Chapter 4
Linear Inclusion and Related Problems

Abstract In this chapter, the linear cracks and inclusions are discussed. These
problems are mainly reduced to vector Riemann-Hilbert boundary problem with
many variables at first, and then the standard method to solve the Riemann-Hilbert
boundary problem is used. In general case, the numerical computation is used to get
the final results due to its complexity, but for some simpler problems, the analytical
solutions can also be obtained. The interface cracks, rigid inclusion, and electrodes
in piezoelectric bimaterials are discussed in detail. Some special problems, such as
partly insulated and partly conducting crack, the nonideal crack and some other
models in a homogeneous piezoelectric material, and contact zone model for
interface cracks in a piezoelectric bimaterial, are also discussed shortly. Some
interesting problems in engineering, such as interaction of collinear inclusions
with singularity loading, interaction of an elliptic hole and a vice-crack, strip
electric saturation model of an impermeable crack in a homogeneous material
and a strip electric saturation model for mode-III interface crack in a bimaterial,
and mode-III problem for a circular inclusion with interface cracks, are also
discussed.

Keywords Linear interface crack and inclusion e Singularity « Strip electric

saturation model ¢ Circular inclusion

4.1 Vector Riemann-Hilbert Boundary-Value
Problem in the z Plane

4.1.1 Fundamental Solution of the Homogeneous Equation

Let n non-intersect line segments L, k = 1 ~ n, be in the complex z plane, and its
assemble is denoted by L. The end points of L; are ay, by and from ay to by is its
positive direction; the left region of a;by is the region ST, and the right region is S~.

Z.-B. Kuang, Theory of Electroelasticity, DOI 10.1007/978-3-642-36291-0_4, 141
© Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg 2014
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Fig. 4.1 Riemann-Hilbert
boundary problem on smooth
non-intersecting curves

On L functions g(¢r) and Xy(¢) satisfied Holder condition are given (Fig. 4.1).
Now discuss thesolution of the following vector Riemann-Hilbert equation on L
(Muskhelishvili 1954, 1975; Hou et al. 1990):

B (1) —gh™ (1) = Zo(1), k(1) — gghi (1) = Zai(1), ij=1-m; 1€l
4.1)
where g is an m X m order Hermite matrix and detg #* 0 and ¢ is a point on L.

The superscripts “ + ” and “ — ” indicate the limit values taken from the left and
right sides along a;by, respectively. The corresponding homogeneous equation is

B (1) —gh™ (1) =0, hi(t)—gh (1) =0, r€L 4.2)
Let the fundamental solution of the homogeneous equation be

Xo(z) = [Xo1(2), X2 (2), - . . Xom(2))]" = @Yo(2)

n

Xoj(z) = 0Yo(z), Yo(z) = H (z—a) " (z—b) " (4.3a)
k=1

X, (1) =e X[ (1), or Xg(1) =Xy (1)

Usually, the single-valued branch of the multi-value function Yy (z) is selected such
that Yo(z) — z™" when z — oo. Substitution of Eq. (4.3a) into Eq. (4.2) yields

X, (1) —gXy, (1) =0 = (eI-gw=0 (4.4)
In order to have nontrivial solution for @, it must be

|e¥1—g| =0, I=diag[l,1,...,1] 4.5)

mxm

From Eqs. (4.5) and (4.4), we can get m eigenvectors o), 0@, .. . o™
corresponding to m eigenvalues, >V e? 72 . e?"n where y, is limited within
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the semi-open interval [0, 27). For a eigenvalue e?*, there is only one component
of ) is undetermined. The fundamental solution Eq. (4.3a) becomes

X('(2) = 0@, X)) =o' )
(i) 2 - el (4.3b)
Yo'@)=||C—a) " (z—=b)"", i,j=12,....m

k)

=
The complete fundamental solutions form a square matrix P(z):

Pe) = [X)0.X70). . XP6)] =200, Py =x0)

0(z) = <Y§,">(z)> — diag [Y(()l)(z)7 o ,Yg"”(z)} Q= [a)(l)7a)(2), . ,a)(”’)}

(4.6)
4.1.2 First Solving Method
From the behavior of the fundamental solution, it is known that
P (1)—gP (1)=0, g=P )P ()", teL 4.7
Substitution of Eq. (4.7) into Eq. (4.2) yields
P B ) =P (0] (), reL “8)

The function at the left side in Eq. (4.8) is analytic in ST, whereas those on the
right side are analytic in S™, and they are continuous on L. So these functions are
analytic in whole plane and must be constants. The general solution hg(z) of
Eq. (4.2) is

[P(z)] 'ho(z) = C(2),  ho(2) = P()C(z)

Co)=c"+ei? '+ +eo, =l ..., or

C(2) = [€V(2),CD(2),...,c™ )", cW(z) = [c'(k)z" +cM g cff)]
4.9)

If the infinite point is a pole in order p, C(z) is a vector polynomial less than
order n + p.
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Substitution of Eq. (4.7) into the inhomogeneous equation (4.1) yields
PO B () = P (0)] ' (1) = [PT ()] ' Zo(r), t€L (4.10)

Equation (4.10) is a decoupling Riemann-Hilbert boundary problem of [P(z)]”'h(z).
By using the Cauchy formula, the special solution A, is

PO hole) =51 [ s ale) =2 [ 008

The general solution of the inhomogeneous equation (4.1) is

h(z) = ho(z) + hyp(2)

=P(2) [C(z) +% /L (Et(i)(;;] _ zm:Xék>(z) {% /L (fk_(tz)) dr+ ()

4.12)

4.1.3 Second Solving Method

Because g is a Hermite matrix, the eigenvectors corresponding to the different
eigenvalues are orthogonal to each other in the complex space. Form a square
matrix £2 consisted of @ and

2= loV 0?, .. ,w("”}, Q'o-A 07=—oa!

QTg.Q =M, M = diag[e*” i“A%, e i7"11\3"] (4.13)

A =diag[A? A3, A2], A2 = &)gi)wsi> + @(Zi)w(zi) +o @Dl

m —m

In most cases £2 is assumed normalized, i.e., .QT.Q =A=1L
Multiplying on both sides of Eq. (4.1) from left by Q" and using Eq. (4.13) we get

Q' (1) — (2'gR)Q 'h () =2 "h (1) —MA'Qh (1) = 2" Zo(1)

. . . . (4.14)
MA—I _ diag[ez” iyy , eZn 1}/27 o ,82” 1ym] — <e2n 1}//->
Equation (4.14) can be expressed in the following decoupling form:
V) - MATY () =25 (0), ¥ ()T () = Z(0) @.15)

Y() =2 h(z), () =2"Z()
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Equation (4.15) is the scalar Riemann-Hilbert boundary-value problem of the
component ¥; of ¥, soits solution is

¥(:) = 0(2) {AC<z) e [ w}; b () =2 )

271 Jp (t—7z)
¥,(z) = Y (z){ A0 () + 2% /L Y()f(t()t()tm—z) } (4.16)

0() = (')

Solving ¥ (z), h(z) is obtained by h(z) = .Q_T‘I’(z), where ' = [.QTT1 =0A7"

If we assume [Q*(t)}l;lZ;(t) — oyt + -+ o+ o1/t +---, when t — oo and
it is single valued, Eq. (4.16) is reduced to

¥(:) = 0(){AC() + (1 =) 0] "2 () — (@ + - + )| |

ZAC R }
Yy (2)
where the following integral formula has been used (Shen and Kuang 1998):

1 +(r)ds L6,
2ni/ Xt —z2) 1-gg [X<z> ‘ } (4.18)
Xt —gX(1)=0, G (1)=g'G" (1), g=e"" telL

l, . 1
lPi(Z) = Y(())(Z) {Azzc(l) <Z) + 1 — e2niy;

q

a4y a(<)i>)

4.17)

For a single-valued function G(z), g* = 1, Eq. (4.18) is just the formula given by
Muskhelishvili (1954).

The two methods are equivalent. In fact by using Q= QA7 Eq. (4.15) can be
reduced to

h(z) = QiTY’(Z) = QAIQ(Z){ 2,,1 /QQ = ));1 dtz)}

- 1 Zo(xy)dt
- a00{c0)+ 575 | gt =5

—ra{ce 45y [ %}

which is identical with Eq. (4.12).
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4.2 Interface Cracks in Piezoelectric Bimaterials

4.2.1 General Discussion of an Impermeable Interface
Cracks

Discuss a piezoelectric bimaterial with collinear impermeable cracks without
generalized loading at infinity (Suo 1990; Suo et al. 1992; Kuang and Ma 2002).
Let the material I be located at the upper half plane S*, x, > 0; the material II is
located at the lower half plane S™, x, < 0; x, = 0 is the interface L, there are
collinear cracks, the left end point of the crack L; is denoted by a;, and the right end
point by and its assemble is denoted by L.. L — L. is the connected surface (Fig. 4.2).
For a single crack with length 2a, we always let the coordinate origin be selected
at the center of the crack. These notations will be used in this whole chapter.
Assuming the generalized forces Xo(x;) = [f, 15,75, —6*]" acting on the crack
surfaces are self-equilibrium, at infinity, generalized forces are equal to zero, i.e.,

2(x1) = Zi(x1) = Zy(xr) = Zo(x1), x€Le
Zi(x1) = Zu(x;) =0, atinfinity; Zg(x;) = 2Re[BsFs(x1)], p=LII
4.19)

On the connected surface, the generalized displacements and traction are continuous:

dix;)) =Ui(x)) —Un(x1)) =0, Z(x1) =2Zp(x) =2m(y), xeL—-L,
(4.20)

where [l(xl) is the displacement disconnected value between crack surfaces and
the crack opening displacement. Because for any subscript j, xi; = x; is held on
the axis x, so

d(x;) = Ui(x1) — Un(x1) = 2Re[A1f(x1) — Anfy(x1)] @.21)
According to the given conditions, the generalized tractions are continuous on
the whole axis x1, i.e., Zp(x;) = Zma(xy), or

B]FI(Xl) +B[F1(X1) = BHFH(Xl) +BHFH(X1), -0 <x; <00, oOr

; L 3 . 4.22)
B\F\ (x1) — BuFyj(x1) = BuFy (x1) — BiFy (x1)
a X, . b L2
crack or @S DS
inclusion
a, b Ol a. b, a, b o -a 0 a T
@® s ® s

Fig. 4.2 Collinear interface cracks or inclusions: (a) general case and (b) one crack or inclusion
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where the superscripts “ 4 and ““ — ” indicate the limit values taken from the upper
and lower half -planes, respectively. It is known that the functions at the left side
in Eq. (4.22) are analytic in the upper half plane x, > 0, whereas those on the
right side are analytic in the lower half plane x, < 0, and they are continuous on
x1 = 0. So, according to Liouville theorem (Lavrenchive and Shabat 1951), these
functions are analytic in whole plane and must be constants and equal to zero due to
2> =0. So,

BIFI(Z) = BHI“H(Z)7 Xy > O, BHFH(Z) = BIFI<Z), Xy < 0 (423)
From Egs. (4.21) and (4.23), the dislocation density d (x1) can be written as

id'(v)) = idd(x1) /dvi = [AF)(x1) +iAFi(n)] = [AnFu(n) +iAnFu ()
= [iAiB; ' — iAyBy ' |BiFi(x1) — [iAnBy' — iAiB; '|BuFu(x)
= HB/F(x;) — HByFy(x,)
(4.24)

where

You You

H=Y +Y, Ya:iArlBila Ya:
! 1 “« (Ya41 )

>, a=1L1 (425

It is easy shown that Y, and H are all Hermite matrixes. Y, is a 3 x 3 positive
definite matrix, Y4 =Y 541 is a piezoelectric matrix, and Y44 is an element of
dielectric coefficient. For a stable material, Y 44 < O.

4.2.2 A Simple Method to Get Fy(z;)

Because on the interface z; = x|, a simple method to solve the problem can be
adopted (Suo 1990; Kuang and Ma 2002). At first we discuss two auxiliary
complex functions F(z) and Fyi(z) in z plane with complex variable z which also
satisfy Egs. (4.19) and (4.24) on the interface and solve the problem in z plane.
According to Eq. (4.24), we can construct an auxiliary function h(z) analytic in
whole plane except cracks by standard analytic continuation through the connected
part on the interface:

_ [ BiF\(2), x>0 B .
h(z) = {HIHBHFH(Z), 5 <0 z¢L., z=x1+1ix (4.26)

The standard analytic continuation will be often used in the following sections. It is
obvious that at points x; ¢ L. on axis x|, BiF1(x;) = H™'HByFy(x)is held. Solving
h(z), the Fp(z) can be obtained by the following equations:
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Fi(z) =B{'h(z), x >0; Fu(z)=By'H 'Hh(z), x,<0
— 1 551
F[j(Z) = Bljllh](Z), X2 Z 07 FH]'(Z) =B ! H Hn[/’l[(Z), X2 S O

Ijm™ "mn

(4.27)

-1 _ 1| .5 — R
where Bj} = [Bﬁ Ll,ﬂ — LI =1—4
Substituting Eqs. (4.26) and (4.23) into Eq. (4.19) and noting on x; axis all
z; = x; we find

R (x)+H '

Hh™ (x) =Zp(x1), x1 €L (4.28)
Iflet H 'H = —g, Eq. (4.28) is identical with Eq. (4.1), which is solved as shown
in Sect. 4.2.

A simple method to get F(z;), for the original piezoelectric problem is replacing
zby zjin F(z). In fact the solution F(z;) solved by this method are still satisfy Eqgs.
(4.19) and (4.20) due to on the axis xi, Fi(z;) = Fi(x1), Fu(z;)) = Fu(x1), and
h(z;) = h(x;). Outside axis x;, Af (z;) and Bf (z;) satisfy the generalized equilibrium
equations due to they are selected as the general solutions given in Egs. (3.18) and
(3.23).

4.2.3 General Solution of the Homogeneous Equation

From Eq. (4.28), the homogeneous vector Riemann-Hilbert equation in the z
plane is

B (x))+H '"Hh (x,) =0, x €L (4.29)

If let H 'H=—g, Eq. (4.29) is identical with (4.1). So the solution of the
homogeneous equation is still expressed by Eqs. (4.3) and (4.6), but Egs. (4.4)
and (4.5) are changed to

(1 B H)w =0, |1+ BH| =0 (4.30)

Lety = 1/2 + ie. Using e>7i(1/2+ie) — _e=27 Eq. (4.30) and its conjugate equation
can be reduced to

(e 1-H'H)w =0, (¢*1-H'H)® =0
@31)
H—&H| =0, |H—cH|—0
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It is obvious that € and — ¢ are all the solutions of Eq. (4.31). Because His a4 x 4
order Hermite matrix, it can be decomposed to

H=A;+iA;, H=A|—iA; (4.32)
where A is a real symmetric matrix and A, is an antisymmetric matrix. Let

et _ o 62”5 —1 1 1 +/}
— tanh(ze) — _ L 433
B an (ﬂ‘C') e te—me  o2re 4 1’ or ¢ 2 nl —p ( )

Substitution of Egs. (4.32) and (4.33) into Eq. (4.31) yields
AT A2 +iB1) =0, |A7'A; —iBI =0 (4.34)

It is known that f,—p are all roots of the above equation. Expanding above
equation, we get

B 426 +c=0, b=(1/A]A'A2)"], c=|A;'A] (4.352)

Because A; is an even antisymmetric matrix, |A;| > 0, Y, positive definite,
Y44 < 0, it is derived that |A1_1| < 0 and ¢ < 0. Therefore

Pra=+\ (0 =) —b, Pyy =i/ (02— )+ (4.35b)
o\

Corresponding ¢ is denoted as

g1 = —& =¢€), €& = fa.rtanh

_ . _ 1/2
&4 = —€3 = 1K, = —artan

where €y, k are real. From Egs. (4 31), (4.32), (4.33), (4.34), (4.35a), (4.35b) and
(4.36), it is known that ") and ®®, @ and ®®), and @®) and @¥ satisfy the same

(4.36)

eigen-equation, so we have @(!) = cw(z), where ¢ is a real constant and @®) and @
are real vectors.
The fundamental solution of Egs. (4.3), (4.6), and (4.13) can be rewritten in € as

Pe) =[x 0] =200), @=[0".0? 00", 2'e=a=(x)
O'H'HQ=-M, M= <e2”inA}>, MA™! = (e2710) = (—e2ie)

— (v YO T ! (Z - bk) s34
Q(Z) < 0 (Z)>5 0 (Z) kr:[1 (Z—ak)(Z—bk) 7 —a; ) l 3“5y
(4.37)

In practice £ is normalized, i.e., QT.Q =1L
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For a homogeneous material, H, £ are real, so & =¢ = O,yj =y=1/2,
Q(2) = (Yo(2)), Yo(2) = ¥ (2) = [Tiey (G —a)z = b)) 2 i = 1—m.

