
Role-Based Management and Matchmaking

in Data-Mining Multi-Agent Systems

Ondřej Kaźık1 and Roman Neruda2

1 Faculty of Mathematics and Physics, Charles University
Malostranské náměst́ı 25, Prague, Czech Republic

kazik.ondrej@gmail.com
2 Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věž́ı 2, Prague, Czech Republic
roman@cs.cas.cz

Abstract. We present an application of concepts of agent, role and
group to the hybrid intelligence data-mining tasks. The computational
MAS model is formalized in axioms of description logic. Two key func-
tionalities — matchmaking and correctness verification in the MAS —
are provided by the role model together with reasoning techniques which
are embodied in specific ontology agent. Apart from a simple computa-
tional MAS scenario, other configurations such as pre-processing, meta-
learning, or ensemble methods are dealt with.

Keywords: MAS, role-based models, data-mining, computational intel-
ligence, description logic, matchmaking, closed-world assumption.

1 Introduction

An agent is a computer system situated in an environment that is capable of
autonomous action in this environment in order to meet its design objectives
[23]. Its important features are adaptivity to changes in the environment and
collaboration with other agents. Interacting agents join in more complex soci-
eties, multi-agent systems (MAS).

The effort to reuse MAS patterns brings the need of separation of the in-
teraction logic from the inner algorithmic logic of an agent. There are several
approaches providing such separation and modeling a MAS from the organiza-
tional perspective, such as the tuple-spaces, group computation, activity theory
or roles [6]. The Gaia methodology [25] fully exploits roles only in the analysis
phase and leaves them during the design phase of development. The BRAIN
framework [7]describes roles by means of XML-files and offers also the im-
plementation support in JAVA language. The ALAADIN framework [10] is a
organization-centered generic meta-model of multi-agent systems. It defines a
general conceptual structure which is utilized in the MAS development. The
framework describes MAS from an organizational perspective, instead of using
terms of agents’ mental states (agent-centered). This model (also called AGR)
focuses on three basic concepts: agent, group and role.

L. Cao et al.: ADMI 2012, LNAI 7607, pp. 22–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Role-Based Management and Matchmaking in Data-Mining MAS 23

Generally speaking, a role is an abstract representation of stereotypical be-
havior common to different classes of agents. Moreover, it serves as an interface,
through which agents perceive their execution environment and affect this envi-
ronment. Such a representation contains a set of actions, capabilities, which an
associated agent may utilize to achieve its goals. On the other hand, the role
defines constraints, which a requesting agent has to satisfy to obtain the role, as
well as responsibilities for which the agent playing this role holds accountable.
The role also serves as a mean of definition of protocols, common interactions
between agents. An agent may handle more roles, and a role can be embodied by
different classes of agents. Moreover, agents can change their roles dynamically.
A group is a set of agents and its structure is defined by means of roles and
protocols allowed in the group.

The role-based solutions may be independent of a particular situation in a
system. This allows designing an overall organization of multi-agent systems,
represented by roles and their interactions, separately from the algorithmic is-
sues of agents, and to reuse the solutions from different application contexts.
The coordination of agents is based on local conditions, namely the positions
of an agent playing the role, thus even a large MAS can be built out of simple
organizational structures in a modular way.

In order to automatize the composition of MAS, its formal model in descrip-
tion logic (DL) was introduced [16]. We are employing the concepts of role and
group and transform the role model in axioms of DL [17]. In this paper, the
necessity of axiom definition both under open- and closed-world assumption is
highlighted and the model is extended by integrity constraints.

The main contribution of this paper is the unified formal model both for
analysis and run-time support of the MAS which utilizes methods of automated
reasoning. This formal description allows dynamic finding of suitable agents and
groups (matchmaking), verification of correctness of MAS (system checking) or
automated creation of MAS according to the task.

