Chapter 3
Generalized Two-Dimensional
Electroelastic Problem

Abstract In this chapter the fundamental theory of the generalized two-dimensional
(2D) linear electroelastic analyses is discussed. The generalized 2D Stroh method
and the extended generalized Lekhnitskii stress function method are studied. The
linear electroelastic analyses in an infinite transversely isotropic material with the
permeable, impermeable, and conducting elliptic hole; crack; and the rigid elliptic
inclusion under plane strain are discussed in detail. Singularities, including
generalized dislocation, generalized force, and electric couple, in homogeneous
material and bimaterial are researched. Interaction of an elliptic inclusion with a
singularity is discussed, and some numerical examples are also given. In this
chapter the asymptotic fields near a line inclusion tip in a homogeneous material
and Eshelby’s eigenstrain problem are also discussed.
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3.1 Generalized Two-Dimensional Linear
Electroelastic Problem

The generalized two-dimensional (2D) electroelastic problem means that the
generalized displacements (u;, @; i = 1,2,3) exactly or the generalized stresses
(04,Di; i,j =1,2,3) approximately depend only on two of the coordinates
(1,2, x3). It is seen that the generalized 2D problem is a special three-dimensional
(3D) problem, which is different with the plane problem (plane strain and
generalized plane stress problems). For the linear electroelastic problem with
small electric field, the Maxwell stress can be neglected because (u,o,D) depend
on E linearly and the Maxwell stress is depended on the square of E. The method to
solve the electroelastic problem is directly the extension of that in the anisotropic
elastic materials, but the problem is more complex.
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88 3 Generalized Two-Dimensional Electroelastic Problem

In engineering the extensive applied constitutive equations are the second kind
and the third kind of the constitutive equations in Eq. (2.83) for the piezoelectric
materials. The governing equations are the generalized momentum equations,
constitutive equations, and generalized geometric equations. They are, respectively,

oiji + (f,m +fje> = pilj, - Dij = pe G.D

oij = Cijuen — ewjEr, Di = ¢;E; + eien  or (3.2)
&;j = Sijon + D,  Ei = —giuoj + PyD; '

g5 = (ij+ui)/2, Ei=-@, (3.3)

where f™ is the mechanical force per volume and f* is the static electric force. The
boundary conditions and connective conditions on the interface are, respectively,

— * . i *
oin; =T;, on da, uj=u;, on a
*

Dinj = —c*, on ap; ¢ =¢*, on a, 3.4

oynj=ozn, uw =u;, Df=D7; ¢ =¢ , on L (3.5

where T*, 0" are the traction and electric charge per area and the superscripts “+”
and “ — ” denote the values approached from the upper and lower half planes,
respectively. For the linear problem, f° can be neglected. For the static case without
the body force and body electric charge, the governing equations in (u, ¢) are

(Ciwnr + exijp) 4 = 05 (—cawp + egpaty) ;= 0 (3.6)

For the multi-connected domain, the displacement, electric potential must satisfy
the uniqueness conditions

}{dU,-:O or fdu,-:o, qu):o (3.7)
L L L

where L is a closed contour and there is no source inside it.
Sometimes the constitutive equations are written in a more compact form:

Cij, J:1,2,3

2 = EyknZin, Zig = i Zgi=0
7 JKntK 7 {Di, J—4 /,

w, K=1,273 e, K =123
Uk = i Lgn = ;
o, K=4 “E, K=4 »
Citnr 1,K=1,2,3 69
ey J=12,3; K=4
Eijkn =

Cikn, J :47 K= 17273
—€in, J=K=4
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where a subscript in upper case takes the value 1, 2, 3, or 4 and a subscript in
lower case takes the value 1, 2, or 3. Uk, s, Zk;, and E;jk; are the generalized
displacement, generalized stress, generalized strain, and generalized stiffness
coefficient, respectively. It is noted that the rule of the subscript used here does not
hold everywhere and the meaning of the subscript given in corresponding places.

3.2 Generalized Displacement Method
in the Piezoelectric Materials

3.2.1 Generalized Displacement Method

For the generalized 2D problem, the Stroh method (Stroh 1958; Suo 1990; Suo et al.
1992; Ting 1996) is often applied. Let

U=af(z), or Ux=uaxf(z), or u=af(z), ¢=af(z)
U= {UK}T = [Mia(P]T, a= {GK}T = [a,-,adT 3.9)
Uko = axf'(z) (6t + H0w2), z=x1+pux2; z1=1, zp=up

where the right upper superscript 7 denotes transpose of a matrix. Substituting
Eq. (3.9) into Eq. (3.6) in generalized 2D case yields

(Caﬂ/;a, + e/}jaa4)zﬁaz,ﬂ = 0, (—eaﬁa4 + €/}jaaj)2’a2ﬁ = 0; or (3 10)
(Cajipai + €pajas)zazp =0,  (—€apas + €pajtj) 2,425 =0 .

where a Greek subscript takes values 1 and 2 and an English subscript takes values
1, 2, and 3. Equation (3.10) can be written in detail as

[Citr1 + u(Citga + Ciont) + > Cioia | ax + [e1in + u(ean + e1n) + pu’ean]as = 0
[elkl + ulears + ewa) +H2€2k2]ak - [611 + u(ez + en) +/42622]a4 =0
(3.11)

where the subscripts i and k denote row and column, respectively. In order
to obtain nontrivial solutions for (ax,as), the coefficient determinant must be
zero, i.e.,

| = Ciix1 + u(Citxz + Cik) +M2Ci2k2 e1in + ulean + e) +/42€2i2 -0

D
D) e + plear + enn) + prexn —en — plen +en) — pren

(3.12)
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D(u) is called the character matrix. If introducing 4 x 4 matrixes Q,R,T

Cik1 et Cira e Coni e Corx e
0= { , R= ,R" = , T =
€kl —E€n ik €12 €1 —€12 €2 —€2

Ciowt = Criz; Qixk = Euxi, Rix =Eux2, Tix = Exyke
(3.13)

then Eqgs. (3.11) and (3.12) can also be written as
Dwa=[Q+u(R+R")+u’Tla=0, or

(Q+uR)a=—uR" +uT)a, (R"+uT)a=—(u"'Q+R)a (3.14)
ID(u)| = @ +p(R+R") +4*| =0

|D(p)| is a 4 x 4 determinant, |D(u)| = 0 is the eighth-order equation of x4, so
eigenvalue p has eight roots. Equation (3.11) or (3.14) is used to determine
eigenvector a. Because u is complex (Suo et al 1992; Ting 1996), let

:uP:aP+iﬂP7 ﬂP>Oa /’tP+4:ﬁP; (P: 1727374)
zp =1+ ppxa; X1 = (upZp — fpzp)/(up — fip), X2 = (zp — 2p)/(up — Hip)
(3.15)

In fact if we multiply the first equation in (3.10) by @; and sum over j, multiply the
second equation in (3.10) by a4, the difference of these two results is

(Cagipajar + €apa) (a1 + u622) (81 + ubp2) =0
If u is real, we can choose

Uig = (8a1 + Ubp2)aj, wp= (5ﬁ1 +ﬂ5ﬁ2)al; @4 = (8a1 + Uda2)a,
Py = (8p + HOp)aa
The expression of the strain energy is
Cojiptjalitp + €apP o g = 0

However, the strain energy is positive definite and cannot equal zero, so y must
be complex.

3.2.2 Eigenvalues p’s Are All Distinct

When the eigenvalues p’s in Eq. (3.12) are all distinct, the matrix D(p) is called
simple. In this case for each yp, an independent eigenvectorap = [apy, apa, ap3, Clp4]T
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can be solved from Eq. (3.11). Corresponding to ap, an arbitrary function fp(zp),
Zp = X] + UpX2, can be assumed. Noting U is real, so the general solution is

4
U =[u;,¢]' =2Re Y _apfp(zp) = 2Re[Af (zp)]

4 4 (3.16)
Uk = 2Re ZaPKfP(ZP) =2Re ZAKPfP (zp)
P=1 P=1
a—= [(117(12,(137(14]; A= [AKP]7 AKP = apk
(3.17)

fzp) = [fr(zr)]" = [fi(21),12(22). f(23), fa (za)]"

where symbol Re means the real part of a complex function, A is a4 x 4 matrix, and
f(zp) is a vector function and may be called the displacement generation function.
It is noted that matrix A and matrix a are identical, but the notations of their
components are different. When the number of a summation dummy subscript is
larger than 2, we shall directly use the notation X as shown in Eq. (3.16). For most
engineering problem, fp(zp) in Eq. (3.16) can be simplified as f(zp)Vp, where Vis a
constant vector. So Eq. (3.16) can be reduced to

U =2Re[A(f(zp))V], (f(zp)) = diag[f(zp)], V= [V},Va]" (3.18)
Analogous to Eq. (3.10), for any subscript “P,” we have

(CiatpArp + €pialap)zp azp g =0, (€arpArp — €apAap)zp ozp s =0; or
(CitnpAwp + epnAap)zp g = —up (CiupArp + €pinAap)zp p (3.19)
(ewpArr — eprAap)zpp = —pp (eaupArr — €p2Asp)zp

Substitution of Eq. (3.16) into Eq. (3.2) yields

4
oy = 2Re > (CijpArr + epijAar)zp yFp(2p)
P (3.20)
4
D; = 2Re Z (eipArp — €ipAap)zp gFp(zp)
P=1

where F),(z,) = dfp,/dz, = f,(z,) is the derivative of f,(z,) with z,. Substitution of
Eq. (3.18) into Eq. (3.2) yields

4

o = 2Re Z (C,'jk/}Akp + 6/},’1'A4P)Zp7/1F(Zp)Vp
= 3.21)

4

Di = 2Re Z (e,-kﬁAkp — 6,‘ﬁA4P)Zp’/}F(Zp)VP

P=1
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Using Eq. (3.19) from Eq. (3.20), we can get

4 4
ci1 = 2Re Z (CikpArp + epinAap)zp pFp(zp) = —2Re Zﬂp (CiakpArp + €piAap)zp pFp(zp)

4 4
D, = 2Re Z (ewpArp — c1pAap)zp pFp(zp) = —2Re ZMP (expArp — €ppAsp)zp sFp(zp)
P=1 —

op = 2Re Z CiwpAip + egnAap)zp gFp(zp) = —2Re Zﬂp CinpArp + epinAsp)zp sFp(zp)
P=1

D> = 2Re Z expAp — €apAap)Fp(zp)zp g = —2Re Zﬂp (ewpArp — ep1Aap)zp pFp(zp)
P=1 p=1

(3.22)

Introduce the generalized stress function @ satisfying the equilibrium equation
automatically:

4
D= [®l7 (pz, (Dg,, ¢4]T = [(bh (D4}T =2Re prfp(Zp) = ZRC[Bf(Zp)]
P=1
4 4
21 = —¢.2 = —2Re ZﬂPbPFp(Zp), 22 = (D"l = ZRGZIJPFP(ZP)

P=1 P=1

4 4
o1 =2j1 = —D;, = —2Re ZﬂpbPiFP(ZP), Dy =2%4 = —Pyp = —2Re ZﬂPbP4FP(ZP)

4 4
op=2p=®;; =2Re ZbPiFP(ZP)a Dy =Xp = Py = 2Re ZbP4FP(ZP)
= P=1

(3.23)

Comparing Eqs. (3.22) and (3.23), it is easily found that

bpi = Bip = (CoupArp + epinAap)zpp = —pp! (CitpArp + epinAap)zpp
bps = Bap = (eaupArp — epAup)zp s = —pp" (e1rpArr — €p1Asp)zp g (3.24)
b = [bp] = [b1, b2, b3,bs] = [bpx] = [Bkp] = B

Combining Egs. (3.23) and (3.24), we get

bp = (R" + upT)ap = —pp" (@ + upR)ap
B = (RT + MP,mwT)A = _'u;.,}'ow (Q + /’lP,rowR>A (325)
2] = —d)A’z = —2RC[B,L£PF(ZP)L 22 = d)A’] = 2RG[BF(ZP)]

where pp ,,, is a special symbol, the subscript P in pp ,,,, takes the value of the row
number of the matrix A or B under matrix calculation. Similar to ap, components of
bp are bpg, K = 1,2,3,4. Because o1, = 0,1, we get @1’1 + @2,2 =0.
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a b
Ty X,
L l
discussed
0 body
discussed dz, ;
bOdy n
dzx,
0 Xy 0] Xy

Fig. 3.1 First kind of natural coordinate system on a curve L

Similarly for the general solution Eq. (3.18), we have

D= (D), D), D3, D] = [@;,D,]" = 2Rez4:bpf(z,o)vp = 2Re[B(f(zp))V]

21 = —di’z = —2Re[B<yPF(2p)>V], 22 = ¢7] = 2Re[B<F(Zp)>V]
(3.26)

The generalized stress o33 can be obtained by the condition of the generalized
plain strain €33 = 0. In the 2D, D3 = 0 is assumed.

