Chapter 2
Physical Variational Principle
and Governing Equations

Abstract In this chapter, the physical variational principle is used to derive the
governing equations of the nonlinear and linear electroelastic analyses in piezo-
electric and pyroelectric materials. Some kinds of the physical variational principle
are given. Applying the migratory variation of electric potential, the general
expression of the static electric force is given. It is shown that for the physical
nonlinear problem, such as the electrostrictive materials, in order to get correct
governing equations and material constants in experiments, we need to consider
the entire system including the dielectric medium, its environment, and their
common boundary. When the temperature varies with time, the inertial entropy
and generalized inertial entropy theories are used to derive the temperature wave
equation and the mass diffusion equation. This theory is consistent with current
known thermodynamic theory.

Keywords Physical variational principle « Governing equation « Inertial entropy
theory « Temperature wave equation « Mass diffusion equation

2.1 Electric Gibbs Free Energy Variational Principle
in Piezoelectric Materials

2.1.1 Electric Gibbs Free Energy and Constitutive Equations

In Sect. 1.6, the physical variational principle (PVP) was proposed as a basic
principle in the continuum mechanics for an electrically static state. In this chapter,
we shall discuss its applications. At first, the electric Gibbs free energy variational
principle in piezoelectric materials under the isothermal case is discussed.
According to Eq. (1.69) in Sect. 1.5.4, the electric Gibbs free energy g is

9=g(ej,Ei), dg=ojdu;; — DdE; 2.1)
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Under the small deformation, g can be expanded in the series of € and E:

g = (I/Z)C,‘jklé’,'jsk] — (1/2)€k1EkE1 — ekijEkgij — (1/2)[,'J'k1E,'Ej8k1
- (1/2)akmEmE/€k1 - (1/4)anmEmEn€klékl (2.2)

Ciimt = Cijiw = Cije = Craijs lijit = L = Lije = laij,  exij = exi

where C, €, e, I are the elastic coefficient, permittivity, piezoelectric coefficient, and

the electrostrictive coefficient, respectively; & is a new asymmetric or symmetric

electrostrictive coefficient in order to make I the same symmetries as that in C

(Kuang 2007, 2008a). For convenience, the term a,,,E,,E, 101 is also added.
Because g is a state function, constitutive equations can be derived as

Ol = ag/a&'kl = Cijklgij - e/'klEj - (1/2)11jk1E1EJ - (1/2)akmEmEl - (1/4)anmEmEn6kl
Dy = —0g/0Ex = [ew + ey + (1/2)(miemi + amcem) + (1/4) (e + 1) €mnSn | Er
+ eje; = euk)

(2.3)

In general case in Eqs. (2.2) and (2.3), €; = u;j, &; # €ji, and there are nine
components for &; and o;;. For most practical cases, the body couple is neglected;
in this case, o;; and &;; = (u;; + u;;) /2 are symmetric and each of them only has six
components. Let6® and 6% be the symmetric and asymmetric parts of 6, respectively,
we have

O-?k = (1/2)(0k1 + Ulk) - Cijklgij - ejk[Ej — (1/2)1,/k1E,E/
- (1/4) (akmE; + a,mEk)Em - (1/4)anmEmEn§kl (24)
o = (1/2)(on — ou) = —(1/4)(@mEr — AmEr)En

where D = ¢ E + P was used. In Eq. (2.4), terms containing [ :e,a:€,e:€
had been neglected. In the usual electromagnetic theory, the electromagnetic
body couple isP X E = D x E. In general, @ should be determined by experiments.
In this book & = —2e€ is assumed, so Egs. (2.3) and (2.4) are reduced to

o = 0g/0en = Ciugij — ek — (1/2)ljuEiE; + cimEnEr + (1/2)€umEnEnbu
oy = Cijugii — ek — (1/2)lijnEE; + (1/2)(eimEr + €mEx)Em + (1/2)€umEnEndu
oy = (1/2)(eimEr — €mEx)En =~ (1/2)(DyE; — DEy)
(2.5)
Equation (2.5) shows that the electric body couple is balanced by the moment
produced by the asymmetric stresses (Eringen and Maugin 1989). If the electro-

magnetic body couple is neglected, all the stresses are symmetric. Using Eq. (2.3),
Eq. (2.2) is reduced to

9= (1/2)Ciueijen + ¢, ¢ = —(1/2)(DiEx + Al en); AL = eypEn  (2.6)
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where ¢° is the part related to the electric field in g or the energy from the total
energy minus the pure deformation energy. The value of the term AY : & is much
less than other terms, so it can be neglected.

In the electroelastic analysis, the dielectric medium, its environment, and their
common boundary @™ consociate a system and should be considered together, because
the electric field exists in every material except the ideal conductor. In this book,
the variables in the environment will be denoted by a right superscript “env” and the
variables on the interface will be denoted by a right superscript “int” (Fig. 2.1). In the
environment, Egs. (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) are all held.

2.1.2 Electric Gibbs Free Energy Variational Principle
and Governing Equations

Under the assumption that u, ¢, u®", p*" satisfy their boundary conditions on their

own boundaries ay, a,, a,", a," and the continuity conditions on the interface a™,

Given the displacement and electric potential virtual increments, the PVP in terms
of the electric Gibbs free energy (which is identical to the electric enthalpy in
isothermal case) is (Kuang 2007, 2008a, b, 2011a, c¢)

8IT = 81, + 85I, — W™ =0
oIl = / 5ng + / geéui,i dv — ow
\4 \4

oI, = / SgT™ dV + / g° Moug AV — W

W = / (fx — piix )uy AV — /peé(pdv +/ T;éuk da — / o*6pda
14 1% a an 2.7)

5Wenv — kenv _ pﬁinv)éuznv dV _ / pgnv5(penv dv
Venv env

_|_ Tzenvauznv da _ G*EHV6(pCHV da
aenv ae
o D

W = / - T™6u da — / c*™¢ da
aint aint
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where f,T* 06" are given body force per volume, traction per area, and surface
charge density and f", T*" "™  and T*™, s*™ are also given values in the
environment and on the interface, respectively. n = —n®"" is the outward normal
of the interface. It is noted that in Eq. (2.7) the work done by the electric field has
the form gé¢ = (p,dV)S¢ with g = p,dV = const., etc. For small deformation,
8 [, gdV = [,,6gdV can be used due to small variation of the volume.

The virtual variation of the potential ¢ is divided into local variation §,¢ and
migratory variation Jd,¢, and the similar divisions for E, so we have

8¢ = 3y + 6up,  Supp = @ 0, = —E,du,
0(8) /0x; = 0(8y + @ ,0up) [0x; = 8, (@) + @ iUy + @ ,OUp; = 6(00;) + @ i,
SE; = =3, (0,) — ¢ 1,0up = S,E; + 8,Ei,  8,E; = =3, ,
8.E; = E; you, = E, 61,
2.8)

Equation (2.8) shows that d(3¢)/0x; # 5(d¢p/dx;) when 5,0 # 0, and it is
discussed also in Eq. (2.130) in Sect. 2.9.1. Using the relation,

/6ng+ / geéuk.k dv = /ajiéui_j dv — /DiéEi dv — / (1/2)DkEk5uj.jdV
Vv Vv Vv Vv Vv
= / 6jjllj5bl,’ da — / Gjijél/l,‘ dv — (1/2) / DkEk(S,»jn,»(Su,» da
a |4 a
+ (1/2) / (DkEké,'j) J5M,' dv + / D,‘I’l,'é(/,(/) da
Vv a

_ / Dii,pdV — / DiEy 6ty AV
14 %4
2.9)

where a = a, + a, + a™ = ap + a, + a™, 0ji0e;; = oj;0u;; for asymmetric oj;.
It is noted that 6 = 0, 6,9 # 0, d,¢ # 0 on a,,.
Substitution of Eq. (2.9) into 6I1; in Eq. (2.7) yields

5171 = /O'jknjéuk da —/ T,féuk da —/ (ijJ‘ +fk —pﬁk)éuk dv
a Vv

dg

— (1/2)/D,7E,1nk5uk da+(1/2)/ (DnEn)_k(Sude—/D,-‘,-(Sq,godV
a Vv Vv

+ / Dini6 pp da — / [(DiEp)i—Diﬁ,-E,,}(Sup v + / peSpdV + / o*dpda
a |4 ’ |4 ap

(2.10)
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Adding a term [, Din; (E,du, + 8,¢) da = 0 to Eq. (2.10), we get

ol = / (Gjm,- - T,’;)ﬁuk da — / (O'ij- +fi — piik)éuk dv — / (D,-y,- — pe)éq) dv
a, v v

o

+/ (Din; + 6" )b da + / DiniEpbu, da — (1/2) / D, E,niéu; da
ap

a a

+(1/2) / (DuEn) ;Suy dV — / (DiE,) 6u,dV + / oy da + / Dinidg da
v ’ v ’ t

Jain Jaint

:/ (S,kn,-—T,j)aukda—/ (s,-kd-+ﬁ—pﬁk)5ude—/ (Dij — pe)dpdV
Ay |4 \%4

+/ (D,~n,~+a*)5§oda+/

Jap am

Sjknjéuk da + / D,n,-égo da

aint

(2.11)
In Eq. (2.11), we have

o = DiEy — (1/2)D,Endir,
Sy = ou + oy = Cijeij — ek — (1/2)lyjnEiE; + comEiEp + €mEnEr = Su
(2.12)

where o is the Maxwell stress, S is the pseudo total stress (Jiang and Kuang

2003, 2004) and ¢4y, E,, = Dy has been used. S is a symmetric tensor, but ¢ and 6™
are not. Though the adding term fa DyniE,ou, da + fa Dini6,@ da is zero, the first
will be combined with terms of virtual displacements and the second will be
combined with terms containing the local variation 6,¢.

Equation (2.10) can also be written as

5”1 :/ (GIAH/—T;)éllkdd‘i‘/
as a

int

Cjin;ouy da — / (Gj/(‘/' +fir — pﬁk)5uk dv
1%
—(1/2) / D, E,ndui da + (1/2) / (DuEy) 1 Su AV — / (DiEy,) 6u, dV
a \%4 14 !

+/ (D,~n,~+a*)6(pda+/ D;niﬁq,qjda—/ Diniéu(/)da—/ (D,v),-—pe)éqodV
v

ap Ja,+am ap
(2.13a)
Due to the arbitrariness of dg, it is obtained:
Dinj +6" =0, on ap; D,'J' —p.=0, in V (2.13b)
Substitution of Eq. (2.13b) into Eq. (2.13a) yields
ol = / (ijn_,- — T;)(')'uk da + / ijnjéuk da — / (S_/'k,/' +fr — piik)éuk dv
as amt 1%
—(1/2) / D, E,niduy da + / Dini6,¢pda — / Dinié,¢ da
a a,+a™ ap
= / (S,'jl’l,‘ - T]*)él/t/ da — / (S[/‘,,‘ +f/ - pu,)éu, dv + / S,;,-n[éu_,- da + / D,-n[é(p da
Ja, JV Jant Jamt

(2.13¢c)
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In Eq. (2.13c), the following relation was used:

/ D,—nié(/,(pda—/ Diniéu(pda:/ Dm,—é(pda—/D,—niéu(pda: /D,-n,—Epﬁup da

Due to the arbitrariness of du and d¢ from Eq. (2.11) or (2.13), it is obtained:

Sixj +fx = plix, Dij=p,, in V

*

Sgnj=T;, on a, Din=-—0", on ap

(2.14a)
(SH] Z/ S,;,»niéujda—&—/ D,n,ﬁrpda
qint aint

The momentum equation in Eq. (2.14a) in terms of generalized displacements is

Cijuattiji + €@ ji. — liga® i@ ji + (€GP 10 u + €mP @ i) + 11 = piis,
[Ciatti + €jap j — (1/2)lijap i ; + €m® 40y + Clm@ @ | =T, 0N ag;
Pk = —Pes  CHP Tk = —o¢*, on ap

(2.14b)

where the terms containing € in ¢ are neglected. Similarly for the environment,
we have
env env __ _env _env env __ _env s env
Sij,i —|—];- = pi, Di,i =pY, in V
env__env __ *€nv env, env_env __ *env env
Sij np =T;7", on a,'; Di"n" =-0c"", on a

S, = §envenv s, env. g DY 5V 5™ (2.15)
2= [ Sy mpoumdat [ Do da

env __ _env Menv, Menv __ pnenv renv env rrenv ¢
i = O T O 30 —Dj E™ — (1/2)D™E;™ 6

Using n; = —n{™, u; = ui™, ¢ = @ and 6I1; + I, = SWHnt we get

(Sij _ S;}nv)ni — 7‘7‘“1[7 (Dz _ D?rw)ni _ _G>s<int7 on aim (216)

The above variational principle requests prior that the generalized displacements
satisfy their own boundary conditions and the continuity conditions on the inter-
face, so the following equations should also be added to governing equations:

* . _ *
u=u;, on a; @=¢, on a,
env __
i T Y ’

*env env env __ __kenv, env
u A 2.17)

on a,"; ¢ =¢™; on d,
w=u", ¢=¢™; on a™

Equations (2.14), (2.15), (2.16), and (2.17) are the governing equations for the
electroelastic analysis.
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2.1.3 A Note of the Maxwell Stress

In the books of Stratton (1941) and Landau and Lifshitz (1959), the formula of
the stress in an isotropic electrostrictive material was

oix = 0go/ i + o, o = (1/2)(2€ — a1)ExE; — (1/2)(e 4 a2)EnEnbi

where 0Jg,/0ej is the stress in the media without the electromagnetic field.
This formula is just the pseudo total stress S in Eq. (2.12) for the electrostrictive
material. For the Maxwell stress and its related problems in literatures, different
author had different understanding as shown in Sect. 1.2.7. McMeeking et al.
(2005, 2007) considered that in the electroelastic theory the constitutive model
can be simplified to one that embraces simultaneously the Cauchy, Maxwell,
electrostrictive and electrostatic stresses, which in any case cannot be separately
identified from any experiment. In their method authors did not distinguish the local
and migratory variations.

