetrical crack for PZT-4 ceramic. The sizes of the

specimen are 19:1� 9� 5:1mm3, and the poling direction was perpendicular to

Fig. 8.1 Compact tension (CT) specimen
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the crack as shown in Fig. 8.2. The length of the crack is 4:0mm and located at

the midspan, 2mm; 4mm from the midspan, respectively. The center-cracked

specimens produced mode-I fracture, and other two kinds of specimens exhibited

mixed-mode fracture. The experimental results showed that the fracture in this test

exhibits the same behaviors as that in CT specimens. It is also shown that the crack

deviated from the midspan will increase the fracture load.

8.1.3 Three-Point Bending Test of Smooth Specimens

Fu and Zhang (2000) carried out three-point bending tests of smooth specimens to

study the effect of an electric field on bending strength for PZT-841 ceramic

(Fig. 8.3). The sizes of the specimen are 10� 4� 3:2mm3 and the span distance

was 6:0mm. The poling direction was perpendicular to the load. Two silver-coated

faces at the ends of the sample were used as electrodes. The specimens were

thermally depoled at 400 �C for 30 min. Both the loading jig and supports were

insulated from the loading system. The generalized stresses will be calculated by

the finite element method. Under a mechanical load of 340 N, the electric field was

monotonically increased until fracture occurred. The results are shown in Fig. 8.4.

Results show that for the depoled specimens, the positive and negative fields all

decrease the bending strength.

8.1.4 Test on Conducting Crack

Heyer et al. (1998) carried out the mode-I fracture tests of the four-point bending

specimen for PZT-PIC 151 ceramic. Two silver-coated faces at the upper and lower

Fig. 8.2 Specimen for

mixed-mode fracture test

Fig. 8.3 Three-point smooth

bending test specimen
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surfaces of the sample were used as electrodes. The thickness is 3 mm. The crack is

filled with NaCl solution and its depth a ¼ 0:9 � 2:2 mm as shown in Fig. 8.5. The

generalized stress intensity factors are calculated by numerical method. The results

are shown in Fig. 8.6.

Fig. 8.4 Variations of

bending strength with electric

field (Reprinted from Fu and

Zhang 2000, with permission

from Acta Materialia)

Fig. 8.5 Four-point bending

specimen

Fig. 8.6 Plot of the stress and electric field intensity factors (Reprinted from Heyer et al. 1998,

with permission from Acta Materialia)

398 8 Failure Theories of Piezoelectric Materials



8.1.5 Vicker Indentation Test

The Vicker indentation test technique is pressing a square diamond pyramid into

a specimen with a given external force. The resulting wedge force drives radial

half penny-shaped cracks. The crack growth version in a Vicker indentation test is

quite different with that in the CT test. In the direction perpendicular to the poling

direction, the crack length is longer than that in the direction parallel to poling

direction (Fig. 8.7). Experiment results (Jiang and Sun 2001) pointed out that for

small loading ð9NÞ, increasing the positive electric field increased the crack and

increasing the negative electric field (absolute value) decreased the crack. For a

larger loading ð49NÞ, increasing the positive or negative electric field increased

the crack, but in a negative electric field, the crack growth is smaller than that in

the positive electric field. In the test of Wang and Singh (1997), the results are

somewhat different.

8.2 Some Practical Failure Criterions

8.2.1 Generalized Stress Intensity Factor Criterion

In the linear- and small-scale yielding fracture mechanics for mode-I problem, the

stress intensity factor KI or the energy release rate G or JI integral is used as the

fracture criterion. For mixed fracture problem, the combination ofKI;KII andKIII is

used. These theories are successful in engineering, but what combination should

be used is still a problem. It is natural to extend these theories to electroelastic

fracture problem, i.e., for the mixed fracture problem in piezoelectric material, the

fracture criterion takes the following form:

f ðKI;KII;KIII;KDÞ ¼ Kc (8.1)

However, it should be noted that the role ofKD is not fully the same as that ofKI;KII

andKIII. Many experiments show that the electric energy at failure of a piezoelectric

Fig. 8.7 Vicker indentation test
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material is much larger than that in the mechanical fracture. Otherwise the large

electric field can produce electric sparking to breakdown the dielectric. As

examples Heyer et al. (1998) gave a fracture criterion fitting their measured data

in the range � 50 < KE < 25 ðKVm�1 2= Þ for material PET-PIC 151 is

KIðMPam1 2= Þ ¼ 0:90� 0:01KEðKVm1=2Þ � 0:00002K2
E (8.2)

Fang et al. (2004) gave a fracture criterion fitting their measured data in the range

KI < 1:5Pam1 2= and � 2:5� 104Vm�1 2= < KE < 4� 104Vm�1 2= for material

PET-5 is

KIðPam1=2Þ þ 18:193KEðVm�1=2Þ � 2:641� 10�4K2
E ¼ 803505:949 (8.3)

8.2.2 Energy Release Rate Criterion

1. Total Energy Release Rate Criterion
For linear electroelastic theory, the original energy criterion of the crack extension

is

G ¼ R; G ¼ �@ðU �WÞ @a= ; R ¼ dðγs þ γiÞ da= (8.4)

where G is the energy release rate, R is crack extension resistance, U is the internal

energy, W is the work done by the external force, γs is the energy to formed a new

surface, and γi is the irreversible work at the crack tip. But we often use the electric

enthalpy release rate ~G as the energy release rate. If the crack tip is selected at the

coordinate origin, ~G is (Suo et al. 1992)

~G ¼ lim
Δ!0

1

2Δ

�
Z Δ

0

σ2jðrÞ½uþj ðΔ� rÞ � u�j ðΔ� rÞ�þD2ðrÞ φþðΔ� rÞ � φ�ðΔ� rÞ½ �
n o

dr

(8.5)

where Δ is the crack virtual extension, r is the distance in front of the crack tip on

axis x1 and Δ� r is the distance behind the crack tip.

The J integral expressed with the electric enthalpy is defined as

J ¼
Z
Γ
ðgn1 � σijnjui;1 � niDiφ;1Þ dl; g ¼ ð1 2= Þðσijui;j þ Diφ;iÞ (8.6)

where Γ is the integration contour around the crack tip and g is the electric enthalpy

density. In the linear- or small-scale yielding case, it can be proved that ~G ¼ J:
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For the mode-I fracture tests of the compact tension (CT) specimen, as shown in

Sect. 8.1.1, Park and Sun (1995) gave

~GI ¼¼ ðπa 2= Þ 2:29� 10�11 σ133
� �2 þ 2:35� 10�11σ133E

1
3 � 8:78� 10�9 E1

3

� �2h i
N m=

(8.7)

Equation (8.7) shows that when the contribution of an electric field is larger than

that of the mechanical stress, the total energy release rate becomes negative and the

crack cannot be extended. For the small stress and large electric field, the electric

field always impedes crack propagation. It is contrary to the experimental results.

2. Mechanical Strain Energy Release Rate Criterion

Park and Sun (1995) proposed a mechanical strain energy release rate GM
I

criterion for the piezoelectric materials. For the CT test, they got

GM
I ¼ lim

Δ!0

1

2Δ

Z Δ

0

σ33ðrÞ uþ3 ðΔ� rÞ � u�3 ðΔ� rÞ� �� �
¼ ðπa 2= Þ 2:28� 10�11 σ133

� �2 þ 1:21� 10�11σ133E
1
3

h i
N m=

(8.8)

Equation (8.8) shows that the positive electric field (the direction of the external

electric field is consistent with the poling electric field) increases the mechanical

strain energy rate and decreases the fracture toughness. The results calculated from

this criterion are consistent with that in test, as shown in Fig. 8.13. However, if the

stresses are all zeros, Eq. (8.8) shows that the crack cannot be extended; it is also

contrary with the experiment. It can be considered that for larger mechanical stress

this criterion is well.

