Chapter 7
Three-Dimensional and Applied
Electroelastic Problems

Abstract In this chapter, there are mainly two kinds of problems discussed. The
first kind of problems is the 3D electroelastic problems: the potential function
method, the solutions of the penny-shaped crack and elliptic inclusions. The second
kind of problems is the applied electroelastic problems which are used in engineer-
ing: simple electroelastic problems, laminated piezoelectric plates containing clas-
sical and higher-order theories and piezoelectric composite shells. A unified first-
order approximate theory of an electro-magneto-elastic thin plate derived by the
physical variational principle is given when the electromagnetic induction effect
can be neglected.

Keywords Penny-shaped crack ¢ Laminated piezoelectric plate ¢ Piezoelectric

composite shell

7.1 Potential Function Methods in Transversely
Isotropic Piezoelectric Materials

7.1.1 Governing Equations

The governing equations of transversely isotropic piezoelectric materials have
been discussed in previous chapters. In the material principle coordinates, the
constitutive equations are

o1 =Cuupy + Cruzp + Cisuzz +e31¢03, 62 =Crupy + Critap + Ci3uzz + €3103
03 = Ciauy + Ciaupp + Cx3uzz + 3303, 064 = 023 = Cas(un3 +u32) + 159,

o5 =031 = Caq(ur3 +us31) + e3¢, o6 = 012 = Ces(u2,1 +112)
Dy =eis(ui3+usy) —engy, Dy = epq(uz3 +u32) — €119
D3 = e3qur 1 + esiupn + ex3uzz — 333 Cos = (Cri — C12)/2
(7.1)
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340 7 Three-Dimensional and Applied Electroelastic Problems

The generalized momentum equations are

011+ 062 + 053 = piil, 061 + 022+ 043 =pliy, 051+ 042+ 033 = pii3
Dy +Dyo+D33=0
(7.2)

where i = 1,2, 3. Substitution of Eq. (7.1) into Eq. (7.2) yields

Criuri + Cesttr 22 + Caatt 33 + (Cra + Cop)uz 12 + (C13 + Cas)uz 13

+ (e15 + €31)@,13 = pit1,
(C1z2 + Ce6)u1.12 + Costiz11 + Cr1uz.22 + Castin 33 + (C13 + Caa)u3 23

+ (e15 +€31)@ 3 = puay
(C13 + Caa) (13 + 1223) + Caa V213 + C33u333 + €15V + €330 33 = pitz
(e15 + e31)(ur13 + u223) + €15V2uz + exzuz 33 — €11 V29 — €33033 = 0
Viu=uy + U

(7.3)

7.1.2 General Solution of the Static Problem (I)

Wang and Zheng (1995) discussed the general solution of (7.3) for the static
problem by introducing potential functions. They assume

W=y, =X Ww=Wr+txy,, w=kys @=hky; (7.4)

where k| and k, are undetermined constants and y and y are potential functions.
Substitution of Eq. (7.4) into Eq. (7.3) yields
CesVx + Caay 33 =0; or

(7.5)
Vz)( + 82){/82(2) = 07 Zp = SoX3, Sé = C66/C44 = 1//10

CiV*y + [Cas + ki (Ci3 + Cag) + ka(ers + e3)lws =0
[(C13 + Cag) + k1Cag + kaeys] V2 + (k1C33 + kaess)y 33 =0 (7.6)
[(e1s + e31) + kiess — ka1 V2w + (kiess — ka€33)w 33 = 0

In order to have nontrivial solution of Eq. (7.6), the following relations must
be held:

Cus + k1 (Ci3 + Caa) + ka(ers + e31) k1C33 + kae33

Cn (C13 4+ Caa) + k1Cas + kneys

7.7
kiess — ka €33 .7

 (ers +es) tkiezs —kyep
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Eliminating k; and &, a cubic algebra equation of 1 is obtained:

AP +BI*+CA+D=0

A=els+Cuen, D=—Cp(e3Cu+3C11Cx3)

B=Cy {26%5C13 — €3,Caq + 2¢15(e31C13 — e33C11) + €11 (C%3 + 2C13C44)
— €11C11C33—€33C11Cus}

c=Ccy {(615 + €31)°Ca3 — 2e33(e15 + €31)(Ci3 + Cas) — (C13 + Cas) ' [(e15 + €31)C33
—(e15 + e11)Cr1|Casers + €11CaC33 + €3;C11 — €33(Ci3 + C44)2 + €33 (C4214 + C1|C33)}
(7.8)

Assume root 4; is positive real and 1, and A3 are either a pair of conjugate
complex roots with positive real parts or positive real roots. Corresponding to each
Ai, a potential function y; in Eq. (7.6) can be obtained:

Py, Pw;

Vw,+/1,82=v +—_0, s=spxs, s =1/ j=1,2,3 (19

Substituting 4; into Eq. (7.7), k1; and ky; can be obtained. So the general solution
of Eq. (7.3) can be expressed in potential functions:

ur =y +yotws) —xo =W F v tys), o,

(7.10)
us = ks +kowas tkisyas, @ =kaw s+ kows s + ks

Usually the numerical method is used to solve 4; in Eq. (7.8) due to its complex
roots. As an example for material PZT-6B with material constants,

C11 = 168(MPa), C33 = 163, C44 = 27.17 C12 = 60, C13 =60
e3] = —09(C/m2), ex3=7.1, e5=4.6, ¢;=36x 10710(F/m),
€3 =34 x 107"

The solved Ais 4; =3.92, 1, =0.73+0.87i, 13 =0.73 —0.87i.

7.1.3 General Solution of the Dynamic Problem

Ding et al. (1996) discussed the dynamic problem. Let

=Wo—X1, UW=—Wi—X> (7.11)

where y and y are potential functions, but their meanings are different with that in
Sect. 7.1.2. Substituting Eq. (7.11) into the first two equations in Eq. (7.3) yields
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By—A; =0, Bi+Ay=0; B=CeV'W+Cuys—py,

(7.12)
A=CyViy+ Casy 33— ¥y — (C13+ Cag)uz 3 — (€15 +e31)9 3

Let A=H,, B =H,,nd Eq. (7.12) is reduced to V2H = 0. One particular
solution is H = constant. Adopt a particular solution

A=0,B=0 (7.13)

Using this result, substituting Eq. (7.11) into the last two equations in Eq. (7.3)
and listing the results with Eq. (7.13) together we get

CosVy + Caay 33— py ,, = 0 (7.14)

DG =0, G=[ru,q]

CuV?+C >0 —(Cs+C )i —(e1s +e31) -—
11 448)(% ﬂatz 13 44 o 15 31 s
) o 5 82 82 ) 2
D=| —(Cx+CuwV'— <C Cy3—s — pos =
(Ci3 +Caa)V s 14V- + S Pop eisV +e338x§
0 0? 0?
(e15 + 631)V28—X3 — (615V2 + e33 8_x§> enV? + e a—x%
(7.15)
Introduce a new function F and let |D|F = 0 or
o° ot 0? ot 0?
DIF ={a— +bV2 4 cV* 4 dV° + gV2 e 4 hV*
|D| {a8x§+ \Y axg”LCV 8x§+ V® + gV Er \% pr
, PP ot o (710
VI w2 —0
TV 2ot ad e o 814}

where

a=Cuy (633 + C33€33)

b=Cs; [C44611 + (e1s + 631)2} + €33 {C11C33 +Ciy — (Ci3 + C44)2}
+ e33[2Cue1s + Criess —2(Ciz + Cus)(ers + e31)]

c=Cy [Cn ez + (e1s + 631)2} + €11 [C11C33 +C3 — (Ci3+ C44)2}
+ e15[2C11e33 4 Cagers — 2(C13 + Cag)(e15 + €31))

d=Cyy (6%5 + Cuenr), g= pren, h=—p [6’%5 + (C11 + Cas)ent]

k=—p [2615633 + (C33 + Cas) €11 + (Cr1 + Cag)ess + (e1s + 631)2}

(7.17)

l=—p [653 + (C33 + C44)633], m = p*es3
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After solving F, it can be proved that the three group solutions of y, u3, ¢ are
x=AaF, u3=ApF, @=AsF; i=12]3 (7.18)

where Aj;; in Eq. (7.18) is the algebraic complement of |D], i.e.,

82 82 ) 82 5 82 2
An = (C44V +C338 ™ p(?tz) <€11V +€3367x§) + (eISV +e3367x§)

[ & & 0
Ap = <C11V2 + €33 —> (Ci3+ Cag) + (e15V2 + es3 m) (e1s + 631)} V=
L X5 0x3

Bxg
[ O? ? O? 0
Ap = <€1SV +e33 2 3)(Cl3 + Cu4) — (C44V +C3+> 02 p@tz) (e15 + 831)} Vzafo

(7.19)

82 ) 82 Pl
8_x§> (Ci3+Cu) + (Clsv +e33 0_x§> (e15 + e31)} o
2

0 o? &2 5
= <C11V2 +C44a % 62> <€11V +€326 ) + (ers +631)2V28—X§

3

Ay = <611V2 + €33

=
N
|

2

o2
(7. 20)

Ay = (Cnv +C44 p@ﬂ) e15V? +€%3 > (Ci3 + Cas)(e1s + €31)V?
3

P
Az = |:(C44V + C33 —Poa 2) eis +e31) <€15V2 + e33 2> Ci3+Cu) }
3 1 0. X3 3
pe 2

& 19} o?
<C|1V +C446 3 p8t2> (é‘lsvz + e33 _§>

)
X3
2 82
Azz = (Cnv +C44 '082 (C44V +C%3 Paz) (Ci3 + Ca)*V?
o3 3

Az = (e15 +€31)(Ci3 + Cag) V? 6

8 3
(7.21)
By substitution of Eq. (7.18) into Eq. (7.11), the general solution is

up=w,—AnF1, w=-w,—AnF,, u3z=ApF, @=AsF; =123
(7.22)

The general solution of an axial-symmetric problem can be obtained from
Eq. (7.22) if let w = 0 and F is independent of 6.

7.1.4 General Solution of the Static Problem (II)

Let all the potential functions be independent of the time the general solution of the
static problem can be obtained from the results in Sect. 7.1.3. Equation (7.14) yields

(V2402 /0z)wy =0 z5=s53, s5=Co6/Caa (7.23)



344 7 Three-Dimensional and Applied Electroelastic Problems

Equation (7.16) can be reduced to

V2 + 4 v? +—82 V2 + 4 F=0 2Z2=sx3, i=1273 (124
yn B .
oz 073 023 oy T

where 57 is the root of the following equation:
as® —bs* + ¢ —d =0 (7.25)

No loss of generality let s; be real and assume Re(s;) > 0. It is easy to prove that
F; satisfying the following equation is the solution of Eq. (7.24):

62
(V2+3_>F_O 2=s23, =123 (7.26)
Z

1

The general solutions of Eq. (7.24) are

Lsi#s#sy; F=F +F,+F; (7.27)
251 #£85 =5 F=F+F+xF; (7.28a)
3.s=s3 =535 F=F+x3F,+xF3; (7.28b)

From Eq. (7.26), it is obtained that V? = —82/821-2, 0/0x3 = 5;0/0z;.
Substituting these results into Eq. (7.20) yields

3

P\ 0
Ay = (ﬂ1V2 +/)728 > = (Bos; — B1)si

oz}
o? o o
4 2
Apn =CnenV' + 5V aTcngCMESSBxg‘ (Caae335! — Bas; +C“£“)8z?
. ) 62 4 84
Az = CrneisV' + 4,V aTg* C44€33a 1= = (Cuesss; — Busi + Criens) o

B =ci1(Ci3 + Cus) +ers(ers +e31), ﬁz =e33(C13 + Cua) + e33(ers + e31)
By = Ciiess + Cagens + (e1s + e31)?, Py = Criess + Cagers — (Ci3+ Caa)(ers + e31)
(7.29)

The general solution Eq. (7.22) can be rewritten as

oy < O*F; oy <o O*F;
Ml—afxz+;azlszm> 142—*87)(1+;0!1151m7

3 4 3
O*F; O*F
Z“ﬂ R 9":2“1'38—4’
i=1 1

2 4 2 4
ait =Py — Posi,  an=Crien — Pss; + Cuezss!,  ap = Criers — Bus; + Cuesss;
(7.30)
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If let ay;5,0°F; 0z} = w;, wo = —w, Eq. (7.30) can be reduced to

_ 81llo Iy I, a‘l’x : a‘//z
= 8x2 Z 6)(1 = aixl + Z kll

2 Oy,
Q= E kiz 2. ki = ap/ansi, kp = ap/aas;
i1 Zi

Equations (7.31) and (7.10) are formally the same.