Now the physical meaning of @ is discussed. Usually the first natural coordinate
system at a point on a curve L is used. Let n be the outward normal to L;
when an observer moves along the positive direction of the tangent ¢ around L,
the discussed body is located in the left side. fis directed counterclockwise from the
positive x;-axis to the positive direction of n (Fig. 3.1). Therefore

I11=I2=COS€=d.X2/dS, nzz—tlzsim?:—dxl/ds;
n=ny +inp = —idz/ds = —idz/|dz|, t=t +it, =dz/ds =dz/|dz| = in
(3.27)

where ds is the arc length of an infinitesimal element. The traction T on L is
T,‘ = ojjn; = 6,'1d)€2/ds — D',‘zdxl/ds = —(15,‘72(1)(2/(1_3' — <D,~,1d.x1/ds = —d(p,‘/dS
— 0 = D,-ni = Dn = —@42(1)62/(13‘ — (154<1d.X1/dS = —d(D4/ds
T =T, —o] = —d®/ds, ®@[}=— / Tds, @fi=— / Tids, @4fi=— / D,ds
0 0 0
(3.28)

So — A® represents the increased resultant force on As of the boundary.

In literatures authors also adopted the second natural coordinate system. In this
system authors take the tangent ¢ and ¢ = —t¢. This system is often used for a hole
or inclusion in a multiply connected region. For this system in literatures, there are
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a b

x, Xy

discussed
6' body

discussed
body

=Y

0 T, 0

Fig. 3.2 Second kind of natural coordinate system on a curve L

two kinds. The first is that @ is directed counterclockwise from the positive x;-axis to
the direction of n (Fig. 3.2a), so

ny = —t, =cosf = —dxy/ds, ny =17 =sinf =dx;/ds; n=if =idz/ds

N N N

T =[n,n,6,—0] :dfb/ds,(bﬁ):/ Tds, ¢>i|f):/ Tds, (D4|8:—/ ods
0 0 0

(3.29a)

The second is that & is directed counterclockwise from the positive x;-axis to the
direction of # (Fig. 3.2b). In this case we have § = 7/2 + @', so we have

n=(—sin@,cosd), ¢(=cosd, sin@); T =dd/ds (3.29b)

3.2.3 Orthogonality of A and B

From Eq. (3.14) we can get (Ting 1996; Kuang 2011)

EHIREEHIN

Multiply on both sides of Eq. (3.30) from left by the following matrix:

0 71!
I —RT'
Equation (3.30) can be reduced to the standard 8 x 8 eigen-equation
V=t N[0 e=
A TN N ST (3.31)

N,=-T"'R", N,=T"', N;=RT'R"-Q
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where £ is the right eigenvector. By using Eq. (3.25), from Eq. (3.31), it yields
[U72 ¢,2] = [U,l Ql]NT. If multiply on both sides of Eq. (3.31) from left by the
matrix

J(‘I) (I)) J=J"=J"', JN=UN)" =N"J (3.32)

Eq. (3.30) can be reduced to
INE=NT(J§) = u(Jg), or N'g=un= n=Jé=[ba'  (333)
where 7 is the left eigenvector. According to the mathematical theory (Ting 1996),

the left and right eigenvectors associated with different eigenvalues are orthogonal
to each other. So for the normalized £ and #, we have

r],.Tfj =0, or bl.TaJ, +al.Tbj=5,.j, when g # (3.34a)
From Eq. (3.34a) the following identities can be obtained:

B'A+A"B=B'A+A'B=1, BPTA+A"B=B'"A+A'B=0
AB" +AB" =BA" +BA' =1, AAT+AA" =BB" +BB' =0, or

BT AT (A A) B (I 0)‘ (A A) BT A"\ (I 0)
B" A")\B B) \0 1) \B B)\B" 4") \0 I
(3.34b)
From above equations it is known that AAT and BB" are pure imaginary. Let
M =M"=2iAA", L=L"=-2iBB", S=i(24B" —1) (3.35)

where M and L are real positive definite symmetric matrixes and S is a real matrix.
It is easy to prove that there are the following relations:

LS+S'TL=0, MST+SM=0, ML-SS=1I (3.36)

From Egs. (3.35) and (3.36), it is known that SL~'and M!S are antisymmetric
matrix. Using AB~' = AB"(BB") 1 BAT = (ABT)T (AAT) ' and the above
equations we get

Y —idB ' = —i(S+iDL ' =iL ' (ST —il), ¥ =i(sL) +L"!
=—iSL'+L' =Y (3.37)
Y'=—iBA'=—i(S"+i)M ' =M (S—i) =M +iM'S

It is obvious that Y is a Hermite matrix, i.e., Y = iAB~! = YT, y'=v "
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3.2.4 Semisimple and Degenerate Matrixes

If the eigenvectors in Eq. (3.11) corresponding to each repeated root 4 of multiplic-
ity rin Eq. (3.12) have r independent eigenvectors 4,,v = 1, . ..r, the corresponding
matrix D is called semisimple. The eigen-space is complete for the semisimple
matrix. For a semisimple matrix, the eigenvectors associated with a repeated
eigenvalue are not unique; however, it is possible to establish a set of eigenvectors
such that the orthogonality relations hold and normalized. In this case the general
solutions Egs. (3.16) and (3.18) are also held. A real and symmetric matrix or a
complex Hermite matrix is always either simple or semisimple, and their eigen-
values are all real. If the number of the independent eigenvectors is less than the
multiplicity of a repeat root, the corresponding matrix is called nonsemisimple or
degenerate matrix. The eigen-space is not complete for the degenerate matrix.
In order to make the eigen-space of the degenerate matrix complete, we can
establish the generalized eigenvectors to provide the missing eigenvectors (Ting
1996). Sometimes in the practical calculation, a very small difference between the
repeated roots is assumed to approximately satisfy the eigen-equation.

3.2.5 A General Theory of the Generalized Eigenvectors

The general theory of the generalized eigenvectors for the simple, semisimple, and
degenerated matrixes is expressed in the following theorem (Dempsey and Sinclair
1979; Yang et al. 1997):

Theorem Let y be the eigenvalue of a square matrix D(u) of order n (here n = 4)
and abe the corresponding eigenvector. If rank of matrixDism = n — r < n, where
r is the number of the eigenvectors corresponding to a repeated eigenvalue, and if
at g = p,, we have

Da=0 (3.38)
d(Da)/du = (dD/du)a + D(da/du) = 0 (3.39)
d*(Da)/di’ = (D /dy*)a + 2(dD/du)(da/du) + DD (d*a/du?) =0 (3.40)
In order to get nontrivial solution for @ in Eq. (3.38), it must be

ID| =0 (3.41)
In order to get nontrivial solution for @ and da/dy in Eq. (3.39), it must be

ID| = d""|D|/du" ™™ =0 (3.42)
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In order to get nontrivial solution for a, da/du, and d’a / d,btz in Eq. (3.40),
it must be

n—m)

ID| = " |D|/du" " = &) D| " = 0 (3.43)

L. py, po, 3, 4y are all single roots: |D| is a polynomial containing first power of
Hjs SO d|D|/d,uj #0. In this case r=1,m=n—1=73, and Eq. (3.42) is not
satisfied. Equation (3.38) has four independent eigenvectors. The general solution
of U is expressed by Eq. (3.16).

2. p, is a repeated root with multiplicity 2 and ps, u, are single roots: |D| is a
polynomial containing second power of y;, so d*[D|/du? # 0.

(a) There are two independent eigenvectors corresponding to yu;, m =n — 2 = 2.
In this case Eq. (3.42) is not satisfied. The general solution of U is still expressed by
Eq. (3.16).

(b) There is only one independent eigenvectors corresponding toy;, m =n — 1 =3
. In this case Eq. (3.42) can be satisfied; @; and da; /dy, in Eq. (3.39) all have nontrivial
solutions. The general solution of U can be expressed by

U =2Re[Af(z.) +wafi(z1)]; A= a1, dai/dpy, a3, 4]

3.44
£z = )iz faes) foCea)T G4

where da, /dy, is solved from Eq. (3.39).

3. u; is a repeated root with multiplicity 3 and p is a single root: |D| is a
polynomial containing third power of y;, so d’|D| /dui # 0.

(a) There are three independent eigenvectors corresponding to y;,m =n — 3 = 1.
In this case it is still that only Eq. (3.41) has nontrivial solution. The general
solution of U is still expressed by Eq. (3.16).

(b) There are two independent eigenvectors corresponding to u;,m =n — 2 = 2.
In this case

Eq. (3.42) can be satisfied; a; and da; /du, in Eq. (3.39) have nontrivial solutions.
The general solution of U can still be expressed by (3.44).

(c) There is only one independent eigenvector corresponding toy;,m =n — 1 = 3.
In this case Eq. (3.43) is satisfied. ay, da;/dy,, and d’a, / d,u% all have nontrivial
solutions. The general solution of U can be expressed by

U = 2Re[A"f(z.) + xoaif] (z1) + 2x2(day /dw )f (z1) + i (21)]

A" = [alvdal/dﬂl7a37d2a1/dﬂﬂ7 f(ZP) = {fl(zl)afl(Zl)vf3(z3)7f1(zl)]T
(3.45)

where da; /dy, is solved from Eq. (3.40).
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3.2.6 Electric Displacement Tensor Method

The fourth kind of the constitutive equations in Eq. (2.83) is
Ojj = CijmnEmn - hniij E; = —hipn€mn +ﬁinDn (346)

Shen and Kuang (1999a) introduced an antisymmetric tensor G of second order
and a vector potential y of the electric displacement to satisfy V - D = 0 automati-
cally and let

D; = @i Gpn,s Gij = (l//[,j - l//j,i) /27 Gij = _Gji; Vii= 0 (347)

where V - ¥ = 0 is the condition to make ¥ unique and @ is a permutation tensor:

W3 = @B = w312 =1, w3 =win = w3 = —1, otherwise w;; =0

(3.48)
Introduce the electric tensor L:
E; = (1/2)@imuLmn,  Lyn = @imnEi = —Lym (3.49)
Using E;; = E;; from Eq. (3.49), we get
Lijj = @mijEmj = @ijmEmj = @imj® yj = 0 (3.50)
Using Egs. (3.47) and (3.49), the constitutive equations Eq. (3.46) can be written as

Ojj = Cijmnemn - htijwmmen = Cijmngmn - hmm'j'Gm)1

Lif = wttfiEr = wti/’(_htmncmn + ﬂmwnpqgnqupq) = _hijmngmn +ﬁjjmnGmn (3.51)
hmnij = hnmji = *hnmij = wtmnhtij
ﬂijmn = ﬁmnij = _ﬂjimn = _ﬂijnmwtijwnpqﬂm

Using Egs. (3.47) and (3.51), the equations V - 6 = 0, E = —V¢ can be written as
(Ciattrs — Zklijll/k,l), ;=0 (hijaues — Bz,‘kﬂ//k,l)’ ;=0 (3.52a)

When material coefficients are all constants for the general plane problem,
Eq. (3.52a) becomes

Uiapap =0,  Liagpap =05 Uiap = Cipralti — PraipWss  Liap = hipkattc — BipraWi
(3.52b)

Equation (3.52) is a pretty equation. How to use it in engineering should be
studied in the future.
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3.3 Stress Function Method