3. Strain Energy Density Factor Criterion
In elastic fracture mechanics, Sih (1973) proposed the strain energy density

factor as the fracture criterion. Zuo and Sih (2000) and Shen and Nishioka (2000)

extended this theory to the piezoelectric materials. The strain energy density factor

S is defined as

S ¼ lim
r!0

rdU dV= ¼ lim
r!0

rA; A ¼ dU dV= ¼ σijεij 2= þ DiEi 2= (8.9)

where A is the strain energy density. The strain energy density factor criterion is

assumed:

(a) At the crack tip, the minimum strain energy density Smin happened at θ ¼ θ0,
ð@S @θ= Þθ¼θ0

¼ 0 , and ð@2S @θ2
� Þ

θ¼θ0
> 0 , where θ is the polar angle. Crack

initiation will start at the direction of the max Smin.

(b) When max :Smin reaches the critical value Sc, the crack begins propagation.

This theory is based on the stress state before crack extension. This theory is

not related to the crack virtual extension which is demanded by the energy release

rate theory.
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According to Eq. (3.222) in general case, the stress asymptotic field near the

crack tip for a piezoelectric material with polarized x3-axis is

Σ1 ¼ � 1
ffiffiffiffiffiffiffi
2πr

p.
 �
ReB μk

ffiffiffiffiffiffi
Θk

p.D E
B�1K; Σ2 ¼ 1

ffiffiffiffiffiffiffi
2πr

p.
 �
ReB 1

ffiffiffiffiffiffi
Θk

p.D E
B�1K

Θk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos θ þ μk sin θ

p
; KI ¼ σ133

ffiffiffiffiffi
πa

p
; KII ¼ σ131

ffiffiffiffiffi
πa

p
; KIII ¼ σ132

ffiffiffiffiffi
πa

p
; KD ¼ D1

3

ffiffiffiffiffi
πa

p

(8.10)

Discuss the plane strain problem in the ðx1; x3Þ plane. In this caseE2 ¼ 0; ε22 ¼ 0,

so σ22ε22 ¼ 0;D2E2 ¼ 0. The strain energy density factor becomes

S ¼ lim
r!0

rA ¼ ð1 2= Þ lim
r!0

r ΣT
1ε1 þ ΣT

2ε2
� �þ ðσ31ε31 þ σ23ε23Þ
� �

ε1 ¼ ðε11; ε12; ε13;E1ÞT; ε2 ¼ ðε21; ε22; ε23;E2ÞT
(8.11)

where generalized strains can be obtained from the constitutive equations, so S can be
expressed by the generalized stress intensity factors. Their numerical calculation results

show that for the material PZT-4 in the range � 0:6 ðkV cm= Þ < E3 < 0:8 ðkV cm= Þ,
the theoretical results are consistent with previous experimental results.

8.2.3 Small-Scale Domain Switching Theory

Experiments show that under mechanical and electrical loadings, the intensified

generalized stresses near a crack-like flaw lead to domain reorientation. An electric

field can rotate the polar direction of a domain by either 180� or 90� , but a stress

field rotates it only by 90�. Let the initial poling direction of a domain form an angle

ϕwithx1-axis and the variation of the polarization vectorΔPs and the transformation

strain tensor Δε0 after a 90� rotation of a domain (Fig. 8.8) be, respectively,

ΔPs ¼
ffiffiffi
2

p
Ps

cosðϕ� 3π 4= Þ
sinðϕ� 3π 4= Þ
� 

; Δε0 ¼ ε0
� cos 2ϕ sin 2ϕ
sin 2ϕ cos 2ϕ

� 
(8.12)

where Ps is the spontaneous polarization, ε0 is the spontaneous strain, and � 3π 4=
are corresponding to the anticlockwise and clockwise, respectively.

The domain switching plays an important role in the crack extension theory.

Zhu and Yang (1997) and Yang and Zhu (1998) proposed a small-scale domain

switching theory to qualitatively discuss the fracture toughness variation which is

related to the fracture criterion. In their discussion, they assumed outside the

switching zone, the interaction between the stress and electric field is neglected

and the material is assumed isotropic. In Sect. 5.1.3, the electric field of a permeable

elliptic cavity in an electrostrictive material was studied under the assumption that

the effect of the stress on the electric field was neglected, so the results in Sect. 5.1.3
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can be used here. When the external electric field is onlyE1
2 , the electric asymptotic

field near the right end of a narrow ellipse in a local coordinate system with the

origin at the focus of the ellipse is (see Eq. (5.34))

E2 � E1
2

1

1þ �δ

ffiffiffiffiffi
a

2r

r
e�iθ 2= þ 1þ 2�δ

2ð1þ �δÞ
� �

(8.13)

In Eq. (8.13) the first term is a singular electric field, while the second term is a

homogeneous electric field. When �δ is small, the singular electric field is dominant,

while �δ is large, the homogeneous field is dominant. Outside the switching zone,

the stress asymptotic field is

σij ¼ Kapp

ffiffiffiffiffiffiffi
2πr

p.
 �
fijðθÞ (8.14)

where Kapp is the apparent stress intensity factor. The domain switching criterion

can approximately expressed as (Hwang et al. 1995)

σ : Δεþ E : ΔP 	 2PsEc (8.15)

whereEc is the coercive electric field. Substitution of Eqs. (8.12), (8.13), and (8.14)

into Eq. (8.15) roughly yields the boundary of the switching zone R0 as:

ffiffiffiffiffi
R0

p
¼ ffiffiffi

ρ
p

Rðθ; β;�δÞ > 0; ρ ¼ 1

8π

Kappε0
PsEc

� �
; β ¼ KEPs

Kappε0
; KE ¼ E1 ffiffiffiffiffi

πa
p

R ¼
ffiffiffi
2

p

1þ �κ
β sin ϕ� 3π

4
� θ

2

� �
þ sin θ sin 2ϕþ 3θ

4

� �� 
1� E1

2ffiffiffi
2

p
Ec

�δ

1þ �δ
sin ϕ� 3π

4

� �� �1

(8.16)

In mono-domain switching case, numerical results showed that when �δ ¼ 103,

the uniform electric field is dominant and a positive electric field reduces the

Fig. 8.8 90� switching
domain near the crack tip
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size of the switching zone, while the negative electric field enlarges the size. When
�δ ¼ 10�3, the singular electric field is dominant, and both the positive and negative

electric fields enlarge the size of the switching zone.

At the crack tip region, the domain switching occurred. Solved the shape and the

size of the switching zone, the toughness increment can be obtained by the

transformation theory (Eshelby 1957; McCmeeking and Evans 1982; Budiansky

et al. 1983). Zeng and Rajapakse (2001) and Rajapakse and Zeng (2001) discussed

the toughness increment by domain switching also. Huang and Kuang (2003)

discussed the influence of the switching wake on the facture toughness of ferro-

electric materials. The domain switch theory need be improved.

8.3 The Local Energy Release Rate Theory

Usually a piezoelectric material has high mechanical strength, brittleness, and small

deformation, but the electric saturation can be occurred under large electric field.

Analogous to the Dugdale model in elastoplastic fracture mechanics, Gao et al.

(1997) proposed the strip electric saturation model and local energy release rate

theory to explain the effect of the electric field on the failure of a crack specimen in

piezoelectric material. This model considers that near the crack tip the mechanical

deformation is elastic, but the electric field is saturated on a line in front of the crack

tip or treats dielectric ceramic as mechanically brittle and electrically ductile

(Fig. 8.9). The fracture behavior is determined by the local J integral around the

crack tip x1 ¼ a only and does not enclosed the electric saturation end x1 ¼ c.
1. Poling Axis Perpendicular to the Crack
Discuss an infinite plate with a central crack of length 2a located on the axis x1.