7.2 A Penny-Shaped Crack in Transversely
Isotropic Material

7.2.1 Governing Equations

Consider a transversely isotropic piezoelectric material weakened by a flat imper-
meable crack of radius a occupied region S in the plane x3 = 0, subjected to
distributed pressure — p(x1,x;) and surface electric charge g(x1,x;) (Fig. 7.1).
In Fig. 7.1 only a pair of concentrated force and electric charge is shown. The
Cartesian coordinates (x;,x»,x3) and cylindrical coordinates (r,0,z) are adopted
simultaneously. Using the symmetry with respect to the crack surface, this problem
can be reduced to a mixed boundary value problem for a half space subjected to the
following boundary conditions:

033 = —p(x1,Xx2), D3 =¢q(x1,x2), when (xj,x;) €S
=¢@=0, when (x,%)¢S; 031 =03=0, —o00o< (x,x%) <o
(1.32)

Chen and Shioya (1999) extended the method proposed by Fabrikant (1989) in
the elasticity, to solve above problem. Introduce notation A = 9/9x; + i0/0x, and
complex displacement U = u; +iup. Let w = x3, the generalized momentum
equations in complex displacement is

(1/2)(C11 + Ce6) VU + CaaU 33 + (1/2)(C1y — Co6)A?U + (C13 + Caz)Aw 3
+ (e15 +e31)Ap 3 =0
(1/2)(C13 4 Caa) (AU + AU) 34CasV?w + C3aw s + €15V + €330 33 = 0
(1/2)(e1s + e31)(AU + AU) 5 + e1sVw + eswas — € Vi — 633933 =0
(7.33)
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Fig. 7.1 A penny-shaped x4(2)
crack in a transversely
isotropic piezoelectric M(r, 6, z)
material ’
2a
(0] L
—P, Q

(s 00, 07)

x,

where U, A mean the conjugate value of U, A. By using the complex displacement,
the general solution in potential functions, Eq. (7.31), become

3 3 3
. Or; O
U=A » SN i =Sk, i 734
(;w,+lw0>, DML ZAPE) o LT Y
The generalized stresses become

3

o1 + 620 = 2V? Z (C11 = Ces — Cusikin — essikin)w;
=1

o611 — 62 + 2ic)p = 2C66A2(l//1 +y, +ys+ il//o)

3
ow, . . B
031 +io3p = {Z Cua(kiy + ;) + e15kia] alg +i54Cy4 8%;)}

i=1

(7.35)

=1

3
. Ow, . %)
Dy +1iD, = { g [ers(kit + 81) — er1kin) ;Zlil + 1s4e15 Bf:}

3
o3 =~V Zylil//iv Dy = -V Z?’ziv/n V= _82/821'2

p =1
Y1i = —C13 + Ca3sikiy + ex3sikip, vy = —e31 + esssikin — 33sikin

where s; is the root of the Eq. (7.25).
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7.2.2 Potential Theory Method of Crack Problem

The solution satisfying the boundary conditions in Eq. (7.32) can be expressed by
two harmonic functions G and H:

U/[(Zi) = C,‘G(Z,‘) + dl'H(Zj), l = 17 27 3; I/IO(Z()) = 0 (736)

where c;, d; are undetermined constants. G and H can be expressed by two potentials
of a simple layer:

G(r,0,z) = /szgt]])v)d& H(r,0,z) = /szl(;?];]) ds (7.37)

where #(N) = w(x1,x2,0) and @(N) = @(x1,x2,0) are undetermined displace-
ment and electric potential on the crack surface, respectively. N(ry,6;,0) is a
point on S, M(r,,z) is a certain point in the material, and p(M, N) is the distance
between N and M. According to the property of the potential of a simple layer, the
boundary conditions w = ¢ = 0 outside the crack in Eq. (7.37) are satisfied
automatically. Inside the crack we have

(0G/02)._y = —2xia, (OH/Dz)._y = =27 (7.38)

Equations (7.34), (7.36), and (7.38) yield

3 3 3 3
Zcikil = *i, Zdikil =0, Zcikiz =0, ZdikiZ = L (7.39)
=1 2 S i1 =1 2z

The boundary conditions of 31, 03, in Eq. (7.32) demand
3 3
Z ci|Cas(kiy + 57) + e1skp] = 0, Zdi[c44(ki1 +57) + eiskpp] =0 (7.40)

i=1 i=1

Combining Egs. (7.39) and (7.40) yields

€l Lo M
¢ p == | ki ko ks =17,

2
e kio ko ks 0

(7.41)

d si sy s3 \ ' [es/Cu

1
dy p = 2 ki ko ks 0

7
ds kip ko ks -1




348 7 Three-Dimensional and Applied Electroelastic Problems

ii(N) and @(N) can be determined from the first two boundary conditions in
Eq. (7.32):

I it(N) B 2 @(N)
plo) = ~mV “sp(NO,N)dS Y “sp(Nm i
o) = - [ | s —naw [ [ s (742

3 3 3 3
- Zciﬂn mn=- Zdﬂ’m 3= Zci}’Zh Ny = Zdi}’zi
i=1 i=1 i=1 i=1

where Ny(ro, 0,0),N(r1,01,0) € S and the integral is over all points on S.
Equation (7.42) yields

_ @(N) 1 B
n19(No) — m3p(No) = 124 Y ”Sp(NmN)dS, A=5 (mins — nam3)
(7.43)

Equation (7.43) can be applied for a crack with any shape.

7.2.3 The Solution of a Circular Penny-Shaped Crack

For a circular penny-shaped crack of diameter 24, the solution of Eq. (7.43) is
24 (7 £
= / —arc tan <,0> [140(r0,60) — 1m2q(ro, 60)]rodrodfy
2/t ‘f
— / / —arc tan <—> [n19(ro,60) — n3p(ro,00)]rodroddy (7.44)
o P P
p:\/r]—i—IO—Zrliocos(é? 0), &= \/ =) —r(z))/a

Substituting Eq. (7.44) into (7.37) yields

>
||

24 2n a
:—/ / K(r,0,z;10,60)[m4p(r0,00) — 129(ro, 6o)]rodroddo

24 2r a
H(r,0,z) = — / / K(r,0,z;10,60)[119(r0, 00) — n3p(ro, 6o)]rodroddy
0
(7.45)
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The kernel function K in Eq. (7.45) is

2t ra (@ —12)(a® - 12)] ,
K(M7N0):/ / ;arctan \/ ( O) r1dr,d6,
0 Jo PN No) aN.No) | PMN)  (7.46)

K(M,No) = K(r,0,z;19,60)

Using the relation 0K/0z = —[2x/p(M,Ny)] arctan[h/p(M,Ny)] (Fabrikant
1989), the derivatives of G and H in Eq. (7.45) are

9G 4A/2ﬂ/a ! rctan[ﬂ h }[ (ro, 60) (r0,600)]rodrodd
= — a o, - 7o, rodr
0z A A p(M,No) (M,No) NaP\T0, Yo 1,4\ro, Vo) [Fodrodbo

- 4A/2ﬂ/a et d [m1q(r0, 6o) (r0,60)]rodrodd
9: o o p@a NG [ p(aa, Ny AN 00 T PO BT T0ST0CE

hz\/(a2—l2)(a2—rg)/a, 1= {\/(r+a)2+z2—\/(;~—a)2+z2}/2

(7.47)

So for arbitrary polynomial distributed loadings p and ¢, all the generalized
stresses can be expressed by elementary functions.

7.2.4 A Circular Penny-Shaped Crack Subjected
to Generalized Concentrate Loading

Assume the penny-shaped crack is subjected to a pair of normal concentrated
generalized loading (—P, Q) at point (ro,6p,0%), 7y < a (Fig. 7.1). By using the
general solution in the above section, after some manipulation, the generalized
displacements and stresses can be obtained as

3

u=4A Z [zinfi (zi)P + Tiof 1 (2) O]

i=1

uz = —4AY  kylrifa(z)P + tiof2(z:)0)

3
i=1
3
¢ =—4AY koltnfr(z)P + 7iafs(2)Q) (7.48a)
i=1
3
o3 =4A Y yilenfs(2)P + Tafs(2) Q)
i=1

1

3
D; = 4A Z valeifs(z)P + tiof3(2) Q)

i=1
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where
. 1]z ho a? — )‘g o 1 ho
) =—{ —tarctan— — Y~ Oarctan | ——— ) ¢, ) = —arctan—
fizi) = {Ro arc tan R, ” arc tan — f(z) Rq arc tan Rq
: 1 ho ho PPz A
) — tan — — -, an — 2 _ g p—i(0—00)
flz) = Ry et~ G <m2 TR ao a? — rroe

1
Ry = \/1‘2+r§—2rrocos(9—t90)+zz, mzi{\/(rJra)erzer \/(r—a)erzz}

—i0 . ,—10
Tit = Cilly — d,‘i’]3, T = d,'?]l — Cillp, ho = (a2 — 12) (Cl2 — 7’(2))/617 to =re - 4 %0

(7.48b)
The generalized stress intensity factors are
K — P a—r}
m32\/a a* + r} — 2argcos(6 — 6p)’ (7.49)
Ky — 0 a—r}

m32\/a a* + 1§ — 2arq cos(0 — 6p)

For the distributed loadings (—p, ¢), the generalized stress intensity factors are

2r 2 2
p(ro,60)\/a -1
K = rodrodo,
= ﬂ21 /2a 0 / a2 + r3 — 2arg cos(0 — 6y) oo 7 50
K 2”/ 20 VE 1 40 o
Todr
D= ”2\/@ a? + r3 — 2arg cos(0 — 0y) 0Er0tro

For homogeneous distributed loadings (—pg, D3¢), the generalized stress intensity
factors are

KI :2]7()\/61/]77, KD:2D3()\/CZ/JT (751)

From Eq. (7.51), it is seen that the stress intensity factor is determined independently
by the mechanical loading and the electric displacement intensity factor is determined
independently by the electric loading. Equation (7.51) obviously can be used to the case
where homogeneous generalized stresses 033 and — D3 are applied at infinity.

There are many papers to discuss the penny-shaped crack, such as Huang (1997)
and Wang (1992).

7.2.5 A Conducting Penny-Shaped Crack

Chen and Lim (2005) discussed the conducting penny-shaped crack. For a
conducting crack, it adopts ¢ = 0 instead of D3 = g(x1,x;) in Eq. (7.32). The
boundary conditions are
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033 = —p(x1,x2), when (x1,x) € S; w=0, when (x1,x) ¢S a.52)
=0, o033 =03=0, —o00<(x,x)<oc0 :

According tog = 0, —00 < (x1,x3) < ooinEq. (7.52), it is concluded that H = 0
in Egs. (7.36) and (7.37). Equation (7.42) becomes

a(N) °
p(No) = —n v2” ———dS, n=—Y ciyy (7.53)
(No) ! sP(No,N) : ; 1
Equation (7.45) is reduced to
1 2z a
G()’,Q,Z) = 3 / / K(I‘,9,Z;)”(),eo)p(l”o,e())rodi'odeo (754)
27 Jo Jo

where K(r,0,z;ry,60) is still expressed by Eq. (7.46). The generalized displace-
ments and stresses for a circular penny-shaped crack subjected to a concentrated
force — P are

P < P
OB = > ruedsz), Ds=——> rcifs(z)
1 =1

772'71
(7.55)

The functions in Eq. (7.55) are still expressed by Eq. (7.48b). The generalized
stress intensity factors are

. P at—r
' B2 Ja & + 2 = 2argcos(0 — ) (7.56)
K B a@—r;

T BJad + r3 — 2arg cos(6 — 60p)

where f = — Z?Zl 7i1¢i/n;- Above results are assumed that Eq. (7.27) or Eq. (7.24)
has three different roots, s;,i = 1,2,3. Chen and Lim (2005) also discussed
other cases.

7.2.6  Solve an Impermeable Penny-Shaped Crack
by Hankel Transform

In order to discuss the results of the Vickers indentation cracking of experiments,
Jiang and Sun (2001) gave a solution of an impermeable penny-shaped crack with
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boundary conditions as shown in Eq. (7.32). They discussed an axisymmetric
piezoelectric body under axisymmetric loading by using the Hankel transform
method in cylindrical coordinates. In cylindrical coordinates, the constitutive
equations are

o, [Cii Cin Ci3 0 0 —en|( e
o9 Cpno Cip Ci3 0 0 —e3 €9
o | _ Cs Ciz3 C3 O 0 —es €; (757)
Ty 0 0 0 Cy —eis 0 Vs
D, 0 0 0 e5 €1 0 E,
D. | esr e ez O 0 e | | E:

The generalized geometric equations are

& =u, e=ulr, &=w, Y,=u.+w,; E=-¢, E=-¢,

I z 4

(7.58)
where u, w are the displacements along r, z directions, respectively.
The generalized equilibrium equations are
oy + Trz,z + (0, — 0o r= 07 Tyzy + Oz + T [T = 07
r o+ T+ (0~ 09)/ s+ 7:59)

a(rD,)/0r +r d(D.)/dz = 0

or
1 u
C11 <M7,<r + ’—ﬁl/ty,» — I‘_2> + C44u,zz + (C13 + C44)W.l‘z + (615 + 831)(10,1"2 =0
1 1 1
(C13 + C44) 7, (ru‘,z)’r + C44 W,rr + ;W,r + C33W,zz + €15 (pﬁrr + ;(p,r + 633(p,zz =0

1 1 1
(615 + 631) ; (”’t‘z)vl. +eis Wor + ;WI + €33W . — €11 { @ + ;(p,r — 3@ = 0
(7.60)

Equation (7.32) becomes

0.(r,0) = —p(r), D.(r,0)=gq(r), when r<a
w(r,0) =¢(r,0) =0, when r>a; 7,=0 —00< (x1,x) <00
(7.61)

Introduce the Hankel transform pair withJy; J; is the Bessel’s function of the first
kind of order k:

F(&z) = /000 F(r,z)rJi(ér)dr, F(r,z) = /Oxl*:(.f, 2)ET (Er)dé (7.62)
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Applying the Hankel transform, Eq. (7,62) to Eq. (7,60) with k = 1 for u and
k = 0 for w and ¢ yields

Caall" — C1 &0 — (C13 + Caa)EW — (€15 + €31)E0" = 0
(Ci5 + Caa)éil' + C3aW" — CaaW + 339" — e158p = 0 (7.63)
(e15 + e31)&i + 3w — e15EW — 330" + 18P =0

where a prime indicates the derivative with respect to z. The solutions are assumed
in the forms

i(&,2) = a(E)e™, w(Ez) =w(fe 7, p=pe¢” (7.64)

