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Abstract. When a new agent enters to an open multiagent system, bootstrapping
its trust becomes a challenge because of the lack of any direct or reputational
evidence. To get around this problem, existing approaches assume the same a
priori trust for all newcomers. However, assuming the same a priori trust for all
agents may lead to other problems like whitewashing. In this paper, we leverage
graph mining and knowledge representation to estimate a priori trust for agents.
For this purpose, our approach first discovers significant patterns that may be
used to characterise trustworthy and untrustworthy agents. Then, these patterns
are used as features to train a regression model to estimate trustworthiness. Lastly,
a priori trust for newcomers are estimated using the discovered features based
on the trained model. Through extensive simulations, we have showed that the
proposed approach significantly outperforms existing approaches.

1 Introduction

In open systems like the Web, there is no central authority that monitors interacting
agents and guarantees that every agent in the system behave as expected. For instance,
a seller in an e-market place such as ebay may list a product at cheaper price but may
not deliver the same product or any thing at all. This brings the necessity of agents to
evaluate others and select the most trustworthy interaction partners among alternatives.
While the word trust may have different definitions in different domains, we define it
here pragmatically as the degree of belief or subjective probability, with which a trustor
believes a trustee will perform as expected when relied upon [12].

Existing approaches for trust generally depend on an interaction history to compute
trust of an agent x to another agent y. The interaction history contains the interactions
between x and y (i.e., direct evidence) and their outcomes (e.g., success and failure).
If the number of the direct interactions is not enough to compute trust with confidence,
reputational evidence is used to compute the trustworthiness of y. The past interactions
between other agents and y serve as reputational evidence. Based on direct and repu-
tational evidence, statistical trust approaches like Beta Reputation System (BRS) [11]
and TRAV OS [17] is used to compute the trustworthiness of the agent y as the subjec-
tive probability that a future interaction with y would have desirable outcome. As the
number of evidence increases, the accuracy of the estimated trustworthiness increases
and the number of unsatisfactory interactions are minimised.

Although the existing approaches can accurately model the trust, they require repet-
itive interactions between the agents to build an interaction history. This requirement
leads to two related problems: bootstrapping and whitewashing. The bootstrapping

L. Cao et al.: ADMI 2012, LNAI 7607, pp. 93-104] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



94 M. Sensoy, B. Yilmaz, and T.J. Norman

problem arises when a new agent joins to the system. In this case, trust cannot be com-
puted based on direct or reputational evidence. To deal with bootstrapping problem,
the existing approaches assume a priori trust value for the newcomers. For instance,
in BRS and TRAVOS, the a priori trust is 0.5, which means positive and negative
outcome is equally likely. If the a priori trusts is high, the agents with bad reputations
whitewash their bad reputation and enters to the society as a newcomer. On the other
hand, if the a priori trust is too low, the newcomers may not have any chance to interact
with others and build a good reputation.

Malicious agents may adopt certain behavioural patterns to achieve their goals. These
patters may determine their choices and lead to the emergence of certain motifs in
their relationships with other entities. Even if an agent whitewashes its identity and
change/forge some of its observable attributes, the same motifs may be observed as long
as the agent does not change its behaviour. For example, a malicious seller may change
its identity and advertise a completely new profile whenever its reputation decreases.
Although the name, location, email, and web site in the new profile are different from
previous ones, all these email addresses and web sites could be hosted by the same
or similar service providers (e.g., free hosting services). If malicious sellers have a
tendency to bear the same or similar pattern in their profiles, we may build a stereotype
such as “sellers using free hosting services are less trustworthy”. This stereotype is not
based on a simple attribute of seller (e.g., a specific email address), but an example of a
complex feature discovered about the malicious sellers.