The polarization x3-axis is perpendicular to the crack (Fig. 8.9). In order to clearly

explain the physical phenomenon, Gao et al. (1997) adopted the following

simplified constitutive equation:

σ11

σ22

σ33

σ32

σ31

σ12

D1

D2

D3

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

¼

M 
 
 0 0 0 0 0 e


 M 
 0 0 0 0 0 e


 
 M 0 0 0 0 0 �e

0 0 0 M 0 0 0 �e 0

0 0 0 0 M 0 �e 0 0

0 0 0 0 0 
 0 0 0

0 0 0 0 e 0 E 0 0

0 0 0 e 0 0 0 E 0

�e �e e 0 0 0 0 0 E

26666666666666664

37777777777777775

ε11

ε22

ε33

2ε32

2ε31

2ε12

E1

E2

E3

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(8.17)

where 
 means that the corresponding material constant does not appear in this

model and is omitted. Here the plane strain problem is discussed.
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In Eq. (8.17) there are only three independent material constants M; e; E.
Assume the displacement only along x3 direction, i.e.,

u1 ¼ 0; u3 ¼ u3ðx1; x3Þ; Ei ¼ �φ;i (8.18)

The equilibrium equation along direction x1 is satisfied automatically due to u1 ¼ 0,

so σ11 is not needed. Substitution of Eq. (8.18) into Eq. (8.17) yields

σ13 ¼ Mu3;1 þ eφ;1; σ33 ¼ Mu3;3 þ eφ;3

D1 ¼ eu3;1 � Eφ;1; D3 ¼ eu3;3 � Eφ;3
(8.19)

Inserting Eq. (8.19) into generalized equilibrium equation σij;j ¼ 0 and Di;i ¼ 0

yields

r2u3 ¼ 0; r2φ ¼ 0 (8.20)

Introduce complex potentials UðzÞ and ΦðzÞ, and let

u3 ¼ Im UðzÞ½ �; φ ¼ Im ΦðzÞ½ �; σ33 þ iσ31 ¼ MU0ðzÞ þ eΦ0ðzÞ
D3 þ iD1 ¼ eU0ðzÞ � EΦ0ðzÞ; E3 þ iE1 ¼ �Φ0ðzÞ; z ¼ x1 þ ix3

(8.21)

Now discuss the strip electric saturation model. Assume in front of the crack that

electric field reaches saturation on a < x1 � c; x3 ¼ 0. The boundary conditions are

σ33 þ iσ31 ¼ σ1; E3 þ iE1 ¼ E1; when zj j ! 1
σ33 ¼ 0; D3 ¼ 0; when x1j j < a; x3 ¼ 0

u3
þ ¼ u3

�; D3 ¼ Ds; when a < x1j j � c; x3 ¼ 0

(8.22)

whereσ1 andE1 are real constants. It is noted thatσ31 cannot be zero in x1j j < adue
to u1 ¼ 0 is assumed. The solution satisfying Eq. (8.22) is

U0ðzÞ ¼ c1zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p ; Φ0ðzÞ ¼ c3zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p þ c4zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � c2

p � Ds

E
ωðzÞ

c1 ¼ eE1 þ σ1

M
; c3 ¼ eðeE1 þ σ1Þ

EM
; c4 ¼ �ðe2 þ EMÞE1 þ eσ1

EM

ωðzÞ ¼ 2

π
arccot

a

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � c2

c2 � a2

r !
� zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � c2
p arccos

a

c


 �" # (8.23)

Fig. 8.9 The local J integral
model
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whereωðzÞ is similar to that in the Dugdale model and has the following behaviors:

ωðzÞ ! 0; when z ! 1; ImωðzÞ ¼ 0; when x1j j > c

ReωðzÞ ¼ 0; when x1j j < a; ReωðzÞ ¼ 1; when a < x1j j < c
(8.24)

The condition that the stresses are finite at x1j j ¼ c yields the size of the saturation
zone

ρ ¼ c� a ¼ a sec
π

2

ðe2 þ EMÞE1 þ eσ1

MDs

� �
� a ¼ a sec

π

2

D1

Ds

� �
� a (8.25)

Near the crack tip the stress field is singular, but the electric field is finite.

The singular parts of the stresses are

σ33 ¼ Re MU0ðzÞ þ eΦ0ðzÞf g ¼ M
c1ðaþ rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2ra

p þ e
c3ðaþ rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2ra

p � Ds

E
ωðzÞ

� 
u3 ¼ Im UðzÞf g ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; �a < x < a

(8.26)

The local J integral Ja at the crack tip (Fig. 8.9) is:

Ja ¼
Z
Γa

ðgn1 � σijnjuj;1 � Djnjφ;1Þ ds ¼
πa

2M
1þ e2

EM

� �
ðeE1 þ σ1Þ2 (8.27)

where g ¼ ð1 2= Þðσijεij � DiEiÞ is the electric Gibbs free energy. Equation (8.26)

can also be obtained by substituting Eq. (8.23) into Eq. (8.5) (Fang et al. 1999).

The apparent J integral Jc whose integral path encloses the crack tip and the end of

the strip electric saturation is

Jc ¼
Z
Γc

ðgn1 � σijnjuj;1 � Djnjφ;1Þds ¼ Jc þ Dsðφþ � φ�Þjx1¼a

¼ πa

2M
1þ e2

EM

� �
ðeE1 þ σ1Þ2 � 4Dsa

πE
ln sec

π

2

e2 þ EMð ÞE1 þ eσ1

MDs

� �� 
� πa

2M
ðσ1Þ2 � ðe2 þ EMÞðE1Þ2
h i

(8.28)

When ρ � a , the approximate equality is held in Eq. (8.28), which is just the

solution for the linear problem. It is obvious that Jc 6¼ Ja . If using Jc ¼ Jcr as

the fracture criterion, where Jcr is the critical value at fracture of J integral, both the
positive and negative electric fields decrease Jc, so increases the fracture toughness.
If using Ja ¼ Jcr as the fracture criterion, the positive electric fields decrease the

apparent fracture toughness, while negative electric field increases the apparent

fracture toughness. This is consistent with the experiment facts.
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2. Poling Axis Parallel to the Crack
Let the crack be located on the axis x3 (polarized axis) (Fig. 8.10). Take

u3 ¼ 0; u1 ¼ u1ðx1; x3Þ; D1 ¼ �ψ ;3; D3 ¼ ψ ;1 (8.29)

In the coordinate system shown in Fig. 8.10, the constitutive equations are

σ13 ¼ �Mu1;3 þ �eψ ;3; σ11 ¼ �Mu1;1 þ �eψ ;1

E3 ¼ �eu1;1 � �Eψ ;1; E1 ¼ ��eu1;3 þ �Eψ ;3

�M ¼ M þ e2 E= ; �e ¼ e E= ; �E ¼ �1 E=

(8.30)

According to E1;3 ¼ E3;1 and σ11;1 þ σ13;3 ¼ 0, it can still be derived that u3 and ψ
are all the harmonic functions. Introduce complex potentials UðzÞ and ΨðzÞ
and let

u1 ¼ Im UðzÞ½ �; ψ ¼ Im ΨðzÞ½ �; σ11 þ iσ13 ¼ �MU0ðzÞ þ �eΨ 0ðzÞ
E3 � iE1 ¼ �eU0ðzÞ � �EΨ 0ðzÞ; D3 � iD1 ¼ Ψ 0ðzÞ; z ¼ x3 þ ix1

(8.31)

The solution for a central crack is

U0ðzÞ ¼ σ1z

�M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p þ �eð �ME1 � �eσ1Þ
�Mð �M�Eþ �e2Þ ; Ψ 0ðzÞ ¼ �

�ME1 � �eσ1

�M�Eþ �e2
(8.32)

and

Jc ¼ Ja ¼ πaσ12 2 �M= ¼ πa E σ12 2MðEM þ e2Þ� ��
(8.33)

Equation (8.33) shows that the parallel electric field does not influence the fracture

when the poling direction is parallel to the crack. It is also consistent with the

experiment facts. If let x3 ¼ x; x1 ¼ y, the above formulas are identical with that in

the paper of Gao et al. (1997).

Wang (2000) and Fulton and Gao (1997) discussed the fracture problem for the

strip electric saturation model in a more general situation and pointed out that

the local J integral criterion is consistent with the experimental results obtained by

Park and Sun in a certain electric field range.