4.2.4 General Solution of the Inhomogeneous Equation
for Impermeable Cracks

First method. For the inhomogeneous equation (4.1) in z plane, the solution of A(z)
is Eq. (4.12), i.e.,

_ \ )
46 = P00+ 7 [ G25] =305 [ e
L =1 L

(1) = (510, (1), ., Za(0)]" = [P ()] " Zo(0)

(4.38)
Solving h(z), according to Sect. 4.2.2, F 4(z;) can be solved by the following equations:
Fi(z) = B{'h(z), Fy(z) = Bylhi(z), Fiz) = [Fy(z)]", x>0

Fu(z) = By'H'HR(z),  Fui(z) = By Ho Huhi(z),  Fu(z) = [Fui(z)]", 0 <0
4.39)

The stresses are

2[1 = —2Re [BlﬂjFl(Zj)]7 212 = ZRC [BIF[(ZJ')], X2 > O

(4.40)
i = —2Re[BuuiFu(z)], Zm =2Re[BuFu(z)], x» <0

Second method. The solution ¥ (z) of Eq. (4.1) is shown in Eqgs. (4.16) or (4.17), i.e.,
(@ ()] = (r)dr

(x1 —2)

= 0(){ACE) + (1= ) [I0G)] ' F () - (@2 + -+ a0)| }
() =R'h(z), () =2 Z0)

Y(z) =0(z) {AC(Z) + 1 /L

27

(4.41a)

where [Q*(t)},;lz;‘(t) — oyt 4+ op+ o/t + -+, when t — oo is assumed.
Combining the similar terms in Eq. (4.41a) yields
-T

¥(z) =0(z)C(z) + (I - MA*‘)"E*(Z), h(z) =Q P(2) (4.41b)

Fp(z;) can be obtained from Eq. (4.39).
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The closed solutions of the displacements and stresses are difficult obtained,
usually adopted numerical method. But the stress intensity can be expressed
analytically.

4.2.5 The Stress Asymptotic Field and the Stress
Intensity Factors

Discuss a crack of length 2a and its center is selected as the origin (Fig. 4.2b). From
Egs. (4.37) and (4.38), the fundamental solution can be written as

(i) N 1 Z—a ie; A B L E(xl)dxl
Yo () = V2 — &2 (z+a> €@ _C(Z)+2ﬂi/L X1 —z (4.42)

h) = @(Y{()C'(), 20 = PO Bor), i=1,2,3,4

Near the right crack tip x; = a, the asymptotic form of h(z) and Fy(z) is,
respectively,

lim £(z) < ~(/2) +l€’>C(a), C(a) = <(Z i a)*<1/2>*167>é/(a)
Fi(z) = B 'h(2), FI/(Z/) Byl hi(z), x> 0; (4.43)
Fu(z) = By'H™ th(Z)v Fuj(zj) = BH]mHmanlhl(Zj)v X <0

Combining Egs. (4.40) and (4.43) yields the asymptotic stresses near the right crack
tip, but they are complex. However when the stress intensity factors are discussed
only, the general expressions of the stress asymptotic field are not needed. Using all
z; = x1 on the axis x; yields

Zp(x1) = Zip(x) = Za(x1) = BiFi(x1) + BiF1(%,)
h+(X1) = hf(xl) = h(xl), or HBIFI(Xl) = HBHFH(Xl)

Using Egs. (4.23), (4.26), and (4.31) yields

S(0) =ht(x) +H "Hh (x) = 1+ H 'H)h(x,)

U 4.44
_ .Q<(l +e—2ne,)(xl . a)—(1/2)+1s,->c(a) ( )

If H is complex, from Eq. (4.44), it is seen that the stresses are oscillated near the
crack tip. The stress intensity factors K of the bimaterial are defined in the way
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that they can be reduced to the definition in a homogeneous material. According to
Eq. (4.44), the K can be defined as

K=V2r2 (1+e )¢, €= (1/Var)(1+e?) '@ K (445)

The stress asymptotic field can be written as

1 .
Ylim 2(x1) = m9<()€1 - Cl)lé’>-971K (4.46)
X|—a 1 —

According to Eq. (4.46) K can be expressed by the generalized stresses as

K = [KH,KI,KIH,KD]T = lim 277.'()(1 — G)Q<(X1 — a)_i€f>!2_122(x1) (447)

X|1—a

where K is real and does not effect by the constant in 2. For a homogeneous
material, <(x1 - a)f"sf> =JandK = [KH,KI,KHI,KD]T = lim /27(x; — a)X5(x;)
X|—a

which is identical with that in Eq. (3.220). In some literatures, the following
definition is also used:

K = [Ku, K1, K, Kp]" = xllil_l}a mfz(m)<(x1 - a)*i€f>
1

tim 2o = gy — ")

(4.48)

Beom and Atluri (1996), Shen et al. (1999, 2007), and many other literatures
discussed many interesting problems.

4.2.6 Permeable Crack

Discuss a permeable crack in an infinite bimaterial. The boundary condition at
infinity is

2, =X°(x;), atinfinity (4.49)

The mixed boundary conditions on the crack surface and the continuity
conditions on the connective interface are

o12i(x1) =ou2i(x1) =0; Eyy=Eni;, Dp=Dmp=D;; xi€Ll; i=1.2
ur2i(x1) = un2i(x1), o12i(x1) = on2i(x1); Err =Eni, Dp=Dm = Dy;
x1€L—L,
(4.50)
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The main different of the permeable crack with the impermeable crack is that
the electric displacement on an impermeable crack is given and the potential is
unknown, but on a permeable crack D, is undetermined and the potential is given.
Because the generalized stresses are continuous on the whole axis xj, so

BiF1(x1) + BiF (X)) = BuFnu(x1) + BuFu (%) = 2Z2(x1), —oo <x; <00
4.51)

Noting X, = Z5°(x;) # 0 at infinity, like Egs. (4.22) and (4.23), from Eq. (4.51)
we get

BiFy(x)) — BuFy(%) = BIIFII(X1)7—7BIF1()E1)7= A% 4.52)
A% = (1/2)[(BiF{° + BuFy’) — (BiF{° + BuFy)]; Fu(z), a=LII
where A® is a pure imaginary vector. Analogous to Eq. (4.24),
id'(x1) = HB\Fy(x|) — HBuFy(x)) — (Y — ¥1)A™ (4.53)
Analogous to Eq. (4.26) let,
h(z) = {ZlFllgz);’HFH(z) CH - Ta, ngor Hle (@5
Using Eq. (4.54), Eq. (4.53) is reduced to
id'(x)) = H[h" (x;) — h™ (x}))] (4.55)
Substituting Eq. (4.54) into (4.51) and using Eq. (4.52) we get
%,(x1) = BiFy(x;) + BiFy(x;) = h" (x;) + ByFy(x;) — A® (4.56)

=h"(x)+H 'Hh (x)) — A, AP =H '(Y;—¥)A%

According to Eq. (4.50), on the crack surface o; = 0, but D5 is unknown, so on
the crack surface, Eq. (4.56) is reduced to

B (x) +H "Hh (x)) = A +isDa(x1), iy =1[0,0,0,1]", ze€L. (457

According to Eq. (4.50), E; is continuous on whole axis x;, so according to
Eq. (4.55), we have

Hyh"(x)) —h™(x1)] =0, Hy=[Hu,Hip,Hiz, Hu], |xi|<oco  (4.58)
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The solution of Eq. (4.58) in the z plane is

3
Hyh(z) = Hyh(00),  ha(z) = —Hy' Y " Hyhi(z) + Hy Hah(c0)  (4.59)
j=1

Multiplying both sides of Eq. (4.56) by QT, noting on connective surface h™ (x;) =
h~(x;), and when x; — oo we get

h(oo) = @( (1 +e7) " )Q" (a7 + 25 (4.60)

Now, the problem is reduced to solve Eqs. (4.57) and (4.59).

The homogeneous equation corresponding to Eq. (4.57) is identical with
Eq. (4.29), so its solution is still expressed by Eq. (4.37). We shall use the second
method to solve the inhomogeneous equation (4.57) and adopt the normalized

matrix £, i.e., Q'e-1 Multiplying on both sides of Eq. (4.57) from left by QT,
P () = MY () =2 (), ¥ (u) - (n) = X (n)
P(z) = Qh(z), M= (" ") ¥(1)=Q [AF +isDs(x))]
(4.61)

Analogous to Egs. (4.14), (4.15), (4.16), and (4.17), the solution of Eq. (4.61) in
the z plane is

_ 20\ I\ T fr00 o & ()
h(z) = .Q<(l + ) >.Q (A7 +uDs(2)} + .Q<Y0 (z)>C(z) we)
Ciz)=ct"+ ¢, 12"+ +eo
Using the condition at infinity yields
h(oo) = 2( (14 )™ )@ (AT +1sDs(0)} + 2C, (4.63)

Substituting Eq. (4.62) into Eq. (4.59) yields the equation to determine D,(z):
H4{.Q<(1 + 62”‘7)71>QT{AC1’° +isDy(2) } + .Q<Y(()j> (Z)>C(Z)} = H4h(o0)
(4.64)
Comparing Eqgs. (4.60) and (4.63) yields

T

Co=((1+e2) )RSy, 5 =X —uDa(oc) = [057,0]"  (465)
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Other unknowns in C(z) are determined by the single-valued condition. Using
Eq. (4.55) yields

a

a
7{ h(z)dz =0, or / (U* — U ) dx; = 0 (for one crack) (4.66)
Le -

Equation (4.54) yields

F[(Z) = Bl_lh(Z), X2 Z 0; FH(Z) = BI_I]H_I[Hh(Z) — (YH — Y[)Aoo], X2 S 0
(4.67)

Solving h(z), F(z;) can be obtained. From Eq. (4.56), the stress on the axis x; is
5(n) = (I + H*IH)h(xl) s (4.68)
For one crack in a homogeneous material, we have
Al=An=A,Bi=Bu=BH =Hy=H=H,A" =0, =0,y =1/2
and

h(z) = (1/2)uDa() + (¥ (2))C, €= (1/92'5y, 5 = [o3,0]"
(4.69)

Gao and Wang (2000, 2001) discussed the collinear permeable cracks and the
mutual effect of a crack with a point singularity.

4.3 Other Line Inclusions

4.3.1 Rigid Line Inclusion

Discuss a nonconductive rigid line inclusion in an infinite bimaterial (Zhou et al.
2008). In Fig. 4.2 the crack is replaced by a rigid inclusion. The boundary condition
at infinity is

2, =25(xy), at infinity (4.70)

The mixed boundary conditions on the surface of the rigid line inclusion and the
continuity conditions on the connective interface are
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uj| = uy,| = um; = ®dp, Xx€Le; Ery=Eyn;, Dp=Dm, x€cL
Ui(x) = Un(x), Z2(x1) =Zp(x) =2Zm(x), xe€L—L
“4.71)

where @ is the rotation angle about axis x3 of the inclusion. The main difference
between the rigid line inclusion and a permeable crack is that in a permeable crack
surfaces, the stresses are given, but for a rigid line inclusion, the rotational angles or
moments are given.

According to Stroh’s formula we have

Up 1 =AFo(2) + AeFo(z); @y = BoFo(2) + BoF4(z),

4.72)
Fo(z) =fl(z), a=L1

The generalized displacements are continuous on the whole axis x;, so analogous to
Eq. (4.52) it yields

ArF(x)) + AF (%)) = ApFy(x) + ApFy(x), —oo <x; < o0
AF(5) = AnFu(x) — 4%, A% = (1/2)[(AF> + AnF) — (AF> + AnF)),
a=11
4.73)

Analogous to previous sections, we have
AD (x1) = Dy (x1) — Py i (x1) = |BiFi(x1) +BIF1(X1)} — [BHFH(xl) + ByF(x;)

= iR[A[F[(X]) —RilkAuFu(Xl) —Ril(Yﬁl — Y;I)AOO]
Y,! = -iB, A", Y,=iAB,', R=Y;'+Y

a a a

4.74)

On the connective surface, Eq. (4.74) is zero, so by standard analytic continuation,
we can construct a function A(z) analytic in whole plane except the rigid inclusions:

_ JAF(2) sest
hle) = {RIRAIIFII(Z) +R (Y —¥)A® zes (4.75)

Equations (4.74) and (4.75) yield
Adj’](xl) = iR[h+()C1) — hi(Xl)], X1 € LC; Ad)’](X]) = 0, X1 ¢LC (476)

From Eq. (4.71), it is known that D,(x;) is continuous on whole axis x;, so
A@471(X1) = 0, or

Ryfh*(x1) —h™(x1)] =0, —oo0 <x; <00, Ry=I[Ra1,Rar,Ru3,Rsa] (4.77)
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where Ry is the fourth row of R and R} can be seen as a vector. The solution of
Eq. (4.77) is

R4h(z) = R4h™, h> = h(0) (4.78)
Using Eq. (4.73) it is easy get

UI,I(XI) :AIFI(Xl) +AIF1()?1) = h+(x1) +R71Rh7()€1) 74?0

L i (4.79)
A =R (Y;' -y ")a>

From Eq. (4.71), it is known that on the inclusion surface, we have

Ui(x1) = woly — E1(x1)ls, x1 €L 1 =10,1,0,0]", iy =1[0,0,0,1]"
(4.80)

where E;(x;) is the boundary value of E;(z) on the inclusion surface and is
unknown. So Eq. (4.79) can be reduced to a vector Riemann-Hilbert equation:

BY(x)) + R 'R (x)) = A% + woly — Ey(x))iy, x1 € Le (4.81)
Equation (4.81) is identical with (4.28) except using R and AS° + woi, — E; (x1)i4
instead of H and Xy (x| ), respectively, but E;(x)is is undetermined, and wyi, is
given or determined by given moment on the inclusion. The homogeneous equation
of Eq. (4.81) is

B (x)+R 'Rh (x)) =0, x €L (4.82)

The difference of the homogeneous equation Egs. (4.82) and (4.29) is only using R
instead of H. So the fundamental solution of Eq. (4.82) is still expressed by
Eq. (4.37), but the eigen-equation is changed to

(e_zﬂsl _ RilR)(l) _ 07 (e2lré‘I _ R*IR) )6) = 0, }R — e27r6‘R| = 0,

_ (4.83)
IR — e R| =0
From Egs. (4.78) and (4.81), the solution of the inhomogeneous problem is
— Q {AOO + 0)012 E] (X] )14}
dx C
27r i / Q" (x1)(x1 — 2) 1+ 2E)CE)
= <(1 + &) l>{.{2 AT + wol, — E, (Z)i4]} +0(2)C(2)

(4.84)

n(z) = ((1+e) )R AY + woi — E1(2)ia] + 2(¥y ()€ ()
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where C(z) = Cyz 4+ Cy. E|(z) can be obtained from Egs. (4.78) and (4.84):

R¢Q<(1+eh“f4>QTuEﬂﬂ

B ) (4.85)
= Ra2((14+*) ) Q" (A7 + wid) + (Y] (2) )C(2) — Reh™

The unknown constants are obtained by using the conditions at infinity and the
single-valued conditions and the moment condition:

/A¢71dxl :/ Ad’JdX] = 0, / A(pl 1()(?1 7)6())(1)(1 =M (486)
L —a —

a

The rigid line inclusion is discussed in many literatures (Shi 1997; Deng and
Meguid 1998).