This paper proposes to discover and exploit the complex features (i.e., patterns) of
agents [3] to estimate a priori trust for them. Knowledge about each known agent is
represented in detail as a graph based on an ontology. Then, these graphs are mined to
discover two groups of patterns that frequently appear in trustworthy and untrustwor-
thy agents respectively. Lastly, the discovered patterns are used as features to train a
regression model to estimate the a priori trust for the unknown agents. Through exten-
sive simulations, we have showed that the proposed approach significantly outperforms
existing trust approaches.
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Fig. 1. A part of a simple ontology to describe sellers, their properties and relationships

2 Modelling Trust

Several approaches have been proposed to model trust in the literature [12]. A number
of these approaches are based on Subjective Logic (S L), which is a belief calculus that
allows agents to express opinions as degrees of belief, disbelief and uncertainty about
propositions. Let p be a proposition such as “information source y is trustworthy in
context ¢”. Then, the binary opinion of agent x about p is equivalent to a Beta distribu-
tion. That is, the binomial opinion about the truth of a proposition p is represented as
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the tuple (b, d, u, a), where b is the belief that p is true, d is the belief that p is false, u
is the uncertainty, and a is base rate (a priori probability in the absence of evidence),
aswellasb+ d+ v = 1.0 and b,d, u,a € [0, 1]. Opinions are formed on the basis of
positive and negative evidences, possibly aggregated from different sources. Let r and s
be the number of positive and negative past observations about y respectively, regarding
p- Then, b, d, and u are computed based on Equation 1.

2
Tood= T u= (1)
T+ s+ 2 r+s+2 r4+s+2

Then the opinion’s probability expectation value is computed using Equation 2. Con-
sidering p, the computed expectation value can be used by x as the trustworthiness of y
in the context ¢ [12].

tzzc(r,s,a):b—l—axu::j_z_t; 2)
The base rate parameter a represents a priori degree of trust « has about y in context
¢, before any evidence has been received. The default value of a is mostly choose as
0.5 in literature [10], which means that before any positive or negative evidence has
been received, both outcomes are equally likely. While 2 has more evidence to evaluate
trustworthiness of y, the uncertainty w, so the effect of a, decreases.
For clarity, in this paper, we assume that the trust is computed by the same trustor
agent z in the same context c. Therefore, we shortly use ¢, instead of ¢, . to represent
trustworthiness of y in the context c for the agent x.

3 Knowledge Representation

To describe agents and their relationships semantically and flexibly, we propose to use
an ontology [9]. To demonstrate toy examples in the paper, Figure 1 shows a part of a
simple ontology, where arcs, ellipses, and rectangles represent relationships, concepts
and their instances, respectively. Description of an agent is represented using (subject,
relation, object) triples, such as (john, hasLocation, Spain). In these triples, sub-
jects, objects, and properties are terms from the ontology. That is, subjects are instances
of concepts (e.g., john); objects are literals (e.g., 60), concepts (e.g., Location), or their
instances (e.g., Spain); and relations are dataype properties (e.g. hasAge) or object prop-
erties (e.g., hasLocation) [9].

Each known agent is represented as an instance (e.g., instance of Seller concept) in
the ontology and described using (subject, relation, object) triples. The description
of the agent y can be semantically represented as a labelled directed graph G,,. The
node representing y in G, is called terminal node and connected to other nodes through
relationships from ontology. Nodes in G, refers to either literals or instances and edges
of G, correspond to relationships between those. A seller agent john is represented
as the graph shown in Figure 2. Given the ontology, this graph describes the seller
john. However, it is not possible to completely interpret or reason about it without the
ontology, since the terms (i.e., individuals and properties) used in this graph are defined
within this ontology. That is why this graph is called ontology-dependent graph.



