Chapter 6
Electroelastic Wave

Abstract In this chapter the electroelastic wave in piezoelectric and pyroelectric
materials are discussed. In the electrically quasi-static approximation in an infinite
space, there are three independent elastic waves for the piezoelectric material, and
there is no independent electric wave. In the pyroelectric material a temperature
wave has happened. In the reflection and transmission of waves, the inhomoge-
neous wave theory is effective; a quasi-surface wave is revealed in the electrically
quasi-static approximation. In some particular cases the coupling between elastic
equation and Maxwell electrodynamics equation needs to be studied together, and
in these cases there are three elastic waves and two electric waves in the piezoelec-
tric material. Surface acoustic waves (SAW) are extensively used in engineering.
In order to improve performance of SAW devices, SAW devices may work in a
biasing state. In this chapter a small perturbation superposed on finite generalized
displacements is discussed in detail, and some surface waves under the biasing state
are studied. The inertial entropy theory is used to derive the governing equation of
the temperature wave with finite propagation velocity. The general dynamic
analyses of interface cracks are given shortly, and some wave scattering problems
from a crack tip are also discussed.

Keywords Electroelastic and temperature plane waves ¢ Surface wave * Biasing

state « Wave scattering

6.1 Electroelastic Waves in Piezoelectric Materials

6.1.1 Fundamental Equations in Electroelastic Wave

The elastic waves in isotropic and anisotropic materials and electroelastic waves in
piezoelectric materials have been discussed in many literatures, such as Fischer
(1955), Auld (1973), Dieulesaint and Royer (1980), and Nayfen (1995). Except
Sect. 6.8 in this book, we discuss some linear problems in piezoelectric and
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pyroelectric materials under the condition of quasi-static electric field. In the linear
problem the Maxwell stress is not considered. The constitutive equations are shown
in Eq. (3.2), and the generalized momentum equation without generalized body
forces in terms of generalized displacements under electrically static condition is

Cijuiti jj + ewij j = Py Cirathi i — €j@ ;i = 0 (6.1)

Equation (6.1) gives the elastic wave equation. The electric displacement does
not have its own independent wave, but it propagates following the elastic waves
through the constitutive equation.

In this book we only discuss the plane wave, which can be expressed in two forms.

For the generalized displacements U = [uy, uy, u3, u4]T, us = @ we have

U; = UgiF (ki — wt) = UgiF [k(np — ct)], U = [to1, toa, o3, tos = g
U; = UpiFlw(Lypxm — 1),  km = kny, Ly =ny,/c, ©=kc
6.2)

where U is the wave polarization vector or the amplitude vector and the ratio of its
components represents the particle displacement direction, @ is the circular fre-
quency, c is the phase velocity, k is the wave vector, L is the slowness vector, and
F(y) is a certain function of y. For an ideal piezoelectric material, the energy is not
dissipative, so wave vector k = kn, where k = 27/4 is the wave number, A is the
wave length, n is the wave propagation direction Eq. (6.2) yields

Ui = Uy’ F", i = ugkikiF", @ = QokikiF",  Ej = —@okiF (6.3)

where F'(y) = OF/dy. Substituting Eq. (6.3) into (6.1) yields the Christoffel
equation:

2 * * *
pcuo; = Liuor + €/ ¢y, € ugi — €y =0

. ) (6.4)
Iy =1y = Cyunng, ej = enng, € = €pnng
or
— pe2S. *
Ak, )Us =0, A= {r e il “, (6.5)
1 _

In order for Uy to have nontrivial solution, A must satisfy the following secular
equation:

'y —pc? ' ' el

Ly—pc*sy e Iy Iy —pc? I'y e
A= |1 = 2 1=0 (66
A] e/ - I3 I's I3 —pc? & (6.6)

*

* * *
e e, e; —c
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where I' is symmetric and called Christoffel tensor. pc? is the eigenvalue, and U is
the corresponding eigenvector. Eliminating ¢, from Eq. (6.4) yields

pctug; = quoy, [Ty — p?y| =0, Ty=Ty+efe/c" (6.7)

From Eq. (6.7) it is known that pc? has three roots: pc%, pc%, pc%. Corresponding to

each pc; there is an eigenvector ué’) with one undetermined component. Sometimes

for convenience we let the undetermined component equal to 1 or adopt the

normalized eigenvector z—tg)ug )= 1. Equation (6.7) yields

Tyuoin Ciiuninguoitt _ (epijny) (equny)

2 LaHoitor ikl It H0iHol o pij'tp qgkllq

pet=——= — Cju=Cju+—"—""—- (6.8)
Uo; Ui Uo; Up; C.Ikn.lnk

From Eq. (6.8) it is known that pc? is real, because

Czjkl”j”k”Oi”O[ =C ijkl [(uoﬂ’lj + uon; ) (uoin; — Moﬂii)] [(uormy + uorny) (o — uorny)) /4
= Cijk](MOjl’l_j + Mo_,'l’li) (u()/l’lk + uOkn;)/4 >0
Because pc? is real, there are three orthogonal plane waves. In general u((f) is

not parallel or perpendicular to the wave propagation direction #. The wave u< ) closest
to n is called the quasi-longitudinal wave, which has the largest phase velocny Ci,
while the other two waves uéz), uf)3> are located on the plane close to the plane
perpendicular to n and called the quasi-shear waves with slower velocity ¢, and

c3 < Cp.

6.1.2 Energy Propagation

According to Egs. (1.57) and (1.58), the energy equation can be reduced to

—/Qlth——/Pjnjda, Qlt:Ql—kK, Pj:—G,jdi+¢Dj
= (1/2)Cieijen + (1/2)p;DiD;, K = (1/2)puiit; (6.9)
/Pjnj da = 7/ (T,I/ll —+ (po)da = / (6,']'1;{,' — (ij)nj da
where 2, is the total energy density, 9, is the rate of the total energy, fa Pin;da
represents the rate of the traversing external energy through the boundary and P is

the Poynting vector. In Eq. (6.9) the heat flow is not considered. If 2 is expressed
with € and E, Eq. (6.9) becomes
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d
—/Ql[dv-i-/ P,»njda:O, P/':_O'ijlf.li_Dj(.P

(6.10)
A = (1/2) ijkI€ij€kl + (1/2)€UEE K= (1/2),011,‘12,‘,
Define the energy transport velocity V¢ as
Ve=P/g, (6.11)

Equation (6.4) yields

pcugiuo; = Litionig; + e; potto; = Lyttt + € @opy, € Uoipy — € oy = 0
(6.12)

Equations (6.4), (6.10), and (6.12) yield
A = (1/2)(Ciatoruoming + epoponing) (F? /¢*) = (1/2)pug;F*
K= (I/Z)pu(z)iF'Z, K+2= pué,— F?, u(z)l- = Upiuoi” (6.13)
Pi = —oyjii; — Dip = (Ciauojutorny + €popon;) (F” /c)

Substitution of Eq. (6.13) into Eq. (6.11) yields
Vi = (Cyuttoutomy + cjpo@ony) /Pt Vini = c (6.142)
For the normalized displacement vector (ug,ton = 1), Eq. (6.14a) becomes
Vi = (Cijuuojuoini + €;jpopon;) /pc, V-n=c (6.14b)

where V° gives the energy transport direction, the direction of the acoustic ray. The
projection of V¢ on n is equal to the phase velocity ¢, so |V¢| > c.

6.1.3 Group Velocity

Usually for a monochromatic wave, Eq. (6.2) is written in a complex number form:

i(k-x—wt) ik(n-x—ct)

= up;e ;9= e =

u; = ;e = gyelmx=c) (6.15)

A general plane wave is dealt with the superposition method. For a chromatic
dispersion wave, the wave velocity is dependent to the frequency, and the group
velocity is defined as

= 0w /0k;, k= kn; (6.16)
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Fig. 6.1 (a) Energy velocity is orthogonal to slowness surface. (b) Wave surface and propagation
direction

47, , wave planes

Multiplying Eq. (6.7) by k? yields

|p(ke)*8y — (Ciuknikny + keke} /") | =0 (6.17)

*
i

It is found that the relation between ¢ and (n;,¢}) is identical with the relation

between @ = kc and (kn;, ke;), so
VE = 0w /0k; = d(kc) /O(kn;) = dcdn; = V§ (6.18)

where Eq. (6.12) has been used. Therefore, the energy transport velocity is identical
with the group velocity for a non-dissipative plane wave, but for a dissipative plane
wave, they may be different.

6.1.4 Characteristic Surfaces

In the illustration of the phenomena of an electroelastic wave propagation, the
characteristic surfaces, including the velocity surface, slowness surface, and wave
surface, are very useful.

1. Velocity surface When the propagation direction is varied, the locus of the
ends of the phase velocity vector ¢ = cn forms a velocity surface. In a piezoelectric
material there are three different velocities, so there are three velocity surfaces.

2. Slowness surface The end of the slowness vector L = n/c draws a slowness
surface. L is parallel to ¢ and Lc = 1,L = |L|. The slowness surface is important in
dealing with reflection and transmission problem in crystals due to similarity with
the index surface in optics. The energy transport velocity is always perpendicular to
the slowness surface (Fig. 6.1a). In fact we have

BL,» 8(1’!,/6‘) 5,‘/( n; dc

e e ¢ 2 om
oL

VeaL,-il Ve Ving oc\ 1 Ve Jc _0 (6.19)
e Tome e\ UK c o) c\F om)

Ve
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3. Wave surface The wave surface is the locus of the ends of the energy transport
velocity. The propagation direction of a plane wave is perpendicular to the wave
surface (Fig. 6.1b). In fact according to Egs. (6.14b) and (6.19) from V¢ -L =1,
Ve .dL = 0, it can be derived as

L-dv¢=0, or n-dV¢=0 (6.20)

6.1.5 Reflection and Transmission of the Plane Wave
in Piezoelectric Materials

In order to save the size of this chapter, the wave propagation in an infinite space
and the reflection and transmission problem of the plane wave in piezoelectric
materials will be discussed with the thermo-electro-elastic wave in pyroelectric
materials together.

6.2 Surface Wave

6.2.1 Surface Waves in Structures

Surface waves have been studied a long time (Gulyaev 1969; Auld 1973;
Dieulesaint and Royer 1980; Nayfen 1995). Surface acoustic waves (SAW) includ-
ing Rayleigh wave, Love wave, Lamb wave, and B-G wave are extensively used in
transducers, actuators, filters, delay lines, oscillators, signal processing, acoustic
imaging, mobile communication, nondestructive evaluation, biomedical ultra-
sound, and flow noise. Surface acoustic wave device includes a piezoelectric
substrate, at least one interdigital transducer (IDT) disposed on the piezoelectric
substrate, an input end and an output end connected to the IDT. The energy of the
surface acoustic wave is mainly concentrated near the surface.

1. Semi-infinite media In 1885 Rayleigh found a surface wave at the surface of a
semi-infinite medium, which is called Rayleigh wave. Rayleigh wave is a complex
wave and attenuates along the normal direction of the surface. Its penetration depth
is 2/. In the isotropic media it is constituted of a longitudinal wave (L-wave) and a
shear wave (S-wave) with /2 phase shift. The transverse surface wave with
polarization parallel to the surface cannot happen in an elastic media, but it can
happen in a semi-infinite piezoelectric material and called B-G wave (Bleustein
1968; Biryukov et al. 1995), whose penetration depth is about 1004 larger than that
in Rayleigh wave.

2. Bi-semi-infinite media In a bi-semi-infinite medium, Rayleigh wave can
propagate on both sides of the interface and this surface wave is called Stoneley
wave.
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Fig. 6.2 Surface wave /I
propagating in x;x, plane [0)
/ x,

’ |

3 x,

3. Infinite plate For a plate bounded by two parallel infinite planes, when the plate
thickness is of the order of the wave length, one gets Lamb waves. Lamb wave possesses
longitudinal and shear components, so it can be either symmetric or antisymmetric.

4. Layer structures Typically a layer structure is constituted of two or multiple
layers of different materials, especially thin films deposited on a thick substrate.
When the shear wave velocity of the film is larger than that in the substrate, the
Love transverse shear surface wave will be happened.

6.2.2 General Procedure for Solving Surface Wave Problem

Let coordinates ox; with its origin be at the free surface in a semi-infinite space.
A surface wave propagates in (x1,x;) plane; x; is perpendicular to the free surface
(Fig. 6.2). The generalized displacements decrease exponentially in directionxy, i.e.,

—kbx; eik(xzng “+x3nz—ct)

u; = ugie , p= (poe—khxlelk(,&‘gﬂg-‘n\}ng—ct) (621)

where b > 0 is the unknown attenuated coefficient. Equation (6.21) can also be
written as

k(x,'nffct)’ (x,'njfct)7

b=—in;, Imn >0, j=1,2,3
(6.22)

i ik
Uj = Up;€ P = @

where n; is not the directional cosine, but an unknown related to the attenuated
coefficient.

Substituting Eq. (6.22) into Eq. (6.1) yields Eq. (6.4) and the corresponding eigen-
equation (6.6), but in the surface wave case, ¢ and n; are unknown. Usually let ¢ be a
parameter and solve n; from the eigen-equation. Because the eigen-equation is an eight-
order algebraic equation with real coefficients, 7| has 4 pairs of complex roots. But there
are 4 roots appropriate because Im n; > 0 is required. Corresponding 4 eigenvalues

n(lr), r =1,2,3,4, there are 4 group eigenvectors ug;), gog). The general solution is

4 4
U = ZAru(()’lj)eik(,\‘jn,»fct)7 o= Z A’_go(()")eik(x,-njfct), ] _ 1727 3

=1 r=1

4 4
U = E Aru(()’i)efkh,.xlelk(xzngwtxyzgf(‘l)’ ¢ = 2 :Ar(p(()l)efkb,,xl elk(X2n2+X3n},(‘,)

= r=1

(6.23)
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Unknowns c and A, in Eq. (6.23) are determined by the boundary conditions on the
free surface. The boundary conditions on a free surface is

4
oi1 = Cilkluk,l + erlPr = ZAlhgglr)eik(inerxszzrt) _ 0’ when X = 0
= (6.24)

(') = —ik (Cnunkué’}) + eknnkcog'))

Let the environment of the piezoelectric material be air. In air Vzrp" =0, we can
assume

c ¢ ik(xjnj—ct c
(/ J )7 D

9" = gie | = —ikepe ) x>0, j=1,2,3 (6.25)
q00 — ¢Beik(~x2i12+.\‘3;13—c't)7 Dcl _ —lkéo(pL ik(xany+xsns — [,t) x| = 0 (}’ll _ 1) .

There are two kinds of the electric boundary conditions:
Electrically open case : ¢ =¢°, D;=D{, when x; =0 (6.26a)
Electrically shorted case: ¢ =0, when x; =0 (6.26b)

Combining Egs. (6.24) and (6.26a) or (6.26b), five homogeneous equations with
five unknowns A,, ¢ are obtained. In order for A,, ¢ to have nontrivial solutions,
the determinant of coefficients before them must be zero. From this condition the
wave velocity ¢ and A, ¢, are obtained. Usually only one ¢ can satisfy condition
Imn; > 0.

The coupling coefficient k. is defined as (Laurent et al. 2000)

k2 = U? /UnUe = 2(c; — ¢) Jer(1 4 € J€) = 2(ct — ¢5) /et (6.27)

where c; is the wave velocity under electrically open case and ¢ is the wave velocity
under electrically shorted case. Upe, Un, Ue are the mutual electromechanical
coupling energy, mechanical energy, and electric energy, respectively.

6.2.3 Surface Waves in a Semi-infinite Piezoelectric Material

Equation (6.23) has three displacement waves and an electric potential. It is a
general 3D piezoelectric Rayleigh wave denoted by Rj. In the material principle
coordinate system, the number of the independent material constants will be
obviously reduced by crystal symmetry. So the following simpler surface waves
will happen:

1. I'3 =TIy =¢e] = ¢; =0, and Eq. (6.4) or (6.6) splits to the following two
equations:
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Iy — pc? I' ] U1 —0 [Fgg—pcz e§] uo3 —0 (628)
Iy T —pc? | ugn ’ e3 = | o

where the first equation represents the pure 2D elastic Rayleigh wave denoted by R,
and the second equation represents the transverse piezoelectric wave denoted by
B-G wave. According to I'j3 = ['y3 = e] = ¢; = 0, some relations between mate-
rial constants can be derived.

2. I's=1I3=2¢5=0, and Eq. (6.4) or (6.6) splits to the following two
equations:

F” —pC2 F[z 6’{ lp1
(I'33 — pc?)ugs = 0, I Iy —pc? & up o =0 (6.29)
ey e —c*
1 2 (po

where the first equation represents the pure elastic transverse shear wave and the
second equation represents the 2D piezoelectric Rayleigh wave denoted by R,.
According to I';3 = I'y3 = e3 = 0, some relations between material constants can
be derived.

