
An Optimization Approach to Believable

Behavior in Computer Games

Yifeng Zeng1, Hua Mao1, Fan Yang2, and Jian Luo2

1 Department of Computer Science, Aalborg University, Denmark
{yfzeng,huamao}@cs.aau.dk

2 Department of Automation, Xiamen University, China
{yang,jianluo}@xmu.edu.cn

Abstract. Many artificial intelligence techniques have been developed
to construct intelligent non-player characters (NPCs) in computer games.
As games are gradually becoming an integral part of our life, they require
human-like NPCs that shall exhibit believable behavior in the game-play.
In this paper, we present an optimization approach to designing believ-
able behavior models for NPCs. We quantify the notion of believability
using a multi-objective function, and subsequently convert the achiev-
ing of believable behavior into one function optimization problem. We
compute its analytical solutions and demonstrate the performance in a
practical game.

1 Introduction

Designing intelligent non-player characters (NPCs) has been a focus of game
designers and developers who often resort to sophisticated techniques in the
area of artificial intelligence (AI). As expected, the resulting NPCs make smart,
nearly optimal, decisions in a complex game world. For example, a tennis NPC
may strongly attack human players in the virtual tennis game [16] and you may
be impressed by tricky plans of Frederick and Gandhi in the Civilization IV [1].
Currently it is not rare that intelligent NPCs may defeat experienced human
players. However, the NPCs’ actions tend to appear artificial after some time of
playing, and rule out any surprise that human opponents would provide. This
has motivated a line of research on constructing believable NPCs in interactive
games [4,6,20,21].

Much of the existing research takes the macro-perspective on designing be-
lievable behavior. For example, the Soar architecture provides a cognitive model
to develop believable agents in computer games [9,19]. In parallel, the ICARUS
framework facilitates the development of goal-directed agents in games [10]. The
Emotivector model encodes an anticipatory mechanism for the believability en-
hancement on designing human-like characters [11]. While the mentioned re-
search significantly drives the study on believable behavior, it requires much
effort to integrate the associated frameworks or models into the routine design
of NPCs in game productions. In this paper, we will adapt behavior trees [7,3]

L. Cao et al.: ADMI 2012, LNAI 7607, pp. 81–92, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

82 Y. Zeng et al.

- a new generation of script language for game design - to develop believable
behavior models of NPCs.

The notion of believability has been studied in the fields of arts, psychology
and computer science, for a couple of decades [2,13]. Linking to NPCs in com-
puter games, believable behavior is not especially smart and is coupled with
some unpredictability [14,17]. In other words, behaviors that are too intelligent
will be rapidly categorized as being unreal, and that are very unpredictable may
lead to the feeling of randomness. We need to make a proper tradeoff between
the intelligence and randomness of the behavior. According to this spirit, the
objective on designing believable behavior is to achieve the intelligence of NPCs’
behavior and simultaneously maintain the diversity of their behavior. We will
formulate the believability design as one multi-objective optimization problem
and compute its optimal solutions if they exist.

We focus on the realization of believable behavior based on behavior trees.
As behavior trees plan NPCs’ actions in the game-play we may construct the
optimal behavior through AI planning and learning techniques [15]. To make
NPCs act intelligently, we let their behavior approach the optimal one. We use
a probability-based distance measurement to quantify the intelligence of NPCs’
behavior. Meanwhile, we use the information entropy [5] to measure the diver-
sity of NPCs’ behavior. The combination of these two measurements provides
a quantitative approach to formulate the believability of NPCs’ behavior. The
formulation allows us to compute the best believability. Finally, we evaluate
the believability design in both simulations and user tests, and demonstrate the
practical utility of our techniques.

2 Background: Behavior Tree

Behavior tree is a graphical representation for structuring NPCs’ behavior in
a modular manner so that both designers and programmers can work together
in the game development [7,3]. It starts with a Root node (denoted by a down
triangle shape) and normally ends with an Action node (denoted by a circle
shape) as its leaf. We show the other three types of basic nodes in Fig. 1. We
refer the reader to [7,3] for more details on the representation of behavior trees.