Fig. 8.10 A crack parallel to

the poling direction
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8.4 Failure Criterion of Conductive Cracks with Charge-Free

Zone Model

8.4.1 Basic Concept of the Charge-Free Zone

In electronic and electromechanical devices made of piezoelectric ceramics, the

embedded soft electrodes are widely used. These soft electrodes may be considered

as conducting cracks. When an external electric field is parallel to the conducting

crack, the induced charge will be produced on the crack surface in order to make the

electric field inside the conducting crack remains zero. The same sign charges will

be on the upper and lower surfaces near the crack tip, so the repellent force will

open the crack. Zeller and Schneider (1984) proposed a model; they assumed that

the charge mobility has a finite value when E > Ec , while the charge mobility is

zero when E < Ec, where Ec is a critical value. Zhang et al. (2003, 2004) based on

the above model proposed a charge-free zone (CFZ) model to discuss the failure

behavior of conducting crack: When the electric intensity factor at the crack tip

reaches a critical value, charges could be emitted from the tip. The emitted charges

may form a charge cloud around the tip and shield the external electric field, so

form a charge-free zone in front of the tip. Therefore the generalized stress field is

singular at the crack tip because there is no electric charge in charge-free zone and

the failure criterion can be expressed by the generalized stress intensity factors. The

CFZ model is the extension of the dislocation-free model in elastic–plastic fracture

mechanics (Ohr 1985; Majumdar and Burns 1983; Kuang et al. 1998).

8.4.2 Interaction of the Crack and a Point Charges
in Front of It

Discuss an infinite piezoelectric material polarized along positive x1 -axis with a

semi-infinite crack located on the minusx1-axis subjected to a point electric chargeq
at z0 (Fig. 8.11). The crack tip is selected as the origin of the coordinate system.

At first discuss the interaction of a single point electric charge in front of the crack

tip. Zhang et al. (2004) adopted the simplified constitutive equations shown in

Eq. (8.17) with appropriate rearrangement, because the polarized axes are different.

In order to discuss the problem qualitatively, it is assumed that

u1 ¼ 0; u3 ¼ u3ðx1; x3Þ (8.34)

σ13 ¼ Mu3;1 þ eφ;3; σ33 ¼ Mu3;3 � eφ;1

D1 ¼ �eu3;3 � Eφ;1; D3 ¼ eu3;1 � Eφ;3
(8.35)
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where u3 and φ are all harmonic functions, so they can be expressed by complex

functions UðzÞ and ΦðzÞ:

u3 ¼ Im UðzÞ½ �; φ ¼ Im ΦðzÞ½ �; z ¼ x1 þ ix3

σ33 þ iσ31 ¼ MU0ðzÞ þ ieΦ0ðzÞ; ε33 þ i2ε31 ¼ U0ðzÞ
D1 � iD3 ¼ �eU0ðzÞ þ iEΦ0ðzÞ; E3 þ iE1 ¼ �Φ0ðzÞ

(8.36)

The boundary conditions on a conducting crack surface are

σ33 ¼ 0; E1 ¼ 0; when x1 < 0; x2 ¼ 0 (8.37)

The solution satisfying the boundary conditions is

U ¼ 0; Φ ¼ � iq

2πE
ln

ffiffi
z

p � ffiffiffiffi
z0

p� �þ iq

2πE
ln

ffiffi
z

p � ffiffiffiffi
�z0

p� �
(8.38)

Substitution of Eq. (8.38) into Eq. (8.36) yields

E1 � iE3 ¼ iΦ0ðzÞ ¼ q

4πE

ffiffiffiffi
z0

p þ ffiffiffiffi
�z0

pffiffi
z

p
zþ ffiffi

z
p ffiffiffiffi

�z0
p � ffiffiffiffi

z0
p� �� ffiffiffiffiffiffiffiffi

z0�z0
p� �

σ33 þ iσ31 ¼ eðE1 � iE3Þ; D1 � iD3 ¼ EðE1 � iE3Þ; ε33 þ i2ε31 ¼ 0

(8.39)

When z0 ¼ x01 is on the x1-axis, Eq. (8.39) yields

E1 � iE3 ¼ q

2πE

ffiffiffiffiffiffi
x01

pffiffi
z

p
z� x01½ � ; KE ¼ lim

z!0

ffiffiffiffiffiffiffi
2πz

p
ðE1 � iE3Þ ¼ � q

E
ffiffiffiffiffiffiffiffiffiffiffiffi
2π x01

p

Kσ ¼ lim
z!0

ffiffiffiffiffiffiffi
2πz

p
ðσ33 þ iσ31Þ ¼ eKE; KD ¼ lim

z!0

ffiffiffiffiffiffiffi
2πz

p
ðD1 � iD3Þ ¼ EKE

(8.40)

8.4.3 The Condition to Form a Charge-Free Zone

Neglecting the effect of the deformation on the electric field the solution of an

infinite material subjected to a point electric charge q is

U ¼ 0; Φ ¼ � iq

2πE
lnðz� z0Þ; E1 � iE3 ¼ q

2πE
1

z� z0
(8.41)

Fig. 8.11 A semi-infinite

crack parallel to the poling

direction
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The image field E
ðiÞ
1 ;E

ðiÞ
3 introduced by the crack is Eq. (8.39) minus (8.41), i.e.,

E
ðiÞ
1 � iE

ðiÞ
3 ¼ q

2πE

ffiffiffiffi
z0

p þ ffiffiffiffi
�z0

p

2
ffiffi
z

p
zþ ffiffi

z
p ffiffiffiffi

�z0
p � ffiffiffiffi

z0
p� �� ffiffiffiffiffiffiffiffi

z0�z0
p� �� 1

z� z0

" #
(8.42)

When z0 ¼ x01, the image field of a point z1 ¼ x1 near the crack tip is

E
ðiÞ
1 ¼ q

2πE

ffiffiffiffiffiffi
x01

pffiffiffiffiffi
x1

p ½x1 � x01� �
1

x1 � x01

� 
¼ � q

2πE
1ffiffiffiffiffi

x1
p ffiffiffiffiffi

x1
p þ ffiffiffiffiffiffi

x01
p� � (8.43)

and image force acted on q is

Fi ¼ qE
ðiÞ
1 ¼ � q2

2πE
1

2x01
(8.44)

So the image force is always to push the electric charge towards the crack. On the

other hand, the external field exerts a driving force Fa on the charge. For simplicity

discuss a charge, which is on the axis x01. The driving force is given by

Fa ¼ KEq
ffiffiffiffiffiffiffiffiffiffiffi
2πx01

p.
(8.45)

where KE is electric field intensity factor produced by the external field. According

to Zeller and Schneider’s model (1984), when the algebraic sum of the driving force

and image force is larger than qEc, the charge will be emitted from the crack tip, or

the condition to form a charge-free zone is

Fa þ Fi 	 qEc;
KEqffiffiffiffiffiffiffiffiffiffiffi
2πx01

p � q2

4πE
1

x01
	 qEc (8.46)

There are two points x1 ¼ a and x2 ¼ b (Fig. 8.12) satisfying Eq. (8.46):

ffiffiffiffiffiffiffi
x1;2

p ¼ 1

2
ffiffiffiffiffi
2π

p
Ec

KE � K2
E �

2qEc

E

� �1 2=
" #

(8.47)

According to Zeller and Schneider’s model (1984), a charge moves forward in the

region ðx1; x2Þ due to Fa þ Fi > qEc and stops at point x2 due to Fa þ Fi ¼ qEc .

When more and more charges are emitted from the crack tip, charges will pile up

and form a charge trap zone ðb; cÞ followed by the charge-free zone ðo; bÞ. It is
assumed that b and c are constants.
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8.4.4 Failure Criterion of Charge-Free Zone Model

Assume the charge density in the charge trap zone is f ðxÞwith f ðbÞ ¼ f ðcÞ ¼ 0. The

critical electric field is Ec , and the external applied stress intensity factor is K
ðaÞ
E .