Li et al. (2005b) and Li et al. (2005a) adopted the modified Mindlin (1968)
polarization gradient theory to discuss the surface wave and showed that the gradient
effect can make the surface wave dispersive which is different with the classical
linear theory. This phenomenon may be meaningful in high-frequency short surface
wave. In the later sections we mainly discuss the surface wave with initial stress or
biasing electric field and a few problems about wave scattering from a crack.

6.3 Fundamental Theory of Layered Structure
with Generalized Biasing Stresses

6.3.1 A Small Perturbation Superposed on Finite
Generalized Displacements

In order to improve performance or select the most suitable operating conditions of
SAW devices, such as selectivity of filters, stability of oscillators, and temperature
compensation, the generalized biasing displacements or stresses are applied to the
SAW devices to establish a biasing state. At the same time because of the material
behaviors between the layer and substrate are different, the initial stresses and initial
strains in the layer are produced unavoidably during manufacture process. Sometimes
the initial stress is great with the magnitude of 1 GPa. The presence of initial stress
causes changes in the speed of surface acoustic wave, frequency shift, controlling the
selectivity of a filter and temperature compensation of devices, etc. A middle layer in
the multilayered structure can be used to adjust the range of phase velocity of SAW
and to improve its property (Khuri-Yakub and Kino 1974; Assour et al. 2000).
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25(Xyp)

Reference configuration
Biasing configuration
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2,(Xy)
2, (X7)

Fig. 6.3 Different configurations in finite deformation

The biasing stress and electric fields usually are large and assumed known, but
the external signal or perturbation is small. So the problem is a small perturbation
superposed on finite generalized displacements (Tiersten 1978; Sinha et al. 1985;
Su et al. 2005). The fundamental theory of finite deformation can be seen in many
books (Ogden 1984; Kuang 2002). Some fundamental formulas can be found in
Sect. 1.3.4. Take the natural configuration without generalized stress as the refer-
ence configuration. In this theoretical part the notations shown in Sect. 1.3.4 are
adopted. The same coordinate system in the current and initial configurations is
taken, i.e.,x; = x;, so that for the case without differential symbol, we have 65, = 6,
but the differentiation with the capital or small letter subscript is different. Let
EO,EO,DO,EO,uO,(pO,fO,To,pg,?f*o be variables in the biasing state. The small
perturbation variables in the reference configuration are denoted with &,&,D, E,
u,¢.f,T,p.,5* (Fig. 6.3), where & is the Kirchhoff stress and € is the Green strain.
The current total variables described in the reference configuration are

Generalized geometric equation: &, = (1/2) (u}(ﬁL +up g+ ”1[14,1(“5\/1;)? E; = —¢!
(6.30)
Generalized motion equation : (55(M51M + 5'5(1\4“5,/14) ot fi = pit;  Dj; = p.
(6.31)
Boundary conditions:  x;yGky, ik = T,', Dy = —6", or ui=u’ ¢ =¢"”
(6.32)
where
6=6"+5, D=D"+D, u=u"+u, x=X+u, X*=X+u°
r r r 72 70 72 — — — *, * *
F=F+f T'=T+T, pi=pl+p, 6"=5"+5" o' =¢"+0
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Because the biasing state is an equilibrium state, so

(G Om + UKM“[M) +f) =0, D?,/ =Py
0 -0 70 ~0 =0 — %0 (6.34)
(51M + ul.M)"KM”K =T, Dgng=—o

Subtracting the first equation in Eq. (6.34) from Eq. (6.31) and ignoring small terms
in high order, such as u,, xu,, 1, we find

(5KM5/M + 5KM“2M + 5%MM1,M> « +f1 = poiis; D_K,K = Pe (6.35)

Subtracting the second equation in Eq. (6.34) from Eq. (6.32) yields

_ 0 0 = N\ ¢ 0V(=0 |, =0 0
<61<1 + Gty + u,vMaKM> iy + (i — 1ig) (GK, + GKMu,,M) =T,

Diitl + Dy (it} — i) = —&"*

(6.36)

From Eq. (1.45) we can derive
gy = ‘8X1/6x ‘ axo/aXK)nlda/da e = |(9X1/8)c_i|(6xi/8XK)nida/dd'

The change of the normal of the boundary can only be obtained after solving the
problem. But usually the difference between 77}, and 7\ is small and let 77, = 7 to
simplify the boundary conditions.

Sometimes the three-order coefficients in the constitutive equation are needed. Let

o7y = Cukrexy + (1/2)Crkimn€ig €y — emuEyy — emuki€ Eyy — (1/2)lunisEfE)
DM = CMNEN + (I/Z)CMN[E;VE[J + eM[je‘” + (1/2)€M[]KL£IJ€KL + lMNUglJEN

(6.37)
Similarly for the biasing state, we have
6 = Ckieyy + (1/2)Crxrmnes €y — emrEsy — emuxreog Evy — (1/2) i EYEY
D]?,[ = 6MNE2/ + (1/2)5MN/E0 EO =+ eMI/‘E[[ (I/Z)EMI/KLSUSKL + lMNI/'g[]E

(6.38)

Subtracting Eq. (6.38) from (6.37) and neglecting the small terms in higher order,
such as up xup 1., u(}_Nu,O(Y Uk L, then we get the results that are expressed in terms of
generalized displacements:

— - ~ N * *
o[ = C[JKLMK,L + eMP ms Dk = eyl — EgxnP N (6.39)
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where

5 0 0 0
Cukr = Cykr + Cuymrity py + Ciukrmntig | + emukr y

. 0 0
emyy = emiy + emMuKLUg | — IMNIJ(ﬂTN

) 0 o 0 (6.40)
ey = emiy + emniiy y + emikLUg | — Ny

Gy = un — e @’y + lMNIJ”? 7
Substitution of Eq. (6.39) into Egs. (6.35) and (6.36) finally yields

(6% + 5(1)<M“1-M),K +f1=poiit;, Dxx = pe 6.41)

* 0 Tk N —x
(ki + oxutum)nx =T/, Dgng = —6

where Cyp;, ekp;, etc. are effective material constants and

— — 0 N . —
6[*(1 = OKM (51M + MLM) = C;([PJMP,./; DK = e]*(PjuP,Jy P= 1, 2, 3,4

o = Cromn (51M + u2M>, Cxuy = €ikm (51M + u?M), Usg =@ (6.42)

N % ® % * o
Dk = egpjitpy;  €xy = €xpys  €xay = —€xy

where the capital letter subscript P takes the value 1, 2, 3, 4. Equation (6.41) can also
be rewritten as

(Ckitrs + exga@n) g +F1 = poiit,  (exattrs — P ) ¢ = Pe

(Cxiytrs + exgapn) i = Tj,  (exytrs — Geypn) i = =6 (6.43)

%

o -0 % _ A 0 ~ ¥
ki = Ckuy + 0xs01,  eyg = enkm (5/M + ”/,M) R ey

When u, ¢ are solved, &, D is obtained; then from Eq. (1.45) the generalized Cauchy
stresses &, D can be obtained.

6.3.2 Simplifications of the Governing Equations for Some
Cases

1. Initial stress configuration taken as reference configuration If we use the
configuration with initial stress as the reference configuration, then u°, ¢° are not
needed or let u® = 0, ¢° = 0 and Gy = Okm = ou, Dk = Dy, so formulas are much
simpler. But the material coefficients must take the “tangent modulus,” or the
constitutive equations are measured at the state with given generalized biasing
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displacements and stresses. The total generalized stress and displacements are the
sum of the initial values and the perturbation values.

2. Small initial generalized displacements If the initial generalized displace-
ments and stresses are also small, i.e., u’ + u, ¢° + @ are small compared with 1, the
terms containing them can be neglected, so all generalized stress 6* = 6,D = D.

6.4 Love Wave in ZnO/SiO,/Si Structure with Initial Stresses

6.4.1 Transfer Matrix Method

Figure 6.4 shows a three-layer structure constituted of the substrate Si, the first layer
SiO; of thickness /; and the second layer ZnO of thickness /; and &y + h, = h. The
origin of the global coordinate system is located at interface of the substrate and
first layer. The top surface of the layerx; = —#his free of stress and the environment
is air. Experiments show that the distribution of initial stresses along the depth x; in
the layers is shown in Fig. 6.4. The thickness of the substrate is much larger than
that of layers and can be treated as a half-space. The initial stresses in the substrate
are negligible. In order to obtain more exact solution, the first layer is further
divided into 1 ~ m sublayers, and the second layer is divided into m+ 1 ~ N
sublayers. The substrate is denoted by layer 0 and the air is denoted by layer N + 1
(Fig. 6.5).

For a multilayer structure the transfer matrix method is a useful technique
(Thomson 1950; Stewart and Yong 1994; Liu et al. 2003b; Su et al. 2005).
The basis of the transfer matrix method is that for any sublayer £ to establish, a
transfer matrix maps the generalized stresses and displacements from its lower
surface to upper surface. Successive application of the transfer method through
sublayer 0 to N + 1 and invoking corresponding interface continuity conditions
leads to a set of equations relating to the boundary conditions on the free surface.
Combining the conditions at infinity, we can get enough equations to solve

air initial stress

O,

P h, | second layer ZnO g(x,)
h, | first layer SiO, S(x)

X,

substrate Si

Fig. 6.4 Three-layer K‘

structure R
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Fig. 6.5 Layered structure air N+1
divided into N sublayers x=—h N T
sublayer A ! second layer
x,=—h, , M X
2 first layer

the problem. The state space approach with appropriate selected variables is a
convenient method to establish the transfer matrix. Here u;, @, 6;1, D1 are used as
state variables. For convenience in the following part, the subscripts all adopt the
small letters except the capital letter P which takes the value 1, 2, 3, 4. It is noted
that in this part the differentiation with a small letter is still considered in the
reference configuration. According to the first equation in Eq. (6.41), in each
sublayer we have

—x —* —k 0. _ =0 .
Oi11 = PoUi = Oppp = 033 — Ojlhijjk — Oy Uik (6.44)

Assuming the incident wave is located in the plane x,x3, the solution of the
generalized displacement Up (P = 1,2,3,4) is

Up = Ap(x1) expli(kaxz + k3xs — wt)] = Ap(x1) expli(kery — @f)], a=2,3

(6.45)
Substitution of Egs. (6.45) and (6.42) into Eq. (6.44) yields
&y = {7p0a)2A,~ — kg (C;},P]Am + ikyci*ﬁ,,yAp) — % Ain1 — 2ik,50, As
ko, 6%, A; — 6% Ar—ikydy _jA,} expli(keta — wt)] (6.46)

Usually &%, 59,,5); are small and can be dropped. Let

7;} = 3,:,'()(1) exp[i(k(,xa — Cl)f)], Dl' = H_(,(X]) exp[i(k(,xa — Cl)t)} (647)

Q
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Equation (6.46) can be rewritten as

51‘171 + ikﬂcz[iPlAP,I + Fops A, 1= (—p0w2 + kﬁk},ﬁﬂy lkﬁdjﬁj)A + kﬂk CzﬂPy

J1J
(6.48a)
The second equation in Eq. (6.41) and Eq. (6.42) can also be expressed as
T711 + ikge’; Apﬁl = kgk,e} Ap
R o (6.48b)
ClelAPal =01 — lk/,’CleﬁAp, €1P1Ap11 = T7 — 1k/}€1PﬁAp
Introduce (in Voigt notation)
on = Tu(x1) expli(kexe — @t)], n=1,2,...,6 (6.49)
where 6,(n = 1,2,...,6) represents 611, 622, 633, 632, 031, 612, respectively, and let

o6y = Ty, 6 = T, and 6,3 = Ts. Introduce an eight-dimensional vector v,,:
V(1) = [Atms Az Az Aass Tims Toms Tsmy Trm] - (6.50)

where Ay, Azn,Asy, are the amplitudes of u;,uy,us3, respectively; Ay, is the
amplitude of @; T, Tem, Tsm are the amplitudes of 611, 021, 031, respectively; and
T7y, is the amplitude of D. Using Eqs. (6.48a) and (6.48b) for any sublayer k, the
eight-dimensional state equation with unknown vector v,, is

—F,(x1)|0m(x1) =0, or i—B L)) F (1) [m(x1) = 0

d
B, —
(x1) &

dx;
(6.51)

where B, ! (x;)F,(x;) is the state matrix of the sublayer k and

[ Bu(11)  iksClyyy  ikpClysy  1kpClpyy
ikﬁC;ﬁl i Bm (22) ikﬂczﬁa ikﬂCZﬁm
ikﬁC§ﬂ11 ikﬂC§ﬂ21 B,,(33) ikﬁC§ﬁ41

ikﬂe; 1 ikﬂe;gz 1 ik/;e/’;31 ik/;e;;41

S O O o o o =
S O O O O o = O
S O O O O = O O
S O O O = O O O

Bn=1"c C; C: C
1111 1121 1131 1141
Clan Ciny Clasi Clas
Clan Clan Claz Clas
L e’fn € €3 €ia 0 J

Bu(11) = /1J +ikpCip,  Bm(22) = ,11 +ikpCop1,  Bm(33) = ‘7;)1,; + ikpcip
(6.52)
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and
[ Fu(11)  kgk,Cipy,  kpkyClzy,  kpkyClgy, 0 0 0 07
ksk,Cop,  Fu(22)  kpkyCopy,  kpkyCspy, 0 0 0 0
kekyCipr,  kokyCipo,  F m(33) ksk,C3py, 00 0 0
Fo_ kpkyep,,  kpkyep, kpkyeps,  kpkyeg, 0 0 0 0
" —ikpClyyp  —ikpClipy  —1kpCy3s  —ikpClyyy 1 0 0 0
—ikgClayp  —ikpClyy —1kpClpss —ikgClyy 0 1 0 0 (6.53)
—ikpCraiy  —kClyy  —ikpClysy  —ikpCryyy 0 0 10
| —ikpeyyp  —ikpel,y,  —ikpelsy  —ikgelyy, 00 0 1
Fu(11) = —po® + kk, 03, — ikpo'y . + kgky, iy,
F(22) = —pow’” + kpky, oy, — ikgo,  + kk, 5,
Fu(33) = —po@” + kpkyopy, — kol + kk,Cyps,
The solution of Eq. (6.51) is
Un(x1) = Q,Rnay, R, = diaglexp (binx1),exp (bamx1); ..., exp(bsmx1)]
Q= [himy o, - hsm, @ = (@1, @2, - - 3] 9

where bj, and hj, are the eigenvalue and eigenvector of the state matrix,
respectively, and aj,, is an undetermined constant in the sublayer m. The generalized
stresses and displacements at the bottom of the structure can be related to those at its
top through the transfer matrix P, (X1, — dp, X1m):

vm(xlm - dm) = Pm(xlm - dm7xlm)vm(xlm) (6.55)
Equations (6.54) and (6.55) yield
Pm(xlm - dmaxlm) = QmRm(_dm) ,;1 (656)

where x1,, is the coordinate at the bottom surface of the sublayer m and d,, is its
thickness. Using the basic relations of the transfer matrix, it is found

P(X'1,x1) = P(x’l,x’I')P(x’{,xl) (6.57)

This leads to

N
P(—h,O) = HPm(xlm - dmyxlm); z7N(_h) = P(—/’l,()) 7]0(0) (6.58)

m=1

where vy (—h) and v, (0) are the state vectors at the upper and lower surfaces of the
structure, respectively.
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6.4.2 Love Wave in Zno/SiO,/Si Structure with Initial Stress

Figure 6.4 shows a ZnO/Si0,/Si multilayer structure. SiO, and Si are isotropic
elastic materials, and ZnO is a transverse isotropic piezoelectric material with
poling direction along x3. In a transversely isotropic piezoelectric material, the
number of material constants is only ten: C;; = Cy, Ci2,Ci3 = C23,C33,Caq = Css,
Cop = (Cll - CIZ)/Z» e31 = e, e15 = e, e33,€11 = €2, €33 Let the biasing stresses
be 69;(x1) and 69,(x;). Other stress components and the biasing potential ¢° is
assumed to be zero. Love wave is a transverse shear wave, so only u3(x;,x,,¢) and
@(x1,x2,1) are not zero. Let Love wave propagate along the positive direction of x,,
so only k; = kis not zero. In this case Egs. (6.50), (6.52), and (6.53) are simplified to

Om (X3) = [A3m’A4m7 TSnu T7m}T

ikCis  ikej, 1 0 —po@® + (Ciy +06%)k> e3> 0 0

| ikezs —ike; 0 1 o 3, k? —e,k 0 0
S e A P B () R —ikC?, —ikess 1 0
els -, 00 —ike}, ikej, 0 1
(6.59)

where effective material constants can be calculated from Eq. (6.42). For ZnO and
Si0;, C45 = Csq = €14 = €35 = ¢ = ¢; = 0, so for small initial stresses it yields

o 0 10 —po@? + (Ciy +065)k>  epk®> 0 0
B _ |0 0 01| o e k2 &,k 0 0
mTCs ey 0 0f T 0 0 10
€l € 0.0 0 0 0 1