From Eq. (2.12), it is known that the Maxwell stress is related to the square of
E.ie. |6| o |[E|*, but the stress introduced by the piezoelectric effect is related
to E. So for the piezoelectric material when the electric field is not too large
and the piezoelectric coefficient is not too small, the Maxwell stress can be
neglected. But the isotropic electrostrictive materials do not have the piezoelec-
tric effect, so in this and similar cases, the Maxwell stress should be considered.

Because the strain is accompanied by the change of the distance between
the electric particles, the attraction between electric charges or the Maxwell
stress and the stress introduced by strains in the material is produced simulta-
neously. Though they are produced together, their difference is obvious and impor-
tant. The strength problem in engineering is determined by the Cauchy stress, which
is connected with the constitutive equation. However, the Maxwell stress is an
external effective electromagnetic force applied to the body and can be obtained by
using the migratory variation of ¢ in the PVP or in the usual energy principle.

Using D = Dyn + Dyt and similar expressions for E and the continuity condi-
tions in Egs. (2.16) and (2.17) for the D,E on the interface, the mechanical
continuous condition on the interface can also be rewritten as

~ *int ~xint

n- (6 Genv) =T 7 T :T*int_|_n' (O_Menv —O'M)
n- (O'M env O'M> — [ . (Denv Eenv) (1/2)(Denv Eenv) ]
—[n- (DRE) - (1/2)(D - E)n] = (1/2)[Dy (E™ — Ev) — (D™ — Dy)Ei]n
= [(e — ™) /2e¢"™) (D% + ™ E} )n
(2.18)
where n is the unit normal, subscripts n and ¢ mean the normal and tangential
direction respectively; and there is no sum on n and ¢. Equation (2.18) shows that in
the small strain case, the boundary traction produced by the Maxwell stress is along

the normal direction. The Maxwell stress can be naturally obtained by the migratory
variation of ¢ in PVP.
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2.2 Alternative Forms of the Physical Variational Principles

2.2.1 First Alternative Form of the PVP

From Egs. (2.14), (2.15), (2.16), and (2.17), it is found that if we use S instead of ¢
and S instead of 6°" in the governing equations, then the form of governing
equations of the physical nonlinear dielectrics is just the same as that in the physical
linear electric problem. Therefore, a simpler principle can be obtained: the first
alternative form of the variational principle is

SIT = 811, + 81, — W™ =0
Sl = / s5qdV — W,  8II, = / S dV — swen
1% env (2.19)
89 = Sjidu;j + Didg ;, 6§ = S;ourt + D™ 6T
Su = ou + oy
In Eq. (2.19), the variations of du and ¢ are all local variations or completely
independent, i.e., the migratory variations §,¢ produced by Su are not needed.

SW, W, and W' are still expressed by Eq. (2.7). An analogous theory was
also discussed by Bustamante et al. (2008).

2.2.2 Second Alternative Form of the Physical
Variational Principle

Introduce the electric body force £, f ™ and traction T}, T; *" in media as

fe = GM Te, = —GM}’[-' ¢ env = JM.env
k Jkyj? k ko k jkj (2 20)
Te env __ Menvnenv _ Menvn_ :
k = —Oj i = O i

The second alternative form of the variational principle is
SIT = 81T, + SIT, — W™ = 0

Sl = / Sgdv — W', I, = / g™ dV — swe
\%4

env

SW = / (fi + 1 — piix) Sy dV — /peéfp av —|—/ (T; + Ty)buy da —/ 6" 6¢pda
v v

Ao ap

6W/enV — kenv _'_fke env. penvu-inv)(suznv dv _ / p:nV5(penv dv
yenv env

+ / (T]T env + T]? env)ﬁuinv da — / O'* env(swenvda
Jasm Jag"

(SW/im:/‘ (T;:int_"_Tzenv_,'_Tz)éukda_/‘ G*in15¢da

2.21)



2.2 Alternative Forms of the Physical Variational Principles 41

In Eq. (2.21), the variations of éu and d¢ are also completely independent, i.e.,
it is also not needed to consider the migratory variation J,¢. Equation (2.21) is the
original form of the PVP Eq. (1.78). The governing equations from Eq. (2.21) are

oiji+ (i +f7) = pit; Dii=pe; in V

oin; = T; +T;, on as;; D= —6*, on ap;
env env eenv) __ _senv, env __ _env, . env

o + (™ +f£) = pis™; DY =p&™; in V/ (2.22)
env__env __ grkenv e env env, env _env __ *env env,

o n =T""+T;™, on a7 D™ =—c"", on ap;

(O'Ik _ 0'7;?\/)”] — T;mt + Tlf + T; env7 Dknk _ Dinvnk — _G*mL; on amt

In many literatures (Pao 1978; Maugin 1988; Moon 1984), the governing equations
were expressed in the form of Eq. (2.22) and the electromagnetic force was derived
from other methods different with the variational method. In different literatures,
f¢ and T° may be different.

2.2.3 The Medium Fully Surrounded by the Air

An important engineering problem is that the medium with symmetric material
coefficients is fully surrounded by the air. In air, the mechanical stresses and
mechanical energy can be neglected and only the electric field and electric
energy should be considered. The physical variational formula (2.7) in this
case becomes

SI = 8I1, + 8T, — SW™ =0

81T :5/ng—5W, 5172:5/ ¢ AV — sWe
|4

env

sWint = / T Suy da — / oMSpda, W =— / piiSuy AV — / RX\%
aint aj;“ %4 Vv

5W€1’1V — / pznv 5(peanV _|_ / Di*envnfnvé(penv da
(2.23)

where the body force is neglected and

g = (1/2)Cijueijen — (1/2)enEE) — eijEreiy — (1/2)ljuEiEen

2.24
= (1) B E e
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2.2.4 Isotropic Materials

For isotropic materials, the constitutive equations are (Kuang 2012)

lijk[ = 115,'1‘5/(1 + b (51'1(5/‘1 + 5i15jk), €j = 651:/', IS /45,‘1‘, aj; = —265,'j, Crij = 0
(2.25)

In isotropic materials, variables S, o, and oM

and (2.3) are reduced to

are all symmetric. So Egs. (2.2)

g = (1/2)/18,’,‘8/& + Gé’,’jé‘,‘j — (1/2)6EkEk — (1/2)(11 — G)El‘E,'Skk — (12 — €)El‘Ej8,'j
(2.26)

o = A€o + 2Gey — (1/2) (11 — G)E,‘E,‘(Skl — (12 — E)EkE1,
D, =¢eE, + (11 — E)SiiEk + 2(12 — 6)8k1E1 ~ c¢E; (2.27a)
Skl = 18,’,‘51{1 + 2G€kl — (1/2)11E,‘E,‘5k1 — (12 — 2€>EkE/ = Oy + GE

If we let /; — ¢ = ap,l, — ¢ = (1/2)ay, then Eq. (2.27a) is reduced to

o = A& + 2Gey — (1/2)(a2EE Sy + a1ELE))

Dy = eyE;, € = oy + aren + aze€iiby = Sy

Su = Aeiibu + 2Gey — (1/2)(az + €)EiEidy + (1/2)(26 — a))ELE| = oy + o))
(2.27b)

The first formula in Eq. (2.27b) is just the usual form of the constitutive equation,
where a; and a, are known as electrostrictive coefficients. From Egs. (2.14), (2.15),
(2.16), and (2.17), it is known that solving S is easier than that for o, so in
experiments, the measured variables usually are (S,e,E). If the constitutive
equation (2.27a) is used, the measured material coefficients are /; and I, — 2c.
If the constitutive equation (2.27b) is used, the measured material coefficients are
2¢ —a; and ap + €. Therefore, in experiments, the entire system including the
dielectric medium, its environment, and their common boundary should be consid-
ered together, and appropriate governing equations should be selected.

2.2.5 The Static Electric Force Acting on the Medium
by the Electric Field

Comparing Eqgs. (2.7) and (2.21), it is found that the difference between them is
that in Eq. (2.7), the local variation and the migratory variation are used
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simultaneously, however in Eq. (2.21), only the local variation is used, but the
electric force introduced by electric field is introduced:

ke CnV&uinV dv + / Tz CHVéuinV da

env
ds

SWE = / fedudV + / TSSupda +
V a“ VCHV

+ / (T§ + Ty *™) duy da (2.28)
In Egs. (2.7) and (2.10), the part related to the migratory variations of potential is

5u17:/ g,E'5uEdV+/ 9 Sk dV+/pe6u(pdV+/ 0*5u(pda+/ g% - 6,ET dV
v v v a vem

D
+ / ge env(suirl}v dv + / p:nv(sug”env dv + /
yenv yenv aen

en
D

/D,'EI,JﬁupdV—/(1/2)DkEk5uj_jdV+/peﬁuqodv+/ o S,pda
v v 1%

ap

g*env5u¢env da + / G*intéuw da

allll
- / DEVEE™ AV — | (1/2)DSVES™ous 4V + / PG, AV

yenv yenv Venv

+ / U*EHV(SM(ﬂe“V da + / a*iméugoda
ag®

gint

(2.292)

Using Egs. (2.13b) and (2.16) and adding terms [, D;n;(E,duy, + 8,¢)da = 0 and
[ DSV PSR (E;“V(m;“v + 5M¢em)da — 0 to Eq. (2.29a), then Eq. (2.29a) can be

reduced to

5,,17:/ o-}\;lniéujda—/a?fiéujd\/—i-/ oMe“"nf“"éuf‘w da
o , U -

ij

- / ol SUS™ dV + / oy'nidu; da + / oy ™ n™ sus™ da  (2.29b)

aint

Comparing Egs. (2.20), (2.28), and (2.29), it is found that the static electric force
acting on the medium can be obtained from the general energy migratory
variational principle (Kuang 2012):

oW = —=6,I1 (2.30a)

If the environment is neglected, it is obtained:

/f}fﬁuk dv + / T;6uy da
|4 [

_ _< / g SEAV + / ¢S dV + / peSupdV + / a*5u(pda> (2.30b)
\%4 |4 \%4 ap
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2.2.6 Hamilton Principle

In order to use the PVP for moving electroelastic materials, the D’Alembert
principle should be used to make the moving media in a state of relative rest.
Using D’ Alembert principle, the Hamilton principle can easily be obtained from the
PVP. Let duyo and duys be displacements at the initial and final times, respectively,
in time interval [fo, ;] and assume Suzg = Sugr = 0, using
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where K = piyiip/2 and K = p*™ui™ ™ /2 are the kinetic energies in the
material and its environment, respectively. Substituting Eq. (2.31) into (2.7) and
integrating it from #; to # then we get the Hamilton principle:
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However the energy conservation law is:

Iy .
g+ K+ g™ 4K = / (AW + dW*™ + dW™)dz (2.33)

fo

Equation (2.33) is held for any time interval. It is noted that the energy principle is
held in a real process, but the PVP gives a true process for all virtual possible process
satisfying the natural constrained conditions, and it is equivalent to the momentum
equation. It is also noted that the Hamilton principle is held in four-dimensional
space (x, t) and the time boundary conditions should be added. But the PVP is held in
three-dimensional (3D) space (x) and does not consider the time variation.