3.3.1 Solution for a General Piezoelectric Material

Using the Voigt notation, the third kind of the constitutive equations in Eq. (2.84) is
€ = 8ij0j + 4iDa;  Eq = —84j0; + PopDp;  1,j=1-6; a,f=1-3 (3.53)
In this section a subscript in English letter takes the values 1 — 6 and a sub-

script in Greek letter takes the values 1 — 3. In the general plane strain problem,

g3 = 0 and
€ =u33 = 830; + 83Da =0, Ez=—@3=—g30;+3,Da=0 (3.54)

Solving o3 and D3 from Eq. (3.54) yields

03 :F]'O-j"'_GaDa; D3 :Hio'j+JaDm ([7“7&3)
Fj = _(g33g3j + S3jﬁ33)M, Go = (833830 — Eu3P33)M,

Hj= (S33g3j - 53.1‘%33)Mv Jo = —(533P34 + 83383 )M, M = 1/(%%3 + 533633)

(3.55)
Substitution of Eq. (3.55) into Eq. (3.53) yields
ui1 = K16 + MgDay U2 = Kk2j0; +115,Dg, U3 = K4j0; + N4eDq,
u3] = Ks5;0; + NsgDa, U1 + 12 = Kej0; + NggDa, (3.56)
Ey = —hjjoj + &1,Do,  Er = —hyjoj + &uDy (j,a # 3)
where the reduced constants «;j, 7,4, flaj, S5 are
Kij = Sij + 8i3Fj + g3Hj = Kji,  Njq = 8qj + 53Ga + 3/, (3.57)

haj = 84; + 83Fj — Bastli = Njas $pa = Ppa — 853G a + Bp3la

Applying Lekhnitskii method (1987, 1957), Kosmodamianskii and Lozhkin
(1975) discussed the plane stress state of thin piezoelectric plates and gave the
expressions with complex potentials. Hao and Shen (1994) and Huang and Kuang
(2000a) discussed the general generalized plane problem. They introduced the
stress functions A,%¥ and the electric potential V to satisfy the generalized
equilibrium equations automatically:

61=Axn, oa=An, o66=-An, os=-Y), os=¥y D =V, Dy=-V,
(3.58)
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Substitution of Eq. (3.58) into Eq. (3.56) finally yields the general compatibility
equation

LA+Ly¥W +LsV =0, LA+L¥Y+LV=0, LsA+Ls¥ —LyV =0

(3.59)
where
? o? o?
Ly = Kss = — Dys —0 9
27K ox3 K4 Ox20x T K Ox?
3 3 83 83
Ly = kis~ — — S K3
3 =Kis 8x§ (k14 + Ks6) Bxgaxl + (k55 + Ku6) 6x28x% K24 8x?
ot o o o o
Ly = k1| =— — 2k16 —— + (2x1p + — s — 2k ———= + Ko —
4= (‘3)(‘2‘ k1o axgaxl (212 + o) ax%(?x% K26 8xzc'9x? K22 8)(‘1‘
3 63 83 83
L: = - — - - _
5 =1 o3 (12 +161) 020, + (21 + 162) D520 + o
2 82 82

Le = 77513—)%* (52 +ﬂ41)m+ﬂ426—x%

83 3 3 83
L; = —L —h + (h h —(h hye) ———= — hyp —
7 5 = 1133 8x2 + (M6 + 21)5’)%5’)(1 (h12 + hae) 8}(2(%% 22 8x?
82 2 62
Lg = —L¢ =—h + (h h —
8 6 1582 + (hia + 25)828 46x%
82 2 82
511 (512+521)3 o +§228xl

(3.60)

Eliminating ¥ and V from Eq. (3.59) yields an eighth-order differential equation
of A:

(LéLsLs — LoLsLy + LoL3 — LsLsLg + LyLsLy — LsLeL7)A = 0,

5 (3.61)
(L6L8L4 — LoL4Ly + LoL5 4 2LsL3Le + L2L5L7)A =0
Its solution is
4 ~
A=2Re> fp(zp), zp =X+ upxs (3.62)

P=1

where f p(zp) is an analytic function of zp and pp is the root of the following eigen-
equation

lelgly — lolyly + lgl% — Islzlg + Llsl; — I3lgl; =0, or

(3.63)
L2 4 blyly — Bly — 211516 4+ L1232 = 0
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where [; = I;(u) can be obtained by using y instead of the differential operator 9/0x;
in L; of Eq. (3.60) and the power of y is the same as the power of 9/9x,, such as

Li(p) = kisp® — (kg + Ks6)u® + (Kss -+ Kag )t — K24

where up is the same as that in Stroh’s formula. From Eq. (3.59), it is obtained that
4 4 ~
¥ =2Re> apfr(zp), V=2ReY bpfe(zp), fr(zp)=df,/dzp
p=1 p=1
CIsbp 41y lsbp+13  lobp + 1  B—lLbh i —hh

I A Is T T Lls — Ll bly — Igls
(3.64)

ap =

where I; = I;(up). Substitution of A, ¥ and V into Eq. (3.58) yields the generalized
stress; then substitution of the result into Eq. (3.56) yields the generalized
displacements. Comparing the generalized stress and displacement with that in
Stroh’s formula, the explicit forms of B and A are obtained:

“H1 THy TH3 TH4
I |
B=|_ o 4 —ar —ail A = [A;] (3.65)

—by —=by —b3 —by

Ay = l<11/l,2 + K12 — Kiepj + aj(KISﬂj - K14) + (7711,“,‘ - ’712)bj

Ay = [Kzlu? K = Kogpt + ay(Raspty = x4) + (a1t = 1) by ] / & (3.66)

Az = {Kzuﬂjz + K4z — K4eptj + aj (K45Mj - K44) + (’741H/ - ’742)171] /ﬂj
Agj = haps + hiy — hepy + @i (s — hia) + (& — E2)by

The above results are obtained for the generalized plane strain. For the
generalized plane stress, the constants should be simply replaced by

Kij = 8j = Kjis - Mia = &app Naj = 8y Epa = Ppa (Vysf#3)  (3.67)

It is also noted that the plane stress deformation can be existed only in the
materials with at least one material symmetric plane such as monoclinic material.
From Eq. (3.58), the stress functions can be obtained as

4 4
@y =—Ay=—2Re> upfr(zp), Pr=A1=2Re) fp(zp)

P=1 P=1

. \ (3.68)
@3 =-¥Y= —2Rezapfp(2p), @4 =-V= —ZRCZbep(Zp)
P=1 P=1

Equation (3.68) shows that @ = 2Re[Bf(zp)] where B is shown in Eq. (3.65).
This is consistent with the Stroh’s formula Eq. (3.23).
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3.3.2 The Transversely Isotropic Material in Plane Strain

Usually in engineering the coordinate system x-y-z is used, and the material
constants given in the handbooks are under the condition that the poling direction
is along the axis z. For a general piezoelectric material, there are 45 independent
material constants: 21 elastic constants, 18 piezoelectric constants, and 6 permittiv-
ity constants. For the orthogonal materials in the material principle coordinate
system with poling axis z, the plane x-y is an isotropic plane. For an isotropic
plane x-y, the in-plane electric field couples only with the out-plane mechanical
stress. In the anisotropic plane x-z, y-z, the in-plane electric field couples with the
in-plane mechanical stress, and the mechanical behaviors in x-z and y-z planes are
the same. In this case when the axis z is taken as the poling axis, there are
17 independent material constants: 9 elastic constants, sy, $12, S13, 522, $23, 533, S44,
555,866 OF C11,C12,C13,Cn,C23,C33,Ca4,Css,Cep; 5 piezoelectric constants, g,
24, 8315 832, 833 OF €15, €24, €31, €32, €33; and 3 electric constants, f, f,,, f33 Or €11,
€22, €33. The second kind of the constitutive equation in Eq. (2.84) is

Oy Chi Cpp Ci3 O 0 0 0 0 —e3 | Ex
oy Cpp Cpn Cx O 0 0 0 0 —e3 €y
o, Ciz Cxn C;3 O 0 0 0 0 —e33 &
Oy 0 0 0 Cy 0 0 0 —ey 0 |[7e
Gep=]0 0 0 0 Cs5 0 —es 0 0 V.
Oy 0 0 0 0 0 Cg 0 0 0 Yy
D, 0 0 0 0 eas 0 ea 0 0 |]|E
D, 0 0 0 ey O 0 0 2% 0 E,
D, L es1 e e33 0 0 0 0 0 €3 | E.
(3.69a)
The third kind of the constitutive equation in Eq. (2.84) is
€x [ si S12 S13 0 0 0 0 0 gy Oy
&y S S» s 0 0 0 0 0 gy Oy
€; S13 s»3 SR 0 0 0 0 0 g o
Vye 0 0 0 s O 0 0 g, O 7
o= 0 0 0 0 s5 0 gs 0 0 -
Vs 0 0 0 0 0 s 0O 0 0 Ty
E, 0 0 0 0 —-gs 0 pfy 0 O D,
E, 0 0 0 -g, 0 0 0 fpp O D,
E. -8 —2» —g3 O 0 0 0 0 px] D:

(3.69b)
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It is noted that [s] = [C]™'. For the transversely isotropic material, such as
piezoelectric ceramic PZT and many other materials, in the material principle
coordinate system, there are ten independent material constants because there are
relations between material constants:

$13 = 823,511 = 522,544 = 55,566 = 2(S11 — 512); 231 = 832,815 = &5 P11 =P
Ci3=C23,C11 =C1,C44 =Cs5,Ce6 = (C11 —C12)/2; €31 =exn,e15 =exu; €] =€xn

(3.70)

In this section the plane strain problem is discussed and adopted the third kind of
the constitutive equation, Eq. (3.69b). Let

Ex =V =Yy =E:=0 (3.7
From Eq. (3.71), it can be obtained that
D,=0, 7x=1.=0, o0y=—(s120,+5130: + g31D:)/s11 (3.72)

Analogous to the Voigt expression of the stress and strain in 3D case, we
introduce the vector expression of the stress and strain in plane strain case. Let

X1 =Y, X2 =2Z, X3 =X; 0] = 0y, 03 = 0z, 03 = Ty;; (3.73)
€ =¢&, &a=2¢6, =7, D1 =D, Dy=D; E\=E,E =E;

Substitution of Egs. (3.71), (3.72), and (3.73) into Eq. (3.69) yields

€] ajy  an 0 0 by ol
& ap  ap 0 0 bxn 1)
&3 p = 0 0 a3z bz 0 03
E, 0 0 —biz ki1 O D,
E, —by —bn 0 0 kn D,

2 >
ap = Si1 —S5/S1, a2 =813 — SS13/S11,  axn =833 — S73/S11, a3 = S
by = (1 =sia/s11)81, b = g3 — &1513/511, b1z =g5, ki = Py,

ko = B3 + 3,/s11
(3.74)

where ajj, bj;, kjj are reduced material constants and s;;g;;, ; are material constants as
shown in Eq. (3.69b). In the plane strain problem, o3 = 023 = 0, so the stress
function ¥ in Eq. (3.58) is not needed. The eighth-order differential equation
(3.61) is reduced to sixth-order differential equation, and the eighth-order eigen-
equation (3.63) is reduced to sixth-order eigen-equation. Repeating the process
analogous to Sect. 3.3.1 finally yields (Sosa 1991; Sosa and Khutoryansky 1996;
Kuang and Ma 2002)
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U= U(M] , Uy, §0) = ZRC[Af(ZP)L b = (p((pl s (pz, 454) = ZRC[Bf(ZP)]

P1 P2 P3 —H1 TH2 —H3 (3.75)
A=| g ¢ g3 |, B= 1 1 1
M~k A3 —n Ny N3

where up is the root of the following eigen-equation:

ankip® + (aiikan + 2aikyy + asskyy + b3y + biz + 2boibis )t
+ (ankii + 2ai2ka+asska + 2by1byy + 2bxbi3)u* + anky + b3, =0
(3.76)

and

pp =anup +apn —bunp, qp = (anup +an — bonp) /up
Ap = (bis + kunp)up, Appp = —(bzlﬁl;za + by + k22’71)) (3.77)
np = —[(ba1 + b13)up + baa] / (kiipp + kaa)

If the rigid rotation angle w is considered, we have

3 3
uy = 2Re prfp(Zp) — X3, Uy = 2ReZqup(Zp) + wxy,

P=1 P=1

3 3
¢ =-2ReY Apfe(zp); @1 =-2Re> upfo(zp),
P=1 P=1

3 3
@y =2Re > fp(zp), @s=—2ReY npfp(zp) (3.78)
P=1 P=1

3 3 3
o] = 2Re Z,uszj(zj), 0) = 2R€ZF1<ZI), 03 — —2Re Z,qu/‘(Zj)
=1 j=1

J=1
3 3
D =2Re Zujnij(Z_i), D, = —2Re Z’?ij(Zj)
=1 J=1

J

3.4 An Elliptic Hole or Inclusion in a Transversely
Isotropic Piezoelectric Material

3.4.1 Electrical Permeable Hole

Let a transversely isotropic piezoelectric material with an elliptic hole of semiaxesa
and b directed along the material principle axes x; and x;, respectively, be subjected
to the uniform generalized stresses at infinity. The hole is filled with air with
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a e b

X,

p=l

Fig. 3.3 An infinite plane with an elliptic hole: (a) physical plane z and (b) mapping plane {

permittivity ¢y and is mechanically free (Fig. 3.3) (Parton 1976; Sosa and
Khutoryansky 1996; Chung and Ting 1996; Zhang et al. 1998; Gao and Fan
1999; Kuang and Ma 2002). The potential electric field and electric displacement
in the air region S¢ are denoted by ¢, E¢ and D¢, respectively, and in the
piezoelectric material S are denoted by ¢, E and D, respectively. On the interface
L, the outward normal is denoted by n directed from the material into the hole, and
the first natural coordinate system (see Egs. (3.27), (3.28)) is adopted. In the air only
electric field is researched. Therefore the boundary conditions at infinity are

=06, D=D> (3.79)
On the interface the connective conditions are
T'=T,=0; D,=D;=—cd¢p/On, @=¢° on L (3.80)

The method solving this problem is the direct extension for the inclusion
problem in an elastic anisotropic material (Mura 1987).