For the 6mm -type ceramics Cyqq = Css,e15 = €24,€11 = €22, SO the differences
between ¢}, and ¢35, €]5 and €34, and €], and ¢, can be neglected. In this case the
eigenvalues of B, (x;)F,,(x) are obtained as

Dinom =%k, yan = £k, qn=1/1- [(p> — %) /Css]
Css = Cis + (¢15) /i1, c=ofk (6.61)

where c is the phase velocity. Correspondingly the eigenvector matrix @ is

0 0 1 1
o —| ! L es/a,  es/a, (6.62)
m ejsk  —ejsk Cssguk —Cssqnk

-k €k 0 0
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Substitution of Egs. (6.61) and (6.62) into Eq. (6.54) yields

0 0 1 1 ]
Om(x1) = 1 1 ejs/le eTj/ETl
" ejsk  —eisk Cssqgmk  —Cssqmk
—e k€ k 0 0 |

ek 0 0 0 im

0 Eikxl”’ 0 0 aom
X ! 6.63
0 0 ekanxin 0 3 ( )
—kqmXim
0 0 0 e day
According to Eq. (6.56) the transfer matrix of the sublayer m is
Pm(xlm - dm7x1m)
I i h m“m 1 i h m“m i
cosh (k) 0 7sm_(kq dm) _¢jssin *(kq dm)
CSSqu C55€11qu
1 i h m“m
- P(21) cosh (kd,) — — ¢is sinh (kqndy) P(24)
C55€T1qu
P(31) —eisk sinh (kd,,) cosh(kgudy,) P(34)
| —€}sk sinh(kd,,) €],k sinh(kd,) 0 cosh (kd,,)

3 inh (kd, *2 sinh (kqmd,
P(21) = 5 cosh (k) — cosh (k)] P(2d) = S Adn) _ €53 inh (i)
11 11 55€119m

P(31) = —Cssquk sinh(kqud,,) + €3 sinh(kd,,) / €},
P(34) = f(e’l‘s/e’l‘l) cosh (kd,,) + (eTs/e’[l) cosh (kgnd,)
(6.64)

Because the Love wave is confined to layers and near the substrate surface, the
generalized displacements are attenuated in the substrate. In the substrate we have

0o(x1) = Qo [0, axe?", 0, agoe”"]" (6.65)

Q, can be obtained by substituting material constants of the substrate into
Eq. (6.62). At x; = 0 we have

vo(x1) = Q[0, ax, 0, aso]" (6.66)

The electric potential ¢y, and the electric displacement D) in the air
X1 < —h can be expressed as

@ni1(x1,t) = any1exp(kxy) expli(kaXy — @t)], Dygyyry) = —€opy1y  (6.67)

where ¢y is the permittivity of air and ay; is an undetermined constant.
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The mechanical boundary conditions are

o3=0, at x=—h
+ - n _ (6.68)
03 =013, U3 =1uz, at x; =0

The electric boundary conditions between air and ZnO are divided into two kinds:
electrically open and electrically shorted, i.e.,

on = ¢ni1» Diovy =Dy+1), at x; = —h (electrically open)
. (6.69)
oy =0, at x; =—h (electrically shorted)
The electric boundary conditions between the substrate and SiO, are
D =Dy, ¢ "=¢, at x;=0 (6.70)
The continuity condition at x; = 0 expressed by the state vector v(x;) is
vo(x1) =vi(x), at x; =0 (6.71)

From Egs. (6.58), (6.66), and (6.71), the continuity condition of v(x;) atx; = —his

N
on(—h) = P(=h,0)v(0) = M[0,a2,0,a40]", M = [ Pu(x1m — din, x1)Q9
m=1

6.72)

According to the boundary conditions at x; = —/, U341y O U3g;, is not needed,
from the electrically open case we get

Aan My My My an My My, ax
Tsy p = | M3z M3z My, 0 =M, Mz "
Toy My Myz My as My My 40

a1 exp(—kh)
0 (6.73)
—cpan+1k exp(—kh)

or

M22 M24 - exp(—kh) ano 0
M32 M34 0 aao = 0 (674)
My My eok exp(—kh) an+1 0
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In order to obtain nontrivial solutions for ayg, a40, ay+1 the coefficient determinant
in Eq. (6.74) should be vanished. So the equation to determine the phase velocity c¢
in electrically open case is

(M42 =+ ¢ kMzz)M34 — (M44 + ¢ kM24)M32 =0 (6.75)

Similarly for the electrically shorted case, the equation to determine the phase

velocity ¢ is
{7N} [Mz MJ{‘M} {0} 6.76

My»Msq — MayM3z, =0

There are many papers to discuss on the problem of Love wave, such as Danoyan
and Pilliposian (2007) and Liu et al. (2001). Du et al. (2008) discussed the
propagation of Love waves in prestressed piezoelectric layered structures loaded
with viscous liquid.

6.4.3 The Distribution of the Initial Stresses

Because layers are very thin, the mechanical stresses have only occurred in layers,

ie.,at xy = —h,6) = 0; x; = 0,5, = 0. The continuity conditions of the initial

stresses at x; = —h, are that ug and ug are continuous, or

0 _ 0 _-0 0 _-0 _-0 20 _ 20 _ 20 _

E37n0 = E2510, = €25 E37n0 = E3si0, = €3> E237m0 = En3si0, = €30 At X1 = —hy
(6.77)

Using the constitutive equation from Eq. (6.77), we can derive the following relation:

0 _ =0 -0 -0 0 _ =0 -0 -0
01700 = C11€1700 + C1283700 + C1383700, 02700 = C12€ 700 + C11€2700 + C1383700
0 _ =0 -0 -0
63700 = C1381700 + C1383700 + 3383700,

0 _ =0 —0 0 _ =0 _0
Y €510, = 02510, — Y03si0,> Y E3si0, = O3si0, — YO1si0,

(6.78)

where Cj; is the elastic constant of ZnO and Y, v is the elastic constant of SiO». So at
x1 = —hy, the initial stresses in ZnO and SiO, must satisfy the following relation:

YC1169,,0 = [C%l —Ch, —Ci3(Cry — C12)}5g$02

6.79)
+ [Cia(Cii = Ci2) — (€}, = C1) 85510,
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Similarly we can get 5,,, but it is not needed. It can be assumed that 0'(2)31-02, 690
are varied exponentially (Fig. 6.4), i.e.,

52)5102 (x1) =f(x1) = (e" — 1)/(e_hl - 1)635102(—h), —h <x1 <0

(6.80)
6anO(x1) =g(x) = (e" — 1)/(37]1 - 1)6anO(_h)7 —h<x; <—-h

It is also noted that the generalized displacements and stresses at the initial state
should be obtained directly by experiments or calculated by the updated Lagrange
method which needs multiple steps from the natural state to initial state. The
updated Lagrange method and other methods in plasticity can be utilized to the
problems discussed here.

6.4.4 Numerical Example

In the paper of Su et al. (2005), they assumed 6(3)5102 = LagSio2 to simplify calcula-

tion, where L is a proportional coefficient. They adopted the following material
constants:

ZnO: p=5,665kg/m’, Ci;=209.6, C;=120.5, C;3=104.6, Cay=242.3(MPa);
e15=—0.48, e33=-0.573, e3=1.32(C/m?); €, =0.67, €33=0.799 (107'°F/m)

Si0,: p=2,200kg/m*, 1=78.5, G=31.2(MPa); ¢} =0.33, ¢33 =0.33(10"°F/m)

Si: p=2,328kg/m®, 1=165.75, G=79.4(MPa); ¢} =1.035, €33 =1.035(10"'"F/m)

Figure 6.6 shows the change of the phase velocity cg of the Love wave with kA
under the case that: electrically open, without initial stresses, h, = 105 m and
different A;. It is seen that for all #; when kh — 0, cfo — cs;i; cfp decreases with
increasing ki. When kh — 00 c¢ro — ¢zno if 1 < hp and hy ~ hy; or crp — csio, if
hi > hy. ¢ 1s in the following range:

(¢zn0, Csi0,) < o < Csi

Ic 2 :
C7n0 = Css +eis _ 2,841.5(m/s), csio, = 4510 _ 3 765.9(m /s),
P7n0 Psi0,

csi = ;ﬁ = 5,840 (m/s) (6.81)
Si

Figure 6.7 shows the change of Ac/cy with kh under the case that: electrically open
case, 697,60 = 200 MPa, L = 1,7, = 107> mand different 4;. Here Ac = ¢f — cgo and
¢t is the Love wave velocity with initial stress. From Figs. 6.6 and 6.7, it is seen that
the middle layer has significant role.
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Fig. 6.6 Variation of phase 6.0004
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6.5 Other Surface Waves

6.5.1 B-G Wave in a Prestressed Piezoelectric Structure

Because the penetration depth of the B-G wave is about 10—100 A, the application of
B-G wave is limited in microwave techniques. However, the application of layered
structures can significantly reduce the penetration depth. Jin et al. (2001) and Liu
et al. (2003a) discussed the prestressed layered piezoelectric structures. The layer
and substrate are all made by piezoelectric materials, and the poling directions
of the layer and substrate are along the positive and negative axes x3, respectively
(see Fig. 6.2). The B-G wave in layered structure can also be considered as a kind of
the Love wave. The basic equations have been discussed in Sect. 6.3 and governing
equations can be seen in Eq. (6.43). In B-G wave only u3(xy, x2, ) and ¢(x1, x7, t) are
not zero. Neglecting terms containing u?(’Luff,,‘N, Eq. (6.43) is reduced to
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* 0 * * 0 * 0
(Cizzi + 001 )uzin + (Crazy + Cozay + 200 )uz 12 + (Coazy + 0 s 2
* * * * .
+ei@ 11 + (€13 + €531) @10 + €3320 20 = poiis
e3U3,11 + (6132 + 6231)”3,12 T+ eppUt3n — €@ 11 — 26010 ~ €P 0 =
(6.82)

The variables in the substrate are denoted by a superscript “M.” Because in the
substrate x; > O there is no initial stress, the governing equations are

M M M M M M M M M M M M _ M

Ciaziuz gy +2Ca50U5 10 + Cozgpliz oy + €130 11 + 2€130 15 + €230 20 = polts
M M M M M M M M M M M M _

ey Uiz g 2€155U5 15 + ex3lz 0 — €101 —2€50 1) — €@y =0

(6.83)

The boundary and the interface continuity conditions are

ol + oz =0, at x;=—h

¢ =¢°, Dy =Dj, (electrically open); ¢ =0, (electrically shorted) at x; = —h
us=uy, oi3=o0ls; o=9¢", D =Dy, at x=0

uz, ¢ — 0, when x; — +o0; ¢°— 0, when x; — —o0

(6.84)

Let B-G wave propagate along positive x direction. The generalized displacements
in layer are assumed

uz = azexp (ikbxy) explik(xy — ct)], @ = agexp(ikbx;) exp[ik(xy — ct)] (6.85)
Substitution of Eq. (6.85) into Eq. (6.82) yields
(cisa1 + 0107 + (i3 + ¢330 +20%)b + (333, +6%) — poc?
einb® + (€73 +€33)b + €3

b’ + (€5 +e§31)b+€;32] { a3 } _ {0}

* 7.2 * * O
— €10 =2€,b— €,

(6.86)

ay

In order for as, a4 to have nontrivial solutions, their coefficient determinate must be
Zero, or

Asb* + A3h® + Ab* + A b+ A =0 (6.87)
where A; is determined by Eq. (6.86) and omitted here. Equation (6.87) has 4

eigenvalues b,(p = 1,2,3,4) and a pair of eigenvectors a3, as corresponding to
each b, and
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5 ai(l’) _ eizb, + (ei3 + €33 by + €33, (6.88)
b agp) 571”5 + 260 + 6

Substituting Eq. (6.88) into Eq. (6.85) yields the generalized displacements in layer

4
Uz = Z agp ) exp(ikbyx1) explik(x, — ct)]

=l (6.89)

4
= Z’Bpagp) exp(ikbyx ) explik(x; — cr)]

p=1

Similar to the layer and noting u3,¢ — 0, when x; — oo, the generalized
displacements in the substrate only have two eigenvalues bg’l(q = 1,2) with positive
image parts, i.e.,

exp (1kbe1) explik(x — ct)]

o3
oS

(6.90)
ﬂ exp <1kbe1) explik(x; — ct)]
p=1
From ¢}, + ¢%, = 0 and the connective conditions at x; = —h in Eq. (6.84), it is
assumed
4
o = Byay exp(ikbyx) explk(xi + h)] explik(xz — ct)] (6.91)

p=1
Substituting Eqs. (6.89), (6.90), and (6.91) into Eq. (6.84) yields six homogeneous
equations for vector a:
T
Pa=0, [Pij{a}={0}; a= {agl),ag2>,ag3),ag4),a13w(1),a13w((1>>} (6.92)

In the electrically open case at x; = —h for j = 1,2, 3,4, we have

= ik[(CTm + ‘7(1)1 + eTSlﬂj)bj + Clsp + 5(1)2 + eT32ﬂj] exp(—ikb;h)
= ik[ (e} 6T1ﬁj)b‘ +er — (6 + iéc)ﬂj] exp(—ikb;h)
P31 = ik[(cls3) + Yy +€318)) b + Clapy + 01y + €8]
Py=1, Ps=p;, Ps= 1k[( €131 — 611ﬂj)bj + €3 — eTzﬂj}

(6.932)
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Fig. 6.8 Dispersion relations

for the fundamental mode of 4.6
B-G wave (without initial
4.5
stress)
4.4+ electrically open
g 43 ———- electrically shorted
Ry

For j = 5,6 we have

: ~AM Mx oM M AM * * M
Pij=0, Py=0, P3y= _lk[(cBSl ten3 j—4)bj—4 +Ci3n T ‘3132/}#4}

_ L M s M+ Mx M M M+ Mx* pM
Py=—1, Psj=—p;,, Pe= lk[(em €11 j74)bj74 tein —¢€p _,;4}

(6.93b)

The equation to determine the phase velocity of B-G wave under electrically open
case is

Pl =0 (6.94)
For the electrically shorted case atx; = —h, P»;in Eq. (6.93a) should be replaced by
Pyj = pjexp (—ikbjh), for j=1—4 (6.95)

In the paper of Liu et al. (2003a), they found that the penetration depth is dramati-
cally reduced in a LiNbOj3 layer piezoelectric material and the effect of the third-
order piezoelectric coefficients (Cho and Yamanouchi 1987) is meaningful for the
low-frequency case. Figure 6.8 shows the dispersion relations for the fundamental
mode of B-G surface wave in the absence of initial stress, where ¢y = cpy for
electrically open case and ¢y = ¢y for electrically shorted case. It is found that for a
given value of A/, the phase velocity of the electrically open case is greater than
that of electrically shorted case, i.e., cfo > cy. In the low-frequency limit, 2/ — 0,
the wave mode tends to the B-G surface wave in a piezoelectric half-space, i.e.,
cro — 4.538km/s, cq0 — 4.203km/s. Figure 6.9 shows the variations of Act/co
and Ac,/cqo with /A under the initial stress 6(2)2 = 40 MPa, where cy, ¢, are the phase
velocity in layer with initial stress and Acy = ¢f — cgp or Acg = ¢5 — Cyp-
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Fig. 6.9 Variations of Ac/cy
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6.5.2 Rayleigh Wave in a Prestressed Structure

Discuss an approximately transversely isotropic LiNbO;3; piezoelectric film of
thickness /4 polarized x;-axis deposited on a sapphire substrate (see Fig. 6.2).
Usually the thickness of the layer is some micrometers, so the substrate can be
considered as semi-infinite. The basic equation Eq. (6.43) in the layer is reduced to

* -0 * . * *
Cxuyui gk + g Uik + ey nk = Polit, ek — €gn®@ vk =0 (6.96)

In the following the superscript * on material coefficients will be omitted. In the
substrate the basic equation is

M M M M _ =M MM MM _
Ciiileyi T €ij® i = PU; 5 ety — €@y =0 (6.97)

The boundary and the interface continuity conditions are

6Tj -+ 5'(1)](14}"/{ =0, x = —h

@ =¢°, Dy =Dj, (electrically open); ¢ =0, (electrically shorted) at x; = —h
oy +oyux =0y, w=u', ¢=¢", D =D); at x;=0

uj, ¢ — 0, when x; — +oo; ¢°—0, when x; — —o0

(6.98)
Let the wave propagate along x, and take the form
u = Bl_eikhx]eik()cz—ct)7 = B4eikbx|eik(xz—rt) (6.99)

where B; is the amplitude of ith component. Substitution of Eq. (6.99) into
Eq. (6.96) yields
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I'B=0, or [I4|{B.}=1{0}; B=I[Bi,Bs,BsBs", afp=1—4
T = Ciju1 + b(Caji + Cijia) + b*Cajs + 83 (0, + 2baly + b*o35 — pc?)
Tjy = enj+blery + e3p) +bPesyj,  Taj = ewji + bleys + exn) + bPeys
Tay = —(e1 + 2berz +b%ez3);  ij=1,2,3
(6.100)