96 M. Sensoy, B. Yilmaz, and T.J. Norman

Fig. 2. Ontology-dependent description of the seller john

All most all of state of the art graph mining tools do not incorporate ontological
knowledge [8]. Hence, they completely neglect the semantics of the labels in a graph.
For instance, for these approaches, Spain in the graph of Figure 2 is just a label of
a node. However, the ontology of Figure 1 implies that Spain is a location in Europe.
Therefore, ontology-dependent graphs are not much informative for existing graph min-
ing approaches [18]. One way of making them more informative as stand alone graphs
is to embed relevant ontological knowledge into them. For this purpose, we use an on-
tological reasoner such as Pellet [16] and derive all direct and indirect statements (i.e.,
triples) about the individuals in the graph. Let us note that these individuals correspond
to nodes in the original graph. Then, based on each triple (subject, relation, object),
we create new nodes and relations if they are missing in the graph. As a result, the
graph contains all direct and inferred information about the case at different levels of
abstraction. Using individual’s names as nodes’ labels may hamper frequent pattern
mining, since these individuals may not appear frequently in the dataset. To avoid this,
we replaced these labels with “?” and added name (i.e., URI) of the referred individuals
as a property to these nodes, i.e., using name datatype property. The resulting graph is
called ontology-independent graph and referred to as g,, because we do not need an
ontology to infer properties of individuals on the graph; instead each node referring to
an individual bares all direct and inferred attributes of the individual. Figure 3 shows
ontology-independent version of the case graph shown in Figure 2. The terminal node
is coloured black in the graph.

http:/john.blogspot.com
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Fig. 3. Ontology-independent description of the seller john

Although we use a simple toy example to demonstrate the proposed graph-based
representation here, this representation is very expressive and flexible enough to ac-
commodate not only the attributes of the trustee but also all of its relationships with
other entities (e.g., friend of friend relationships).
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4 Graph Mining for Estimating a Priori Trust

In the previous section, we have described how the information about an agent can
be represented as a graph, which can capture various aspects of the agent such as its
attributes and even its relationships with other agents at different levels of abstraction.
In this section, we propose to exploit graph mining techniques to discover frequent
patterns that exist more frequently in either trustworthy or untrustworthy agents. For
this purpose, we create graph datasets composed of graphs describing agents. Then, we
use the discovered frequent patterns as features to estimate a priori trust for the agents.

4.1 Determination of Significant Patterns

For each known agent y, a graph g, is generated to describe the agent. Then, g, is
labelled based on t,; the labels are the categories based on the degree of trustwor-
thiness. In this work, for the sake clarity and simplicity, we use only two categories:
trustworthy and untrustworthy. Therefore, in the resulting graph data set, there are two
classes of graphs: C'; and C_, which represent the graphs generated from trustworthy
and untrustworthy agents respectively. An agent y is considered trustworthy if ¢, > «
and untrustworthy if ¢, < § where v > 0.5 > ¢ I We want to discover two sets of
patterns: Py and P_, which are called patterns of trust and distrust, respectively. A
pattern p € P_ is a subgraph that repeats frequently in the graphs of C_ and rarely
in the graphs of C';. Therefore, p distinguishes untrustworthy agents from trustworthy
ones. Similarly, P, represents the significant patterns that repeat more frequently in the
graphs of C';.. A formal definition of the patterns in P_ and P, is given in Definition 1
based on the frequencies explained in Definition 2.

Definition 1. Let v € {+,—} and 7 € {+,—} \ {v}. A frequent pattern p € P, is
a pattern such that f(p,C,) > a, > of(p,Cs), where f(p,C,) and f(p,C5) are
frequencies of p in classes C,, and Cj, respectively; 0 < «, < 1 is a threshold and
o > 1is a coefficient.

Definition 2. Given a pattern p, f(p, C,) is the frequency of the pattern in the graphs
of class C,, and computed by the formulae:

f(p,Cy) Np:c.

e

where N,,.c, and |C,| are the number of graphs containing p in class C), and size of
C,, respectively.

Without support constraints (i.e., a4 and a._), we have to deal with huge number of pat-
terns. To narrow down the search space, the trustor agent determines these constraints.
An additional constraint can be the minimum size of the frequent patterns, where the
size of the pattern is determined by its number of edges. In the literature, a number of
frequent subgraph mining approaches have been proposed to extract frequent patterns
in multi-class graph datasets using support and size constraints [5, 6, 18].

! To accommodate the blurred boundary between of trustworthiness and untrustworthiness, we
set v and § to 0.75 and 0.4, respectively, in our evaluations.
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4.2 Estimating a Priori Trust

As described in detail above, the trustor agent finds two sets of frequent patterns (P;
and P_) using frequent subgraph mining. In this section, we describe how these sig-
nificant patterns can be used as features to estimate a priori trust for agents. Then, the
estimated a priori trust is used as the base rate a in Equation 2 while computing the
trustworthiness of the agents.