Substituting Eq. (7,64) into Eq. (7,63) yields

Cun* —Cii (Ci3+Cau)n  (e1s+e3)n (&) 0
—(Ci3+Caua)n C3* —Cas  ez3n* — €35 w(g) p =40 (7.65)
—(eis+es)n et —eis  —ennt +en @(&) 0

In order to have nontrivial solutions for i, w and ¢, it should obtain the
characteristic equation

n° +Big* +Ba® + B3 =0 (7.66)

where Bi,B, and Bj are coefficients constituted of material constants. Since
coefficients in Eq. (7.66) are real, in general it has six roots. Because the upper
half space (z > 0) is discussed, without loss of generality, we take eigenvalue, is a
real positive number and #,, 15 are, in general, a pair of complex conjugates with
positive real part. One form of the corresponding eigenvectors is

(e15 + €31) (C33n? — Cas) — (e33n? — e15)(C13 + Caa)
(e33m? — e15) (Caan? — C11) + (€15 + €31)(C13 + Caa)?
(Caan? — C11)a+ (Ci3 + Cas)

(e15 + e3n)n;

4i(§) = amwi(§), ai =

(Apl(é) = yﬂ’]ﬂ’%(f), Yi=— ) i= 17273
(7.67)

Let w; (&) = (1/n;€)f:(£). Through the inverse transform, the general solutions are
3 00
u(r,n) = a; / fi(&)e ™ AT (er)de
i=1 0

3 00
o2 = Yom [ A ez (7.68)
i=1

3

wrz2) = (1/n) / " @ (e

i=1
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Using relations [J1(¢r)], = &Jo(&r) — (1/2)J1(6r)], [Jo(ér)], = —&/1(&r), the
generalized stresses are

3

o:(r,z) =Y (Ciaa; — C33 — 633’71%')/0 &fi(&)e ™ < Ao (Er)dé
i

3

7:(r,z) = Z (—=Caa/n; — Casmai — eisy;) /0 Ei(E)e T (Er)dE (7.69)

i=1
3 0
D.(r2) =S (enai— ex + essnry) /0 () ¢ U0 (Er)de

i=1

For discussed penny-shaped crack (Fig. 7.1), since 7. (r,z)0 =0 due to
symmetry, Eq. (7.69) yields

3
> (=Caa/n; — Caamya; — ersy,)fi = 0 (7.70)

i=1

Eliminating f5 from Eq. (7.68), (7.69), and (7.70) and then substituting the
results into Eq. (7.61), two pairs of integral equations are obtained:

/ fz(f)fJo(Pf)dé =tgp+tnq, for p<l; p= r/a
. (7.71)
/0 fi(&)é&Jo(p&)dé =0, for p>1; i=1,2

where

t =knd® /H, tn=—knd*/H, ty=—kyd*/H, tn=knd*/H

kiy = Czay — C33 —yynye33 + A1 (Crzaz — Caz — y3mzess)

kiz = Cizan — C33 — yammess + Ax(Cizaz — C33 — y313€33)

kyy = esjar — e33 + 7y €33 + Ar(ezaz — e33 + yanze33)

kay = e31aa — €33 + oM €33 + Az (e1303 — €33 + y3113€33) (7.72)
Caa(1/ny +moan) + ey,

 Cu(1/n3 + mya3) + ersys”
Cu(1/n + ma) + e1s72

 Cau(1/ny + m303) + ersrs

H = kikyn — kinky1, Ap =

Ay =

The solution of the dual integral equations in Eq. (7.71) is

2 Ypltap(p) + tnq(p)]
fz(é)—” /0 psin(ué)du /0 Wi dp (7.73)
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When uniform pressure py is applied over the area of radius r = c¢ < a and
uniform charge ¢o applied over the area of r = b < a, we get

o:(p,0) = —% (1 —/1= (c/a)z) [arcsin(l/p) -

D.(p,0) = 7% (1 —y\/1 - (b/a)z) larcsin(l/p) f} . op>1

The solution for a point force — Py and point charge Qp acted at the crack
center (r = 0) can be obtained by using the limiting procedure lir% nc’py = Poand
C—

lim zb%qy = Q.
Jm Zb"qo 0o

The generalized stress intensity factors for uniform loadings py and ¢ applied
over r = a are the same as shown in Eq. (7.51). For the point loadings are

Ky = Po/(na)**,  Kp = Qo/(na)*"? (7.75)

A modified stress intensity factor Ki for a semicircular surface crack in a
homogeneous isotropic elastic material given by Cherepanov (1979) is

K! =k(0)K;, «(0) =1+0.2[(x —26)/x]> (7.76)

In the Vicker’s indentation cracking of experiments, a semicircular surface crack
is located in an isotropic plane (x;,x;), the stress intensity factor can approximately
adopt Eq. (7.76), but it should take 2P instead of P in K.

There were many literatures discussing the penny-shaped crack, such as Ueda
(2007) which discussed a penny-shaped crack in a functionally graded piezoelectric
strip under thermal loading.

7.3 Ellipsoidal Inclusion and Inhomogeneity

7.3.1 Basic Concept of Electroelastic Green Functions

A subdomain with prescribed eigenstrain in a matrix is usually called the inclusion,
and material properties of the inclusion are the same with the matrix. A subdomain
with different material properties from the matrix is usually called the inhomogene-
ity. The eigenstrain may be introduced by many physical phenomena, such as phase
transformation strains, thermal strains, and plastic strains. The eigenstrain will
produce self-equilibrium stresses in a constrained matrix. Eshelby’s theory (1957)
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Fig. 7.2 An elliptic inclusion

of the inclusion and inhomogeneity problems is important in the analyses of
piezoelectric composite materials.

For convenience the notations given in Eq. (3.8) in Sect. 3.1 are adopted.
A subscript in upper case takes the value 1,2,3, and 4 and a subscript in lower case
takes the value 1,2, and 3. Figure 7.2 shows an ellipsoid inclusion occupied region

Q™ in a 3D space R3. In Q™ there is generalized eigenstrain Z* (Z,-j = &), Zyj =

—E;; i,j=1,2,3; without Z44). The constitutive equations with eigenstrain are
Xy =Euxi(Zgi — Zg));  Zg(x) =Zg;, x€Q; Zyx)=0, x¢Q (1.77)
where Zx; = Uk, U = [y, (p]T. The generalized equilibrium equations are
Ziyi=~fr,  EuxiUxi = EuyxiZy (%) — fi (7.78)

where f1,/>, /3 are components of the body force and fy = —p, is the body electric
charge density. From Eq. (7.78), it is seen that the role of E,“]K]Z;;l.i(x) is analogous
to the body force.

The Green function Ggg ;;(x — x’) in an infinite body is defined as

EikiGiri(x —x') + 6r6(x —x') = 0 (7.79)

where §jp is the generalized Kronecker delta and §(x — x') is the three-dimensional
Dirac delta function. Except x = ¥/, §(x — x’) = 0, and for a regular function f(x),

[wf(x’)é(x —x)dx' = f(x) (7.80)

The Green function defined in Eq. (7.79) satisfies the generalized equilibrium
equation. G7(x — x) and its derivative approach zero when |x — x'|

The electroelastic Green function Gy (x — x') is extensively applied to study the
inclusion and inhomogeneity problems in piezoelectric materials. Gjj(x — x’)
denotes the elastic displacement at x in the x; direction due to a unit point force
at x’ in the x; direction; Gj4(x — x’) denotes the elastic displacement at x in the x;
direction due to a unit point charge atx’; G4;(x — x) denotes the electric potential at
x due to a unit point force atx’ in the x; direction; and G4 (x — x’) denotes the electric
potential at x due to a unit point charge at x’.

— OQ.
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7.3.2 Fourier Transform Method
Assume that the generalized eigenstrains and displacements can be expressed as
(Mura 1987)

Zi(%) = Zgg ()", Uk(x) = Ug(E)e™™™ (7.81)

Analogous to elasticity, substituting Eq. (7.81) into (7.78) and neglecting the
body force yield

Ik (E)Uk = E,(E);, I (&) = Eyxi&i&;,  E5(E) = —iEykiZi&;
_ 1 (7.82)
Uk = ZjNjx/D; Ny (§) = EWIKL'WJMNHKMHLNa D = |Hgu|

where wyyy is the permutation tensor and Ny, is the algebraic complement of
ITy; in the matrix I1. For the general case, the Fourier integral transform is used
(Mura 1987; Wang 1992):

0o . ~ 1 . A
Zia(x) = / Zig(§) €de, Z(8) =5~ / Zi(x) e E¥dx

o P (7.83)
UK(x) = /_ U[((g) eiéxdé:, UK(&) _ %71_3 /_ UK(X) e iExdx

Analogous to elasticity, substituting Eq. (7.83) into (7.78) and using (7.82) yield

Un(x) = _i/ ‘Ei~/KZZ;l(§)§iNM/(§)D_I(E) e$'dE or

oo

00
UM(X) = —/ E,;,KIZ};,(x’)GM_,’,-(x — x’)dx’ (784)

oo

Gurle =) =55 [~ Mus(D~(6) ¥ e

=53
2n 00

where Gy i(x — x') = 0Gpy (x — x') /0x; = —0Gpy (x — x') JOX,. If Ggy(x — ) is
a Green function in a finite region, then

UM(x) = /Ei][([Z;[(x/)l’ll‘GM](x - x')da(x’) - /E[]K]Z]*(l’i(x/)GM](x - x’)dV(x’)
a Vv

(7.85)

7.3.3 Radon Transform Method

The Radon integral transform plays a fundamental role in the tomography, such as
CT scanning in medicine. At first the basic concepts are introduced as follows
(Deans 1983):

An arbitrary function f(x;, x,) is defined on some domain £ of a 2D plane R>.
Let L be any line in the plane, then the mapping defined by the projection or line
integral of f along all possible lines L is the 2D Radon transform of f, i.e.,
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Fig. 7.3 A sketch of Radon X,
transform x(x;, x,)
T
n
P 1)
[
o \ X,
L

Flo.$) = Rf = /L Fxrxa) ds = / f(@E + m)dr, or
oo (7.86)

fl0.8) = [ (0 &-3) datx)

where @ = € - x = x; cos ¢ + x; sin ¢ is the perpendicular distance from the origin
to L, &€ = (cos ¢, sin ¢) is a unit vector along @ which defines the orientation of L,
n = (—sin¢,cos ) LE is along L, 7 is determined by x = w€ + 7, and ¢ is the
angle between € and positive x;-axis (Fig. 7.3). The last equation in Eq. (7.86) is

easy extended to three- and higher-dimensional space. Iff (w, &) is known for all ®
and ¢, thenf(w, ) is a 2D Radon transform of f(x, x,). In an n-dimensional space,
L represents (n — 1)-dimensional hyperplane. Especially for a 3D space, L repre-

sents a plane. For n-dimensional space, the inversion Radon transform is

__ 1 (n-1)/2 .
fx) 2(2;:1)"“‘” /g ‘:lkf(g,g x)da(€) (7.87)

where A is the Laplacian operator. Especially for 3D space, Eq. (7.87) is reduced to

Fx) = — s /|§ R L e n 007, da®)

82 87> Jig1

(7.88)

Deeg (1980), Dunn and Taya (1993), and Dunn (1994) pointed out that the Radon
transform can also be used to the electroelastic Green function Gy (x — x'), i.e.,

G[J(g, w — ‘g’ . x’) = JJ - G[](x — x’)da(x)

1 ) (7.89)
Gu(x —¥) = 812 JJ|§_1 [0°Gy (&0~ &) /00’],,_ da(€)



7.3 Ellipsoidal Inclusion and Inhomogeneity 359

where €, w are variables in the transform space and the integral domain is a 2D plane
& - x = w. In the inverse Radon transform, the integral domain is the surface of a
unit sphere |€| = 1. Using the Radon transform to Eq. (7.79), after some mani-
pulation, yields

Ky (€)(8? ) 0x10x,)Grr (€, 0 — E - X') + S1pS(w — E- %) = 0 (7.90)

where Ky (€) = Eyymné;&,. Using the inversion Radon transform from Eq. (7.90)
yields

@Mu—xﬁ————L——jthm%@m@¢maa (7.91)

- 8x%x — x|

where Ky (€)K% (E) = ;& and ¢ is the unit vector along x — x'. Using the property
of the Dirac delta, in an orthogonal coordinate system ¢-m-n, Deeg (1980) reduced
the integral in Eq. (7.91) to the following contour integral:

Guelox =) = g [ Kih(@)o(6-0date) (7.92)

where C is the contour produced by |€| = 1 in m-n plane normal to x — x’. Compared
to Fourier transform method, Eq. (7.92) is a simpler effective method to seek the
Green function. The second partial derivatives of the electroelastic Green function is

1 *
 8x2|x — x| Ox,0x, =1

&Kk (E)SIE - (x — x')]da(§) (7.93)

Guru(x —x')

7.3.4 A Single Ellipsoidal Inclusion with Uniform
Eigenstrains

Let the coordinates coincide with the principle axes of the material. For an
ellipsoidal inclusion with uniform eigenstrains, the Eshelby’s method is used. At
first the inclusion is cut off from the matrix, so the inclusion and matrix are all free.
The eigenstrains of the inclusion in the free state is denoted by Z*. The following
generalized stresses are applied on the boundary of the inclusion:

T] = —Zi[ - ng, Zf] = EiJMIZ;/[[ (794)

Then put the inclusion subjected to above generalized stresses into the matrix.
After this procedure, the original problem is transformed to a homogeneous
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material with a force — T = E;nZy,, acting on the counter which originally is the
boundary of the inclusion. If Z* is uniform, Eq. (7.94) yields (Deeg 1980)

Uun(E) = —EyxiZy, J J Lz Gy in(x — x')dV (X)) (7.95)