In order to get nontrivial solution of B, its coefficient determinate need be zero, i.e.,
Ash® + A7b7 + Agh® + Asb® + Agb* + Ash® + A% + A b + 4o =0  (6.101)

where A; is determined by Eq. (6.100). Equation (6.101) is the eighth-order equation
of b with the Rayleigh wave velocity ¢ as a parameter. From Eq. (6.101) eight b, can
be obtained and for each b, an eigenvector with four components can be obtained.
For convenience we let

Biq:ﬂiquéh ﬂlqzla l:1_47 q:1_8 (6102)

After B;, is obtained the generalized displacements in layer can be expressed as
_ kb, x| Lik(x, —ct _ ikb,x) Jik(xp—ct
u = BiB1ge™ e , Q= PagBrge™ e (6.103)
q=1 q=1

Analogously the generalized displacements in substrate can be expressed as
4 M s 4 M s
u%\/[ _ Zﬂ%[ Ilvzlgelkbq X1 elk(xzft,‘l)’ q)M — Zﬂx]ﬂll\/{llelkbq X1 elk(xzﬂrt) (6.104)
q=1

g=1

Analogous to Eq. (6.91) for the electrically open case, the electric potential in
the air is

8
(0C _ Zﬁ4quqe—ikhqhek(h+x1)eik(xz—ct) (6105)
g=1
Substitution of Egs. (6.103), (6.104), and (6.105) into Eq. (6.98) yields

T
PB=0, P=I[P,l, B:{qu,B’l"fl}; mon=1-12 (6.106)
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Fig. 6.10 Lamb wave in V
piezoelectric plate with
biasing electric field h 0
x,
=
2, -

where for j,k = 1,2,3; n =1 — 8 we have

Pj, = ik{ [C3jk1 + Csjizb, + O (6(1)3 + 6(3)3b,,)]/)’k,, + (e13+ e33jbn)ﬂ4n}e*ik”nh

Py, = ik{(e3t1 + e33b0)fr, — (€31 + €33, + i€0) By, e "

Piian = ik{[Cyjt1 + C3jzbn + 8k (075 + 0%364) | Bin + (€137 + €3360) Ban }

Pis1n = Brns  Prin = Pans  Pron = ik{(e31 + e3t3bn) Py, — (€31 + €33D5,)Pan}
(6.107a)

and for j,k = 1,2,3; n =9 — 12 we have

Pjy=0, P4, =0, Pja= —ik{ [Cg/jl'kl + Cgfmbﬂﬁﬁ + (el + e%jby)ﬂﬁ}
Pk+7,n = _ﬂﬁ/{n_sa Pll,n = _ﬂi‘/{n_gv
Pron = —ik{ (e, + elabll ) Al — (e + bl )bl o}

(6.107b)

The phase velocity c of the Rayleigh wave R3 should satisfy Eqgs. (6.100) and (6.106)
simultaneously. From this condition ¢ can be obtained by iteration method.
For the electrically shorted case, the fourth row in [P,,,] should be changed to

Puyy=pye ®h n=1-8;, Py, =0, n=9-12 (6.108)

Liu et al. (2003d) discussed the phase velocity and the electromechanical cou-
pling coefficient, k> = 2(c¢ — ¢)/ct. The results show that for a given value of /4,
the phase velocity of the electrically open case is greater than that of the shorted case.
The phase velocity approaches the Rayleigh wave velocity of the substrate when
h/A — 0 and tends to the Rayleigh wave velocity of the layer for large /1 > 1.5.

Babich and Lukyanov (1998) discussed the surface wave in a curved layered
structure. Liu et al. (2003c, d) discussed the Love wave in a layered structure with
functionally graded isotropic substrate.

6.5.3 Lamb Waves in Piezoelectric Plate with Biasing
Electric Field

Lamb waves were researched a long time (Joshi and Jin 1991), it shows a large
sensitivity to mass loading, and the zero-order antisymmetric mode can be applied
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in contact with a liquid with a small attenuation (Laurent et al. 2000). Figure 6.10
shows a thin infinite transversely isotropic piezoelectric plate of thickness A
polarized x3-axis. Liu et al. (2002a, b) assumed that a small biasing voltage V is
applied to the electrode deposited on the upper surface and the electrode on the
lower surface is grounded. The deference between the natural and initial
configurations is neglected in their analysis. The electric field E® = (V/h)is, i5 is
the unit vector on the axis x3. According to the external loading, the generalized
stresses can be assumed as constants. In this section the Voigt notations are used.
The static electric force acted on the upper and lower surfaces of the piezoelectric
material produced by the electric charges on the electrodes is neglected. The
boundary conditions are assumed

T° =0, on x3=4h/2; 8(1)_,' =0, x; = to0; egj =0, x==00
=V, on x3=-h/2; ¢"=0, on x3=~h/2, x; =00, x==400
(6.109)

A transversely isotropic material polarized x3 -axis only has ten independent
constants. From Eq. (6.109) and the constitutive equation (3.2), it is obtained

o) =n,E, o5 =nES, DY=npES; E3=(V/h); other o) =D?=0
Ny = Ci3e33/C33 — €31, 1, = Cazes3/Cxz —ex3, np = €3;/C33 + €33
(6.110)

According to Eq. (6.41) for the small perturbation in a 2D problem, we have

0 .. 0 ..
011+ 053+ ojU 11 = polty, 051+ 033+ 0jU3 11 = Poli3

(6.111)
D1 +D33=0
And the constitutive equation
o1 = Crie1 +Ci3ez —e31E3, 03 = Ci3e) + C3ez — e33E3 6.112)

o5 = Cyes —eisE1, Dy =eises + ek, Di =ese + epnes +e33ks
Substitution of Egs. (6.110) and (6.112) into Eq. (6.111) yields

(Cu + m,E?)ul‘,n + Caqur 33 + (Ci3 + Caa)uz 13 + (e31 + e15)@ 13 = poiy
(C13 + Cag)ur 13 + (Cas + n,E)us 1 + C3uzzz + €159 1) + €339 33 = poiiz  (6.113)
(e31 + ers+npES)ur i3 + ersus i1 + (exs+npES)us 33 — g —e3ps3 =0

It is assumed that the solutions of the antisymmetric Lamb waves are (Liu et al. 2002a)

uy = By sin(kbxs) explik(x; — ct)], uz = By cos(kbxs) explik(x; — ct)] 6.114)
@ = B3z cos(kbxs) exp[ik(x; — ct)] ‘
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and assumed that the solutions of the symmetric Lamb waves are (Liu et al. 2002b)

u; = By cos(kbxsz) explik(x) — ct)], uz = By sin(kbxs) explik(x; — ct)] 6.115)
@ = Bj sin(kbxz) explik(x; — ct)) ’

where B; is the undetermined constant. Substitution of Egs. (6.114) and (6.115) into
Eq. (6.113) yields

+ [CH —p062 + C44b2 + %Eg]Bl + (C13 + C44)lez + (631 =+ 615)ibB3 =0
(C13 + Caa)ibBy F [Cas — poc® + C3b® + n,ES| By F (€15 + e3b*)B3 =0 (6.116)
(e31 + e1s +npEY)ibB F [e1s + (e3s + nDES)bZ]Bz + (e +e33b*)B3 =0

where the upper and lower symbols in “ 4= and “ 3 are used for the antisymmetric
and symmetric solutions, respectively. In order to get nontrivial solutions of By, B,
B3, their coefficient determinant must be zero. So we get a third-order equation of
b? containing phase velocity ¢ as an unknown parameter:

A1 (c)b® + As(c)b* + As(c)b? + Ay(c) =0 (6.117)

Solving Eq. (6.117) we get three solutions of »* and select appreciate one
bi(1 = 1,2,3) in b. Substituting b;(/ = 1,2,3) into Eq. (6.114) or (6.115) yields
the amplitude ratios 311/83], 321/331, [ =1,2,3. Substituting b],Bll/B3],le/B31
(I=1,2,3) back into Eq. (6.114) or (6.115) and then into boundary conditions,
we can finally get three homogeneous equations of B3;, B3y, B3s. Let the determi-
nant of the coefficients of B3, B3,, B33 equal to zero; the equation to determine c is
obtained. The details can be seen in the original papers.

Sharma and Pal (2004) also discussed propagation of Lamb waves in a trans-
versely isotropic piezo-thermo-elastic plate. Li et al. (2005b) discussed the spatial
dispersion of short surface acoustic waves in piezoelectric ceramics.

6.6 Waves in Pyroelectrics

6.6.1 Generalized Thermodynamics of Temperature
Wave in Thermoelasticity

The infinite wave speed problem (Banerjee and Bao 1974) and the Landau second
sound speed in liquid helium and in some solids at low temperatures (Landau 1941;
Jackson and Walker 1971) induced the development of the generalized heat, thermo-
elastic, and thermo-piezoelectric wave theories. The temperature wave from heat
pulses at low temperature propagates with a finite phase velocity. The main simpler
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generalized theories with a finite velocity are Kaliski (1965)-Lord-Shulman (K-L-S)
theory (1967), Green-Lindsay (G-L) theory (1972), and inertial entropy theory
(Kuang 2009). The temperature wave equation can also be established on the
extended irreversible thermodynamics and can be found in Joseph and Preziosi’s
papers (1989, 1990). In the K-L-S theory for an isotropic thermoelastic material, the
following Cattaneo-Vernotte heat conduction formula (Vernotte 1958; Cattaneo
1958) was used to replace the Fourier’s law, but the classical entropy equation and
the Helmholtz free energy are kept, i.e.,

gi+710q; = —A8;, Ts=7—qij, 9(en,9) =Alew,s) — s

(6.118)
Ojj = 8g/6e,j = Cijklgk/ — a,;,'t(), S = —89/819 = Qjj&jj + C19/To

where 7 represents the relaxation time and is a material parameter. From
Eq. (6.118) we find

gii = —T5 = T[(0%g/09°) + (0% g/ 090¢e;)&;]
A9 =T[(0%g/09%) (9 + 709) + (07 g/ 090e;) (& + To¥;)]

Then neglecting many small terms, finally, they got

29 = C(9 + 109) + aTo(ém + Tofu)

(G/(1 = 2v)|u;jj + Gujj — 2G(1 +v) /(1 — 2v)]ad,; = pii; (6.119)

where a;; = ad;;. The second equation in Eq. (6.119) is the momentum equation.

The G-L theory (1972) was based on modifying the Clausius-Duhemin
inequality and the energy equation; They used a new temperature function ¢(T, T')
instead of the usual temperature 7. i.e.,

/ fav - / (r/)dV + / (q/)nda >0, §=@(T.T), T =T,0)
\% \%4 a
g= A — ¢S7 g= g(T7 T7 gij) (6120)

Substituting Eq. (6.120) into the momentum and energy equations, after complex
manipulation and linearization and neglecting small terms finally get (here we take
the form in small deformation for an isotropic material)

AT ;i = C(T +2T) + yToij, o5ij + pfi = piis

. (6.121)
oij = [ZGI//(I - 21/)]8kk5ij + 2G8,‘j — }’(0 + 110)

where 7, 71, and y are material constants.
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The derivation of the governing equations is very complex when using K-L-S or
G-L theory, but the derivation is very simple when the inertial entropy theory is
used as shown at the next section.

6.6.2 The Inertial Entropy Theory of Temperature Wave

In Sect. 1.7.2 the inertial entropy theory (Kuang 2009) is introduced. Equation
(1.84) gives

T5+T5W =7 — qii; sW =pT, p,=puC/T (6.122)
The Fourier’s law given in Eqgs. (1.71) or (5.107) is
gi=—NiTj, T;=8;=—A"q; —qi=Ts—r (6.123)
The constitutive (or state) and evolution equations given in (5.106) are

oij = Cijuen — exijEx — a9,  Di = GE; + eiwen + 79

(6.124)
S:(Zijé‘,‘j‘—l-T,‘E,‘-i-CS/To, 9=T-T,

where a;; is the stress-temperature coefficient. Equations (6.122), (6.123), and
(6.124) yield

(ages + i+ CO/To) + po(C/TID = F/T + (T) /T (6.125)

When material coefficients are all constants and the variation of temperature is not
large from (6.125) we have

(C/To)(psod + 8) — 158i/To = i/ To — eyt + T (6.126)

Equation (6.126) is a temperature wave equation with finite phase velocity.
The generalized momentum equations are

oijj +fi = piti, or  pii; = Cijqugjj + exij 1; — i j + f;

(6.127)
Dij=pe, or epjuyji— € + i = pe

It is obvious that the experimental studies for the inertial entropy theories are very
important.
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6.6.3 The Homogeneous Thermo-electro-elastic Wave
in Pyroelectric Material

Under the quasi-static electric approximation, the governing equations of the waves
in pyroelectric material in the inertial entropy theory are shown in Egs. (6.126) and
(6.125). Like Eq. (6.119), using Eq. (6.118) in a piezoelectric material, the extended
K-L-S equation can also be obtained. When f;",f7, p,r are not considered and
assuming the variation of temperature is small (i.e., let T ~ Ty), the inertial entropy
theory, the K-L-S theory can be expressed in a unified equation system:

Cijattxjj + exijp 4; — oy = pili,  eijtnji — € ji + 79, =0 6.128)
Toay(ti;j + &yiiij) — Toti(@; + &¢,;) + C( + &) = 49
When & =&, =0,&, = py, Eq. (6.128) represents the inertial entropy theory and
& =& = &y = 1o represents the K-L-S theory. In Sect. 1.6.2 we have pointed out
that there are some questions in the K-L-S theory. Here we can also show that (1)
from Eq. (6.118) we get T§s — 7oT5§ = ;T ;i + (i + 7oF°), so it is difficult to consider
that s is a state function. (2) It is difficult to physically explain why Eq. (6.128) also
has the inertial terms 10T0(71,¢7i, ajjil; J). (3) The Fourier thermal conductive
equation is substantially an irreversible phenomenon, which is in the same level
with the mechanical viscous effect, as seen from the equation of the entropy
production. So the viscous effect in elasticity produced by the Cattaneo-Vernotte
heat conductive equation is a second effect.
For a plane wave Eq. (6.2) becomes

w = Ukei(kn,,,xn,fmt)’ = ®ei(knmxm7”)t>, 9 = Qei(knmxmfwt) (6.129)
or

we = Ukelm(L,,,xmft)’ @ = ¢ela}<LmX”17[)7 9= Qem)(me,”ft); L, = kn,,,/a) — }’lm/C

(6.130)

where U,®,0 are the amplitudes of the displacement, electric potential, and
temperature, respectively. In general & is a complex number:

k=a+ 1ﬂ7 ei(knm,\',,,fa)t) _ efﬁn,”x,”ei(om,,,x,,,fcot)7 c= a)/a, c= (a)/a)n
(6.131)
where ¢ is the phase velocity and S is the attenuation coefficient. Substituting

Eq. (6.129) into (6.128) and dropping the common factor exp[i(kn,x, — wt)] we
obtain the Christoffel equation:


http://dx.doi.org/10.1007/978-3-642-36291-0_1
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(I — pa* Sy ) Uy + ;K> ® +iaf kO = 0
ek Uy — P —itkO@ =0 (6.132)
Toajko(1 — i @)Uy — Tor"ka(1 — i&0)® + (1K — C&a* — iCw)O =0

or
Alk,0,n)U =0, U=[U,,U,,Us,®, 60| (6.133)
where
'} k* — pa? I,k I,k ek? ik
3k 3,k* — pa? I3k esk? ik
A= r; K 5,k k> —po®  e3k? ik
ek’ ek’ ek’ —c'k? —it*k
aikon, askan, askom;  —7kaon, Ty'(Ak*—Cns)
(6.134)
with

* * *
Iy = Ciyuniny,  e; = eyjmenj, a; = a;n;
* * * * *
T =gn, € =Gy, A = i, A= (6.135)

nm=1-ifw, n=1—-ibw, n=~Ewo +io
In order to get the nontrivial solution of U, it is necessary that
detA(k,w,n) =0 (6.136a)
Equation (6.136) is called the secular equation and can be expanded to

[Fs(0,n)k* + Fs(0,n)k® + F4(w,n)k* + F»(w,n)k* + Fo(w,n)]k* = 0
(6.136b)

where F;(w, n) is known functions of (@, n). So one k? is zero in Eq. (6.136), i.e., the
wave velocity of the electric potential is infinite or the electric potential does not
have its own independent wave mode. From Eq. (6.136) we can solve four inde-
pendent eigenvalues or wave velocity, and for each wave velocity an independent
mode from Eq. (6.133) is obtained. There are total four independent modes: the
quasi-longitudinal (QL) wave with highest wave velocity, fast quasi-transverse
wave (FT), slow quasi-transverse wave (ST), and a temperature wave (T).