To estimate the a priori trust, the trustor can use various machine learning tech-
niques [1]. In this work, we employ M5 regression tree algorithm [15] for this purpose.
Given a training set and a set of features F, this algorithm learns a mapping between
feature values of an agent and its trustworthiness. In this paper, each feature f; € F
corresponds to a specific pattern p; € P, U P_ and its value for an agent ¢ indicates if
the graph g; describing the agent entails p; or not.

The training set is prepared using the descriptions of known agents and their trust-
worthiness. That is, for each known agent ¢, the training set contains a feature vector v;
and trust value ¢;. Each field v;; in the feature vector corresponds to the value of feature
f; for the agent 4, which is determined by checking entailment of p; by g;. That is,
v;; = 0 if the patter p; does not exist in the graph g; describing ¢; otherwise v;; = 1. In
this way, we transform agents’ graphs of various sizes into a vector dataset with fixed
dimensions. After creating feature vectors for each known agent ¢, the set of (v;, ;)
pairs are used as a training set to learn the regression model. The trained regression
model is used as a function R : v — [0, 1] that takes the feature vector v of an agent as
input and returns an estimation of its trustworthiness. This estimation is not based on
any evidence about the agent but only its features, hence what is estimated is actually
the agent’s a priori trust.

In order to compute trustworthiness of an unknown agent y, first the a feature vector
vy is created based on the discovered features. Then, ¢, is computed using Equation 2
where R(v,) is used as the base rate a.

The trustor may have more interactions over time and learn trustworthiness of others
better based on new evidence. Meanwhile, dynamics of the society may change and
new behavioural patterns may be adopted by malicious agents. Therefore, the trustor
may periodically use the described approach to discover new features significant for
trustworthiness and retrain the regression model based on these new features.

5 Evaluation

In evaluating our approach, we employed a simulated agent society where a set of
trustor agents interact with a set of trustee agents over a number of rounds. Each trustee
is assigned a performance profile which determines how it will behave. Each profile
specifies the mean and standard deviation parameters of a Gaussian distribution from
which simulated interaction outcomes will be drawn. A trustor considers an interac-
tion’s outcome as a success if it is greater than a threshold \; otherwise it is considered
a failure. This threshold could vary for each trustor, so that different trustors may per-
ceive the same outcome differently. However, for simplicity, we assume that all trustors
use the same threshold value. Table 1 uses the values of all parameters used in the
simulations.
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Table 1. Experimental Parameters

Parameter Value Description

vy 0.75 Threshold for trustworthiness
é 0.4 Threshold for untrustworthiness
a_ = a4 0.1 Support constraints
o 2 Frequency coefficient
Life 500 Simulation life
N, 100 Number of trustee agents
Ny 20 Number of trustor agents
N; 100 Total number of concept instances
Navail 10 Number of available trustees
Nyp 10 Number of reputation providers
A 10 Learning interval
A 0.5 Success threshold
P [0, 1] Probability of leaving society

In our experiments, we have associated each profile with certain attributes and pat-
terns. Using the proposed approach, the trustor tries to learn this association and exploits
it to bootstrap trust. Table 2 lists the profiles used in our evaluations.

Table 2. Profiles and performance properties

Profile ID Mean SDV

Py 09 0.05
P 0.6 0.15
Ps 04 0.15
Py 03 0.1
Ps 00 1

Each trustee y has a set of attributes, each defined as a triple (y, hasRel, ix.;) (shortly
hasRel(y, ix.;) hereafter) where hasRel is the object property used to define attributes
and iy, is the j'" instance of a leaf concept C, in the concept hierarchy. The hierarchy
of concepts used in our simulations are shown in Figure 4.