Using Eq. (7.93) from Eq. (7.95) yields (Deeg 1980; Dunn and Taya 1993)

ajaxas y 1 _
Unn(§) = 17EI'JKIZ1(1/ TékflKMlle(‘f)da(g)a a= \/a%f;% + a8 + a8
an g1 @

(7.96)

Analogous to the elastic inclusion problem, the generalized strains inside the
ellipsoid induced by the uniform eigenstrains are also uniform and

ZMn (g) = SMnKlZ[*(]
P { (1/87)Eiyki(Imgin + Luyia), M =1,2,3
e (1/47)Eikil ajin, M=4 (7.97)

Iyjin = a1a2a3 /|§—1 (1/a)Grsin(E)da(E),  Guyin(€) = E£,Kyy) (E)

where Sy,x; 1s called the “electroelastic Eshelby tensor,” but it is not a tensor, i.e., it
does not obey the tensor transform rule under a coordinate transformation. The key
point to solve Syk; is to calculate Iy, (). Inyin(E) can be transformed to the
following form (Mikata 2000):

Iygin(€) = /51 Guyin(y1/a1,y2/ar2,y3/az)da(€)

1 2r
7.98
:/ df/ Guiin(y1/ar, y2/a12,y3/az)de (7.98)
-1 0

yi=V1—~Fcos¢, y,=VI1—=~sing, y3=t

For transversely isotropic piezoelectric materials, Mikata (2000) pointed out that

in Lyggin (€) only I1o12, 11313, 11314, 12323, T304 and Iyingg, Ioomy, I33mg, MJ = 11,22, 33,
44,34 are not zero, and the Eshelby tensor only has 36 components:

Sti11, 81122551133, 51143, S1212 = S1221 = Sa112 = $2121, 51313 = S1331 = S3113 = S3131,
S1341 = S3141, 82211, 82222, 82233, 82243, 82323 = 2332 = S3223 = 3232, 52342 = S3242,

83311, 83322, 83333, 53343, S4113, Sa141, S4223, S4242, Sa311, S4322, 84333, S4343-

For an elliptic cylindrical inclusion along the x3-axis, the Eshelby tensor with
22 components is
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a Cip 2) a {(24—(1)6‘12 2}
S =———(3+2242), Sim= +2 -,
1111 2(1 +a)2< Ci o« e 201 4a)? | aCn a
S - Cis g B €3 S _ a 1+a+a2_@
1133 “Utaly’ 1143 T 1212 _2(1+a)2 . A
1 aCi3 aen3 a
Sy = Sy =B g =X g *
1313 2 +a) 233 T+ a)Cr 2243 0+ a)Cn 2323 20+ a)
a Ci } a ( Ci >
S = —2 11420022 2 1], S =—2 (34221 2q),
211 2 tar {( )C” 22 20 1 a) C
1 a
S =—— S =———, other Syxr =0
4141 (+a) 1242 (i+a) MiKi
S1212 = S1221 = S2112 = $2121, 81313 = S1331 = S3113 = S3131, 82323 = S2332 = S3023 = S3032
(7.99a)

For a penny-shaped crack perpendicular to xj3-axis, the Eshelby tensor with
18 components is

S1313 = S1331 = 3113 = S3131 = S2323 = S;3m2 = Sno3 = S = 1/2

els Ciz €33 + e3ie33
Si3a1 = S31a1 =S =S =5, Sumu=Smn=—"F—"—""5"
2Cu4 C33 633 + €33
Cizezs — C3zesg
83333 = Sasa3 = 1,  Saz11 =Sg30 = ———5—, other Spy;, =0

Cize33 + €3,
(7.99b)

7.3.5 Ellipsoid Inhomogeneity

Analogous to elastic inhomogeneity problem, the electroelastic inhomogeneity prob-
lem can be handled by the equivalent inclusion method. Let £y, and E}'}K[ denote the
material constants in the matrix and inhomogeneity, respectively. The generalized
stress Zg,,n is applied at infinity. Obviously for a homogeneous material, the

generalized stress in material is also Zl(f,ln and the corresponding strain is Zl?,,n =

-1 . . -
(E?}’Mn) %0,,- Assume the strain due to the inhomogeneity is Z, and then the stress
in the matrix and inhomogeneity are, respectively,

E?J/I(x) = El‘\lJ/[Mn [ngln + ZM" (x)} ) Z;IJl(x) = E}rJan [Zl(l)/ln + ZMn(x)] (7100)
The key point of the equivalent inclusion method is that let the inhomogeneity
possess the same material constants with the matrix, but the artificial eigenstrain

Zy, 1s added. Then let

Z5(0) = Efyn [Zonn + Zoan ()] = Efjygy [Zugy + Zoan (x) + Zy, ] (7.10D)
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Using Zy, (x) = SunkiZy; in the inhomogeneity, so Eq. (7.101) yields

Zl*(l = [(E}\;[Mn lan)SM”KI + El/K[] (E;I;Mn E%[MH)ZI(\)/M (7102)

Solving Zg,, the problem can be solved.

As an example an ellipsoidal piezoelectric sensor embedded in an elastic
material is discussed (Fan and Qin 1995). The constitutive equations of the sensor
(as an elliptic inclusion) and matrix are, respectively,

oij = Ciyeu — efiEx,  Di = eljjen + €pEg;  in Q7 (7.103)
oj = Chyew, Di=eyE; in QM (7.104)

Comparing Egs. (7.103) and (7.104), one can consider the terms .ekuEk7 zlekI in
Eq. (7.103) produced by some kind of eigenstrains. When the matrix is subjected to

uniform generalized stresses (62,E?> at infinity, the generalized stresses in the

sensor are changed to

UU = a + a““ Cg‘k,(sgl + ey — 8,5), Clj,dek, = eklj (Ex + Eg) (7.105)

DIt = DY D" = (B Ee— ). —IEf = ef(eu+el) (1,106

By using the equivalent inclusion method, the original inhomogeneity problem
subjected to uniform generalized stresses at infinity can be decoupled into two
equivalent inclusion problems:

1. The elastic equivalent inclusion problem. Equation (7.105) can also be
written as

o = ol + o' = CM (e + ew — €y — €}) (7.107)

where g is the virtual eigenstrain. Using the Eshelby inclusion theory yields
en = Sum€;, € =ep+ ey (7.108)

2. The dielectric equivalent inclusion problem. Equation (7.106) can also be
written as

D" =D} + D" = &} (E) + Ey — E; — EY) (7.109)

where Ej is the virtual eigen electric field. Using the Eshelby inclusion theory
yields
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where sy = Saa;. Comparing Eqgs. (7.105) and (7.107), it is concluded that

M 0 *k *x\ __ in 0 sk E
Ciiu (&0 + Sumnerf — &) = Ciju (&) + Stmnesl — £51)

o ) ” (7.111)
= Cukl (&) + Sumnesy) — Chij (suE;" +E})
Comparing Eqgs. (7.106) and (7.110), it is concluded that
e (EY + suE;" — Ef) = ey (E) + suE;" —E{),  or a1
ok in -1 in in :
El = [S”’[ (E}\r/[n - 6im) - E?Iﬂ |:(6im -6 )EO + elmnSm"PfI Pq + elk1821:|

Solving &} and E*, the stress and electric fields are obtained in the sensor, i.e.,

Czjkl (€0 + Sumney — €4) = Cg‘lk/ (&) + Sumnely) — e}gj (suE" + EY)
D}“ = ey (B} +suE;” — Ef") = 6 (E} + suE]* — E})
(7.113)

The stress ag‘“ and electric fields E°" in the matrix can be solved as follows:

UZU[ _ 6 + o_/out _ 6 + [[Gz/]] + G/m [[O'u]] _ o_lout U;Jin _ G(;Ut Gijn (7 114)
E;)ul _ E? + E;out EO + [[E]] + E/m HEI]] _ E;out o E;m —_ E;)ut o Ei'n .

The displacement z# and the surface traction 6 - n = 0 across the interface of
inclusion and matrix must be continuous, and jump of the displacement gradient
V ® u must be normal to the interface. The continuous conditions of the electric
field and electric displacement E X n and D - n across the interface demand that the
jump of E must be normal to the interface. So

] = ™ —u =0, [ui] = w) —wl = Zinj; o],

=0
" : ' (7.115)
[Ei]l =nni,  [Dilni =0

where A,# are proportional constants. Substituting the constitutive equations into
Eq. (7.115), it is obtained:

C,-J-kl/lknlnj = 7C,’jk18;:1*nj, negning = fe,-kn,-E,f* (7116)
Therefore, the stress aﬁ}m and electric fields E°" in the matrix are

o3 = o+ Cyw(m + €57 ) + o, EM™ = E) + i (qme + E;") + E[™ (7.117)
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7.4 Some Simpler Practical Problems

7.4.1 Extension of a Rod

Figure 7.4 shows a transversely isotropic piezoelectric long cylindrical rod with
polarized xj3-axis. The two silver-coated end faces are used as electrodes and
subjected to uniform normal traction p. Using the first kind of constitutive equation,
the solutions of this problem are as follows:

1. For shorted electrodes,

o33 =p, allothero; =0; e33 =s533p, €11 = é€n = s13p;
Esy=E =E;=0, Diy=dyup, Di=Dy=0; A =o0se/2=s3p"/2
(7.118)

2. For open electrodes,

o33 =p, allothero; =0; e33 =s33(1 —d3;3/c33533)p, €1 = €22 = s13p + d31 E3;
D3y =Dy =D, =0, E3=—(ds3/e33)p, E1 =E>»=0; U, = (s33/2)(1 — d33/e335%)p"
(7.119)

The rod appears to be stiffer for the open electrodes than sorted electrodes
due to d§3/€33S33 > 0.
3. The longitudinal electromechanical coupling factor k33:

k33 = (Us — Us) /Us = d3s /€33533 (7.120)

7.4.2 Torsion of a Piezoelectric Circular Cylinder

Figure 7.5 shows a transversely isotropic piezoelectric circular cylinder of length L,
inner radius a, and outer radius b with polarized #-axis. The two silver-coated end
faces are used as electrodes and subjected to a torque M and charge Q.. Using the
second kind of constitutive equation, the general solution of this problem is

Electrode T x, Electrode

I p
p= Poling direction -

x,

Fig. 7.4 An axial poled rod Tranction free
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Fig. 7.5 A circul lind - —
inlgtorSion circular cylinder Poling direction -
s u ( y

Fig. 7.6 An infinite plate ® ® ® ® 0= T,
with a circular cylindrical
hole under longitudinal shear

ug =Arz, u,=u,=0; vy, =Ar, oy = CuAr—esB;
(/):—BZ7 Ez :B, DZ:€15AI‘+6113

b
M= / 6o:(2mrdr)r = CuAl, — e15272B (b — @) /3, I, = z(b* — a*) /2

b
0. = / D.(2zrdr) = e152zA (b’ — a’) /3 + ¢ Bx (b — d?)

(7.121)

1. Shorted electrodes: B =0, A=M/Cuul, (7.122)
2. Open electrodes : Q. =0,

! (7.123)

A=M

A (2n\* (b —d)
Cul, +-2 (=) — 2L
44P+€11(3> x(b? — a?)

7.4.3 A Circular Hole Under Longitudinal Shear
in an Infinite Piezoelectric Plate

Figure 7.6 shows a circular cylindrical hole of radius R in an unbounded transversely

isotropic piezoelectric material with polarized x3-axis under a uniform longitudinal

shear stress o3 = 79 at x, = 00. The hole surface is a grounded electrode. The

governing equations and boundary conditions for an electrically open case are

Viu; =0, V¢=0;, r>R

6,=0, ¢=0, r=R; o0x3=1, x2==0

D, =0, x; =*oo (electrically open); E; =0, x; = too (electrically shorted)
(7.124)
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Fig. 7.7 An electrode quartz Z, Electrode, V=V,¢™
plate

2h quartz ~———————
x,

Electrode, V=0

For the electrically open case, the solution is

70 2 R? . 70 R? .
= — 7|7 14+2k7)— 0 =5 | r—— 0
" C44(1 + kz) |:} + ( + ) I‘] st ¢ C44€11(1 + k2) <’ r s
(7.125)

where k% = e%s /Caaé€1. For the electrically shorted case, the solution can also be
obtained.

7.4.4 Thickness-Shear Vibration of a Quartz Plate

Figure 7.7 shows the sketch of a widely used piezoelectric resonator manufactured
by rotated Y-cut quartz plate. Surfaces at x, = %/ are traction-free and electroded,
with a driving voltage Voe®'. Let u3 = 0 and Qup /Ox; ~ 0 due to the plate is thin
enough. So the displacement and potential fields can be assumed in the following
forms:

up =U; (Xg)eiwt, Mz(XQ) ~ 07 us = 0; @ = @()Q)Ciwz (7126)
Under above assumptions, the constitutive equations are
06 = Ceolt12 + €265, Dz = ext1p — 0@, (7.127)

The stresses 65 = Csglt1 2 + e25¢ 5, D3 = e3glt1 2 — €3¢, are omitted because
they are not used. The generalized momentum equation and boundary condition are

2
G662 = —pwuy, Dy =0

7.128
o =0, atx, = =thn Cb(h) — (P(—/’l) =V ( )

The general solutions are

Ul = A1 sinixz +A2COSM2; A= \//)/Cgsw, Cg() = C66(1 + k2), k= 626/\/ C66€22
b= (82(,/622)(141 SiHMQ +A2 COoS Mz) +BX2
(7.129)
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From the boundary conditions, we can get two group equations:
CecAiAcos Ah + exB =0,  2(exs/€xn)A;sindh + 2Bh =V (7.130)
Ceghodsindh =0 (7.131)
1. Free vibration Vy = 0, symmetric modes From Eq. (7.131) it is obtained
sindh=0; or Ah=nz/2, w,= (nﬂ/Zh)\/Eg;./;, n=0,2,4,6,...,
(7.132)

where w,, is the nth order resonance frequency. In the same time A, # 0, A} = B = 0.
The corresponding symmetric modes are

U1 = COS 2.,,)(32; b= (626/622) COS ﬂ.n)Cz (7133)

2. Free vibrationVy = 0, antisymmetric modes In this case A; # 0,B # 0,A, = 0.
Nontrivial solutions may exist in Eq. (7.130) if

CisA1Ahcos ih — (e3¢/€x) sindh = 0, ortanh = Lh(1 4+ k%) /K>, o, = 4\/Cis/p
(7.134)

From Egq. (7.130), it is obtained B, = —(Cfg/e26)A14, cos A,h. In this case sin
Ah # 0, so Ay = 0. The corresponding antisymmetric modes are

U1 = sin/lxz; b= (626/622) Sil’li)Cz — [(CEG/E%)/{V COS/lyh}Xz (7135)
3. Forced vibration From Eq. (7.131) we have A, = 0. From Eq. (7.130) we get

W e26Vo g Vo CigAcos Ah
2 Cighhcosih — (€3g/en)sindh’ 2 Cigdhcosh — (e3¢ /ex) sindh
(7.136)

A =

Yang (2005) gave also some other interest problems except the above examples
in this section.

