Chapter 5
Some Problems in More Complex Materials
with Defects

Abstract In this chapter some electroelastic problems in more complex materials
with defects are discussed. It is pointed out that the electroelastic analysis for
electrostrictive materials, the entire system including the dielectric medium, its
environment, and their common boundary should be considered together. So the
Maxwell stress should be considered. The theory illustrated in this chapter is an
important complement for the present theory published in literatures. The
electroelastic analyses of an infinite isotropic electrostrictive material containing
an elliptic hole, containing a crack with and without local saturation electric field
near the crack tip, are carried out. The basic theory of the thermo-electro-elastic
analysis is given. An elliptic hole in a homogeneous pyroelectric material, interface
crack in dissimilar pyroelectric material, point heat source, and its interaction with
cracks are discussed. The electroelastic analyses of a functionally graded piezo-
electric material are also introduced. These analyses are useful in engineering
applications.

Keywords Electroelastic analysis ¢ Electrostrictive material « Maxwell stress o
Pyroelectric material « Functionally graded piezoelectric material

5.1 Isotropic Electrostrictive Material

5.1.1 Governing Equations

Some polyurethane elastomers and perovskite-type ceramics can produce large
deformation under applied electric field. Their strains are proportional to the square
of electric field and larger than 10~4(m/mV)?E2. The electrostrictive effect can
occur in all dielectric, such as the electrostrictive ceramic PMN-PT, electrostrictive
polymer EPs, and polyurethane PUE. The constitutive equation has been discussed
in Sects. 2.2 and 2.6. In this section we only discuss the isotropic electrostrictive
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212 5 Some Problems in More Complex Materials with Defects

material occupying the region S. The environment occupies S°. According to
Eq. (2.27b) the constitutive equation with independent variables (¢, E) is

oij = /?-Skkéij + ZGSU — (1/2) (alE,-Ej =+ azEkEké,-j)

~ ~ 5.1)
D,’ = E[jEj, Eij = 65,’j —+ ale,-j -+ azekké,-j ~ 65,]'7 E,‘ = —Q

i

where ap,a, are electrostrictive coefficients. For electrostrictive materials the
entire system including the dielectric medium, its environment, and their common
boundary should be considered together, as shown in Sect. 2.2. The governing
equations are

Swi + fx = plix, Dy = pe in material
Si 7 = piii™, DY =pg™, in environment
Su = ou + 0y ~= Aeidu + 2Gey — (1/2)(az + ) EEidy + (1/2)(2¢ — ay)ELE
o = EDj — (1/2)EnD,6;
5.2)

where S is the pseudo total stress (Jiang and Kuang 2003, 2004). In isotropic case S,
o and ¢ are all symmetric. The boundary conditions are

* . j— * . p— * . p— *.
Sum =T;, onas;; Dy =-—0c", on ap; u=u;, on a,; @=¢; on a,
S;:jnvn;:nv — T;*EHV’ on aznv; D?ﬂVn?ﬂV — _O_*EI’IV’ on aeDnv
env __ *env env, env *env env
" =uv, on a,"; @ =", on a,

The interface conditions are

env __ exint env _ *int __ .env ___env, int
(SU—SU )nj_Ti o (Di=DM)ni= =" ui=u™, @p=¢™; on a
5.4

For the ceramic material the difference between S and ¢ is small, but for the
electrostrictive polymer ¢ and a,¢&; may be in the same order, and the difference
between S and 6 may not be small.

In the case of small strain, it is usually assumed that the electric field is
approximately independent to the displacement, i.e., the terms containing strains
in D in Eq. (5.1) can be neglected, but the stress field is related to the electric field.
So the electric field is decoupled with the elastic field and can be solved indepen-
dently (Knops 1963; Smith and Warren 1966; McMeeking 1989; Jiang and Kuang
2003, 2004). Assuming the air is charge free, from V - D = 0, it is known that ¢ is
a harmonic function, so it can be expressed by the real (or imaginary) part of a
complex analytic function w(z), i.e.,

w(z) = @(x1,x2) +iA(x1,x2),  @(x1,x) = Rew(z) = [w(z) +W} /2 (5.5)
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where A is called the stream function. Comparing Egs. (3.83) and (5.5), it is found
that w(z) = 2¢(z). These two expressions of the complex electric potential can
all be found in literatures. It is noted that in this section ¢(z) denotes the complex
stress function. Using Cauchy-Riemann condition d¢/0x; = 0A/Oxy, Op/0x; =
—0A/0x, yields

dw de .dA dp Ox;  Op Ox; [ OA Ox; OA Oxp —
—=—ti—= (ot | il ot E
dz dz dz Ox; 0z Oxp Oz Ox; 0z Oxp Oz
E= E] + 1E2 = 7W/(Z)
(5.6)
So the solution of the electric field is reduced to seek a function analytic in the

region S.
On a boundary we have

/D,,ds = / (D1ny 4+ Damp)ds = e/ (E1dxy — Epdxy)
= Gie/2) [ [ (o) - WEE] = Ge/2)[wie) - w0

where a trivial integral constant is omitted.
For a plane strain problem, we have ¢3 =0, (i =1,2,3); the constitutive

equation expressed by the pseudo total stress S is
Saﬁ = /18},},5(,/3 + 2G£a/j + ClEaEﬁ + bEyEy(Saﬁ

a=Q2c—a1)/2, b=—-(aa+¢)/2, ap=1,2 )

Using &, = [S,, + (a — 2b)E,E, | /2(A + G), Eq. (5.8) can also be written as

2Geap = Sap — aEuEp — [AS,, + (—Aa + 2Gb)E,E, |5,3/2(A + G)

5.9
ap = (1 4+ 1){Sup — vS;y8ap — aEuEp + [va — (1 — 20)bE,E, 8,5} /Y 69

where Y = 2G(1 + v) is the elastic modulus and v is the Poisson ratio. Substitution
of Eq. (5.9) into the compatible equation 2¢12 12 = €122 + €22,11 finally yields

2(S12 — aE\Ey) 1, = {S11 — aE\Ey — [2S,, + (—Aa + 2GD)E,E, | [2(2 + G)},zz
+ {82 — aB2E> — (2, + (—da + 2Gb)E,E, | [2(4 + G)}A,n
(5.10)

Let U denote the pseudo total stress function satisfying the equilibrium equation
automatically:

Sii=Ux, Snp=Ui, Sp=-Umn, or Suu=VUsy—Ugsy (5.11)
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Substituting Eq. (5.11) into Eq. (5.10), after some manipulation, yields

U A v K OPW OPW
o7 —aozen " O =192 57 sy
k= —G(a; +2a2)/2(A+2G) = —(1 — 2v)(a1 + 2a,2) /4(1 — V)

ViU = «V*(E,E,),

Using the Muskhelishvili’s formulas (1975), the general solution of Eq. (5.12) is
Ulxi,02) = (k/4)w(z)w(z) + (1/2) [Zt/ﬁ( ) +2(2) + 2(2) + x(2) (5.13)

where (k/4)w(z)w(z) is the special solution; ¢(z), y(z) are two analytic functions
of z. Equation (5.11) yields

S22+ 81 = o/ () +2[412) + )|
San — Si1 +2iS12 = kW (2)w(z) + 2[29"(2) + ¥/ (2)], w(z) =X (2)
From Egs. (5.2) and (5.6), it is known that
M+oM=0 o) -V +2icM=—-(:), Q) =W(E] (515

The mechanical stresses are

o2 + o1 = 1w/ (I (2) +2[#'(2) + 4 2)| 516
62 — o611 + 2io1 = k" (2)w(z) + 229" (2) + v/ (2)] + 2/ (z)
and displacements are
2G(uy + iuy) = Kp(2) — 29/ (z) — ﬂ (k/2)w(2)W (z) + 1 2(z)
(5.17)
—G-a) @ =(@-20/4 )= [@E
The stress boundary condition is
B
i(Py +iPy) =i / (Ty +iTy)ds = 2[00 /0] |
A (5.18)

= [#C) +46) + 50 + (/2w )]

A

where A, B are two points on the boundary; Py, P, are pseudo resultant forces;
T,‘ = S[jl’lj.
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Fig. 5.1 A 2D plane electrostrictive material with an elliptic hole or inclusion: (a) physical plane z;
(b) mapping plane ¢

5.1.2 An Impermeable Elliptic Hole in an Isotropic
Electrostrictive Material

Let an isotropic electrostrictive material with an elliptic hole of semiaxes a and b
directed along the material principle axes x; and x;, respectively, filled by air. The
uniform generalized stresses 6°°, E* are applied at infinity, but the boundary of the
hole is free; see Fig. 5.1. A further assumption is that the electric field in the air will
be neglected due to the small permittivity comparing with the electrostrictive
material. Therefore, in this simple case the Maxwell stress in the hole is neglected,
and the electrostrictive material can be studied alone (Jiang and Kuang 2003;
Kuang and Jiang 2006). The boundary conditions are

Sij= S;o7 E =E| +iE, = E*, at infinity; S;n; =0, D, =0, on interface

00 0 Moo, Moo _ oo oo 00 )0 .
Sij =o; to; 7 o0 = E; Dj — (1/2)E; D,y i
E* = Epe”, Ey=1/(EX)’ + (EY)’, tanp = Ey/EY
(5.19)
Electric field The mapping function method is used to solve this problem. The
mapping function z = w(¢) shown in Eq. (3.82a) is still adopted. In ¢ plane the
general solution of w(g) can be written as
w(g) = —E*R(¢+ag ') = —R(E¥¢ + E®¢™"); a=E>/E® =¢&*

) 1— ag.—Z 52 —a E>® — E:)Og.—Z
E — E ]_E — —|: 4 / / ] — E?OO = E*>° —
LR wie) /(<) 1— mg2 2Z-m  1—me?2

z=w(¢) =R(¢+m/c); R=(a+b)/2, m=(a—b)/(a+Db)

(5.20)
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w(c) expressed by Eq. (5.20) satisfies the boundary at infinity and on the
interface. In fact on the interface, we have

|dz| 6 w'(o) EX—E*¢* E*6—E>c
dz ol [@/(0)] 1 —mo> — |(1—ms?)]

E,=0, E =2Esin(p—9)/|l —me**|, = D,=0

E,+iE, = (E| +iEp) =

Stress field The general solutions of complex potentials ¢(c),y(c) can be
assumed as

¢(¢c) = TRs+ ¢o(c), w(c) =T2Rs+ () (5.21)

where ¢, (¢), w((¢)are undetermined functions analytic inS; Iy, I'; are determined by
Iy = (S5 483 —kECER) /4, = (S5 — 87y +2iS%3) /2 (5.22)

Because the boundary of the hole is free, the boundary condition Eq. (5.18) becomes

(0)¢' (o) / @' (0) + ¢(0) +y(0) + kw(o)w (o =0 (5.23)
Substitution of Egs. (5.20) and (5.21) into Eq. (5.23) yields

) #i(@) /(@) + hol@) +wo(0) +/(0) =

B o +m RTy,  KkRE®E™(1 —ac)(a+ %) ©O=29
flo) =RI o(l —mo )Jrer(y c o 26(1 — mo?)

Multiplying Eq. (5.24) and its conjugate equation by do/[2zi(c — ¢)] and using
the Cauchy integral formulas we find

1 [f(o)do mRI'y  RI,  kaRE*XE™

Po(<) i) o—c < c 2
1 f(o)do 1 +mg?
vols) =5~ / o Sam $o(¢)
(1+m*)¢ R (1+mg?) KkREXE®[l —aa + (a+ a)m|g
= 2RI — - 2 - 2
¢ —m (¢* —m)s 2(¢* = m)

(5.25)
Substitution of Egs. (5.21), (5.22), and (5.25) into Eq. (5.16) yields the stresses

w(5) w'(s) +2[¢’(€) +W1

@'(¢) w'(e) |@(¢) (¢

0 + 011 =K
>/ _ (5.262)
KaEXE™ + 2I'1(¢* + m) + 2@,

72 —

—a

— KE®E™ gz 2 < .
¢t—m

2-me:—m

—2Re{
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: d W()]—= d [¢'(s) W (g
o= o+ 2o =g e wa 2 ST+ D+ 58 }
_ AKEXE> (a — m)&3 (2% + @) N 2{ (KQEXE>® + 4mI"| + 2153 (&% + m)
(& —-m)’e (2 -m)g
N > kEXE®[1 —aa + (a+ a)m]Z (¢ + m) N 2r (1 +m*)3 (% +m)
¢?—m 2(¢2 — m)’? (&2 —m)
Folmg* + (m? +3)& — m]} (B (@ + 1)
(2 —m)’ (2 —m)’
(5.26b)

Asymptotic fields near the end of a narrow elliptic hole under the electric load
As in Sect. 3.4.6 the asymptotic stress fields near the end of a narrow elliptic hole
only under an electric load in the local coordinate system with the origin at the focus
of the ellipse are

on + 0611 = kEXE®(1 — a)(1 — &)c/4r

62 — 011 + 2io1p

~ KENEOC{(l —)2(e/x)(1 —a)fa— (1 —a)] +2(1 —a)(1 — Ev)s/po/r}c/Sr
(5.27a)

The electric asymptotic field is
Ey +iE = (1 /4){@5%(1 —a)\/eJr + EX ((3 +a)+ 4&\/p0/r) (5.27b)
where p, = b?/2a, ¢ = Va? — b2.