Ce2> el
‘/@/@ $
) G
Fig. 4. Concept hierarchy used in simulations

We have 20 trustors and 100 agents (i.e., trustees) in our simulations. Each profile
has equal number of trustees and each trustee can belong to one profile. Each simula-
tion is run for 500 discrete time steps. At each step, each trustor selects one trustee to
interact with. For this purpose, it gets the list of 10 randomly selected available trustees
in the environment, evaluate their trustworthiness using a trust model and selects one
with the highest trustworthiness. We have compared the following trust models in our
evaluations.
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— Beta Reputation System (B RS): Trust is estimated using Equation 2 where a is
set to 0.5 [11].

— Stereotypical Trust (ST'): Trust is estimated using Equation 2 where a is com-
puted using a M5 regression model, which is trained using observable attributes of
known agents and their trustworthiness [2].

— Trust through Pattern Discovery (7'PD): Trust is estimated using the proposed
approach.

The trustor also obtains a list of 10 reputation providers from the environment and
queries them for evidence (i.e., past interaction outcomes) about trustees. In this work,
other trustors serve as reputation providers and we assume they honestly share their
evidence about trustees. This assumption is made only to focus on bootstrapping trust
in this work. Handling deceptive evidence is out of the scope of this paper, but our
approach be extended to handle deceptive evidence as described in [7].

To simulate the dynamical of the environment, we introduce the parameter ¢ that
determines the probability that a trustee leave the society. When a trustess leaves the
society, a new trustee of the same profile joins the society. In this way, we maintain the
balance of profiles and also simulate whitewashing behaviour of trustees.

In the following sections, we evaluate our approach against three settings: i) perfor-
mance of trustees are not correlated with their descriptions, ii) their performances are
correlated with their attributes, and iii) their performances are correlated with the pat-
terns in their descriptions. We repeated our experiments 5 times and report their average
results. As performance metric, we use the ratio of successful interactions. For frequent
subgraph mining, we have used ParMol [14].

5.1 No Discriminative Features

In this setting, each trustee is assigned randomly a set of attributes. Hence, there is
no correlation between participants’ trustworthiness and their features. Figure 5 shows
our results for this setting when no trustee leaves the society through out experiments
(¢ = 0.0). In this setting, all of the three approaches have the same performance; they
successfully determine the most trustworthy trustees in the environment and lead high
ratio of successful interactions.

1 e S
G ) S
0.9
——BRS
5 0-8 —+—SsT
8 —=<—TPD
S 0.7
B
S 06
]
&
0.5
0.4
o 100 200 300 400 500

Time

Fig. 5. Ratio of success when there is no discriminative features (¢ = 0.0)
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Fig. 6. Ratio of success when there is no discriminative features (¢ = 0.5)
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Fig. 7. Ratio of success as ¥ changes when there is no discriminative features

Figure 6 shows our results for this setting when ) is increased to 0.5. In this setting,
trust approaches do not have enough interaction history to learn trustworthiness of each
trustee. Hence, they have much lower performance compared to the case ¢ = 0.

We repeated our experiments for different ¢ values. Our results are shown in Fig-
ure 7. Our experiments indicate that the proposed approaches does not do worse than
the existing approaches when there is no correlation between features of trustees and
their performance. In such settings, the statistical trust approaches fail mostly because
of the lack of enough evidence about the trustworthiness.

5.2 Attributes as Discriminative Features

In this setting, we associate the attributes in Table 8 to profiles as shown in Table 9. In
this way, we set all trustees sharing the same profile have some common attributes in
addition to their randomly assigned attributes.

Figure 10 shows our results for this setting for different values of 1. The figure
indicates that the performance of BRS significantly decreases as the probability of
leaving the society increases. BRS assumes the same a priori trust for all trustees and
build trustworthiness for individual trustees over time. However, as v increases, BRS
could not have enough evidence to compute trust precisely. Unlike BRS, ST learns
stereotypes about trustworthiness based on the attributes of trustees. Hence, it exploits
the correlation between attributes of trustees and their attributes to precisely estimate
a priori trust for trustees. As a result, S7" have a very high success ratio that does not
decrease with ¥. TP D successfully discovers the patterns implied by the attributes in
Table 8 and uses these patterns as features to learn a mapping between features and
a priori trust. As a result, in this setting, T PD is as successful as ST and correctly
estimates trustworthiness even at high values of 7).
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hasRel(?x, i4:1)
hasRel(?x,i5.1)
hasRel(?x,ig:1)
hasRel(?x,i9:1)
hasRel(?x, i10:1)
hasRel(?x,i11:1)

Fig. 8. Attribute definitions
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X
X
X
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Fig. 9. Profiles descriptions
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Fig. 10. Ratio of success as 1) changes when attributes are discriminative features

5.3 Patterns as Discriminative Features

In this setting, we associate the pattern in Table 3 to profiles as shown in Table 4. In this

way, we set all trustees sharing the same profile have some common patterns.