It is obvious that Hamilton principle is also a fundamental principle in the
physics and continuum mechanics. Using the local and migratory variation theory,
the Maxwell stress can also be obtained automatically.
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2.2.7 Physical Variational Principle in Electromagnetic
Materials

In this section, the PVP is extended to electromagnetic materials under static
electromagnetic field, without the current and the body electromagnetic couple
(Kuang 2011a, b, c).

Let constitutive equations be

o = Cijugij — e,e'klEj - eﬁ/HJ —(1/2) ?jklEiEj —(1/2) glleiHj

— €mEnE; — ﬂkamHl - ﬂkamE] - ﬂkmEmHl
Dy = {ékl + Lei + (ememe + emkgml)}E] + € €+ Bt + (BinHm + Pontli) e
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(2.34)

where e, and e, are piezoelectric and piezomagnetic coefficients, respectively, [f,
and [j, are electrostrictive and magnetostrictive coefficients, respectively, and
pij = Pji is the magnetoelectric coupling coefficient. The electromagnetic body

couple is still balanced by the asymmetric stress. In this case, the electromagnetic
Gibbs free energy g is
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- (1/2) (lfszEiEj + 1§?lein> ex — (GmEmEr + pgHnH ) e — Pron(HuEr + EnH))en

= (1/2)Cyueijen + ¢
gem = —(1/2) (DkEk + BH; + Ak[E[k), Ay = efnklEm + e:,]:k[Hm
(2.35)

For the small deformation A : € can still be neglected. The PVP is
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where E; = —¢;, H; = —y,. Finishing the variational calculation finally yields

Sixj +fx = piix, Dij=p,, Bi;=0, in V
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2.3 General Variational Principle

2.3.1 General Variational Principle Not Satisfying Boundary
Conditions

This principle does not ask u, ¢ and u™, ™ to satisfy boundary conditions on their

own boundaries ay, a, and a,"", a;", respectively, and continuity conditions on the

interface prior. For small deformation, this principle is
8I = 811, + I, — SW™ =0
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In Eq. (2.38), some additional virtual work done on the boundary and interface
is added, because the displacements and potentials do not satisfy the boundary
conditions and the continuity conditions on the interface. As an example, & fai"‘
T3 ™ (1 — uf™) da is the virtual work introduced by the difference of the virtual
displacement (u; — uS™) on two sides and the unknown pseudo total traction T°
on the interface. In Eq. (2.38), TS and ¢ may also be considered as Lagrange
multipliers in the mathematical sense (Kuang 1964, 2002).

Equation (2.38) can be proved as follows. Analogous to the derivation of
Eq. (2.11), it is obtained:
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Due to the arbitrariness of éu and 6¢ from Eq. (2.39), we get
Sikj +fi = plix, Dij=p, in V
Sunj =T, on as w=u;, Spn = T,§7 on a,
Dini=—6*, on ap; ¢@=¢*, Dnj=-06, on a, (2.40)
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Similarly for the environment we get
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For W™ we have

Wit = / - T™Suda — / o"™Spda + / Te8(ue — ui™) da
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Due to n = —n®™ and arbitrariness of du, 5¢, 6TS, ¢ from &I1 = 61, + 611, =
SWht we get

env *ml env *int env env, int
(S — S5 )i =T; (Di —D{™)nj = =™, we=u™, @=¢"; on a

2.3.2 General Variational Principle in Linear
Piezoelectric Materials

Kuang (1964, 2002) proposed a Lagrange multiplier method to derive general
variational principle (Hu 1981) from the potential energy principle in linear elas-
ticity. This method is easy extended to the linear electroelastic theory where the
Maxwell stress is not considered. So the migratory variation of the electric potential
is not needed. Using the Lagrange multiplier method, the general variational
principle with independent variables u, ¢,6,€,D, E in the small deformation case
is easy obtained. The boundary conditions and continuity conditions on the inter-
face do not satisfied prior. The electric Gibbs free energy for the linear piezoelectric
material under the small deformation is
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Omitting the derivation process, the PVP is
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It is easy to show that 6I1; can be reduced to

oIl = 5/ {(Cijueij — exijEx — ou)dex + (Dr — ey — eyijeif)SEx + (Ex + ¢ 4) 6Dy
v
+[(1/2) (ury + wix) — €w)d01 — (o104 + fi — piix)dux — (Dix — p)Sep pdV

+ / (Gk[n[ — TZ)&M/( da + / (Dkl’lk + 0*)5<pda

o ap

+ / [(aklnl — Tp)oue — (u — uZ)éTk]da

u

+ / [(Diny + 0)6¢ + (9 — @*)b0]da + /

int
P

ouhdu da + / Dynidp da

(2.46)

Completing the variational calculation and considering the arbitrariness of du, d¢,
Su™ 5™ and T, o finally we get
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Equation (2.47) is the complete governing equation.

2.4 Variational Principle in Piezoelectric Materials
Under Finite Deformation

2.4.1 The Electric Gibbs Free Energy in Initial Configuration

Some fundamental formulas and notations for finite deformation shown in Sect. 1.3.4
will be used in this chapter. It is emphasized that the same coordinate system is used
in the current and initial configurations. Since the isothermal electric Gibbs free
energy g in the finite deformation state must be invariant in a rigid body rotation,
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so the g for materials without the electric couple problem should be taken in the
following form:

9= (1/2)Cyxienexr — (1/2)enExEL — exiyExey — (1/2)lykEiE ek

Cuykr = Cike = Cyrk = Ckwiy, €k = €k, ek = egir,  luke = lnke = Iy = Ik
(2.48)

where Cjx., €L, @k, lyxe. are the material coefficients in the initial configuration.

It is noted that coefficients in the initial and current configurations are different.

From the thermodynamic theory, the constitutive equations are

o1k = 09/0exr = Cyxrery — excEy — (1/2) kL E(ES

L ek = Cukey — ks = /2 (2.49)
Dk = —09/0Ex = (€ + lykr€n)EL + exi€y
Using Eq. (2.49), Eq. (2.48) can be reduced to
9=01/2)Cukenex + 5, § =—(1/2)InEy =—(1/2) oy, 2.50)
['v = Dy + enkréxi '

In g, the term (1/2)Cjyk €178k is the mechanical deformation energy, (1/2)DxEk is
the electromagnetic energy, (1/2)enk; En€xy is the mechanical and electromagnetic
coupling energy, and g° is the sum of the electromagnetic energy and coupling
energy. For the small deformation case, (1/2)eyx.En€x. can be neglected, so the
coupling energy can also be neglected.

2.4.2 Variational Principle with the Electric Gibbs Free
Energy Under Finite Deformation

As in Eq. (2-8), variations of ¢,E are divided into local variation §,¢,5,E and
migratory variation 8,¢, J,E, i.e.,

0@ = Sy + Sup,  Oup = @ U, = —Epdu, = —I::LXL‘,,,éu,, @.50)
5E_1 = 5¢E_1 + 5L,E[, 5ME_1 = EI,I,(SM], == E,YLXL,I,éu,, = ELJXLJ,éu,, '

Let the displacement u and the potential ¢ satisfy their boundary conditions

on their own boundaries a,, a,, @, and the continuity conditions on their interface

a™ (Fig. 2.1). The variational principle with the electric Gibbs free energy under

finite deformation for electroelastic media can be expressed in the following form
(Kuang 2008b, 2011a):
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where Tj,5% T;*™,5*™; T;i", """ are the given values on the corresponding
surfaces.

Using relations ¢*dV = g° dv, [, ¢°6u;;dV = [ g°6u;;dV and [, gdV =
fV 6gdV (Kuang 2008b, 2009a) yields
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where Suy ;. = Sux ;X7 was used. Substitution of Eq. (2.53) into Eq. (2.52) yields
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The last three terms in (2.54a) can be reduced to
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where XL,péu,,EL = E,6u, was used. So Eq. (2.54a) can be reduced to
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where

Si = opxis + Xex001 s
M o~ = 1o 2 I (2.55)
o, =DjE; — EF ~EnOjL = DyjEp — 3 (Dn + enmiems)EnéyL

Sy is called the pseudo total stress in the initial configuration, )} may be called
the second kind of the Maxwell stress defined in initial configurations, and XL7k5%
may be called the first kind of the Maxwell stress defined in current and initial
configurations. From Eq. (2.55), it is known that when the initial configuration
is used as the reference configuration, the Maxwell stress is related to strain.
But for isotropic materials, the Maxwell stress is still not related to strain due to
eyur = 0.
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Due to the arbitrariness of di;, @, from Eq. (2.54b) we get

Sy +fr=piix, Diy=p, in V
;/k.{ fki* PU A 1.1 7,07@ B ) (2.56)
Spny=T; on a, Diyy=-06" on ap
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Similarly for the environment, we have
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Due to the arbitrariness of 6i;™, 6¢°", from Eq. (2.58), we get
—7}1vﬁ7nv _ T}kenv on a;c;nv’ D?nvﬁ?nv = 5" on &Slg (2 59)
S’;:t;\; _i_fjenv — ﬁenvﬂsnv7 lj?;v — ﬁznv in Venv .
and
8I, = / Sy as™ sus™ da + / DS™ ™ 5™ da (2.57b)
7 aitft
Noting iy = —n;™, ity = ;™ , @ = @ on the interface, we get
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So on the interface, it is obtained:
(gu — gi?")ﬁ[ = Tjim, (51 — D?nv)ﬁl = —5*im; on am™ (2.60)

The above variational principle requests prior that the displacements and
the potential satisfy their own boundary conditions and the continuity conditions
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on the interface, so the following equations should also be added to governing
equations:

* . _ *
up=u;,, on a; @=¢, on a,

*env env, env *env, env

env __ _
N=u on a,; ¢ =¢"; on a,

1 1 )

u

env

w=u™, @=¢™; on a™ (2.61)

Equations (2.55), (2.56), (2.59), (2.57b), (2.60), and (2.61) are the governing
equations under the finite deformation. It is noted that for the elastic material,
these formulas are reduced to the usual elastic governing equations for elasticity.
If in Eq. (2.52) we use & [, gdV instead of [, 8gdV + [, g°u;; dV, Eq. (2.52)
cannot be reduced to the usual elastic variational formula.