A Sequence node has one or more Action nodes as its children, and is
used whenever a sequence of actions have dependency upon one another. The
Sequence executes the first action (A1), and if the execution returns success
it continues the next one (A2) and so on. Failure of any action terminates the
execution of the Sequence node. A Selector node contains a set of independent
Action nodes, and may choose one of them for an execution. The Selector fails
only if neither of its children nodes can be successfully executed. In general,
game designers assign a probability distribution, (pA1 , · · · , pAN), over the set of
N actions. The Selector executes one of the actions according to its probabil-
ity distribution. A Decorator node is inserted on the top of an action node or
a subtree in order to provide additional functionalities to a generic behavior.
For example, one type of Decorator can either limit the number of times that

An Optimization Approach to Believable Behavior in Computer Games 83

Sequence

A1 AN A1 AN

p1 pN

Selector

Decorator

(a(()a(a) (b)(b) (c)c(c)

......

Fig. 1. (a) A Sequence node with N actions (A1, · · · , AN) where the follow of execu-
tion is prescribed by the dotted arc; (b) A Selector node with N actions any of which
can be selected; (c) A Decorator node adds additional functionalities to behavior

the subtree could be called or retrieve the status message from the execution
of the associated actions. Since the Decorator is often transformed into some
associated properties of Action nodes, we focus on a canonical behavior tree
that mainly contains the Sequence, Selector and Action nodes. Here we take
the popular 2-D fighting game (implemented in the MUGEN game engine1)
for one example of behavior trees.

Fig. 2. A human player is fighting with a Kung Fu Man in the MUGEN game. The
yellow bars above show their health points.

In Fig. 2, the MUGEN game hosts two players: one NPC (called Kung Fu
Man) and one human player. The stage is a 2-D arena where the players can
move freely horizontally, and any movement in the vertical axis is achieved by
either a jump or a crouching move. The behavior tree as designed in Fig. 3
commands the actions of Kung Fu Man in the game-play.

Example 1 (Behavior Tree). When the game starts, the Kung Fu Man
chooses either Attack or Defend on executing the Selector node, Choose Mode.

1 http://www.elecbyte.com/

http://www.elecbyte.com/

84 Y. Zeng et al.

ttStart

0.3 0.7

Choose Mode

Defend

JumpBack
ward

Attack

Forward Punch

Weak
Punch

Strong
Punch

0.8 0.2

0.4 0.6

Fig. 3. A behavior tree is designed for an aggressive Kung Fu Man

He is a bit aggressive since there is a large probability (0.7) that he attacks a
human player. Assume that he selects the Attack mode, he needs to execute a se-
quence of actions as indicated by the Sequence node, Attack. He will firstly move
Forward, and then execute the action Punch if he succeeds in the movement.
Finally, he will attack the opponent using one of two punch types. As the proba-
bilities specified in the Selector node, Punch, he may launch a heavy attack with
the Strong Punch (that has a larger probability 0.6). The behavior tree returns a
success if the Kung Fu Man does not fail to execute the actions. Subsequently, a
new traversal of the tree will be initiated (at the root node) to control his actions.

By linking Selector and Sequence nodes, a behavior tree prescribes a sequence
of actions for NPCs in computer games. The configurations of the tree struc-
ture (connections of nodes) and parameters (probabilities in the Selector node)
directly control the NPCs’ behavior. In this paper, we mainly exploit the pa-
rameter settings for the purpose of designing believable behavior.

3 Believable Behavior Design

Behavior trees provide a simple, scalable and modular solution to design com-
plex NPCs’ behavior in computer games. The model settings offer a flexible
mechanism to control the behavioral dynamism. By configuring the action prob-
abilities, we expect NPCs to exhibit believable behavior in the game-play. We
will firstly formulate the believability of NPCs’ behavior as one computational
design and analyze its solutions afterwards.

3.1 Computational Believability

A behavior tree structures the relations of action nodes and imposes a set of
parameters over actions in a Selector node. Formally, we define a behavior tree
below.