5.1.3 The Permeable Elliptic Hole

For a permeable elliptic hole, the electric connective conditions in Eq. (5.19) are
changed to

p=¢° D,=D° or / D,ds = / D¢ds, D, =Dmn; (5.28)

According to the previous knowledge, it is assumed prior that the electric field in
the air is constant (Smith and Warren 1966, 1968; Gao et al. 2010), and the complex
electric potential in the media w(z) is in the following form:

¢° =Rew(z) = —Efx; — E5x»

. _ (5.29)
w(z):F32+w0(z), I's =—-F :—(E?O—IESO)
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where wy(z) is an unknown function analytic in S. Substituting Egs. (5.5), (5.6), and
(5.29) into Eq. (5.28) and using Eq. (5.7) we get

+
=

wo(6) + wo(o) = 2[(E® — ES)xi + (B — ES)x,]

(5.30)
wo(o) —wo(o) = =2i[(DY° — DS)xi — (DY° — D)xz] /¢

Substituting x; = a(6+o67')/2, xo =ib(c —67')/2 and multiplying do/
[27i(6 — ¢)] to two sides of Eq. (5.30) and then integrating the result identity we get

wol¢) = [a(EY — EY) +ib(ES — E3)] /s

wo(¢) = [—ia(D5° — DS) — b(DY° — DY)] /s (5.31)

Equation (5.31) yields
a(EyY —ES) = —b(DF = D)/, b(EY —E5) = —a(DF —D)/c  (532)
So, using D{° = ¢ E5°, D = ¢° E{ we obtain

DS =DFe(1+b)(1+¢b) ", DS =DFe(1+b)(e +b)~

W) = (L4 B)[—EF(1+ &) +iEr@+b) |z, vm<ld <1

w(g) = —RET*(¢ + A/¢) +iREF (¢ — B/<), lel > 1

b=bla, €=cJc, A=(1—-b&)/(1+b&), B=(b—-e)/(b+¢)
(5.33)

1

Especially for a crack (b = 0) we have
EX =E, DY =D5, w'(z)=(—EF+IiE’¢/c)z, w(z) = (—E] +iEY):z

It means that the electric fields are homogeneous in the crack, but with different
constant values. When E{® = 0, the electric asymptotic field near the right crack
tip is

¢ +(1—5)/( +6) 1 a _n 1426
E — E¥ ~ EP | [ L0 f ~ 20 (534
2= 2 2 1V Tags) O

where § = € /b = (¢°a)/(eb) is an important parameter; r, ¢ are polar coordinates
in the local coordinate system with the origin at the focus of the ellipse.
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The complex stress functions are still expressed by Eq. (5.21). For EY* =0
finally we find

mly, T, «kBES?
¢<g>=R{r1g——1——2+ : }
S S 2¢

L+m* (1 +mg?) «EX*(1—2mB — B*)¢
=R —2I - -
vie) { * ‘2wt (@ m)e 2(¢* —m)

(5.35)

The stress is obtained by Eq. (5.16).

5.1.4 A Rigid Elliptic Conduction Inclusion

In this section we shall discuss a rigid elliptic conducting inclusion with boundary L
in an isotropic electrostrictive material (Jiang and Kuang 2004). In this case the
problem can be discussed independently in the material region €2 and the boundary
conditions are assumed:

oy =0, E=E +iE =E®=Epe” when x,+1— oo

i
c _
1

U =uj = —ox, u=1u;=w%; ¢=0; on L (5.36)
Eo=\/(E¥)’ + (EX)’, tanp=Ey /EP

where »° is the rotation angle about axis x3 of the inclusion. The pseudo total moment
M, Maxwell stress moment M¢, and mechanical moment M are, respectively,

M= /B (—flxz + T~2x1)ds = —[2(80/82) +Z(8U/8E)]§+Uﬁ
= Re[(2) — (2) — ' (2) — (12w (2] +[(1 /4y )]
B
e — /A (_ M + ggjnjxl)ds = Re{(1/2)e[z2(z) — 2, (2)]}

M=M—M = Re{)((z) —2p(2) — 22/ (2) — (1/2)xw (2)w(2)

(5.37)

When there are no body force and free charge, the stress complex potential can
be assumed as
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w(z) = '3z 4+ wo(z2)
P(z) = —[1/8(1 = v)|(T1 +iT2) Inz + I'1z + by ()
w(z)=[3—-4v)/8(1 — y)](fl — iT~2) Inz + Iz + wy(z)

I'y=—-E®, E>=(EY+iEY) = Egpe”
I'y= (1/4)(S5 + %) — (JAREPES, > = (1/2)(S% - S5 +2i83)
(5.38)

where w(z), ¢y(z), wo(z) are complex functions analytic in the region S. T; is the
generalized concentrate force, which is zero in present case, so the terms containing
In z will be omitted in later.

The conformal mapping method is used to solve the problem. The mapping
function is shown in Eq. (3.82). It is easy to prove that the electric field in S can be
obtained by changing a to (—a) in Eq. (5.20) discussed in Sect. 5.1.2, i.e.,

w(g) = —RE®(¢ —ac™'), w(c)=—-RE®(—ac'), a=E%/E® =

/ 1 ~=—2 =2 = E® E_oo—72
E—E+ify =208 _pel¥®_png ¥ ETHER
(¢) 1 —mg cc—m 1 —me¢

3

g

(5.39)

Using Eq. (5.17) the displacement boundary condition in Eq. (5.36) can be
expressed as

2Gw'z = Kp(z) — 29/ (z) — w(z) — gw(z)w’(z) + a19(z) (5.40)

On the mapping plane Eq. (5.40) becomes

wie) MQ() = 2iGa‘w(c)  (5.41)

Ag(g) + w(g)

where A = —K = —3 + 4v and ¢(¢) and w(¢) are given in Eq. (5.38). Noting

o' (¢) - 32

9= [ Wy, geey [:Tg | m+a)* arctan(c//m)

1 [0 . 2 2 _

271 ) o—¢ me  2m3/? c++/m
1 Q(o)d —oon2 1

s (0)do _ _R(E )2_

2ri c—¢ c
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The future process to solve the problem is fully similar to that in Sect. 5.1.2.
Finally we obtain

mRIy, Rl N KaRE®E>®

1
Ad(g) = AI'Rg — + aR(EX)* - — 2iRGaw*
S 2 S S
KRE®E®aa — 1 + (a/A +a)m|® + a/A —a RI(1 4+ mc?
26(¢* = m) Ag> — m)g

RO [(L4m + A+ m?[A)|S = Am+m/A  aiR(E®)*(1+ mg?)
(g —m) Ag(¢? —m)
2iRGw® 2iRGw (1 + mc?) @ (m+a) c—m
- — In
3 Ag(¢? —m) mg  2m¥? g+ \/m
(5.43)

+ alR(Ew)z

If @° is given, the mechanical moment acting on the inclusion can be determined
by Eq. (5.37), or

M= Re{x(c) — (@ (s) — w(e)w(9)d (¢) /@' (c) — (1/2)xw(¢) /o' (c)w(c)

~(1/2)l0(e)2(e) ~ @4+ (1 /4wl wle)]|
(5.44)

In Eq. (5.44) points A and B are the same point, so only multiple value terms
containing In ¢ are not zero, i.e., only should keep terms containing y(¢) and £2;(¢).
From the second equation in Eq. (5.43) we get

x(¢) = j{ w(g)o'(¢)dg

1 1 _ aA —
:F2R2<§g2 —mlng) +EKR2E°°E°C[( aa — 1 +7+am) In¢+ e }

R’T, 1 ) ) m? my 1
Y (mlng—2—g2>—RF1 1+m +A+7 lng—(—Am—}—Z)z—gz

aRY(E®)? 1 5 of o1 Ing
e mlng—z—g2 +aRY(EX) o (55 +—

2¢ m

(m+a) mid oo ym
2¢/m1 —2yml —
Ui [2vining + TEE VR o (& — m)
.o m 2iR? Ga*m 1
+ 2iR°Gw® <lng+22>—T mlng—z—g2

(5.45)
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Q(¢) = / Q(¢)o'(¢)ds
i
- (REw)ZW{Z\/ﬁ[—lnan(gz —m) ey, g+‘/ﬁ]}

2m3/2 ¢ —¢+vm
(5.46)

So we have
M = — 2zR*Im{—Tam + (1/2)kE¥E™(aa — 1 + am/A + am)
— T (1+m +A+mPJA) —mly A+ (E®) aym/A (5.47)
— [a1(2a + m) + €(a + m)|(EX)? + 2iGa* (A — m?) /A}

Noting I'y,m,A, G, ®® are all real, Eq. (5.47) can be reduced to

M = —2zRIm{~Tym + (1/2)kE®E™(aa — 1 + am/A + am) — mI, /A
+aim(EX)?JA — (o120 + m)+ € (a+m)|(EX)’} — 4aR*Ga® (A — m?) /A
(5.48)

If there is no moment acting on the inclusion, the ®° is determined by the
following equation:

o = [A/2G(m* — A)|Im{—T>m +%KEOCEOO(GE¥ — 1+ am/A +am) —ml /A
+am(E®) /A = a1 (2a + m)+ € (a +m)](EX)*}
(5.49)

For a conductor ball m = 0, from Eq. (5.49), it is seen that ®® = 0, i.e., there is no
rotation. It is also noted that for g = nz/2,n =1,2,3,4, »° = 0 for pure electric
loading. @° is proportional to the square of the electric field and linear of the stress at
infinity. Substituting ¢ into Eq. (5.43), the stress potentials are obtained and then
the stresses are all obtained. The asymptotic field near the right end of a narrow
rigid elliptic inclusion under an electric field at infinity is

o2+ o1y = (1/8)[kEXE®(1 + a)(1 + a)|(c/r)
o3 — o1y + 2ic1s = {(1 /8)(1 + @) E¥[(2ay + )EX — kE™]

+ (1/4)kEZE®(1 + a)(1 + Et)\/po/r}(c/r)
Ei +iE, = E*(1/2m**)\/R/r

Jiang and Kuang (2005, 2007) discussed a general elliptic inclusion. Liang et al.
(1995) discussed piezoelectric materials with a general elliptic inclusion.

(5.50)
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5.2 Cracked Infinite Electrostrictive Plate with Local
Saturation Electric Field

5.2.1 The Constitutive Equations and Boundary Conditions

For an electrostrictive ceramic with a crack under external high electric field, the
mechanical state near the crack tip is elastic, but the electric field may be saturated.
Jiang and Kuang (2006) discussed an infinite plate with a central crack of length 2a,
subjected to the electric field £ = E5° +iE5° at infinity. It is assumed that the
electric field in the region Sy of the plate is linear, but two zones Sg and Sp, near
the right and left crack tips are local small-scale saturated (Fig. 5.2). The constitu-
tive equations for an isotropic electrostrictive material are

Uij = Aekk(sij + 2G€jj - (alDiDj + a2Dka5ij)/(2€2)

. . (5.51a)
D=¢E, ¢=D(E)/E

where D(E) is the uniaxial dielectric response in the absence of stress. Here it is
assumed

D; = (8 + aej + arend;)Ej,  when  |E| = \/E(E; < E.

(5.51b)
D; = DE;/|E|, when |E| = /EE; > E,

where D and E. are the saturation electric displacement and saturation electric field,
respectively. For linear case € = ¢ is constant, but for the nonlinear case ¢ may be
dependent to electric field. If the electric field is linear, ¢ in Eq. (5.51a) can also
be expressed by

ojj = /18/(/(5,7 + 2G€i]’ — (dlE,‘Ej + azEkEk(S,-j)/2 (5.51¢)

The boundary condition of the problem is

=05, E=EF+iEY = Eoe”, when xux — 00

v (5.52)
D, =0, on x=0, —a<x <a
a z, b x
SU /KSR SU
P2 0‘ 0

Fig. 5.2 An infinite plane with a central crack located at (—a, a): (a) local small-scale saturation
model at crack tips; (b) linear model
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5.2.2 The Electric Field in an Electrostrictive Material
with an Impermeable Crack

1. The electric field in a linear plate without local saturation region
According to Eq. (5.6) and approximately taking D = ¢E we have

DI = —(1/2) e[w’(z) n w’(z)}, D> = (1)2)i e[w/(z) - w'(z)] (5.53)
where w(z) is a complex potential shown in Eq. (5.5). On the crack surface
Dy =D, =0, or W (x)=w (x)=w (x)—w (x1)=0 (5.54)

Equation (5.54) yields

' (1) = w/ ()] + [ () = w' ()] =0, 555
W () = w/ (o) = [ () = w/(a)]” =0
This is a standard Hilbert problem. Noting Eq. (5.52) its solution is
(2) = Ml = Fa) e 4 2 (1 + 1) = i EX
Wiz ==(I3—-1I3)———+= =iE ——
207 YR T2 T TR AT T (56
w(z) =1EXVZ2 —a® — E®z; I's = —E™
The asymptotic field near the crack tip z = a is
iK, iK, iK, .
W)= E iE=——ne — 1Te 02 (557
27(z —a) 27(z — a) 2nr
i0

where K, = Ego\/ﬁ is the electric field intensity factor, z — a = re'.