4.3.2 A Bimaterial with an Electrode on the Interface

Discuss a thin soft electrode of length 2a occupied L. and let the coordinate origin be
located at the center of the electrode (Ru 2000). In Fig. 4.2 the crack is changed to
an electrode. The connective surface is denoted by L — L.. Assume the boundary
conditions are

oni = O, Uy =un, En=~FEm, Dp=Dm, xi¢L

oni = omi, Uy =un, En=Emn =020, / 6(x1)dx; =¢q, x3 €L. (4.87)
L.

6; —0, Dj—0, [z]— 00

where 6(x1) = Dra(x1) — D2 (x1) and g is the total electric charge on the electrode.
Because the generalized displacements are continuous on whole axis x;, analo-
gous to Egs. (4.23) and (4.73) and noting ¢;;, D; — 0 at infinity, we have

ArF (x1) + AlF1(X)) = AnFu(x)) + AnFu(x), —oo <x <oo
A]F[(Z) AHFH(Z) or Y}B]FI(Z) = —Y[]B][FH(Z); Xy > 0 (488)
AHFH(Z) IFI(Z) or YHBHFH(Z) = —YIBIFI(Z); X2 < 0

According to Eqs. (4.87) and noting Xy, — Xy, = @y — Dy yield
0, z¢ L,

0,0,0,6(x,)]", ze€L
(4.89)

[BiF1(x1) —175'115'11(161)]+ — [BuFu(x1) — BiFi(x))]” = {
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From Eq. (4.89), we can construct a function k(z) analytic in whole plane except L
by the analytic continuation through L — L.. Using the Sokhotski (Coxomkwmii)-
Plemelj formula of the Cauchy-type integral, its solution is

T BIFI(Z) — 71[17"[1(2), ze St 1 / 5(-Xl)
= = — _ . _ —dx
e) = [0.0.0,)" = { LBl 28— [ 2y
(4.90)
Using Eq. (4.88), Eq. (4.90) can be reduced to
(Y1 + Yu)BiFi(z) = Yuu[0,0,0,x(2)]", zeS* @91)
(Yu + Y1)BuFu(z) = ¥10,0,0,x(2)]", z€S~
Using Eq. (4.88) from EI = 0 on L., see Eq. (4.87), yields
[YiBiF1(x))]" + [YuBuFu(x))] = [*,%,%0]", zelL (4.92)

[T L)

where “+” is not an applied variable and omitted. Substitution of Eq. (4.91) into
Eq. (4.92) yields

Yi(Yy + Y) ' ¥5[0,0, 0,)(+(X1)]T + Yu(Yu + Y1) ' ¥1[0,0,0, 5 (x))]" 4.93)
I '

= [, %,%,0

zeL,

The fourth component of Eq. (4.93) is

X)) —gr (x)=0, g= *[YH(YH + YI)_IYILM/ [YI(YI + Yﬂ)_lyn »

(4.94)
Equation (4.94) is identical with (4.1) in form, so its solution is
2@ =cz+a)"(z—a),
1 1~ {YI(YI + 1711)_11711} (4.95)
szlnngln —— =
71 Tl {YII(YII +Y) YI:| »

For a homogeneous material, we have y = 1/2. Comparing Egs. (4.90) and (4.95) at
infinity, it is found that

= —(1/270) / S(x)dn = ig/2n (4.96)
L.

Substituting Eq. (4.96) into Eq. (4.91) yields Fi(z), Fu(z). Replacing z by z; in F4(z),
the stress potential F4(z;) is obtained. Ru (2000) discussed the collinear cracks also.
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Fig. 4.3 Collinear surface X,
electrodes

4.3.3 Surface Electrodes

In this section, we shall discuss surface electrodes (Fig. 4.3) in details (Zhou et al.
2005a, b; Kuang et al. 2004). In this case, air occupies St and it is assumed that in
the air only the electric variables need to be considered; the dielectric occupies S™.
The boundary conditions are

6;—0, Di—0, |z1l—=o00; 02i;=0, D=0, z€L-Ly; ij=12.73

0o = 0) E] = O7 and / D; (xl)dxl = —{4k, or
Lck

n
o= Vi, /D;(mdxl:—Q:—qu, k=1,2,...n z€L
k=1

c

(4.97)

where D; (x) is an undetermined function. According to Eq. (4.97), it is known that
¥, =0o0rBF (x;) + BF (¥;) =0onL — L, so we can construct a function k(z)
analytic in whole z plane except L. by the standard analytic continuation method:

_ [ -B7'BF(z), zeS*
h(z) = { F(2), e § (4.98)

From Egs. (4.97) and (4.98) and using F* (x;) = F (x1),F~ (x;) = F' (x1) we get

B () —h~(x) = —B~! [BF*(XI) +BF*(XI)] =0, zeL-L

BF~(x)) +BF (x)) = 2p, Xp=1[0,0,0,D; (x1)]"

h*(x)) —h (x))=-B'%p, hi —h; =-B;'Dy(x1), j=1-4, z€lLe
(4.99)
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Equation (4.99) is a decoupling Riemann-Hilbert boundary problem, and its
solution is

L 21)()(1)

h(z)=-B"'
) 271 Jpp X1 — 2

dv, F(z)=h(z), zeS (4.100)

From the known knowledge, it is assumed

(4.101)

Dy(z) = D5 (z) = P(z)/H ViEz—a)(z—b;), z€eS
i=1
P(z) =iy 4+ 11z +710)
where y; is a complex constant. Usually, select function /(z — a;)(z — b;) — z

when z — oo as its single-valued branch. Substitution of Eq. (4.101) into
Eq. (4.100) yields

Fi(z) = (1/2)B;'P(z) (H (5 —ai)(z - b,-)) _

(4.102)
fi(z) = /Fj(zj)dzj + (1/2)1CB;t , z€S
where C is a constant. According to Eq. (4.97), it has E; = 0 on L, so

AF~(x1) + AF (x1) = [*,%,%,0], x; € L (4.103)

Substituting Eq. (4.102) into Eq. (4.103), on ith electrode, yields

iP(x
By (x1)
\/<x1 —a;)(bi — x1) [[}— 1 ki \/<x1 —ar)(x1 — by)
o P(x
- A4JBI?11 1 <XI) = Oa X1 € LC

"V = an) (b = x) [Tz v/ (o — a) (v — by

(4.104)

Using Hyy = iAy;B};' is real, Ay;Bj;' is pure imaginary number, and Eq. (4.104) can
be reduced to P(x;) + P(x;) = 0, it is concluded that all y; in P(z) are real.
The generalized stress Xy and the generalized displacement Uy, are, respectively,

Sy = Rejil:k,-B,ilP(Zj) <H m) 7

ZJ dzj

Ui = 2Re[Afi(z)] = Re | AyB;, / + HyC

zj—a,

(4.105)
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If the electric charge on the electrode i is given, we have

h,’ b,‘ b, P dx
/ 224()(,'1)(1)(1 = / D;(XI)d.Xl = / Re . (xl) 1
T [y

/ 1P(x1)dx1 .
= —4i 1= l —n
V(1 = ai) (bi ITi- 1 ki \/ (1 — ax) (x1 — by)
(4.1006)
where n unknowns y;(i =0,1,...,n— 1) are just determined by n equations.

Especially when z — oo, we have

_ . i
lim Fy(z4) = o 1243441 /LH Da(x1)dxr,  lim Fo(z4) :2743441}’;14
)
1 1 0
Yn-1—= — = / Dy(x)dx) = —=(—0) == 4.107)
T Jr, /4 /4
If the electric potential on the electrode i is given, we have
P(X])dxl
(U4 =Re Ay4iB + HysC
Z ’ /4 a Ty /(= ai)(xy — by)
b
: dx
= Hulm Plx)dn Y HuC =V, (4.108)

a Ty /(0 —a)(x = by)
n br
/L Dy (x)dry = -0 =) Re . Plx)dy,

i=1 o [Tic V(= a)(x1 = by)

where n + 1 unknowns y;(i =0,1,...,n— 1) and C are just determined by n + 1
equations.

For only one electrode located in (—a,a) case, from Eq. (4.102) by using
Eq. (4.107) we get

_ qi qi 5
Fj(z) = By e fi(z) = ﬂBﬂl{ln(zf +4/2 - a2> + lnC}
T\ /Z0 —a

(4.109)

where C is a real constant. Let @ = Vj on the electrode, then we have

0 = Re{Asfi)} = Hula/mRe{n(x = in/a? ) +nC | =
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Because Hi4 = iA4Bj4 is real, Re ln<x1 —iy/a? —x%) =1In a, from the above
equation we get

Hu(g/m)InaC = Vo, or C = (1/a)exp((xVo/qHas)) (4.110)

The electric potential and generalized stresses are, respectively,

® = Hu(q/7)Re [ln (Zj + \/zf—iaz) /a} +V

4 ~1)2 4 —-1/2
_ q _
Zu = —lo/mim 3By (=) L Bw=Tm 3 Butl(s - )
=1 =
(4.111)
For the dielectric without the piezoelectric effect, we have
Qu = —€11, Rya = —¢crn, Tay = —€xn; pyg= <—€12 +iy/enen — 6%2) /622
. ~1/2
Ay = —ir/enen — €, Bu = —(c1+ pyen), Hi = —(enen — C%z) 2 <o
- qi q 1 >
F4(Z4):B 17, QUZVQ—HM—RG{II’I— <Z4+ 22—[12)}
“ 27, /zf —a? T/ €11€22 — 5%2 a !
4.112)
For an isotropic dielectric ¢;; = €dj;, so it is obtained
9=V (q/zre)Re{anz V2 a2> /a] } @.113)

which is identical with the result in usual textbooks. Kuang et al. (2004) gave
numerical examples for the case of two electrodes. Shindo et al. (1998) discussed
the surface electrode also.

4.4 Short Discussions on Some Special Problems

4.4.1 Partly Insulated and Partly Conducted Crack
in a Homogeneous Material

The impermeable or conducting electric boundary conditions are idealization
case. Breakdown of the dielectric inside the crack was observed in experiments,
especially near the crack tip region. The local electric discharge may make an
impermeable crack conducting electrically and change the failure behavior of
piezoelectric materials (Lynch et al. 1995; Zhang et al. 2001). The discharge
process at the gap near a crack tip is complex dynamic process. When the electric
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Fig. 4.4 Partly insulated and partly conducted crack

field approaches the critical value, the air breaks down and becomes conducting
gas, but after air breakdown, the electric field diminishes quickly and air becomes
insulated again. This process will be repeated and form discontinuous electric
sparks. For the homogeneous material, Huang and Kuang (2003) proposed an
ideal static model: partly insulated and partly conducted crack. Near the crack tip,
the conducting boundary condition is adopted, but in the middle part of the crack, it
is considered insulated (Fig. 4.4). The boundary conditions are

2, =2, X=X atinfinity
agj.(xl,O) =0, Ef(x,0)=0, x3 €L UL; (4.114)
O-Zij(xlao)zoa Dét('xlao)zoa X1 GLZ

where Ly(—b,b) is the insulated region and L(—a,—b) and L3(b,a) are the
conducting region. For an electric free crack the single-valued conditions are

/L {u;rl (x1,0) —u;, (xl,O)}dxl =0, /L [q)j(x],O) - (pfl(x],O)}dxl =0

2

/L (D3 (x1,0) — D5 (x1,0)]dx; =0, /L3 (D3 (x1,0) — D5 (x1,0)]dx; =0
(4.115)

Equation (4.114) can be reduced to the following inhomogeneous Riemann-Hilbert
equations:

ZkA“kF/:f(xl)—‘erZ“kF’T(xl):O’ X1 €EL1UL;
Z;j(xl) +Z;j(x1) = Zk [Bij/j +Eij]:r +Eij; —|—Bij/:] = sl(x1)54j
Z;j(xl) — Z;j(xl) = Z;‘ [Bij,j —Ejkfz— +§ij,: —Bij,:} = S2(X1)54j

0, X1 €Ly 0, X1 €Ly
siv) =9 v e pos)=9 .
D} +Dy, x €L UL Df —Dy, x €L UL;s

(4.116)
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Because D, is unknown on x; € Ly U L3, so s1(x;) and s,(x;) in Eq. (4.116) are
undetermined functions. Eq. (4.116) can be solved as an inhomogeneous Riemann-
Hilbert problem by using the analytic continuation method. Finally Huang and
Kuang (2003) obtained the solution in z plane

Fi(2) = 3 B3 [re2%0(2) — Xu(2)} +i(r0 + 727 Xa() ~ i
1

EBJiIWIkZXd(Z) + iﬁZk}; ]7k = 1727 374’

4.117)
+

It is known that an impermeable crack intensifies an electric field perpendicular
to it, but does not perturb an electric field parallel to it. The effect of a conducting
crack is just conversely. The singular parts of the generalized stresses are

02i(x1) = w1 Xa(x1) = 05 x1Xa(x1)
Dz(xl) = (H4j/H44)(7§?X1 [Xb(xl) 7XQ(X1)} +DC2>OX1X;,(X1) (4118)
Ei(x1) = (PoHai/2) (I /11 — x7)Xap (1) — 657Tm (Yar) 1 Xy (x1)

where

Xo(z) =1 / V2 —@, Xp(z)=1 / V2B, Xap(z) = Xa(2)X,(2)

Zgj = ﬂlj’ 2]07 = 7Re[22:lekﬂkB]:rr:(ﬂlm + 1ﬂ2m)]
Y2 = Hyfoj/Has, 16 = HyPj/Haa, vo=—12l2/1i

I = /ba D3/ Xap(x1)]dxr, 1 = /b“ [1/Xap(x1)]dx;

(4.119)

The limit analysis shows that y, = 0 for b = 0 and y, = —a?y, for b = a. These
show that the present solution is consistent with solutions of the conventional
conducting crack and impermeable crack. For the general situation 0 < b < a at
the tip region, where r and a — b is in the same order, the generalized stresses are
related to both r and a — b.