3.4.2 Electric Field Inside the Hole Filled with Air

It is assumed that there is free of charge in the air; from V - D¢ =0, D = ¢E° =
—¢oV¢°, the governing equation is

V¢ =0, in S (3.81)

The conformal mapping function @(¢), transforming an ellipse L in the physical
plane z = x; + ix, = re'? into a unit circle I in the mapping plane ¢ = &, + i&, =
pel¥ s



106 3 Generalized Two-Dimensional Electroelastic Problem

() =R +m z 4+ V22 — 4mR? R a+b a—>b
Z=w = — = : = m=—— or
S S c ;6 2R ; 2 atb

z=R(1 4+ m)cosy +iR(1 — m)siny = acosy + ibsiny; or x; =acosy,

X, = bsiny
(3.82a)

where (r,6) and (p,w) are the polar axes and polar angles in the z and ¢ planes,
respectively. Mapping function w(¢) transforms L into I” and one to one for
points outside the ellipse L into the outside of I", however, only one to one for points
inside the ellipse L with a cut Ly from — ¢ to ¢ on the major axis in z plane into
the inside of I" with a circular cut Ly of radius p, in ¢ plane (Fig. 3.3), where p, =

Vm <lz| <1, 0 <6 < 2z and ¢ = Va> — b? is the half of the focal length.
From Eq. (3.82a), it is known that the arc lengths on I" and on L are respectively
dP = dcdz = de¥de ™ =dy?, onI
ds? = dzdZ = o' (¢)w'(¢)dedz = p2dy?, p* = a’sin’y + b*cos’y; on L
dxy/ds = beosy/p, dx;/ds = —asiny/p
(3.82b)

Because ¢° is a harmonic function, it can be expressed by an analytic function

@(2) as

@ (x1,%2) = () #(z), inzplane; ¢ (p,y)= ¢() ¢(€) in ¢ plane
ES = — [ }:—2Re¢ 7 E;:—'[ } 20md (2

(3.83)
where ¢(¢) = ¢|w(c)]. Because ¢(z) is analytic inside L — Ly and continuous on Lo, so
$(poe”) = blpoe ™) (3.84)

The solution of ¢(¢) in the annular region L — Ly can be expressed in the Laurent
series

P(c) = Z ac*, a“, =pital (nosumonk), py<|g <1 (3.85)

k=—00

3.4.3 Generalized Stress Field in the Piezoelectric Material

The general solution in a transversely isotropic material has been given in
Sect. 3.3.2. The mapping function wj(c),j = 1,2,3 transforming an ellipse L;
in the physical plane z; = x; + y;x, into a unit circle I'; in a mapping plane ¢; =

S1 tuéyis
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5 = 0j(g) = ¢ig; + dig; | = R; (gf * ”’-/gfﬂ)
Ri=c¢;=(a—iuh)/2, di=(a+iub)/2, mi=di/c; (3.86)
44/ - (a2 +ﬂfb2) 15— 5 (@b

%= a—ipb g a+tiub

When y; =i, Eq. (3.86) is reduced to Eq. (3.82), and the mapping function is
conformal. If x; # i, the mapping function is not conformal. Because a function
fi(zj) outside L is analytically transformed into the region outside /" in the ¢ plane, so

fi(z)) = Cjz; +]§0(gf), Jjo(gj) =aj + Zajkgj_k (not summed on k)  (3.87)
=1

where f,.O (zj) = f,-o [@(g;)] is an analytic function in ¢; plane. C; is determined by the
boundary conditions at infinity and aj; is undetermined coefficient. From Eq. (3.78),

3 3 3
0¥ =2Re Y wCj, oF =2Re) Cj, oF =—2Red uC
j=1 j=1

=

3 3
DY =2Re > un,Cj, D = —2Re ) n,C (3.88)
=1 =1

3 3
<E1 =2Re) A4Cj, E;=2Re) /ljyjc,)
j=1 j=1

In Eq. (3.88) if one real constant is selected arbitrarily, such as let Im C; = 0, it
does not affect the stresses. So Eq. (3.88) is solvable.

3.4.4 The Connective Conditions on the Interface L

Equations (3.75) and (3.28) yield
3 s 3 s
@ = —2Re > ufi(o) = —/ Tids =0, @, =2Re)» fi(o) = —/ Tids =0
= 0 =1 0

3 s
@y = —2Re > nfi(o) = - / D,ds
J=1 0
(3.89)
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where ¢ = e is a point on I'. The mechanical connective conditions in Eq. (3.89)
can be reduced to

23:{ )+ (e }ZEGH@ Z{ﬂ;f, o) +ufi (o }:fzo+126

Jj=1 j=
L = —(1/2)(6162 —1ba§°), I, = (1/2)(a03 — 1ba?c)
(3.90)

Using Eq. (3.27) and ds = |dz| = |o/(¢)||d¢|, d¢/|d¢| = ¢ we have

n=ny +iny = dxy/ds — idx; /ds = —idz/ds = e¥ @' (¢) /|0’ (¢)|

) (3.91)
t =1t +if = dx;/ds + idxy /ds = dz/ds = eV @' (¢) /|0 (¢)]

where 7 is the outward normal on the interface of S. Using Egs. (3.91) and (3.83)
yields

D¢ B Ogp* +a(p(: B gt E_Fago(: E gt E_Fa(pc ﬁ
on ox T o T\ 0z oy 0z on ) T\ oz o, | 0z o)

D¢ Dot
:( Y g;n):qs’(z)nw'(z)n

(3.92)
If let ¢(1) = 0 which is not effect on the stress, on L we have
78 ! ! / / X
8(p d / ¢,(g) a)/(g) eV + ¢ (g) w (g) e W |a)/(g)|d1//
@'(¢) |/ (g)] @'(g) |@'(¢)] (3.93)

- ‘/0 (e &) + T iy = i) - )}

Substituting Egs. (3.78), (3.83) and (3.87) and the third equation in Eq. (3.89)
and (3.93) into Eq. (3.80), the electric connective conditions are reduced to

z::{"fffo +jfj'(o }=7’36+1’35+ie“[¢( )—W}
3 {M; )+ 4o )} = Tio + i — [(ﬁ( "o )} (3.94)

j=1

J
Iy = (1/2)(aD5° — ibD}?), 1y = —(1/2)(aES° + ibES®)
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3.4.5 Solutions in the Air and Piezoelectric Material

Substituting Egs. (3.85) and (3.87) into Egs. (3.90) and (3.94) and neglecting some
useless constants yield enough equations to determine the undetermined constants.
It is found that only four complex constants a;1, a1, asi,aS (a‘;l = pga‘l') are not
zero and they obey the following equations:

3 3
Zajl =1, Z,ujajl =1

s (3.95)
Zr]]aﬂ + i (af /)O(l ) = lg, Zijaﬂ + (7(1' +p§a§' =1
=1
Finally we get
1. The electric field inside the hole filled with air
¢°, D{, D§ are constants and obtained from the following equations:
¢° = —E\x) — Esxy =2(d$z +ajz) /(a+b); D§ =eE|, Dj=¢ekE;
3
a — ibeg Ai a]g>D + (aeo Ajajz + 1b> DS
< = 121: (3.96)

1
3 2 3
= 60{2 > el +2 kaply + aky + ibE;@}
J=1

k=1 =1

2. Solutions in the piezoelectric material

3 3
@) =Cizit+an /g =Cizi+ > auli/g, an = aul
k=1 k=1

_ -1/2
Fj(Zj) = Cj + ((ljlll + (ijlz + aj3l3) (a + i//ljb) 1{1 —Zj |:ij — (dz + ﬂjzbz):| }

(3.97)
where
—1
| Hollz — M3l Tlp — N3 H3 — Hp 1 1 1
o = — — — — =
N M3y — M3 13 — Ny Ky — M3 K1 M2 H3 (3.98)
Hilly — Moy T — M2 Mo — My m Mm 13

N = (1, —m3)uy + (13 — ) + (ny — M)y
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a e b Ve
Yj b ”
x; o 0
3 o) Zy Z, ) O }» ﬂ{a ,
r()

Fig. 3.4 Local coordinate system for a blunt crack

3.4.6 Electroelastic Asymptotic Field Near a Blunt (Slender)
Crack Tip

Analogous to the elastic blunt crack (Kuang 1982; Kuang and Ma 2002), Huang and
Kuang (2000b) discussed the electroelastic asymptotic field near a blunt (slender)
crack tip. Take the global coordinate system z, (xg,yg) and the local coordinate
system z; (xj,yj) whose origin is at zo; (zo = Xo1 = ¢ = va? — b%; 2c is the focal
length) (Fig. 3.4). z(; is the point in z; plane corresponding to the branch pointg, ing;
plane with ' (goj) = 0. It has the relation

20 = Xoj + pyo; = /@ + pbr = a+ pirg, ro=b*/2a (3.99)

xoj = a* —p@Pp,  yoj = 2a;p; K=o +ip;, W= a_,g +ﬂ,2

where 2ry is the curvature radius at the major end of the slender ellipse. At the local
coordinate system, we have

zj =X + Yy = 2y — 200 = (X — X07) + 4 (e — o)

From the knowledge of the analytical geometry, it is known that

Xg=c+rcosh, y,=rsinf, a=ro+\/F+rixc+r

where r, @ are the polar axis and angle, respectively. Therefore it is easy to derive

=10 — (1+p)p+0(p*/c) = rO{1 — [(1+u})p/6sr]}

. (3.100)
O = cos@ + p; sin @

In the local coordinate system, Eq. (3.97) becomes

3
1 c
Fi(z) ==Y ayl / 1
i) 2O S\ 2r

1 3
Cr— S ayl
+ j+a+iﬂjb;ajkk
(3.101)

_1+,bljz/_)
0;
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It is seen that the singularity of the stress near the crack tip not only depends on
1/+/r but also depends on p/r. It can also be seen that the electric field at infinity
affects the stress near the blunt crack tip.

3.4.7 Impermeable and Conductive Elliptic Holes

Impermeable elliptic hole. Comparing to a piezoelectric material, in many cases the
air is approximately considered as an insulated material, i.e., g = O orD{ = D§ = 0,
soDj, = 0in Eq. (3.80), i.e. the piezoelectric material can be considered alone. On the
interface, Eq. (3.94) is reduced to

3 _— —
Z{n,f, o) +7f) )} =lo+ 1o
= (3.102)

3
. L e
== {aRe(Cm)) + ibRe(Cinp;) } = 5(aD —ibDy*) =1
—

Correspondingly Eq. (3.95) becomes

3 3 3
Zaﬂ = ll, Z,ujajl = lz anaﬂ = l/3 (3103)
j=1 j=1 J=1

The solution in the piezoelectric material is still formally expressed by
Egs. (3.97) and (3.98).