2. The electric field in a plate with local saturation region

The local saturation model of the electric field at the crack tip is similar to
III-type yielding model in an elastoplastic material, so the method used in
elastoplastic analysis can also be used here (Cherepanov 1979). The asymptotic
solution near a tip of a central crack is the same as that in a semi-infinite crack
problem. A local coordinate system Oy; with the origin located at the crack tip
(Fig. 5.3) is also used. A point in it is denoted by y =y, +iy; =z —a. The
boundary value problem is

D;;j=0, when y¢ (y»=0,—0c0 <y <0)
Dy =0, when y; =0, —oco<y <0 (5.58)

\/D}+D3=D., when ycSg; DI+D3=0, when y— oo
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b ¢,=D/D,

f(@)=c"f(0)
Red=0

a
/ 0 atp at2p vy, 0 ¢, =D,/D,
crack Q,
S

R

Fig. 5.3 The local saturation zone near crack tip: (a) physical plane z; (b) mapping plane
where the origin O is not included in Sg. Let
¢=¢ +igy = (D2+1iD1)/De, or ¢ = (Ey+iE1)/E. = —iw'(z)/E. (5.59)
According to Egs. (5.57) and (5.58), it yields (Fig. 5.3)

Dy = —D.sinf, D, =D.cosf, D,+iD;,=De % |0|<z/2; in Sg
(5.60)

According to Egs. (5.58) and (5.60), the crack boundary y, = 0, y; < Ointhey
plane is transformed to @ = 47 /2 in the ¢ plane. Let R() be the boundary of the
saturation zone Sg; a point ¢ on the boundary of Sg can be expressed as

t=R(0)e’; tanf=y,/y;, y=y +in (5.61)

According to Eq. (5.60) in the ¢ plane, the boundary of Q2 ise ™ = 4. In order to

simplify the problem, the hodograph transform method is used. The boundary value
problem in the ¢ plane is

y» =0, —oo<y <0, when Rec¢ :AO
Yy ER, when ¢=e (5.62)
y — 00, when ¢=0

In the ¢ plane Eq. (5.62) shows that the zone €2y is constituted of a unit semicircle
and a line segment — 1 < &, < 1 on the image axis. The zone inside g is corres-
ponding to the zone outside Sg. Now we shall solve the problem, Eq. (5.62), in the
¢ plane. Let

R(0) = 5/ () (5.63)

where f() is an unknown function. Because R(6) is real, so

of(6) —af (6) =0, or f(6) =0c’f(0) (5.64)
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It is considered that the linear asymptotic solution Eq. (5.57) can approximately
be used in the present problem, i.e., outside Sg the following relation is held:

¥ =€) = K2 J2n(Ey — i) = K2 [20(Eee)’,  (Eeg)® = —~(Ex — iE2)”
(5.65)

Equation (5.65) also satisfies the condition, ¢ = 0, when y — oo.
From Egs. (5.64) and (5.65), it is derived that outside the saturation zone we have

w(z) = K -
V/21(z - a) - (Ke/E.)

2
e

K
y=£e)=5 1=

(5.66)

(1+¢72),

The boundary of the saturation zone Sg in the ¢ plane is
R(0) = of (6) = (KZ/22E%)6(1 +67%) =2pcos®; p= (K:/2zE2) (5.67)

Equation (5.67) shows that the saturation zone Sy in the y plane is a circle with
radius p. Equation (5.67) can also be obtained if in Eq. (5.57) let E + E3 = E2.

From Eq. (5.66) it is found that the linear field in Sy for a material with a
saturation zone near the tip is the same as that in a material without a saturation
zone, if we use the effective crack length a.s instead of the real crack length a.
It is just the method used in the elastoplastic fracture mechanics. The effective
crack length is

deit =a+p, p=K:/2zE>, K, = (EX)\/n(a+p) (5.68)
Using the above theory the electric field in Sy for a central crack problem is

w(z) = iEX\/22 — (a+p)* — Ez

K. .
Ey+iE) = B — e E : (5.:69)

2 (atpp et o) V7~ (a+p)

On the boundary of Sg we have z=a+p+pel®(©®=20) (Fig. 53a).
Substituting it into Eq. (5.69) yields

EY el® EXJatp 1 . , 3 A
Ey +iE, = 2 (a+p+p{ ) ) a+p La-i0 :Eceﬂe_i_ipEcela
V(24 +2p + pei®)pe® V2o \p 4(a+p)

It is seen that on the interface the limit values of the electric field taken from S
and Sk are equal in the accuracy of p/(a + p). Usually p/(a + p) < 1, so the above
solution is reasonable.
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5.2.3 The Stress in an Impermeable Crack with Local
Saturation

1. Stress in linear zone Sy This problem in Sy is similar to that in Sect. 5.1.2. Let
b=0,m=1,R = a/2 and use the effective crack length instead of the real crack
length; the solution of the central crack problem can be obtained from the solution
of an elliptic hole problem. Equations (5.21), (5.22), (5.23), and (5.24) are still
appropriate here, but it should be used the electric field Eq. (5.69) instead of
Eq. (5.20). According to above discussions in the ¢ plane, the stress potentials are
determined by the following equations:

w(o [ /a) ] 6) +y(o) + (1/2)kw(c)w'(c) =0
¢(s) = T'1Rs + ¢o(s), ( ) = I'2Rs +y(s) (5.70)

w(z) =iEX\/22 — (a+p)* = iEEC(a/Z)\/[(g +6 D)) - 2(a+p)/af

where z = w(¢) is shown in Eq. (5.20) with m = 1. I';, I'; are shown in Eq. (5.22).
Multiplying the first equation in Eq. (5.70) and its conjugate equation by
do/[27i(o — ¢)] and using the Cauchy integral formulas we find

_ o)
P(e) = Flzangfﬁo(G), $o(s) = _ @Jr%

ang I'a Tia c(1+¢%) ,

Near the crack tip let z = a + re' (Fig. 5.4); through tedious calculation the
pseudo total asymptotic stresses are

S» + S = [(2F1 + 1> +KE§°2)efi9/2 + (2F1 + 1, +KE§°2)eia/2} \a/2r
+KEX?(a + p) /21

1 . _ .
San — S +2iS1, = — ﬁef319/2{ (2r) + I + kEX?)e ™
—(2r 426, — Ty + kES*?)e? Y\ /a/r — e HOkES* (a + p) /21

/= |rei9 fp‘ >p, O= Arg(ie‘g — p)
(5.72)
2. Stress in saturation zone Sy In the saturation zone Sg, the electric displacements

are finite; the asymptotic stresses near the crack tip will possess singular behavior like
1/ \/r and relate to the size of the saturation zone, so it is assumed

(0)/Vr + 1y (6) /p + 0(r) (5.73)
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Fig. 5.4 Division regions
near the crack tip

Boundary of linear and
saturation regions

Because the electric displacements are continuous on the interface from Sy

and Sy, so the Maxwell stress and mechanical and pseudo total stresses are all

)

continuous. So A;;’ (6), hgjz) (6) can be obtained from these continuous conditions:

1 1 2 2 s
H1(0) + ) (0) | H(0) + ) (0) _ kEF?(a+p)

VR(6) p 2o

+ (201 + To o+ kE5)e ™7 + (2 + I + kEX?) ] chze)
: L in\t 2 2 (2 00
héz) (9) - I’l(11) (6) + 21h<12> (9) i héﬁ(&) - h(ll) (9) + 211,[(12) (9) _ _67416w
k() P 21y
| S - o2\ i ~ o =
N 3"/2{(2r1 + Ty kEX?)e /= (20 + 20 — Iy + kES?)e} R(0)

(5.74)

where R(0) = 2pcos6 and on the interface © =20, Iy = |R(0)e'? — p| = p. If
pla< 1, (a+p)/|R(0)e? —p| ~ a/p. Comparing the coefficients before VR
and 1/p yields

S+ Sty = [(201 + Ty + kEX?)e 2+ (25 + Iy + kESP?)e?] \/a/2r
+ kEXa/2p
S22 = S +2i812 = = (1/2v2)e W2 (20 + I3 + xEF?)e™
—(2F1 +2Ih — Ty + KEgcz)eie}\/W — e_‘“gKEgcza/Zp
(5.75)

It is easy to prove that on the interface, the limit values of the stresses taken from
So and Sg are equal in the accuracy of 1/4/r and 1/p which is consistent of the
electric field.
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3. Division region near the crack tip According to Egs. (5.72) and (5.73), the
stress can be divided into four regions (Fig. 5.4).

Region I: Region I is located in Sg and very near the crack tip, where \/217;
> a/p and the stresses possess the singularity 1//7. Under ¢35, E5° at infinity
we have

1| 0 30 30
=——|(Ki—Kg)[ 2 = in @ sin— Kisin@ —
Sy Wirs (Kx E)( cosz+sm sm2)+ 1 sin cosz]
1 [ 0 360 0 360
S = Ki— Kg)( 2cos= — sin@sin— ) — K; ( 4sin~ + sin 6 cos —
1 Wi ( I E)( cos2 sin s1n2) 1( 51n2+51r1 cosz>]
1 [ 360 0 360
= K; — Kg) sinfcos — + Ki | 2 cos = — sin 0 sin
S12 Nir ( I ) sin 6 cos > + 1( 0052 sin @ sin 2)]

(5.76)

Region II: Region II is located in Sg and \/m ~ afp. The stresses should be
calculated by Eq. (5.73). The terms containing \/m, a/p all should be considered.

Region III: Region III is in Sy but neighboring Sg and m ~a / |reia — p‘. The
stresses should be calculated by Eq. (5.75).

Region IV: Region IV is in Sy and \/a/r > a/|re!’ — p|. Terms containing
a/|rei9 — p| can be neglected. If r/a is still small, the stresses can be calculated
from Eq. (5.76) also.

5.2.4 Conducting Crack

For the conducting crack or the soft electrode, the boundary conditions are

6;=0, E=E*+iEP =FEype”, when xu — 0o
i ‘ 0 b (5.77)
=0, or Ey=0, on x=0 —a<x<a

1. The electric field in a linear piezoelectric plate without local saturation zone
According to Eq. (5.6) on the electrode, we have

Ef=E; =0, or W (x)+w (x)=w"(x)+w (x)=0 (5.78)
For the central crack (—a, a) from Eq. (5.78), it can be derived

W(z) = —E®z / V2@ EY, wz) = —EV2E - +iEz (5.79)
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The asymptotic solution near the crack tip z = a is

w(z) = —E) +1E; = —Ke/\/m — _<Ke/\/ﬁ)e—ie

By = (K. /Vamr) coso, Ex= (K. /Vamr)sind, K.=EyVaa (5.80)

2. The electric field in a plate with local saturation zone
Similar to the impermeable crack the boundary value problem in y plane is

D=0, %4 =0, —00<y <0
VD +D; =D,, when y €R(0) (5.81)

D} +D; =0, when y — o0

where R = R(#) is the boundary of the saturation zone in y plane. The hodograph
transform method is used. Let

¢= (D) —iD,)/D., or ¢=(E; —iE)/E. (5.82)

According to Eq. (5.80) the electric displacements in the saturation zone is
assumed as

Dy =D.cos8, D, =D.sinf (5.83)

Obviously Eq. (5.83) satisfies Eq. (5.77). Repeating the discussion in Sect. 5.2.2,
the boundary and the radius of the saturation zone are, respectively,

R(0) = (K?/nE}) cosO, p=K;/(2zE?) (5.84)

The remaining discussion is fully similar to Sect. 5.2.3 and omitted here.