2.5 Internal Energy Variational Principle
in Piezoelectric Materials

2.5.1 |Internal Energy

It is noted that the constitutive equations of the general electroelastic materials are
linear in the elastic part, but are nonlinear in the electric part for small deformation.
The internal energy 20 for materials without electric couple is assumed in the
following form under small deformation:

W(ew, Dy) = (1/2)Cyueijen + (1/2)puDiDi — hiiiDreij — (1/2)kijuDiDjey + - - -
Pu=Pr> ki = kjiw = kijie = kzij,  hiij = hiji - Cijie = Cjira = Cije = C
(2.62a)

where hyj, fi, kiju, and Cjjy are material constants. The constitutive equations are

o = OU/O0ey = Cijueij — hiiDr — (1/2)kijuD;iD; 2.63)
Ek = 8%/81)1( = (ﬂkl — kkhj&’j,')D] — hk,‘jé‘ij )
Equation (2.62a) can be rewritten as

A(ew, D) = (1/2)Cijuey + A, A = (1/2)(ExDy — Afjewr); A3 = huiDs
(2.62b)
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2.5.2 Internal Energy Variational Principle under
Small Deformation

Let u, D, u®™ D" satisfy their boundary conditions on their own boundaries a,,

ap,a;" ,ap” and the continuity conditions on the interface a™ ie.,
* . _ *
u; = u;, on ay; Din;j = —o", on ap
env *env env, env__env __ *env env
u ' =u;"", on a,; D"m" =-c"", on ap (2.64)
env env *int int
w=u", (D;—D™)nj=—c"", on a

where n is the outward normal of the body. Inside the body and environment,
it is assumed that

Pe = Dij, €ij = (Mi.j + Mj.i) /2 in V; pi“v =D

i
env env env : env
g = (uid- +u; )/2 in V

(2.65)

Under the above conditions, given the displacement and electric charge virtual
increments, the PVP in term of the internal energy is (Kuang 2009a)
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- / (0" da) — / o 6(cda)

ap a,

2.66
6]72 — 5 menv dv _ (fkenv _ penviile(nv)éu;nv dv _ / Tzenvéuinv da ( )

env env env
V V ast

_ / wenv&(pznv dv) _ / ¢enV6(6*enV da) _ / w*env&(aenv da)
@ o
swint :/ T} Suy da+/ @""5(o da)
alnl alnl

where @ = a, + a, + a™ = ap + a, + a™, f, T}, p, and ¢* are given body force,
traction, potential, and surface potential, respectively. It is noted that the work done
by the electric field in Eq. (2.66) has the form @dg, i.e. the potential is kept constant,
but the electric charge p. dV, oda etc. have virtual increment. * and """ are given
constants and do not change when virtual displacements happen, so terms ¢*da and
"™ da®™ will not be constants. Thus, terms faD ¢@8(c*da) and fagﬂv @™ 5(6*™da)

sint *int

etc. should be added to the variational formula. 7™ and ¢*™ are given surface force
and the jump of electric potential on the interface, respectively. Similar to Eq. (2.8),
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oD; = 6pD; + 6uD;,  6uDi = Djpouy, Exj=Ejr=—¢j

(2.67)
6106 = §Dpe =+ 5Mpea 6“:06 = Dl'-,l'l’éuﬁ = Div[’iaup
The variation of the differential volume and area, etc. are
6(dV) = dugdV, o(nyda) = (niou,, — n,ou,;)da,
(dv) Kk (ni da) = (nSup,p — npdiy ) (2.68)

&(da) = (8up, — Sup xnyny) da

Neglecting terms containing (o€ + kijuDiDjew)/2, it is obtained:

5/QldV:/ajiéui:,'dV+/Ej5D,-dV+/Qleéuhkdv
v 1% v ' 1%

= / (O'ji +EmDm51j/2)nj5ui da — /V (Gji +EmD,,,6,j/2)J5ui dv + ‘/VE,(SD/ dv

(2.69a)
/(/}(S([)ed‘/) :/(/)(S(D”d‘/) :/goéD,,dVJr/(pD,,(Sup,,dV:/go(SDD,,dV
v 14 v ' v v
+/(pD,tviI,éu,,dV+/40D,-7,-5up7,,d\/:/qaz‘iDDinida—/(p‘,véDD,'dV
\4 \4 a \4
+/(/151¢Dfn,»da7/q)_iéuDide/(/)D,-,péu,,,,»dv+/(/)Diy,ﬂéu,,,,,dV:/q)(?D,-n,‘da
a Vo \4 Vv a

—/‘/(p‘iéD,'dV—/(pD,v‘pn,-éu,,da—l—/V(ani)p)’iSupdV—ﬁ—/VgaD,vjb'um,dV
(2.69b)

/ @8(c” da) = —/ @D;n;5(da) / @Dn;(8uy, , — du, gnyny) da
ap dap
= —/ @(Dibu, , — Dpdu; p)n; da—/

ap

@(Dpbu; , — Dibuy, jn,ni)n; da

/ @(Dibu,, — Dpéu; p)n; da + @(D;éu,, — Dyéu;,)n; da
a

a, +a'“‘

—/ @(Dpéu; , — Didu, inypni)n; da
ap

(2.69¢)

/ @*8(cda) = —/ @*8(Din;da) = —/ @*6D;n; da—/ @*D;6(n; da)

o ag ¢ o

—/ (p*éDinida—/ ¢*(Didu,, — D,éu; ,)n; da
a a

4 (4

/ ¢"™8(oda) = —/‘ @ ™6D™n; da — / o™ (D™6u,, —D;“‘éu,-,p)ni da
alnl al“l al“l

(2.69d)
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and

@D, bup, dV = / @ ;(Dibuy, — Dyou;p) dV
1%

/ @(Dibuy,, — Dpdu;p)n;da — /
a ' Vv
+ / ¢(Dibuy, —D,,(Su,;p)‘l.d\/ — /(pD,;,-(Sum, dv = / ¢ ;Diéu, , dV
Jv Jv 1%
—/(pt,-D,,éu,-,,,dV—/(pDI,,,-ﬁu,-‘p dV:/(pA,D,-(su,,y,, dV—/ ((pDI,) 1.514,-,,, dv
v 1% v v ’

- / (¢, Di61,)n, da — /V (¢.Ds) ,du, dV — / [((pr)tiﬁu,}np da + /V (¢D,) , du:dV

= _/(¢Dp)1inp5uida+ / ((pD,,)vm.ﬁu,-dV+/(pA,-D,-n,,5u,,da— / ((p,,-D,-)Ap(Su,,dV
a JV a JV '

(2.70a)
/ @6D;n; da = / @8(D;n;) da — / @D;6n; da
ap ap ap
= —/ cp(D,»éupJn,n,,n,» — Dl‘&l/{p‘[l/lp) da (270]3)
dap
In Eq. (2.70b), D;n; = —c* is a given value on ap, so its variation vanishes on ap.

Substituting above equations into 6/1; in Eq. (2.60), it is obtained:

1
5171 = / |:<Gj[ + EEmDm(SU + (ij,i — (¢Dj>,i + (ppr(S[j) I’lj - Tz*:| 51/{,'(31(1

_ /V (a,-,- n %EmDméij + D, — (@D;), + goﬁpré,-j) o = piis | sudv
+ /V (Ej + ¢ ;)oD;dV + / (9" — @)niéD;da
+/ (9" — @)(Dibuy, — D,du;,)nida
ay
+ /aim |:<0'ji + %EmDm&;,' +¢Dj; — (‘pr),i + (pﬂpréij) nj] Su;da
_ / _ @(Diduy , — Dyditi p)nida - / _ pdDinida (2.71)

From Egs. (2.66)and (2.71) and the arbitrariness of du;, 6D; we get

Sjij +fi = piis, Ej=-—¢@; in V
Sjinj =T

17

. —oF . — M
on a;; @=¢, on a, S;=o0j+o0;

1 1
oy = ¢Dj; + 5 EnDindij = (¢D;) ; + ¢ ,Dpb;j = DiE; — 5 EpDpd (2.72)
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where 6M is the Maxwell stress. Using Eq. (2.72), 611, is reduced to
S8l = / Sjinjou; da — / @8D;n; da —/ @(D;éu, , — D,éu; ,)n; da
aint aint gint
= / S;in;éu; da — / @éD;n; da — / @D;5(n; da) (2.73)
ant amt int
Similarly for the environment, we have

env env. __ ~env env. __ env : env
Siy N =pis™, EY =—¢%, in V

env__env __ *env env, cnv __ *env env env __ env M
SSn n; =1"", on a;’; @ =¢", on a,”, S =06V 40"
5[]2 — SICJI]V CHV 5uenv da goenvéD?nv nlgnv da _ (penlegnv(S(n?nv da)

aqin aint aint
2.74)

SWnt can be reduced to

SWn = / }lT,fimﬁuk da — / Al(p*imn,'(SDl- da — / »I(p*im(Diéu,,,p — Dpéu;,)n; da

= / N T ™ Suy da — / y 9" n:6D; da — / _¢""D;d(n; da) (2.75)
Substituting Egs. (2.73), (2.74) and (2.75) into Eq. (2.66) and noting n*" = —n,
u = u® we have

81 = | [(Sy— S5 )n; = T;™|ou; da
- / M @* ™) [8(Din;) + Dini(da)] (2.76)

Due to the arbitrariness of du;, 6D;, we get
(Sif _ S;nv)nj _ Tj*int, @ — gpenv _ ga*int’ on Clim (277)

Equations (2.72), (2.74), (2.77), (2.64), and (2.65) form the complete governing
equations.

2.5.3 The Force Acting on the Dielectric in a Plate Capacitor

As an application of the PVP, we discuss the force acting on the dielectric in a plate
capacitor filled the dielectric with permittivity ¢ as shown in Fig. 2.2. Assume both
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Fig. 2.2 A plate capacitor T2)  upper electrode
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the length and width of the plates are infinitely long, the distance /& between two
electrodes is small. There is no external mechanical force. The electric field inside
the dielectric of the capacitor is homogeneous and E = E;,n, where n is along the
positive direction of the axis x,. The electric field inside the electrode is zero. In this
simple case, the static electric force can be directly derived from the Maxwell stress
and the general equation of the PVP.

1. The Maxwell Stress Method

Using the Maxwell stress in Eqs. (2.12) and (2.18), the force acting on the
dielectric is

T=n- (""" —6")=—6M n=—(1/2)D,E,;n=—(1/2)cEn  (2.78)

2. The Internal Energy Variational Principle

Let the upper plate electrode possesses negative charge and the lower electrode
possesses positive charge. Because on the electrobe the electric charge is given in
the internal energy variational principle, the boundary conditions on the whole
boundary of the dielectric are known. In Eq. (2.66) we only need to discuss 6/1;.
Given the upper electrode a virtual displacement du, = 6h, the virtual strain of the
dielectric is &0 = upp = oh /h. Because only éu; is considered, the surface integrals
in 61 can be neglected due to that the surface area keeps constant in the virtual
displacement process. Therefore the variational principle for the volume between
unit surfaces of electrodes is

olly = oI = 5/ AdV = h(dzzéuz.z + E>6D, + (1/2)E2D26u22) =0
\%4

Because electric charge ¢ on the electrode is constant, so dpD, = 0. In volume
D, = const. due to D, , = 0, so §,D, = 0. Therefore, it is obtained:

sh 1 g\28h
8Mly = h(66ur2 + E2dDs + (1/2)EaDsbus2) = h |:622h + 56(%) h] —0

= Ty=o0n=—(c/2)(p/h)]

The result is identical with that in Eq. (2.78).

3. The Electric Gibbs Free Energy Variational Principle

Let the lower electrode possesses positive potential and the upper plate electrode
grounded. Analogous to the above problem, but on the electrode the electric
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potential is given in the electric Gibbs free energy variational principle now. In Eq.
(2.7) we only need to discuss 6I1;.

Give a virtual displacement under the constant electric potential on the electrode
plate. It is noted that though ¢ is constant on the plate, but after virtual displacement,
@ is changed for the point inside the dielectric. For a fixed x, the change of the
electric field due to changed ¢ is

8pE2r = @/ (h+ 8h) — p/h = —péh/h*,  —D26E; = D2E26h/h.

The potential ¢ on the electrode is constant, E,, = 0, so 6E; = ,E,. Therefore,
we have

M1y = h[6226up 5 — D2SE; — (1/2)E2Dadus )
= hD>[022(8h/h) + (1/2)eE5(6h/h)] =0 = Tr =0pn = —D3/2¢

The result is identical with that in Eq. (2.78).

Equation (2.78) shows that the force acting on the dielectric is compressive.
It is just the attractive force between two electrodes. This result is identical with that
in usual textbooks.

2.6 Constitutive Equations in Electroelasticity

2.6.1 Constitutive Equations

In this section, we only discuss the case with symmetric stresses. When the
thermal effect is omitted in Eq. (1.59), there are only four thermodynamic
character functions: the internal energy (e, D) is equivalent to the free energy f,
the electric Gibbs function g(e, E) is equivalent to the electric enthalpy /¢, the
enthalpy h(e,E) is equivalent to the Gibbs function ¢7, and the elastic Gibbs
function ¢°(¢,D) is equivalent to the elastic enthalpy 4. In general case,
there are two groups with four variables: (o, ¢€), (E, D) in electroelasticity. Because
each variable in two groups can be used as the independent variable, there are four
group constitutive equations corresponding to four thermodynamic character
functions A (), g (h°), h (¢7), and k' (¢°). Constitutive equation (2.3) is derived
from g; Eq. (2.63) is derived from 21. The enthalpy /4 and the elastic Gibbs function ¢°!
can, respectively, be assumed in the following forms:

h = —(I/Z)S,‘jklﬁ,'jdkl — (1/2)€k/EkE/ — dkijEkUij — (l/z)pijklEiEjakl (279)
¢ = —(1/2)siuoiion + (1/2)BuDiDi — g4;Dioij — (1/2)quDiDjor  (2.80)

where s is the flexibleness coefficient tensor. From Egs. (2.79) and (2.80), the
following constitutive equations are obtained, respectively:
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Ejj = —8/’1/66,:,‘ =SijkiOkl + dk,:,'Ek + (1/2)p,:/‘k1EkE1

(2.81)
D; = —0h/OE; =¢;E; + dijoj + pijuEion

gy = —0g" 00 = siuou + guiDr + (1/2)qijuDiD)

E; = 9¢° /OD; = B;D; — g0k — qijuuDiow
Equations (2.3), (2.63), (2.81), and (2.82) are four kinds of constitutive equa-
tions for general ferroelectric materials. In these equations, it has been assumed that

6 =¢ =E =D =0 at the natural state. Constitutive equations of some simpler
materials are as follows.