In electroelastic fracture mechanics, the energy release rate and J — integral
(Pak 1990; Suo et al. 1992) is often used. Because there are two singular points,
crack tip x; = a,x, = 0 and the tip of the conductive part x; = b,x, = 0, so two
J — integrals expressed with electric enthalpy are defined as

Ji =/ (gnl — niCjpltp | — "iDi(P,1)dl7 Ja :/ (gnl — NiCipltp | — niDifP,1)dl

L, Lu+h

(4.120)

where L, is the contour only enclosed the crack tip, L, is the contour enclosed
two singular points, g is the electric enthalpy, and »n is the outward normal of the
contour.
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Fig. 4.5 Variation of J-integral value with respect to b/a under loading 655 = 1 MPa and E° =
0.IMV/m: (a) J, and (b) J, and J,
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Fig. 4.6 Variation of J-integral value with respect to b/a under loading 655 = 1 MPa and E° =
0.IMV/m: (a) J; and (b) J; and J,

Now give a numerical example. When the poling direction is along axis x3, the
material constants of PZT-4 are

Cii=139x%x10" C;,=778x10"° Ci;3=743x%x10"" (35 =11.3x 10",
Cas =256 x 10'°(N/m?); e3 = —6.98, e33=13.84, e5=13.44(C/m*)
€1 =6.00x 10", €3 =>547x1077(C/Vm)

In the above theoretical analyses, the poling direction is along axis x,, so the
material constants need to be transformed. Figure 4.5 gives the variation of J; and J,
values with respect to b/a under the loading 655 = 1 MPa and E{° = 0.1MV /m.
Figure 4.6 gives the variation of J; and J, values with respect to b/a under the
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Fig. 4.7 Contact zone model
in a bimaterial

loading 655 = 1 MPa and E° = 0.IMV/m. A completely conducting crack can
be obtained from J; when b/a — 0, while completely impermeable crack can be
obtained from J, when b/a — 1.

4.4.2 Contact Zone Model for Interface Cracks
in a Piezoelectric Bimaterial

Figure 4.7 shows a contact zone model in a bimaterial (in x;—x3 plane) for an
electrically permeable interface crack (Herrmann and Loboda 2000; Loboda 1993).
Let material I is located in the upper half space S* and material 11 is located in the
lower half space S~. Let c the left end of the crack, a the right end, and ab the contact
zone. The boundary conditions are

X =2y =2, atinfinity
dx)) =[ws] =ui —uz =0, [Z5]=Zp(x1) - Zm3(x1) =0, x1¢(c,b)
653=0, 653=0, [p]=0, [D3]=0, x € (c,a)
013 =0, [o3] =0, [us] =0, [p] =0, [D3]=0, x € (b,a)
(4.121)

It is assumed that only normal unknown contact stress o33 is acted on the
contact zone and no tangential frictional force. Because on whole axis x;, Zi3(x)
= 23(x1), like Egs. (4.51), (4.52), (4.53), (4.54), and (4.55), of Sect. 4.2.6 or
Egs. (4.72), (4.73), (4.74), and (4.75) of Sect. 4.3.1, but different notations are
adopted, we have
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Fn(z) = BI_II(BIFI(Z) —A%®), x3>0; Fi(z) = BI_I(BHFH(Z) —4%), x3<0

d'(x1) = AiFi(x)) + AiF1(x)) — ApFy(x) — ApFy(x) = MFy(x;) + MF(x;) + A%

M =A; — AuBy'B; = (AiB;' — AuBy")By = —iHB;, Ay = (—AuBy' +ApBy')A™
(4.122)

and
MFI(Z), X2 Z 0
W(z) = - .
—MF[(Z) —Al , X2 S 0
d'(x1) = Wi(x)) — Wi(x1), Zo(x1) = GWi(x;) — GWy(x;) — M”Afo
G=BM ' =B/{(AB;' —AuB;" B} = (AB;' —AuB;') =iH '= -G
(4.123)

T

where H is shown in Eq. (4.25),A% is shown in Eq. (4.52), W(z) is a vector function
analytic in whole plane except cracks. For a kind of 6mm piezoelectric materials
poling along axis x3, G possesses the following behavior:

G Giz Gu g g3 8u o e
G=|G31 Gz Gu| =|gs 123 igyul, { 1 13} positive definite
. . 231 &3
Gy Gz Gy 41 1843 18a4 S
€13 = ~81» &1a = ~&u> &34 = &3, Zaa <0, all gy is real
(4.124)
and the eigen-equation Eq. (3.12) becomes
Ci1 + Cup>  (Ci3+Cagu (e31 +eis)u @ 0
(Ci13+ Cas)u Caa + Cy3p®>  e15 + esp® a; »p =40 (4.125)
(e31 +e1s)u  e1s + exsp? —€1y — €33p° ay 0

The roots of Eq. (4.125) are u, = ay + i, u3 = —ay + i, u, = if, where ay,
B, B, are all real:

Bij = Cas(jA1; + Asj) + e15As;,  Bsj = C13Ay + CaspjAsj + esspiAy

i (4.126)
Byj = e31A1j + esspiAsy — ex3piAgy; j=1,3,4,

Finally they get
Ky = +/7l/2a [\/ 1— /1(622 cos 6 + mot; sin5) - 28(0‘;2 siné — mo7; cos 5)]
Ku = —\/al/2m? {(ag‘g sin 8 — mo s cos 8) + 2eV 1 — A(035 cos 8 + mo s siné)}

Kp = g33 [243 — (231843 — g41g33)(72 —1)/22p]K;
(4.127)
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where

r=—(g1 +mg)/t, s= (g +mgy)/t, m=+/—gu/gn, p=tl+y)
5:8111[(17\/14)/(1%/14)], A=(a-b)Jl, e=(1/20)lny, l=a—c
(4.128)

The contact point b (or the parameter 1) is determined by Ky = 0, i.e., under the
conditions

oi33(x1,0) <0, x1 € (a,b); [usz(x1,0)] >0, x; € (c,a) (4.129)

Select the maximum 4¢ from the following equation:

tand = | (VI —do%s + 2emois ) / (2605 = V1= dmots )| (4.130)

For the bimaterial CTS-19(S*)/PZT-4(S~) and cadmium sulfide/barium sodium
niobate, numerical results show that Ag ~ 0.3, when 63 / 053 — 0o, and 49 ~ 1 / eloo,
1/e% when 655 /055 — 0, 1, respectively.

Herrmann and Loboda (2000) considered that A*° can be included in undeter-
mined functions Fi(z), Fy(z), so they let A*° = 0. However if let A°° = 0, then
X5 — 2Re (BﬂF ﬁ) = Cy # 0, where Cy is a known constant vector. But this does not
influence the stress intensity factors and the length of the contact zone.

Herrmann et al. (2001) discussed also the contact zone model of the imper-
meable crack.

4.4.3 Nonideal Crack in a Homogeneous
Piezoelectric Material

In practical structure, the crack cannot be ideal. Now discuss a simple free nonideal
crack in a homogeneous piezoelectric material subjected X{°,X5° at infinity.
Figure 4.8 shows a nonideal symmetric crack expressed by the equation:

)Cz/:SYi(Xl/), Y+(X1)—Y_(X1) >0, |X1| <a @.131a)
Y\ (£a) =Y (+a) =0
where ¢ is a small parameter and 2a is the length of the crack. The last equation in
Eq. (4.131a) ensures the crack tip idealization.
Huang and Kuang (2001) applied the small parameter method to solve this
problem. According to Eq. (4.131a), the points on the crack surfaces in z and z;
planes are denoted respectively by

2 = x4 ie¥i(n)), Z;-) =x1+eu¥i(xy), |n|<a (4.132)
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Fig. 4.8 Nonideal crack 0. Dy
A
on. Dy eY (x) o Dy
— -
O| €Y (x)
o5, D7

Expand the complex potential in the piezoelectric material in the series of &

o0

£@) =fGre) =3 (/" () = £ () +efV(z) +--- (4133)

n=0

On the crack surfaces, we have
() =4 (o) + em¥e (o) mEn) + - (@.134)

where fi(")i (1) is the value at z? of j;<") (zj) and f;wi (2) is the derivative of f]»("ﬁ(z)
with z. The complex electric potential ¢(z) in the air can be expressed in the same way:

$(2) = d(ze) =) + eV @) + -5 0 (50) = dlze) + PlEe)
P () = " ) e () ()
Ej = —¢¢(z) = —2Req/(z), E5 = —¢%(z) =2Im¢'(2)

(4.135)
The boundary conditions on a permeable crack surfaces are
Re ZBkﬂj(z;?) —0, k=1,2,3
(4.136)
2Re ZAM;( ‘?) — 2Rep (), 2Re 2341];( ) = 2¢oImgh (")
The zero-order approximation on the crack surfaces |x;| < a,x; =0 is
. 0)+ (o
2Re > Byt " (x) =T (x1), 2Re me (x1) = 2Red (x;)
j=1 (4.137)

T
73 (1) = [0,0,0,260kmp ¥ (x))] ", P=1,2,3,4
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The first-order approximation on the crack surfaces |x;| < a,x; =0 is
4
RS o) = 1)
j=1
! 0)£ 1)+ 0
2Re Y Ag ¥ (0 )f] O (xr) 7 ()| = 2Re ¥ () (1) + 60 (1)
=1

J

T(P])i(xl) = —ZYi (X] )Re

ZBPjﬂ;f}(())i(xl)]

+ 284p€o Im [iYi () (1) + ¢<1>(x1)]
(4.138)

The zero-order and first-order approximations at infinity are, respectively,

4 4
lim 2Re ZBpjyjf;m) (z,-)] = -7, lim2Re [Z Bt (z,-)] =0
j=1 j=1
4 4
lim 2Re | By (z) | = =%,  lim 2Re ZBpjf;“)(zj)] =0
X—00 = : SRt =1
(4.139)
The single-valued conditions are
a 4 0 4 0
/ l Bpt "t (x1) = > Bpif!! )(xl)] —0
L=l = (4.140)

/a [ 4 Bpjf}(1)+(xl) _ iBP}f‘j/'(l)+(xl)‘| -0

J=

InEqgs. (4.137), (4.138), (4.139), and (4.140), the subscript P takes the values 1, 2, 3, 4.
From Egs. (4.137) and (4.138), an inhomogeneous Riemann-Hilbert equations
can be obtained.
According to previous sections, it is easy to get their solutions. Finally the stress
asymptotic fields near the crack tip are obtained. For a specific symmetric perturbed
crack surface configuration,

Yi(x) = 2¥(x) = +(a® — 2) /32 (4.131b)

The singular term of the generalized stress fields on the x-axis in piezoelectric
material for the zero-order approximation are
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Zg},) (r,0) = +/a/2rRe

4
ZBPJRJ»/\/Q_,- +04pC, O =cos0+ p;sind
=1

R; = (Bﬁol _3111H4P/H44)237u C = (Hy/H14)Z5;

KO = rasy, KO = oS, K = Jiaos, KO = —vEaoHy/ti
(4.141)

and the electric fields in the air are

(oo}

DY Hyjoj
. - )

& H44EL

EY" (x1,0) =

4
EP(x1,0) =E° +Re > AyR;  (4.142)
=1

From Egs. (4.141) and (4.142), it is seen that the zero-order approximate solution
of a permeable crack is consistent with the conducting crack.

The singular term of the generalized stress fields on the x;-axis in piezoelectric
material for the first-order approximation are

1 [a o 84pH -
Zg,) (I‘, O) = g Z{Re (Z IBPjﬂjRj> — 41}; aal Re (Z lBNj/’ljRj) }
j=

1 “ Jj=1
4 4
/a . v/ Tta .
Kl(l) =~Y""Re (Z lejﬂjRj> ) K1<11> = TRG (Z 1Bl/’”,iRj> (4.143)
j=1 J=1

5 o

(1) 7a o (1 VraHy .
Kif =~=Re| > iByuR; |, Kp = o Re > iBuuR;
J

J=1
and the electric fields in the air are

2 2
(e 1 X7 (1)e 1 X1 A3 A2
E =——(3m =2+ E = — (A + 42— (242
1 (x1,0) 2<3 1a2+ 2>7 2 (x1,0) TiA, {( 2+ 3)a2 (2 + 3

oler, Y (x0)] = g, Y- ()] = =2l (x1) = Y- ()] (B + ES)
(4.144)

where A,A;,As and 1,11, are known complex constants and functions, respec-
tively. It is found that the generalized stress intensity factors of the zero- and first-
order approximations have the same singularity 1/,/r, but the stress angular
distributions are different. The future research finds that for an isotropic material,

KI(I) = K]()1 ) = 0. The electric fields are inhomogeneous in the air gap and the
electric potential discontinuity is also inhomogeneous.

In Huang and Kuang’s paper (2001), they also discussed the insulated and
conducted cracks.
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4.4.4 Other Crack Models

Hao and Shen (1994) proposed a model that the electric displacement is dependent
on the crack opening displacement. They assumed that the boundary conditions on
the crack surfaces are

Dy =Dy, Dj(uy —uy) =colg™ —o") (4.145)

and discussed a single crack located on the oxi(—a,a) under the boundary
conditions:

2, =25, atinfinity; X, =0, |x|<a, x=0 (4.146)

At first it is assumed ¢o(¢~ — ¢T)/(u3 —uy ) = D prior and DY is a constant
determined in the solving process. They applied the stress function method as
shown in Sect. 3.3 in the transform planes to solve this problem. The transform
function is the same as shown in Egs. (3.82) and (3.86). Finally they get

KI = Uggw/ﬂd, KH = ag‘f\/ﬂa, KIII = O'Sgw/ﬂ'd, KD = (Dgo — Dg)\/ﬂ'a
(4.147)

Their numerical example showed that the smaller external force, the smaller Kp.
The maximum Kp is equal to the electric displacement intensity factor of the
insulated crack. It is interest that the boundary conditions Eq. (4.145) can be derived
from Eq. (4.144).

Zhang et al. (1998) proposed a self-consistent calculation of a crack profile.
They considered that the profile of the opened crack is an elliptic cavity and
the ratio of the minor semiaxis to the major semiaxis a5 = [Af(as) + Af(as)],
(component along x,) at x; = x, = 0. In the solving process, the current crack
profile is used by numerical calculation.