5.3 Asymptotic Analysis of a Crack Subjected
to Electric Loading

Yang and Suo (1994) and Hao et al. (1996) discussed the ceramic actuators caused
by electrostriction; Beom et al. (2006) discussed the asymptotic analysis of an
impermeable crack subjected to electric loading. The crack extension criterion in
plane strain is mainly determined by the stress field near the crack tip, so they
adopted the linear asymptotic solution of a semi-infinite crack as the boundary
condition of the asymptotic analysis at infinity (Fig. 5.5). In this analysis the
Maxwell stress is not considered. Analogous to Eq. (5.57) we have

D, +iD; = KD/\/Zn . y=y1+iy» =re?; when ly] — o0 (5.85)
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Fig. 5.5 Asymptotic analysis Y2

sketch of a crack with local D,+iD1:£
saturation < J2my
. &
Linear E=y—p
region ”
yPN
b INO
i
3

Saturation
zone

where Kp is the electric displacement intensity factor. Now we discuss an infinite
piezoelectric material with an impermeable crack subjected to electric loading as
shown in Eq. (5.85). As shown in Egs. (5.57) and (5.69), the approximate solutions
of the electric displacement can be taken as

D2+iD1:KD/\/27r, w’(z):—D1+iDzziKD/\/27r; in Qo
D, +iD; = Dceiie, in  Q (5.86)
E=&+is=y—p=Iy—ple*

where p = K2, /(2zD?) is the radius of the saturation zone, w(z) represents electric
displacement complex potential, £2y denotes the linear zone, and £2; denotes the
saturation zone. Equation (5.86) satisfies the boundary condition on the crack
surface and Eq. (5.85) at infinity. On the interface between £y and £;, &, = pe'®.
The constitutive equation is shown in Eq. (5.9), but here the slight different form
is used:

€ = (1 + 1) (0ap — V6,,825) /Y + Q(1 + @)DDy — Qq(1 +v)D,D, S5 (5.87)

where Y is elastic modulus and v is Poisson ratio, Q and ¢ are the electrostrictive
coefficients. Apply the superposition method to solve this problem: Problem (1) is
that a plate without crack is subjected to the above electric displacement fields. In
this problem on the artificial cut corresponding to the original crack we can get the
tractions ¢5,,05;. Problem (2) is that the artificial cut is subjected tractions —o%,,
—05,. The solution of the original problem is the sum of solutions of these two
problems.

According to Egs. (5.86) and (5.87), the strains in the saturation zone induced
by the saturation electric displacements are

e =—0gD>(1+v), & =0D(1—-q), &e,=0 (5.88)
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The strains in Eq. (5.88) satisfy the compatible equation automatically, so they
do not produce stresses. Neglecting the rigid displacements the displacements
corresponding to these strains are

up = —QqDX(1 +v)r, uy = QD(1+q)r0 (5.89)
Uy + iy = QDZ[—(1 4+ v)q +i(1 + q)6](& + p) '

Analogous to Egs. (5.6), (5.16), (5.17), and (5.18) in the linear zone we have

26 +iuz) = Kp(&) ~ EPT0) — (@) + (W@ + 401~ [ [ e

o0+ o1 = 2[ &)+ ¢ (5)} — 2hw' (&)W (&)
o2 — o1 + 2ioyy = 20" (&) + v/ (£)] — 2w (E)w(é)

i(Py+iP2) = [60/() + 0(0) + ¥ (@) — (OWE),
(5.90)
where
_ _1—(1+2v)q GQ B - (1+2v)q
K=3—-4v, h= 5 T— m—271+q 5.91)
In the saturation zone we have
2G(ur + iur) = Kp(€) — E¢'(&) — w(&) + 26 (1} + ins})
0y +011 =2 {(15 }
5.92
622—011+21612—2[5¢ (&) +w'(&)] 92
B
i(Py +1iP,) = [ () #(&) + ()]

The two group solutions shown in Egs. (5.90) and (5.92) should satisfy the
continuity conditions of displacements and stresses on the interface between linear
and saturation zones. The solution in the linear zone should also satisfy the
boundary conditions at infinity.

Solution of problem (1) Assume the solutions are:

(&) = —oopIn(&/p) + $2(&), w(&) = —oopIn(é/p) +w1(8); &€
(&) =¢1(8), w(&) =y, (&), oo=[(1+4q)/8(1—1*)]YOD? &€
(5.93)
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Substitution of Eq. (5.93) into Egs. (5.90) and (5.92) yields

2G(uy +iuz) +i(Py +iP2) = 4(1 — ”){[*Goﬂln(é/P) +¢,(8)] +m’1h“w/7(.§)]2d§}; e

2G(uy + iup) +i(Py +iP2) = 4(1 — 1) (&) + 2G (u +iu3); & €
(5.94)

From the continuity conditions of displacements and resultant forces on the
interface we have

$2(&0) — ¢1(&) = oopIn(&y/p) +m/2 —1](1 + & /p) (5.95)

where &, = pe'®is the value of £on the interface. Assuming the displacements vanish
at infinity, by the standard analytic continuation theory from Eq. (5.95) we find

_ s
=]ty

#1(&) = 60/)[—(1 +§> <ln§+—p+%m— 1) + 1]

(5.96)
P P

Analogously from the continuity conditions of resultant forcesi(Py + iP;) on the
interface we have

w2(&) —w1(&) = —oop[—(1 +m)(p/&) +m/2 — 1 —1n(&/p)] (5.97)

Assuming the displacements vanish at infinity, by the standard analytic continu-
ation theory from Eq. (5.97)

W (&) = oop[(1 +m)(p/E) + [E/(E+ p)] —m +4(1 — )] (5.98)
w1(&) = oop[—In[(E+p)/p] —m/2+3 — 4] '
Finally we have
— 6op|—Int Vs
Pe) = Op[ ! P+(1+ﬂ)l §+ﬂ+]} (5.99)
=0 m/—)—n§ n ¢ —m —v in ‘
v =aup|(4mf -t mrai-)| i a
¢ +p 1
o) =oop|—(1+2) (N4 -m—1)+1
{ ( p)( p 2 ) } (5.100)

w(é) = aop[—ln——§m+3 —41/}; in
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Solution of problem (2) Eqs. (5.90) and (5.99) yield

2
yi—p p
05, =00 |21n — 1+m< ) , 05, =0 (5.101)
2 0[ " ( )y1*,0 ] 21

When the crack surface is subjected to — o5,, the solution is

o] el AN
¢(Z)—ao{ 1 s +2(1+m)(y )

- % (1+ M)P3/2 \/_)() Rl Zarcoth\/i—l-Z\/’} (-102)
v'(y) =" ()

Solution of the original problem Superposing solutions of problems (1) and (2),
finally we get the following. In the linear zone £2,

onton _ oo N 21 ). [PPO+P)
? X {(” (55) -0+ >\/y(y_,,)z

74arcoth\/r+4\/>
"= /)I

622_0“+i612:Go{y_l)_i_(l+m)( ’ )2+mL )7—/)+(y_y)
> y—p y y—p y=—pP\VYy—»p
o P e et
y Yy —p) (y=r) 8 Vyyy-p)
(5.103)

In the saturation zone £2;,

2
7622;6”:00Re{—21ny p+(1+m)< P >

1
__(]+m)\/ﬁp(y+p 4arcoth\/7+4\/7}—aom
2 Y(y—»p)
02 — 011 | . y - P 14
N (
2 y G=) y Yy —p)

P 14+m P 2 2
8 \ﬂy(y PR )]}

It is also found that in the saturation zone the stresses at the real crack tip has
the singularity 1/+/r and at the effective crack tip (y = p) has the logarithmic

(5.104)
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singularity. Because accuracy of the electric field is of the order p/a, the accuracy
of solutions of the mechanical stresses is still in the same order.

Following the elastoplastic fracture mechanics, Beom et al. (2006) also
discussed the modified boundary layer theory, i.e., replaced Eq. (5.85) by

D, +1D, = KD/\/ZM—HT; when |z| — o0

where T is a finite electric displacement parallel to the crack surface.

Beom (1999)discussed the singular behavior near a crack tip in an electro-
strictive material with the elastic behavior shown in Eq. (5.87), and for the electric
behavior, he took the Ramberg-Osgood type constitutive equation

E, = —20(1 + q)ousDp +20q(1 + v)ogsDy + 2YQ*¢*DpDpD, + Dof (D) /D
f(D) = (E./D.)D + kE.(D/D.)"; n >3
(5.105)

where k and n are material constants; E = f(D) is the uniaxial dielectric response in

the absence of stress. In this case he got & o< r~ /2, D oc r=1/("+1),

5.4 Pyroelectric Material

5.4.1 Generalized Two-Dimensional Linear
Thermo-electro-elastic Problem

In engineering the extensive applied governing equation is Eq. (2.89) with inde-
pendent variables (¢,E,8), & =T — T, for the pyroelectric materials:

0ij = Cijuen — ewibr — a9,  D; = ¢;E; + ejyey + 79

(5.106)
AY:CI,‘/SI']"FT[E[‘FC@/T(), 19:T7T0
The thermal conduction and the entropy equations are
qi = _J.UT‘]', TJ' = ’9.j = —ﬂ.ﬁlqi; _Qi,i = TS — I; (5107)
The mechanical, electric, and thermal boundary conditions are
oin; =T;, on as Or u;=u;, on a,
Din; = —o", on ap; or @=¢* on a, (5.108)

qini =¢qn =¢qy, on a, or T=T" on ar

where T*, 6%, ¢q; are the traction, electric charge per area, and normal heat flow
per area.
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The continuity conditions on the interface are

6;]’[, = GI;UJ, u?_ = Mi_, Dl+ = DI_; (p+ — (p_’T“’ — T—, q+ — q— on L
(5.109)
The governing equations in (u, ¢, 9) are
(C,;,-zkuz + ekij(ﬂ) " ;i + (fj’“ -H;.e) = piij
(—cagp + eijkuj)’ik +T; = p, (5.110)

AT j = —qi

For a multiply connected domain, the displacement and electric potential must
satisfy the uniqueness condition Eq. (3.7).

The thermo-electro-elastic fundamental theory of the pyroelectric material was
studied a long time (Tiersten 1971; Mindlin 1974). For a static problem with
stationary temperature, from Eq. (5.110) we get

(Cijrsur + esz’j(p) si aijl9,i7 (—éis(P + eirsui').’si =—18; —qi;= (lijg.j)J =0
(5.111)
From Eq. (5.111) it is seen that the generalized displacements are dependent to
the temperature, but the temperature is independent to the generalized displace-

ments. So the temperature can be solved independently (Hwu 1992; Shen and
Kuang 1998). Because 9 is real, it is assumed that

8(x1,x2) = g'(2r) + g'(zr) = 2Re g (zr), zr = x1 + ppx2 (5.112)
Substitution of Eq. (5.112) into the third equation in Eq. (5.111) yields
(/1]1 + 2/17%12 +//t%/122)g”/(2) =0 (5.113)

As in Sect. 3.2.1, from Eq. (5.113) we get a pair of conjugate complex roots
pr, pr with Impy > 0:

M+ 22U 4 ppdan =0, Ay + ppdin = —pp(Aaz + prin)

pr = (—An +ia)/dn, a= /Ao — A, = doolur — i) /21 = —i(Ja1 + prin)
(5.114)
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where a is real. Using Eq. (5.114) the Fourier’s law can be written as
qi = —2Re[(Ai + prdin)2" (zr)], g = —2Imla(urny — ny)g" (zr)]
!

q1 = —2Re|(A11 + prii2)g" (zr)] = 2Reliapurg" (zr)] = —2Im[aprg" (zr)]
g2 = —2Re[(Aa1 + urin)g’ (zr)] = —2Reliag” (z7)] = 2Im|ag” (z7)]

(5.115)

By using Eq. (3.27) the total heat flow ¢ through a line segment from z to z is

qg= / ginids = 2Re / ia(prdyy + dxy)g" (zr) = —2Im{alg(zr) — '(z0)]}
(5.116)

When 4§ is solved, the terms in the right side of the first and second equations in
Eq. (5.111) become known. The special solution introduced by the temperature 9
can be assumed as

UT = [UTP]T = Cg(ZT), UT,' = Ur; = C,'g(ZT), UT4 =@Qr = C4g(ZT) (5117)

where a subscript in upper case P takes the value 1,2,3, or 4 and a subscript in lower
case i,j,... takes the value 1, 2, or 3, as shown in Sect. 3.2.1. Substitution of
Eq. (5.117) into the first and second equations in Eq. (5.111) yields the equations to

determine ¢ = [c, 2, ¢3, C4]T’
[Cit + pr (Cjriz + Ciont) + u3Chaia) i + [ejt + pr (e + e1p) + uzezn]ca
= o)+ pro;
[ewt + pr(eas + eir) +/4%e2k2} cx = [en + pplen + ex) +ﬂ%€22} C4 = —T| — UrTy; OF
[Q + pur(R+R") + 13T e = D(ur)e =y, + prza, 2 = lan, @, iz, —i]'
(5.118)

where Q,R,T are expressed in Eq. (3.13). The generalized stress introduced by
temperature is

orij = ZRG[(CijkICk + 61,7C4)ZT7/ — al-j]g'(zr)

(5.119)
Dr; = 2Re|(ejck + €ica)zry + 7i)g (zr)

The solution for the thermo-electro-elastic analysis in pyroelectric material is
the sum of the special solution and the general solution of the corresponding
homogeneous equations. For the stationary temperature the general solution is

U = 2Re[Af(zp) + cg(zr)], or U =2Re[A{f(zp))V + cg(zr)] (5.120)
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The stress can be expressed as

21 = —ZRC[B,MPF(ZP) + d,Lng/(ZT)L 22 = 2RC[BF(ZP) + dg/(ZT)]
d= (RT +/4TT)" — X2 ={—(Q +urR)c +x:}/ur

(5.121)
d; = (Coucr + enjca)zry — aj = —[(Cjiack + enjea)zry — auj] /iy
dy = (eauck + €ca)zry + 12 = —[(ewuck + €1ca)zry + 2]/ ur
where F(z;) = f'(z;). Introduce the stress function @:
@ = [@,, D4)" = 2Re[Bf (2) + dg(zr)], or @ =2Re[B{f(zp))V + dg(zr)]
Zwp=®p1, Zip=—Ppy; T;=—-d®;/ds, D,=—d®d4/ds; P=12,4, i=1.2
(5.122)

Equations (5.112), (5.115), (5.120), and (5.122) are the general solutions of
the thermo-electro-elastic analysis in the pyroelectric material. Combining these
equations and the appropriate boundary conditions, we can solve all the thermo-
electro-elastic problems. For the multi-connected region the generalized displace-
ment and temperature should satisfy the uniqueness condition.