7.5 Laminated Piezoelectric Plates

7.5.1 Basic Concepts and Governing Equations

In the earlier work, the piezoelectric actuator structure constituted of an elastic
substrate (beam or bar), electroded piezoelectric elements, and finite-thickness
bonding layers. For a pair actuators fixed on the upper and lower surfaces, if the
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X3
Piezoelectric layer ®
L2a Y o’ .
Bonding layer 4 7 |
o
L L
Substrat beam
fl
Bonding layer
A
E Piezoelectric layer
Fig. 7.8 A sketch of a simple intelligent beam
24(z) (%)
Nth layer
H Ih, —— & jth layer
(T, 1, 7) first layer
0 X, o) Z,

L, L

Fig. 7.9 A multiply laminated piezoelectric plate

same voltage is applied to both actuators, it results in pure extension, and if the
opposite voltage is applied to both actuators, it results in bending (Fig. 7.8). In the
present time, the “intelligent structure” may be a laminated piezoelectric beam,
plate, shell and distributed actuator, sensor, and processor networks. In engineering
the classical beam, plate and shell theory are commonly used, and sometimes will
use the higher-order theories.

Consider an N-layer laminated piezoelectric plate of dimensions L; and L, inx; and
X, directions and total thickness H in x3-direction, and the ith layer has thickness #;.
The plate is polarized along x3-axis. Except the global coordinate system, a local
coordinate system (x1,x2,z;) in the middle plane of ith layer is also adopted
(Fig. 7.9). Layer 1 is the bottom layer and the layer N is the top layer. At each
interface with perfect bonding between layers, continuity conditions of generalize
displacements and tractions must be satisfied. For the ith interface between ith and
(i + 1)th layers in the local coordinate system, the continuity conditions are

U (x1,%0,hi/2) = U (x1, x5, —hiy1 /2),

L S (7.137)
0D (xy, x5, hi/2) = 20D (), x2, —hi11/2), i=1—(N—1)

It is also noted that sometimes a bond-line may be simulated by a layer of small
thickness. For each interface, there are eight continuity conditions, so for a laminate
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plate with N layers, there are 8(N — 1) continuity conditions; on the lower surface
(z = —hy/2) of the first layer and on the upper surface (z = &y /2) of the Nth layer,
there are four boundary conditions, respectively. Therefore, there are total 8N
boundary conditions to determine 8N unknowns. For an orthotropic material
layer, the constitutive equation is shown in Eq. (3.69). Analogous to Eq. (7.3),
the motion equations in terms of generalized displacements are

Criuy 1y + Cesttr 22 + Cssur 33 + (Cr2 + Ces )z, 12 + (Ci3 + Css)uz 13 + (e15 + €31)@ 13 = put1q

(Cr2 + Cos)ur 12 + Cosiz 11 + Caati 2 + Cagtin 33 + (Coz + Cag)uz 23 + (€24 + €32)@ 3 = pliz

(Ci3 + Css)ur13 4 (Ca3 + Cag)uz 3 + Cssuz 11 + Cagttz 20 + C331i3.33 + €249 3 + 330033 = ptz
—€1QP 1 — €200 — 63333 = 0

(7.138)

7.5.2 Bending in Simply Supported Orthotropic
Laminated Rectangular Plate

It is assumed that the bottom and lateral surfaces are free, and known normal
traction and potential are imposed on the top surface:

q(x1,x2) = qo sinpix; sinpyxa,  @(x1,x) = Do sinpyx; sinprx;

7.139
pi = (na/Ly), p2 = (majLy); when x3=H (7.159)

For the simply supported orthotropic laminated rectangular plate, the solution in
each layer is assumed (Heyliger 1997):

uy = uype™ cos pixy sinprxa, Uy = uppe™ sinpixy cos prx; (7.140)
uz = uzpe™ sinpixy sinpoxy, @ = @oe’™ sinpix; sinpax;

where u;o, ¢,,s are undetermined constants and the superscript (i) is omitted.
Substituting Eq. (7.140) into (7.138) yields

AUy =0, Uy = [u10, u20, u30, )", A=

Cip} + Ceeps — Csss*>  (Cra + Ces)pip2 — (C13 4 Css)p1s — (ey5 + ez1)pis

(C12 + Ces)P1p2 Cesps + Cooph — Caas®  — (Ca3 + Caa)pas — (exs + €32)p2s

(C13+ Css)p1s (C3 + Caa)pas Csspt + Caapl — C338”  eisp + eaph — e33s”

(e1s + e31)pis (e2s + €32)pas elsp% + €24P% —eps®  — 611P% - 622[7% + 3387
(7.141)

Equation (7.141) will have nontrivial solution if |A| = 0. From which we can
obtained eight eigenvector s;, s;,i = 1 — 8. Corresponding each s;, an eigenvector
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Uo; (u10i, U20i, U30i, Po;) With one unknown uq; is obtained. As shown in Sect. 7.5.1,
the problem can be solved uniquely.

7.5.3 Free Vibration of Laminates in Cylindrical Bending

Let L} — oo in x; direction and all variables be independent with x;. Assuming
uy = 0, from Eq. (7.138), the generalized motion equations are

Cottr 20 4 Caqur 33 + (Co3 + Caa)uz 03 + (€24 + €32)@ 23 = pltn
(Cas + Cag)uz 3 + Caauz o + C33u3 33 + €24 0y + €330 33 = puz - (7.142)

(€32 + e2a)utn 23 + €24lt3 20 + €33U333 — €220 2 — 63933 =0

The continuity conditions on interface are shown in Eq. (7.137). For the free
vibration, the mechanical boundary conditions on the top and bottom surfaces are

o33(x2, hn /2) = 033(x2, —h1 /2) = 023(x2, Ay /2) = 623(x2, —h1/2) =0 (7.143)

The electrical boundary conditions have two different kinds:

(1) (p(Xz,hN/Z) = (p()(z7 *]’ll/Z) = 0; or (2) Dg(Xz,hN/Z) = D3(X2, fh1/2) =0
(7.144)

For the cylindrical bending vibration in (x,x3) plane, the boundary conditions
on the lateral surfaces are

02(0,x3) =02(0,L1) =0, wu3(0,x3) =u3(0,L1) =0, ¢(0,x3) =¢(0,L;)=0
(7.145)

For each layer, there are six unknowns and six continuity conditions due to
u; = 0. There are also total six boundary conditions on the top and bottom surfaces.
In order to satisfy Eq. (7.145) automatically, Heyliger and Brooks (1995) took the
solution in the following form:

5X3

(uz, uz, @) = (uz cOS pxy, Uzg SIn pxa, @ Sin px; )e el p=nx/L, (7.146)

Substituting Eq. (7.146) into (7.142) yields

—C22p2 + C44S2 + pw2 (C23 + C44)pS (624 + 832)ps U2 0
—(Co3 4+ Caa)ps —Cup? + C38% 4 pa® —eup* +eps? [{uzo p =1 0
—(e3 + e4)ps —eup® + exs’ np® — 638° ®o 0

(7.147)
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Setting the determinant of above matrix to zero for a nontrivial solution yields
an eigen-equation. From the eigen-equation, we get six eigenvalues s;,i =1 — 6
for s. Corresponding each s;, an eigenvector Uy (u10;, U20i, U30i, Po;) With one
unknown u1(; can be obtained. As shown in Sect. 7.5.1, the problem can be solved
uniquely.

7.5.4 A Mindlin-Type Plate Bending Theory

Consider an orthotropic piezoelectric plate of moderate thickness. Let (xy,x3)
be located on the middle surface. The basic assumptions of the Mindlin bending
theory are:

1. Straight lines normal to the x; — x, plane before deformation remain straight
with unchanged length after deformation, but not compulsory normal to the mid-
surface, i.e.,

_ 0 _ 0 _ 0
E11 = Uj TX3W 1, €22 = Upy T X3Woo, Vo3 = Uz, T Y,

0 0 0 (7.148)
Yi3=Uy Ty, Yo =Upy iy 3w o)

where u” is the displacement in the mid-surface and y, and y, are the absolute cross-
sectional rotations.
2. Stress o33 can be neglected. So the constitutive equation can be written as

oy =01 = éllul,l + 612142,2 +enp3, 0y =0n= Cl2ul,1 + 622142,2 + e3¢,
04 = 03 = 644(M2,3 +uzn) + €@, O05=03 = CSS(”I,S +uz1) +eisp

0 =012 = 666(’42,1 +uiz), Di=eéis(uz+us)— €119

D,

exu(urs +usn) —engy, D3 =e3u +exnury — 305
(7.149)

where u3 3 has been eliminated by using o3 = 0, and

Cij=Cj— CiaCpn/Cxs, & = e;j — esCji/Cas, G = G + €336363/Ca
(7.150)

are the reduced material coefficients.

Wang and Yang (2000) reviewed the higher-order theories of the piezoelectric
plates. The equivalent single-layer models for the multiply layer plate (Krommer
and Irschik 2000) are adopted here. Substituting Eq. (7.148) into (7.149) and
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integrating through the thickness yield the constitutive equation in the stress
resultants and moments:

0

Ny [An A2 0 Bpp Bz 07 Ui, Ny,
N, Ap Ap 0 Bp Bpn 0 14(2),2 Nae
No{ |0 0 As 0 0 Bes| | u),+ud; ) N
M, ( |By Bp O Dy Dy O Wi M,
M> Bz By 0 Dy Dy 0 Wi M,
M Lo 0 Bs 0 0 DIyt M
{q2}_-544 0:|{}/23} {qu}
q1 L O Sss 713 q1e

(7.151)

where Ni,N;,Nj, = Ng are the membrane forces, M;,M,,M, = Mg are the
bending moments, and ¢, ¢, are the shear forces per unit length. The generalized
stiffness in Eq. (7.151) are

N
(Ni, M;) :Z/ o (1Lx3)dns, (1=1,2,6); (q2.q1) Z/ oy o)
k=1 i
u ~(k
(A,ﬁB,‘j,D,‘j) = Z// C( )(l X';7)C3 dX’;, Z , d),@jC,(])dx
=1 7 I =1 7l
N M & *) (k)
le le N N 4)27 E
q1 e
Nae Mo, :Z/ égkz) Eg)(l ) dxs, { e} 72/ 5€4 L s
Nie M k=t 22 k=1 (piég];)E(zk)

0

(7.152)
where @;, ®; are shear factors which are determined by the shear stress distribution
on the cross section and Ny, M., Noe, M2, Ni2e, M12e,q1e, 2 are introduced by

piezoelectric effect. The electric variables will be studied layer by layer, and for
each layer, there are two-type boundary conditions:

1. Electrically open Given the electric charge density ¢!/ on the upper and lower
surfaces of the layer. Usually D\ and DY are neglected and DY is reserved. So

Dgi) is constant along the thickness direction due to Gauss equation Dgl>3 =0:
D= = o, E{ = o [} (7.153)

2. Electrically shorted Given the potential V) on the upper and lower surfaces of
the layer. For convenience, assume the variation of the potential is linear along
the thickness direction, so

B VO, DY~V B —E9—0 s
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In Mindlin theory, the motion equations are

poil) + piry = N1y +Niaa,  poiiy + piiirs = Naa +Nint,  poils = qi1 + qa +p
piil + poiiny =My + Mo — g, pyily + paiiy = Moy + Miny — ¢
(7.155)

where p is the transverse loading and

(Po:P1,P2) Z/ (1,x3,23) dx3 (7.156)

Equations (7.148), (7.149), (7.150), (7.151), (7.152), (7.153), (7.154), (7.155),
and (7.156) are the complete governing equations.

For a symmetrically laminated, transversely isotropic and simply supported
plate, bending and extension are decouple, and the following relations are held:

Cii=Cn, Cu=Css, Ce=13(Cii—Cn); @& =en, @e5=0au 1=:t
Dy =Dy, D¢ = (D11 —D12)/2, Siss=Sss, My, =My,
(7.157)

Eliminating the cross-sectional rotations y from Egs. (7.151) and (7.155) for the
bending vibration, a fourth-order partial differential equation for u3 is obtained
(Krommer and Irschik, 2000):

Dy VAV2u§ — [(Di1/Saa)po + pa)V2il§ + poiis + (popa/Saa) iis°

. (7.158)
— (D11/S44)V?p + (p2/Saa)p — VM,

where V2u3 = u || +u3,, and i’ = 0*u3 /Or*. When the external loadings are
p = poe'® and M,, = M;o.e”, the frequency equation of the bending vibration is

Dy V2V2US + [(D11/Saa)py + pala* V2US — p@? [1 = (p2/Saa)0® | U3

7.159
=po[l — (ﬂ2/544)w2} — V2[(D11/Saa)po + Mio.] ( )

where the common factor €l is omitted and u = Uje!".