An Optimization Approach to Believable Behavior in Computer Games 85

Definition 1 (Behavior Tree). Define a behavior tree as: T = 〈V , E ,P〉 where
V is a set of Action, Sequence, and Selector nodes; E is a set of edges connecting
the nodes; and P is a set of probability distributions guarding the edges in the
Selector nodes.

We assume the known structure of behavior trees including V and E , and will
find a proper setting of P for designing believable behavior. For the prob-
ability distribution, P , we further denote it as P = 〈PS1 , · · · ,PSM 〉 where
PSi = (pA1 , · · · , pAN) is a probability distribution over N actions under the
Selector node, Si.

Given a behavior tree T , we may retrieve a set of behavior paths from the
tree. Each path is a sequence of actions that an NPC will experience in the
game-play. Formally, let H = 〈H1, · · · ,HR〉 be the set of behavior paths where
Hj = (A1, · · · , AK) is a sequence of actions. We define the probability of a path
Hj as:

P (Hj) = ΠK
k=1p(Ak) (1)

Here Ak refers to the action labeled either in the Action node, or in the Sequence
node, or in the Selector node. Its probability depends on the type of its parent.
Consequently, p(Ak) = 1 if Ak is a child of either the Sequence node or the Root
node; otherwise, p(Ak) is equal to the probability pAk

as defined for Ak under
the corresponding Selector node.

Example 2 (Behavior Path). Given the behavior tree in Fig. 3,
we can get 4 behavior paths as: H =< (ChooseMode,Defend,
Backward), (ChooseMode,Defend, Jump), (ChooseMode,Attack, Forward,
Punch,WeakPunch), (ChooseMode,Attack, Forward, Punch, StrongPunch).
The probability of H3 is computed as: P (H3) = 1× 0.7× 1× 1× 0.4=0.28. The
probabilities for all paths are: P (H)=(0.24, 0.06, 0.28, 0.42).

Behavior paths, together with the probabilities, specify how an NPC shall act
in the game world. The NPC acts intelligently if it is able to learn from its
experience. In other words, we can develop intelligent behavior for the NPC by
automatically learning its behavior trees. As the set of paths are known given the
structure of behavior trees, we need to learn the probabilities, P (H), from game
experience. A set of AI/statistical learning techniques have been adapted for this
purpose, which is one of the main focuses of AI research in computer games [12].
We may resort to similar techniques that result in the optimal probability values,
P ∗(H), for intelligent behavior of an NPC.

The probability setting, P ∗(H), generates the most intelligent behavior for
NPCs since the probabilities are learned from the NPC’s experience. The question
is: how to measure the intelligence of the NPC’s behavior if the NPC executes the
behavior with a different probability setting of P (H). Instead of providing a direct
measurement, we gauge how its intelligence approaches that of the NPC with the
setting of P ∗(H). To measure the intelligence gap, we use the distance between

86 Y. Zeng et al.

two probability distributions, P ∗(H) and P (H). Formally, we use the Kullback-
Leibler (KL) divergence [8] as defined below.

DKL[P (H)||P ∗(H)] =
∑

j

P (Hj)ln
P (Hj)

P ∗(Hj)
(2)

In order to design the intelligent behavior, we need to minimize the distance,
DKL, in Eq. 2. The distance converges to zero when the behavior of an NPC
achieves the highest intelligence in the optimal setting of P ∗(H).

On the other hand, we expect an NPC to execute a broad set of behavior in the
game-play. We choose Shannon entropy [5] as the measurement of the behavior
diversity. The diversity of the behavior with the probability distribution, P (H),
is defined in Eq. 3. A large entropy value indicates more types of actions that an
NPC will perform in the real play. Consequently, the NPC’s behavior becomes
more unpredictable from the eyes of its opponents.

E[P (H)] = −
∑

j

P (Hj)lnP (Hj) (3)

As we mentioned, the believability seeks for a good balance of the intelligence and
the diversity of NPCs’ behavior. The design of believable behavior is to achieve
the optimal solutions of the intelligent behavior while to maintain the diversity
of the behavior. In other words, we will minimize the KL divergence between
P (H) and the optimal one P ∗(H), and simultaneously maximize the information
entropy of P (H). Formally, we aim to compute the probability distributions,
P (H), that are solutions to the optimization problem below.