(2.82)

Linear piezoelectric materials. The constitutive equations of the first, second,
third, and fourth types of linear piezoelectric materials are

_ c
&j = Sg‘kl(ykl + dkijEk or dljk , D;= dljkofk + ¢ E

__ pE &
0ij = Ciyen — eiEx,  (or ejEx) Di= Ciuen + € iEi

! (2.83)
Eij = Sgk[gkl + gk,:jDka (0}" g;]k k) Ei=— ijk Ok +ﬂ1ij
oij = Ciyen — higDx, (or yEx)  Ei = —hiyen + D

13 ”

where the superscript letter of a material constant means that the constant is
measured at¢ = const. As an example, ct i means that the constant ct ik 1s measured

at E; = const. Usually the coefficient measured at constant E is called the closed
circuit coefficient, and the coefficient measured at constant D is called the open
circuit coefficient. Usually e - E = efjkEk is more convenient than E - ¢ = e,f,-jEk in
use. If the Voigt notation (see Eq. (1.37) is used, Eq. (2.83) can be rewritten as

e=s:64+d -E, D=d:c+€¢-E; 6=C:¢e—¢ ‘E, D=e¢:e+€-E;
e=s:6+g -D, E=-g:6+p-D; 6=C:e—h"-D, E=—h:e+p-D
(2.84)

It is noted that though some coefficients have the same notation in different kind of
constitutive equations, they should be measured in different conditions.

Electrostrictive materials with symmetric center. For all electrostrictive materials
with symmetric center, the material coefficients with odd number subscript are all
zero, so the piezoelectric effect disappeared. In Eq. (2.3), if terms containing « are
omitted, the constitutive equations have following forms:
- Sljklgkl + (1/2)p1jk1EkE[7 D;= E +p,j/</E Oy =€ E
ojj = Cijk[‘gkl (1/2) z/klEkE[; D;, = 6z'jEf + l,jklE R € E
e = Spyou + (1/2)qiuDiD1,  Ei = iD; — qyuDjew = D,
oij = Chyen — (1/2)kjuDiDy,  Ei = BD; — kjuDjeu ~ fi;D;

(2.85)

Under the high electric field, usually the electric hysteretic loop of the electrostric-
tive material, like PMN, is smaller than that of the piezoelectric material, like PZT.
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2.6.2 Relations Between Material Constants of the Linear
Piezoelectric Materials

Equation (2.83) is the four kinds of constitutive equations for the linear piezoelec-
tric materials. Substitution of D in the second equation into the fourth equation in
Eq. (2.83) yields

_ D E & _ rE €
Oij = Cijklekl h/(lj (ekmnem" + 6km ) (Cljkl pij pk/) €kl — h/{ijelme’” - Cijklekl - emijEm

Ey = e+ By (ebem + €ouEn) = (=B, + Bieh,)ew + B, En

and in the similar discussion, we finally get

Cz?klskD/mn = CgklskE'lmn = 6i’"6j’77 ﬁz; jm ﬁl/ jm = zm, 6;;) zkldpmm
ﬂfp - ﬁ; = hgclg;k17 dq ij — gpij pm7 gik/ ﬂl[) ‘pki» mt/ hLEl]Ckm7 hI[/)d = eﬁclﬂg’?
lp pm hlkldmld = ﬁ;,, pm T+ gzl'l)defnkz = Sim, Cf,)'kl - Cljkl hpye Pkl Sf}kz - Sﬁld = —gzljd,ly)k/v
C[jklgpkl = h,fiﬁ Ctl'j)'kldmlsl h[)ljepnﬂ L/kldpmn = Cp[/- ’ glklcklmn = Zzefmm
hgclslemn = gfr)nrﬂ l]\lslslmn - dgrm? hl[lj(lsflmn = ﬂl[? pmn> S:L,)uemu g[u/ pm7
Cgklsklmn hgl/d[lJ)mn = ‘Yll'j)'klcklmn + gpijepmn = Bimbyj

(2.86)

For the nonlinear ferroelectric materials, relations between material coefficients
of different constitutive equations are difficult expressed in simple unique forms.

2.7 Variational Principle in Pyroelectric Materials
and Its Governing Equations

2.7.1 Internal Energy and Electric Gibbs Function

According to the continuum thermodynamics in Sect. 1.5, the electric Gibbs function
g, the electric complementary dissipative energy rate hg, the internal energy 2, and the
dissipative energy rate hy can be assumed as

g(é’k[,Ek, 19) = (1/2)Cifk15ij8k[ — ek,:,-Eke,;,- — (1/2)6,:/'E,'E/' — (l,j,'(:',:/'@ — T,'E,'19 — (1/2T0)C192

t
5hg = 1’]}519] = — </(; /LjTillgyi d‘l,'> 619‘/

Cii = Cjit = Cijit = Cujy ~ erij = €xji, € = €k, % = i, Aij = Aji

(2.87)
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(e, Di,s) = (1/2)Ciueijen — hiiDreyj + (1/2)pyDiD; — ayjejis — TiDis + (To/2)Cs
Shay = 2 Tiyon(= Tos") = T )
Cim = Ciin = Ciie = Cuiijy, g = higiy, By = Pur @ = @ty dij = A
(2.88)

Where 9 =T — Ty, Ty is the temperature of the environment. It is noted that in
Eq. (2.87),s = 0whenT =Ty, if ¢;; = E; = 0, but in Eq. (2.88),s = 0when T = 0
and s = 5o when T = Ty; if ¢; = D; = 0; ay, 7, C ,;Iij are all material constants.
In the later sections, this rule will be adopted. Constitutive and evolution equations
corresponding to Eq. (2.87) are

0ji = 09/ 0e;; = Cijnen — ewiEr — ayd

D, = —3g/8E,— = ¢k + ejnen + 7,9

§ = —89/819 = Qjj&jj + T,'E,' + C19/T() (289)

t
n = —0hy/OT,; = — /O T '2;9,de, Tiy=qi = 29,

where the evolution equation of temperature has been shown in Eq. (1.71).
Corresponding to Eq. (2.88) the constitutive and evolution equations are

(7_,‘,‘ = 8%[/88,:,‘ = Ciik/8k1 — hkijDk — (jl,‘jS
E,‘ = QQI/GD, = ﬁiij — hiklgkl - i’,‘S
T = 891/83 = _&ijgji — %I'D,' —|— T()CS (290)

t t
T7,' = 78/’!(21/67/]1- = —l,'jTl;]i = 7/1,jc]j, / T7,' dr = 7T/ /111771 dr
’ 0 0

It is obvious that there is T; =9, T=29. Using Eqgs. (2.89) and (2.90),
Egs. (2.87) and (2.88) can be rewritten, respectively, as
9=(1/2)Cyuejen + ¢* 7,  ¢°" = —(1/2)(DiEr + 59 + Auen),  Au = emiiEn + aud
A= (1/2)Cijueyen + AT, AET = (1/2)(DiEx + 5T + Ayen),  A'w = hpaDp + s
(2.91)

In Eq. (2.91), Ayey and A’ ey can be neglected for the case of small strain.
Using the inertial entropy theory given in Sect. 1.7.2, from Egs. (2.89) and
(1.74), the thermal conductive or energy equation can be obtained:

—qii =TS+ TsW — 7, T = T(ajéy + wiEi + Ty ' CI+ Ty 'Cpyd) — 7
(2.92)
If 9 is much less than Ty, 9 < T, then the above equation is reduced to
2i® ji = Toayéij + TotiEi + C(9 + pyd) — 7 (2.93)

Equations (2.92) and (2.93) are temperature wave equations with finite phase velocity.
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2.7.2 Electric Gibbs Function Variational Principle

In this section, we only discuss the PVP of the pyroelectric material with linear
elasticity under small deformation. For simplicity, it is assumed that the environment
is air. It is also assumed that in the air, the temperature is constant or 9 = 0 and at
infinity, E* = 0, ¢**° = 0. The interface is heat insulated. The heat input and heat
output by heat conduction may be occured at some internal boundaries. Analogous to
Eq. (2.8), the variation of the temperature J can also be divided into g9 and 6,9, but it
is not needed because the final result shows that terms containing 6,9 are
countervailed each other. So the body and air only have electric connection. However,
the contribution of the heat due to the variation of the volume seems to be considered.

Under the assumption that u, ¢, 9 satisfy their own boundary conditions #; =
u,¢p =¢* and § =39 on a,,a, and ar, respectively. ¢ = ¢, 9 =9V =0
on the interface except at some heat source and sink places. In the medium ¢; =
(wij+uj;i)/2,E; = —¢,;, Ti; = —;9,; and the constitutive equation (2.89) are held.
Noting Eq. (1.59), g = —E -D — Ts, the PVP in terms of the electric Gibbs
function for the pyroelectricity can be written as (Kuang 2009b)

8I =8I, + 8T, — W™ =0

sl :/5(g+hg)dv+/gETéu,-,,-dV—cSQ’—5W
Vv Vv

t t t
6Q’=7// (f/T)(S&drdVJr/s(“)é&dVJr/ / ﬁ*é&drdaf// §Ws9drdv
vJo v a, JO vJo

oW = / (fi — piix ) oy dV — / pbpdV + / T} duy da — / 6*6¢ da
14 4 as ap
81 = / sg™ dV + / g" U dv — / PSS dV
env ‘env. V

6Wi“t:/_ T;i"‘éukda—/ 6" Mg da
qint aim

(2.94)

where fi, T}, pe, 0", p™ and 77 (i7" =#jin;) are the given mechanical body force,

traction, body electric charge density, surface electric charge density, body electric
charge density in the air, and surface entropy flow, respectively, and a, is the surface
given thermal flow, ¢ = ¢* 7" = —(1/2)DS™ES™, DS™ = ¢oES™. In Eq. (2.94),
the term f(; §W59dr is the electric complement heat rate per unit volume corres-
ponding to the inner electric complement dissipation energy rate 6&h, . This is
consistent with the laws of the thermodynamics. In order to obtain the heat conduc-
tion equation and the boundary condition of the heat flow from the variational
principle, the electric complement dissipation energy fv 0hydV in 61 and the

inner irreversible electric complement heat [, [o§769dzdV in 6Q' should be
simultaneously included in the variational functional. In Eq. (2.94), the integrands
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contain the time derivatives of variables and need to integrate with time t, because in
the irreversible process the integral is dependent to the integral path. But the time is
a parameter and does not join the virtual variation.