Using Eqs. (8.40) and (8.45) the equilibrium condition in the charge trap zone is

K
ðaÞ
Effiffiffiffiffiffiffiffiffiffi
2πx1

p þ q

2πE

Z c

b

f x01
� � ffiffiffiffiffi

x01
pffiffiffiffiffi

x1
p

x1 � x01
� �dx01 ¼ Ec; b � x1 � c (8.48)

In order to guarantee the existence and uniqueness of the solution of f ðxÞ in

Eq. (8.48), it must be f ðbÞ ¼ f ðcÞ ¼ 0 or (Majumdar and Burns 1983)

Z c

b

Ec

ffiffiffiffiffi
x01

p � K
að Þ
E

ffiffiffiffiffi
2π

p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� x01
� �

x01 � b
� �q dx01 ¼ 0 (8.49)

Equation (8.49) yields

K
ðaÞ
E ¼ 2

ffiffiffiffiffiffiffiffi
2πc

p
EcE π 2= ; kð Þ=π (8.50)

where Eðπ 2= ; kÞ is the complete elliptic integral of the second kind and

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b c=

p
. The solution of Eq. (8.48) is

f x01
� � ¼ � 4EEcb

ffiffiffiffiffi
x01

p
πq

ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� x01

p
x01 x01 � b
� �Π π

2
;
x01ðc� bÞ
c x01 � b
� � ; k" #

(8.51)

where Π π 2= ; n2; k½ � is the complete elliptic integral of the third kind. Using

Eq. (8.40) the electric intensity factor produced by the electric charges is

K
ðiÞ
E ¼ �

ffiffiffiffiffi
2π

p q

2πE

Z c

b

f x01
� �ffiffiffiffiffi
x01

p dx01 ¼ �2

ffiffiffi
2

π

r
Ec

ffiffiffi
c

p
E

π

2
; k


 �
�

ffiffiffi
b

p
F

π

2
; k


 �h i
¼ Ω� 1ð ÞKðaÞ

E

KðiÞ
σ ¼ eðΩ� 1ÞKðaÞ

E ; K
ðiÞ
D ¼ EðΩ� 1ÞKðaÞ

E ; Ω ¼
ffiffiffi
b

c

r
F

π

2
; k


 �
E

π

2
; k


 �.
(8.52)

Fig. 8.12 A charge-free zone

model
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where F π 2= ; kð Þ is the complete elliptic integral of the first kind. The local electric

field intensity factor at the crack tip is the sum of the applied intensity factor and the

intensity factor produced by the charges in the charge trap zone. So we can get

KE ¼ K
ðaÞ
E þ K

ðiÞ
E ¼ ΩK

ðaÞ
E ; KD ¼ K

ðaÞ
D þ EðΩ� 1ÞKðaÞ

E ¼ E 1þ e2

EM

� �
K

ðaÞ
E � e

M
KðaÞ
σ

Kσ ¼ KðaÞ
σ þ eðΩ� 1ÞKðaÞ

E ; Kε ¼ KðaÞ
ε ¼ KðaÞ

σ � eK
ðaÞ
E

h i
M=

(8.53)

Using Eq. (8.53) the local J integral Ja is obtained:

Ja ¼ ð1 2= Þ KσKε þ KDKEð Þ ¼ 1 2M=ð Þ KðaÞ
σ � eK

ðaÞ
E


 �2
þ E 2=ð Þ ΩK

ðaÞ
E


 �2
(8.54)

Assuming Jcr is the critical value of Ja, Eq. (8.54) yields the fracture criterion:

2MJa ¼ KðaÞ
σ � eK

ðaÞ
E


 �2
þ EM ΩK

ðaÞ
E


 �2
¼ 2MJcr (8.55)

Under purely mechanical loading we can get the critical stress intensity factor

Kσcr and under purely electrical loading we can get the critical electric field intensity

factor KE cr, or

K2
σ cr ¼ 2MJcr; EMΩ2 þ e2

� �
K2
E cr ¼ 2MJcr; or

Kσ cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MJcr

p
; KE cr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MJcr EMΩ2 þ e2

� ��q (8.56)

where KE cr can be taken as positive or negative value. Using Eq. (8.56), Eq. (8.55)

can be rewritten in dimensionless form:

KðaÞ
σ

Kσ cr

� �2

 2e

EMΩ2 þ e2
� �1 2=

KðaÞ
σ

Kσ cr

� �
K

ðaÞ
E

KE cr

 !
þ K

ðaÞ
E

KE cr

 !2

¼ 1 (8.57)

where the negative sign is for positive electric loading, while the positive sign

for negative electric loading. From the derivation process, it is known that the

following relation should be held:

K2
σ cr ¼ EMΩ2 þ e2

� �
K2
E cr (8.58)

The above relation may not be held for a real material. So from the engineering

view, this constraint condition may be abandoned. It may be considered that Kσ cr

and KE cr are two independent experimental parameters and introduce weight
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coefficients in Eq. (8.57). If so, the criterion is more like the generalized stress

intensity factor criterion Eq. (8.1), but it has certain theoretical foundation. For the

problem with general constitutive equations, the results are also consistent with that

in experiments (Zhang et al. 2003, 2004).

8.5 Modal Strain Energy Density Factor Theory

8.5.1 Normalized Generalized Stress and Strain Vectors
in Piezoelectric Materials

As in the elastic case, the first kind of constitutive equations in Eq. (2.83) can be

expressed in terms of Voigt vector, i.e.,

Γ ¼ s � Σ
Γ ¼ ½εx; εy; εz; γyz; γzx; γxy;Dx;Dy;Dz�; Σ ¼ ½σx; σy; σz; τyz; τzx; τxy;Ex;Ey;Ez�

(8.59)

where γyz; γzx; γxy are the engineering shear strain. Analogous to Eq. (1.40) the

normalized generalized stress vector �Σ and strain vector �Γ in piezoelectric materials

are defined as

�Γ ¼ P�1 � Γ ; �Σ ¼ P � Σ; P ¼ PT ¼ diag 1 1 1
ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
1 1 1

h i
�Γ ¼ �s � �Σ; �s ¼ P�1 � s � P�T

(8.60)

where �s is the normalized generalized compliance matrix. Let the transform matrix

of the coordinate systems ϕ0 and ϕ be Q ¼ ½Qkl�, Qkl ¼ cos ik; i
0
k

� �
, then

Σ0 ¼ A � Σ; Γ 0 ¼ B � Γ ; �Σ0 ¼ P � A � P�1 � �Σ; �Γ 0 ¼ P�1 � B � P � �Γ (8.61)

where

A ¼
A11 2A12 0

A21 A22 0

0 0 Q

0@ 1A; B ¼
A11 A12 0

2A21 A22 0

0 0 Q

0@ 1A; AT ¼ B�1 (8.62)

where A11;A12;A21;A22 are shown in Eq. (1.39). It is easy to show that

H ¼ P � A � P�1 ¼ P�1 � B � P; HT ¼ H�1

�Σ0 ¼ H � �Σ; �Γ 0 ¼ H � �Γ ; �Γ 0 ¼ H � �Γ ¼ �s0 � �Σ0
; �s0 ¼ H � �s �H�1

(8.63)

Equation (8.63) shows that �Σ and �Γ are vectors in a nine-dimensional space with the

orthogonal coordinate transform tensor H.
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8.5.2 Eigen Material Constants and Material Modes

Equation (8.60) shows that each component of �Γ are related to all nine components

of �Σ. Kuang et al. (2003) extended the Kelvin theory (Chen 1984; Ruhlevskii 1984;
Arramon et al. 2000) to piezoelectric materials. In material there is a direction M,

along which �Γ and �Σ are parallel in the nine-dimensional space. The coordinates

paralleling to M are called the material principle coordinates. In the material

principle coordinates, �Γ is denoted by Γ̂ , �Σ by Σ̂, and

�s� ΛIð Þ �M ¼ 0; Γ̂ ¼ Λ � Σ̂; Λ ¼ diag Λi½ � ¼ Λih i
�s� ΛIj j ¼ 0; or P�1 � s � P�T � ΛI

�� �� ¼ 0
(8.64)

For the nondegenerate case, Eq. (8.64) has nine different Λi, where Λi is called ith
eigen-compliance and Λ is called the eigen-compliance matrix. Usually ŝ is real

symmetric, so Λ takes real value. For each Λi there is an eigenvector or material

mode Mi with one arbitrary component. Mi and Mj are orthogonal to each other

when i 6¼ j. The normalized orthogonal eigenvectors M̂ can be established by

M̂ ¼ M̂i

� � ¼ M̂1; M̂2; . . . ; M̂9

� �
; M̂i ¼ Mi Mij j= ; M̂M̂

T ¼ I (8.65)

M̂ is called the material mode matrix. The space spanning by basis vectors along M̂
is called the mode space. Usually the eigen-equation in Eq. (8.64) is degenerate due

to the certain symmetry in the real materials, so the number of independent

eigenvalues is less than nine, i.e., there are repeated roots in Λ . However, the

eigen-matrix in Eq. (8.64) is semisimple for the real material, so for a multiple root

Λi, the number of the independent eigenvectors is the same as its multiplicity. Under

the coordinate transformationϕ toϕ0we have ŝ0 ¼ HŝH�1, i.e., ŝ0 and ŝare the similar

matrix, so in coordinate systems ϕ and ϕ0 , the eigen-compliance matrix Λ is the

same, but the eigenvector changes to M0 ¼ H�1M.