Objective : max

BEL = −K1

∑
j P (Hj)lnP (Hj)−K2

∑
j P (Hj)ln

P (Hj)
P∗(Hj)

Variables : P (H) = 〈P (H1), · · · , P (HR)〉
Constraints :

∑
j P (Hj) = 1

(4)

where P ∗(H) are the optimal solutions of intelligent behavior, and K1 and K2

are the positive values weighting the diversity and intelligence of behavior re-
spectively in the believability function, BEL.

We compute the solutions, P (H), by applying the partial derivative in the ob-
jective function, BEL. Accordingly, the design achieves the optimal believability
where an NPC executes the behavior path,Hj , with the probability in Eq. 5.

P (Hj) =
P ∗(Hj)

K2
K1+K2

∑
j P

∗(Hj)
K2

K1+K2

(5)

We note that the the probabilities of believable behavior depend on weights be-
tween the intelligence and the diversity. An NPC behaves randomly (P (Hj) =

1
R)

ifK2 � K1, and shows the highest intelligence (P (Hj) = P ∗(Hj)) ifK2 � K1.

An Optimization Approach to Believable Behavior in Computer Games 87

Example 3 (Believability Solutions). Given a set of 2 behavior paths,
H =< H1,H2 >, we learn the path probabilities, P ∗(H)=(0.3, 0.7), for intel-
ligent behavior from game data that record the NPC’s performance. We plot
the believability function, BEL, for different settings of K1 and K2 in Fig. 4.
Selections of (K1, K2) values balance the factors that contribute into the be-
lievability design. Fig. 4(a) favors the intelligence as the dominating attribute of
the believability. Hence its solution, P (H)=(0.337, 0.663), approaches the learned
probabilities. On the other hand, Fig. 4(c) attributes the believability to the di-
versity of actions, and its design, P (H)=(0.479, 0.521), is close to the random
behavior. This may happen to an insane NPC in games. Note that the BEL
values are not comparable across different (K1, K2).

Fig. 4. The probabilities (denoted by red triangles) of believable behavior given K1

and K2 values that weight the diversity and the intelligence of behavior respectively

Once we get the path probabilities, P (H), we can compute the probabilities,
pAk

, for actions through Eq. 1. This completes the parameter setting of P for
the believable behavior design in behavior trees .

3.2 Bottom-Up Design

As a hierarchical model, a behavior tree is goal-oriented and allows the recursive
implementation of complex NPCs’ behavior. In practice, it firstly defines a high-
level goal (in a Root node) which it attempts to achieve, and then links to
a set of sub-goals until it constructs primitive actions at the leaves of the tree.
Consequently, the tree may become deeply nested and is prone to be asymmetric.
Computing the global believability, P (H), for an entire tree involves difficulty
in learning the probabilities of intelligent behavior, P ∗(H), for a large set of
behavior paths.

88 Y. Zeng et al.

Following the spirit of modular design in behavior trees, we may compute
the local believability, PTl

(H), for a set of subtrees and incrementally complete
the believability design of T (=∪lTl). To make a further step, we may arrange
the subtrees in a hierarchical way and recursively compute the believability in a
bottom-up manner.

Let Tl be level l (l ∈ [1, L]) subtree in T (the root of T is in level 0), and
BELT (BELTl

) be the global (local) believability function respectively. Ac-
cording to the believability definition, BEL, in Eq. 4, we derive the relations
between the global and local believability functions in Eq. 6. It shows that the
global believability is the sum of a set of weighted local believability.

BELT = BELT1 + P (T2)[BELT2 + · · ·+
P (Tl)[BELTl

+ · · ·+ P (TL)[BELTL] · · ·] · · ·]
(6)

where P (Tl) is the probability of the root node, Ak, in the subtree Tl. The prob-
ability is equal to pAk

if the parent of Ak is a Selector node in Tl−1; otherwise, it
is equal to pA′

k
where A′

k is the closest ancestor of Ak and is a child of a Selector
node.