It is noted that

/5ng:/ajiéuinV—/DkSEde—/5519dV:/aj,-éui_J-dV
Vv Vv Vv Vv Vv

+/Dk5¢goA,-dV—/DiE,,_,6u,, dV—/sz%)dV
v ' v v
:/q,-l-njéu,- da—/aj,-ijéu,- dV—i—/Dknké,,,(pda—/Dkﬁké,,,(pdV
a Vv a 14
—/ (D,-E,,) Ouyp dV+/D,-7,-E,,5u,,dV—/s619dV
v ’ v v
/ g Touy dV = —(1/2) / (DiE + s9)mdur dV + (1/2) / (DiE + 59) Sy dV
v a 14 ’
t
/ ShydV = / nni89 da — / 894V, i =-— / A4T19,dr
v a 14 0
(2.95)
Substituting Eq. (2.95) into 6I1; of Eq. (2.94) and adding a term faDknk

(Epdu, + 8,¢)da to it, similar to the derivation in Sect. 2.1.2, finally we get

8| = / (Sjinj — T})du;da — / (Sjij +fi — piix) u; AV
a, Vv

—|—/ (Dyng + 6™)bp da — / (Dk_k —pe)é(pdV + / (’7.1‘”1' — n*)é&da
ap Vv

aq

t
Jr/{_s_s<a>+n,~.j+/ (Tlr'+§<i)>dr}&9dv
Vv 0

—|—/‘ ijnjéuida+/ Dknk6¢da+/ n;n;69 da (2.96)
aint aint aim

where

o' T = DiE; — (1/2)(D4E, + s9)3;

MT .97

Sij = oj + oy = Cijnen — exijEr — ayd + DiEj — (1/2) (DnE,, + S19)5,'j
where oM 7 is the general Maxwell stress. Whether 6™ 7 includes the term s9, it
should still be proved by experiments; S is the pseudo total stress (Jiang and Kuang
2003, 2004). In pyroelectric materials, when the electric field and temperature are
not too large and the piezoelectric coefficient is not too small, the general Maxwell
stress can be neglected.
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Due to the arbitrariness of du;, d@ and 69, from Eq. (2.96), it is obtained:

Sikj +fe = plic, Dip=pe; in V

t
s+ S(a) + ’1/] = / (T_ll; + S(‘>)dT or T(S +p519) =7 — qiis in V
0

i § . (2.98)
Sin;=T;, on as Ding=—0c", on ap; =1, on d,
ol = / Sjin;éu; da + / Dynidgp da —|—/ ’7,’”]5'9 da
aqint gint qint :
Analogously in the air,
foi‘" =p™, in air; 6l = / S;?“anenvéui da + / D™ ™ 6¢p da
aint gint (2.99)

v __ Mair _ pyairpai ir pair ¢
S[ejn — al'j air — D?HE;H _ (1/2)DilrE’2; r(sij
Substituting Eqgs. (2.98) and (2.99) into Eq. (2.94) and noting n*" = —n we get

(S =S )m =T/, on @ (Dy=D™)m— o™, on aft (2.100)
The governing equations must contain the prior conditions of the variational
principle:

*

—u', on a; @=¢5 on a,; 9=29, on ar o100
=™ on d 9=FT(=0) on -

If 9 <« Ty, the integral can be integrated in Eq. (2.94), and 611, in Eq. (2.94) is
reduced to

ol = / (69 + ’7j68J) dv + / g5 ou;dv —6Q' — W =0
v v

5Q':—T51/r&9dv+/ nSé&da—/S<i>58dV+/S<a>519d\/ (2.102)
\%4 a, \%4

g 14

5W:/(fkfpiik)éudef/peB(pdVJr/ T;éukdaf/ c*6pda
1% 14 ds ap

where n§ = (1/To) (;q* dr.

There are eight thermodynamic character functions in pyroelectric materials,
so there are eight fundamental variational principles. However, the electric Gibbs
function only contains five independent variables u,¢,T and is convenient in
practical application.
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2.7.3 An Example for Purely Thermal Conduction

When & < T for the purely thermal conduction problem without the internal heat
source in an isotropic material, Eq. (2.93) is reduced to

28 =C(8 + py?d) (2.103a)

Now discuss a simple problem in which the wave propagates along the x;
direction, i.e.,

62_19 =C @ + @ @ = @ + @

o~ “\or "oz ) o2 o | o

(2.103b)
= C X1 t . A
= = s T = —’ =
! 2,050 P50 Ps0 psOC

where x is the dimensionless coordinate, 7 is the dimensionless time, and ¢ is the
phase velocity. Let

Boundary conditions: 9(0,7) = ©oH(t), I(co,t) =0;

» . . (2.104)

Initial conditions: 9(x,0) =0, I(x,00=0; x>0
where H () is the Heaviside function and @ is a constant. The solution of the above
problem is

T 11(\/g2—)€2/2)
9(x,1) = OpH(x — 1) e_"/2+x/ Pl

de (2.105)
X 2 G

2 2

— X

where [ [] is the modified first kind of the Bessel function. Equation (2.105) shows

that 9 is an attenuated advanced wave. At the wave front x =7 or x; = ct, 9 is

interrupted with value e /2 = ¢=*1/2%w which is decreased with time.

For a problem without initial conditions, let
9 = Oy exp(kx — wt)

where Oy is the amplitude of the wave. Substituting the above equation into
Eq. (2.103) yields

K =CA o (io™ + py)

1 1
\/E(l + v 1 +CU72,05072) + l\/§(1 — V 1+ w*2pS0*2)

1
k= £(Ci )0
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$0
9 = Bexpli(kx — wt)] = Oexplikix — kax — wt)] = O exp(—kyx) explikix — wr)]

b = +(Ci ' py) e ¢ (1+ V1 +0 292
% 1
C’I /)SO \/1+w /750 )

”CPso/\/ 14+ 14+ o0 2py2) (2.106)

Equation (2.106) shows that the temperature wave is an attenuated dispersive wave.

When pgy — 0, ¢ — 1/2wl/C which is just the result of the classical heat
conduction theory. It shows that when p, is small, the heat inertial effect can be
neglected for the problem without initial conditions.

2.8 Variational Principle and Governing Equations
in Pyroelectric Materials with Diffusion

2.8.1 Internal Energy, Electrochemical Gibbs Function,
and Electric Gibbs Function

In the diffusion theory, mechanical and electrical processes are reversible, but
thermal and diffuse processes are irreversible. The internal energy and entropy
are all state functions. The Gibbs equation and evolution equation are still
expressed by Egs. (1.72) and (1.77), respectively. According to Egs. (1.72), (1.77)
and (1.69) the internal energy can be given by

A=0c:e++E -D+Ts+ uc

hy =TomXr i+ X, &= Tl —p& >0
=A—E-D—-Ts—pc, j.=06:6—D-E—s9—cp
ge m —8 jif; — ﬂ& (177i+ﬂ,i§i)':'7i19,i+§iﬂ,i
g=A—-Ts—E-D, g=06:¢—D-E—sT+ uc

(2.107)

hy = n;9, — ni&e

where 2, g., and g are the internal energy, electrochemical Gibbs function, and
electric Gibbs function. hg,hy and h, are the corresponding dissipative or
complementary dissipative energy rates. In this section, we only discuss
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electrochemical Gibbs function and electric Gibbs function variational principles.
ge,hy and g, hy can be assumed as

9c(exs Ex, 9, 1) = (1/2)Ciueijen — ewjEreiy — (1/2)e5EE; — ajeyd — 1E:S
— (1/2T0)C9* — (1/2)bu* — bjejju — biEiu — aud

he = TsW — (Tsm)' =—sUT=X; 7+X, - (X7 n+X,-& = ndi + Sift s
enj = ekji, € =€, aj=a;, by=0b;, Aj=24;, D;=Dj, Lj=L;

(2.108)
g(é‘k],Ek, 19, C) = (1/2)C,:,‘k1€1:,‘8k1 — €k,:,‘Ek€,j — (1/2)6,‘]‘E,‘E]‘ — aijeij19 — TjE,‘lg

— (1/2T0)CH + (1/2)be? — bjje;ic — biEic + acd
hy = ;8 — p s

(2.109)

where C, Cjju, exij, €ij, &, Ti, b, byj, by, a, b, bj;, b;, a are all material constants.
Constitutive and evolution equations corresponding to g, and g are, respectively,

0 7]
o = (‘)_gc = Cijuen — exjEr — ayd — byu, Di=— 8?50 = ¢iEj + een + 79 + b
y i
9, 7]
$= 787% = ayej + 1iEi + CY/To +ap, c¢=— Je

8/1 =bu + b,‘,’é‘,‘j + bE; + ald

t t

n; = Ohc/(‘)&,,- = —/ (ﬂ[jTﬁltg‘l' =+ L,‘jTﬁlﬂ‘J)dT, f,- = (?hc/(‘),u, = —/ (Lijlg‘/' + D,'/'/l‘/-) dT
0 0

(2.110)

99 : 99 :
= ey Cijen — exjbx — o — bije, Dj = — 3E €jEj + einen + 7.9 + bic

7] 0 . .
= —a—g = aijgij + Tl'El' + Clg/T() - &C, H = a—‘z =bc — bijgij - bl‘El‘ +&19

t
7][ = 8h,,/619,,- = —/ (A,:/'Tiltg_j + L,‘jTﬁlﬂAj) dT, /lJ = —8hq/8éj = —L,:/‘Ti:]i — Dl:ifi
0

2.111)

where the evolution equations of temperature and concentration have been given in
Eq. (1.77).

Using Egs. (2.110) and (2.111), ¢, and g can be rewritten as

9e = (1/2)Ciwegen + ¢' 7, gb" = —(1/2) (D"E" 9 +eu +A§8’7> (2.112)
Mgy = (ewiEx + ayd + byp) e ~ 0
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9= (1/2)Ciuegen+ 9", " =—(1/2) (DkEk 59 —cu+ Afj%‘)

R (2.113)
Afei; = (exjEx + ayd + bic)e; = 0

2.8.2 The Electrochemical Gibbs Function Variational
Principle

In this section and the following Sect. 2.8.3, we only discuss the pyroelectric
material with linear elasticity under small deformation and small variation of the
temperature; the environment is air. It is assumed that on the interface, there is no
diffusion and heat flow, but the electric coupling is allowed, i.e. ¢ = ¢*™, g = ¢
=0 and d = d*™ = 0. The heat and input and output may be occurred at some
internal boundaries. The temperature and concentration problems do not considered
in air, but the electric field is discussed and at infinity ¢**" = 0.

Under assumptions that u, ¢, 9, and u satisfy their own boundary conditions
u=u*,p=¢,9=39% and y = u* on ay,, ay, ar, and a,, respectively and on the
interface ¢ = " are satisfied prior. Analogous to Sect. 2.7, the PVP in terms of
the electro-chemical Gibbs function is (Kuang 2010, 2011c)

SIT =8Iy + 8T, — SW™ =0

5171:/5(gc+hc)dv+/glgTauk,de—aQ’—aqs—w:o
Vv Vv

t
5Q’:—/ </ Tlfdr>58d\/+/s<a)6c9dv+/ n*69 da
0 Vv a,

t t
+ / 7! (T}iﬁ,- + /4\@)619 dzdV — / / T~ uén;68 drda
0 a JO

\%
|
(2.114)
5P = / cWsudv + / Esuda
\%4 aq

5W:/(fk—pﬂk)5ukdv+/ T;éukda—/peégadV—/ 6*6¢ da
1% 14 ap

Ao

oll, = / 6ginv dv — /pZnV(S(pdV
env V

W = / TS da — / o8¢ da
aqint ai[:)u

InEq. 2.114), £, T;, T{, 0%, pS™, ™™, T o™ " = 5% n;, and .f* = cfl*n, are given
values; 6Q’ is related to heat (including the irreversible heat produced by
the irreversible process in the material and the inertial heat); 6@ is related to the
diffusion energy. Equation (2.108) shows that there is no term in fv oh. dV
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corresponding to the term — fa fot T-! ,u.fin,-&() dz da, so it should not be included in
5Q’, as shown in Eq. (2.114). It is also noted that

t t t
/ / T ' ,;E68dedV — / / T yuéni69 drda = — / / T 'ué; ;89 drdv
v Jo ' a Jo v Jo
5/ngV:/ajiéuinV—/DkéEde—/sé&dV—/cﬁudV
|4 |4 v |4 Vv

:/q,-,n,-éu,-da—/a,-,-},—éu,-dV—l—/Dknké(ﬂ(pda—/Dk,;ﬁ(ogodV

a Vv a |4
_ / (D:E,) Ou, dV + / D, iE,éu, dV — / 569dV — / coudv
Jv v 14

/ ¢ Tougdv = —(1 /2)/ (DAEk 59+ cu +A”£U>nk5uk av
+(1/2) / (DkEk 59+ cu+ A”e,,) Suy AV
s / hedV = / (169 + &du ;) dV = / (njn;89 + &nidu) da — / (7,69 + & 1) AV
|4 \4 a \4
t t
= / (AT ™19, + LT ') dr, &= — / (Lif9,i + Dy ;)dz
0 0
(2.115)
Finishing the variational calculation yields
Siti +fi = plix, Dix=pe; in V
4 . ! . . .
/ (5 + py9)de = / (T7'F =T g+ T 'ué;) dr, or T(s+pd) =i — qii+ ué;;
0 0
t t
/ (c'erﬂjl)dr:/ §jdr, or c+pjp=-—&; in V
0 0
Siny =T, on a, Dimy=—06", on ap;

* . P _ gk
nn=n', or q=gq; on a; &m=¢&, or di=df on ay

(2.116)

where
l>’l/4T_DE (1/2)(D,1E,1+w9+cpt+A 8,,)5
Sij=o0;+ GZ ~ Ciuen — exijEr — a;jd + DiE; — (1/2)(DnEn + 59 + C/l)é,j
(2.117)

From the second and third equations of Eq. (2.116) we find
T(j + psi()) + u(c' + pu/'j) =7 — ¢;;, which is identical with Eq. (1.62).
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In the air and on the interface, there are

env cnv M env
D" =pe, in V

(5= S5 )m =T/™, on @ (Di=D™)m = —o"™, on afl (2.118)

o

S;}nv _ O,g/[ air _ D?irE;iir _ (1/2)DiirE2ir51j

The above variational principle requests prior that the u, ¢, d and p satisfy their
own boundary conditions, so in governing equations, the following equations
should also be added:

u=u", on a, ¢=¢", on a, 9=38", on ar;
! " (2.119)
w=p", on a; @=¢", on a"

Equations (2.116), (2.117), (2.118), and (2.119) are the governing equations of the
generalized thermodiffusion theory.