From Eq. (6.132) we can also eliminate @ to get equations with independent
variables Uy, 9.
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Fig. 6.11 Cross sections of the velocity surfaces in an isotropic plane (x;,x;): (a) elastic waves
and (b) temperature wave

6.6.4 An Example

Now we discuss the character surfaces for material BaTiO; under w = 27 X
10°s~!, y = 0. Material constants of BaTiO; with poling axis x3 are

Ci1 =150, Cip =66, Ci3=066, Ci3 =146, Cu =44, Cg =43(MPa);
e3 =—435, e =175, e5s=11.4(C/m’);

€1 =987, €3 =11.15(107°C/Vm); Ay = 1.1, 133 = 3.5]/mKs;

o, =8.53, oy =1.99(10"°/K); 7=5.53(10"°C/mK)

an =an = (Cii +C)af, + (Ciz + e31)as;, a33 =2Ci3a], + (C33 + e33)a5;

where o, af; are the usual thermal expansion coefficients. Figure 6.11 (@) and (b)
gives the velocity surfaces of the elastic waves and temperature wave in the isotropic
plane (x,x,), respectively; Fig. 6.12 (a) and (b) gives the velocity surfaces of the
elastic waves and temperature wave in the anisotropic plane (x;,x3), respectively;
Fig. 6.13 (@) and (b) gives the slowness surfaces of the elastic waves and temperature
wave in the anisotropic plane (x1,x3), respectively. The dotted lines in the Fig. 6.13
represent the velocity or slowness surfaces for purely elastic material. The numerical
results show that the attenuation of the temperature wave is large, but for the elastic
waves, they are small and may be negative for certain p,. The results of Ezzat et al.
(2002) and Yuan and Kuang (2008) also showed that the temperature wave can
enforce the elastic wave when the temperature is decreased. It means that the term
containing py, enforces the elastic wave, or when the temperature decreased, the
released inertial heat is partly transformed to the elastic wave. It may be a restriction
of py. This phenomenon has been discussed in Sect. 1.7.5.
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Fig. 6.12 Cross sections of the velocity surfaces in an anisotropic plane (xj,x3): (a) elastic waves
and (b) temperature wave
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Fig. 6.13 Cross sections of the slowness surfaces in an anisotropic plane (x;, x3): (a) elastic waves
and (b) temperature wave

6.6.5 Inhomogeneous Wave

In the framework of the inhomogeneous wave theory generally, the wave vector is
k = P + iA, where P and A are two real vectors (Buchen 1971; Borcherdt 1973). The
vector n = P/|P| represents the wave propagation direction which is perpendicular
to the wave surface with equal phase, and m = A/|A| represents the maximum
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Fig. 6.14 Inhomogeneous
wave
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attenuation direction which is perpendicular to the equal-amplitude surface.
The angle y between n and m is called the attenuation angle (Fig. 6.14). The surface
wave may be considered as an inhomogeneous wave with y = z/2 and P is parallel
to the surface. In general case how to determine y is not very clear (Krebes 1983).
For an inhomogeneous plane wave, we have (Yuan and Kuang 2010)

f :foei(kx—mt) :foei(kn,xn,fmt)’ k=P+ iA, P= Pl’l, A = Am
(6.137)
kj:Pj—l-iAj:PI’lj—FiAmj', P:\/P%—FP%, A:\/A%—FA%
Let 8 denote the angle between n and the ordinate, so
n=[sind,cos6]", m=I[sin(@+y),cos(0+7)]", n-m=cosy (6.138)

For an inhomogeneous wave we need four variables (P, A, 6, y) to describe it, but for
ahomogeneous wave we only need three variables (P, A, 6) due tor = m,y = Oand
ki = (P +1iA)sin0, k, = (P +iA) cos 6. So k can be expressed by one complex
number.

An inhomogeneous plane wave can be written as

(kmXm—at)
)

we = Uge' ¢ = Pel k=) g — @eilkntn=wr) (6.139)
Substituting Eq. (6.139) into (6.129) and dropping the common factor we get the

Christoffel equation:

Alk,@)U =0, U=[Uy,Us,Us,®,0]"
Iy, (k) — pa? I, (k) I'5(k) ey (k) iaj (k)
I3 (k) 5, (k) — pw? (k) e; (k) ia; (k)
A= I3, (k) I3, (k) Iy (k) — po* e5(k) ior3 (k)
ey (k) e;(k) e;(k) —c'(k)  —ir"(k)
Toa (k) Toa; (k) Toas(k)y,  —Tot*(k)n, A" —Cnjs
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where

(k) = Ciukiki,  e; (k) = exjkikj,  af (k) = ajk;
T (k) = 7ikj, (k) = Gekikj, A7 = Ayni, - AT(K) = Aykik; (6.141)
m=1-i&w, n=1-ibo, n=~E0" +io

The secular equation corresponding to Eq. (6.140) is
A =0 (6.142a)

Substituting k; = Pn; + iAm; and decomposing |A| = Ointo real and imaginary parts
we get two coupling real equations of (P,A,0,y):

Re|A| =0, Im|A| =0 (6.142b)

Giving (0,y), (P,A) can be obtained from Eq. (6.142), so (k;, k>). It means that k,
and k, are obtained simultaneously. In order to (P,A) are not negative it needs
—n/2 <y <m/2

Similar to the homogeneous wave, Eq. (6.142) only has four independent
eigenvalues k; = P;n +iA;m (i = 1,2,3,4) corresponding four phase velocities:

ci=w/P;, P;=+\/(Pm)*+ (Pin)* (6.143)

Corresponding each complex k;, from Eq. (6.142) we can get the amplitude
vectors or eigenvectors U;. In each U;, Uy; : Uy; : Us; - @(= Uy;) : @;(= Us;) is
determined, i.e., only one component, say, U;; = ﬂj, is undetermined. So there are
only four undetermined amplitude components, and the general solution of the
wave propagation problem is

4
RETIAUN
= ZﬂleE])el<km Xp—t) . = Zﬁ (1)(1) k ) X — wt 9= Zﬂ @(1 km X —wt)
=1

A il(PDpn+iAD m)-x— —AVm. ) e —
el(k,,, X —@t) :e1[(P n+iAY m)-x wt] —e A mxel(P n-x—wt)

(6.144)

where (i = 1,2,3,4) is an undetermined coefficient.

The numerical calculations for BaTiO3; show that the effect of y on the velocity
surfaces of elastic waves is limited and there is a certain effect on the velocity
surfaces of the temperature. There are certain effects on the attenuation
coefficients of all waves.
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6.7 Reflection and Transmission of Waves in Pyroelectric
and Piezoelectric Materials

6.7.1 General Theory

Consider the problem of two semi-infinite pyroelectric materials I and II bounded
on the interface x, = 0 subjected to an inhomogeneous harmonic incident wave of
frequency w with an incident angle 8 from the lower semi-plane I, x, < 0, (Fig. 6.15)
(Kuang and Yuan 2011; Zhou et al. 2012). In Fig. 6.15 only one reflection wave and
one transmission wave are drawn for clarity. The mechanical, electrical, and thermal
continuity conditions on the interface are (MCC), (ECC), and (TCC), respectively

MCC: u =u], oln+ojn =0, (6 conditions)
ECC: ¢ =¢" Dinl+D"n =0, (2 conditions) (6.145)
. I _ gl Lol 4 pligll, I C
TCC: & =9, A9, +4;9;n =0, (2 conditions)
where n!' = —n!. There are totally ten continuity conditions on the interface.

Let an incident wave with a wave vector k() be in the semi-infinite plane I,
x» < 0, and corresponding displacement, electric potential, and relative temperature
can be expressed by

90) — g0) ei(k,(,?)xm—wt)7
(6.146)

(K9 (0)
“20) _ UivO) ei(k .xmfwt)7 9 = @Ol ik, Amfwt)’

where UE,O), @ 0 and ks,? ) are all known. The reflection wave in the semi-infinite
plane I, x, < 0, can be expressed by

1
1
1
A
/) 1
S
Vi I . .
A" PO | transmission wave
// !
x e |
. I .
Medium I \\ P /‘: pi quasi-surface wave
| il § -
R 1 T OA<—" ] T,
1 1 ! AN >|[ . 1
Medium I o N P, quasi-surface wave
~N
7N DN
i : A poN
1 1 .
! A, Reflection wave
1

A(U)
incident wave

Fig. 6.15 A sketch of reflection and transmission of inhomogeneous waves
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N N
7 7 r X — - , ( )X W
u/({)zzﬂj()[]( J) (m m 1)’ q,():Zﬂj()(p( e (,,, m t)
" - (6.147)
8(’) — Zﬂ]( )Q(r_])e (k(;"/‘)xm—(ut)
=

and the transmission wave in the semi-infinite plane II, x, > 0, can be expressed by

PUPERI GRS

Mz

N :
H_ Z ﬂ_;’) U,E“” ei(k,(,,‘f)x,,ﬁml)’ o =

Zﬂ (t] m \mfwt)

1

g (6.148)

In Egs. (6.147) and (6.148), N is the number of the independent waves. It is obvious
that

u}\ _ I"I(f)) + ul({f), “}cl _ ”/(c )7 o= 90(0> + g0(1‘)7 P = (p(f), 9l — 90 ng(")’ ol — g

ofj—au—&-al(j), ag—afj), D; ()+Dl(>, D}I:Dl(’)

(6.149)

When waves propagate in the x;-x, plane, the following synchronism condition
should be held:

KO =k = )9 = @Dy (@ = j=1-N)  (6.150)
Decomposing Eq. (6.150) into real and imaginary parts yields

PO gin g — ptd) gin o) = pltd) gin e

A0 gin (9<o> n y<o>) — AT gin (g(n/) + ],(w')) — AW gin (go,f) n 7,(«1‘)) (6.151)

From Egs. (6.137) and (6.151), we can get the generalized Snell’s law from the real
part:

sin@®  sin@")  sin ™) 0 _ @ (i)
0w = o © T ¢ T pwa
¢ " g)’d clt P P (6.152)
¥ =——: (j=1-N)

P’
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From Egq. (6.152), 0", ") () 4(t)) can be solved when 8%, 70 ¢(©) and ¢,
¢%) are known. In the reflection and transmission wave case, kﬁo) = kY’/ ) = kY‘f ) are
known and unknowns are kgﬁd), kgw) in Eq. (6.142). In this case except four
bulk waves as that in the infinite space, a new kind of wave will be revealed. The
numerical examples show that this new wave propagates almost parallel to the
interface, but the maximum attenuation direction is almost perpendicular to
the interface. So we call it quasi-surface wave or QS wave. The similar waves
called evanescent wave in the previous literatures for piezoelectric by Auld (1973)
and Every and Neiman (1992) had been discussed. Sharma et al. (2008) discussed
also the wave reflection and transmission in pyroelectric materials.

Substituting Eqgs. (6.146), (6.147), (6.148), and (6.149) into Eq. (6.145), the ten

boundary conditions on the interface can be expressed as

J=1

5 . 5 .
Ul(c()) + Zﬂj(’) U/E"x/) — Zﬁj(’) U]E’J)’ - 1— 37
J=1

cl) K000 4 o) K00 4 i) ol +Zﬁ (€D KDy o) ki) glr)

iml €mikm
j=

5
Zﬂ ) ( 21mlk (U) + efn)zlkfﬂ ) (tJ) + 1a< )@(t.j))’ i=1-3

j=1
(6.153a)
5 5 )
Ny Do
o0 4 Zﬂ; ) i) :Zﬂf( @t
j=1 j=1
KOO 1 o) KOO _ i) +Z B (ezpm YD — D gl
—ir! @(u) Z B (eé’,fmk DY — ) D ) _i,§t>@<w>)
(6.153b)
)N o) — N 40 gl
00+ plel) = ﬂ’@”
; ; (6.153c)
ﬂ’gmkls? @<O Z j< mil () _)“Zn Z j( Wi/ )

Therefore, in the reflection and transmission waves, there are ten complex unknown

amplitude coefficients ﬂj(-r) and ﬂjm (j = 1 — 5) with total ten complex interface
continuity conditions. This shows that the reflection and transmission waves are
solvable.
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The general expression of the wave energy flow and its ratio of the reflection and
transmission are defined as

Wi = —oi + @D; — 2a8,8/To, eV =< Wg) > /< Wéo) > (6.154)

where the symbol <> expresses the average value over one period of a physical
variable and Wg) is the energy flow component corresponding to ﬂ(/) along x;
direction.

Omitting the terms related to temperature, the governing equations of the
piezoelectric materials are obtained.

The above theory of acoustic wave in piezoelectric materials is based on the
quasi-electrostatic description, because the sound speed c, is several orders smaller
than the electromagnetic wave speed c.. The precision of this approximation is very
high. The electromagnetic corrections to the surface acoustic speeds only have the
order (c,/ ce)2 ~ 1073 The exceptional case is the incidence under small angle of
the order of ¢, /c. to the normal of the interface, due to the generalized Snell’s law or
the synchronism condition (Darinskii et al. 2008). In this case the incident elastic
wave can be converted into the electromagnetic waves. However, the magnitudes of
the tangential components of the wave amplitudes are in order of ¢,/ce, so very
small due to the small incident angle.

6.7.2 Numerical Example

As an example, we discuss 2D propagation waves in PZT-6B/BaTiO; material
combination, which are transversely isotropic materials with poling axis x3 (Zhou
et al. 2012). In 2D case there is only one transverse wave QT.

The material data for BaTiO3 are given in 6.6.4. The material data for PZT-6B
are given as

Cii=168x10°, C;3=60x10%, C33=163x10°, Cyy=27.1(MPa),

e3=—09, ex3=7.1, e;5=4.6(C/m*), €;;=3.6x10"", e33=34x107°(C/Vm),
& =Tx107% a5 =7(10"°/K), A1 =12, A33=12(J/msK), r=3.7(10"*C/m’K),
p=17,600(kg/m?), @=27x10%"" C=420(J/kgK), py=10""s"".

Figure 6.16 shows the variations of the amplitude coefficients |f;| and the energy
flow ratios e¥) of the reflection and transmission waves with the incident angle 6 of
the QL incident wave from PZT-6B to BaTiO;. Figure 6.16a gives the amplitude
coefficients for reflected waves Ref-QL and Ref-QT and transmitted wave Tran-QL
and Tran-QT. It is found that when the incident angle € exceeds the critical angle
Ocr (Ocr = 61.2°) , the Tran-QL wave becomes evanescent propagating along
the interface. Figure 6.16b shows the energy flow ratios normal to the interface
for the Ref-QL, Ref-QT, Tran-QL, and Tran-QT. It is found that the sum of Ref-QL
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Fig. 6.16 Variations of |;] and eU) with the incident angle 8 of QL incident wave from PZT-6B to
BaTiOj;: (a) coefficients of QL and QT waves, (b) energy flow ratios of QL and QT waves, (c)
coefficients of QS wave, and (d) coefficients of T wave

and Tran-QL waves is far larger than the sum of Ref-QT and Tran-QT waves.
Figure 6.16c gives the amplitude coefficients for the quasi-surface (QS) waves. The
amplitude coefficients of QS waves are much less than those of other elastic waves.
Figure 6.16d shows the amplitude coefficients of the reflected and transmitted
temperature 7 waves. The amplitude coefficients of temperature waves are far
less than those of other waves discussed in the example. The energy flow normal
to the interface for the temperature wave is also very little and dissipates quickly.