Conductive elliptic hole. If the hole is filled with an ideal conductive liquid or on
the boundary of the hole deposited a thin flexible layer metal, it can be assumed that
the electric potential is equal zero, i.e., ¢ = 01in Eq. (3.80). On interface, Eq. (3.94)
is reduced to

3
Z{Aﬂ; ) +47%(c )} —lio + lis
= . (3.104)

ls= =) {aRe(Ci) + ibRe(Cidu;) } = *% (aEY +ibE’)
=

If we let 1/¢¢ = 0 in Eq. (3.94), Eq. (3.104) can also be obtained. Correspond-
ingly Eq. (3.103) becomes

3 3 3
San=0, Y wap=>0L Y k=1l (3.105)
=1 =1 =1
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In this case Egs. (3.97) and (3.98) become

3 3
f)’(Zj) = Cij+Clj1/C_,'j :Cij+Zajklk/gi, djl = Z&jklk (3106)
k=1 k=1
and
| M3 — p3da Ao — A3 p3— I
a=— | ph—pis A=A pu—p3 | =1 M M3 (3.107)
Midr — ot A=A py — iy M A A3

N = (A = 3)py + (A3 — Ao + (A1 — A2)ps

3.4.8 Crack Problem

1. Permeable crack. When the length of the minor axis approaches zero, i.e.,b — 0,
for a permeable crack the solution can be obtained from a permeable elliptic hole.
Neglecting terms containing b/a yields

1 ! ! ! 1
I = _E‘w;o’ I = _E‘w;o’ ly = EaDgc, l; = Ea(DSO —-D5), L= —EaE?c
(3.108)

(a) Electric field in the air. Equation (3.96) becomes

J=1

3 3
Di + € ZﬂjqﬁDg = 60{2 [—/1]' ((Zﬂdgo + aj20§° + O(j3Dgo)] + cho} (3.109a)

J=1

Noting Zj; Aja is real (Gao and Fan 1999), separating the real and imaginary
parts from Eq. (3.109a) yields

3 3
D3 —D; =Im (Z /lfajl) 05 / Im (Z /1/“./3>
= =

. (3.109b)

Aj[—aj165° + apos + a;3(DY° — DS)] }

E{=E7 + Re{
=1

(b) Generalized stress in the piezoelectric material. Equation (3.97) is reduced to

1 00 00 00 ¢ A
F/(Zj):Cj_E[ajlaz — apoy’ — a3 (DY — D) 1_21'(2/' _")
(3.110)

It is noted that ¢ is not included in Egs. (3.109) and (3.110).
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The stress intensities at the crack tip x; = a are

(KlaKHv ) V hm \/-xl - a(O’2,03,D2)X2 0

(3.111a)
= \/ZHRG,\-I}LH“ VX — azlﬂ(xl) (1, —Hj, _’71>.x2:0
=
or
K; = /maoy, Ky =+/maos, K.,= \/ﬁa(Dgo — D‘z) (3.111b)

From Eq. (3.111), it is seen that the electric field at infinity does not affect the
stress intensity and the mechanical stress at infinity does not affect the electric
displacement intensity. This result is obtained from the linear theory.

2. Impermeable (or insulated) crack. The correct solution of an impermeable
crack can be obtained from the degenerate solution from the insulated elliptic hole,
ie., let ¢ =0 or D, =0 at first and then let b/a — 0. In order to study the
electroelastic asymptotic field near a sharp crack tip, the right crack tip should be
taken as the origin of the local polar coordinate system, i.e.,

Xy =a-+rcosf, x=a-+rsiné 3.112)

When r < 1, we have

zima, /7 —a® = V2ar,[cos6 + p;sing (3.113)

Equation (3.97) is reduced to

a
Fi(z) = (a6 — apoy — aDy’) va (3.114)

2v/2r /cos 0 + pjsin @

Let
Cj = aj]K[ - (lsz[[ - O!jg,KF (3115)

where Ki, Ky, K, is defined by Eq. (3.111). Substituting Egs. (3.114) and (3.115)
into Eq. (3.26) in the Cartesian coordinate system yields (Hoenig 1982)

= (VIR VB = (VRSB
63:7(1/\/27;)1«-2%: SN Dl(l/\/z“zE?)Reicjujnj/\/@_j,

j=1

.

3
Dy =—(1/V2ar)Re Y Ciny/\/), 0 = cos0+ pysin@

Jj=1

~.

(3.116)
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or in the polar coordinate system yields

o= (1) VRO o= (1IR30
agr_(l/\/iﬁ)keic,@, 0; D,._—(l/\/z—E)Reji;ij@j/\/@,

1

~.
Il

]

Do = (1/V2rr)Re Y Cinj/8;, &) = cos6 — y;sino

j=1

~
Il

(3.117)

It is seen that the stresses have the singularity 1/+/r and 67°, D{° do not affect the
electroelastic asymptotic field. Xu and Rajapakse (1999) discussed an arbitrarily
oriented void/crack.

3. Conducting crack

The solution of a conducting crack can be obtained from the conducting elliptic
hole directly when b/a — 0 or from the general solution when ¢y — oo at first and
then when b/a — 0.

3.4.9 Eshelby’s Elliptic Inclusion Problem in a Piezoelectric
Material

Now discuss the Eshelby’s elliptic inclusion problem in a piezoelectric material (Ru
1997). In a piezoelectric material, there is a region S. In S there are the generalized
eigenstrains (¢*, E*) and the corresponding additional generalized displacement:

U = (u",9")
= [e],x1 + €]5%2, €151 + €5,00,2(€]3x1 + €53x2), — (Ejxy + E;xz)]T (3.118)
The connective conditions on the interface L are
u=u"+u', 9g=¢°+¢*; z€L (3.119)

Substituting Eqgs. (3.16) and (3.23) into Eq. (3.119), the connective conditions
become

Af(zp) + Af (zp) = Af (zp) + Af(zp) + u" }
Bf (zp) + Bf (zp) = Bf*(zp) + Bf*(zp) , zeL (3.120)



3.4 An Elliptic Hole or Inclusion in a Transversely Isotropic Piezoelectric Material 115

where f¢(zp) is the solution in §¢. Multiplying the first equation and second equation
by BT and AT, respectively, then adding them, and using Eq. (3.34) yield

fzp) =f(zp) +B'u', z€L (3.121)
Using the relations between x1,x, and zp, zp in Eq. (3.15), for z € L we have
BTu' = [&pzp + Wpfp]T = [E1z1 + 121, 6020 + o7, E323 + 11373, E424 + ]1424]T
(3.122)

where &p,7p are constants determined by BTu*. Therefore Eq. (3.121) can be
separated into four independent scalar equations:

fp(Zp) :fIg(Zp) + prp + T’IPZP; Zp € Lp; P=1~14 (3123)
Using the mapping function described in Eq. (3.86) yields

p = @p(l/ﬁp) = Epa;l +6?P6p, Cp = (Cl — 1,upb)/2,
dp = (a+iuph)/2; zp €Lp

So Zp is the boundary value of an analytic function Dp(cp) in Sp or in the exterior
of S

Dp(cp) = Cpgp' + dpgp

22 = V% = (@ +ppb?) | 5 zp+ Vzp = (@ upb?)

Dp(zp) =¢ ' S
p(zp) = Cp a+ipuph P @ — ipph i Zp €9p
Dp(zp) — hpzp, hp = (a —iupb)/(a — iupb); when zp — 00
(3.124)
Substitution of Eq. (3.124) into Eq. (3.123) yields
fe(zp) — Epzp — npDp(zp) = fp(2p), zp€Lp; P=1~4 (3.125)

Usually the boundary conditions at infinity are fp(zp) — 0, when |zp| — o0, so
the functions in the left- and right-hand side of Eq. (3.125) are all analytic.
Therefore we have

fe(zp) = np[Dp(zp) — hpzp|, zp € Sp

. . r;P =1~ 4, not summation on P
Tp(zp) = —(&p + nphp)zp, zp € Sp }

(3.126)

From Eq. (3.126), it is known that the generalized stress field is uniform in the
elliptic inclusion.
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In Ru’s paper (1997), he also discussed the inclusion with arbitrary shape by the
mapping function (Muskhelishvili 1954, 1975; Kantorovich and Krylov 1958)

oo
=) =d+ Y ket (3.127)
k=0

In many cases the truncation of the infinite series to finite terms k = N offers
good approximation (Savin 1961).

Zeng and Rajapakse (2003) discussed the Eshelby’s elliptic inclusion problem
with specified generalized eigenstrains (¢*, D*).

3.5 Rigid Elliptic Inclusion in Transversely
Piezoelectric Material

3.5.1 Basic Theory

Though we can use the theory obtained in Sect. 3.3.2, but in this section we
rather use the first kind of the constitutive equation in Eq. (2.83) to discuss the
problem, i.e.,

&j = S,'Ejkldkl + d/f,'th D; = iﬁ')kgjk + EZEj (3.128)

Analogous to the derivation in Sect. 3.3.2, for the generalized plane problem in
the transversely isotropic material, we have

Ex =V = Y)cy =Tz = Ty; = Ex = Dx = 0> Oy = _(s120y + 5130, + d31Ez)/Sll

X1 =Y, X2 =2, X3 = X; 0| = Oy, 02 =0z, 03 =Ty;; €] = €&, € =§&, €3 =7V,

D1 ZDy, Dz ZDZ; E1 ZEy, Ez ZEZ

S13 = 23,511 = 822,544 = 855,566 = 2(S11 — S12); d31 = d32,di5 = drs; €11 = €
(3.129)

Analogous to Eq. (3.74), the constitutive equation in terms of the reduced
material constants is

£ air ap 0 0 by o1
& ap an 0 0 by )
€3 = 0 0 ass b13 0 03
D, 0 0 bz ki O E,
D, by by 0 0 kp E,
2 2
air = S —512/511, 0122513—512513/5117 0222533—513/5117 asz3 = S44

byt = (1 = s12/s11)ds1, by = d33 — dyisi3/s11, bz = dis, ki = e, koo = 33 — d3, /s
(3.130)
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In the present case the generalized equilibrium and compatibility equations are,
respectively,

611+032=0, 031+02,=0, Eip—FE;; =0 (3.131)
el +en —e12=0 Di1+Dy;=0 (3.132)
Introduce the stress function A and the electric potential ¢:
61=An, oca=An, o3=-An, Ei=-¢,;, E2=-¢, (3.133)
Equation (3.131) is satisfied automatically and Eq. (3.132) becomes
LA —L3p =0, L3A—Lp=0
4 4
L4_a22%+a“8_x‘2‘+<2a12+a33)ﬁ (3.134)

3 3 2 62

0
Ly = bot 2t (boy — bi3) = Ly = kiy—s
3 = by o3 + (b2 — b13) e 2 = ki1

Eliminating A or ¢ from Eq. (3.134) yields
(Lily —L3)A =0, (LsLr —L3)p =0 (3.135)

The solution of Eq. (3.135) is

A=Red fi @ =Y nfi(5): fl5) =F()

(3.136)
n=1U/bL=pu [bzwjz + (b2 — b13)}/<k11 + kzzﬂf); z=X1 +px3
where y; is the root of the following eigen-equation
L) —Bw) =0; Iy =axn +anp* + Qan + apn )i
4(#) 2(/4) 3(/4) 4 22 11H ( 12 33)M (3.137)

Iy = p[bop® + (b — b13)], b = kiy + kaopt®

Equation (3.137) has 6 roots and y, = oy + 1, a1 = 0, pz = —iiy, i3 = fiy-
From Egs. (3.134) and (3.137), we get

3 2
I pildap” + (dp — di3)]
—ReS nfi(y), n=-=
’ ;Wc’( i) L e + e’

(3.138)
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where fj(z;) :ﬁ/(zj). Substituting Eqs. (3.136) and (3.138) into Egs. (3.133) and
(3.130) yields, respectively,

3 3 3
o1=2ReY uiFi(z), o2=2Re) Fi(z), o3=-2Re) uF(z)
= =

Jj=1

3 3
Ey=-2Re nFi(z), Ex=-2Re) unki(z), Fi(z)=F(z)
=1 =

(3.139)
u; = 2Re Zp_,f/(zj) —wxy, pj= duﬂf +an — bapm;
3
uy=2Re) qifi(z) +on, ¢ = (0112/4,2 +an— bzzﬂj’?j) / Hi
“ (3.140)

3 3
Di=-2Re) AuFi(z), Dr=2Re) AFi(3)
j=1 j=1

Ay = busp; + kg, A = bt + by — koo

where o is the rigid rotation angle.