Analogous to the above discussion, we can also discuss the eigen elastic

coefficient matrix λ:

Σ̂ ¼ λ � Γ̂ ; λ ¼ Λ�1 (8.66)

8.5.3 Modal Stress, Modal Strain, and Modal Energy Density

Any normalized generalized stress vector �Σ and strain vector �Γ can be decomposed

in a modal space:

�Σ ¼
Xm
j¼1

Σ̂j ¼
Xm
j¼1

Σ̂jMj; �Γ ¼
Xm
j¼1

Γ̂ j ¼
Xm
j¼1

Γ̂jMj (8.67)
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where Σ̂j; Γ̂ j are the j-th modal stress and strain vectors, respectively and Σ̂j; Γ̂j are

their norms, respectively. Obviously Γ̂ j ¼ ΛjΣ̂j. The modal strain energy densityAi

of ith mode is

Ai ¼ Σ̂T
i Σ̂i 2= ¼ ΛiΣ̂

2
i 2= ; no sum on i (8.68)

8.5.4 Modal Energy Density Factor (MEDF) Theory

It is believed that the energy possesses the central role in the change of the

microstructure and failure. Because the resistance against the change of the micro-

structure is different in different deformation direction and mechanism, the role of

the energy produced in different deformation version and mechanism is different.

This fact shows that in the change of the microstructure and failure process, the

energy possesses material structure anisotropic behavior. In the small-scale electric

saturation case for the self-similarity extended crack, the failure criterion can be

determined by the generalized stresses near the tip, so the modal energy density

theory can be used. The MEDF failure theory can be expressed as follows:

Assume Λp is an r-repeated root and its corresponding independent modes are

Mpi; i ¼ 1; 2; . . . ; r. The subspace spanning by the basic vectors consisted of Mpi

is an isotropic subspace for Λp . Experiences show that the contribution to the

failure of each deformation version in this subspace can be considered the same, so

Mp1 þMp2 þ � � � þMpr can be considered as one independent mode. Therefore, in

the modal strain energy density, the modified number of the independent mode is

N � 9 . For the failure problem, the direction (tension or compression) of the

generalized stress is also important. Experiments also show that the mechanism

of the tension failure is somewhat different with other failure version, so the tension

failure criterion should be given alone. Considering these factors, the modal strain

energy density theory can be given as

XN
i¼1

aþi A
þ
i þ βia

�
i A

�
i

� � ¼ Aþ
cr þ βA�

cr (8.69)

whereN is the modified number of the independent modes, aþi and a�i are the weight

coefficients considering the different modal energy, and the superscripts “þ ” and

“� ” express the different direction,β and βi are the weight coefficients considering
deformation direction. For the plastic deformation aþi ¼ a�i , β ¼ βi ¼ 1 . If all

coefficients a�i ¼ 1; β ¼ βi ¼ 1 , Eq. (8.69) is the total energy density criterion.

If the generalized stress field is singular with singularity 1
ffiffi
r

p
= , Eq. (8.69) needs

multiply r.
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8.5.5 Eigen-Compliances and Material Modes
of Some Materials

In practical calculation, Eq. (8.64), P�1 � s � P�T � ΛI
� �

M ¼ 0, is often used.

1. Transverse Isotropic Material with Polarized x3-Axis

Λ ¼

s11 � Λ s12 s13 0 0 0 0 0 d31
s12 s11 � Λ s23 0 0 0 0 0 d31
s13 s23 s33 � Λ 0 0 0 0 0 d33
0 0 0 1

2
s44 � Λ 0 0 0 1ffiffi

2
p d15 0

0 0 0 0 1
2
s44 � Λ 0 1ffiffi

2
p d15 0 0

0 0 0 0 0 s11 � s12ð Þ � Λ 0 0 0

0 0 0 0 1ffiffi
2

p d15 0 E11 � Λ 0 0

0 0 0 1ffiffi
2

p d15 0 0 0 E11 � Λ 0

d31 d31 d33 0 0 0 0 0 E33 � Λ

266666666666664

377777777777775
(8.70)

The first and second eigen-compliances are repeated roots Λ1 ¼ Λ2 and associated

with two material modes

Λ1;2 ¼ 2E11 þ s44 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 � s44ð Þ2 þ 8d215

q� �.
4

MT
11 ¼ 0; 0; 0; 0; �2E11 þ s44 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 � s44ð Þ2 þ 8d215

q� �
2
ffiffiffi
2

p
d15

.
; 0; 1; 0; 0

� 
MT

12 ¼ 0; 0; 0; �2E11 þ s44 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 � s44ð Þ2 þ 8d215

q� �
2
ffiffiffi
2

p
d15

.
; 0; 00; 1; 0

� 
(8.71)

These two material modes represent the combined version of the shear strains

out of the plane ðx1; x2Þ and the electric field in the plane ðx1; x2Þ. The third and

fourth eigen-compliances are repeated roots Λ3 ¼ Λ4 and associated with two

material modes

Λ3;4 ¼ s11 � s12

MT
31 ¼ ½�1; 1; 0; 0; 0; 0; 0; 0; 0�; MT

32 ¼ ½0; 0; 0; 0; 0; 1; 0; 0; 0� (8.72)

These two material modes represent the 2D plane strain in ðx1; x2Þ and uncoupled

with the electric field. The fifth and sixth eigen-compliances are repeated roots

Λ5 ¼ Λ6 and associated with two material modes

Λ5;6 ¼ 2E11 þ s44 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 � s44ð Þ2 þ 8d215

q� �.
4

MT
51 ¼ 0; 0; 0; 0; �2E11 þ s44 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 � s44ð Þ2 þ 8d215

q� �
2
ffiffiffi
2

p
d15; 0; 1; 0; 0

.� 
MT

52 ¼ 0; 0; 0; �2E11 þ s44 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 � s44ð Þ2 þ 8d215

q� �
2
ffiffiffi
2

p
d15; 0; 0; 0; 1; 0

.� 
(8.73)
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These two material modes are the counterparts of the first two material modes. The

last three eigen-compliances are single roots

Λ7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2


 �2
þ p

3


 �3r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2


 �2
þ p

3


 �3r
3

s
� a

3

Λ8 ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2


 �2
þ p

3


 �3r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2


 �2
þ p

3


 �3r
3

s
� a

3

Λ9 ¼ ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2


 �2
þ p

3


 �3r
3

s
þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

2


 �2
þ p

3


 �3r
3

s
� a

3

(8.74)

where

p ¼ b� a2 3= ; q ¼ 2a3 27= � ab 3= þ c; a ¼ �ðs33 þ s11 þ s12 þ E33Þ
b ¼ �2s213 þ s33s11 þ s33s12 þ s33E33 þ s11E33 þ s12E33 � d233 � 2d231

c ¼ 2E33s213 þ s11 þ s12ð Þ d233 � s33E33
� �� 4s13d31d33 þ 2d231s33; ω ¼ �1þ i

ffiffiffi
3

p
 �.
2

(8.75a)

and the corresponding material modes are

MT
7 ¼ 1; 1;

s11 þ s12 � Λ7ð Þd33 � 2s13d31
s33 � Λ7ð Þd31 � s13d33

; 0; 0; 0; 0; 0;
s11 þ s12 � Λ7ð Þd33 � 2s13d31

E33 � Λ7ð Þs13 � d31d33

� 
MT

8 ¼ 1; 1;
s11 þ s12 � Λ8ð Þd33 � 2s13d31

s33 � Λ8ð Þd31 � s13d33
; 0; 0; 0; 0; 0;

s11 þ s12 � Λ8ð Þd33 � 2s13d31
E33 � Λ8ð Þs13 � d31d33

� 
MT

9 ¼ 1; 1;
s11 þ s12 � Λ9ð Þd33 � 2s13d31

s33 � Λ9ð Þd31 � s13d33
; 0; 0; 0; 0; 0;

s11 þ s12 � Λ9ð Þd33 � 2s13d31
E33 � Λ9ð Þs13 � d31d33

� 
(8.75b)