4.5 Interaction of Collinear Inclusions with Singularity

4.5.1 |Interaction of an Interface Permeable Crack
with a Singularity in a Bimaterial

Let a generalized mechanical singular load with strength (b, p) be located at zy in
material I occupied the upper half plane S*,x, > 0. A permeable crack (—a, a) is
located on the interface x, = 0 (Suo 1990; Gao and Wang 2001; Kuang and Ma
2002). The boundary conditions are

=27 =0; |z]—>o00

03} =0y = 0; DY =D, =Dy, Ef =E[; x €L = (—a,a) (4.148)

+_ - ot _ .- pf_p-— + _ g
0y =0y, u =u;; Dy =Dy, =Dy Ej=Ey; xi¢Lc
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Assume the solution takes the following form:
Fa(Z) :Fao(Z)+GI(Z)5a1, a=11II

. S 4.149
GI(z):(1/2m)v<(zj—ZOj) > V = (B'b+Alp) e

where G (z) is the solution of a singularity in an infinite material I, see Eq. (3.165b).
F,0(z) is the analytic function in the material @ and is zero at infinity, because the
generalized stress X, is continuous in whole axis x;. Similar to Eqs. (4.22) and
(4.23), it can be obtained:

BiFy0(z) — BuFno(z) + BiGi(z) =0, z€S"

0
o 3 (4.150)
BuFn(z) — BiF10(z) = BiGi(z) =0, z€S

Equations (4.21), (4.24), and (4.150) yield

d(x)) = Ui(x1) — Un(x1) = 2Re[Aif;(x1) — Anfy(x1)]
id/(xl) = HBFy(x;) + (Yu — Y1)BiGi(x)) — HBuFo(x1) + (Y1 + Y1)BiGi(x)
4.151)

Because the generalized displacements are continuous on the connective interface,
using analytic continuation, a function h(z) analytic in whole z plane except the
crack can be constructed:

h(z) = {BIF“’(Z) +H ' (Yy - Y1)BiGi(2), zest, z¢Le  (4.152)

H71HBHFH(](Z) — Hﬁl(YI + Y[)BIGI(Z), zeS’
The stress Zy(x;) = Zy(x1) = BiF1(x;) + BiFy(x;) on the axis x| can be expressed as

2(x)) = h"(v) +H 'Hh™ (x)) + H' (Y + Y)BiG; + H™' (Y + Y1)BiGy
(4.153)
According to Eq. (4.148) on the crack surface, we have X(x;) = D, (x;)is, iy =
[0,0,0, I]T, where D, (x;) is unknown. So a Riemann-Hilbert equation is obtained:
B (x)+H 'Hh (x)) = £(x;), x €L

) S e o (4.154)
2(x1) = Dy(x1)iy —H (Y1 +Y{)BiGy — H ' (Y1 + Y)B/G;

Equation (4.154) is identical with Eq. (4.28) except using X (x1) instead of Zo(xy).
The form of the solution is still expressed by Eq. (4.41), i.e.,

{ﬂwmnwmwl

=) }’C@:Cﬂ+%
Y()=2'hiz), (@) =220, 0@ = <Yow(z)>a 73 () = \/ﬁ(

z+a)i£"
z—da

(4.155)
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In this problem, it is known that ¥(co) = 0from k(co) = 0and §,. ¥(z)dz = 0from
the single-valued condition. So unknown constant vectors C; = Cy = 0.
Equations (4.151) and (4.52) yield

id'(x)) = H[h" (x)) — h™(x}))] (4.156)
Because the electric potential is continuous on whole axis, Eq. (4.156) yields
Hyht(x)) —h (x1)] =0, Hy=[Hy,Hp,Hy3,Hy), |x1|]<oc  (4.157)
Noting h(oc) = 0 the solution of Eq. (4.157) is
Hih(z) =H, Q¥ =0, QQ" =1 (4.158)

From Eq. (4.158), D»(z) can be determined and then Eq. (4.155) can be solved.
Substituting ¥(z) into Eq. (4.152) yields F(z;).

4.5.2 Interaction of an Interface Impermeable Crack
with an Interface Singularity

Let a generalized singularity load located at (xo1,0) in front of the right tip of a
crack (—a, a) (Wang and Kuang 2002). The superposition method is used to solve
this problem, i.e., let

Uy=Uu + szcv Dy =Dy + Dy (4.159)

where U4, @4 are expressed in Egs. (3.171) and (3.176) representing the solutions

of an interface singularity in a bimaterial without crack. This solution introduces the

traction X,. Uy, @, are the solutions of a crack subjected to — X, in a bimaterial.
Using the orthogonal relations of A and B from Eq. (3.171) yields

_ 1 1 )
-2 = —2Re |:Ba< >Va] = —(B1V1 + BiVy) =

X1 — Xo1 _Xl — Xo1 ;
(4.160)

X1 — Xo1

where [ is expressed in Eq. (3.175). The solution of a crack subjected to — X»;in a
bimaterial can be found in Eq. (4.38). From 2*° = 0 and the single-valued condition
of generalized displacement, it yields C(z) = 0 in Eq. (4.38). So the solution is

_ppte = L opy [ Eab)dn 1 [P (x1)) ' 1dx,
he(2) = BF(2) = 5P >/LP+<x1><x1 S P )/an ol

__ 1 1 . P ()] tdyy [ [P ()] g
T 2riz — Xo1 P( ){/L 77:()61 _x()l) /L 71'()61 — Z) }

(4.161)
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Through some manipulation, we get

(I +H_1H)_].QQ(Z)<Z — Xo1 — %(Z)Jr Yo(lm)>91£

(4.162)

h.(z) =

Z — X1

From Egs. (4.44) and (4.162) in front of the crack, the asymptotic stress is

Soe(x1) = b (x) + H 'HR (x)) = 1+ H "H)h(x))
RPEIE—— L gl

Yo(z)(x1 —xo01)  Yo(xor)(x1 — xo1)

According to Egs. (4.47) and (4.163), the stress intensity factor is

K= [KH,KI,KHI,KD]T = lim AV4 271'()(1 — a).(2<(x1 — (1)7167'>97122(X1)

xX|—a

= \/%g<(2a)i8* {1 + m] >91(le + @p) = Wib + Wop

(4.164)

Sometimes W, and W, are called the weight functions.

4.5.3 Interaction of Collinear Rigid Inclusions
with a Singularity

Now we discuss the interaction of collinear rigid inclusions with singularity. The
singularity is also located at zy with strength (b, p) in material I (Zhou et al. 2008).
The boundary conditions are assumed:

2, =2F(x1), |z] — o0
g =wdp, Ur=Un, En=Em=En=-¢,, Du=Dm, x1€Ls
Ui(x1) = Un(x1), Zo(x1) =Zp(x) = Zm(x1), x¢L., L= ULy

(4.165)

where @; is the rotation angle about axis x3 of the rth inclusion. Comparing with
Sect. 4.3.1 (rigid line inclusion) here, only a singularity is added, so the solving
process is similar. Assume the solution is in the following form:

Uy 1 = 2Re[AuFo(z) + AdG1(2)5a]; @o.1 = 2Re[BuFo(2) + BuGi(2)5]
Gi(z) = (1/22)V{(5 = 2) ), V= (Blb+Alp), a=11
(4.166)
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The generalized displacements are continuous on the whole axis x;. Like Eqgs. (4.73)
and (4.150) we have

AiF1(x1) + AiGi(x1) — AuFp(xi) = AuFn(x;) — AiGi(x)) — AiFy(x) =A™
AOC:(I/Q,)[(AIF?C +AHFIOIO)7(A1FIOO +AHFIOIO)L a:I,H
4.167)

Like Eq. (4.74), we have

Ad), 1(}(1) = ¢I~, 1()(1) — (DII, 1()(1) = i[RAIFI(xl) 7RAHFH(XI) - (Yﬁl — Y{l)AOC]
+ (Y7 + Y DAGH () + (Y — YA Gi(x)

(4.168)

where Y,, R are also shown in Eq. (4.74). By the standard analytic continuation

through the connective interface L — L., we can construct a function k(z) analytic in
whole plane except the rigid inclusions L. and at infinity k(c0) = A*:

n(z) = {AF1E) + R7I(¥y! — Y DA GI(2), - zest
R 'RAyFy(z) — R (Y7 + Y7 HAIGI(x)) + RN (Y — ¥ D)A® ze S
(4.169)

Equation (4.169) yields
Fi(z) = Ay '[h(z) = R7' (V' — Y7 DA Gi(z)]
Fu(z) = AR R[R(z) + R (V' + Y7 )AGI(5) — R (V! — ¥ )A™]

(4.170)
Like Eq. (4.79), we have
Uy 1(x1) = A1F1(x)) + AiF1(x)) + A1Gi(x;) + AiGy(xy)
—h"(x))+R 'Rh~(x)) + R (¥;' + Y{DAIG () @i

+R(Y + Y DAG (x) - A
AF =R(¥y -y A
On the surfaces of inclusions, like Eq. (4.80), we have
U =o(x)i —Ei(x)is, ox)=w, r=1-—n, x €L, 4.172)
From Egs. (4.171) and (4.172), a Riemann-Hilbert equation is obtained:

B (x)) + R 'Rh~(x)) =N(x1), x €L
N(X]) :ATO + C(),~(X1)i2 - E] ()C])i4 —Ril(YIil + Y{l)AlGl(xl) —Ril(Y;I + Y;I)AIGI(XI)
(4.173)
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Equation (4.173) is identical with (4.81) if we use N instead of AT® + woiz — E1(x1)ia.
Its solution is

—T .Q N X]
') = geict) + 22 [ Sy

X]—Z)

0(z) = <Y(<]/>( )>7 Y(()] H = ak)(Z by C : Z)igi (4.174)

C(l) (Z) = C}(][)Zn + C(lz anl NI C(li)Z + C(()l>

n—1

Equations (4.168), (4.169), and (4.165) yield

A® ((x1) =iR[R" (x1) —h (x1)], x1 €L

A¢7 1()(1) = 0, X1 ¢LC (4175)

According to Eq. (4.165),D;(x;) is continuous on whole x; = 0, s0A®y, 1(x;) = 0, or
Rylh™(x)) —h (x))] =0, —o00 < x; <00 (4.176)

where R4 is the fourth row of R. The solution is
R4h(z) = R4h™, h™ = h(c0) (4.177)

Assume € = [¢3, 6% + w™, £33 + w3, —E°] " at infinity and noting k™ (x;) =
h~(x;) on the crack surface and h*(c0) = h™ (00) we can get h™:

U 1(00) = [eﬁ,e}’% + 0, e + of, —E‘l’c] =¢e* =h"(c0) +R7]Rh’(oo) — A
B = Q< (1+e7) 7 > Q" (6 +47)
(4.178)

From Egs. (4.177) and (4.178), E;(z) can be obtained and then Eq. (4.174) can be
solved.
If R = R is a real matrix, the solution does not oscillate.

4.5.4 Interaction of a Crack with an Electric Dipole
in a Homogeneous Piezoelectric Material

Let an impermeable crack (—a,a) in an infinite piezoelectric material and
an electric dipole with strength p. located at z, formed an angle 6 with positive

axis x;. The distance from zj to (a,0) is p = ﬂ’ and ﬁ form an angle ¢ with the

positive direction of x; (Fig. 4.9).
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Fig. 4.9 Crack and electric
dipole

Wang and Kuang (2000, 2002) discussed the interaction of a crack with an
electric dipole in a homogeneous piezoelectric material. Let U, @, as shown in
Eq. (3.178) are the solutions of an electric dipole in an infinite piezoelectric
material. The generalized traction on the line corresponding to the crack surfaces
introduced by this electric dipole is X, shown in Eq. (3.179). Assuming k., U., @,
are the solutions when the crack surfaces are subjected to — X, the solutions of a
piezoelectric material with a crack and an electric dipole are

U=U,+U.,, @=®D,+ D (4.179)
According to Eq. (4.38) and noting £2 = I for a homogeneous material, the solution

h. is

(o) =B = g {C o [ I 06— )

271 ), OF(x)(x) —z
(4.180)

where Yy(z) = 1/\/ z2 — 2. Using Eq. (4.18) yields

! /”;MIZE[L_Z}ZE[M_Z}

271 ) Y () —2) 2 [Yo(2) 2

Substituting Eq. (3.179) and above equation into Eq. (4.180) yields

2 2
1 . 5 —a V)
he(2) pB<@ ( L veTd

Z0j T.
=———Re{— + Ay
/ 2 2
2 22 — 612 1 zZ— ZOj) (Z — Z()j) (z — ZQ/‘) 2(2)_; — a2 >
Zoc(x1) = 2Rehe(x;), O =cos@ + p;sinf
(4.181)

The stress intensity factor is

X|—a

1
K = lim \/27(x; — @) 25 (x)) = pe\/EIm B<9 >ATi4
d (ZOJ' - “) Z%j —a?

(4.182)
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Fig. 4.10 Variation of K with 0: (a) dipole located at (2a,0) and (b) dipole located at (a,a)

Take a local coordinate system (p, ¢p) with the origin at the right crack tip; when

p < a, K can be expressed by
>ATu} (4.183)

1 1 2]
K=1/-p.——Im{B
2 PP m{ <l(cos¢ + 4 Sin¢)3/2

Figure 4.10 gives the variation of the dimensionless stress intensity factor K =
K / pea’3/ 2 with the electric dipole direction 8: (a) dipole located at (24,0) and
(b) dipole located at (a,a).

4.5.5 Interaction of a Crack with an Electric Dipole
on the Interface in a Bimaterial

Let the electric dipole at (xp;,0) with strength p. on the interface in a bimaterial.
The superposition method is used to solve this problem, i.e.,

U=Uy + an D= ¢ad + (pmr (4184)

where @, is shown in Eq. (3.180), and X, (x;) on the crack surfaces introduced
by @, is

1 1
22()(1) = 2Re Ba - Na‘]e i4
Xy —Xxo1 —d X1 — Xop
1 1
:ﬁ< - )gm (4.185)
T \x1 —xo1 —d x| — Xo1

where 2Re(B,N,) = £,/ is used and £, is shown in Eq. (3.175). Because the
generalized stresses are assumed zero at infinity and generalized displacement are
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single valued, so C(z) = 0 in Eq. (4.38). Substituting C(z) = 0 and — X,(x) into
Eq. (4.38) yields hg, i.e.,

- 1 —X5(x;)dx
hae(2) = BF (2) = 5 2 P(z )/ P (x1)(x —Z)

1 P+ ! 1
— ——.P(z){ (o) )dx1}@92i4
2 (x1 —2) \x1 —x01 — x1 — Xo1 T

P() = 20(), Q) = (X(2)), 2= [w“%w@%w“%w“ﬂ

(4.186)
Using the theory of the singular integral equation, finishing the integral and noting

li d t
dlg(l)Qe — Pe WE gC

_ =1\ 7! .
hac(z)—<I+H H) 20()  lim

1 1 1 1 1 1 1
X — + — Q_] ﬁgzu
Yo(z) \z—xo1 z—x01—d Yo(xo1 +d) z—xo1 —d  Yo(d) z— x1

Taking the approximation in first order, the above equation is reduced to

he(2) = (I +H_]H)71.{2Q(z)

1 1 1 1 1 Xo1 — 2iae,~> 19e o
x { — + + Q7 =i
< Yo(2) (z - x01)2 Yo(xo1) z — Xo1 (Z — Xoi x5, —a? z

(4.187)

In front of and near the crack tip, the principle singular term is

Zoe(n1) = b (x1) + H 'Hhy(x)) = (1+ H ' H)hge(x)

_o 1 <x1 —d>i57< 1 1 < 1 +x012—2ia28j)>9_1pegl
2a(x; —a) \ 2a Yo(xo1) @ —xo1 \a —xo1 x5, —a

(4.188)

The generalized stress intensity factors at the right tip are

K = [KH,KI,K[H,KD]T = lim \/27[()(?1 — a).Q<(x1 — a)7i5f>9_]22(x1)

X1—a

De —ig; 1 1 Xo1 — 2iag; i
= ( (2 g Foaare)
Vra <( %) [Yo(xm)(a —xm)] (a — Xo1 * X3, —a? 2l

a 1 —ig; . Xo1 +a i 1.
= — Q( (2a) 7 (1 + 2ig; ( ) Qi
Pe\/;(xm —a/R & <( ) ( 1) Yo —a > 214

(4.189)
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When p = x¢; —a — 0, in a region x; — a < p, we get

K ==p.(1/v2r)@{(1+2ie)p % )2 2y (4.190)

4.6 Interaction of an Elliptic Hole and a Vice-Crack

4.6.1 The Solution Method

Figure 4.11 shows an elliptic hole filled air and a vice-crack in an infinity
piezoelectric material subjected X*° at infinity. The major and minor axes of the
ellipse (2a, 2b) are aligned along x; and x, respectively. The center of the vice-crack

of length 2¢ is located at z(¥) (x(lo> + ix<20>) and forms an angle y with the positive

direction of x;. The distance from z(%) to (a, 0) is dy and z(”)a form an angle a with
the positive direction of x;. Zhou et al. (2005b) used the continuous distribu-
tion dislocation method to solve this problem. The main steps of this method are:
(1) Problem I. A singularity located in an infinite piezoelectric material with an
elliptic hole. The solution of problem I is used as the Green function, which does
not produces the traction at infinity and on the boundary of the elliptic hole, but
produces tractions on an artificial cut corresponding to the original vice-crack.
(2) Problem II. An infinite piezoelectric material with an elliptic cavity filled air
subjected to X at infinity. The solution of problem II produces tractions also
on an artificial cut corresponding to the original vice-crack. (3) Problem III. The
geometric shape of this problem is identical with the original problem, but the vice-
crack is replaced by an artificial generalized continuous distribution dislocation
with undetermined density. Add the tractions on the vice-crack surface obtained
from problems II and III to satisfy the original boundary conditions, and the
unknown dislocation density can be obtained. (4) After solving the unknown

Pretttbreet s
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dislocation density, the original problem can be solved. The transform method is
used to solve this problem. The transform functions are shown in Egs. (3.82) and
(3.86). The boundary L of the elliptic in the z plane is mapped to the unit circle I in
the ¢ plane. In this section, the second natural coordinate system, i.e., use (n,#') in
(3.29b) and T = d®/ds, is used. Some geometric relations can be seen in
Egs. (3.29b) and (3.82b).