3.5.2 Rigid Elliptic Inclusion

The discussed problem can also be shown in (Fig. 3.3) as that in the Sect. 3.4.1,
but here S¢ is not a hole, rather a rigid inclusion. The notations are the same as that
in Sect. 3.4.1, except the permittivity in the inclusion is denoted by ¢¢ instead of ¢y in
the air. The boundary conditions at infinity are assumed @ = 0 and

c=0", E=E> (3.141)

On the interface the connective equation is
X s N
up =uj =—0x, u=u;=0u0%; @¢=q¢, / D,ds = / Dids; on L
0

s s s 3
/ D,ds = / (D1n1 +D2n2)ds = / (DldX2 —ngxl Z /1}]3 ’0
0 0 0 j=1

(3.142)
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Similar to Sect. 3.4, the complex function method is used. The mapping function
is shown in Eq. (3.86). Assume that the function f;(z;) can be expanded as that in
Eq. (3.87) and

3 3 3
oY =2Re pC;, oF =2Red Cj, oY =—-2Red uC
= = =

3 3
=—2Re Y n,C;, E¥=-2Re> unC;, ImC;=0

J=1

(3.143)

Substitution of Egs. (3.140) and (3.87) into first two equations in (3.142) yields

2Re ij
2Re Z q;|C

x1 —|—,u,xz) + ajp + Zaﬂ‘a 1 = —wx

(3.144)

x1+,u]xz)+ajo+2ajk01wx1, on I’

Noting on I', ¢ =06=¢%(j=0,1,2,3), x;=a(c+5)/2, and x, =
—ib(6 — 5)/2. From Egs. (3.144), we have

aj():O' ajk:O kzz

2p;ap + piCi(a +iub) + p;Ci(a + iub) = —iba*
; 741 7 ( J) J ( 1) (3.145)

Z2qjall + g;C; a + 1;4]17) + qjC (a + w,b) =aw’, on I
According to the knowledge of the elastic inclusion (Mura 1987) and the
solution, Eq. (3.96), it is assumed that the electric field in the inclusion S¢ is

constant. Let

¢° = 2Re¢(z9) = 2ReC{zp,

_ _ » (3.146)
20 = X1 + pox3 = (1/2)[(a — iugh)go + (@ + ipgh)sy ']
where Cj is a constant. From Df ; + D3, = 0, it can be obtained that
90 +engh =0, = 0" + e = ¢" = &g Jdzg (3.147)

From Egs. (3.146) and (3.147), we find

S HGup =0, po=1\/€5, /¢S, €)= —uyes, (3.148)



120 3 Generalized Two-Dimensional Electroelastic Problem

/ Dids = / (Dinf + Dins)ds = 2Re/ Sattod” (odxz + dxi) = 2Re [€5,u0¢° ],
0 0 0
(3.149)

Substituting Eqgs. (3.148) and (3.149) into the last two equations in Eq. (3.140),
the electric connective conditions on the interface are reduced to

3 3
2Re Y nfi(z) =2 Z (€2 + ang; '] = 2Re[Ci)
7 7 (3.150)
2Re S Afi(z) = Z G2+ ang; '] = 2Re [esomaet]
Jj=1 j=1

or

3
Z {anajl +n,C (a + 1b,uj) + njC (a + 1b,uj)} Ci(a + ibug) + Ci(a + ifigh)
3 [
Z {24jaj1 + %Cj(a + ibu;) + 4,Cj(a + ibf;) } = eSyluo(a + ibpg) + Fola + ifigh)]

(3.151)

According to Egs. (3.28) and (3.71), we know that
T1 = —dfpl/ds = (dA/dS)’z, T2 = —d@z/ds = —(dA/dS)‘yl (3152)

The ¢ is determined by the condition that there is no moment acting on the
inclusion, i.e.,

M, = ]{ (=Tix2 + Toxy ) ds = 7% (d(A2)x +d(Ar)x) =0

o1=Axn, 6a=An, o3=-Anp, Ei=-¢,;, E2=-¢,

(3.153)

Using Egs. (3.136) and (3.145) and the residual theorem, we finally get

M»

1b,uj aj — (a +1b,uj)ajl] =0 (3.154)

J=1

The undetermined constants Cj, a1, Cjj, ®° can be determined by Egs. (3.143),
(3.145), (3.151), and (3.154). If »° is given, the moment acting on the inclusion is
determined by Eq. (3.153).
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3.6 Singularity

3.6.1 Singularity in a Homogeneous Material

Let a generalized singularity load be located at a point zy(x10,X20) in an infinite
homogeneous material. A generalized singularity load means a generalized dislo-
cationb(by, by, b3, by) and a generalized force p(py, p2, p3, pa), where (by, by, b3) are
the Burgers vectors representing the displacement increment around the dislocation
line and b, is the potential increment around the dislocation line. (py, p2, p3) are the
concentrate forces and p4 is the point electric charge or the electric displacement
flux. Let

g(zj) = <ln(zj — zoj)>c, gj(zj) =¢jln(z; — z¢5),  zoj = x01 + piXo2

3.155
G(z) =4d(z) = <(Z/‘ —z5) " >C» Gi(zj) = ¢i(zj — z07) " G159

where c¢(c1,c¢2,c3,c¢4) is an undetermined constant vector, <1n(zj — zoj)> = diag
[In(z; — zg;] . Obviously In(z; — zy;) is a multivalued function and z; is a branch
point. According to Eqgs. (3.16), (3.23), and (3.155), the solutions are assumed as

4
U =2Re[Ag(zp)], Ui=2Re) Ayc;In(z — z)
= (3.156a)

4
® = 2Re[Bg(zp)], @i =2Re) Bic;In(z — )
j=1

where z; is the branch point of the In-function (usually the branch cut is chosen in
the negative x; direction, from zjy to — o0) and select a single-valued branch that the
polar angle is measured from the positive x; direction . On the two sides of the cut, it
is defined

b=U"-U =2ri(Ac—Ac), p=T —T'=®" —® =2zi(Bc — Be)
(3.157)

where the superscript “+” and “ — ” denote the values approached from the upper
and lower half planes, respectively. Using the identities (3.34) from Eqs. (3.156a)

and (3.157) yields
27 _ = , == , or
B B|\|—c P —c 27i p

c= (I/Zn){Bl(Y 1Y) 'p-A (Y’l + Yl)lp} — (1/2z)V,

BT AT
BT A"

(3.158)

V=B"b+A"p
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DS DS Xz, DS B
® S (0] X @ S 0 z ® S (0] X

Fig. 3.5 Singularity in a bimaterial, singularity located (a) at lower plane, (b) at upper plane, and
(¢) on interface

So the solutions in Eq. (3.156a) become

9(z) = (172a0)(In(z; = )V, G(z) = (1/20)((z = 2) " )V
U = (1/z)Im[A(In(z; — z0)))V], @ = (1/z)Im[B(In(z; — z¢;))V]

(3.156b)

The solution of the singularity problem can be used as the source function of a
general problem.

3.6.2 Singularity in a Bimaterial

Let the material I be located at the upper half-plane S*,x, > 0, and the material IT be
located at the lower half-plane S~,x, < 0;x; = Ois the interface L; a singularity load
is located at zp(xj,Xx20) in the material II (Fig. 3.5a). At first the problem is
discussed in the z plane. Let (Tucker 1969; Barnett and Lothe 1975)

fi(z,20) ze St

Su(z,20) + gu(z,20) z€S” (3.159)

f(z,20) :{

where gy;(z,z0) = gy (2) is the solution in a homogeneous material, i.e., the solution
when the material II is extended to whole infinite plane, so gy (z, zo) is analytic in
the material I.

gu(z) = eu(ln(z — z0)); en = (1/27i)Vy, Vi= (Bjb+Ajp)  (3.160)

On the interface x, = 0, we have U; = Uy, @) = @y or

Ay fy(xr) +A1f1(xl> =Anfu(x) J’_Aﬂfll(xl) + Angn (x1, Xor ) +AIIQH<X17X01)

By fi(x1) + Bifi(x1) = Bufy(x1) + Bufy(x1) + Bugy(x1,x01) + Bugy (x1, Xo1)
(3.161)
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It is noted (Muskhelishvili 1954, 1975) that

Fre) =F (), f ) =F )y filv) =7 00), fulx) =F (x1) (3.162)

where the superscripts “ + ” and “ — ” indicate the limit values taken from the upper
and lower half planes, respectively. By using Eq. (3.162), Eq. (3.161) can be
reduced to

Arfy (x) _AII]?]J;(XI) — Augy (x1,x01) = Anf (x1) — Afy (x1) + Augy (x1, %01)

Bif{ (x1) — Bufy; (1) — Bugy(x1,x01) = Bufy; (x1) — Bify (x1) + Bugy (x1, %01)
(3.163)

It is known that the functions at the left side in Eq. (3.163) are analytic in
the upper half-plane x, > 0, whereas those on the right side are analytic in the
lower half-plane x, < 0, and they are continuous on x; = 0. So according to
Liouville theorem, these functions are analytic in whole plane and must be
constants. If there are no generalized external forces and displacements acting at
infinite, these constants must be zero. So we have

Bifi(z) — Bufy(z) — Bugp(z) =0, Aifi(z) — Aufy(z) — Augp(z) =0; zeS*
Bufy(z) — Bif1(2) + Bugy(z)] =0,  Aufy(z) —Aifi(z) + Augy(2)] = 0; ze S
(3.164)

From Eq. (3.164) we get

fi(z) =B '"H ' (Y + Yu)Bugy(z), ze€St

o o (3.165)
fu(z) =B;'H 1(YH —Y1)Bugy(z), z€S

where H=Y;+ Yy, Y= iAB~!. It is noted that the above theory will be often
used in the following sections and we only give a simple illustration there.
Finally the solution of the problem is

U =2Re[Ai{f1(zp))], z€S"; Un=2Re[An(fy(zp) +gulzp))], z€S
@) = 2Re[Bi(fi(zp))], z€S"; @u=2Re[Bu(fy(zr) +gulzp))], z€S
(3.166)

Some special cases are discussed as follows:

1. Semi-infinite material. If the material I is not existed, i.e., x, =0 is a free
plane, ie., fi(zj)) = 0,®y(x;,0) = 0. Let Ay = A, By = B, then

f(z) = gu(z) — B~'Bgy(z;) (3.167)
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2. Material I is rigid. x, = 0 is a fixed plane, i.e., fi(z;) = 0,Un(x1,0) = 0. Let
Ag =A, By =B, then

f(z) = gu(z) - Ail;‘gn(zj) (3.168)

3. Singularity at the upper semi-infinite plane. If a singularity zo(xjo,x20) is
located in the material I (Fig. 3.5b), then

{FI(Zj)+G[(Zj) ze St
F]](Zj) zeS™ (3.169)
GI(ZJ') = C[<(Zj — Zoj)71>, ] = (1/2777i)V1, VI = (B;Fb +A;Fp)

Apr—1/% S\ A - =_ —1/= 15 < 17\ A

Fi(z) = B;'H ' (Y1 — Yu)BiGi(z) = (A;'A1 — By'B1)” (By'Bi — Ay'A1)Gi(2)
Aa-1/5 = < —1/=_ <

FH(Z) = BHIH I(YI + YI)BIGI(Z) == (BI IBH _AI 1AH) (BI lBI _AI lAI)GI(Z)

(3.170)

3.6.3 Singularity on the Interface in a Bimaterial

Let a singularity zo(xo1,x02 = 0) be located on the interface in a biomaterial
(Fig. 3.5¢). Wang and Kuang (2000, 2002) took the following solution:

U, =2Re [Aa<ln(zaj - Xo1j)>Va}, Vo= (1/77") (Azla + Bzga)

3.171
@,y = 2Re[B,(In(z; — x01j))Va|, a=LII GA7D

where /,, g, are undetermined vectors. Draw a cut from xo; to — oo; the jump value
on the cut (between crack surfaces) of the generalized displacement and traction are

Ui(x,0") = Uy(x,07) =b, x; <0; @(x,0") — @y(x1,07) = pd(xo1)
(3.172)

where §(x) is the Dirac function. Using the following result (Qu and Li 1991),

lim In(x; 4 px) = Injxy| £ izH (x1),

xp—=£0
] 1 (3.173)

lim =—Find(xy), iflmu>0
oo X1 + s x1:F md(x1) H

where H(x;) is the Heaviside unit step function. Substituting Eqs. (3.171) and
(3.173) into Eq. (3.172) and using Eq. (3.34) we get
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b = (2/m)Re{ ([Ai(In|x; — xo1| + izH (x;)) (B]g, + A{l)]
—[Au(in|x; — xo1| — izH (x1)) (B, + ATL)]}
= (1/7) In|x; — xo1/(g; — &n) + S1g; + Sugy + Mily + Muly
p=(1/mx))(h — In) + (STl + STy — Lig; — Lugy)

(3.174)

where S, M and L are shown in Eq. (3.35) and all real matrixes. From Eq. (3.174)
we get

L=l =1 ! [91 92} b
g —81=8 I1=1!1 =14, =
i i o 2 2]\ p

Q= {(M) + M) + (8 + 8:) (L1 + L)' () +52)T}71
Q= {(M1 + M) + (S + 82)(Ly + L)~ (S +52)T}(51 +8))(Ly +Ly)”!
@ = {1+ L) + (51 + 82 (M1 + M2)7' (5, +S2)}71(S1 +8)T (M + M)~
Q= —{(Ll L)+ (S1+8) (M, + M) (S, +Sz)}7l
(3.175)

where Q1, Q,, Q3, Q, are all real matrix. Substitution of Eq. (3.175) into Eq. (3.171)
yields

Vo=Mb+N,p, M,=(1/)(A 21 +B.23), N,=(1/n)(AlQ,+ BlQ,)
(3.176)

Zhou et al. (2007) discussed a generalized screw dislocation in a piezoelectric
tri-material body.

3.6.4 Electric Dipole

Wang and Kuang (2000, 2002) discussed the electric dipole in a piezoelectric
material. The electric dipole may be useful in the discussion on the electric

switching wake. Let a generalized concentrate load p = —g.Is,I4 = [0,0,0, l]T
be acted at zyp and p = ¢.l4 acted at z;. Solutions of these problems are U, @ and
U, @, respectively:

Uy = Re[—(qe/ni)A{In(z; — z¢5) )A"Ly|, @y = Re[—(qge/ni)B{In(z; — z0))A"Li]
U] = Re[(qe/zri)A<ln(zj — le)>ATI4] , ¢1 = Re [(qe/ﬂ'i)B<ll’l(Zj — Z]_,')>ATI4]
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Using the relation,
z1 — 29 = d(cos 0 +isin@) — 0, zy; — zo; = d(cos 6 + p;sinf) — 0

jm {dgeIn(zj — 21)) = geIn(z; — 20))} = lim 4 In[(z — 27) / (5 — 207)]

= ~De [@J/(ZJ - ZO])]7 hm Qed = Pe, @j = C089+Hi Sin9

ge—00,d—0

(3.177)

where p. is the electric pole couple and d is the distance from the negative charge to
the positive charge. Thus the solution of an electric dipole in a homogeneous
material is

Uy = Uy ~ Uy =Reli(pe/mA( (5 ~ 20) ' )A"L] (3.178)
@, =D — Dy = Re[ (pe/7)B < 1>ATI4} '
=01 = Re[(f’e/’“) < (2 — =) 2>ATL‘} (3.179)

3 = -®,=—Re [(pe /ﬂi)B<,¢j9j(zj - zo)_2>ATI4]

For an electric dipole on the interface in a bimaterial consisted of materials I and
11, the solution can be obtained from Eqgs. (3.171) and (3.176):

Ui = 2Re [Aaan(za, — xo1 —d) — In(z4 — x01)), aqe]l
- —2peRe[ < Zaj — Xo1) >Na}l4
P = 2Re [Bu{In (2, — xo1 = d) = In(zg = x01)), Nate| s

01
(3.180)
= —ZpeRe[ < Zgj — xOI)_l>N4I4; a=LII

3.6.5 General Case

Now we discuss a multiply connected plate. Let the kth singularity be located at z,((o)

and its total number be N, the kth inclusion occupy the region Sy and its total number
be M, the region occupied by the piezoelectric material be denoted by S with the
outer profile Ly, and the interface between Sy and S be L; (Fig. 3.6). The complex
stress function @(zp) can beassumed in the following form and complete deter-
mined by the boundary conditions:

N M
fP(ZP) = Cpzp + Z apiIn (ZP - 2523) + ZﬂPk ln(zp - ZPk) +f0P(ZP)
k=1 k=1

= (1/27i)Vi, @ =2Re[Bf(zp)], @ — Dy = —7( Tds, 7{ dU = by — by
Ly Ly

(3.181)
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Fig. 3.6 General multiply
connected plane zone

where zp; is a point inside the contour L; and can be selected arbitrarily, fop(zp)
is a single-valued function analytic in S, and @y, by are constant vectors. If the
singularity is considered as an infinitesimal inclusion, the terms containing singu-
larity can be omitted. Cp can be determined by the stress condition at infinity and for
a finite body Cp = 0; fp; can be expressed by the external generalized resultant
force and the generalized dislocation acted on S;. When we use the stress function
method given in Sect. 3.3, the generalized stress function and displacement are
expressed by @ = 2Re[Bf (zp)] and U = (1/x)Im[Af(zp)], respectively, where B
and A are expressed by Egs. (3.65) and (3.66).

3.7 Interaction of an Elliptic Inclusion with a Singularity

3.7.1 Green Function for a Singularity Outside the Elliptic
Inclusion

Let an elliptic inclusion I with major axis 2a— and minor axis 2b—occupied ST be
imbedded in an infinite piezoelectric material matrix II-occupied S~. L is their
interface. A singularity with strength (b, p) is acted at zo = xo; + ixoz located in the
matrix (Fig. 3.7). Huang and Kuang (2001b) discussed this problem under the
conditions

2=3X°=0, [z]-

3.182
U'=0" o =0o" :cL ( )

In this problem the second natural coordinate system is used, i.e., use (n,#') in
(3.29b) and T = d&/ds. The transform method is used and the transform functions
() and w;(g;) are shown in Eqs. (3.82) and (3.86) respectively.
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Fig. 3.7 An elliptic inclusion

@® s

,
T AN
7

x,

In this section for clarity, the notations I, Il will be written as superscripts.
According to Ting (1996) and Huang and Kuang (2001b), the solution for a
singularity outside the elliptic inclusion is assumed in the following form:

o= a8« i (/) 8] v
030l

(3.183)

Ul - Ul = (l/ﬂ)Imﬂi: [Al<ln( yj,j)>v;j} n (1/ﬂ)1mg: [(l/k)AI<j§(>hk}
(3.184)

where uj), V’ V;;, g5, hs are undetermined vectors and

k k —k
ety = (4 000
-1
20y = Xo1 + ' xon = ¢ g + d}f (ng) , o =R, d'=Rl'm' (3.185)
—1
1 1 1 _I1 1 11 1 1 1 I 1
Yip = Yip1 T HYi = €jsop + 4 (%ﬁ) G =R dj=Rym

where j;}( is analytic in an annular region /m < |g;| <1, 0<0 <2 (see
Sect. 3.4.2).

Now Eqgs. (3.183) and (3.184) will be explained in detail. In Eq. (3.183) the first
term is the solution of a singularity when matrix II extended to whole space. It is
noted that g and 1/¢} 6'0/3 are mirror images of each other with respect to the unit
circle y in ¢ plane 50 |¢tsl|1/20s] = 1. From (1/¢") — gy = 0, it is known that
this singularity is located at (¢! S N =(1/¢} 5) S0 the second term represents solutions
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of 4 image singularities located at 1/ 5‘5/,, |1/ Sopl < linside the inclusion I, in ¢ plane,
or total 16 image singularities located at ZQ; [c;(1/¢h 5) + d_,goﬂ] in four z; plane.
Similarly the first term in Eq. (3.184) represents the solution for material I, its
16 image singularities located at (yj/}hyjﬁZ) in the matrix II. For an impermeable

hole and conductive rigid inclusion, @' is not needed, so the third term in
Eq. (3.183) can be omitted. This source function method is often used in the static
electromagnetic field and stationary ideal fluid mechanics but here more complex.
Using the relation

Aosly=d(d-dy) +di| (&) - () | =dld-d)|1-b(e) ]
o =m(dh) |

(3.186)
and Im(F) = —Im(F), Eqs. (3.183) and (3.184), respectively, take
U = %Im [—A“<1n (aiw - ggj) >VH+ ;4:1 In (e*iw - ’OI/j)AHVZ
N (3.187)
+Y (1/k)e *vAllg,
k=1
4
v -0 (1/a) Im{ﬂzl 4 (nc)vy) —n(e — )V,
+Al<m<l—f;ﬁewf>v;>}+jj e [ (ot) o |
(3.188)

In Eqs. (3.183) and (3.187) replacing A by B", we get @, and in Eqgs. (3.184)
and (3.188) replacing A' by B' and u}, by @, we get "

@ — (1/m)im[B" (1n (& — ) 9] + 1 /,,)Imﬂi 57 (1n(1 /5~ ) v

+(1/mmy (BH<1/kg_}1 k>gk)

k=1

o — @ = /nImZ[BI<ln( yjﬂ)> } (1/2)Im 2[( /k)BI<Jk>hk}

(3.189)
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Substituting these equations into the continuity conditions (3.182) on the

interface and noting In(1 —x) = — 7%, x*/k, the following equations to deter-
mine unknown functions are obtained:

U%) _ _(1/n)Im<AI<lnC;>V,>a d% = —(l/ﬂ)Im<BI<lnC;>V/), VvV = ﬂi:v;j

(3.190a)
Ay +Alvy = A"V, BV + B'V, = B'I,V" (3.1900)
I, = (1,0,0,0), I, = (0,1,0,0), Iy = (0,0,1,0), I, = (0,0,0,1)
st () 30
/ s (3.190¢)
1= k
(o) 35 ()
From Eq. (3.190b) we can get
B =a (V' -V)B"LV", BV, =8 (v 4+ 7BV
’ b (3.191)

Y =iA*BY)", H=Y'+7Y"

3.7.2 Green Function for a Singularity Inside the Elliptic
Inclusion

When a singularity is located inside the elliptic inclusion, the solution can be assumed:
m_ I m_ 1 I
U" = (1/2)Im [A <ln (gj - goj) >V }
4
1T 1 1 1
Hmm 3 [t (1/) = (1) )] G

‘a /ﬂnmﬂg‘l Al -] e
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where
VE=Bb+ A, a=111

(3.194)
1 11 1 N N Ia 1 /= 1=
Zoj = S0 T d//d)j’ Yip = Yipt T Hi¥ip = C.i/gé/f +diyy

When zj is located in the inclusion, the single-valued cut from zy to — oo goes
through the material II. So the first terms in Eqs. (3.192) and (3.193) are all
discontinuous through this branch cut. The second term in Eq. (3.192) represents
solutions for material II of 16 image singularities located at g%)ﬁ with |g%)ﬂ < 1|in the
z; plane. Similarly the second term in Eq. (3.193) represents solutions for material I
of 16 image singularities located at (ﬁ}l , )7;2) outside the elliptic inclusion.