Kuang and Yuan (2011) discussed the 2D reflection problem from the interface
of BiTiO3/vaccum with the boundary conditions

o) +of) =0, DY+ =0, ay(9) +90) =0, j=12

In this case there are no transmitted waves. The quasi-surface wave becomes
surface wave. They found that the wave velocity of the quasi-surface wave is
significantly dependent to the incident angle due to the generalized Snell’s law.
When the incident wave is the elastic wave, the reflected wave is mainly the elastic
wave, the quasi-surface wave is weaker, and the reflected temperature wave is very
limited. The effect of the attenuation angle y is very limited.
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Fig. 6.17 Phase diagram of the attenuation coefficient

6.7.3 Viscous Effect

The experimental results showed that the viscous relaxation times are about
1076 — 108s for various metals under shock-loading conditions (Mineev and
Mineev 1997; Ma et al. 2011). Ezzat et al. (2002) discussed the generalized
thermo-viscoelasticity with G-L theory. Lionetto et al. (2005) studied the boundary
value problem of one-dimensional semi-infinite piezoelectric rod subjected to a
sudden heat based on K-L-S theory. They found that the thermal relaxation and the
viscous effects were evident in short time for the thermal shock in viscoelastic-
piezoelectric material. Kuang (2011) and Kuang and Zhou (2012) introduced
material constant f;;, to discuss tentatively the viscoelastic effect in the inertial
entropy theory. The constitutive equation (6.124) is changed to

oij = Cijen + Bijuén — ewjbxr — a9,  Di = ¢;E; + ewen + i,

(6.155)
s = aji€g; + TE; + C&/TO
The governing equation (6.128) becomes
Cijattkj + Py + ewijp gy — aid j = plli,  enjutkji — € ji +7:9; =0
7 ) ijkl 1V kj Yy R % ji ; (6156)

iy — T + (C/To) (8 + peod) = 459i/T

Figure 6.17 gives the phase diagram of attenuation coefficient of QL wave for
various py, 7o for a plane wave with y = 0 for various @, where f3;;; = 7oC is
assumed. In Fig. 6.17 the attenuation coefficient is positive if the region is above the
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lines and negative if the region is below the lines. In the region with negative
attenuation coefficient, there is an enlarged factor before the elastic wave
amplitudes. However, it is not to say that on the propagation path the elastic
waves are enhanced, because the elastic wave amplitudes are proportional to the
temperature wave amplitude (see Sect. 1.7.6).

It is found that if 79 = 0, negative damping occurred, but for p, = O there is no
damping region. How to explain and use the negative damping it is also a mean-
ingful problem.

In the shock problem it is better to take the integral-type viscoelastic constitutive
equation (Kuang 2002; Ezzat et al. 2002).

6.7.4 Waves in Piezoelectric Materials

The governing equations in the piezoelectric materials can be obtained by omitting
the terms containing temperature in the governing equations of the pyroelectric
materials. For the plane wave from Eq. (6.132) the Christoffel equation is

(T3 k% — pa*5y)Uy + ek ® =0,  ejk*Uy — kD =0 (6.157)

or

Alk,o,n)U =0, U=[U,U,,Us,®|"

Ik — pa? I,k Ik ek?
Ik I3,k* — pw? I3k esk?
Ak, @,n) = - 2 = 2,0 " 223 2 : 2 (6.158)
I3k I3k I'3k% — po~  exk
erk? e3k? e3k? —ck?

where I” ,’-‘j, e;, ¢ are shown in Eq. (6.135). Other theories can be discussed similarly.

Pang et al. (2008) discussed the reflection of plane waves at the interface
between piezoelectric piezomagnetic media.

6.8 Coupling Problem of Elastic and Electromagnetic
Waves in Piezoelectric Material

6.8.1 Governing Equations in Pyroelectric Materials

In this section we shall discuss the coupling of elastic wave with electromagnetic
wave shortly. It is assumed that there are no body force and body electric charge in
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the material. According to Eq. (1.4) the independent Maxwell equations for the case
without electric current are

VXE=-B, VxH=D (6.159)
It is assumed that the material is nonmagnetic, so the constitutive equations are

6=C:¢e—¢ E—af, s=a:e+71-E+CI T,

(6.160)
D=€ - E+e:e+1), B=p-H

Equations (6.159) and (6.160) yield the electromagnetic wave equation

D =V x H =-Vx ([l71 -V x E); or EUEJ' + eikl.'é/d + T,'l'(j = *131kj’lﬂpniﬂ,:lek$[[,
(6.161)

where @y is the permutation notation. The momentum and thermal equations are

Cijuttrj — exiErj — @iy = pili,  ayii; + wiE; + (C/To)(9 + pod) = Az i/ T
(6.162)

The continuity conditions on an interface for a wave reflection and transmission
problem are

w=u"6"-n=6"nnxE =nxE"
(6.163)
nxH =nxH" 9 =98" ¢ n=4¢"-n

Equations (6.161), (6.162), and (6.163) are the electroelastic coupling governing
equations in pyroelectric materials.

6.8.2 Coupling Problem of Plane Wave in Piezoelectric
Materials

Kyame (1949), Auld (1973), and Every and Neiman (1992) discussed the
electroelastic coupling waves in piezoelectric materials. From Egs. (6.160),
(6.161), and (6.162), the governing equations in piezoelectric materials with isotro-
pic magnetic behavior are

V- (C:¢e)—V.(e-E)=pii
pole -E+e:8)=-Vx(VxE)=-V(V-E)+V’E; or (6.164)

Cijattytj — exijErj = plis,  po (€mtin) + €5Ej) = Eim — Emmi
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In the coupling problem it is convenient to use the velocity instead of
displacement. For a plane wave it is assumed

U = L’ik — Vkel(kmxm_wl)7 El — Eol_el(kmxm_wt); U, = Uke](kmxm_wf) Vk — _la)Uk

(6.165)

Substituting Eq. (6.165) into Eq. (6.164) yields the Christoffel equation

(Cijk/klkj - Pw25ik)Vk + eyijwk;Eox

, (6.166)
eiupo@kVy + [(kjkjéim — knki) — @ /’toeim}EOm
or
AU =0, U=[V,,V2,Vs,Eo,Eq,Ee]"
- % 2 sk * * * * 7
Iy, —po Iy, Iy €1 € €3
I3 I35 - po* I3, € € €
s I: T — pa® e, ey e
e I ) AT
n €1 €3 iu iz Vi3
) €3 €3 731 Ym Y33
L & 2% 29 Ya Ta o 73
where

Ty = Ciukikj, € = ewjok;, eif = uoel,  vi = [(kikidix — kike) — o pocir ]
(6.168)

The corresponding secular equation detA =0 is a 6 x 6 determinant of the
coefficients including V,, and Ey, . Every and Neiman (1992) discussed the
approximate solution.

Now discuss a plane wave propagating along x; axis (so k; = k,k, = k3 = 0) in
a transversely isotropic piezoelectric material with x3 polarization. In a trans-
versely isotropic piezoelectric material, the material constants in Voigt notations
are e3; = e3, €15 = €34,€33,€11 = €,€633, Ci1 = C2,C12,C13 = C3,C33,Cs4 =
Css,Ces = (C11 — C12)/2. Therefore, the secular equation is

C11k* — pw® 0 0 0 0 es wk
0 Ceck®> — par® 0 0 0 0
ne 0 0 Cul? —pa®  ejswk 0 0
0 0 Hoe150k —w2u0611 0 0
0 0 0 0 k2 — @’ pger 0
Hoe31 ok 0 0 0 0 K — a)z,u0633

= (Cosk® = pa®) (I = 0 poen1) [(C11k° — pao®) (K — 0*pgess) — poe3, 07k’
X [—a)zﬂoéll (C44k2 —pa)z) —yoeljwkelswk] =0
(6.169)
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Equations (6.169) and (6.167) can be decomposed into four groups. The modes
and the corresponding wave velocities ¢; = @/k; can be given as follows:

Purely acoustic wave: mode, (Cgsk> — paw?®)V, = 0; velocity, ¢ = +/Ces/p
Purely electromagnetic wave: mode, (k> — @’pge11)Eor = 0 ; velocity,

ce =/ 1/ppért.

Stiffened acoustic wave (electrically quasi-static): modes, (Cysk> — paw®)Vs +
e1swkEg; = 0, pyeswkVs — w*uger1Eor = 0; velocity, T = \/(C44 + 6%5/611)//)

Quasi-acoustic and quasi-electromagnetic coupling wave:

modes, (C]]kz — pa)z)Vl — €310)kE03 = 0, /40€3|ka] + (kz — w2ﬂ0633)E03 =0

. Coeletr. 1 [ 1 Cn €3 4puyessCr
velocities, { =— ( +—+— |1, /11— 2
(p +mo€33C11 + poe3,)

Cqacust. 2 \po€s3 P PEss

6.9 Transverse Wave Scattering from a Semi-infinite
Conducting Crack

6.9.1 Fundamental Theory

Discuss a transversely isotropic piezoelectric material with isotropic magnetic
behavior and isotropic plane x; —x;. Assume the electromechanical coupling
occurred between antiplane displacement u(0,0,u3) and in-plane electric field
E(E,,E,,0). For mode-III problem Eq. (6.164) becomes

C44V2u3 —615V'E:p1;i3, V() :il()71 +i2()’2

) ) ) . 1 (6.170)
D=¢E+esVis=VxH=—u, Vx(VXE)
Let
E=-Vo—Ajcs; c,= 1/\//40611, V-A+¢/c.=0 (6.171)

The last one in Eq. (6.171) is a gauge condition to make A unique.
For a general mode-III case from Eq. (6.170), we obtained the electromagneto-
acoustic wave equations:

CuVuz +e15(V2p — 4 /%) = piis, VA —A/c? = — pyersc.Vis  (6.172)
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Fig. 6.18 Transverse wave
scattering from a semi-infinite .
conducting crack conducting crack

incident wave
0(1

o X
where V- E = —Vz(p + ¢ / cg has been used. For the electrically quasi-stationary
(EQS) case, we have VX E = —B = 0, so Eq. (6.170) yields

T,

CuVius +eis(Viop —/c;) = piis,  esVius = en (Vo — §/ci)  (6.173)

In EQS case the electroelastic wave does not couple with magnetic field. Let

y=g¢—(es/an)ius, c=ci/(cg—c?), = \/(C44 +eis/en)/p
(6.174)

Using Eq. (6.174), Eq. (6.173) can be reduced to
Viuz —LPii3 =0, Vi —L4=0; Li=1/c!, L =1/c, <L (6.175)

If term ¢ / cg is neglected, Eq. (6.173) is reduced to Eq. (4.239) for the electrically
static problem. So the difference between the electrically quasi-stationary and static
problems is very small, but Eq. (6.175) forms two hyperbolic equations, which may
sometimes solve the problem easier. The constitutive equations are

o13=Clpuz+eisy,, 063 =Cyuzp+eisy, Cy=Cuyt 56%5/611
Dy =eis(1 =Cuzy —enyy, Dy=eis(l —Cuzp—eny,
(6.176)

6.9.2 Transverse Wave Scattering from a Semi-infinite
Conducting Crack

Figure 6.18 shows the diffraction of an incident shear wave through a semi-
infinite conducting crack in a transversely isotropic piezoelectric material. Li
(1996) used the governing equations Eq. (6.175) to solve this problem and called
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it “quasi-hyperbolic approximation” method. The generalized displacement in the
material is

I,Q(X],Xz,f) = ugl) + ug”: W(X],)Cz,t) = l//<’> + W(S)’ ((p(xl7x27[) = ga(l) + (p(v>)
(6.177)

where the superscripts “(i)” and “(s)” denote the incident and scattering fields,
respectively. The incident acoustic wave is assumed in the following form:

. . t
ug')(xl,xg, ) = uggG(t — L:nmxm), G(t) = H(t)/ g(7)dr (6.178)
0

where g(7) is a given real function, H(¢) is the Heaviside function, U(()’) is the
amplitudes of incident acoustic wave, and n; = cos8,, n, = — sin#,. For conve-
nience the field variables in the upper half-space (v, < 0) and lower space (x, > 0)
are labeled by supermarks “ — ” and “ 4+ ,” respectively. In order to apply the
Wiener-Hopf technique an artificial interface x, = 0,x; < 0 is introduced. Using
Eq. (6.176) the boundary conditions on the crack and the artificial surfaces are

5 (x1,0,0) = 0%y + 033" =0, 9" (x1,0,0) = ¢ + ¢ =0; 0 <x1 < o005
M;(XI,O,I):M;(X1707[), D;(xlaovt) D ( 0 t) X1 <0
(6.179)

The initial and radiation conditions are as follows:

u:(:)(xhxbt) = l'.tgs>(xl7x27 t) = 07 ¢(S)<xlax27t> = ¢(S)(x11x27t) = Oa t<0

lim Mgs>(X17X2; t)a ugS)(XhXZ; t)a go(s)(xlaxbt)a ¢<S)(xlax2,l) = 07 t>0

|x| =00

(6.180)

6.9.3 Derive the Wiener-Hopf Equations in Laplace
Transform Region

Introduce the one-side Laplace transform f(x;,x;,p) with respect to time of
f(x1,x2,¢) and its inverse transform:

_ 1 a—+ioo
f(xlax27 / f X1, X2, )e P dt f(xl7x27t) 2 i / ) f(xth’p)epfdp
(6.181)
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where f(x1,x2,1) is called original function, f(xy,x,,p) is image function, and p
= a+ip is the Laplace transform complex parameter. f(x;,x,,p) is an analytic
function in the plane Re p > ay, where ap is the growth exponent of f(r). The
integral path in Eq. (6.181) is called Bromwich path. The two-side Laplace trans-

form £~ (¢, x,, p) with respect to x; of f(x1,x2,p) is defined as

F(g,ml)):/ fxi,x2,p) e P dx,
o (6.182)

p a'+ico j
f(xla-x27p) = 2_ / f (g7x27p) epg)ng
Tl J o —ico

Applying Egs. (6.181), and (6.175), using the integral by parts and the initial and
radiation conditions we find

By — PRI =0, F— P PU =0 ale) =\ /L2 -2 plo)=\[12-¢
(6.183)

To satisfy the boundary conditions at infinity, the solution is chosen in the following
form:

3" (g,22,p) = (1/p*)A* (g)e 7™ iy = —(1/p)A (g)er e
A 7 PR S i 1 8 ) B
(6.184)

where Rea(g) > 0,Ref(¢) > 0 in the ¢ plane with branch cuts on the Img = 0:

For a:Re¢ < —L} and Re¢ >L}; Forf: Rec < —L, and Re¢c>L,
(6.185)

Li et al. (2005a) adopted the Wiener-Hopf technique (Noble 1958; Zhu and Kuang
1995) to solve above problem. Introduce unknown functions:

0%, x1 <0 @F, x1<0
6_()(170:{ (2)3 x>0 go(xl,t):{ 0, x>0
rohE Pooh= (6.186)
S (1) { 0 WSO { 0, x<0
wy(x = ) X1,1) =
e uj —uy, x>0 B Dy —D;, x>0

02i3 zai(x],o,t), o* =% (x1,0,1), Df :Df(xl,O,t)

So the boundary conditions can be expanded to the full range of the x-axis:

655 (x1,0,8) = 6_(x1,1) — ag(xl,o,t), 0 (x1,0,1) = @_(x1,1) — ¢ (x1,0,1),
-0 <x; <00
uy (x1,0,7) — u (x1,0,8) = Aw (x1,1), D5 (x1,0,1) — D5 (x1,0,7) = AD (x1,1),
—00 <X <0
(6.187)
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The double Laplace transform of Eq. (6.187) is

555 (c,0.p) =2 (¢)/p—533(5,0,p), 7 (c,0,p) =d_(c)/p* — 5"V (c,0,p)

o) - (60p] =22, 0.5

1
Py D*+ €>0aP 7D*_ €707P =
3 (D5 (e0.0) D3 (5.0)] =

]

0 0
2 (¢)=p / 6" (x1,p)e 7dxy, ®_(¢)=p” / D" (x1,p)e dxy

o0 —00

AUL ()= (%/2) / AW’ (x1,p)e P dxy, AD, (¢) = (p/2) / AD* (x1,p)e " d,
(6.188)

Substituting Eq. (6.184) and the transformed constitutive equation obtained from
Eq. (6.176) into Eq. (6.188) we get

557 +555 1 —Ciyale)Ad(e) —e15B(e)By() = Z_(6) — pay

Pt -9 (615/611)CA (¢) +Bs(s) =0

iyt =iy A(e) =AU (o)

651 — 555 1 —Ciua(6)Aus(c) — e15B(¢)Bas(c) =0

P+ els/éll)cAas(c) (g) ®_(c)-p'p™"

D" =D5": —eis(1—¢)a(e)Aus(s) +€11B(s)Bas(c) = AD 4 (c)

A;=(AT4+A7)/2, Ayy=(AT—A")/2; By=(B"+B7)/2, Byy=(B"—B7)/2
(6.189)

From Eq. (6.189) two decoupled Wiener-Hopf equations can be obtained:
~ CuK(QAUL(6) =2 () — parys  K(¢) = ale) — KBls)  (6.190a)

Ci,K(c)AD (¢ i e
442() :r() . zflL(g)—ngo(); kZ: g* ¢
a(g)ﬂ(g) [615(1 _C)+511C44] €110y

(6.190b)

The 5;(3i) and g?)*(i) in Egs. (6.190a) and (6.190b) are the double Laplace transform of

ag and ¢, respectively, and for an incident acoustic wave are equal to

o0g(p) (i) #08(P)
.\ 707 Sy
p(g+L§n1) ¢ (g P) P2 (C_,'""Lil’ll)

= CoLinul); gy = —(ers/en)éull) (6.191)

5(¢,0,p) = —
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Fig. 6.19 Integration paths Im¢
used for product
decomposition of H(g)