4.6.2 Problem I

In this section, a slightly simpler method to solve this problem is used. The
problem is decomposed into two subproblems: (1) Problem Ia, a singularity locates
atzo(xo1 + ixgy) in an infinite homogeneous material, and (2) Problem Ib, a distributed
loading acts on the boundary of the elliptic hole. (3) Superpose the solutions of
problems Ia and Ib, and let the resultant solution satisfy the boundary conditions of
the original problem.

(a) According to Egs. (3.156) and (3.158), the solution of the problem Ia is

U\ = (1/z)Im[A(In(z; — 25))V], ®* = (1/x)Im[B(In(z; — z9)) V]
In(z — 2,j) = In(g; = 6) + In[e;(1 = di/cjgi607) ], V =B"b+A"p
(4.191)

On the unit circle I" in the ¢ plane, ¢ = ¢; = 6 = ¢, s0

@ () = (1/x)Im{B(In(6 — ¢o;) + In[¢;(1 — d;/cjocy;) ] )V} (4.192)
Using ds = p(y)dy, p* = a>sin®y + b*cos®y given in Eq. (3.82b). Eq. (4.192)

can be expanded in the following series

TE (6) = d®)(6)/ds = (1/zp(y {Bi<{ /go] (dj/cqul-)k] sin ky

k=1

-i-i[(di/ cige) — (1/5) } o’ kv/>v}

(4.193)

(b) The solution of the problem Ib can be taken as (Chung and Ting 1996)
"—2red {a(e")(Ag, + B ) |
m=1
V' —2Re> {B(5") (4", + B ) }

m=1

(4.194)
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where g,,, h,, are real vectors determined by the boundary conditions. On I” we have

U§b> (o) = Z [cos(my/)hm - sin(my/)izm]

o(0) = mi [cos(mp)g, — sin(my)g,) s
T(6) = 40 (o) /ds = —[1/p(u)] 3" msin(my)g, + cos(mp)is]
m=1

h, = Sh, +Mg,,, g&,=S"g, —Lh,,
where S, M, L are shown in Eq. (3.35).

(c) The solution of the electric potential inside the cavity hole filled air has been
discussed in Sect. 3.4.2. Using ¢;(6) = 2Re¢; (o) according to Eq. (3.85) we get

Pi(s) = i aple" +(d/e)"s™"), ¢ = pe"
m=1
(o) = 2Re§:afn [(1 + (%l)m> cosmw—i—i(l - (g)m> sinmy/}
DS(0) = —2¢ Tm[dd (o) /ds] = —(2¢ /p) x
io: {[=m(1 + (d/c)")Imda,] sinmy + [m(1 — (d/c)")Reds,] cos ml//}

m=1

(4.196)

Comparing ¢;(c) in Eq. (4.196) and (U§”>)4((;) in Eq. (4.195) yields

(hw)y =2[1 4 (d/c)"|Red,, (ilm)4 =2[1 - (d/c)"Ima,, m>1 (4.197)

(d) The sum of generalized stresses in problems Ia and Ib on the elliptic
boundary must satisfy the original boundary condition:

7" + T\ = D%y, iy =100,0,0,1]"; on I (4.198)
Substitution of Egs. (4.193), (4.195), and (4.196) into Eq. (4.198) yields

€0 =Eum T8 &n=28u T&n

g, = (1/ma)Im[B{(1/¢0,)" + (d;/cico;)" V],  &uo = —2€°[1 + (d/c)"]Ima, s

g, = (1/mx)Im [B<(dj/cj€0])m - (l/ng)m>V]a g = 2¢[1 — (d/c)m]Re“;lh
(4.199)
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From Egs. (4.191), (4.194), (4.195), (4.199), and

igj_mégkm/m =— ln(l — g;‘ggk‘), when ‘gj“gg,j‘ <1
m=1
A1T +B'L7'ST=B""'/2, B'L'=iB"')2

the stress functions in the piezoelectric material finally are

& =" + 0" — o' +

@V = (1/z)Im{B(In(¢, goj)>v}+(1/n)ZIm{B<1n(g;1—gOk)>BlelkV}
k=1

D =2 glm{B<gj‘m>B” @, — (d/c)ma;]h}
(4.200)

where

ain = am/ﬂmv Cp = Cip +iCop
O = % {Cn(d/c)" (1 — €Ly +icLy;'Sai) — C (1 + €Ly +i€°Ly;'S4) }

B = 1= @] [1 = (L) = (Li'sa)’] = 2¢[1 4 (@ /)| Lad
(4.201)

Con =S M [B([1+ (d /)" )A] —Re[B([(d/c)" - ]ga,m>AT}}p
o Lstm[m([1+ (/)N B~ Re[B{[(a/e)" - 1)) o
(
(I

o= ([ [0 (/)" Y] o 57ve[ B [e)” i " o
+%{Im{8<[l+<d//9)n]w> } STRe[B (di/c;))" 7"’>BT”b

(4.202)

where Ci,, Cayy are real, L' = [LLI,L@I,L;;,L;H.

The solution shown in Eq. (4.200) is the solution of the problem I representing a
singularity located in an infinite piezoelectric material with an elliptic hole. It is
a Green function.

When b = 0, the elliptic hole is reduced to a crack and ¢ =d = ¢; = d; = a/2.
In this case, the Green function is simplified significantly. The stress intensity factor
atx; = ais



186 4 Linear Inclusion and Related Problems
K(a) =+v2z lim e —ad, =/ /a hm B(D/ag/

A/Ha")
1
— L Bl A9\ gy m|B{1— A9\ gy,
Vra Zoj —a Z0; —4d

KD(a) = ( 4m/L44) m(a)a m= 17273
(4.203)

L;j‘
—1
Ly,

4.6.3 Problem Il

Problem II can be decomposed into two subproblems. Problem Ila: a homogeneous
infinite piezoelectric material subjected X at infinity. Its solution is

O =3y — Xy, I =xr 3 -3 (4.204)

Remove a piece of material to form an artificial elliptic hole whose size is identical
to the hole in the original problem. Using Eqs. (3.292a) and (3.82b) the generalized
traction on this artificial elliptic boundary is 25 :

= (2P0 4+ 2ny — Diiy)
b _ 4.205
=— cosy/(Z‘fO 7D3i4) -4 ( )
p(w) pw)

The electric field in the elliptic hole is assumed as unknown constant E{ (i = 1,2):

sin 1//(230 — D§i4)

oy = —Eix; —ESxy, D{=¢cE;, D =Din (4.206)

Problem IIb: — 25 is applied on the artificial elliptic boundary. The general solution
of this problem has been shown in Eq. (4.194) and the expression on I is given

in Eq. (4.195). Comparing ¢, with U\ (s) and — X with T"(c), it is find that
in present problem,
g1 = _a(Ego - D514)7 gl = _b(E(l)O - DL114)7 gn = gm =0, form 7é 1
(h1), = —akEy, (’;1)4 = bE,
(4.207)

Using the relations between gl,gl,hl,itl in Eq. (4.195) the unknown electric
displacements DY, D in the hole are determined by
(bLyj — a/€)D§ — aLy;'SyuD§ = bLy'6% — aLy'Sjic5s

-1 ¢ -1 c\ e —1 00 -1 _oco (4.208)
bLy;'S4Di + (alyy — b/ )Dy = bLy; S0y + aly' o5,
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Substituting g,,, h, into Eq. (4.194), (Dg’ ) can be obtained. The sum of the solutions

of the problems Ila and IIb @y = <D§Ia ) 4+ (Dg7 ) is the solution of the problem II.
Finally it yields

Py = Sy — I — Re{B(¢; " )B [a(25 — Dia)] — ib (XY — Diia) }
(4.209)
For a crack, b = 0, Egs. (4.208) and (4.209) respectively reduced to

@y = I, — Z¥x, — Re{B<g_;1 >B*1a(zg° — DSiy) } DS =L 6% /L)
(4.210)

4.6.4 Problem III

For an artificial generalized continuous distribution dislocation instead of the original
vice-crack, the solution can be obtained by integrating the Green function Eq. (4.200)
with respect to zq; along the vice-crack or the artificial dislocation line, i.e.,

Dy (8) = 711 / ! {Im[ (In(¢; — ¢4))V] +%Zzzl m B(In(g;" —EOk)>BﬂBIkV]}d-fo
+2¢ Zlm > a, - (d/c)’"a;]u}dgo

—C0 m=

4.211)

where 2¢ is the length of vice-crack and dé; is the dislocation differentiate element.
Assuming the middle point of the vice-crack is at z_? (x‘l) + ujxg) , the angle of the
vice-crack with the positive axis x; is y. A certain point on the vice-crack is at z; =
zj(.’ + é(cosy + p;sin y) and the position of a dislocation is at zo; = z? + &y(cosy+
u;siny), where & &, is the algebraic length calculated from 2%, The traction on
the crack surface is 0@y /& 4+ 0@y /0E = 0 due to original vice-crack is free.
From this condition, it yields

co

1 o 1
! / Im [BBTb—]d50+ K\ (&,20)bdé, + / Ko (&, &0)dgy = T4 ()

T co é - —co

4.212)

where

0g;/0. | |
c,gé §>Bla(2§° — DSiy) — ib(ZF - D‘li4)}
]

agj/af T 4 agj/aé —1py pT
”<g[(c,-/d->g,»go,-—1]> } n;I [< ?,gm>>3 |
o) = -2 Y { <‘53‘;‘i(f’5>3 @, ~ (afo)"as] }

/

T(¢) =X cosa — E° sina+Re{B<

1
K (&, &) = *;Im

(4.213)
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For the insulated elliptic hole, K5 (&, ;) = 0. When the elliptic hole is degenerated
into a main crack, the kernel function K (&, &) is reduced to

1 L) J¢;/0 _ Jg;/0 _
K> = —Im{B<L_Wf |:Bml<L>Bpl - Bml<ﬂ>3p]:| bp>B_l }i4
n Ly, €j(€j€01 -1) é‘j(GjGoz — 1)
4.214)
Adopt the dimensionless length ' = &)/cy,l = £/c( and noting the singular behav-

ior of the kernel function, Eq. (4.199) (Muskhelishvili 1975; Erdogan and Gupta
1972) is rewritten as

1! by dI ! b(7')dl’ !
—— [ Im[BB" — K\(I,1 Ky (I, )dl' = —T%(]
o) e [ e S [ ettal =7

b=bV1-1? —1<I<1

(4.215)

where |l| <1 and b is finite. The generalized displacement single-valued
condition is

/ 1 [13(1’) / Vi—rlar=o (4.216)
-1

Equations (4.215) and (4.216) are the singular integral equation system of the
original problem and calculated by the numerical method. Here the selected
collocation points [, /, in the interval [—1, 1] are

2i — 1 g
u I,A:cos’—ﬂ, i=1,2,...

I! = cos
! 2n n

(4.217)
and Eq. (4.214) is reduced to a set of algebraic equations:

S ) {Im (BB"]

i=1

Zn:i;(zg) =0

> 1 L_l ag*/aé > D < ag*/ag > :|> _ }.
K, =-Im{B{ =22 \B,,( ——=__\B,, — B,y({ —=—=__)\B B!
? 7 m{ <LZ4] |: l<€*(€*g01 - 1) o ! Cx (g*gOI - 1) o b
(4.218)

1
-1,

1

— Ky (I — 1) — Ko (I, — 1,.)} =T1(,)
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Equation (4.218) gives 4(n — 1) + 4 = 4n equations with 4n unknowns. Solving b,
the asymptotic field T'(/) near the crack tip is

T(l) = 1BBT13(1)/\/12 1, I=1+4e, e(>0)—0

b(1) :% isin[(Zi - 1)(2n - 1)77:/411]!}(12)

sin[(2i — 1)z/4n] (4.219)

i=1

1 sin[(2i — 1)(2n — )z /4n], ,,
. Z — b(ln-H 1)
T n — sin[(2i — 1)z /4n]

The stress intensity of the right crack tip of the vice-crack is
[KI;KIbKIIIaKD]T = Ilirjr[ll V2r(l = 1)QT(I) = —iy ”CQBBTl;(l)

Q:[QH 0]7 Q“:[—sina c‘osa} 1:[1 0} (4.220)

0 I cosa sina 0 1

If the elliptic is degenerated to a main crack, the stress intensity factor of the main
crack is

(K1, Ku, K, Kp]' = K° +K; K = /7a(Z5 — D5ia)
K= / / P()b(1)dl' = (z/n)> " P)b(I)

where P is complicated and omitted here.

4.221)

4.6.5 Example

The matrix piezoelectric material is PZT-4 and the material constants are shown in
Sect. 4.4.1. In the following examples, lety = 0, dy/co = a/co = 2 and K(O) =0
Vaa, K" = 63 /zc; . Figure 4.12 shows the distributions of the normalized
mechanical stress intensity factors at right tips with o under y = 0 and different
electric loading: (a) K / KI(O) of the main crack (b = 0) and (b) Kfm) / KI(O) of the
vice-crack. Figure 4.13 shows (a) the distributions of the normalized stress o, / o5°
at right end of the elliptic hole of b/a = 0.1 with a undery = 0 and different electric
loading and (b) K" / K" of the vice-crack with a under y = 0 and different

electric loading.
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Fig.4.12 Undery =0, dy/co = a/co = 2: (a) variation of K1 /Ky with e at right tip of main crack
and (b) variation of K" /Ky with « at right tip of vice-crack
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Fig. 4.13 Undery = 0: (a) variation of 6 / 65° with a at right end of the elliptic hole of b/a = 0.1
and (b) variation of K" /Ky with « at right tip of vice-crack

4.7 Strip Electric Saturation Model of an Impermeable
Crack in a Homogeneous Material

4.7.1 Fundamental Theory

Usually, the mechanical strength of a ceramic is high, and the plastic deformation is
very small which can be neglected. Contrarily under high electric field, the crack tip
region can be saturated due to the electric field concentration, if breakdown does not
happen. Referencing to the Dugdale model in the elastoplastic fracture mechanics,
the strip electric saturation model was proposed (Gao et al. 1997; Fulton and Gao
1997; Wang 2000). This model assumes that at crack tip region, the mechanical
behavior is elastic, but the electric behavior is saturated. In order to solve this
problem, by linear analysis, it is assumed that the electric saturation region is limited
on a line segment in front of the tip (Fig. 4.14). The boundary conditions are
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Fig. 4.14 Strip electric T T T 1 o5.Dr

saturation model © Ty
Gl 12 Dl

x,

2 =0, |z] >

3 =-T, T= [aé’?,c%,a%,D?}T, lx1] < a

U'=U, 2=%=-T, T=[x*DY-D], a<|x|<c
(4.222)

where “x” denotes variable which does not applied and omitted here, Dy is the
saturation value, 2a is the crack length, and a < |x;| < ¢ is the strip electric
saturation region.