7.5.5 Third-Order Shear Deformation Theory
of Laminate Plate

Consider the linear piezoelectric material, so the Maxwell stress and the environment
need not be considered. The variational principle 6I1 = 0 in Eq. (2.7) is becomes
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517:/aikéui,de—l—/Dk5¢7de+/pﬁk5ude—/ T;féukda—i-/ c*Spda =0
Vv Vv |4 A, a

p

(7.160)

where the body force and body electric charge are neglected. For the orthotropic
material of moderate thickness, Mitchell and Reddy (1995) adopted the displace-
ments of the equivalent single-layer plate as

wy = u) (01, X0, 0) 4y (xa)yry (1,22, 1) = 1 (03 )ug (o1, X2, 1)
1y = u9(x1, X2, 1) 4 17 (x3)yra (1, X2, 1) — 1y (x3)u3
; : (7.161)

uz = us(x1,X2,1)
3 2
ms) =x3—cx3, mx) = cxg, c= 4/3h
where (u(l), ug, ug) are the displacements of a point on the midplane and (y, ) are
the rotations of a transverse normal at.x; = 0 on the midplane about the x, and — x|

axes, respectively. 4 is the total thickness of the plate. The strains corresponding
to Eq. (7.161) are

£ = M(I)‘] +myin — ’72“(3)‘11§ €2 = M(z),z + Mmoo — ’12”2‘22§ 3 =0
Va3 = Ua3 + Usp = 1) 3W5 — 17273142’2 + ug_’z; Y31 = U133t Uz =N39p — ’72,3“(3],1 + ”2,1
Yio=uip +uz1 = (“(1)‘2 + ugJ) i (via+van) = <u2712 + Mg"zl)

(7.162)

From Egs. (7.161) and (7.162), it is known that for #,(x3),7,(x3) given in
Eq. (7.161), the transverse shear strains y,3,y,3 are zeros on the upper and lower
surfaces and vary quadratically through the thickness. It is also without the normal
strain. The potential is modeled on a discrete layer approximation as

Felx3) ™) (1,32, 1) (7.163)
1

(0(X1,X2,X3,t) = Z

k=1 j=
where N is the layer number of the laminate plate, m is the number of interpolation
points in a layer, and ¢*7) is the potential at jth interpolation point of kth layer.
fi(x3) is the Lagrange interpolation function. It is noted that the potential on
the upper surface of the k£ — 1 layer must be equal to that on the lower surface of
the k layer.

The middle plane is denoted by A and its boundary is L. Substituting Egs. (7.161)
and (7.163) into (7.160) and neglecting o33 yield the following equations:
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The variation of the mechanical energy:

/V oV = /A {3, + Mgy = Proud,) + (Nadud, + Madyry, — Poil )

+ [N6 (5”(1),2 + 5”(2),1) + Mg Sy 2 + Sy, ) — 2P65”(3),12}
+ 04 (511/2 + 5”?,2) +0s (51//1 + 5”(3),1) }dA

= —/A {(N1,18u" + My 18yry — P1116u3) + (N2pSul + Mo oSy, — Payodul)
+ (No26u + N 18US + M 28, + M1y, —2P6 126U3) + (Qudyry — Qa28u3)
+ (Qsby, — Os.18u3) }dA + /L {[Ma + M, — (Proud, = Prasus) |
+ [Nzéug + Myoy, — <P25u212 — P2‘25u(3)>] ny + (N65ug + Mﬁ(sll/z)nl
+ (Nﬁéu? + Mﬁéyfl)nz — |:P65u(3)'2n1 + Pééugilnz — (P6,1n2 +P6‘2n1)5u(3)]
+(

Q4I’l2 + Qsl’ll )51/{(3)}(1L
(7.164)

where the Voigt notation has been used and

h)2 )2 )2
N; =/ oidx3, M; =/ oimdys, P; =/ oimdxs, i=1,2,6
—n)2 —h)2 —h)2

0 /_h/zai[1—4(z/h)2}dx3, i—45

h)2
(7.165)

The variation of the electric energy:

N m
[pinar =30 [ S5 (ot +ot2ans7)ar
|4 =1 \JV =1
N m ) m
=2 { / =3 (P4 — L) sptan + / Zpgkﬂnaégow)dL}
=r A L=

J=1

h/ . . h./' R
Pk = / D (x3)ds, Gé”) = / D(3kJ>fk,3 (x3)dx3
h

j—1 hj-1

(7.166)
The variation of the kinetic energy or inertial energy:

/ piiioudV = / {(1111‘{“217/1 —1311271)514‘14 (1211?+14¢1 —1511‘3{1)51,/1
\%4 A

+ {(m? + Isiiy — i) -+ (138 + s, — i) i +1,u2} 1t

[ (1 + iy — 13 )80 + (12l + Loy — I5ii ) 3ur | baa
(7.167)
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where

h/2 /2 /2
I :/ pdxs, I :/ pia(x3)dys, s =/ P11 (x3)15 (x3)dxs
—h/2 —h/2 —h/2

b

h/2 h/2 h/2
/ pny(x3)ds, Iy = / pny(xs)dxs, I = / i3 (x3)dx
—h)2 —h)2 —h)2

(7.168)

In Eq. (7.167) term — |, [(I3ii(l) ¥ Isyr, — Iﬁugl)nl n (13123 ¥ Isiry — Iﬁug"z) nz]
6ug has been neglected. This term is difficult to explanation.

The variation of the work of the generalized external force is as follows: The
mechanical force acted on the equivalent single-layer plate should be distinguished
two parts—T7 is the equivalent traction on the midplane A, and ¢} is the equivalent
resultant force on the lateral surface a. The electric charge acted on the kth layer
should also be distinguished two parts: ¢*)* is the surface electric charge density

of the kth layer, and ¢®)* is the surface electric charge on the lateral surface.
Neglecting some secondary terms we can get

—/ T;ﬁukda—i—/ 0'*5gada:—/{Ti‘éu(l)—i—T;éug—i-T;ﬁug}dA
A

as a,

N
- / {r;0u)+6u5 + 56u3 pdL + Z [/ a(k)*fké(pjdA + / q<">*]§5(pjdL}
L k=1 A L
(7.169)

Substitution of Egs. (7.163), (7.164), (7.165), (7.166), (7.167), (7.168), and
(7.169) into Eq. (7.160) yields

Suro : N1y +Nep+ T = Ilii(l) + Ly, *IsﬁgJ
Ouzy : Nop + Ng 1 + T; = Iliig + Ly, — 1311(3)?20
Suzo : P1y1 + Py +2Pg 1o+ Qan + Qs — T;

(i g _1-.0) (l‘.(, I _1-.0) [0
(3%1 + Isyry — Igliz ) R + L3ty + Isyp — Itz 72‘*‘ 13 (7.170)
oy My + Mgy — Qs = Izii(l) + Ly 715’;‘.2,1

51//2 . M2,2 +M6.’1 — Q4 = ]2122 + 141;1}2 — 1512(3)12
S . (P%) _ Ggfw‘)) =3 60
Se-ai)-%

J=1
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and the natural boundary conditions are

614(1) :Niny + Nenp + 1] =0, 5ug :Nong + Neny + 6, =0

514(3) tPiany 4+ Paany + Pe o + Peon+ Qany + Qsny + 65 =0
oy, Miny + Mgn, =0, Oy, : Mony + Mgn; =0

514(3)’1 :Piny + Pgny =0, 5u(3)72 :Pyny + Pgny =0

m
s 3P () =0
j=1

(7.171)

It is also noted that on the boundaries given generalized displacements,
we have

Su = duy = du = du3 | = du3, = Sy, =Sy, =0 (7.172)
Mitchell and Reddy (1995) adopted Hamilton principle, 5I1y = 61y, in Eq. (2.32);
their results are slightly different. It can be seen that this complex approximate theory
is difficult to exactly discuss and give some new simplified postulations are needed.
The generalized forces can be obtained from Egs. (7.165) and (7.149). Let
Ni=N;+N, Mi=M+M, P;=Pi+P, Qi=0,+0 (7173

where the elastic variables are denoted by an over-bar and variables related to
piezoelectric effect are denoted by a superscript “p,” and

N, (A A 0 A7 A, 0 Afp A 07 ul
N, An An 0 A, A3 0 AR An O ug
Ns 0 0 Ag O 0 A O 0 AF Wy + 18,
M, Ay A, 0 By B 0 By B 0 Vi1
My, y=1|A, A, O By Bp O B, By 0 Vo
M; 0 0 A} O 0 B 0 0 B wia+ W
P, A A% 0 By, B, O Dy Dp 0 —us 1y
Py A% A3 0 B, B, O Dp Dy O —13 5,
Py Lo 0 A 0 0 By 0 0 Dl —2u§ 1,
(7.173b)

Q4 <F44 0 ) ") + Uszp2
- = 7.173
{QS} 0 FSS {y/1+u3071 } ( C)
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N m N
k k.j i (ky)
U SED SUCNED DED SRR
k=1 Jj=1 k=1

N m N m
P _ (k) (k) _(kj P _ (k) (k) (kyj P _
Ml _2631 ZﬂZ (ﬂ< J)a M2_2632 Zﬁz (p( J), MG—O
k=1 =1 k=1 =1
! N " (7.173d)
P _ Z egk]) Zﬂgkzl kyj Plz’ _ 6%) ﬂgkal)go(kj) PP 0
k=1 j=1
) k) o~ (0N gl
¢ . &y B k,
=Y &Y A0 o, =30 d g e o
k=1 j=1 k=1 j=1
where
/2 /2 /2 /2
AK) — / Cdxs, A®x — / Cg,dx;, AR / Cg,dxs, BW — / Cgfdm
/2 )2 J—m)2 —h/2
/2 Iy /2 hi/2
BY* =/ Cg g,dx;, D =/ Cgidvs, Fas =/ Caagi 5dxs
hi /2 —hi /2 —h /2
/2 « /2 ) /2
F'ss :/ C55g13dx3ﬂ 9 fiadxs, By :/ 21fj3dxs,
J )2 ) /2
) Iy )2 ) /2 C:“ 6:12 0
5 =/ gofizdys, B = / giafidz; C=|Cy Cp O
~h /2 —h/2 0 0 Ces
N
(A,A*, A" B,B) = Z (A(A AW* AR B B k)*)
=1
(7.174)

Equations (7.170), (7.171), (7.172), (7.173a), (7.173b), (7.173c), (7.173d), and
(7.174) are the complete governing equations.

7.5.6 Bending Theory of Timoshenko Beam

A narrow plate can be considered as a beam. The Timoshenko theory (Timoshenko
and Woinowsky-Krieger 1959) considering the shear deformation of a beam of a
moderate thickness can be obtained from the Mindlin theory. Let all variables be
independent to x, in Mindlin theory, Eq. (7.149) is reduced to

o1 =01 =Yu 1 +enp;, o05=013=G(u3+us;)+es
, ®3 (w1, 1) %2 5175

D, = €15("1.3 + M3,1) —€ne D3 = €31U,1 — €339 3
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where Y, G are elastic coefficients. Corresponding to Eq. (7.148), the deformation
in Timoshenko beam is assumed as

£ = ”(1),1 +x53w,, Yi3= ugﬁl +y (7.176)

If w= _“(3),1’ then y,;;3 = 0,Timoshenko beam is reduced to Bernoulli-Euler
beam. Corresponding to Eqgs. (7.173) and (7.174), we have

= - y 4 =0Y13 — (4.
M B D w, M,
N N
A,B,D) = YO (1,x3.03)dxs, G = @*GWdxs (7.177)
3

k=1 7 k=1 7

N k k N k k
(NeM) =" / MEP(Lx)dy, ¢e=) / el E| dvy

k=1 7 k=1 I

Corresponding to Eq. (7.155), we have

poiiy +priny =Ny poiis = g1 +p, piiiy +poiny =My —q (7178

where pg,p;,p, are shown in Eq. (7.156) and electric displacements and electric
fields are shown in Eq. (7.153) or (7.154).

7.5.7 Bending Model of Beams of Crawley

Crawley and De Luis (1987) proposed an extension-bending model to study the
simple intelligent beam structure as shown in Fig. 7.8. They assumed that the strain
is uniform through the actuator thickness, the beam obeys Bernoulli-Euler rule, and
the adhesive layer transfers loads only through shear. The formulas obtained by this
model are well for extension, but not bending, especially for a thin plate (Crawley
and Aanderson 1989).

7.6 The First-Order Approximate Theory
of an Electro-magneto-elastic Thin Plate

7.6.1 Basic Postulations

The nonlinear theory of an electroelastic thin plate is not well established, and
different authors proposed different theories. In this section, a first-order approxi-
mate theory of the quasi-static electro-magneto-elastic thin plate is recommended
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for small deformation, when the electromagnetic induction effect can be neglected.
Let the origin of the coordinate system axes xp, x, be located on the midplane and x;3
be upward normal to the midplane. The plate is bending upward. The role of x3 is
not the same as that of (x;,x;), so it will be discussed alone. For the present plate
theory, three following basic postulations are assumed (Kuang 2011):

(1) 633 K 043 K 045, (@ = 1,2), 50 033 is fully neglected and the effect of 643
is considered partly.