As P (Tl) is one of the probability parameters in Tl−1, solutions to maximize
the believability function, BELT , can be achieved by computing the local be-
lievability sequentially from BELTL to BELT1 . Eq. 7 shows that the optimal so-
lution to the global believability, P (H)=<(P1(H), · · · , Pl(H), · · · , PL(H)>, can
be distributed over the local believability for the set of hierarchical subtrees
where Pl(H) is the optimal solution to the believability design in level l subtree,
Tl.

max
P (H)

BELT = max
P1(H)

[BELT1 + P (T2)max
P2(H)

[BELT2

+ · · ·+ P (Tl)max
Pl(H)

[BELTl
+ · · ·

+P (TL)max
PL(H)

[BELTL] · · ·] · · ·]]
(7)

We shall note that the believability design of level l subtree, Tl, needs to find
the optimal solutions to maximize the function in Eq. 8. We may show that the
analytic solutions, Pl(H), still enjoy the close form similarly in Eq. 5.

max
Pl(H)

[BELTl
+ P (Tl+1)OPT (BELTl+1

)] (8)

where OPT (BELTl+1
) is the optimal believability value generated from the be-

lievability design of Tl+1.
In summary, we may decompose the global believability optimization problem

into a set of local optimization problems and still achieve the same solutions to
the believability in a bottom-up design. The statement is given in Theorem 1.

Theorem 1 (Design Optimality). Bottom-up design preserves the optimal
believability of the global design for an entire behavior tree.

An Optimization Approach to Believable Behavior in Computer Games 89

4 Evaluation and User-Study

We experimented the believability design in the aforementioned MUGEN
game 2. We used the N -Gram statistical models [18] to learn the probability of
intelligent behavior, P ∗(H), and computed the probability of believable behavior
given different settings of (K1,K2) in Eqs. 5 and 1. The resulting probabilities,
p(Ak), were used to configure the parameters, P , of the behavior trees. During
the game-play, NPCs are controlled by the associated behavior trees. We use
NPC(K1,K2) to denote the NPC that displays believable behavior given one
setting of (K1,K2). We report the NPCs’ performance when they compete with
either other NPCs or human-players. In addition, we invite human players to
rank the NPCs in terms of the intelligence and believability of their behavior
and advise proper values of (K1,K2) in relevant games.

By extending the behavior tree in Fig. 3, we developed five NPCs
listed as: NPC1(0, 1), NPC2(0.15, 0.85), NPC3(0.25, 0.75), NPC4(0.4, 0.6), and
NPC5(0.5, 0.5). Note that the NPC1(0, 1) is configured with the learned proba-
bility, P ∗(H), for the believable behavior. In addition, we designed three stereo-
types of NPCs (NPCA: Aggressive, NPCN :Neutral, and NPCD:Defensive)
that represent typical roles in theMUGEN games. The NPCs differ in the prob-
abilities assigned to actions under the Selector nodes. We let NPCi (i=1,· · · ,5)
start with random actions and compete with the stereotypes individually over
200 matches. During the competition, we had the NPCi learn from the experi-
ence every 20 matches and designed its behavior based on the new probability,
P ∗(H). We report the total number of matches that the NPCi won over every
stereotype in Table 1.

Table 1. The NPCs (NPC1-NPC5) learn to compete with their opponents (NPCA-
NPCD). The more intelligence (NPC1 > · · · > NPC5) the more matches the NPCs
win.

Matches NPC1 NPC2 NPC3 NPC4 NPC5

NPCA 181 176 163 118 72

NPCN 182 179 170 127 83

NPCD 186 180 170 135 98

Table 1 shows that the NPCs (NPC1-NPC5) perform intelligently when they
assimilate most of their learning results given the setting K2 > K1. They lose
few matches if they have fully exploited (where K2=1) the behavior of their
opponents. The results also demonstrate the utility of the N -Gram techniques
on learning the NPCs’ behavior in the game.