5.4.2 A Thermal Impermeable Elliptic Hole
in a Pyroelectric Material

As an example in this section, we discuss a generalized 2D problem of a pyro-
electric material that occupied the region S with an elliptic hole that occupied
the region S° filled with air under uniform generalized stresses (6°°, D) and heat
flow ¢ (see Fig. 3.3). The interface L between the material and the hole is free
of generalized forces and is thermal insulated (Lu et al. 1998; Gao et al. 2002).
The boundary conditions are

=0, D=D*q=4q; at infinity
c-n=0, ¢g-n=0, ¢g=¢°, D-n=D°n=—V-¢)-n;, on L
(5.123)

Temperature field in the piezoelectric material with a thermal insulated hole As
shown in Sect. 5.4.1, the temperature can be solved independently. As in Sect. 3.4 the
transform method is used to solve this problem. The mapping function for z; plane to
¢r plane is similar to z; plane to ¢; plane in Eq. (3.86), but y; is replaced by ur, i.e.,

zr = or(¢r) = Rr(er + mT€f1)§ Rr = (a —ipurb)/2, mr = (a+iurb)/(a —ipurb)
(5.124)
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The interface L in z plane is mapped to I in ¢ plane. The temperature field can
be chosen as

g'(zr) = Prar + &(zr) = Pror(er) + gler),  golsr) = &lor(er)]  (5.125)

where f; is a complex constant and g (¢y) is holomorphic outside the unit circle in
¢r plane. Equations (5.112), (5.115), and (5.125) yield

i’ = 2Reliaurfy], q5° = —2Reliapr];  pr = —i(¢7 + prqs°) /alur — fir)
(5.126)

Because the interface is thermal insulated, Egs. (5.116) and (5.126) yield

Reliag' (¢) —iag'(69)] =0, or
i[gy(0) — g(5)] = i{prRr(c + mr&) — PRy (6 + mro)} (5.127)
= (1/20)[ag3* (o + 5) + ibg7* (0 — 5)]

where ¢ is the value of ¢ on I'. Multiplying Eq. (5.127) by [, [do/(c — ¢)] and
using the Cauchy integral formula we get

goler) = 6167, &(¢r) =Bzr + gy(sr);  Or = [(1/2ia)(agy — ibg®)]
(5.128)

From Egs. (5.125) and (5.128) in z plane, we get

g'(zr) = Przr + 6rer ' (zr)

(5.129)
g(zr) = (1/2)Brz3 + RrdrIngr(zr) + (1/2)Rrmrey? (zr)
where frzr represents the complex potential of a uniform heat flow ¢* in an infinite
material without hole.
Superposition method By means of superposition, the solution of the original
problem can be obtained as the sum of the following three problems:
(1) A pyroelectric material with an elliptic hole under boundary conditions

c=06", D=D* ¢q=0; at Iinfinity

6-n=0, ¢g-n=0, p=¢°, D-n=D°n=—¢(V-¢°)-n; on L
(5.130a)

Problem (1) can be reduced to the following problem: a piezoelectric material,

with an elliptic hole, subjected generalized stresses at infinity under constant
temperature, which has been discussed in Sect. 3.4.
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(2) A pyroelectric material without elliptic hole under boundary conditions
6=0, D=0, q=4; at infinity (5.130b)
The solution is

g'(zr) =Przr, @1 =4, @2=4¢; o0;=0; D;=0
1
9(x1,x2) = 2Re(Brzr) = — (Andoa — A1) [(A22g7° — 41265°)x1 + (A1165° — A12g7°)x2]
(5.131)

This temperature field does not affect the generalized stress field, because a
linear temperature field always satisfies the strain compatible equation.

(3) A pyroelectric material with an elliptic hole under boundary and single
valued conditions

=0, D=0, ¢g=0; at infinity
n=0, g-n=—q¢*-n, ¢g=¢°, D-n=D°n=—¢(V-¢°)-n;, on L

fuo- -

Now we discuss the solution of the problem (3) Subtracting the solution of
problem (2) from Eq. (5.129), the temperature potential in ¢ plane of problem (3)
can be obtained:

(5.130c)

g(sr) = Re[orIngr + (1/2)mre;?] (5.132)

The electric field inside the hole filled with air is fully the same as that in
Sect. 3.4.2 and Egs. (3.81), (3.82a), (3.82b), (3.83), (3.84), and (3.85) are still held.
The complex potential ¢(¢) is still expressed by Eq. (3.85), i.e.,

(0, y) = d(s) + ¢(c)
¢(g) = Z e, hoy=pih =m'h  (not summed on k), py<|g/ <1

k=—00

(5.133)

From Eq. (5.120) it is seen that f(zp) and g(zr) have the similar role in the
generalized displacements, so f(¢cp) in S can be assumed in the following form:

o0

f(sp) = (In(p))p +folsp), Sfolsp) Z a; epl 21 (5.134)

k=1

Substitution of Egs. (5.132) and (5.133) into Eq. (5.120) yields

U = 2Re{A[(Incp)p + fo(cp)] + cRrdr [Ingy + (1/2)mre;?] } (5.135)
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In Egs. (5.132), (5.133), (5.134), and (5.135) functions g(¢), f(¢), ¢(c) are all the
functions of ¢, but in Eq. (5.130c) we need their derivatives with s and n on the L
in the z plane, so the following relations are needed. Eq. (3.82) yields

Xy =acosy, xp=bsiny; dy;/ds= —asinydy/ds; dx,/ds = bcosydy/ds
psind =asiny, pcosd =bcosy; ds=pdy, p*=da’siny + b*cos’y

der /Oy = Ocp /Oy = i =i6, 0z/0w = —asiny +ibcosy = p(—sin@ + icos6)
Ozr | Opy = p(—sinOr + py cos br), E)z_,/ay/j = p(— sin 0; + p; cos 0;); on I

(5.136)
Using Eq. (5.136) it is easy to get
8g 6gT 8I/IT 827‘ 8x1 82]‘ 8)(2 cg (O') _RTéT 1
= | — — _— = = 1 — J—
B Ocr Oy Ozr \Ox, Os + Oxy Os ! p ! p (=
Ofp Ocp Oy (Ozp Ox1  Ozp Oxp afp(6) pp i ¢
= — — | — — PR —— = =1— k
2 Ocp Oy Ozp \Ox; Os +8xz Os ! p ' p P ; arko
O¢ Oc Oy [ Oz 0z o' (6) 1S ¢ i
e it Nk el - = =— k(hpo™ — h_y
bn B¢ Dy 0z <8x1 n +8x2 nz) p p ; (Ino 0 )
(5.137)

Substituting Eqs. (5.135), (5.137), and (5.122) into the connective conditions on
the interface I” and the single valued condition in Eq. (5.130c) and then comparing
the coefficients of the corresponding terms on both sides in result equations, we get

Aippp — A[pﬁp + ciR7é61 + E,‘RTST =0; (single valued COl’lditiOH), P=1,2,4
Bippp — Bl‘pﬁp + d,'RT5T — giRTST = 0; (fdd5,-/ds = Tl', fdd)4/ds = Dn)
—d,-RréTmT, k=2

kBiapy — icok (hem" + hy)dps = . (D-n=D"-

xapy — icok (hem +)Op4 {07 k2 (D-n n)
3 — —(1 2)C4R7m757, k=2

Ageage — (hem + ) _{ 0 k7é2; (p=¢%); on I

(5.138)

where 6p4 is Kronecker delta. Solving undetermined coefficients finally yields

P(c) = (S +m’c?); ¢°(g) =2Redp(c) py <l¢| <1
flep) = (In(cp)p + ax(cp?); g > 1

gler) = Rrér[ingr + (1/2)mrer?];  ler| > 1

a4 =0, h=0 if k#2

(5.139)

It is seen from Eq. (5.139) that g'(¢r),fr(cp) — O when |gp|, |s7| — o0. So the
boundary conditions at infinity are satisfied also.
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In Eq. (5.139) ¢°(¢) can also be rewritten as
¢ (x1,%2) = =2m(d> + da) + R *(do2* + do7?) (5.140)

Therefore, the electric field in the elliptic hole varies linearly with the coordinates.

5.5 Interface Crack in Dissimilar Pyroelectric Material

5.5.1 General Discussion

The fundamental theory of the pyroelectric material has been discussed in Sect. 5.4.
Now the interface crack in dissimilar pyroelectric material (see Fig. 4.2) will be
discussed (Shen and Kuang 1998; Gao and Wang 2001). The general solutions U
(z_,-,zr), di(z_,-,zr), and 9 are shown in Eqgs. (5.120), (5.122), and (5.112), respec-
tively. The boundary conditions are assumed:

Dy (x1) =Dy (x1) = 2Zo(x1), gr*1) =qm(x1) =qo(x1), x€L
d(x)) = Ui(x;) — Un(x) = 0, Dy (x1) = DPua(x)

N(x) =), grxi)=qm(x), xe€L-L

2i(x) = 2Zu(x1) =0, qu=qu —0; |z =0

(5.141)

where d is the displacement disconnected value between crack surfaces.
Equation (5.141) shows that on whole axis x; we have

D (x)) =Dyi(x1), qox) =qm(x); —oo<x <oo, x=0 (5142)

From Equation (5.115) it is known that ¢, = —iag”(zr) + iag” (zr), where z7,
a are shown in Egs. (5.112) and (5.114), respectively. Equation (5.142) yields

—darg] (v1) +iengy] (%) = —iangy(x1) + iangy (%) or
s T s =it : "= s Sl (5.143)
ing] " (x1) +iangy (x1) = langy (x1) +iongy (x1)

Analogous to Eq. (4.22) from Eq. (5.143) we have

gn(zr) = —(a/an)gf (zr), x2>0; gf(zr) = —(au/ar)gy(zr), x2 <0
(5.144)

It is assumed that the temperature satisfies the same equation:

gn(zr) = —(ar/an)gi(zr), x2>0; gzr) = —(an/a)gy(zr), x <0
(5.145)
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Equations (5.112) and (5.145) yield

Ii(x1) = gr(x1) + gi(x1) = g (x1) — (an/ar)gy(x1)

, SN , (5.146)
In(x1) = gy(x1) + g (¥1) = gp(xr) — (er/an)g(x1)

Analogously from Egs. (5.142), (5.145), and (5.122) we get

B[F](Z) + (d] + l_l[]a[/a[[)gi(z) = BHFH(Z), Xo > 0

- o (5.147)
BuFu(z) + (dy + dian/on)gy(z) = BiFi(z), x, <0

Equations (5.120) and (5.147) yield

Ui()ﬂ) = A[F](X]) + clgi()ﬂ) +A1B’fl [BHFH()C])
+(dy + dyan/ar) gy (x1)] — (an/a)ergy (x1)

Uy (x1) = AnFu(x) + engp (x1) + AuBy ' [BiFy(x;)
+(dy + duar/on)g{(x1)] — (an/an)engy(x1)

(5.148)

5.5.2 The Solution of Temperature

Using Eq. (5.146) and 8;(x;) = 9 (x1) on the connective surface yields
g(x)[1 + (ar/an)] = gu(x)[1 + (an/a)],  x¢Le (5.149)

So we can construct a function 8(zr) analytic in whole zy plane except L.:

_ J M+ (a/an)]g(zr), x>0
e = i), oo "El G190

The heat flow on the crack surface is

g = A9, = —iag (v1) + i g (¥1) = —iarg) (x1) — iangg(x1)