. 1 ° g
in ¢ plane c
C, C
\ ) o / . Reé’
—L, -L. —L L: L

6.9.4 Decomposing of the Function K(g)

In order to solve Egs. (6.190) and (6.191), it is needed to factorize the function /C(¢)
into sectionally analytic functions in the left and right half ¢ plane, respectively.
Let (Li 2000)

2 o

2 2 a(g) +k2,ﬂ(€)
a(e) +k;p(c) = (1 +k; \/L2 —c20(c), L(c) = £
(€) (é‘) ( ) G 6§ (9‘) (G) (1 kf) é 2

(6.192)

When |¢| — o0, a — = +/—¢? and Q(¢) — 1. Factorize 2(¢) into sectionally
analytic functions 2. (¢) and 2_(¢) and 2(¢) = 2. (¢)2_(¢). Let

InQ)=InQ2,(¢c) +InQ_(¢) = ZLm éhl iz(j)dz (6.193)

where C'is the integration path located in the ¢ plane with cuts C and C_ (Fig. 6.19).
There are three branch points inside C; or C_.
Using the Cauchy principle value (PV) integration around C,, it is obtained

+7/2, —Lg <Re¢ < —L!, Img= =0
+arctan E(g), —Lf <Reg < —L,, Img= 40
2 2 _ g2
( ) = kg (Q _Le)(g +Le) _ ke (C: Le)
JE-9@+e -

O(c) = argl2(c)] = {

[1]

(6.194)

By using the Cauchy’s integral theorem, it is obtained

Lr+¢ 1[5 dy
0 _ s - tan[2(n)] —— 6.195
+(¢) w/LGigeXP{ . / arctan| (n)}nig} (6.195)
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where Q. (¢) is corresponding to the notations “ & ” at right hand of the equality,
respectively. Therefore, it yields

ale) +k2p(e) = (1 +K2)\ /L2 = M ()M ()

L2 ) L2 _ 2
() = (1- kj)a((g‘)G-Fik;BzG) =(1- kﬁ)%&(g)s(g) (6.196)

N

1 (b dy
M =exp|—— arctan = (n) ——
) —esp|— [ aroan ) S,

6.9.5 Solutions of the Wiener-Hopf Equations

Substitution of Egs. (6.196) and (6.191) into Eq. (6.190a) yields

(L%; - gz) 602(p) )
g e AL IVAYY S S =3 p DBV oo (1
44\/@ +(¢)8+(¢)S+(5) () (g+L;‘n1) 44 44( e)
(6.197)
Introduce
o VE—S Rl R()-R(Lm) R (-Lm)
B (L —¢)S-(¢)" ¢+Lim c+Lin <t Lim
(6.198)

Equations (6.197) and (6.198) yield

Gog(p)R, (—L:Iﬁ)

_ et Ay ()84 (e) -

T+ (¢ +Lim)
(6.199)
B 00g(p) [R-(¢) — R (~Lim)]
=2 (e)R-(¢) + e+ Lim)

It is known that the functions at the left side in Eq. (6.199) are analytic in the right
half-plane Re¢ > 0 and equal to zero at infinity, whereas those on the right side are
analytic in the left half-plane Re¢ < 0 and they are continuous on Im¢ = 0. So
according to Liouville theorem (Lavrenchive and Shabat 1951), these functions are
analytic in whole plane and must be zero. So

008(p) /L + cR_(~Liny)

AU =~ e T o) (e + Lim)S+ () (6.200)
__ooglp) [R-(=Lim) - |
2z (¢)= (c+Liny) [ R_(g) 1}
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Analogously from Eqs. (6.196) and (6.190b), it can be obtained

00&(p) (L + ¢) VL, + oR' _(—Liny) [el5(1 — ¢) + €11Cly)
Cii(Lg +¢)(c+Lim)S+ ()
o (ﬂog(l’) R (_Linl) 1. / o (L: +g)VLe+€
-(0) = (¢+Lim) [ R'_(g) 1]’ R-(9)= (Le +¢)S-(¢)

Substituting Egs. (6.200) and (6.201) into Eq. (6.189), one can obtain A(¢), Bs(¢),
Aas, Bas(¢) and A= (¢), B*(c):

A*(g) = —[o0 + peAo(c)]2(p)A(c)
B*(¢) = [o0¢(e1s/€11) £ @oBo(¢)]2(p)A(s)
_asvle+6y/Le+ Lim /L + Lin

AD. (¢) = —
(6.201)

Ao(¢) -
VL —¢ (6.202)
Bolo) Ciy/Li +6\/L; +Liny\/L. + Liny
() =
V Le -G
Ale) = (Lo — o)Ly +LimS (o)

(¢ +Lim)/Li = (Lo + Lim)S- (=Lim ) CyuK(c)

Substituting Eq. (6.202) into (6.184) and carrying out the inverse transform with ¢
we find

1 GoHioo
) =5 [ flon+ paalesente) (@)
Sq—ico
- —en ]
x exp{gﬁig(g sgn(x)x; — x| fdg (6.203)
wnsen) =5 |7 |nc S 4 oboleisenten)epiate)
ﬂ ico

x exp{—p|f(c)sgn(x2)x, — ox1]}dg

6.9.6 Scattering Fields in Front of the Crack Tip

The one-side Laplace inversion with time can be obtained by replacing the original
Bromwich path with deformed Cagniard-de Hoop inversion contours (Fig. 6.20 ) in
the ¢ plane (Li et al. 2005a). The inversion procedure is given only for x, > 0; for
Xxp < 0 the procedure is the same and is omitted. Along the Cagniard-de Hoop
contours, the exponentials in Eq. (6.203) take the form e 7':

alg)xy —gx1 =t, ¢l g, Lap; P(e)xa —cxi =1t, ccly (6.204)

A cut from — L} to — L, is needed due to two branch points ¢ = —L; and ¢ = —L,.
So a supplement path I, is needed to avoid the cut for I',. The physical
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Fig. 6.20 The deformed
Cagniard-de Hoop inversion
paths I'g, I'p, ['qp

Red

o pole
e branch point

L. I

interpretation of I',s is that the integral along I (—L;cosf, < ¢ < —L,)
represents an electroacoustic head wave, or a quasi-surface wave, which almost
propagates in parallel with the boundary surface. The electroacoustic head wave in
piezoelectric material was proved by experiments of Liu et al. (1989). The path I'y
always avoids the cut. Let x; = rcosé, x, = rsin@ from Eq. (6.204) we get

Cor = —tcosO=Eisindy /> —L*2r? /r; Lir <t<oo

Gpr = —tcos@+tisindy /2 —L2r?[r; Lo <t<oo

Capt = —t€OSOEsinG\/Li2r2 — 1 [rEie; too <t <Lir; teo=1/Li? —L2xs+Lex,

Finally, the exact inversions are found:

t
M§S> (x1,x2,1) = / G(t— T)ug;) (x1,x2,7)d7 + ugf) (x1,x2,1)
‘ ' (6.205)
W(Y) (x17x27 t) = / G(t - T)l//f;) (x17x27 T)dT + W;(Y) (xl y X2, t)
0

where ug;), 1//5;) denote the scattering fields due to the impulsive incident wave and

ugx.), y/,(.x) represent the reflective and transmission waves:

usy = - %Re{(oo + fﬂvo(ca+)Sgn(xz))A(ga+)M}H (t—Lr)

1 o %
Lm0+ (/JOAO(gaﬂJr)sgn(xz))A(gam)\/%} [H(—10) — H(t— L7)]
ﬂ(€ﬂ+)
N

g 1 4T
W{%) - { (aog-?: + (pOBO(gﬂ+)sgn(x2))A(gﬂ+)

fo= /L2 —L2xa+ Lox;, r=+/x3+x3

}H(t —L,r)

(6.206)
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Rert(0,))05'6(c) ~ g {1 pv [~ s}, 0<0<o,

() _

U3 = 0, 0, <0 <2m—0,
~UiG(1,), 2r—0,<60<2n
gof,“)(xl,xz, )= (65/6]])6”:(;")(X|,X2,t), 0<0<2r

1(6,) _ Limy —key/LZ — Ly
“ Liny 4 ke JIZ — L2

te =t — L (nixy — mxy)

(6.207)

For an incident shear wave with cosé, <L, / L; through a semi-infinite
conducting crack in a transversely isotropic piezoelectric material, in front of the
crack tip except the incident acoustic wave, there have been electroacoustic reflec-
tion, transmission, scattering and head waves, and electric scattering wave. Because
in the “quasi-hyperbolic approximation” the Faraday’s electric induction by a
changing magnetic field is not considered, it cannot be used to solve the problem
for — L} cosf, > —L, and the electric incident wave.

6.10 Transient Response of a Mode-I Crack

6.10.1 Fundamental Equations

Figure 6.21 shows a transverse isotropic piezoelectric strip of width 2/ with a
central crack of length 2a subjected to loadings — 6oH(t), —DoH(t) on the crack
surface, where H(r) is the Heaviside step function. Axis x; is along the crack
direction and the polarized axis x3 is perpendicular to the crack. In plane x;x3 there
are generalized displacements (uy, u3, @) and stresses (o1, 63,05, D1, D3). Applying
the Voigt notations the constitutive equations are

61 =Cner +Cizez —e31E3, 03 = Crzer + C3ez — e33E3, 05 = Cages — esE;
D1 = e1E1 +e1565, D3 = c33E3 + e31€1 + e33€3
(6.208)

The generalized momentum equations in displacements are

Criur 1 + Caaur 33 4 (C13 + Cag)uz 13 + (e31 + e15)@ 13 = piiy
(C13 + Caa)ur 13 + Caguz 11 + Ca3ut3 33 + €159 ) + €339 33 = pii3 (6.209)

(e31 + e1s5)ur 13 + eisuz 11 + ez 3z — €119y — €33¢933 = 0
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Fig. 6.21 A piezoelectric kA
strip with a crack
h
boto bt
—a a X,
IR
_O-«»H(t) —h _DUH(I)

The mechanical and electric impermeable conditions are
03(x1,0,1) = —ooH(t), D3(x1,0,1) = —=DoH(t), —a<x; <a
uz(x1,0,1) = @(x1,0,1) =0, a< |x| <oo, 05(x1,0,/) =0, —o00<x <00
63()(1 + h/2,t) = GS(XI, j:h/2, [) = D3(X1, :th/27t) =0, —oo<x <o
(6.210)

When the derivatives of variables are zeros at the initial time, the Laplace
transform (Eq. 6.181) of governing equations (6.208), (6.209), and (6.210) are

61 =Cn& +Ci383 —es1E3, 63 = C138 + C383 — e3E3, 05 = Caus — ei5E;
Dy = enEy +eises, D3 = e3E3 + e3181 + e3383
6.211)
Critty 1 + Cagtty 33 + (C13 + Caa)itz 13 + (e31 + €15)p 13 = ppity
(Ci3 + Cas)iy 13 + Caaits 11 + C3il3 33 + €159y + e3p 33 = pplity  (6.212)
(e31 + e15)it 13 + €15tz 11 + e33il333 — €119 11 — €330 33 = 0
63 = —0o/p, Dy=—Do/p, —a<x<a, x3=0
3

N

=0, a<|g|<oo, x3=0, 65=0, —oco<x<oo, x3=0
5515210, —00 < x1 < 00, X3::|:h/2

Ql

3

(6.213)

6.10.2 Reduction to Singular Integration Equations

Because the problem is symmetric with respect to x3 = 0, it is only needed to

consider the upper part. In the Laplace transform region, Wang and Yu (2001)
adopted the solutions in the following Fourier integrals:

6 0
ih=2/m) / giA;(&)e 1 sin(Exy) d&
j=1"0
6 00
i = (2/m) ) /0 ajAj(§)e 7 cos(éxy) d& (6.214)
j=1

6 00
o= @/m [ A cosen) de
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where A;(£)(j =1 —6) are unknown functions. Substitution of Eq. (6.214) into
Eq. (6.212) yields

6 o0
220 [ e sinten)

x [(Cug + Caar = 0 )ay + (Cra + Caa)érya + (e + exs)y e d = 0
2 & [ ,
e Z/ Aj(§)e 77 cos(éx1)
ﬂjil 0

X {_(CB + Caa)érq; + (C33}’_,2 — Cul —sz)aj + (6337] —e15¢ ) ]df 0

2 & [ .
25 [T atee costen)
Jj=1

X {—(631 + e15)&y,q; + (6337/,2 - 52615)% + (611st2 - 6337,2)@} =0
(6.215)
From Eq. (6.215) it is obtained

(—Cnf2 + Caay} — ﬂpz)q/' + (C13 + Caa)érja; + (e31 + e1s)y;bid =0
—(Ci3 + Cu)éyiq; + (C33}’j2 — Cué® — sz)aj + (6’33}’12 - €15§2)bj =0 (6.216)
— (e31 + e15)&r,q; + (6333}’]2 - 52615)61]' + (61152 - 633}’,2)[91' =0

So the coefficient determinant of g;, a;, b; must be zero, i.e.,

Caay? — C11 & — pp? (Ci3 + Cas)éy (e31 + e1s)yé
—(Ci3+ Cu)éy  Cap> —Cusé® —pp® ey’ —esé | =0 (6217)
—(e31 + e15)éy ey’ — Eers 1€ — a3y’

From Eg. (6.217) it can be obtained y;(j = 1 — 6). For convenience let ¢; = 1 in

Eq. (6.214), which has not lost the generality, and a;, b; can be determined from
Eq. (6.216):

Atl(yj) p = Ae()

“= (7, T Ao(yy)
= (Cu& — Caar} +pp ) (6’33}’_,2 - 61552) — (Ci3 + Cas)(e31 + €15)Er}
(r;) = (Ciz + Cus)’E }’f - (Cnf2 - C44}’,2 +PP2) (C33}’,2 — Cul —sz)
Ao(y;) = [ Ciz+ C44)(6’33}’, —ei5& ) — (e31 + €15)<C33}’_,2 — Cué® —ﬂl’z)}f}’j

(6.218)

Aj(&)(j =1 — 6) is determined by the boundary conditions.



324 6 Electroelastic Wave

Introduce the half of the generalized dislocation density:

ot ~+
_Jug,, —a<x <a _J @)
f(xhp) {07 a< |)C1| <00’ g(xhp) {07

, —a<x <a

0 e < o 6219

Around the crack the single-valued conditions are

b b b
/ (a;l —a;l)du ;»/ Fu,p)du = 0, / g(u,p)du=0  (6.219b)

Substituting Eq. (6.214) into (6.211), then into the boundary conditions (6.213), and
applying conditions (6.219), in the interval 0 < x; < a, the following singular
integral equations are obtained (Erdogan and Gupta 1972; Erdogan 1975; Lu 1984):

f(u,p)dH@/ gup)
7 Jo

T Jo U— X1 u— X1

“f(u,p)du+a/ glu,p),
7 Jo

+ 1 ./0" (011 (u, x1)f (u, p) + Q12 (u, x1) g (u, p)|du = _%

wir | 10 (o)1) + O, ), ) = =

z Jo u—x u—xl
(6.220)
where
> . a; .
Qij(u,x1) = / 2[P(&,p) — ay] cos(&xy) sin(éu) —, ij=12
0 u-+ x
a =, ap=o0, 0 =03 0p=a
(6.221)
And
Cs3y;a; + eszy;b Cl%f
P“(fap): ! ! 1(57[’)
; éA(é,p)
Cs3y;a; + essy;b C13~f
PlZ(é:vp) = : ! 2(§7p)
; §A(§,p) !
6
e33y;a; + €337, — €13
Py (&,p) = ! Aj(&,p)
; EA(,p) !
6
e3sy;a; + e33y;b; — e3é
Pn(&.p) :Z - A 11))/ Ap(&,p)

=

A(E,p) = detM], My =a;, My =Db;

My = = [Caly; + @) +ersbie], My = = [Casly; + ai8) + erstyt]e™”

Ms; = [C31& — Ca3yja; — 833}’jbj]e*7.fh’ Mg = [e31& — es3ya; + 633}/",bj]€*}{fh
(6.222)

where Aj,(j=1—6,n=1,2) is the complementary minor of matrix |M;;| with
respect to the component M,;.
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6.10.3 Solutions

In order to use the standard numerical method, introduce the dimensionless
variables:

1 |
u_ptl onm_r+ (6.223)
a a

Equation (6.220) is rewritten as

ﬂ/IMdp—&-” / Vp@ Py, ﬂ/ (0160, F (0.0) + 0.V (0. )| dp =

T Jp—r r p
% L%dﬁ . L ‘;(p I:) p+;/o [QAZI(pﬂ')F(pJ’) +0n(p, ")V(lhp)]dﬂ = —%
—l<r<l1
(6.224)
where
+1 +1
F(p,p) —f<p 5 a7p>, Vip,p) = g<p 3 a,p>,
o (6.225)
A r
Qij(pa ) Ql] (p a, ) a)
Let
R(p,p) T(p,p)
F(p,p) = —F—=, V(p,p) =—F—==
L=v L=p? (6.226)

P =3 CTp), Tlop) =S DiTp

i=0 i=0

where Ty (p) (Ui (p)) is the first (second) kind of the Chebyshev polynomials. Using
the Gauss-Chebyshev formula yields a linear algebraic equation system

n R R 7 ) T |
Z { [ﬂk(il"m * Q“(pk’rm)} (pzi 2) + [pkciz,.m + Q12(pk7"m):| y} __%

k=1 p
n . R(p;, A T(p;, D
Z {[p Ofr +Q21(/’k7rm):| (b1.) + [ﬂ (f + Q22(/)k7rm):| (o1 p)} =—=
= k m n r — Tm n p

(6.227)
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where

2k — 1

Talpr) =0, pp = COS(

k
= 5 k:12.
Tk COS(n+177.'>, y Ly ,n

Because f(x1,p),g(x1,p) are the odd functions of x;, f(0,p) = g(0,p) =0, or
R(—-1,p) =T(-1,p) =0. So R(p,,p) =T(p,,p) =0, since p, is the closest to
— 1 1in all p; in the limit sense n — oo (Erdogan and Gupta 1972; Achenbach
et al. 1980). So Eq. (6.227) is a 2(n — 1) x 2(n — 1) linear algebraic equations
with 2(n — 1) x 2(n — 1) variables R(p;, p), T(py, p). It is solvable.