In Eq. (3.192) replacing A" by B, we get @"!, and in Eq. (3.193) replacing A by
B' and u, by @, we get @'

Substituting the solutions into the continuity conditions in Eq. (3.182) on the
interface yields

UL = —(1/z)Im ; {A(nc)v' +1n(~dl, ) (A'V' — A"V |

A (3.195a)
@)= —(1/m)m {BI<1n ¢}>V’ n 1n(7g5,,) (B'L,V! — B,V }
p=1
AW+ AV, = A"LV" 4 2Re (AT,VT — ATV
5 f y (A'T sV") (3.195)

BV}, + B'V} = B"I,;V" + 2Re(B'I;V' — B"I,V")

() Y= () -3

() e (-2

1 1 1 Al 111
0 = mj(l/goj')’ Tjp = miSop

Allg + A'n, = A

B"g, + B'h; = B

(3.195¢)

3.7.3 Green Function for a Singularity on the Interface

When a singularity is located at zy = a cosy, + ibsiny, on the elliptic boundary,
Egs. (3.183) and (3.184) become

U" = (1/7)Im {AH<ln(g}I _ eiv/0)>vll} + (1/7)Im [AII<ln[(l/gJII) — e—iu/()} >V”}
+ (1/7z)Im kf; (A"<1/k€}I k>gk)

(3.196)
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U' — U = (1/2)Im [A‘<1n (z} - zgj) >V’} + (1/7)Im g; [(1 /k)A'<];5<>hk}

(3.197)
where
. 1 -\ l/5 11\ =11
V' = Z Vi = (B") (Yn n YI) (YI _ YH>BHVH
ﬂjl (3.198)
=SV =(B) (V' +¥u) (Y“ + YH)BHVH
/j:

In Eq. (3.196) replacing A" by B, we get @', and in Eq. (3.197) replacing A by
B' and u, by @, we get @'
From Egs. (3.192) and (3.193), we still get the same result.

3.7.4 Material Force Between the Singularity and the Elliptic
Inclusion

Eshelby (1956) defined the material force as the negative gradient of the total
mechanical and electrical energy with respect to the position variation of the defect.
For a linear electroelasticity, we can also use the total electric enthalpy (Eq. (1.55))
instead of total energy. The general method calculating the material force is given
in many literatures, such as Lardner (1974), Pak (1990), Wen and Hwu (1994),
and Kuang et al. (1998). The total electric enthalpy of the system for a dislocation
at (xo1,X02) can be defined as the work required to introduce the dislocation in
the material, i.e.,

A
= (1/2)/ (62ibi + Dabs)dxy, 6 —0, A— oo (3.199)

Xo1+0

1. Dislocation is inside the matrix. Equation (3.199) becomes

Zo=
7 +5

‘?;M (1/n)1m[3“<1n(A /) )V +BH<1n( —m! /gg Olj)>V“ (3.200)
~

S o1 /)i S i

B= k=1

H=(1/2)b" - "

d)ll
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By excluding singular part of the dislocation enthalpy itself, the interaction
enthalpy part of the media with the dislocation is obtained as

H = (1/22)bT - Im [BH<1n(1 — ! / g&;&) >VH
31/ s

2. Dislocation is inside the inclusion. Equation (3.199) becomes

(3.201)

H=(1/2)b" (q)“ v ol

. +5) - %bT Im[B"(InA;)V" — B'(In ;) V'

(1/k)B < >hk - ZBI<1n(zgj - yjﬂ) > (V; - I,;VI)
p=1

( chy) (~B"Vj + B,V — BV

TM» IMg

(3.202)

where zj" = z is the same point on the interface. By excluding singular part of

the dislocation enthalpy itself, the interaction enthalpy part of the media with the
dislocation is obtained as

%0 4
H = bT Im[ S (1/k) BI< j}€>hk - ZBI<1n (z})j - yj.ﬂ) > (V’ﬁ - Iﬂvl)
=1 5=1
4
=Y in(—cly ) (~B"V; + B,V — BV
=1

(3.203)

The generalized interaction force per unit length F along the direction s on the
dislocation is

— M/ Os (3.204)

which is usually obtained by numerical calculation.

3.7.5 Numerical Example

Let the matrix be PZT-5H and the inclusions be epoxy, insulated void, and rigid
conductor, respectively. Usually material constants are given in the material prin-
ciple coordinate system (X1, X2, X3) with poling axis X3. For PZT-5H matrix,
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i s
+/2b «/2b

Fig. 3.8 PZT-5H/epoxy under loading b/2b =(1,0,0,0): (a) contour plots of the dimensionless
glide force F; and (b) contour plots of the dimensionless climb force F»

cl =126, C% =117, C}, =353, C},=55 C =53(GPa)
e =—65, =233, ¢s=17.0(C/m?
e =151x10"°, €5 =13.0x 107°(C*/Nm?)

For inclusion epoxy,

C}, =643, C3;=6429, C,, =107, C\, =429, C\;=4289(GPa)
ey = ey =e}5=0(C/m?), ¢, =50x10", €;=>5.001x10"7(C*/Nm?)

Material constants for epoxy were be modified slightly to avoid repeated eigen-
values. It is noted that in above analyses of this section, the coordinates (x, X2, x3)
with polarized x;-axis are used, so in numerical calculation, materials should
be converted. The corresponding relation between (Xi,X2,X3) and (xq,x2,x3) is
X3 — Xz,Xl — xl,Xz — X3.

The dimensionless glide force F; and climb force F, of the interaction between
the inclusion and dislocation are defined as

F, = —(BHfm/(?xl)/(Ln X 10_9/477,'), F, = —(aHfm/axg)/(Lu X 10_9/471)
(3.205)

where L;; is shown in Eq. (3.35). F; and F, will be numerically studied. The positive
glide and climb forces show that the dislocation is repelled from x;- and x;-axes,
respectively. Figures 3.8 and 3.9 show the contour plots of F; and F, under two
cases: (1) b/2b =(1,0,0,0), only mechanical dislocation b;, and (2) b/2b =
(0,0,0,10° V/m), only electric dislocation by.
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Fig. 3.9 PZT-5H/epoxy under loading b/2b =(0,0,0, 10° V/m): (a) contour plots of the dimen-
sionless glide force F'; and (b) contour plots of the dimensionless climb force F,

Interaction of an elliptic inclusion with a singularity was discussed in many
literatures, such as Meguid and Deng (1998), Deng and Meguid (1999), Liu et al.
(1999), and Fan et al. (2005).

3.8 Asymptotic Fields near a Line Inclusion Tip
in a Homogeneous Material

3.8.1 A General Form of the Asymptotic Fields near a Line
Inclusion Tip

Discuss a homogeneous material with a line inclusion. It is assumed that the size of
the line inclusion is much smaller than that of the material. The region near
the tip to be suitable for an asymptotic analysis is much smaller than that of the
line inclusion, so the asymptotic fields near a line inclusion tip in a practical
structure are almost the same as that in a semi-infinite line inclusion. Let a semi-
infinite line inclusion be along the axis x; from the origin to negative infinite, i.e.,
the region £2 of the material is 0 < r < oo, —7 < 0 < &, where 0 is the polar angle
(Fig. 3.10). The asymptotic fields near the right tip can be assumed in the following
form (Ting 1996; Kuang and Ma 2002):

fi(z) =ViZT J(A+ 1), zj=x1 + ppa = r(cos 6 + ;sin )

, h _ (3.2006)
Filz) =f;(z) =Viz, = aj+ib;

where V is an undetermined complex constant, 4 is an undetermined singular index,

and A > —1/2 to keep a finite strain energy density at the tip region. In plane

problem we often use f (z;), F(z;) instead of f(zp), F (zp), wherej = 1,2,3and; = 3
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Fig. 3.10 Local coordinate AT
system at a crack tip n

0 T,

represent the electric variables, as shown in Eq. (3.206). From Egs. (3.26) and
(3.206), it is known that

4
P>
4

J=1

<
+
PN
N
\.E
~—
=

U=(+1) (a,-z_fﬂv,- + a,zj“x?,) —(+1)" [A<z_,%+1>
® =+ 1)) (B Vi bE ) = 0k ) [B(F )V + B( Y]

J=1

(3.207)

In the polar coordinate system, the normal of a radial plane is n (— sin 9, cos 6)
which is identical with the tangent ¢ of a circle with the center at the coordinate
origin (Fig. 3.10). The traction T on the radial plane is

T; = o111 + opnny = —o;1 8in@ + op cos @ = D, sinh + @; 1 cos f
4
= @/(5)(5/r) =2Re > (Byzf V"), T =2Re{r 'B(z" )V
=1

(3.208)

where @](z;) = d;(z;) /dz;. Equation (3.208) can be used to discuss the asymptotic
field near a wedge, but in this book we only discuss the line inclusion.

3.8.2 The Stress Singularity

The stress singularity near a tip is related to the boundary conditions of the inclusion.
1. Two sides of the line crack are free. The boundary conditions are

T(r,47) =0, or Zy(r,+7)=0 (3.209)
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Substituting Eq. (3.207) or (3.208) into Eq. (3.209) and noting x;; = x;; zj(r,0) =
r,zj(r,£x) = re*™ on axis x; yield

BV +e “"BV =0, e “"BV 4+¢e“"BV =0, or

4 (€ Vb + e 7V;b;) = 0, ijl (e Vib; + ¢ "Vbj) = 0 (3210
=1
Equation (3.210) yields
(1—e'BV =0, or (1—c%)bV,=0; j=1-4 (3.211)
Because B is not singular, so we have the eigenvalue equation
(1—em)* =0, or (1—¢7)=0 (3.212)

From Eq. (3.212) it is known that A = —1/2,0, m/2, where m is an integer. When
A = —1/2, the generalized stresses are singular with the singular index — 1/2.

2. Two sides of the line crack are fixed (rigid inclusion with zero electric
potential). The boundary conditions are

U(£r) =0 (3.213)
We have

e4TAV + e MTAV =0, e “TAV +e*"AV =0, or

A N 4 . N 214
Z (em ”Vjaj + e—l/‘{ ﬂvj&j) — 07 Z (e—l/l ”‘/jaj + el/{ ﬂvj‘—lj) -0 (3 )

= =1
It is also found that the eigenvalue equation is Eq. (3.212), so we also have

A= —1/2,0,m/2; mis an integer.
3. One side free and one side fixed. The boundary conditions are

T(r,z)=0, U(-n)=0 (3.215)
We have
4BV + e “TBV =0, e #TAV 4 e47AV =0 (3.216)
The eigenvalue equation is

e "BV + e MTBV =0, e “TAV + AV =0; or

Tp-l

. o _ (3.217)
(e?*7Y + ¢ *Y)BV =0; Y =iAB™', Y =—iAB
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Substituting Eq. (3.37), ¥ = —i(S +il)L™",S = i(2AB™ — 1), into Eq. (3.217),
the eigen-equation in a more convenient form is obtained:

[—ie (S +il)L™' +ie***(S —il)L"'|BV =0 = (S+ cot2AI)L"'BV =0
(3.218)

From the above analyses, it is known that the singular index 4 is independent
to the selected z; plane.

3.8.3 The Stress Asymptotic Field near a Crack Tip

From Egs. (3.212) and(3.214), it is known that when 1 = —1/2, the stresses are
singular. Substituting it into Egs. (3.206) and (3.207) yields

:V/\/?:V-/\/r ), @i:COS9+ﬂjSin0
= —2Rez (ubiiVi/ /%) = —ZReZBUﬂJV/w/

(3.219)
= zReZ (biV;/V/7) = 2Re ZB,jv/,/
z = —2ReB<,uJ/\/_>V 3 = 2ReB<1/f>
Define the stress intensities as
K = (K. K1, K, Kp)' = Illj(l) V2zr(oa1, 02, 023,D2)T|9:0 = ’113(1) V2rr 2ol
(3.220)

Let

V:l/(2x/ﬂ)3*11{, v,:l/(z\/ﬂ)Bi;lKj, B'=[B], (221)

y

Substitution of Egs. (3.220) and (3.221) into Eq. (3.219) yields

—(1/@)Rei30ﬂj31711(,/\/§j, Sy = (1/\/25)1«. iBiij’,'K,/\/@-
—(1/@)Reé<ﬂj/\@>3*11(, 3 = (1/@)1%(38(1/\@)3*'1(

(3.222)

It is noted that in general situation B;B;,'K;/\/®; # K,/ /6;. But when 6 = 0
and @j =1, B,:,'BEIK[/\ / @j = Bl:/‘BﬁlK] =K;and ¥, = K/\/ 2xr.
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