5.151
= —i[agam/(a + am)] [e“*(xl) + e"*(xl)} G50

So the boundary condition of the heat flow on the crack surface is reduced to

9//+(X1) + 9"7(x1) = 1[((11 + an)/alan]qo(xl), X € L (5.152)
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Its solution is

n dx
QII(ZT) _ ar + aq Zo(ZT) / % + ZO(ZT)C(ZT)
2rayan L. Zo (x1)(x1 — zr) (5.153)

Z()(ZT) = H;:l (ZT — aj) -1/2

where C(zr) is the polynomial degree n of zr.

o (zr — by)

5.5.3 The Solution of Generalized Stress
Because on L — L. id'(x;) = 0, so

HB/Fi(x1) + {i[er + (ar/an)en] + Yuldy + (a1/an)dy] g (x1)
= HByFy(x)) + {ilen + (an/a)er] + Yidy + (an/a)di] by (x1), x¢Le
(5.154)

where H =Y+ Yy, Y, = iAg(B;1 (a =L, II). So we can construct a function h(z)
analytic in whole z plane except L.:

BIFI(E) + ((11 + a1£)71H71 [i(ancl + (IIEH)
+ Yu(aﬂd[ + a[dﬂ)]gl(Z), Xy > 0

H_IH{BIIFII(Z> + (a1 + 0111)71171_1 [i(aaen + ancr)
+Y(ady + andy)]0'(2)}, 2 <0

h(z) = (5.155)

Using Eqgs. (5.145), (5.147), and (5.155), Eq. (5.122) can be reduced to

@y (x1) =kt (x1) +H Hi (x) =m0 (x1) =m0~ (x1)

n =~y = (e + o) H {[i(aner + aen) + Yu(and; + ardu)] — ands }

= —iiy = (a1 +an) 'H' {[i(aren + anér) + Yi(andy + and)] — andy }
(5.156)

Substituting Eq. (5.156) into the generalized stress boundary condition in (5.141)
yields

h+()(1) —|—H71Hh7()(1) = Eo(xl), Eo(xl) = 20()(1) +7119/+(X1) +1129/_(X1)
(5.157)
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Equation (5.157) is identical with (4.28) except using Zo(x;) instead of X (x, ),
so its solution is still expressed by Eqs. (4.41a) and (4.9):

1 QTfo(xl)dxl

€Ot 2 ) ot =)

], Q(z)=<YOU>(z)> (5.158)

From Eq. (5.157) it is seen that its homogeneous equation is fully identical with
(4.29) and does not relate to the temperature, so the eigenvalues and eigenvectors of
both equations are also the same. Therefore, Q(z) and £ in Eq. (5.158) are still
expressed by Eq. (4.37).

On the connective surface h*(x;) =h™ (x;) = h(x)), 0 (x) =60 (x)) =
& (x1), so we have

(x) = @y (x) = (I +H_]H)h(x1) — (i +m)0 (1), xeL—Le (5159

The open displacement disconnected value d behind the crack tip is

N

d (x;) = Uj(x)) — Uy(xy) = —iH[R" (x;) —h™ (x1)], x¢Lc (5.160)

5.5.4 A Single Interface Crack

In the case of a crack of length 2a, we have Zy(zr) = /z% — a2. If only the normal
heat flow ¢, on the crack surface, Eq. (5.153) yields

0" (zr) = iq; [1 — (zT/\/z% —a2>] + Cizr + Cy

(5.161)
0 (zr) = iqq (ZT —\/77 — az>, 4 = qo[(a1 + am) /2a10m]

where C; = 0 due to g - r = 0 at infinity, and Cy = 0 due to the temperature single
value condition [ [6"" (x;) — 6" (x1)]dx; = 0. Equation (5.150) yields

g/ (zr) = [an/(ar + an))0"(zr),  gy(zr) = [a/(ar + au)]0"(zr)  (5.162)

Because Eq. (5.158) is decoupling, on the crack surface, for normalized 2 we
have

ZO X1 dx1 (i) o 1 z—d ie;
() QQ( { ZJTI/Q XI—Z)} YO (Z)_ 22—a2(2+d>
(5.163)
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In Eq. (5.163) the integrated function containing Vz2 —a?, so when use

Eq. (4.18), g* = —1 should be used due to lim vz2 — a2 = — lim Vz2 — a2.

Z—X" z—xt

These integrals are

! /d dn ! { ! ( +2iea)}
el B =T \ v (T2
2ri ), Y(()l)+(X1)(X1 —2) 1 4 e2m Y(()I)(Z)

1 /a dexl 1 z I:z . (12 ) :l
— : = » —— — |z° + 2igjaz — — (1 + 4¢;
220y (o) —2) e {Yé”(z) g (14ad)

1 2 _ x2dx 1 2 _ 2
iva* —xjdep {\/z a> [22+2i£/a2_02<1+2§/2>}}

20 )y ) =2 1= v

(5.164)

Using Eq. (5.164), Eq. (5.163) is reduced to
1 ; _
h(z) = 20(:)(Ciz + Co) + “Q<+T><1 — (z 4 2ie,a)Yy (z)>.QTZ'0

* ( _
rias( g ) (5 { #2ieas =5 (14+48) |10 )2+
+ iqf,!2<l e2”9><v [ + 2igjaz — a2(1 + Zgj)} Yg)(z)>.QT(112 -n)
(5.165)
At infinity, Q(z) — I/z, &' (zr) — 0, Z(x1) = 0, from Egs. (5.159) and (5.165)
we get
. 2i£,~a —T . 2i£,~a —T .
C1 =450 T oams )2 (1 1) +166( 7= 5, )2 (2 — 1) (2iesa)

)y .. 2iga 2igja _
CY) = IQO{WQ;(’M + 1) + jQJTk(’?zk ’71k)}a Qka = £

(5.166)

Substitution of Eq. (5.166) into Eq. (5.165) yields
h(z) =2Q(2)Cy + 2 _ < — (2 + 2iga)Y, (/)( )>.Q X
1+ e2ne; 4

1 2 a 2 6) or
1qO.Q<1 +e2”g/><2_ [z —2(1+48j>:|Y0 (2) )2 (q, +m,)

+iqéﬂ<ﬁ>< 2 —a? - [z —a (l + 2¢ )}Yg>(z)>§T(n2 —n)
(5.167)
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C is determined by the single value condition, and according to Eq. (5.160) it is
equivalent to

H/:I [ (x)) =k (x;)]dx; =0, Hj l [hj(xl) —h;(xl)]dxl =0 (5.168)

On the crack surface there has <Yéj)_ (1 )> = 7<62”€fYéj>+(x1 )> orQt —Q =
<1 + 62”67>Q+. Using the following equation (Shen and Kuang 1998)

/ (a B x) ie z/cosh e when n =0
—_— dx = —2imae/coshme whenn=1 (5.169)
—avVat -2 \d+x (1 — 4¢*)za*/2 coshme when n =2

and noting [ \/x3 — a?dx; = =+ ina® /2, from the single valued condition we get

’ 42\ _; _ 1 + 82 + 2icoshze;\ _r
—co:1q5a2< ! ._>52 (m+nz)+1q8a2< 2(’1 Q2 (1, —m)

1 + eZIZé/ _ 627‘[&])

(5.170)

The stress intensity is

K= [KH,KI,KIH,KD]T = lim 271'()(?1 — bj).Q<(X1 — bj)7i€f>[27122(x1)

X1—>b/'

(5.171)

where 22 (x1) is determined by Eq. (5.159).
a homogeneous material A;=Ap=A, and H=H, Cy=0,

Yé’ = 1/1 |z} — a?. So the solution is

¢ (zr) = iqg;{1 - %} 0 (zr) = ig; (ZT - a2>
7 —a

" I L, igg zr

g (zr) = en(er) = 56" (ar) :70{1 _ﬂ} (5.172)
1 ~T . 272 — 42 _T

h(z) =521~ 20(2)2 2y +%9<Z— Q<z>>” n

And the asymptotic stress field near the crack tip x; = a is

Ez(xl) = ¢1,1(X1) = Zh(xl) — 2119/()(1)

a 1 _T ) a 1 _T (5.173)
—Q( /= Q%) —igyaf2( /= Q
<\/;\/x1 —a> 0 190 < 2.\/x1 —a> g
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The stress intensity factor at x; = a is

K = [KH,KI,KHI,KD]T = lim \/271’()(1 — a)Zz(xl)

xXj—a

) ) (5.174)
= —V/ra (.Q.QTZ’O + ian.Q.QTn) = —/ra(Zo + ighan)

5.6 Point Heat Source and Interaction with Cracks

5.6.1 Point Heat Source in Piezoelectric
and Bi-piezoelectric Material

Hwu (1990) discussed the thermal stress in an anisotropic elastic material.
Shen et al. (1995) and Shen and Kuang (1998) discussed the thermal stress in a
pyroelectric material, the point heat source, and their interactions.

1. Heat source in a homogeneous material For a point heat source, the tempera-
ture 9 =T — Ty can be expressed as

I(x1,x00) =2Re g (z7), zr =x1 +purx2, pr = (=dio +ia)/in

5.175
g,(ZT) = gf)(ZT) = cln(zr — z70), g{)’(ZT) = C/(ZT — z70) ( )

According to Eq. (5.116) for a point heat source with strength M located at
z0(x10,X20) in an infinite homogeneous pyroelectric material, ¢ is determined by
the following equation:

M= %qnds = —2Im{alg'(zr) — £ (20)]}e"= —4nac; ¢ = —M/4na (5.176)

q1 = 2Relioprg" (zr)], g2 = —2Reliag"(zr)]; @ = Ao (ur —fir)/2i

So finally the solution of the temperature in an infinite homogeneous pyro-
electric material is

9 =2Re gf)(ZT) = —(M/Z;ra)Re ln(zT — ZT())7 ZTo0 = X10 +,LlT.X2() (5177)

2. Heat source in a bimaterial The solving method of a heat source in a
bimaterial is analogous to that in Paragraph 3.6.2. Let the point heat source with
strength M be located at zo(xg,X0) in material II that occupied S™,x, < 0. The
solution can be assumed as

/ gi(ZT)7 zr € ST
gler) =9 / B
gu(zr) +go(zr), zr €S (5.178)

g(zr) = culn(zr — z70), go(zr) = cu/(zr — z10),  cu = —M /4may



5.6 Point Heat Source and Interaction with Cracks 249

Because heat flow and temperature are continuous in whole axis x;, so according
to Egs. (5.115) and (5.112) it yields

angy (x1) — angf (x1) = amgy (x1) — angp(x1) + angg(x1) — angg (x1) (5.179)

gr(x1) + g1(x1) = gy () + g (x1) + gy (x1) + go(x)

If q— 0,7 — 0 when |z| — oo, like Egs. (3.161), (3.162), (3.163), (3.164),
(3.165) or (4.22), (4.23) we have

arg] (zr) + angfi(zr) — angy(zr) =0, angli(zr) + agl (zr) — angh(zr) =0

gi(zr) — gli(zr) — gh(zr) =0,  giyler) — gf(zr) + gh(zr) =0
(5.180)

Equations (5.178), (5.179), and (5.180) yield

g(zr) = {gi(zr) = 2m8(27), zesS*
gh(zr) + gy(zr) = (a2 — a)gy(zr) + gy(zr), z€S  (5.181)
ap =oay/(a+oan), a =an/(a+ an)

On the interface x, = 0 we have
¢ = —iong] (zr) + ing] (zr) = —2iaar g (x1) — g5 (x1)] (5.182)

Because the generalized stress and displacement are continuous on whole axis xj,
according to Egs. (3.161), (3.162), (3.163), (3.164), and (3.165), we can derive

BiF1(z) — BuFn(z) — [(aa — a1)dn — 2aad; + du)gy(z) = 0 (5.183)
BuFu(z) — BiFi(z) + [(a2 — ay)dy — 2a0dy + dyigy(z) = 0 .
and
AiF1(z) — AnFu(z) — [(a2 — ar)en — 2aze1 + enlg(z) = 0 (5.184)
AyFy(z) — AiF1(2) + [(@2 — ar)en — 2561 + €n)gy(z) = 0 ‘
From Egs. (5.183) and (5.184), the stress functions are
Fi(z;) = iB; 'H '[(ax — a1)en — 21 + enlgy(z))
+ By 'H 'Yy[(ar — an)dy — 200d; + digj(z)) (5.185)
FH(Zj) = —iBﬁll_fil[(az — (11)6‘11 — 2(1251 + En]gg(zj) '

—By'H 'Vi[(a — m)dy — 2a0d; + dy)g) (z)

According to Eq. (5.121) on x, = 0 we have

22()(1) = 2RG{BHFH(X1) —l—ngl/[ (Xl)} = ZRG{BIFI()Q) + dlg:(xl)} (5186)
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5.6.2 The Point Heat Source Located at the External
of an Elliptic Inclusion

Let an infinite piezoelectric material IT occupied region £2~ with an elliptic inclusion],
occupied region 2 of major semiaxis a and minor axis b directed along the material
principle axes x; and x,, respectively. The interface of 2~ and 27 is denoted by L,
its normal is denoted by n directed the inside of the inclusion or the outside of the
piezoelectric material. At infinity 7'y = 0, ¢, = 0 and the connective conditions on
the L are

T'=Tu gqo)=qmnx) x€eL (5.187)

Let a point heat source at zy with strength M be located in the piezoelectric
material. We shall use the transform method to solve this problem (Qin 1998,
1999). The transform function from z plane to ¢ plane is shown in Eqgs. (3.82) and
(3.86). The point ¢, in ¢ plane is corresponding to point zy in z plane. L is
transformed to I'. Let g,(¢y) be the fundamental solution in the ¢ plane when the
piezoelectric material occupies the whole space and as in Sect. 5.6.1 we take

goler) =cln(gr —gor), ¢ =—M/4may; 9o(x1,x2) =2Regy(r) (5.188)

Obviously gy(¢r) is analytic in the inclusion 27 . Assume the solution of the
problem is

/ _ gi(é'T)7 cr et — 1 5189
ger) {gil(gr) + go(er), ¢reQ” (5.189)

where g{(¢7) and gj;(¢r) are analytic functions in 2" — £y and £27, and € is the
regionp < py = /m,0 < 0 < 2zand on 2y p(pye?) = ¢(pe V) (see Sect. 3.4.2).