We enrolled 27 participants to observe the matches and rank both the intelli-
gence and believability of the NPCs (NPC1-NPC5) when the NPCs were playing

2 Due to the limited space, we show only the evaluation on the MUGEN game while
we also conducted study in the popular StarCraft Game.

90 Y. Zeng et al.

with their opponents. Most of the participants have some experience on theMU-
GEN game. The criteria that they used to evaluate the believability were mainly
on plausible sequences of attacks, diverse behavior, and predictable actions. We
report the average rankings (with standard deviation) of the NPCs in Table 2.
As expected, the NPC1(0, 1) was ranked as the most intelligent one over all com-
petitions with different types of opponents. However, it lost to NPC2(0.15, 0.85)
on the aspect of the believability.

Table 2. Average rankings of the NPCs (NPC1-NPC5) in terms of the intelligence and
the believability. 5 is the highest and 1 is the lowest.

NPCs Criteria NPCA NPCN NPCD

NPC1 Intelligence 4.63(0.50) 4.38(0.5) 4.19(0.66)
Believability 3.31(1.14) 3.06(1.44) 2.75(1.34)

NPC2 Intelligence 4.19(0.75) 4.13(0.96) 4.13(1.02)
Believability 4.38(0.88) 4.25(0.77) 4.06(1.06)

NPC3 Intelligence 3.13(0.5) 3.38(0.89) 3.38(1.02)
Believability 3.44(1.03) 3.88(0.89) 3.94(0.77)

NPC4 Intelligence 2.06(0.25) 2.13(0.34) 2.31(0.60)
Believability 2.25(0.77) 2.06(0.25) 2.50(0.97)

NPC5 Intelligence 1(0) 1(0) 1(0)
Believability 1.69(1.49) 1.81(1.52) 1.75(1.39)

We made a further step to compare pairs of rankings through t-tests. Table 3
shows the p-values of the tests between the average rankings of the NPCs. It is
a bit surprising that the NPC1(0, 1) was not perceived as being significantly
smarter than the NPC2(0.15, 0.85). This indicates that the solutions (where
K2=0.85) are sufficient to exhibit the intelligent behavior. Additional diversity
of the behavior does not compromise the intelligence, but generate the desired
believability in most cases.

Table 3. p-values from t-tests on the pair comparisons. Entries with an underline are
significant at the 95% confidence level.

Criteria NPCs NPCA NPCN NPCD

Intelligence NPC1 > NPC2 0.08 0.23 0.43
NPC2 > NPC3 0.00 0.05 0.06
NPC3 > NPC4 0.00 0.00 0.00
NPC2 > NPC4 0.00 0.00 0.00

Believability NPC2 > NPC1 0.00 0.02 0.01
NPC2 > NPC3 0.01 0.11 0.37
NPC3 > NPC4 0.00 0.00 0.00
NPC2 > NPC4 0.00 0.00 0.00

An Optimization Approach to Believable Behavior in Computer Games 91

Table 4. Average rankings of the NPCs (NPC1-NPC3) in the real-play. 3 is the highest
and 1 is the lowest.

Criteria NPC1 NPC2 NPC3

Intelligence 2.58(0.51) 2.25(0.75) 1.17(0.39)

Believability 1.58(0.67) 2.75(0.62) 1.67(0.65)

We invited 18 out of 27 participants to play with the top three NPCs (NPC1-
NPC3) over 100 matches. Subsequently the participants ranked the NPCs ac-
cording to their personal game experience. In Table 4, the results are consistent
with the analysis above. The believability of the NPC2’s behavior is significantly
better than that of the others. Most of the participants felt uncomfortable when
the NPC1(0, 1) launched non-breaking attacks with strong punches. It was con-
vincing that the NPC2(0.15, 0.85) took a light jump after some punches.