These three material modes represent the axial symmetric strains and the electric

field out of the plane ðx1; x2Þ.
2. Eigen-compliances of a cubic crystal

Λ1 ¼ s11 þ 2s12; Λ2;3 ¼ s11 � s12;

Λ4;5;6 ¼ 1
2
E11 þ 1

4
s44 þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 E211 � 4s44 E11 þ s244 þ 8d214

q
;

Λ7;8;9 ¼ 1
2
E11 þ 1

4
s44 � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E211 � 4s44 E11 þ s244 þ 8d214

q (8.76)

8.5 Modal Strain Energy Density Factor Theory 417



3. Eigen-compliances of a hexagonal crystal

Λ1 ¼ E33; Λ2;3 ¼ s11 � s12;

Λ4 ¼ 1
2
s11 þ 1

2
s12 þ 1

2
s33 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�s11 � s12 � s33Þ2 � 4 �2E213 þ s11s33 þ s12s33

� �q
;

Λ5 ¼ 1
2
s11 þ 1

2
s12 þ 1

2
s33 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�s11 � s12 � s33Þ2 � 4 �2E213 þ s11s33 þ s12s33

� �q
;

Λ6;7 ¼ 1
2
E11 þ 1

4
s44 þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E211 � 4s44 E11 þ s244 þ 8d214

q
;

Λ8;9 ¼ 1
2
E11 þ 1

4
s44 � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E211 � 4s44 E11 þ s244 þ 8d214

q
(8.77)

4. Eigen-compliances of a tetragonal crystal

Λ1 ¼ 1
2
s66; Λ2 ¼ E33; Λ3 ¼ s11 � s12;

Λ4 ¼ 1
2
s11 þ 1

2
s12 þ 1

2
s33 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s11 � s12 � s33ð Þ2 � 4 �2E213 þ s11s33 þ s12s33

� �q
;

Λ5 ¼ 1
2
s11 þ 1

2
s12 þ 1

2
s33 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s11 � s12 � s33ð Þ2 � 4 �2E213 þ s11s33 þ s12s33

� �q
Λ6;7 ¼ 1

2
E11 þ 1

4
s44 þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E211 � 4s44E11 þ s244 þ 8d214

q
;

Λ8;9 ¼ 1
2
E11 þ 1

4
s44 � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E211 � 4s44E11 þ s244 þ 8d214

q
(8.78)

5. Eigen-compliances and material modes of an isotropic elastic material

Λ1 ¼ s11 þ 2s12 ¼ 1 K= ; Λ2;3;4;5;6 ¼ s11 � s12 ¼ 1 2G= ;

MT
1 ¼ 1

ffiffiffi
3

p.
; 1

ffiffiffi
3

p.
; 1

ffiffiffi
3

p.
; 0; 0; 0

h i
; MT

21 ¼ 0; 1
ffiffiffi
2

p.
;�1

ffiffiffi
2

p.
; 0; 0; 0

h i
;

MT
22 ¼

ffiffiffiffiffiffiffiffi
2 3=

p
;�

ffiffiffiffiffiffiffiffi
1 6=

p
;�

ffiffiffiffiffiffiffiffi
1 6=

p
; 0; 0; 0

h i
; MT

23 ¼ ½0; 0; 0; 1; 0; 0�;
MT

24 ¼ ½0; 0; 0; 0; 1; 0�; MT
25 ¼ ½0; 0; 0; 0; 0; 1�

MT
0 ¼ MT

21 þMT
22 þMT

23 þMT
24 þMT

25

¼
ffiffiffiffiffiffiffiffi
2 3=

p
;
ffiffiffiffiffiffiffiffi
1 2=

p
�

ffiffiffiffiffiffiffiffi
1 6=

p
;�

ffiffiffiffiffiffiffiffi
1 2=

p
�

ffiffiffiffiffiffiffiffi
1 6=

p
; 1; 1; 1

h i
(8.79)

where K and G are the volume compression modulus and shear modulus. In many

cases MT
2i; i ¼ 1 � 5 can be replaced by MT

0 . Therefore, for an isotropic elastic

material, there are only two different deformation versions: M0 and M1

corresponding to shape and volume changes, respectively. This is the theoretical

foundation of the plastic yielding and the failure theory of the elastoplastic

materials. The modal energy density theory is more complex, but more rational.
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8.5.6 Example

The CT failure test of PZT-4 (Park and Sun 1995) is used as a numerical example to

demonstrate the suitability of the MEDF theory. Material constants can be obtained

from Sect. 4.4.1 by conversion. The eigen-compliances are

Λ1;2 ¼ 1:3025� 10�8 m2 N=
� �

; Λ3 ¼ 1:1494� 10�8; Λ4;5 ¼ 1:634� 10�11;

Λ6 ¼ 9:9855� 10�12; Λ7;8 ¼ 9:0006� 10�12; Λ9 ¼ 3:5413� 10�12

and the corresponding material modes are

M11 þM12 ¼ ½0; 0; 0;�0:02011; 0:02011; 0; 0:7068;�0:7068; 0�T

M3 ¼ ½�0:01174;�0:01174; 0:02068; 0; 0; 0; 0; 0; 0:9995�T

M41 þM42 ¼ ½�0:5; 0:5; 0; 0; 0; 0:70711; 0; 0; 0�T

M6 ¼ ½0:3617; 0:3617;�0:8587; 0; 0; 0; 0; 0; 0:03091�T

M71 þM72 ¼ ½0; 0; 0;�0:7068;�0:7068; 0; 0:02011; 0:02011; 0�T

M9 ¼ ½0:6075; 0:6075; 0:5118; 0; 0; 0; 0; 0; 0:000918�T

It is seen that the deformation versions are three kinds:M11 þM12 andM71 þM72

represent the shear strain out of the plane and the in-plane electric field. In

M11 þM12 the role of the electric field is larger, but inM71 þM72 the shear strain is

larger;M41 þM42 represents the in-plane stress;M3;M6 andM9 represent the axial

symmetric strain and the electric fields out of the plane.

For the CT specimen in Park and Sun’s test (1995), the generalized stress

intensity factors are

KI ¼ σ13
ffiffiffiffiffi
πa

p
; σ13 ¼ 4:4F tc= ¼ 6:16� 104FðMPaÞ; KD ¼ D1

3

ffiffiffiffiffi
πa

p

The normalized generalized stress �Σ isffiffi
r

p
�Σ

¼
ffiffiffiffiffiffiffiffi
a 2=

p
8093F� 1:298E1

3 ; 6922Fþ 10:2E1
3 ; 6163F; 0; 0; 0; 0; 0; 1440Fþ 0:974E1

3

� �T
whereE1

3 ¼ D1
3 � 108 � 1479F is obtained from the constitutive equations. Under

the above loading the modal energy densities ofM3;M41;M42 andM6 are not zero,

and they are

ðr=aÞA3 ¼ 5� 10�12σ12
3 þ 0:417σ13 E1

3 þ 8:69� 10�9E12
3

� �
4=

ðr=aÞ A41 þ A42ð Þ ¼ 1:47� 10�13σ12
3 � 1:79� 10�11σ13 E1

3 þ 5:4� 10�10E12
3

� �
2=

ðr=aÞA9 ¼ 1:4� 10�11σ12
3 þ 7:64� 10�11σ13 E1

3 þ 1:039� 10�10E12
3

� �
4=

ðr=aÞA6 ¼ 5:44� 10�15σ12
3 þ 1:51� 10�12σ13 E1

3 þ 1:055� 10�10E12
3

� �
4= � 0
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where A6 can be neglected. The following criterions (by fitting the test data)

are used:

ðr=aÞA9 ¼ Acr or

1:4� 10�11σ12
3 þ 7:64� 10�11σ13 E1

3 þ 1:039� 10�10E12
3

� �
4= ¼ 117:9

(a)

ðr=aÞ 0:02A3 þ 0:05A4 þ 0:93A9ð Þ ¼ Acr; or

1:29� 10�11σ12
3 þ 8:78� 10�11σ13 E1

3 þ 5:82� 10�10E12
3

� �
4= ¼ 112:9

(b)

ðr=aÞ A3 þ A4 þ A6 þ A9ð Þ ¼¼ Acr; or

1:95� 10�11σ12
3 þ 4:59� 10�10σ13 E1

3 þ 9:98� 10�9E12
3

� �
4= ¼ 152:1

(c)

Figure 8.13 shows that the theoretical results calculated from Eqs. (a) and (b)

are consistent with the results in experiments when � 6kV cm= < E1
3 < 6kV cm= ,

but after E3 > 6kV cm= , the difference is obvious. It can be modified that after

E3 > 6kV cm= , we let E3 ¼ 6kV cm= due to saturation. After this modification,

the results calculated from Eqs. (a) and (b) are consistent with the results of

experiments (Park and Sun 1995) in entire applied loading range. The formula (c) is

the same as the total strain energy density factor theory, and the results calculated

from it may be appropriated in a narrow loading region only.