According to Egs. (5.175) and (5.176), the continuity conditions of temperature
& and heat g,ds through a differential arc on I" can be reduced to

gi(0) + gi(0) = gy(o) + gi(o) + gy(0) + gh(o),

, . , - , - (5.190)
argy (o) — argy(o) = angy (o) — angy (o) + angy (o) — angy(o)

It is noted that g}(o) is analytic only in an annular region 2% — €. Similar to
Egs. (3.84) and (3.85), it yields

giler) = Z (diy + dis7") = de(gl} + visr)
=1 =1 (5.191)

v =pg =mlyy = [(a+ippb)/(a— iﬂTIb)]k7 po<lgl <1
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So Eq. (5.190) can be reduced to

io: + Ok d_ O-k gII(l/G) ( ):gII( +g0 1/6 i dk+vkdk

NgE

(ar/am) Y (di = dvap)o* + gy (1/0) — (o)

~
Il

0

= gu(0) — 8 (1/0) + (a/an) D _ (di — vedi)o
k=0
(5.192)

From Eq. (5.192) it is known that the functions at the left side in Eq. (5.192) are
analytic in the region £, whereas those on the right side are analytic in the region
27, and they are continuous on /. So these functions are analytic in whole plane and
must be constants. So we have

g: (di + ordi)o* — giy(1/) — gh(), ce @t

gi(6) = 3 (i + mdi)o ™t + gy(1/c), ce @
=1
ar Z (di — Oxdi)o* + aHgTI(l/G) —angylg), ¢eQf
k=0
0a2(s) = o _
angl(¢) + or Y (dy — medi)o ™ — angy(1/g), ¢ € Q~

k=0

01(¢) =

(5.193)

If there are no generalized external forces acting at infinite, these constants must
be zero, i.e., 81(00) = 62(c0) =0, so 61(¢) = 62(¢) =0 and from Eq. (5.193)
we get

Ngk

(di + vrdy)o* = gy (1/<) + g4(<),

~
Il
—_

a1 Y (dp — vpdi)o* = —angy(1/¢) + angy(s), ¢ €2
k=0

o (5.194)
> (di + vdi)o ™ = gfi(s) + 2(1/¢),
k=1
ar Y. (dp — vpdy)ot = —angy(¢) +angy(1/g), ¢e€Q”
k=0
Solving Eq. (5.194) yields
Z [(an + an)di + (an — a)iedi]¢" = 2ang;(c)
= (5.195)

gn(e) = —gh(1/¢) + > (di + vidi)s
k=1

o0
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Solving dy, gj;(¢) and using ¢; instead of ¢, from Eq. (5.189), g’(¢7) is obtained:

gi(er) = X di[eh + mgr*], cr €0 — Qg
=1

gl(GT) = o

guler) = golsr) —g(1/¢) + gl (de + oedp)sr®, or € 27

I9(x1,x2) =2Re g/(GT), gB(ZT) = —(M/4zay) In(sr — Gor)
(5.196)

5.6.3 Interaction of an Impermeable Crack
with a Singularity in a Piezoelectric Bimaterial

Let a mechanical singular generalized load with strength (b,p) be located at zg
in material II that occupied the lower half-plane €27, x, < 0. An insulated crack
(—a,a) is located on the interface x, = 0. According to Egs. (3.165), (3.166), and
(3.160), the generalized stress on the interface introduced by the singularity in a
piezoelectric material is

Zp =Zip = 2(x1) = @11 (x1) = 2ReBiFy(x;) = 2Re[H ' (Y1 + Yi1)Bugy(2)]
— 2Re [H*‘ (Yu + Yu)Bu(2ri(x; — 20)) " (BEb +Aﬁv)}
(5.197)

The original problem can be simply solved by the superposition method: The
singularity in a piezoelectric material without crack and an external force — X, (x;)
applies on the crack surface. The last problem has been solved in Sect. 4.2.4.

From Eq. (5.197) it is seen that the effect of a mechanical singularity is
equivalent to adding an external force — X,(x;) on the crack surface, and it does
not affect the heat flow.

A point heat source with strength M located at zp in material I, 27, x, < 0 will
produce the heat flow, as shown in Eq. (5.82), and generalized surface traction, as
shown in Eq. (5.186), i.e., the point heat source affects both the stress and tempera-
ture fields. A point heat source in a bimaterial is equivalent to a point heat source in
an infinite homogeneous piezoelectric material II and on the crack surface super-
posed the following loads:

qr = —q» = —iaa, [gg(xl) — gg(xl)], t) = —Z,(x1) = —2Re|BiF1(x;) —O—dIg:(xl)
(5.198)

where g (x1), g;(xl),FI(xl) are calculated from Egs. (5.175), (5.178), and (5.185),
respectively.
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Fig. 5.6 Integral path A for z
the integral @
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D||H
—n
—t -
B(—a,0) JO| L A(a,0) L
.“":(7
F

As an example we discuss the interaction of the above point heat source with a
single crack located at (—a,a) (Shen and Kuang 1998). It is assumed that the
boundary conditions are

Dpi(x)) =DPpi(x1) =0, gp(x)=gmx)=0 x¢elL

, (5.199)
@i(x1) = Pi(x1) =0, ¢;=T=0, |z]—o0; i=12

Substitution of Egs. (5.198) and (5.178) into Eq. (5.153) yields

ar + an, _gr(a)dxy
Z C
27 aH )/ Z*(xl) (o1 — z7) +Zo(zr)Cler)

Mi 1 1 1
- _ 7 — dx; + Z
4rlay o(r) /Lc (xl —z0 X — 20> Zg(xl)(xl —z7) 1+ Zo(zr)Cler)
(5.200)

9//(2 )

where Zy(z7) = (2} — a?) ~'2 The integral in Eq. (5.200) can be integrated. At first
we discuss the contour integral

1
*= /Azwl)(xl — )0 — 20) (1 — 20)

where A is shown in Fig. 5.6. Inside the contour there are three poles: z7, zg, Zp. Using
the residual theorem the @ is reduced to

@zzﬂi{ NEET NE G }
(

dx;

z—120)(z—2) (20—2)(z20—20) (20 —2)(%0 — 20)

On the other hand it is easy to prove that the integral @ on the path DEFGH
vanishes whereas on the path HJ/D equals

A1) —50 - " 1 1 1
2/Lc Zy (x1) (1 = zr) (21 — 20) (x1 — Zo)dx1 B /L (x1 —20 X — zo> Zg (x1)(x1 — z7) dvi
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From the condition at infinity in Eq. (5.199) and the single valued condition of
temperature we find C(zr) = 0. So Eq. (5.200) is reduced to

M 1 72 — a? 2 —a? M 1 1
o (er) — - {WO L } B A Py
ZT —da

2ray r — 2o zr — 20 270 \zr —z0 zr — Zo

(5.201)

Using T = 0 at infinity finally we get

In f%—az+f() \/Z%—GZ\/Z(%—CZ2+ZTZ()—GZ (5202)
VR @t R R @ rat—d]

Substituting Eq. (5.202) into (5.158) QTh(z) can be obtained:

o =
(ZT) 477.'(111

7o
f)Th(z):Q(z)[C(zﬂ—ﬁ L%], Q(z)=<Yo°>(z)> (5.203)

Zo(x1) =m0 (x1) +m0 (x1)

From Eq. (5.155) F (zj) and Fy (zj) can be obtained.

Gao and Wang (2001) discussed the permeable crack problem, Herrmann and
Loboda (2003) discussed the contact zone model in pyroelectric material, and
Norris (1994) discussed the dynamic Green function in piezoelectric material.

5.7 Functionally Graded Piezoelectric Material

5.7.1 Fundamental Equations in Antiplane Shear Problem

Functionally graded piezoelectric material (FGPM) is a kind of material with
continuously varying properties (Wu et al. 1996) which is very useful as a transit
layer instead of the bonding agent in order to avoid the very large stresses near the
interface. Li and Weng (2002) discussed the antiplane crack problem (Fig. 5.7) with
varied material constants for a transversely material:

Cis(r2) = CL(1 +af))', s =els(1+alx)), e =1+ ax))

o~ (i) o (275 1) o (1)

(5.204)

0 0 0 — hoh o oh — 4
where Cy,, €]s, €], are the values atx, = Oand Cy,, e}s, €}, are the values atx, = +5;

k and a are material constants. It is assumed that the geometry, material behavior,



5.7 Functionally Graded Piezoelectric Material 255

Fig. 5.7 An antiplane crack
in FGPM

and applied loading are symmetric about the x,-axis, so we only need to study the
part of x; > 0,x, > Oand |x;| = x,. The fundamental equations (4.238) and (4.239)
of antiplane shear problem discussed in Sect. 4.8.1 are still held in a FGPM, but the
material constants are functions of coordinates.

Substitution of Eq. (5.204) into Eq. (4.239) yields

ChL[Vus + (ka/&)usy] + )5 [V + (ka/&)g,] =0

(5.205)
s [V2us + (ka/&us] — €, [V + (ka/E)p,] =0, &=1+ax

where V2 = 0/0x} + 0/0x3. In general case (6(1)5)2 + CY,€9, # 0, so we also have
Vius + (ka/Euzp =0, Vo + (ka/E)p, =0 (5.206)
The boundary and connective conditions on x, = 0 are

0'32()(1,0) =0, E](X1,0+) = E‘l'(xl,O’), Dz(x1,0+) = D‘z'(xl,O*), 0<x<a
u3(x1:0) = 07 q)(xlv()) = 07 632(X1,0+) = 632(}“1707)7 a<x <oo
(5.207a)

where the right superscript “c” means that the related variable is in the air.
The boundary conditions on x, = 4 are divided into two forms dependent to giving
D2 or E2:

Case I: Ds(x1,h) =Dy, oxn(xi,h) =1,= (C4/Cliy)t0 — (€}s5/€}1)Do
Case 2: Ej(x1,h) = Ey,03(x1,h) =7, =10 — e}]’SEo ;7 0<x <0
(5.207b)

where Dy and E are the external electric displacement and field, respectively; 7 is

. . 2
the stress at zero electric loading, Cy; = Cl, + (el5)" /el,.
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5.7.2 Solution of the Antiplane Shear Problem

Considering the symmetry about x;-axis, Li and Weng (2002) used the Fourier
cosine transforms to solve this problem. Let

us(x1,x) = % /0 LA (9)Tp(Es/a)+Ax(s)Kp(Es/a) } cos(sxi)ds + arxa

@(x1,x) = % /0 LB (5)15(Es/a)+B2(s)Kp(Es/a) } cos(sxi)ds — bix,
(5.208)

where = (k — 1)/2; I; and K are the first and second kind of modified Bessel’s
functions, respectively; A;(s) and B;(s) are undetermined functions; a1, b; are real
constants. Equation (5.208) yields

031 (x1, %) = *% /OOO &P [(CaaAy + e15B1)Iy(Es/ )
+(Ca4Az + €15B2)Kp(Es/a)] sin(sx; )ds
nlne) = =2 [ {(Cutr + ens) [pagy(es/a) - se 1 e/
+(Caaty + e15B2) [{Bae Ky (E5/ ) — s& 7K (E/a)] } eos(sr)ds
+ Cygay — e15by

(5.209)
Dl(x17x2) = _% A Si_,:_ﬂ [(815A1 — 61131)1{3(5&/(1)
+(e15A2 — €11B2)Kg(és/a)] sin(sx; )ds