5 Conclusion

We propose a computational model for game designers that allow them to cre-
ate believable behavior for NPCs in computer games. The believability model is
rooted in a generic representation of behavior trees and sophisticated AI tech-
niques. We quantify the believability by measuring the intelligence and diversity
of NPCs’ behavior. In principle, the believability design is seeking for a balance
of these two measurements. We further formulate the believability design as one
optimization problem and provide analytic solutions to the optimal believabil-
ity. More importantly, we observe that the bottom-up design can guarantee the
optimal believability of the entire behavior tree. This facilitates the practical
development on designing believable behavior.

The computational model considers two important attributes (intelligence
and diversity of behavior) in the believability design. For future work, we will
explore more factors that may contribute into the believability of NPCs’ behav-
ior. The challenge is on the development of a quantitative measurement for the
attributes. We are more interested in integrating the additional attributes into
the established model.

References

1. Amato, C., Shani, G.: High-level reinforcement learning in strategy games. In:
Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent (AAMAS), pp. 75–82 (2010)

2. Bates, J.: Virtual reality, art and entertainment. Presence 1(1), 133–138 (1992)
3. Champandard, A.J.: Behavior trees for next-gen game ai. Tutorial,

AiGameDev.com (2008)
4. Chang, Y., Maheswaran, R., Levinboim, T., Rajan, V.: Learning and evaluating

human-like npc behaviors in dynamic games. In: Proceedings of the Seventh Arti-
ficial Intelligence and Interactive Digital Entertainment Conference (AIIDE), pp.
8–13 (2011)

92 Y. Zeng et al.

5. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience,
New York (1991)

6. Doirado, E., Martinho, C.: I mean it!: detecting user intentions to create believable
behaviour for virtual agents in games. In: Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent (AAMAS), pp. 83–90 (2010)

7. Isla, D.: Handling complexity in the halo 2 ai. In: Proceedings of the Fifteenth
Conference on Game Developers Conference (2005)

8. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math.
Statist. 22(1), 79–86 (1951)

9. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-
ligence. Artificial Intelligence 33(1), 1–64 (1987)

10. Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In: Pro-
ceedings of the Twenty-First AAAI Conference on Artificial Intelligence (AAAI),
pp. 876–881 (2006)

11. Martinho, C., Paiva, A.: Using anticipation to create believable behaviour. In: Pro-
ceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI),
pp. 175–180 (2006)

12. Rabin, S.: AI Game Programming Wisdom 4. Course Technology (2009)
13. Scott Neal Reilly, W.: Believable Social and Emotional Agents. PhD thesis, School

of Computer Science, Carnegie Mellon University (1996)
14. Riedl, M.O., Stern, A.: Believable agents and intelligent scenario direction for social

and cultural leadership training. In: Proceedings of the Fifteenth Conference on
Behavior Representation in Modeling and Simulation (2006)

15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall (2003)

16. Tan, C.T., Cheng, H.: Implant: An integrated mdp and pomdp learning agent for
adaptive games. In: Proceedings of the Fifth Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE), pp. 94–99 (2009)

17. Tence, F., Buche, C., De Loor, P., Marc, O.: The challenge of believability in video
games: Definitions, agents models and imitation learning. CoRR abs/1009.0451
(2010)

18. Witten, I.H., Bell, T.C.: The zero-frequency problem: estimating the probabilities
of novel events in adaptive text compression. IEEE Transactions on Information
Theory 37(4), 1085–1094 (1991)

19. Xu, J.Z., Laird, J.E.: Combining learned discrete and continuous action models.
In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI), pp. 1449–1454 (2011)

20. Zeng, Y., Buus, D.P., Hernandez, J.C.: Multiagent based construction for human-
like architecture. In: Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2007), pp. 409–411 (2007)

21. Zeng, Y., Hernandez, J.C., Buus, D.P.: Swarmarchitect: a swarm framework for col-
laborative construction. In: Proceedings of Genetic and Evolutionary Computation
Conference (GECCO 2007), pp. 186–186 (2007)

	An Optimization Approach to Believable Behavior in Computer Games
	Introduction
	Background: Behavior Tree
	Believable Behavior Design
	Computational Believability
	Bottom-Up Design

	Evaluation and User-Study
	Conclusion
	References