In this challenging setting, trust approaches like BR.S and ST could not estimate
trustworthiness correctly as v increases. S7" mainly fails because it could not find any
mapping between attributes of trustees and their trustworthiness. On the other hand,
the trustees belonging to the same profile share patterns. 7T'P D discovers these patterns
correctly and uses them to learn the correlation between these features and trustworthi-
ness of trustees. Our results clearly show that 7'PD can estimate trustworthiness very

successfully even in highly dynamic environments.

)
p1 )
p2 )
p3 hasRel(?z, ?a) A type(?a, Cs) A hasRel(?x, ?b) A type(?b, C7)
P4 )
P )
D6 )

]

5

Table 3. Patterns and their definitions

hasRel(?z, 7a) A type(?a,

Ch)

hasRel(?z,7a) A type(?a, C2) A hasRel(?x, 7b) A type(?b, Cs
hasRel(?z, 7a) A type(?a, C4) A hasRel(?z, 7b) A type(?b, Cg

)
)

hasRel(?x, ?a) A hasRel(?a, ?b) A hasRel(?b, 7c) A type(?c, C3)
hasRel(?x, 7a) A hasRel(?a, ?b) A hasRel(?b, 7¢) A type(?c, Cq)
hasRel(?x, 7a) A hasRel(?a, ?b) A hasRel(?b, 7¢) A type(?c, C7)

Table 4. Profiles described using patterns of Table 3

Profile ID p1 p2 p3 pa ps pe

Py
P,
Ps
Py
Py

X X
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Fig. 11. Ratio of success as 1) changes when patterns are discriminative features

6 Discussion

There are a couple of statistical models for computing trust and reputation in multia-
gent systems. The beta reputation system (BRS) is proposed by Jgsang and Ismail [11].
It estimates reputations of service providers using Subjective Logic, where the trust is
modelled using the beta probability density function. TRAVOS is proposed by Teacy
et al. [17]. Similar to BRS, it uses beta probability density functions to compute con-
sumers’ trust on service providers. Caverlee et al. [4] propose the SocialTrust framework
for tamper-resilient trust establishment in online social networks. In this framework, ini-
tially all users have the same level of trust. Then, SocialTrust dynamically revise trust
ratings based on the interaction history.

The approaches mentioned above use direct or indirect past interactions with the
other agents to compute trust. However when a new agent enters to a society, there is no
direct or reputational evidence about the agent. Hence, bootstrapping trust becomes a
challenge in open and dynamic multiagent systems. To address this challenge, Liu et al.
propose agents to form stereotypes using their previous transactions with others [13].
In their approach, a stereotype contains certain observable attributes of agents and an
expected outcome of the transaction. Similarly, Burnett et al. proposed to use stereotyp-
ing to bootstrap trust evaluations based on Subjective Logic [2]. Their approach allows
agents to generalise their experience with known agents as stereotypes and apply these
when evaluating new and unknown agents. Stereotypes are learned with standard M5 re-
gression tree algorithm using a training set composed of observable attributes of known
agents and their trustworthiness.

In this paper, we argue that agents with similar behaviour may share some patterns
in their descriptions or relationships. We propose to discover these significant patterns
in trustworthy and untrustworthy agents and exploit them to learn bootstrapping trust
in dynamic and uncertain environments. Through extensive simulations, we show that
the proposed approach is at least as good as the existing approaches in all settings.
However, it significantly outperforms existing approaches when agents with similar
behaviour share some common patterns. As a future work, we would like to use our
approach to estimate trust in social networks with real data.
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