Applying the following behavior of the Chebyshev polynomials

1 /1 T,(u)du _ x| Y [xi]/x3 — 1
G—x)V1I—u2 a1 X1 ’ (6.229)

b3
x| >1, n=0,1,...

(6.228)

in the Laplace transform region, the dynamic stress factors can be expressed as

x—at

Ki(p) = lim /2z(x; — a)o3(x1,0,p) = —\/ﬂzz[alR(l,p) + o T(1,p)]
(6.230)
Kp(p) = lim /27 (x) — a)Ds(x1,0,p) = —\/?[%R(l’l?) +auT(1,p)]

The dynamic stress factors Ki(¢), Kp(#) in the physical plane are obtained by the
Laplace inverse transform using the numerical method. The asymptotic generalized
stresses and displacements are

o3(11,0,1) = mm(:), D3 (x1,0,1) = m@@)
u3(x1,0,0) | \/2z(a —x1) {—m o } Ki(t) (6.231)
@(x1,0,1) Cwmm—aa [ a3 —a Kp(1)

And the energy release rate with the electric enthalpy is

uz(x; — da,0,1)
dx
(6.232)

N a+da1
Gda:2/ —lo3(x1,0,1), Ds3(x,0,t
[ Set0n. Do B

G = [7n/2(t03 — ajay)] [—a4K12(t) + 20053K1(1)Kp (1) — ale)(t)]
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—0.5] alh=1/1.25

|
E.;J
=)

T T T T T T T

0 2 4 6 8 10
[CTp tla

Fig. 6.22 Variation of Ki/09\/ma with \/C%;/p t/a for various A under i/a = 1.25 (Reprinted
from Wang and Yu 2001, with permission from Mechanics of materials)

6.10.4 Numerical Example

In the numerical analysis the material is taken PZT-5H with material constants:

Ci =126 x10° C;3=53x10" (€33 =11.7x10"°, Cy =3.53 x 10'°(N/m?)
e31 = —6.5(C/m%), ez =23.3(C/m?), ey =17.0(C/m?)
e = 15.1x107(C/Vm), ¢ =13.0x 107 (C/Vm), p=7,500kg/m’

The solved values of ¢ are

a =5.094 x 10", a, =14.216, a3 = 14216, as = —178.769 x 10~ 1°

Figures 6.22 and 6.23 show the variations of the dimensionless generalized dynamic
stress intensity factors (K1, Kp)/6o/ma with the dimensionless time /C%;/p t/a,
C3; =Cs3+ e§3 /€33 under h/a = 1.25 and the different loading parameters 1 =

—Doaa/opays. It can be seen that the dynamic intensity factors are increased at first
and then decreased and after a long time they approach the static values.
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alh=1/1.25

Ky/Dma

T T T T T

0 2 4 6 8 10
JCsilp tla

Fig. 6.23 Variation of Kp/oo+/ma with \/Cj;/p t/a for various A under /1/a = 1.25 (Reprinted
from Wang and Yu 2001, with permission from Mechanics of materials)

6.11 On the General Dynamic Analyses of Interface Cracks

6.11.1 Governing Equations in Laplace-Fourier Transform
Region

In this section the electrically quasi-static assumption is adopted. The generalized
momentum and constitutive equations are shown in Egs. (3.2) and (6.1) or

Cijuittijj + exij xj = pili, it i — € ;i =0 (6.233)
oij = Cijuen — exjEr, D; = ¢E; + ejnen

Shen et al. (1999) applied the Laplace-Fourier transform, i.e., at first adopted the
Laplace transform (Eq. (6.181)) with respect to time and then used the Fourier
transform (Eq. (4.242)) with respect to time x;, to solve the problem. When the
initial derivatives of variables are zero, the Laplace transform of the Eq. (6.233) is

6jj = Ciyjpthy + i@y, Di = —cu®y + eiiyy

) B S X " (6.234)
(Cijuaty + ekij(/’)‘k,' =pp i, (—€xp+ eiklul),ki =0
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Denote the Fourier transform of i;(x;, x2, p) as i} (s, x2,p) and let
X=2Xx1. y=1isx (6.235)

By using it | = isiiy, iy, = (is)zﬁ;‘, the Fourier transform of the second equation
in Eq. (6.234) with respect to x; is

[Clit + (Cuia + Co)/ 0y + Coad? /092 i
+ [eyji + (12 + €21)0/ By + 08 [ 9y* | 9"

lere + (err2 + €211)0/ Dy + exnd* / Oy* ]t (6.236)
— a1 + (12 + €1)0/0y + 0% /9y*]p* =0

Ciii = Clia (P:8) = Crjia + p(p° /575

|
o

Introduce notations

_ {C’fjkl eyji }7 R— |:C1jk2 1 }7 T— |:C2jk2 e }7 U — { ity }
€1kl €11 k2 —€12 €22  —€22 o
(6.237)
where Q, T are positive definite. Applying Eq. (6.237), Eq. (6.236) becomes
[T0*/0y* + (R+R")9/0y+Q|U =0 (6.238)
Assume
U'(s,y,p) = a(s,p)e™?,  oU" /dy = uU" (6.239)
Substitution of Eq. (6.239) into Eq. (6.238) yields
[Tw> + (R+R"u+Qla=0, D) =|Tu*+ (R+R"u+Q|=0 (6.240)

Equations (6.237) and (6.240) are identical in the form with Egs. (3.13) and (3.14),
respectively, if use Cj, instead of Cijx1. Analogous to Eq. (3.15), from [D(u)| = 0

eight roots y;(j = 1 ~8) can be obtained. When s — +oo, Eq. (6.239) and ;
approach the static solutions. The general solution of Eq. (6.239) is

M»

(5,7,p) [Cranls,3, )07 + Cuaarias,y,p)e 7] (6.241)

k=1
The Fourier transform of the first equation in Eq. (6.234) is

Z =is(R"+To/oy)U" (6.242)
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6.11.2 Dynamical Interface Crack

The material I is located at the upper half-plane S*, x, > 0; the material II is located
at the lower half-plane S—, x, < 0; x; =0 is the interface and there is a crack
of length 2a on it. The coordinate origin is selected at the center of the
crack (Fig. 4.2b). For the materials I and II, Egs. (6.238) and (6.242) are all held.
The boundary conditions are

031> 227 0235

ZE/D (X1,%2,1) = ZI(/H) =0, when ’\/xf + 13

U (ur,uz,u3,0) = UMW, 20 () = 20 (1)) = 22(x1,0,0), || >a, x=0

T
20 = [o) 60 4 <21>} =3 —xH(D), |n|<a

— O

(6.243)
where 1 is a constant vector. The initial conditions are
UV (x),x2,0) =UW =0, 0" (x1,x0,0)=0" =0 (6.244)
The jump value of the generalized displacements on x, = 0 is defined as
AU(x;) = UD (x1,0) — UMW (x,,0), wi(x)) = dAU(x;)/dx, (6.245)

where y(x;) is the dislocation density. The single-valued condition around the
crack is

/ w(x,0)de =0, w= |y, y,y;,w, (6.246)

The Laplace-Fourier transform of Eqgs. (6.245) and (6.246) is

AT (s.p) = U (5,0,p) = T""(5,0,p) = —(i/s)is" = —(i/s) / " . p)e P dy

/y/ (x1,p /lllxu )dx; =0

The Laplace transform of Eq. (6.243) is

(6.247)

500,0) =to/p, |l <a; TV(x,0,0)=0"(x,0,0), a<|u|<oo
I0(x,0) = ZW(x1,0) = Z,(x1,0), x| <oo; TV =3 =0, |x|— o0
(6.248)
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6.11.3 Reduced to the Singular Integral Equation

In order to make U" finite when |s| — oo, the solution of Eq. (6.241) is expressed as

AVEVCY) s<o0 AVEMCM) s>0

— (1) i (II)
U (s,y.p) = s U (syp) =
AVEYCY, s>0 AVEMC?, s<o0
N N N N N N N N N N I —isp;xy
A = [, 00,2, AD = [a, o, a0, a]; BY = (o)
E(2N) = (i), C(IN) _ [C(IN)7 C§N>’ CgN)7 CgN)}’ C(ZN) _ [C§N>’ C(6N)7 C(7N)7 CgN)}

(6.249)
where N = I, II. Equation (6.249) can be rewritten as
o= AEI)E(II) C(II) n A<21)Egl) Cél); oW A(ln) Egn) C<1H) I AgI)EgH) an)
Cg) = C<1II> =0, when s<O0; C(lI> = an) =0, when s>0

(6.250)
From Eq. (6.242) it is obtained
£0(s.y.p) = isB"E{"clV = isB(lDAEI):U*(I) =¥ s<o
isBVEVCY = isBPAV o = —y? oY, s> 0
5205,y p) = isBVEMWc = isB(l‘”A§“)]1U*“” = sy g™ 550
isBIVE I — iAW g™ — gy g™ g
BEN) _ {b(lN))ng)7ng),ng)], BgN) _ [ng)7béN),b(7N)7béN) :
b = (RN 7M/0y) a™; N =111
(6.251)

On the crack surface Eq. (6.251) becomes

59(5,0,p) =RV, 55 (5,0,p) = RV

RO _ {isB(ll)A(ll)l = —SYY)il, s <0

» ; R(H)
isBAV " = ¥ s>0

{ isBMA = sy (V71 s> 0
—1

isBiA T — —sy(V T s <0

(6.252)

where Y™ = iAMBM ™" Because on the whole interface 2(21) (x1) = 2;11) (x1), so

RO — g™ (6.253)



332 6 Electroelastic Wave
From Egs. (6.247) and (6.253) it is obtained

oY = ROR-120", U™ = RORAU": R=R™ RV (6254

)

Combining Egs. (6.242), (6.247), (6.252), (6.253), and (6.254) and performing the
Fourier inverse transform, it is obtained

25(x1,0,p) = —(i/2x) / w(&, p)de / (1/s)Me 8Eds,  |xy| < o0

M =RUDROR-1 — ORI p-1
(6.255)

Equation (6.255) is a singular integral equation, and its singular behavior is
determined by the asymptotic behavior at infinity of the kernel function s~!M(s, p).

Whens — oo, Y;N), Y;N)fl approach the static values, so are finite. At the static case

AgN> = A(IN), BgN) = E’<1N). It is noted that for a constant, A is not the Laplace

transform of A, but is the conjugate value of A. From Eq. (6.252) it is obtained

. -1 v .

lim (/R = VYo = Vi Jim (1/)R™ = ¥

: : (6.256)
. . (1) —1

SLHEXJ (1/S)R( Y(l )st'mc; sln;noo (1/S)R(I Yg sianc - Y(l s)tatic

So

-1
lim (I/S)M Yg static ( 1 stauc) [ ( 1 stanc - Yg Ztauc)} = MOO

§—00

lim ( /S) - ] statlc 1 statlc[ < 1 statlc Zlallc)} = _MOO (6257)

§——00
_ y(D-1 (-1 (g (M)— v
M Yl stdtlcYI static (Yl static + Yl st dth)
or

ligl (1/s)M = (s/|s|)Re M +iImM . (6.258)

By separating the singular part in Eq. (6.255) and then substituting the result into
the boundary condition Eq. (6.248), the following singular integral equation can be
obtained:

Re M. P e ~ /1 .
Mo+ — / RAGIINTR / ti/(t,p)dt/ (7M +Moo)e*“<5ﬂl>ds = 7
t— Xy 27 ), oo \S

(6.259)
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Let ; be the eigenvector of (Re M oo)7IIm M . and A be the matrix constituted of /;,
then we get

AReM,.) '(ImM)A™" = diag(A) = (%) (6.260)

Multiplying both sides of Eq. (6.259) by (Re M 00)71 , introducing the dimensionless
variable x = x; /a,n = £/a and using Eq. (6.260), Eq. (6.259) can be reduced to

_ U [ wuln.p)
A i(x,p) + - / A dn + Zszl//,u n,p)dn = Toi(x, p)

[F,'k] = —Z—A(RGM ) {/ < M+Moo> e*isa(ﬂ*«Y)ds}A717T0 :A(ReMoo)_l‘fo
oo \S

(6.261)

The solution of Eq. (6.261) can be expressed by the series of the Jacobi
polynomials. Let

(%, p) ZC (p)P wi(x), x| < 1

. i 1—M41 1 i 1—Xi 1

; — 1_ all ﬁx’ :_1 - =, :__1 —
wile) = (L= (4% @ =g ing=r =5 A=—gp 7573
(6.262)

where P,(,"’ﬂ ) is the Jacobi polynomial, C,; is unknown constant, and o, f;

determined by Eq. (6.262) are the singular indexes of the dynamical problem and
usually are complex numbers. As in usual elastic problem, in the front of the crack
tip, there is a small region in which the displacements of the upper and the lower
surfaces may be imbedded to each other. Substituting Eq. (6.262) into Egs. (6.261)
and (6.247) in terms of the dimensionless length x, using the orthogonal relation of

the Jacobi polynomials and P(()a"ﬁ ) (f) = 1 and the following relations

PP (x)w ()+71T/11P( ’f’>()t wlt) g,

1+ PP (x), x| < 1
J1+ 2 [(x D) (= 1) P (x) + G;;(x)], | > 1

the linear algebraic equations of CX (C{ = 0) can be obtained. Where G2 (x) is the

1
- % . (6.263)
2

principle part of plohi (x)w(x) at infinity and is finite atx = 1, it is no contribution
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on the stress intensity factors. Take the first N+ 1 terms. The following 4N
equations determined by Cﬁ can be obtained:

1 (—ax,—p = 3 km ~m ;
SV RO LYY Vel =g, k=14, j=1-N

n=1 m=1

1 1
gjk :/ TOkP;:?k’iﬂ‘)(x)wk(X)dX, ij’:'l :/ Hﬁn1Pj(:;zk,*lik)(x)wk(x)dx
—1 -1

1
H™(x,p) = / Fan (6,1, )P (1) (1)
-1

e(aﬁ) _ 2(’*/”+1F(k+a+ D)(k+p+ 1) e(am _ 2”+/”+‘I“(a+ DB +1)
k Ck+a+p+1)(k+at+p+ 1)k’ 7O Ia+p+2)
(6.264)

The singular part of the generalized traction in front of the crack tip |x| > a can be
obtained from Eq. (6.255):

(6.265)

The generalized stress intensity factors in the Laplace transform region are

K = [EII,KI,KIII,KD]T = lim V2]T<(X — 1)">Ez(x70,p) (6266)

x—1+

After solving K in the Laplace transform region, the stress intensity factors in the
physical region are obtained by the numerical Laplace inverse transform.

There are many papers to discuss the wave propagation in a piezoelectric
material with defects, e.g., Li and Mataga (1996) discussed the semi-infinite
crack propagation; Chen et al. (1998) discussed a Griffith moving crack along the
interface of two dissimilar piezoelectric materials; Li and Weng (2002) discussed
the Yoffe-type moving crack in a functionally graded piezoelectric material; and
Ing and Wang (2004a, b) discussed the transient response of a semi-infinite
propagating crack subjected to dynamic antiplane concentrated loading on the
crack faces. Chen and Liu (2005) discussed the dynamic behavior of a functionally
graded piezoelectric strip with periodic cracks vertical to the boundary. Shen et al.
(2000) discussed the dynamics mode-III interfacial crack in nonlinear piezoelectric
materials. Meikumyan (2007) discussed the diffraction of acoustic and electric
waves in piezoelectric medium by an absorbent half-plane electrode.
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