Because the generalized stress X;(x) is continuous on whole axis x;, similar to
Egs. (4.21), (4.22), (4.23), (4.24), (4.25), and (4.26) in Sect. 4.2.1, we can obtain

BF(z) =BF (z), x>0; BF (z)=BF'(z), x <0 (4.223)
the displacement jump d (x1), and the dislocation density d (x1) are

d(x;) =U"(x;) — U (x1) = 2Re[Af " (x1) — Af ™ (x1)]
id'(x)(x1) = idd(x;) /dx; = 2Re{A[F (x;) — F~(x))]} = H[h" (x;) + h~(x1)]
(4.224)

where the auxiliary function h(z) analytic in whole plane except crack. For a
homogeneous material H is real. On the crack surface, we have

R (x))+h (x;)=-T, |v|<a; h(z)=BF(z) (4.225)

4.7.2 Solution of the Strip Electric Saturation Model
for an Impermeable Crack

Introduce a new function &(z):
&(z) = Hh(z), h(z)=Lé&z), L=H"' (4.226)

Substitution of Eq. (4.226) into Eq. (4.225), in terms of component form, yields
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La[68 (1) + & (x1)] + L [& () + & (n)] = =T, i,k=1,2,3

— _ (4.227)
Lo [EF (1) + & (1)) + Laa [& (1) + & ()] = —Tu, || <a
Eliminating &} (x1) + &, (x1) from Eq. (4.227) yields
L,}, (& () + & ()] = fTi‘, Lk=1,23, |n|<a 4.2282)
L;, = Lix — LiaLag/Las, T; =T; — T4Lis/Las
Introducing 3D vectors &*(z), T, etc., the vector form of Eq. (4.228a) is
L [EFT(x)) +E (x)] = -T*", |x|<a
*[ o) ( 1)] T *| ! e e o T (4.228b)
£(z) =61(2),6(2).6()], T = [T17T27T3]
The solution of Eq. (4.228) is
LE () = T'F,(z), Fa(z) = (1/2) (z / VZ & - 1) (4.229)

Equations (4.227), (4.222), and (4.226) yield

E(n) + & () = —{La[Ef () + & ()] + Tu}/Las, |0l <a k=1,2,3
Er () + & () = —{Lu[Ef (1) + & (x1)] + Ta — Ds} /Las, a<|xi|<c

(4.230)
The solution of Eq. (4.230) is
£4(2) = {—Lali(2) + TuF(2) + DsFp(2)}/Las; k=1,2,3
Fo(2) LD S
TN\ 4.231)

1 1 V2 —a? +iavz? —c2 1 4 a
=-—z—1n - —— arc cos —
2 2mi /2@ —iaVR -t w22 '

FD(Z) c

where F.(z), Fp(z) is analytic in z plane except a slit (—c, ¢) and has the following
behavior:

_ 0, |xi|<a
Fg(x1)+FD(x1)—{1 ‘al<||x1|<c’ Fp(co) =0 (4.232)

Equations (4.229) and (4.231) give a complete solution of &(z).
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4.7.3 The Size of the Strip Region and the Stress
Intensity Factor

According to X;(x;) = h" (x;) + h ™ (x1), the electric displacement in front of the
crack is

Dy = Ly [ (x1) + & (x1)] + Laa[Ef (1) + & (x1)]; | = ¢ k=1,2,3

Substitution of Egs. (4.229) and (4.231) into the above equation yields

_ o 2 _ia X
Dz = ZTAJL/(X]) +DS [FB(XI) +FD(.X1)] = (D2 — ;DSCOS ]E> 2712
Xt —c

1 Ve — @ +iay/x — 2
—D¥+D[1-— = Vi , lze
Ti xVer —a? —iay/x} — 2

(4.233)

In order to make D; finite, it is necessary that
D5* — (2/m)Dsarccos(a/c) =0, or a/c = cos(xD5° /2Dy) (4.234)

The size of the strip region is ¢ — a.
According to X5(x;) = k' (x1) + k™ (x1), the stress in front of the crack on the
axis xp is

o2 = Luc[E0 (x1) 4+ & (x1)] + Lia [£] (x1) + & (x1)]
=Ly (& + &) + (Lis/Laa){DY (FE + F.) + Ds(Fp + Fp) }

=T <X1/\/ﬁ - 1) + (Lia/Las) (Ds — DY)

It is noted that adding X5° to the solution Eq. (4.231), the solution of a free
crack under X5° at infinity is obtained. In this case, the stress and stress intensity
factors are

0y = Tl-*xl/\/x% -2+ (L,‘4/L44)DS

L L
K1 = \/na (JSCZ — ﬁD?), Kin = \/na(agi — ﬁD?), (4.236)

(4.235)

L3y
KH[ =\ 7a (6% —L—D§C>
44

and the electric displacement is finite due to electric saturation.
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Ru and Mao (1999) discussed the strip electric saturation model for a conducting
crack. Their results showed that when the electric loading is parallel to the poling
axis, then (1) for a conducting crack perpendicular to the poling axis, in front of the
crack tip, a saturation strip is existed and the stresses and electric displacements are
all finite. (2) For a conducting crack parallel to the poling axis, behind the crack tip,
a saturation strip is existed and the stress intensity factors are identical to those
predicted by the linear piezoelectric model and the electric loading does not induce
any nonzero stress intensity factor.

4.8 Strip Electric Saturation Model of a Mode-III
Interface Crack in a Bimaterial

4.8.1 Fundamental Theory

For a transversely isotropic piezoelectric material with poling direction along
axis x3, plane (xy,x;) is isotropic. The mode-III (antiplane shear) problem in a
piezoelectric material means that the mechanical loading is applied out of plane
(x1,x2), but the electric loading is in-plane (x,x;), i.e.,

up=u, =0, uz=u3z(x1,x2); E;=Ei(x1,x2), E»=Ey(x1,x2), E3=0
(4.237)

Shen et al. (2000) discussed the strip electric saturation model for a mechanical
III-type interface crack. From Egs. (3.1), (3.2), and (3.3), the governing equations
for III-type problem are

6311 +0322=0, Di1+Dy;=0
031 = Cyquz ) — e1sEy, 03 = Cyuzp — esky, (4.238)
Dy =ejsu3y +€1E1, Dy = eisuzp + ks

Using E = — Vg the equilibrium equation in terms of the generalized displacements is

C44V2M3 + 615V2(p =0, 615V2M3 — €11V2(p =0; or V2u3 =0, Vz(p =0
(4.239)

Figure 4.15 shows a III-type strip electric saturation model for an interface crack
of length 2a in a bimaterial. The material I and II are located at the upper and lower
half planes respectively. Let the boundary conditions are

2 =0, |zl—> o
63 =—1", Dy=-D% |x|<a, x=0 (4.240)
Ui(x)) = Un(x1), Zp() =Zmx) =2Z2(x); |ul>a, x=0
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Fig. 4.15 Strip electric x,
saturation model of a
mode-III interface crack
Material [
e ——— R ———
—C b —a O a b ¢ I
Material Il
where Uy = [Uys, 4] . The single-valued condition is
Y(x)de =0, ¥(xi) = [y(x1),p(x1)]
/ ’ (4.241)

AU(X]) U](X],O)—UH(X],O), T(X]) :AU/(.X])
where ¥ (x; ) is called the dislocation density. On the connective surface, AU (x;) = 0.
The Fourier transform method is used to solve this problem. For a function

f(x1,x2), the Fourier transform and the corresponding inverse transform are,
respectively,

Fs,x2) = / Flam)e Ndx,  flv,x) — / Flsx)e s (4.242)

where f(¢) is called the original function, f (s) is the image function, and s is a real
number. We have

/ f(”> (xl,xg)e’i”'dxl = (is)”f'(s,xz); if f(”> (x1,x2) — 0, when X343 — 00

iﬂ /;OOf(n)(s,)cz)emsds = (—ix1)"f (v, x2); if [m 2 (1, x2) | oy < o0
(4.243)

where f(") = 8"f/8x’f. Using Eqgs. (4.242) and (4.243), Eq. (3.239) is transformed to

00 82Up aZUﬂ sy 20 6217/;(s Xz)
- g — 20 Z PN 0. =111 (4.244
/ <ax% o )e 2=l S

The Fourier transform of the constitutive equation in Eq. (4.238) is

5, — 63 _ aﬁﬂ(s,xz) i, — ligy
B Dﬂz ﬂ x> ) B ()~0ﬂ >

_ | Cpaa epis B=LII
eprs  —€p1n |’ ’

(4.245)
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Because I~Jﬁ is finite at infinity, the solution of Eq. (4.244) takes the following form:

DI(S7.X2) = CDQG](S), if s<0; f][(S,Xz) = e_SXZFI(S), if §s>0
1711(5,)(2) =e "Fy(s), if s<O0; fJu(s,xz) =e"Gy(s), if s>0
(4.246)

where G (s), F1 (s), Gy (8), Fp1 (s) are undetermined functions. The generalized
stress can be expressed by

Elz(s,xz) = Rlﬁl(s,xz); Ry=sB;, if s<0; Ry =-sB;, if s>0
EIIQ(S,)Q) = RIIﬁII(S,XQ); RH = —SBH, if s< O; RH = SBH, if §>0
4.247)

It is known from Eq. (4.240) that on whole axis x;, the generalized stress is
continuous, so

Ri(s)Ui(s,0) = Ry (s)Un(s,0);  |xi| <00, x=0 (4.248)
The Fourier transform of Eq. (4.241) is

/OO ¥(x))e ™dy, = isAU(s),AU(s) = Uy(s) — Uy(s)

. (4.249)
= —(i/s)/ Y’(xl)e’i“‘dxl
Combining Eqgs. (4.248) and (4.249) yields
- . . _ R B
Uy = PiAU(s), Un=PodU(s); Pr=o _“R =3 “B ,
it I 1 + B (4.250)

Combining Eqs. (4.247) and (4.250) and inversely transforming the obtained results
yield

o0 oo

I (s, xp)e™ ds = (1/2”)/ RuPyAU(s)e™*ds

—00

2 (x,0) = (1/2”)/

—00

= —(1/2x) [ z RuPy {(i/s) [ a Y’(t)eisfdt} e ds
——ti20) [ | [ 9 RasIPa(ore 0 e

a o0

(4.251)
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And for a certain s, the following relations hold:

1 1 RuR; s BB
—Ry(s)Py(s) = - =—-—V, = 4.252
s H( ) H( ) P RII _RI |S| BI +BII ( )
V is a real symmetric matrix. Using the following formula:
- s —is(t-x) g — _ 2i i - is(r—x1) 4 — §(f — 4.253
/x|s|e s a2 7006 s=6(t—x1) (4.253)

we can get the solution of Eq. (4.251) as

(1/”)V/j [W(£)/(€—x1)|dé = Zn(x1,0) = [tor (x1), fo2 (x1)] ", |x1] <00, x=0

a

(4.254)

4.8.2 Solution for Longer Electric Saturation Size

The strip electric saturation model of a mode-III interface crack in a bimaterial is
that: Let c and b are the right ends of the electric saturation and mechanical yielding
regions respectively and ¢ > b, the following boundary conditions are assumed
(Fig. 4.15):

for (1) = { -7, if |x|<a o) = { —D*, if |x|<a
- 41 if a<|x|<b —D>*+Ds if a<|y|<c
wi(x1) =0, || >b yyla) =0, |xaf>¢ c>b
(4.255)

where 7, is the yielding stress, Dy is the saturation electric displacement, and they
take the smaller values of materials I and II. Equation (4.254) yields

b
(1/z) / [y (0 — x)ldr = Gujtop(v1), || < b
—b (4.256)

!
(1/7) /_1 Vo (1) /(¢ = x1)]dt =t (1), || <, j=1,2

where G = V!, Because the stress is not singular atx; = £b,y, (t) must be finite at
x1 = &b. Analogously, the electric displacement is not singular at x; = ¢; Hoyy;(t)
must be finite at x; = %c. Since the first and second equations in Eq. (4.256) are
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solvable, the following conditions should be satisfied, respectively (Muskhelishvili

1975; Hou et al. 1990; Barnett and Asaro 1972):

b [Gljtoj(g) / \/ﬂ} dE— 0, l {;02(5) / \/ﬁ} dE=0 (4257)

b

Gl/t()j(f) dé = [Gll(Ts _ Too) + G12(Ds - DOC)] (/; \/bfg_ gz + \/bff_

—b/b2— &

Gut™ + G;,D”
[
= [G11(zs — °) + G12(Ds — D*)][x — 2 arcsin(a/b)] — [G117™ + G12D*]|2 arcsin(a/b)

and arcsin(a/b) = /2 — arccos(a/b), from the first equation of Eq. (4.257),we get

Using

the size of the plastic region:

b/d = SeC[ﬂ'(GnToc + GIZDOO)/z(GllfS + G12Ds)} (4.258)

Analogously, the size of the electric saturation region is

¢/a = sec(xD> /2Dy) (4.259)

From Eqgs. (4.258) and (4.259), it is known that ¢/a > b/a, if D*/Ds > > /1,
Under condition Eq. (4.257), the solution of the first equation in Eq. (4.256) is

1 / G1]t0]
——./b df
” b/ b2 — Xl
= (1 xi| < b (4260)

/77,' (GIITs + G12D, )[ (xl,a, b) - a)(—xl,a,b)],
2_ 2 4
b(a—xy) +E

w(x,a,b) = arcosh

and the solution of the second equation in Eq. (4.256) is
I D
Vojri(x1) \/ —x3 \/—02 ¢) dg = f[w(xl,a,c) — w(—x1,a,c)]
— — X
(4.261)

Equation (4.261) yields

Dy
- xy <c (4.262)

Vai
al) = o oxa0)] = {2y (),

[w(x1,a,c) —
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The generalized crack opening displacements are

x|

Awwoz—l v (E)dE, MMOZ—A v (E)de
G175+ G1aDy

Ausz(xy) = . [(a —x))o(x1,a,b) + (a +x1)w(—x1,a,b)], |x|<b
Dy Vai
A(/](Xl) =5 [(a - X])CU(X] y s C) + (Cl + X])(U(_Xl y s C)} - _Au3(xl)7 |X1 | <c
71'V22 V22
(4.263)
The generalized crack tip opening displacements are
2 G1™° + G1.D™
Aus ((1) = —a (Gllfs + G]zDS) In|sec z u
T 2 Guts + GaDy
(4.264)
Ag(a) 2aDSl zD*> VZIA (@)
a) = n [sec — —Aus(a
¢ 7Z'V22 2Ds V22 :
The energy release rate is
2a V
J = zAu3(a) + DAg(a) = = { (TS - im) (G117s + G1aDy)
/2 Vo
5 (4.265)
win[sec(ZCuT- FGRDTN | Dy He (PP
2 Guts + GiaDy Vo 2Dq
For the small-scale saturation and yielding, we have c/a ~ b/a ~ 1, so
a4 7
J = T [z* D*][G] { D } (4.266)

It is also noted that all the singular integrals are in the sense of the Cauchy principle
value.