(2) The Kirchhoff assumption is adopted, i.e.,

we =) —x3u3 ., w) =1 (x,x0,0), Uy =0, (k=1,2,3) (7.179)
where u’ is the displacement on the middle surface and u is the displacement
at a certain point in the plate. According to Eq. (7.179), we have u3 4 + 1,3 = 0,
but it is not appropriate for the free boundary and should be modified approximately
as shown later.

(3) The electromagnetic field obeys the 3D theory, but in order to consistent with
the classical plate theory, the resultant electromagnetic force is reduced to the
middle plane S (dS = dx;dx;) or to the contour L of the middle plane. Usually
when we solve the electromagnetic field, the electric field due to the direct piezo-
electric effect can be approximately neglected compared to the lager applied
electric field.

7.6.2 Governing Equations Derived from the First Method

In engineering the piezoelectric plate is surrounded by air, so the plate has only the
interface with the air and does not have its own independent boundary. In air the
mechanical stresses can be neglected, so only the electromagnetic field should be
considered. It is assumed that there is no body force and body electric charge.
According to Egs. (2.19) and (2.21), there are two methods to establish the thin
plate theory. Similar to Eq. (2.36), the first alternative form of the PVP, Eq. (2.19),
for the static electromagnetic problem is modified as

SI1 = 81T, + 811, — sW™
= \/Skl(suk‘]dv + / piigoudV — / T; im(Sleda + / Dk5¢_kdv + / Bkél//,kdv
% 1% aim 1% ’ %

+ / Di"sfrdV + / oy MudV + / By oydV — / BN "5y da
J yair : /air : ’

/air . u;il
Sy =owu+oy, oy =DE+BiHy— (1/2)(D,E, + B,H,)5
(7.180)

S}‘:}r has the similar expression. The mechanical part related to the plate of
the PVP is
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/ [(S]d — 0% air)nl — TZ int] 5ukda — / (Sk[A,[ — piik)éukdv =0 (7.181)
aint 1%

Therefore, the thin plate theory can apply the usual elastic plate theory, but o is
replaced by S and on the interface T* ™ is replaced by T* " + 6™ @ . n. According to
the textbook of elastic plate theory, the bending theory of elastic electromagnetic
thin plate can be expressed as

Field equation: M.}, +q"=0; in$S (7.182)

Boundary conditions:

Clamped side ug = ug*, ”g,n = ugj‘n (7.183a)
Hinged side uS = u*, M'S =M + MM (7.183b)
Free side M, + Q%) = QF + Q¥4 M®) = M 4 MM (7.183c)

The notations in Eqs. (7.182) and (7.183) are

af i af
- (7.184)

h h
oY) = / Sdys, OF) =0Q¥n, QM= / oL ds

h h

h h
M(S) — / SaﬁXde37 MnM air __ M}:/[ alrnm MaM air __ / UM alrx3dx3
h _

where 24 is the thickness of the plate, ¢* is the distributed loading on the plate
surface, and Q7 is the distributed loading on the lateral boundary of the midplane.
At first the electromagnetic fields in plate and air are solved under the assumption
that the elastic effect can be neglected. After solving the electromagnetic fields,
the entire problem is reduced to a linear problem.

7.6.3 Governing Equations Derived from the Second Method

Similar to Eq. (2.36), the second alternative form of the PVP, Eq. (2.21), for the
static electromagnetic problem is modified as

81’ = 81T, + 81T, — sW"™

= / le(suk)[dv — / (U;\lil,/ — plik)éukdv — / (T]i(m * G;\]Zl envn;nv _ G;\Ii[nj) Supda
14 v t - .

in
a(f

+ / Dyde dV + / Bidy (v + / DSV + / o™ 5™ da
1% ’ 1% ? Venv ’ e

+ / BS™ Sy dV — / oM e v + / o* Spda — / B ™™ 5y da = 0

a a
ap,f = DEy + BiH; — (1/2)(D4E, + B,H,)5y, Similar expression for a}\,f env
(7.185)
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According to postulation (3), the electromagnetic field obeys the 3D theory,
which has been discussed in Chap. 2. Here only the mechanical part related to the
plate of the variational principle is discussed in detail, which is

/ 6k15uk71dv — / (6}\111» — pﬁk) 5ude — / (Tmt * 4 }\Ii[envn;nv _ 6}\1{”]') 5ukda
Vv Vv an
(7.186)

Applying postulations (1) and (2) and noting n3 = 1,1, = 0 on the midplane,
n3z = 0 on the lateral surface, it is obtained:

/Gk/5u1kdv /N,,,;n,;éu dL — /Na/,’/,’éu ds — /M,,,;n,;éug adL
Vv
+ / My opoudL — / M o padu3ds
L s

pukéu/xdv / (Po“g + P i'{.g,a - p2u(3),aa) 5M(3)dS

N

o [ (ot = it Jusets = [ (pi = pol Yt
K L
/ néupda— /N(l:;[)naéugdL /MaﬁnaéugﬁdL—i—/p?/léu?dS
aint L h S
/ oy SupdV = / N 5ubds — / My naduldL + / M}y ,5u3dS + / NY 5u3ds
Vv ' s

s
T*int5M da = *inté OdS *int ¢ 0 _ *int ¢ 0
; da = [ p/™"ou,dS + | P;"6u;dL M;™ 6uy dL
qint S LJ ’

o

<\

(7.187)

where 2/ is the thickness of the plate. The expression of o-M air

notations in Eq. (7.187) are

is similar to alp The

h h h h
Na = / Gaﬂd.X‘37 Maﬂ = / O'aﬂX3d.X3, Ng;[) = / C)'OlMpd)(,}7 M(l:;[) = / Gap)C3dX3
—h —h —h —h

h h
M M M M M M
pi =N3iz = / 3303 = 03 (h) — o3 (=h), Mz, = /1 03;,3X3dx3
— —h
h h h ,
Po :/ pdxs,  py = / px3dxs,  py = / px3dxz,
- —h Jon

h h
*mt T*lnt| , on S, P;klnt:/ T,*i"tdm, Ml*mt:/ T]*i"tX3dX3, on L
—h —h
(7.188)

It is noted that when the Maxwell stresses on the upper and lower surfaces are

reduced to the midplane, a distributed couple [ (m}, — m3,™)éug ,dS, mll =

(o3, (h) + o3 (—h)](h/2) may be produced, but this effect is neglected in
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Eq. (7.187) due to small A. It is also noted that Eq. (7.179) is not fully appropriate for
the free lateral boundary. In fact from the variational formula, o,3 on the middle
plane is approximately considered by P *, but 6,3 on the free boundary should not

be considered. So on the boundary L, a term N3z = f f ; 05303 should be added to the
variational formula.

Substituting Egs. (7.187) into Eq. (7.186), adding a term fL NgﬁnﬂéugdL, and
finishing the variational calculation, we finally get:

The mechanical governing equations of the plane problem are

Nagp + Nigs 5 + 05 <™ = pi' + pi™ = poi (—pl uga) ; in S
_ (7.189)
(Nt + N3 = NY™ Y = P on L,

The mechanical governing field equation for the bending problem is
M“ﬂﬁlja + Mlo\(/l{ai + No%,a + p13VI - pl3VI + pgint = Po”g + (pllzg,a - pZug,aa) ’ in§
I L +-330 )y = Pt (N N = N Yy = (i = s, ) J o
- /L [Ma,;n/; + (M}}f, — My Yy - M;;im} s dL =0
(7.190)

In Eq. (7.190) terms (pliig‘a - pzugm) and (pliig - pzug_’k) can be neglected.

The usual three boundary conditions for the plate bending can easily be derived
from Eq. (7.190).
According to the assumption (3), the electromagnetic field is reduced to

Dijj=p,, Bi;=0, in V; Dpny=-0¢", on ap; B;=B;, on a,
(Di o D?m)ni _ 7U*im, (Bi 7Blgnv) — Bi*im7 on aim

(7.191)
In deriving the above equations, the constitutive equations were not used, so the

governing equations can be used for all materials satisfying the basic postulations

(1) to (3).

7.6.4 Some Discussions

The soft electromagnetic plate under a uniform transverse magnetic field can be
bending or buckling when the magnetic field exceeds a critical value (Moon and
Pao 1968; Pao and Yeh 1973). The natural frequency of a soft electromagnetic plate
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can be changed under a longitudinal magnetic field (Zhou and Miya 1998). Zhou
and Zheng (1997) pointed out that there was not a unified theory to discuss the
above two problems, and they proposed a variational method attempting to unified
deal with these problems. The key problem is to get the electromagnetic force
acting on the plate. Though for the electromagnetically static problem and the
problem without magnetic field the theory discussed above is appropriate, but for
a MQS system (0D/0t = 0, OB/0t # 0), such as vibration problem in a magnetic
field, it should be modified, the motional electric force should be considered. As an
example, the transverse vibration of an elastic electroconductive plate is subjected
to the external uniform magnetic field Hy = Hy;i; + Hozi, parallel to the (x,x;)
plane only. The induced motional electric field e, b,j in the plate due to the plate
motion is (Librescu et al. 2004; Belubekyan et al. 2007)

e=—-0vxBy, v=vi3; b=Vx(uxBy); j=Vxh (7.192)
The corresponding Maxwell stress is
GM = ag-/lo + Gg/ll

ij

(7.193)
oy = BoiHo; — (1/2)BowHondyj, 03" = biHoj + Boihj — Bonhnd

L

Belubekyan et al. (2007) adopted the electromagnetic body force f =V - 6™,
but Librescu et al. (2004) adopted the Lorentz formula f =j x By. The MQS
problems should be further studied.

7.7 Piezoelectric Composite Shells

7.7.1 First-Order Shear Deformation Theory

Consider a finite, simply supported, N-layered laminated circular cylindrical shell
of mean radius R, length L, and thickness H. The shell is constituted of elastic
orthotropic or radially polarized piezoelectric materials. The cylindrical coordi-
nates (x,0,z) are adopted with (x,0) spanning the mid-surface and z along the
normal (radial) direction. Analogous to the Mindlin plate theory, Kapuria et al.
(1998) assumed that the displacements can be approximated as

u=1'(x,0) +zp,(x,0), v=210x0)+zp,(x,0), w=w'(x,0) (7.194)

0 .,0

where u’, v°, w® are the displacement components on the mid-surface and yr,, y, are
the rotations of its normal. The corresponding strains are

& = ufl +tay ., €= (v?e + 42y, + WO)/(R +z2), &=0, y,=w, + wg(

Yo: =2+ (W?a —o - ZWz)/(R +2), 10 =00+ (g +2y19) /(R +2) + 2y,
(7.195)
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On the mid-surface, the resultant membrane forces N, Ny, N.g, Ng,, transverse
forces Q., Qy, and resultant moments M,, My, M9, My, are

= /_ZZ [j [ax(l —‘r%),O‘g,O‘X{)(] +1%),O',9X:|d2

H/2
[Qxa Qﬂ] :/ [ze(l +Z/R)7692]d2

—H/2

Nxa N@; Nx97 N(?‘x
MX7 M97 Mx€7 Mﬁx

(7.196)

The constitutive equation is shown in Eq. (7.149). The equilibrium equations are

Nx,x +N9x,9/R +py = 0; (Q9 +N6',9)/R +Nx€,x +po = 07
Qx,x + (QH,H _NH)/R JFP: =0
Mx,x+M0X,H/R _Qx+mx :Oa MH,B/R+Mx0,,x_Q€+m0 =0

(Ps:Posp=) = [(1 4 2/R) (021,020, 02)]") 5, (meymg) = [(1 4+ 2/R)z(020,0:0)]17
(7.197)

where p,, pg,p:, mng are the external forces and moments, respectively. The
boundary conditions are defined:

Ny or u®, Ny or o°, Q. or w° M, or v, My or wyy;
at x=0 or L
Ny, or uo, Ny or vo, Q¢ or wo, My, or wy,, My or y,;
at =0 or 6

(7.198)

where 6 is the span of the cylindrical panel. Usually o, can be neglected. Using
Egs. (7.149) and (7.150), the equilibrium equations in terms of displacements can
be obtained. Here it is omitted. The above theory is easily extended to the combined
multiply layer shell.

The electric potential ¢ is assumed to vary linearly across the actuated layer, and
the electric field is computed as E, = —¢ ., Eg = —@ /(R +2), E. = —¢ .

For the classical shell theory, the transverse shear strains y,,, 74, are neglected.
Hence,

u=u—zn, v:vo—z(wog—vo)/R, w=w'(x,0);
sx:ugfzwg(x, 891096/R+(W()*ZW?HQ)/(R+Z), e =0,

Yox = v?x + (”2 +Zl//lﬂ)/(R +z)tapy oy = _W?w Yy = (7’0 - W?a) /R
(7.199)
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The above thin shell theories yield poor predictions of the transverse stress
components o,;, 6g;, 0,, SO sometimes a post-processing technique is needed. The
transverse stress can approximately be obtained from the 3D equilibrium equations
(Kapuria et al. 1998):

(R + 2)2692 = - / [(R +2)oge + (R + z)zaam} dz + ¢;
—h/2

z

R +2) 00 = — / " [6or0 + (R +2)0x:]dz + 2 (7.200)

(R —+ 2)202 = — / [69 — 090 — (R —+ Z)sz,x] dz + Cc3
—h)2

where c¢; is determined by the boundary conditions at the outer shell surface.
Kapuria et al. (1998) compared the numerical results of the shell theory with that
of the exact 3D theory and gave some comments. Saviz et al. (2007) proposed a
layerwise model which is formulated by introducing piecewise continuous
approximations through the thickness for each state variables. They showed that
the results calculated by this model more consist with that from the 3D theory.