8.6 Electric Breakdown of Solid Dielectrics

8.6.1 Energy Criterion

In electric apparatus electric breakdown is often happened. The breakdown is very

complicated, here we only qualitatively discuss this problem from the view of the

Fig. 8.13 Variations of the fracture load with the electric field

420 8 Failure Theories of Piezoelectric Materials



fracture mechanics. The breakdown strength is sensitive to defects, electrodes, and

environment. An insulating crack can intensify the field applied perpendicular to the

crack, while a conducting crack intensifies the field applied parallel to the crack.

Usually dielectric breakdown causes damage along a fine tubular channel. The

tubular channel extends forward under external loading. Extending the Griffith theory

(1921), Suo (1993) proposed an energy criterion to discuss the electric breakdown in

dielectrics. Suo (1993) pointed out that the applied work is partly reversibly stored in

the body and partly irreversibly spent to form the thin channel, i.e.,

f � duþ φdρe ¼ dAþ γdl; dA ¼ σijdεij þ EidDi (8.80)

where f ;φ; ρe;A are the body force, electric potential, electric charge density, and

internal energy density; γ is the work to create a unit length of channel; and dl is the
increment of the channel. On the other hand, the driving force of the channel can be

obtained by solving the electroelastic boundary problem, i.e.,

dΠ ¼ �G dl; G ¼ �@Π @l= ; dΠ ¼ dA� f � du� φdρe (8.81)

where Π is the total potential energy. The energy criterion demands

G 	 γ (8.82)

As an example, Fig. 8.14 shows a slender dielectric cylinder of radius a, inserted a

needle-shaped inner electrode and on the cylindrical surface coated metal as the

external electrode. The voltage between two electrodes isV.When the voltage reaches

a critical value, a conductive channel, radius b and lengthL, emanates from the needle

tip.When L � a, this problem can be considered as a coaxial transmission line, so the

electric potential at a distance r from the center of the channel is

φ ¼ φ1 �
q

2πE
ln
r

b
; q ¼ 2πEðφ1 � φ2Þ

lnða b= Þ (8.83)

where φ1 and φ2 are the potentials on the inner channel and external cylindrical

surface and q is the electric charge on the channel of a unit length and is constant

duo to constantφ1 � φ2. The work done by the external electric field isqðφ1 � φ2ÞL,
so we obtain

Π ¼ �ðφ1 � φ2Þ
qL

2
¼ � πELðφ1 � φ2Þ2

lnða b= Þ (8.84)

Fig. 8.14 An extending

electric tubular channel

model
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The energy release rate is

eG ¼ � @Π

@L
¼ πEðφ1 � φ2Þ2

ln a b=ð Þ ¼ πEV2

ln a=bð Þ (8.85)

According to the energy criterion Eq. (8.82) when eG 	 γ , the channel will be

extended.

8.6.2 J Integral Method

Beom and Kim (2008) discussed the application of J integral to breakdown

analysis. From Eq. (2.143), it is known that the following conservation integral is

held if the closed integral surface S is not enclosed singular point:Z
V

Pij;jdV ¼
I
a

gδij � ΣαjUα;i

� �
njda ¼ 0 (8.86)

where P is the energy-momentum tensor, g is the Gibbs free energy density, and ni
is the outward normal of the surface S. From this theory, it is easy to derive the

three-dimensional J integral. For the pure electric loading case we have

Ji ¼
Z
S

gδij � Djφ;i

� �
njda (8.87)

where the surface Swith outward normal n is initiated from and stopped on a curve

located on the surface defect. Analogous to 2D problem, J integral is equal to the

energy release rate. When the channel is fixed, according to the virtual work

principle it yieldsZ
V

δg dV �
Z
SþSc

Tiδui da�
Z
SþSc

Diniδφ da ¼ 0 (8.88)

When the channel extends with velocity v in a similar version, the variation of the

total potential energy Π is

δΠ ¼ δ

Z
V

g dV �
Z
aσ

Tiδui da�
Z
aD

Diniδφ da

¼
Z
V

δg dV þ
Z
Sc

gviδtmi daþ
Z
Su

Tiδui daþ
Z
Sφ

Diniδφ da

¼
Z
Sc

gviδtmi daþ
Z
Su

Tiδui daþ
Z
Sφ

Dimiδφ da

(8.89)
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wherem is the external normal of the defect head, so comparing with n in Eq. (8.87)

we have m ¼ �n . On Su, ui is given; on Sφ, φ is given. Using the relation

δφ ¼ �φ;iviδt; on Sc; vi ¼ 0; δφ ¼ 0; on S� Sc (8.90)

So Eq. (8.89) can be written as

δΠ δt= ¼
Z
Sc

gvjmj daþ
Z
Sc

DimivjEj da (8.91)

Let the channel of length l is located on axisx1 and extends alongx1, sovi ¼ δi1dl dt= .

Noting the outward normal n ¼ �m of the channel head, so the energy release

rate ~G is

~G ¼ � δΠ

δl
¼ � 1

_l

δΠ

δt
¼
Z
Sc

gn1 þ niDiE1ð ÞdS (8.92)

Equation (8.92) is identical with Eq. (8.87), i.e., J ¼ ~G. Using Eq. (8.87) or (8.92),

the effect of the defect shape can be considered.

As an example we discuss a semi-infinite medium with a conductive hemispher-

ical defect of radius a ¼ c ¼ R subjected to a remote uniform electric field E0 as

shown in Fig. 8.15. The solution of a conductive sphere embedded in an infinite

dielectric under a remote uniform electric field can be seen in many textbooks.

Using the symmetry, the solution of the hemisphere is

φ ¼ �E0 r � R3

r3

� �
cos θ; Er ¼ E0 1þ 2

R

r

� �3
" #

cos θ; Eθ ¼ �E0 1� R

r

� �3
" #

(8.93)

where r; θ are the sphere coordinates, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
, and θ is the polar angle

measured from the positive x1-axis. In this case,

g ¼ �ð1=2Þ E E2
r þ E2

θ

� �
; Dr ¼ EEr; Dθ ¼ EEθ (8.94)

and

J ¼ ð9=4Þπ E c2E2
0 (8.95)

Using the J integral, the electric breakdown can be further discussed.

Fig. 8.15 Conducting

hemispheroid defect
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For a semi-infinite medium with a conductive hemispheroid defect of major

semiaxis a and minor semiaxis c subjected to a remote uniform electric field E0

parallel to x1-axis. Beom and Kim (2008) adopted the ellipsoid coordinate to solve

this problem (Stratton 1941). Finally they got

J ¼ πEc2E2
0HðλÞ

HðλÞ ¼ ð1� λ2Þ ð1� λ2Þ þ 2λ2 ln λ
� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2

p
� λ

π

2
� tan�1 λffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ2
p

� ��  ; when 0 < λ ¼ a

c
< 1

H λð Þ ¼ 2 λ2 � 1
� �

λ2 � 1
� �þ 2λ2 ln λ
� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � 1

p
þ λ ln

λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � 1

p

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � 1

p
 !" # ; when λ ¼ a

c
> 1

(8.96)

when λ ¼ a c= ! 1, the semi-ellipsoid reduces to a semi-penny-shaped crack and

J ¼ πEc2E2
0 λ ln λ=ð Þ; λ ¼ a c= (8.97)

For more complex cases, the finite element method is an appropriate method.
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