If we neglect the term ;,t(c' + é(a)) in Eq. (1.77), or let T(& + j<"‘)> =7 —qij,

then we get

T(& +ps8) =7 —qjj, C+pfi= —éjJ; In medium
nnp=1i", or q,=gq, on a, (2.120)

&ni=¢, or dy,=d, on a; and a,

If we also assume that 7; and ; are not dependent with each other, for 7 =0,
Eq. (2.120) becomes
T (et + C/To + aji + pd) = 49,
( ijUi,j /_0 H TP ) v @2.121)
bi + bjtii; + ad + pji = Dyjp j; - In medium
The formulas in literatures analogous to Eq. (2.121) can be found, such as in the paper
of Sherief et al. (2004), where they used the Maxwell-Cattaneo formula. Genin and
Xu (1999) discussed the thermoelastic plastic metals with mass diffusion.

2.8.3 The Electric Gibbs Function Variational Principle

Under assumptions that u, ¢, 9, and c satisfy their own boundary conditions # = u*,
¢ =¢*, 9 =439 and c = ¢* onay,a,, ar, and a, respectively. The PVP in terms of
the electric Gibbs function for the thermo-electro-elasto-diffusive problem is
(Kuang 2010)
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8I1 = 81, + 8I1, — SW™ = 0

5H1 :/6(g+hq)dv+/gCT5Mk’de—5Q,+5¢—(SW:0
1 Vv

t
5Q’:—/ (/ T"r'dr)é&dv+/s(a)58dv+/ 7"88 da
Vv 0 Vv a
\4

4 t
+ / T~ (8. + p&)89 drdV — / / T pén;68 drda
0 a JO

" (2.122)
5¢>:/;4J. 5§jdv+/ € da
|4

Aaq

W = / (fx — plix)Suy AV + / T 6uy da — /peécp dv — / 6*6¢ da
|4 [ \4 ap
SIT> — / ¢ AV — / PV dV
env v

swit = / T 5wy da — / "5 da
gint al

int
D

where the symbols are the same as that in Sect. 2.8.2, but the gradient of the inertial
(a)

i

chemical potential p';’ = pcéi is introduced, and u* is given value.

Finishing the variational calculation finally yields

Siti +fk = plix, Dip=p; in V

t t

[ Gpdyar= [ @1 T k) b or TG4 8) = - g
0 0

i+ pué = —Dyé — LyTiy; in V

Sinj=T;, on a, Dy =—0c", on ap;

mn=1n", or g =g; on ag;

(2.123)

If differentiating the equation of the chemical potential with x in Eq. (2.123), it is
obtained:

Myt Pﬂ'f'j.j + DAij&z}/ + I:z'j(T"?i).j =0;

v R L . (2.124)
(bC — b,'j{;‘,'j — bE; + a&) Ji + pﬂé‘jJ + D,’jéi‘j + L,'j(Tl’][)’j =0; in

If Djj = D&y, Ay = 15
be obtained:

,-J«,I:ij = 0 from Eq. (2.124), a simpler diffusion equation can

pC+ D¢ = (bc — birep + bi(p,i + 6119) in V (2.125)

Ji’

Governing equations in the air are the same as that in Eq. (2.118).
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2.8.4 Constitutive Equations

In general case, there are three groups with six variables: (o,¢), (E,D),(9,s) for
pyroelectric materials. Because each variable in three groups can be used as the
independent variable, there are eight group constitutive equations which just corre-
spond to eight thermodynamic character functions in Eq. (1.59). Equations (2.89) and
(2.90) are the constitutive equations corresponding to electric Gibbs function g and
internal energy 2. However for pyroelectric materials with diffusion there are four
groups with eight variables: (o,¢€), (E,D), (8,s), (4,c). So there are sixteen group
constitutive equations. Equations (2.110) and (2.111) are the constitutive equations
corresponding to electrochemical Gibbs function g, and electric Gibbs function g.

2.9 Conservation Integrals in Piezoelectric Materials

2.9.1 Noether Theory

In previous sections of this chapter, it is found that the electroelastic governing
equations can be obtained from the extreme value of a variational functional. The
governing equation is just the Euler-Lagrange equation of that functional. Based
on the theory of Noether’s invariant variational problem (1918), conservation laws
(integrals) can be easily obtained (Fletcher 1976; Honein and Herrmann 1997).
These conservation integrals are very useful in fracture mechanics due to their
path independence property. Here, some conservation laws for inhomogeneous
materials (Shi and Kuang 2003) will be obtained by using the Noether’s invariant
variational principle.
Let the variational functional in the continuum mechanics be

J= / L(xi, W) AV (2.126)
A\

where L(x;,,;) is the Lagrange density function and x,y are the independent
and dependent variables, respectively. The Euler- Lagrange equation of J is

i oL (xia Wa,f)

T v =0 (2.127)

Give an infinitesimal transform as

A — X/,' =X+ 5xi(xj7ll/a)7 l//a(xi) - l//a(x/i) = th(xi) + 5U/a(xi’wﬂ)
5‘/111 = l///a(xli) - Wa(xi) = [Wa(xi + 614,) + 5Wllla(xi)] - l//a(xi) (2.128)
= 6v/l//a + 51!‘//0: = 61//‘//11 + l//a,itsui
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Using

Bx’,-
6xj

~ 1 4 O (2.129)
6x,—

8)(’,‘ ~ 85X,‘ 8)(,‘ - 85x,-
an T 6xj ’ 8x’j o 6xj ’

from Eq. (2.128) yields

5( ) _ aw,a(xll') _ al//a(xi) _ a[wa(xi) + 61//(1()61',‘///2’)] Oxy awa(x,-)

ox'; 0x; Oxy ox'; Ox;
a&//a(xial///}) al// ()C,') 86xk
_ _a 2.130
an Bxk 8xj ( a)
Equation (2.130a) can also be reduced to
5w,) = O[Bywy + W o 0xi]  Ow,(xi) Dox;
Vaj) = Ox; Ox;  Ox;
— a(éllfl//a) + a(wmiéxl‘) _ al//a(xi) aéxk — a<5wwa) + 8(‘”{“) 5)(‘
Ox; Ox; Ox;  Ox; Ox; ox;
0 0 06y, B
a_xi (&I/a) - axi (5l//l//a + l//a,iéul) - Bx,- + l//oc,ijéul + l//a,iéul,l - 5(‘//0(1/) + l//a,iéul,l
(2.130b)
Equation (2.130b) is identical with that in Eq. (2.8) in Sect. 2.1.2.
Because &y, (x;, ) is the function of x;, 4, so
by, (x;, o6y, (x;, o6y, (xi, 0
Val5ivp) _ O8walhiowy) 00yl vrp) O 2.131)

x;j O Iy Ox

where the notation 9 /Ox; is the partial derivative with respect to explicit x; in y,.
If under the transform, Eq. (2.128), on the accuracy of the first order of dx;, dy,

Oy 4> the following equality holds:

/, L'(Yiy/,)dv' = /VL’(x’,-,y/aJ)jdV: /VL(x,-,l//aJ-)dV (2.132)

the group of transform Eq. (2.128) is called the symmetric group of a system.
From Eq. (2.132), some conservation laws can be found.
Appling Egs. (2.128) and (2.130), the following relation can be obtained:

o o O o [0 s OL (06y,  0&
aij L oy W a,iOXi . Y Vi . 1 6Wa,]’ 8)(_,- Va,i 6xj
J J

aj aj

OL
= 5 0Wa,)

llltl.J
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So that
oL oL
L'(Xiy ) = L{xi 4 6xi,w o+ 8(wa;)] = L(xisw,,) + a—Xisz,- + mé(ww)
oL oL oL oL
:LX,‘, @i +7(5X,‘+ 1) T a,—éx,- + |\ Vi (5)(,‘
(i Way) + 5 <8%J_ Ve Gy Ve )J (a a.jw,).j
(2.133)
Substituting the identity
L OL
<a(34"j l/’a.i) .5)6[ = (L5x,~)1l- — L(&X,')J- — %5)(,’
J
into Eq. (2.133) yields
L'(Xiw'y) =Lxi,w,.) + i51,1/ + Pyox; | — L(6x;)
T e A ; (2.134)

Py =L8;— (OL/OW ) Wai

Pj;is called the energy-momentum tensor of matter. Substitution of Eq. (2.134) into
Eq. (2.132) yields

OL OL
—oy, + P;iiox; | dV=0, or / — oy, + P;idox; |njda =0
~/V (ay/a,j ! > . a (al//a,j ! !

J
(2.135)

Equations (2.134) and (2.135) are the invariant conditions under the infinitesimal
transform. The second equation in Eq. (2.135) is a path independence integral. Due
to the arbitrariness of the volume from Eq. (2.135), the invariant condition in the
differential form is

L
0 oy, + Pyox; | =0 (2.136)
8V/a.j ' J

In the above discussion, it is assumed that there is no body force, body electric
charge, etc.
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For the electroelastic problem without body couple let y = [u;, go]T,L =g, we
have

L=g=(1/2)Ciusijurs — (1/2)enp 10 ; + exijitijp . = (1/2) Zoj o

Ty = 090w, — oij = 0g/0uij = Cijuieij — ek, ij,k,l1=1,2,3
Y @l 64j = Dj = —(?g/al//4J = Og/aqu = Ej/E/ + ejkleld’ a = 1,2,3,4
Pij = 96ij — ZojWo; = 96ij — Omjttmi — Djgp

(Zajél//a + P,j(iu,')‘/. = (Uijﬁui + D](S(p + P,j(su,')‘/. =0

(2.137)

where X, is the generalized stress and y, ; is the generalized strain and the Greek
indices take 1-4.

2.9.2 Conservation Integral in a Homogeneous Material

For a homogeneous material, L is independent to x, so L = L(y,;), 0/0x; = 0.
1. Infinitesimal translation of general displacement. Let

ox; =0, Oy, = ecq (2.138)

where ¢, is a constant and ¢ is an infinitesimal parameter. Substitution of Eq. (2.138)
into Eq. (2.136) yields the invariant condition:

(Zeya) j = Zojj0a =0 = Zg; =0 (2.139)

Equation (2.139) is just the generalized momentum equation.
2. Infinitesimal translation of coordinate. x Let

ox; =¢ec;, oy,=0 (2.140)
Substitution of Eq. (2.140) into Eq. (2.136) yields
(P,‘j'(SXj)J = P,‘J‘J‘(Sx,‘ = gl,-é,jféx,- = gyiéx,‘ =09 = 0 = g = const. (2.141)

Equation (2.141) is just the energy conservative equation.
3. Infinitesimal translation of coordinate and generalized displacement. Let

ox; = ec;, Oy, = €82, (2.142)

where c¢;, 2, are constants and & is an infinitesimal parameter. Substituting
Eq. (2.142) into Eq. (2.136) and noting X,;; = 0 we find
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8P,:,'AJ‘C,‘ = 07 or /P,:/‘J‘ dv = / (9511/‘ — Za_,‘l//a’l-)l’lj da=0 (2143)
14

a

Equation (2.143) shows that the integral value is zero along a closed surface for
the integrated function (géij — Zajl//a_’,-)nj. For two open surfaces initiated from a
same closed curve, Eq. (2.143) shows that the integral values for two open surfaces
are the same. In the two-dimensional (2D) problem, it represents the path indepen-
dence J integral, J;. Equation (2.143) can also be obtained by taking the divergence
of ¢. In fact using Vg = (9g/0x;)e; and the equilibrium equation, we have

dg g Oy
v o + %V/a.ﬁ =2gWajis OF §;— ZgWeji = (985 — ZajWa,i)J =0
(2.144)

This method was adopted by many authors (Delph 1982; Pak 1992; Wang and
Shen 1996).
4. Infinitesimal expansion of coordinate and generalized displacement. Let

ox; = exi, Sy, = —(1/2)ey, (2.145)
where ¢ is an infinitesimal parameter. Substitution of Eq. (2.145) into (2.136) yields
e[—(1/2)Zqy, + Pyxi] ,=0, or

/ (96 — Zayai)Xi — (1/2)Zqppry)njda =0 (2.146)

a

In the two-dimensional problem Eq. (2.146) represents the path independence M
integral

M= | (985 = Zopas)xi = (1/2DZaamdl
1

= / [(gé,-j — ojillij — Dj¢7i)xi - (1/2) (a,-jui + ngo)]nj di (2.147)
I
5. Infinitesimal rotation about the axis x3. Let

Ox| =exy, Oxp = —exy, Oy, =¢ey,, Oy,=—ey,, Ox3=06y;=0p;=0
(2.148)

Substitution of Eq. (2.148) into Eq. (2.136) yields
(P1exa — Pogxt + o1ty — oyur ), =0, or

/ (Plkxz — Pox1 + o1xttp — szul)l’lk da=0 (2.149)



2.9 Conservation Integrals in Piezoelectric Materials 79

6. The conservative integral in pyroelectric material. Wang and Kuang (2001)
discussed the conservative integral in pyroelectric material by Noether theory
and got

J; —/(gé,j oijuij — Dig ; — 59, )njdl
1
M = / |: ij GUM,J ngal 71’]19 ) +§(6,-ju,-+chp+sj19) njdl (2150)

where 7; = q;/To, 9 =T — T.