7.7.2 The Cylindrical Bending of a Laminated
Infinitely Long Shell

The exact analytical solution of a cylindrical shell by 3D theory is difficult, but
for some simpler cases, it is possible. Now discuss an infinitely long laminated
orthotropic cylindrical shell with simple supported edges under purely cylindrical
bending. The top and bottom layers are piezoelectric actuators, and the middle layer
is an elastic orthotropic substrate. The cylindrical coordinates r, 8, z are used, where
r, 0 and z refer to the radial, circumferential, and axial directions, respectively, and
u,, up and u, are the corresponding displacements (Fig. 7.10).

Because the shell is infinitely long, variables can be considered as the functions of
(r,0) only. The equilibrium, geometric, and constitutive equations are, respectively,

Orr + U/'G,H/r + (01' - 0-9)/" = 07 Org.r + 60,9/" + 20',-3/7' =0

(7.201)
Dr + rDr,r + Dﬂ,é) =0

& =Ur,, €9=(Ugg+u.)/r, V.= (Uro—tg)/r+up,

(7.202)
E.=—¢,, Ej=—@y/r

6, =Crg + Cneg — ek, o9 =Cpe + Cney — e31E,
6,9 = Ces¥,9 — €15Eg, D, = e3¢, +e3189+ ¢ E,, Dg=e1s57,9+ cgEg
(7.203)
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Fig. 7.10 Cylindrical
bending of an infinitely long
shell

Substrate

Lower piezoelectric layer

where Cj; is the reduced material coefficients. The boundary conditions are

1. Simply supported u, =09 =09, =0; @ =0, when 6=0, 6

2. On the interfaces u,, ug, o,, 6,9 continuous and ¢ =0 (7.204)
3. Upper surface of the outer actuator 6, = gosinp8, o,9 =0, ¢@ = Vsinpd
4. Lower surface of the inner actuator 6, = 6,9 =0; D, =0

where p = mn/6y,m is an integer, and V and ¢ are given values.
In order to satisfy the boundary conditions u, = 69 = ¢ = 0 on the edges, Chen
et al. (1996) adopted the following generalized displacements for actuators:

0

u, = ul(r)sinpd, up = uy(r)cospd, ¢ = ¢°(r)sinp6 (7.205)

Substitution of Eq. (7.205) into Eq. (7.201) for actuators yields

v U 2\ U0 Upo Ugo P _
Cii|uy+—) — (Co2 4 p*Ces) = — P(Ce6 + C12) "2 4 p(Caz + Ce6) — — 31— =0
7 2 r r2 r

M’. Uy, u u /
p(Clz + CG@) fo -I-p(sz + C66) ,,_20 + Ceg (ugo —+ %) _ (p2C22 + Cﬁé) ’—020 + pes3y % =0
/ / /
€3 @ — pesy uﬂ _ ér((/)g +&) +p2¢0££ =0
r r r r
(7.206)
where f' =f,, f" =f, foranyf.Let
uo(r) = A", ugo(r) =Aer*, @o(r) =A4,r° (7.207)

Substitution of Eq. (7.207) into Eq. (7.206) for actuators yields the homogeneous
equation of A,,Ag,A,. In order to have nontrivial solutions for A,,Ag,A,, the
coefficient determinate of them must be zero, so the following character equation is
obtained:
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As®+Bs*+Cs" +D =0

A= —C1Cg €

B = {Cn (P*C22 + Ce6) + Co6(Ca2 + p*Cos) — p*(Ci2 + Css)z} €
+p*C11Ces €0 + (Ces +P2C11)€§1

C= {— (Caz + p*Ces) (P*C22 + Ce6) + P*(Co + C66)2:| €+ [P4(C12 +Ces)”
—p*C11 (p*Cx + Ce6) — P*Co6(Caz + p*Ces) | o + [20*(Caz + Ceg)
—(P*Cx2 + Ces)e3; — p*(Caz + p*Ces) | €34

D= {PZ (p*Ca + Ceg) (C22 4+ p*Ce6) — p*(Cop + C66)2} €o

(7.208)

From Eq. (7.208) s has 6 real roots s;, j = 1 — 6 for piezoelectric material. For
each s;, a group (A,;, Agj, A,;) with one unknown is obtained, so the general solution
of Eq. (7.206) for each actuator is

6 6 6
U ) = E Ajrsf, Ugy = E AJ-ngrSf, Py = E Aqu)jrSi
J=1 J=1 j=1

Hy; = —{P [(C12 + Cé6)sj + (Ca2 + Cos)] (—Ersf +P269) —Pegls./g}/A
H, = —{ (C66S,2 —p*Cy — C66) +p*[(C12 + Ce)s; + Caz + Ceg) }6313j/A
A= <C66S]2 —p*Cxp — C66) (*ErSf +P2€e) +P€§1S,2

(7.209)

The governing equations of the middle orthotropic composite matrix can be
obtained if the electric variables in Eq. (7.206) are omitted. Let the generalized
displacements in matrix be

ul™ = a.r* sin po), uém) = agr’(r) cos pf (7.210)

The character equation of a,, ag is
B's*+C's>+D =0
B' = C11Ces

C' = —Ce6(C2 + p*Co5) — C11(p*Ca2 + Cos) + p*(Ci2 + Cos)”
D' = (Ca + p*Ces) (P*C22 + Ce6) — P*(C12 + Ces)”

(7.211)
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Fig. 7.11 Shallow
piezoelectric shell

where the superscript M of Cﬁ‘f is omitted. So the solution of the substrate is

4 4
Uy = g aiH %, ugo = E a;r
j=1 j=1

H,j=p[(Ci2 + Ces)sj — (Caa + Csa)]/{cns_,2 —(Cx JFPZCG())}

(7.212)

There are 16 unknowns: 6 A; of the outer actuator, 6 A; of the inner actuator, and
4 a; of the middle substrate. There are also 16 boundary conditions: 4 conditions
on each interface, 3 conditions on upper surface, 3 conditions on lower surface, and
o9, = 0 at 8 = 0, 0y. Therefore, the problem is solved.

7.7.3 Approximate Theory of a Functionally Graded Shallow
Piezoelectric Shell

Figure 7.11 shows a functionally graded shallow piezoelectric shell of thickness 2/;
(a1, ;) are the orthogonal curvilinear coordinates on the mid-surface; and its
corresponding Lamé parameters are H;, H, and radii of curvatures are R|,R;. a3
is a linear coordinate and normal to the mid-surface. For a thin shell, & < R;,
(i=1,2), R; is approximately independent of az. Let (uj,us,us, @) be the
generalized displacements in the orthogonal curvilinear coordinates, then

ey = ouy Uy OH4 u3 ey — Ouy u;0H, U3
H\0a;  H{H,0ar R’ H,0a, H{H»0a; R,
8u3 61/{2 8143 u 8”1 (91/{3 up
833:570‘37 y23:870l3+H25027R727 y13:87053+H18017R71 213
o 8u1 61,{2 u28H2 u18H1 (7 ! )
N2 = H28a2 + H18a1 B H1H28a1 B H1H28a2
L | N

_H18a1 ’ 2 —1‘12(9(){27 3 _8—613
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Let Ciju(z), exij(2), €(z), z = az. Wu et al. (2002) assumed

U = u(l)(al,az) + Zu%(al,az), Uy = ug(a 2) + zuz(al,az)

uz = “g(al,az) + Z“é(ahaz), @ =¢" (a1, ) + 29" (a1, ) + 22(/’(2)(061;052)

(7.214)

Substitution of Eq. (7.214) into Eq. (7.213) yields the generalized strains, then
substitutes the strains into the variational formula Eq. (7.160). Approximately take
l+z/Ry ~ 1, 1 +z/R, =~ 1. Noting dV = HH,da da,dz and finishing the varia-
tional calculation, the approximate equations of the thin shell can be obtained. The
generalized momentum equation is

5”(1) : 8(1;2]:]11) + 3(125\2/12) +N1288—2121 — N ZZI + N3 H11e1]‘12
FHH (T} 1) = Hyths (poif) + i)
Sud (HaN12) ; + (HiN22) » +N12H21 — NiHip + NypHiHy /R,
+ HHy (T;" + T57) = HiHa (poiih + py i)
5”2 : (HaN13) , + (HiN32) , — NuHi1Hy /Ry — NyoH1H> /Ry
+ H\Hy (T + T5) = HiH (poil§ + pyiiy)
Suj : (HaMi1) ; + (HiM12) , + MiHi 2 — MaoHa ) + M3 HiH2 /R,
— Ni3HHy + HiHy (W — hT;™) = HiHy (pyii + pii;)
514% D (HoMi2) | + (HiMa2) 5 + MiaHa — My Hy 2 + MaxH Hy /Ry
— NosH Ha + HiHy (hT3 " — hT;™) = HiHa (pyiiy + i)
Suy : (HyMy3) | + (Hi\Mp3) , — My H\Ha /Ry — MxH H, /R,
— N33sH H, + H{Hy (hT5 " — T3~ ) = HiHa (pyiiy + p,ii3)
5¢° : (H2DY) | + (HiDS) , + HiHz (0} +077) =0
8¢ : (HaDy) | + (HiDy) , — HiH2D§ + HiHa (o}t — ho(™) = 0

5o : (H2D§2>) o+ (H1D<22>) — HithD} + HiHa (67" — o) = 0

) )

(7.215)
The natural boundary conditions are
5u(1’:N11n1—|—N12n2:T_1, 5M(2):N|2n1 +N22}’l2=T2
514(3] : Nisny + Nypny = T3, 51,{{ cMyny +Mpzny, =M,
Suy : Mypny + Mxnny = My, Sul : Myzny + Mazny, = M3 (7.216)
5¢° : D%ny + D9ny = —6", 5¢' : Dlny + Diny = —o'

5g0(2> :Dgz)nl + Déz)nz = —¢**

Let T/ and T;~ denote the traction on the upper and lower surfaces, respectively,

and
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h

h
(T,-,M,-):/ T;(1,z)dz, (D?,D},DS”):/ Di(1,z,2%)dz,
—h —h

h

(60*,01*,0(2)*) :/ 0*(1,2,22)dz (7217)

h

h
p07p17p2 Z/ 1 x37x3 dx37 (Nlj7M) / (I,Z)ijdZ

h

It is noted that the generalized displacements must satisfy the boundary
conditions when the variational formula Eq. (7.160) is used. Using the constitutive
equation, the governing equations in terms of the generalized displacements are
easily obtained.

7.7.4 Free Vibration of a Functionally Graded Piezoelectric
Hollow Cylinder Filled with Compressible Fluid

Consider an orthotropic piezoelectric hollow cylinder of inner radius R, thickness 4,
and length L. Chen et al. (2004) adopted the cylindrical coordinates r, 6,z and
adopted the state space method to analyze the free vibration of a functionally graded
piezoelectric hollow cylinder filled with compressible fluid. Assumed all material
constants and mass are the functions of r. From the constitutive equations,
geometric equations, and motion equations, the state equation can be obtained as

Y, =MY, Y= [MZ, Ug, 6y, Dy, 6z, 019, ur‘a(p]T (7.218)

where Y is the state vector and M is 8 x 8 matrix. Chen et al. (2004) discussed the
simply supported case with the boundary conditions:

U =up=0,=D,=0, at z=0,L (7.219)

In order to satisfy Eq. (7.219), they assumed that the solution of state vector can
be expanded in double trigonometric series:

Roii;(n) cos mrmg cos nf

u, Roiig(n) sin mzg sin no

Uy C34'6, (1) sin mrg cos nf

g’; 00 00 C4e8 D, (n) cos mrg cos n o

P r;) ; C34'5,.(17) cos mrg cos nd © (7.220)
0ro C34'6,9(n7) sin mzg sin nf

L(:; Roiiy (1) sin mzg cos nf

01/ C8t /€359 (n) cos mmg cos nf
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where Ry =R + h/2, n =r/Ry, and ¢ = z/L; m and n are integers; and @ is the
angular frequency. Variables at the outer cylindrical surface r = R + h are denoted
by right superscript “out,” and at the inner surface r = R will be denoted by right
superscript “inn.” Substitution of Eq. (7.220) into Eq. (7.218) yields

Y., =NY, Y =[i,iig,6,,Dy, 6,60, i | (7.221)

where Y is a constant vector and N is a 8 x 8 matrix and is not constant, so the
solution cannot be obtained directly from Eq. (7.221). The approximate laminated
model, for which the cylinder is divided into N thin layers, is adopted. For ith layer,
N; can be assumed constant and takes its value at midplane. Using the transfer
matrix method as shown in Section 6.4.1, Y°" = TY™™ can be obtained, through the
transfer matrix 7, and the variables on the outer surface are expressed by the inner
variables. The boundary condition on the inner cylindrical surface is solved by the
fluid-solid coupling theory. For a nonviscous fluid, the connected conditions on the
inner surface are

v, =v¢, pr+o,=0, o06,=0=0, at r=R (7.222)

where vg., v, are the radial components of the velocity of the fluid and solid,
respectively, and py is the fluid pressure. Finally, the boundary conditions on the
inner and outer surfaces are

i 2 t i i t t t
o™ = —Q20(B)up[p™, 6™ =™ =0, oM =M =% =0

rz T rz
(7.223)
@ =R*e?p™/C3', B=wR/c; —maR/L
where, p;, p°, ¢t are the fluid density, solid density at r = R + h, and the sound
velocity in fluid, respectively.
The electrically boundary conditions on r = R, R + h are as follows:
Electrically open, D, = 0, or electrically shorted, ¢ = 0, at

r=R, R+h (7.224)

Substituting the boundary conditions at the inner and outer surfaces into
Eq. (7.221), the frequency equation can be obtained. The frequency equations for
the electrically shorted case and the electrically open case are different.
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