Ds(x1,x) = —% /0 {ﬂaffﬁfll,,(gs/a) - sgfﬂrﬂ(z;s/a)} (5.210)

x (e1sA1 — €11By) + [ﬂaf_ﬂ_lKﬁ(és/a) - sf‘ﬂK;;(és/a)}
X(€15A2 — 61182)} COS(SXl)dS + e5a; + 611b1

2 o0
Ei(x1,x) = . /o sE P [B114(Es/a) + BoKy(Es/a)] sin(sx; )ds

Ex(x1,%2) :% / h {31 [ﬂaé’ﬁ’llﬂ(és/a) . s{ﬂl’ﬁ(és/a)}

0
+B; [ﬂaéiﬁ*lKﬁ(fs/a) - sffﬂK'ﬂ(és/a)} } cos(sxy)ds + by
(5.211)

where I, K are the derivatives of I, Kp.
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In the air between the crack surfaces, we have
DS = ¢°ES, DS =cE, V=0 (5.212)

Its solution can be assumed as

2 o0
@°(x1,%2) :—/ C(s) sinh(sx;) cos(sx;)ds, 0<x; <a
7 Jo
2 o0
D$(x1,0) = 0, D(x1,0) = — > / ¢5C(s) cos(sx1)ds (5.213)
7 Jo

2 (o)
E{(x1,0) =0, E5(x,0) =—— / sC(s) cos(sxy)ds
0

T
where C(s) is an unknown function. Using the boundary conditions on x, = & yields

Ay(s) =RA(s), Ba(s) =RB(s)
Pa(l + ah) "' I[(1 + ah)s/a] — sTy(1 + ah)s/a
"~ pa(l +ah) Ky[(1 + ah)s/a] — sK)(1 + ah)s/a
a; = (e’fSDo + elflfo)/Cﬁe’fl, b = (CLDO — e’fsro)/CZZe’fl (case 1)
a; = (€lsEo +70) /Cly, by = E> (case 2)
(5.214)

Substituting  Eq(x1,0),¢(x1,0), ES(x1,0) into the corresponding boundary
conditions in Eq. (5.207) yields the following dual integral equation:

/OO 5B (s){Is(s/a)+RKp(s/a)} sin(sx;)ds =0, 0<x; <a
o (5.215)
/o B (s){Is(s/a)+RKp(s/a)} cos(sx;)ds =0, a <x; < oo

If let

By (s){l(s/a)+RKs(s/a)} = (ﬂa2/2)/0 V@ (n)Jo(san)dn (5.216)

where Jj is the zero-order Bessel function of the first kind, then the second equation
in Eq. (5.215) is satisfied automatically and the first equation in Eq. (5.215) requires
@(n) = 0. So it is easy to obtain By (s) = 0 and then straightly B,(s) = 0.

Substituting 63, (x1,0), u3(x1,0) into the corresponding boundary conditions in
Eq. (5.207) and noting B (s) = By(s) = 0, the following dual integral equation is
obtained:

/ SF(s)A(s) cos(sx; )ds = (/2)(Chyar — €sby) /Chy, 0<x; <a

o (5.217)

/ A(s)cos(sxy)ds =0, a<x < o0
0
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where

A(s) = A1 (5)1(s/a) + RK(s/0)
B [ﬂalﬁ(s/a) - sI;}(s/a)] +R [ﬁaKﬁ(s/a) - sK;j(s/a)} (5.218)
- s[Ip(s/a) + RKy(s/a)]

The solution of Eq. (5.217) can be written as

A0
na® Cis

A(s) = — > 0
44

1
| vavotsanan, ¢ =Cha -y 5219
0

Equation (5.219) satisfies the second equation in Eq. (5.217) automatically.
In order to satisfy the first equation in Eq. (5.217), ¥(#) should be satisfied by the
following Fredholm integral equation of the second kind:

1
W) + / ()Gl ) = Vi
= ot / F(s/a) — 1Wo(sn)o(sr)ds

(5.220)

5.7.3 The Generalized Stress Asymptotic Fields
Near the Crack Tip

The singular generalized stress fields are determined by the behavior of the solution
whens — oc. Using integration by parts to decompose Eq. (5.219) into singular and
regular parts,

A =" 2 ! {wmh o) | 1 whisan) s, [‘P(f’ﬂ dn} (5.221)

where J; is the first-order Bessel function of the first kind. The integral in
Eq. (5.221) is finite at the crack tipx; = +a, and the singular behavior is determined
by the term containing ¥(1). It is noted that the modified Bessel functions have the
following behaviors:

fim (5 = (1/Vam)et, Jim (9 (/ Vam)e
SILTOK,;(S):(\/M)G:_S, thﬁ ( ﬂ/2s)

(5.222)
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After complex derivation we obtain

031 = —CLa¥()EPfi(s), o3 = —Cha¥(1)Ef(s)

0 A0
Dy = - Ch ), Dy = -k g 229
Cis e

o _ . r . 91+92>
s) = Ji(sa)e ™ sin(sx;)ds = — sin| @ —
76) = [ e sin(on)as =~ sin0 - 21

b : 1 0;+0
fals) = /0 J1(sa)e ™ cos(sx;)ds = i };’17‘2 cos <6 A ; 2)

where the meanings of r, 7y, 7,, 6, 0,6, can be seen in Fig. 5.7. Let 8 — 0,60, — O,
ry — 2a,r — a from Eq. (5.223) we get

03] = — (KIII/V 277.'1’1) sin(91/2), 03) = (KIII/V 271'1’1) COS(91/2)7
D, = —(KI[I)I/s/2m'1) sin(6,/2), Dy = (KI[I’I/\/ZWI) c0s(61/2), Ei=E,=0

Km = 6‘24\/;51}'(1)7 KIDII - ( 15/C44>KIH - (C44els/c )\/”_alp(l

(5.224)

(5.225)

It is found that for the functional gradient piezoelectric material, the asymptotic
fields of the generalized stress still have the singularity 1/+/7. Because aj, b is

enclosed in (:’24 (see Eq. (5.219)), the generalized stress intensity factors are
different for two different electric boundary conditions. It is also found that the
electric field does not have singularity at the crack tip.

Yang et al. (2004) also discussed the electric field gradient effects in antiplane
problems of polarized ceramics.

5.7.4 Plane Strain Problem

The constitutive equations of the in-plane problem are

o1 = Criuyy +Cuzs —e31E3z, 033 = Cizup; + Cszuzz — enks
013 = Cas(ur3 +usy) —eisEr, Dy =eis(urs+usy) +enky (5.226)
D3 = e3juy) + e3suz3 + €33F3
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It is assumed that the material properties are one dimensional dependent to x3 as

(0 0 A0 0 0 0 0 0 00 f
(C11,C13,C33,Ca4, €31, €33, €15, €11, €33) = (Cn,C137C33»C447€31,633731576117633)eﬂ‘ d
(5.227)

where f is a material constant. The equilibrium equations in terms of generalized
displacements are

Chunn + Chqm 3 + (Cly + Cly)us s + (€8 + €)@ 13 + B[Coy (w3 +uzn) + elsp 4] =0
Couz i + Chuz s + (C(lj3 + C24)M1,13 +edsp.q1 + 3(3)3(P,33 +/’)(C?3”14,l + Chuzs + 5(3)3(/’,3) =0
6(1)5“3,11 + 5(3)3”3.33 + (‘321 + 6(1)5)“1>13 - L(I)I(/).ll - (23‘/"33 “‘/’7(6(3)1”1,1 + 9(3)3“3,3 - L(3)3§”,3) =0

(5.228)

In the air between the crack surfaces, the governing equations are still shown in
Eq. (5.212).

As in Sect. 5.7.1 it is assumed that the geometry, material behavior, and applied
loading are all symmetric about the x3-axis, so we only need to study the part of
x1 > 0,x3 > 0and |x;| = x2. The boundary conditions on the crack and connective
surfaces are

633()61,0):0, El(X170+):E(1:(X1,07), D3(X1,0+):D§(X1,07), OS |X1‘ <a
u3(x1,0) =0, @(x,0)=0, a<|x]|<oo; 063(x,07)=0, 0<|xj] <
(5.229a)

The boundary conditions on the edge x; = A are divided into two forms:

0% 0
e
. — _ 33 33 _ _
case 1: 633(X1,h) = 0op = CO oy — 60 Do, 613()(1,/’1) = 0, D3()C1,h) = D()
33 33

case 2: ox3(x1,h) =0, =00 — eg3EOeﬂh, o13(x1,h) =0, Es(x1,h) =Ep
(5.229b)

where Dy and E, are the external electric displacement and field, respectively, and 6¢

. . . 0 _ 0 0 2 0
is the stress at zero electric loading, C33 = C3; + (633) /633.
The single valued condition of the generalized displacements is

/j w(x))do =0, w(x)) =d[Us(x1,07) — Us(x1,07)]/dx;, 0<|x|<a

a

(5.230)

where y(x;) is the generalized dislocation density and on the connective surface
v =0.



5.7 Functionally Graded Piezoelectric Material 261

Ueda (2005) adopted the Fourier integral transform techniques to solve this
problem. Let

uy(xy,x3) / a;jA;(s)e’r™ sin(sx )ds
3(1,x3) Z/ )e™ cos(sx)ds + ao (1 — e %) (5.231)
@(x1,x3) = 2 Z/ bA;(s)e"™ cos(sxy)ds — by (1 — e )
T = 0

where A;(s) is undetermined function and ag, by are unknown constants; y;(s), ;(s),
b;(s) are known functions. y;(s) is the root of the following equation:

(303 + 2204)7° + (a2 + 2203 + a3 + 20a)7° + (a1 + 222 + a2 + 2103
+iq3 + gopa)r* + (F3qo + g1 + g1 + 8102 + fide + gop3 + foq3)r
+ (faqo + 8200 + iq1 + g1P1 + fog2+2op2)7” + (fido + g1po + foq1 + gop1)Y

+ (foqo + gopo) = 0
(5.232)

For convenience letRey;(s) < Rey;,(s),j = 1 — 5.a;(s), b;(s) are determined by

613}{? + QZJ(,Z +q17; + qo

ai(s) =
() 2217 + 817 + & (5.233)
bi(s) = [(CB + C44)57’/ + Cnﬂ] aj + C3357, + Cg3ﬂ7_; —CYys .
! 33577 + 3By, — s
where
fo= (€31615 + C13€ll)ﬂs
fi = (8,65 + CHe)f° — [els(e)s + €5,) + 1, (CTs + C4) |5 (5.234a)
f= [533 (2C(1)3 + C44) + 633 (2321 + e?s)}ﬂs
fr = [55(Chy + CLy) + €4 (e8, + €5) |7
= (Chaet +e3)5%, p1 = —(55C4, Jr26(3)3‘/’(1)5 +¢,C%)ps
<€33 Cg%%%) (633C44 +2¢33¢)5 + 511C(3)3) (5.234b)
=2(e% + CHe)Bs, pa = (e + Ce3y)s”
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g0 = s (6313(3)3 + C(1)3533)ﬂ +CY (61553% 3(3)36(1)1)32
= {5655 (Ch; + Cy) + €55(e5, + €ls)] + (€5, + €ls) (€3,€3; + Cl3¢33)
—Clu(€15¢35 — e55¢1,) }Bs
2 = { (s +¢3) [35(Cs + Cay) + €55 (5, +els) | =Cha (ehs5; — 5567, ) } 2
(5.234¢)
qo = €33 (Cuel, + €13) s
g1 = —€5(e33 + C3363) 5 + [(€5:C4s + €55els) — (else53 — e5,1) (Cls + Cy) |5
9 = _(331 + 2e15)(e33 C(3)3533)ﬂs q3 = _(6(3)1 + e(le) (633 C(3)3533)
(5.2344)

Let
: 2 [ .
@ (x1,x3) =— B(s) sinh(sx3) cos(sxy)ds, —a <x; <a (5.235)
T Jo

where B(s) is undetermined function.

Using the dislocation density y(x ), 633(x1,0) = 0, 0 < x; < a, other boundary
conditions, and Eq. (5.235), finally we can get the following singular integral
equation:

1 [ 1 O
— t M, (t M;(t dt = — 5.236
”/aw()[t_xl+ () + 2(,x1>] 7e (5330
The expressions of M (¢, x;) and M,(¢,x;) are omitted here.
Equations (5.236) and (5.231) form a singular integral equation system. Let

w() = (028 D) [VT=8, u=1/a (5.237)

Substitute Eq. (5.237) into (5.236) and then use the Gauss-Jacobi numerical
integral technique to solve the integral equation. The generalized stress intensity
factors are

K1 = lim \/2z(x; — a)o33(x1,0) = 6pv/mad(1), Kp= (Z§°/Z8°)KI (5.238)
x—at )
A lot of literatures studied the functional graded piezoelectric materials, such as
Zhou and Chen (2008), Chen et al. (2003), and Wang and Zhang (2004).
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