2.9.3 The Force Acting on a Defect in an Inhomogeneous
Material

For an inhomogeneous material, L is dependent to x, so L = L(x;, ), /0x; # 0.
1. Infinitesimal translation of x and generalized displacement. dx;,du, are also
given in Eq. (2.142). The invariant condition under infinitesimal transformation
is still éPj;jc; = 0, but
dg dg dg
Py = (985 = Zaai) j = 50+ 5. Iy, Ve ZaWai = g

So the integral in Eq. (2.143) in an inhomogeneous material becomes

/ P;dv = / (90 — ZajWo;)njda = / (9g/0x;) AV (2.151)
14 a 14

Though Eq. (2.151) is not a conservative integral, it still has important meaning.
Eshelby (1956, 1975) pointed out that P;;; — dg/0x; = 0, so the negative derivative
of the electric Gibbs function with x, — 59/ Ox;, is the so-called material inhomo-

geneity force with the dimension of force.

2. Infinitesimal expansion of coordinate and general displacement. 6x;, du, are
also given in Eq. (2.145). The invariant condition under infinitesimal transforma-
tion is still e[—(1/2) 4w, + Pyxi] =0, but

[—(V/2)Zywa + Pixi] ; = Pijjxi + Pixiy — (1/2) Z o = x99/ Ox;

So the integral in Eq. (2.146) in an inhomogeneous material becomes
/ [(96 — ZajWai)Xi — (1/2)Zqppry] njda = / x;0g/0x; AV (2.152)
a : v

where — x;0¢ /Ox; is the so-called material inhomogeneity moment.
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3. Infinitesimal rotation about the axis. x3 0x;, 6u, are also given in Eq. (2.148).
The invariant condition under the infinitesimal transformation is still expressed by
(Pixx2 — Pyt + o1xtty — oyur) , = 0, but

(P1xxa — Pyt + o1ty — ot )y, = x10g/0x3 — x209/0x, (2.153)

2.9.4 Conservation Integral in an Inhomogeneous Material

1. Infinitesimal translation of coordinate and general displacement is related to an
undetermined function. Let

ox; = ec;, Oy, = €82, (2.154)

where ¢; is a constant, £, is an undetermined function, and ¢ is an infinitesimal
parameter. Substituting Eq. (2.154) into Eq. (2.136) and noting Pj; =

(96i — Zajl//a,i)J = (5g/8x,-), 24ij =0, we find
ZojQai + ¢i(98) — ZaWa;) ; = Zajai + i0g/0x; = 0 (2.155)

2. Infinitesimal translation of coordinate, infinitesimal translation, and expansion
of general displacement. Let

Ox; = €x;, Oy, = S[—(l/Z)l[/a + .Qa} (2.156)

where €2, is an undetermined function and & is an infinitesimal parameter.
Substituting Eq. (2.156) into (2.136) yields

ZajQaj + [Pixi = (1/2)24jQ4] ;= 0 (2.157)

From Egs. (2.156) and (2.157), it is known that when material constants obey
definite distribution and select appropriate c;, £2,, the conservative integrals can
be obtained; otherwise, the conservative integrals do not exist. In the following
sections, some examples will be given to illustrate the above theory.

2.9.5 Omne-Directional Gradient Material

In engineering, the combined material is often used to improve the material
behavior, such as on the substrate covering a surface heat-resisting layer to defense
the high temperature environment. In order to reduce the stress on the interface
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between the substrate and heat-resisting layer, a transient layer constituted of the
gradient material is added. One-directional gradient material is often used.

1. Material constants varied as exponential function. Assume material constants

0 i 0 ,An 0 L0 0
e, e, where Cy,, e, €5, 4 are all constants. Let

1 0 /‘{J([
varied as Cyye™, e i

kij

ox;=¢, Oxp=0x3=0, oy,=¢by, a=1234 (2.158)
Substituting Eq. (2.158) into (2.136) yields

(Zajbwa + P1j) ; = bZaa; + Pijj = bEqa; + 0g/0x1 = 0 (2.159)

Because 2y, ; = 29, 59/8}(1 = Ag, from Eq. (2.159), we get 2b+4 =0 or
b = —A/2. Substituting these results into Eq. (2.158) and then into Eq. (2.159)
we get

Using the relation

(Pl./ - )’Zalvla/z)] = (gél_i - ZQ/Wa,l - /lza/yla/z)‘/ =91~ le/l//a,lj - /IZQfWaJ/z

It is easy to get the path independence integral

/ (95j1 - Zajl//a,l - AZajq/a/2)njda =0 (2161)

a
2. Material constants varied as power function. Assume material constants
varied as Ciikl = Cg’k!(l —|—pX1)q > Ckij = 621-1-(1 +pX1)q , and €j = Cg(l +px1)q R
where C,-Ojk,, egﬁ, eg-, D, g are constants. Let
Substitution of Eq. (2.162) into Eq. (2.136) yields

{Za[(1+P)R + pya/2 + Py(1 + pxi)} ; = 0 (2.163)

The relations between material constants are

ICiju pq Oeyij P4 e 1z
— = Cijui = ekij, - =€

ox1 1+ px; oxy 14+px; ™ ox; 1+ px; (2.164)
d9_ pq D9 _dg_ |

ox1 1+ px; 9: Oy  Oxz



82 2 Physical Variational Principle and Governing Equations

Substitution of Eq. (2.164) into Eq. (2.163) and using (2.164), we find

0 Ox;
SWa;+ (14 pX1) =2 4 pPyy (2.165)

p
(1 +p)2aj~Qa,j += ax ij 8

2

Using the relation pP;;0x; / 0x; = —pg and Eq. (2.161), Eq. (2.165) is reduced to

Pq
1 2020 =0 Qy=———"—Vy, 2.166
(14 p)Zej20a; + pqg = )Y (2.166)
Finally, the path independence integral is obtained:
[Pij + pxiPij + (1/2)p(1 = q)Zajy,] ; = 0
(2.167)
[ 1+ prpy (/201 = @) Sy da =0

2.9.6 Transversely Isotropic Materials

For transversely isotropic materials, the infinitesimal transformation is taken as
5xi = 60)1‘(?9)» 61//a = E‘Wa(l///;) = EAaﬂl///j (2168)

where w; is undetermined function, A, is an undetermined constant. Substitution
of Eq. (2.168) into (2.136) yields

8g 5&) 5601'
Z(X' Aa i~ Wei— | = 2.1
a + a J + .I( ﬂWﬂ.J "4 . 6Xj> 0 ( 69)

From Eq. (2.169), we obtain
Kijiaui jur ;) + My guij + Nijp ;0 ; = 0 (2.170)
where

Kiju = (1/2)[0(wnCijta) /0xn] + ApiComjts — 0jmCims + Asi€jua
Myij = O(wnerij)/ 0xy + Asserij + ApiCimj — Ojmeiim — Ok m€mij + AmaConkij — Asi€i
Njj = —(1/2)8(0),,6,-]-)/8)6,, — Aus€ij + 0l + Apaling

(2.171)

From Eq. (2.170) we have

Kij + Kuij =0, My; =0, Nj+N;=0 (2.172)
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As an example, we discuss the transversely isotropic piezoelectric ceramic (such
as PZT). Assume xj3 is the poling direction, so x;x; is the isotropic plane. Now the
plane xx3 is discussed. Appling Voigt notation, the constitutive equation is

{o} = [Ci{e} — [e]'{E}, {D} = [{E} + [el{e}
[Chi Ci2 Ci3 0 0 O
Cp Chn Csz 0 0 O
Ciz Ciz Ci3 O 0 0
0
0

I=10" o o Cu 0 ’
0 0 0 0 Cu
0 0 0 0 0 (Ci—Cpn)/2Ce]
0 0 0 0 es5 0 e 00
=10 0 0 es 0 0, [d=|0 e 0 (2.173)
e31 e3 ez 0 0 0 0 O €33

where C11 = Ci111, Cr2 = Crizz, C13 = Cr133, C33 = C3333, Caq = Cra13; €15 = €113,
€3] = €311, €33 = €333.

Though the number of the undetermined constants in Eq. (2.168) is less than
the number of the equation in Eq. (2.170), the undetermined constants can still be
determined by special selection of constants. Finally, we get

o =0b-An)x1+Anxn+C, w=—-Apx+b-An)n+C
w3 = (b—An)x3+Cs, Wi =Aju +Apuy, Wy = —Apu; +Au,
Wi = Assuz + Azap, Wi=Apue (2.174)

where C; is a new arbitrary constant. When coefficients in Eq. (2.168) take values
given in Eq. (2.174), we can get a group of linear partial differential equation to
determine the unknown coefficients by using the invariant conditions Eq. (2.172).
This group linear partial differential equation is

oC acC
O+ (241 — Ap + D)Cii =0, @, + (—2411 + 3433 + b)Ca3 = 0,
6)(,, axn
aC1s OC3
T2 24 —A = St (A =
O + (241, — A3 +b)C12 =0, w, ox, + (433 +b)C13 =0,
oC Oe
On 2t (A3 + b)Cas = 0, @, 4+ (244 — A3z + b)ery — 2Ase15 = 0,
ox,, Ox,
0c33
n o, + (2444 + A3z — 2A11 + b)ez3 — 2As4e33 = 0,
n
deis desy

O + (Ass + b)ers + A34Cus = 0, Wn g = + (Ags + b)es; +A34C13 =0,
Oess
W g = + (Aas + 2433 — 2A11 + b)ess +A3C33 =0

(2.175)
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If Eq. (2.175) has solution, the infinitesimal transform given by Eq. (2.168) can be
obtained. Substitution of Eq. (2.168) into Eq. (2.136) yields the conservative
integral:

(P,]w, + GiiWi + DjW4),j = 07 / (P,jwi + O','jW,’ + DjW4)I’lj da=0 (2176)

a

For a homogeneous material, Eq. (2.175) is reduced to linear equations and its
solutions are

Ay =0, A=A =Ay (2.177)

where C,C,,C3,A, and Ay are arbitrary constants. In this case, Eq. (2.176) is
reduced to

{C1\Pj; + C2Pyj + C3P3; — 2A0[Pyx1 — (1/2)(oyu; + Djgp)]
—i—Alz(Plez — szxl +oup — O'Zjul)}.j =0,

1
/{ClPii+C2P2j+C3P3j+2AH Pipxy — 5 (oiju; + Djo)
a

+A12(P1j)€2 - ngxl +our — Uzjul)}nj da=0 (2178)

Equation (2.178) can be divided into five group independent conservative integrals
due to the arbitrariness of constants. The independent conservative integrals
corresponding to Cy, A1, A, are identical with Egs. (2.143), (2.147), and (2.149).
There are no new conservative integrals corresponding C5,C3 because Py;; =
P3;; = 0 are the special cases of P;;; = 0.
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