4.8.3 Solution for Longer Mechanical Yielding Size

In this case, the size of the mechanical yielding region is c and the size of the electric
saturation region is b and ¢ > b. Equation (4.254) yields

b
um/mwwmwwmwvwm
—b (4.267)

li
(I/H)L [Vljlllj([)/(l—xl)}dl:IOI(XI), |X1| <c, j=12

l
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The sizes of the yielding and saturating regions are, respectively,

€ sec (’” ) (4.268)
a 27

The generalized crack tip opening displacements are

é — cec <ﬂ Gy t™° + ngDoo)
B 2 Gyt +GpDs )’

7 G217 + G D™

2a
Ap(a) = 2 (Gayty + GoaDy) In [sec (£ 21T 20
¢(a) =— (Gt + GnDs) n{“”(z Gt + GuDy )}

) o v (4.269)
arty T 12
A = l P A
nla) = 252 see( 5 )| - T2 a0ta)
The energy release rate is
2 Vv
I = —a { <l)g — 712 TS> (G“Ts -+ G12Ds)
2 Vi
(4.270)

X In|sec % Gut™ + GnD™ + Tg In |sec ia
2 Gyt + GoDy Vi 27

4.9 Mode-III Problem for a Circular Inclusion
with Interface Cracks

4.9.1 Fundamental Equations

The generalized equilibrium and constitutive equations of a mode-III problem
(antiplane shear) are shown in Eq. (4.238), and the equilibrium equations in terms
of generalized displacements are shown in Eq. (4.239), i.e.,

Viu; =0, Vip=0 (4.271)

where V2 is the 2D Laplace operator. Introduce two analytical functions ¢, (z) and
¢,(2). Let

us(r, ) = [0+ HE| 0= [h() +ABE):

z=2x| +ix = re?, zg =iz

(4.272)

Note

Usg = us3.z9+usszg =1|z¢|(z) — z¢p) (z)}, Po= i[zqﬁ’z(z) — Z¢/2(Z):| (4.273)
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where ¢'(z) = d¢;(z) /dz. Equations (4.272) and (4.273) yield

031 —iox = 2[GP(2) + e1sdy(z)], D1 —iDy = 2[e1s¢)(z) — enpy(2)]
o3 — io39 = 26 (G} (2) + ersdy(2)], Dy —iDg = 26" [e1sp) (z) — €113 (2)]
E| —iEy = =2¢)(2), E, —iEp= —2"¢}(2)
4.274)

Let
#1(2) (1’/1(2)
z7) = , F(z)= , B=
7€) {fﬁz(Z)} ¥ {45’2(2)}
(2} o)
D, —Ey

Notations used in this section may be different with other sections. In Eq. (4.275),
B is real, so B = B. Adopting notations in Eq. (4.275) yields

G €1s
b
€15 — €11

(4.275)

3, = {e“’BF(z) +e’igBF(z)}, Uy= 1{ OF(z) — *WF(Z)} 4.276)
On the interface, Eq. (4.276) is reduced to

- (z/a){BF(z) + (a/z)2BF(z)}, Uy = i(z/a){F(z) - (a/z)zm}; zel
(4.277)

4.9.2 Permeable Crack

Figure 4.16a shows an infinite matrix II occupied region S~ including a circular
inclusion T of radius a occupied region S*. Materials I and II are all transversely
isotropic. The entire interface is denoted by L and there are n circular arc cracks
on it. The ends of cracks are successively counterclockwise denoted by a;, by and its
whole is denoted by L.. The origin of the coordinate system (xy,x;) or (r,0) is
selected at the center of the inclusion. The boundary conditions are

031 =05, on =05, Dy=D3, D =D |z] >
o3 =om3 =0, Dy =Dy, ¢ =y (Ey=Emw); z€L
o3 = o3, Dy =Dn, up=um (1413,9 = UBg )» @1 = ¢u(Ew = Enp);
zelL—L.
4.278)
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o5, D;

Fig. 4.16 A circular interface inclusions with interface cracks: (a) general case and (b) one crack
For convenience the following mapping function is used:
z=w(c)=ac, z=x+inp=re c=E+ip=Re% r=aR (4.279)
Under this transformation, the circle with radius a in z plane is transformed to a unit
circle in ¢ plane and L, L. is transformed to I, I, respectively. In ¢ plane, the matrix

is located in the region S, || > 1. The inclusion is located in the region S*, |¢| < 1.

The ends of cracks are all on the unit circle and denoted by o’,&l), 61(3) in the ¢ plane.

It is noted that
f(2) =flo@)] =f(), F(z)=f(2)=Ff ()] (s) =F(g)/a (4.280)

In ¢ plane, Eq. (4.276) is reduced to

%, = (1/a)["BF(5) + ¢ VBF(S)|, Uy = (i/a){e"F(c) - e F(o) |
(4.281)

On the interface I', 6 = e/, Equation (4.277) is reduced to

5, = (1/a) [GBF(G) + 6BF(0)}, Uy = (i/a) [aF(a) - a@}
E, —iEg = —(2/a)ody(6), E,=—(2/a)Re|opy(0)], o€l

(4.282)

4.9.3 Reduced to Riemann-Hilbert Equation

According to Eq. (4.278) on whole interface, Xy, = Xy, so Eq. (4.282) yields

(FB[FI((F) + (_TBIFI((F) = GBHFH((F) + (_FBHFH((F); cerl (4.283)
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For a unit circular region, if g(¢) is analytic in S*(S7), g,(¢) = g(1/¢) is analytic in
S~ (S*) (Muskhelishvili 1954) and

g (0)=g"(0), gl(o)=g (0), g.(¢)=g(l/¢) (4.284)
Rewrite Eq. (4.283) as
B\F{ (6) — 6’ByFy,(6) = BuF;(6) —&’BiFy,; o€l (4.285)

Now research the behavior of F,(¢)(a = I,1I). Denote Fi(¢) is analytic in ST and
rewritten as Fo(¢); Fi(¢) is analytic in S~ except at infinite and can be expressed as

Fu(¢) =Fy +Fuo(s), Fy =Fu(co), ¢e€S (4.286)

Because there is no generalized force and dislocation in a finite region, from
Egs. (4.274), (4.275), and (4.278), it is easy to obtain

a. . 03] — o5,
FH(OO) = *BHl 5 .00 (4287)
2 DY —iD3

In Eq. (4.285), 6°ByFy, (o) is the boundary value on I” of the function (1/¢%)By
Fr.(¢) = (1/¢*)BuFu(1/c) which is analytic in S* except the pole point ¢ = 0.
6B/ F, is the boundary value on I of the function (1/¢?)BiF1.(¢) = (1/¢*)BiF;
(1/¢) which is analytic in S~. These two functions can be analytic continuation
through the connective parts on I". The function after analytic continuation and the
original function must possess the same pole points and values at infinity. Let

Gu(¢) = Fu.(¢) /> = FY /¢* + Guo(s),  Guo(s) = Fuo(1/g)/s*, c€S*
Gu(c) = Fr(c)/¢ =Fu(l/g)/¢, ¢S
(4.288)

Using B; = By, By = By, it can be assumed

BiFi(¢) —BuGu(c) = g(¢), ¢eS*
BuFu(s) — BiGu(¢) = g(s), ¢€S” (4.289)
gle) = —BnFﬂo/é‘z + BuFy

Substituting Egs. (4.286) and (4.288) into Eq. (4.289) yield

BiFyy(¢) — BuGuo(¢) — BuFyy =0, ¢€S*

L= ) (4.290)
ByFuo(c) — BiGy(s) + (1/¢)BuFy =0, c€S
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On the interface, we have

Guo(o) = —Fy + By'BiFy(c), G(o) = °B; 'BuFyy + B;'BuFio(o)
(4.291)

According to Eq. (4.282), the jump d of the direction derivative U 018

d = (U — Uny) = i(6/a){ [Fi(c) — 6°F1(5)] — [Fu(o) — 6*Fu(5)]}, or
(a/o)d =i[Fi(0) + 6°Fy(0)] — [Fu(o) + 6°Fy.(0)]
= i[Fjy(0) — 2Fy + By'BiF;(0)]
—i[Fyo(0) — &> (1 — By 'Bu)FyY + By 'BuFy(o)]
(4.292)

Construct a function k(¢) analytic in whole plane except cracks and ¢ = 0 by the
analytic continuation method through I" — I';:

Fio(¢) + By'BiFyo(c) — 2 FF
h(g) = Io(g) H—l I Io(g) il ) » _OO (4.293)
Fuo(s) + By 'BuFuo(c) — (1/¢°) (11— By 'By) Fy
According to Egs. (4.282) and (4.290), on the crack surface, we have
a/6)Xy, = BiFy(c) + 6°BF(6) = BiF;{ (6) + °BiF,(c
(a/o); 1F1(0) 1F1(6) = BiFy (o) 1Fy, (o) (4.294)

= BiF{ (o) +o"BuFy; + BuFy(0), ¢ € L
Equation (4.293) yields

h' (o) +h (c) = (1+By'Bi)Fyy(c) — 2F;Y + (1+ By 'By)Fy, — 6* (1 — By 'By)Fyy
= H[B\F;)(0) + BuFy(0) + 6°BuFyy | — 2Fy — 26°Fy
(4.295)

where H = By ' + B;'. Comparing Eqs. (4.294) and (4.295), the Riemann-Hilbert
equation on the crack surface is obtained:

(a/o)Zi, =H '[h* () + h (0)] +p™ +p™ 5>, p™ =2H 'F  (4.296)
After h(g) is solved, from Eq. (4.293), Fio(¢;),Fno(s;) can be obtained:

Fuols) = (1+By'B) ' [k(g)) +2F]

_ _ 4.297)
Fuo(s) = (1+ B, 'Bu) ' [n(g) + (1/¢) (1 By 'Bu)Fy]
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4.9.4 Solution for Permeable Crack

From Egs. (4.292) and (4.293), it is found that
—i(a/o)d = h*(6) —h™ (o) (4.298)

From Eq. (4.278), it is known that on the crack surface, Eyg = Eyyy, so on the whole
interface L, dy = 0, or hi(c) —hy () =0, o € L. So hy(¢) is analytic in whole
plane. Because /1;(c0) = 0, so () = 0.

Using the boundary conditions Eq. (4.278) and h,(¢) = 0, Eq. (4.296) yields

(a/o)or = Hfll [h1+(0') +hf(0)] +pi°+p7 5 =0

s _ (4.299)
(a/o)Dy = H;, [h'] (o) + hy (0)] +p5° +p3et
Equation (4.299) yields
Dy, = (1/a)Re[op3° — (H2_11/H1_1l)"p:1>0] (4.300)

Because the traction on the crack surface is zero and Dy, is shown in Eq. (4.300),
Eq. (4.296) can be reduced to

[H'h(o)]" + [H'h(0)] =P* +P5% P* = —pX(iy + (Hy! /H})ia)
(4.301)

The general solution is
H'h(e) = (1/2) (P + P /&) + (1/2)X(6)[C(6) + €1 /s + €2 /]
X(g) _ (g _ GI(<1)>—1/2 (g B 61({2))—1/2, C(g) =C "+ +C
k=1

(4.302)

where 7 is the number of cracks. It is noted that

s [ s i )

1
(4.303)

Substituting Eq. (4.303) into Eq. (4.302) and comparing the order of ¢ yield

o =-(1)2) (/ l/ak )c )

k=

e C=(— n+1H /

(4.304)
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When ¢ — oo, we get

=

lim X(¢) ~ 1/ +(1/26) Y (of + o) (1/2"1)
k=1 (4.305)

P G ==(1/2)) (o) + o)
k=1

&,

Other coefficients are determined by single-valued conditions of the generalized
displacement:

/ ddo =0, or / (K" (6) — h ™ (0)]do =0 (4.306)
Lc Lc

4.9.5 Single Crack

Figure 4.16b shows a single crack with a; = ae™%, b, = ae'®, where 26, is the
center angle spanning by the crack. In this case we have

Jl(cl) — e 00, 61((2) =e%  X(¢) = (c- efi90>*1/2(g _ eieo)*l/Z
Clc)=Cic+Cy, Cy=-P° Co=cos@yP® C_,=P, C_j=—cosfyP™

(4.307)

The solution is

H™'h(c) = (1/2) (P~ + P*/<%)
+(1/2)(¢% — 2 cos by + 1)71/2[—P°°g+ cos OpP™ — cos P~ /¢ + P /|
(4.308)

Fy (gj),F o (gj) can be obtained from Eq. (4.297). So the generalized stress and

displacement in any point can also be obtained. It is noted that

X(0) = (6° — 2cos by + 1)71/2 = e 225in 6y (0p — 0)) "2
oH 'h(c) = (1/2)0X () [P0 + cos §pP> — cos OpP™ G + 62P°°]
i0/2 ~ /s
- {—isinOP™ —iosinOP™) = - —
2,/25in00(6 — 0) 2,/2(0 - 6y)
o5 — i, o5y — ic5,
pe =2H'Fr =ag B ' PN —am{ Y P M= (BuH) !
D¥ —iD¥ D —iD¥
P = —p (i + oty [Hy),  pi = a{Mui (03] — i0%) + M1 (DY = iD5) }

{VoP™ + VoP™ }

(4.309)
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The stress intensity factors can be directly obtained from k(o) and is only related
to the singular parts of the generalized stress. Using Eqs. (4.282), (4.296), and
(4.309), the stress intensity factor at ¢ = eito (or z= aeie") is

K = [Kip, Kp|" = Jim \/27a(6 — 00)%, = (2/a)\/27a(0 — fo)Re [cH 'h(o)]
—bo

= 24/ masin 0() [COS(@()/Z) (M]]G?Oj + Mlszo) + sm(90/2) (M11(73o§ + MlzDgo)]
X [l] + (H;ll/H;ll)lz]
Kap = lim 27a(0 — 09)Eq = —(2/a) Jim 2ra(0 — 00)B,'Re[cH 'h(c)],
—0o —0o
(4.310)

For a homogeneous material, M = 1/2, so

K = \/rasin 0y [63; cos(0y/2) + o3 sin(0o/2)] (i1 + iHy,' /Hy,')

Ko = —/masin6y[o3) cos(09/2) + 63 sin(60/2)] (B, + BooHs,' /HiY')
4.311)

From Eq. (4.311), it is known that for a permeable crack, the stress intensity factors
do not depend to the external electric field.

4.9.6 Impermeable Crack

For an impermeable crack, Dy, = Dy, = 0 on the crack surface are known and
P>* = —p*™. H’lh(g) is still expressed by Eqgs. (4.302), (4.303), (4.304), (4.305),

and (4.306). The stress intensity faCtOI‘ iS
{eiHO/Z { ! | } }
1 ?C 11 2

My Mu} 055 8in(0y/2) + 6%5; cos(6p/2)
My My | | DY sin(6y/2) + D cos(6y/2)

Km 2 - i00/2 -
K= = —\/masinGyRe (e‘ 0 poc) = 2+/masin OpMRe
Kp a

= 2+/rmasin b, {
4.312)

From Eq. (4.312), it is known that for an impermeable crack, the stress intensity
factors are dependent to the external electric field.

Zhong and Meguid (1997), Gao and Balke (2003), and Liu and Fang (2004) et al.
discussed the similar problem.
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