The computational multi-agent systems, i.e. application of agent technologies
in the field of hybrid intelligence, showed to be promising by its configuration
flexibility and capability of parallel computation, e.g. in [9]. We present a role-
based model of complex data-mining scenarios, such as meta-learning, parallel
computing, ensemble methods or pre-processing of data. The no-free-lunch theo-
rem [24] shows that there is no best approach for every task. In practice the user
does not know which method to use and how to set its parameters. Agent-based
solution enables automatic assembly of the system. The previous experience can
be stored for later experiments on similar data.

In the next section, we present a computational intelligence scenario, perform
its analysis, and elaborate the role-based model of a computational MAS. In
section 3, the model is formalized by means of description logic axioms. In sec-
tion 4, the implementation of ontology agent managing the dynamic role-based
of MAS, atomic actions and matchmaking queries, improving agents’ sociability,
are described. Section 5 concludes the paper and shows future work.



24 O. Kaźık and R. Neruda

2 Role Model of Computational MAS Scenario

Hybrid models including combinations of artificial intelligence methods, such as
neural networks, genetic algorithms, and fuzzy logic controllers, can be seen as
complex systems with a large number of components and computational meth-
ods, and with potentially unpredictable interactions between these parts. These
approaches have demonstrated better performance over individual methods in
many real-world tasks [5]. The disadvantages are their bigger complexity and
the need to manually set them up and tune various parameters.

There are various software packages that provide collection of individual com-
putational methods, e.g. Matlab [12] or R Project [22] with focus on unified en-
vironment and computational efficiency. However, these frameworks are closed,
they are inflexible in replacement of methods and they do not allow automated
construction of data-mining processes. Moreover, it impossible to utilize their
methods in various contexts such as meta-learning or recommending methods
and settings based on previous experience. Other systems, such as the KNIME
environment [4] focus on smooth user-friendly interface to complex hybrid mod-
els by offering visual assembly of data-mining processes.

Multi-agent systems seem to be a suitable solution to manage the complexity
and dynamics of hybrid systems. In our approach, a computational MAS contains
one or more computational agents, i.e. highly encapsulated objects embodying
a particular computational intelligence method and collaborating with other
autonomous agents to fulfill its goals. Several models of development of hybrid
intelligent systems by means of MAS have been proposed, e.g. [15], [1] and [8].

In order to analyze computational scenarios and to construct a model of gen-
eral computational MAS, we are exploiting the conceptual framework of the
AGR model [10]. The simplest possible configuration is a task manager which
controls model creation and data processing by the computational method — e.g.
neural network — whose data are provided by the data source agent. The com-
putational methods corresponds to physical implementation of agents employing
the JADE agent platform and Weka data mining library [16]. This elementary
computational scenario, where the computation consists of single method, is not
sufficient for most cases we are interested in throughout this paper, but it is
always contained in different contexts. Let us consider the following data-mining
tasks:

– Decentralized processing: more computational agents controlled by single
task manager, e.g. various ensemble methods or distributed execution of
computational methods.

– Supplementary learning: separate optimization algorithms in the search space
of computational methods’ inner variables, e.g. optimization of neural net-
work’s weights by means of evolutionary algorithm.

– Meta-learning scenario: optimization in search space of method options [21].
– Pre-processing and post-processing: e.g. feature extraction, missing values

and outlier filtering, or resampling etc. [11].



Role-Based Management and Matchmaking in Data-Mining MAS 25

All these scenarios contain the coordination structures of computational agent
which is controlled by a task manager. Also, the data are provided in all scenar-
ios from a mediator, a pre-processing agent or final data source. In general, the
machine learning of data-mining methods (e.g. a back-propagation trained per-
ceptron network) can be seen as a search problem, either implicit — incorporated
in the computational agent — or as an external search agent. The meta-learning
scenario solves the optimization search of the method’s options, thus the simple
learning case is implicitly included there as an iterated subtask.

Fig. 1. The organizational structure diagram of the computational MAS

Three general subproblems are considered here: control of computational
methods, data provision, and optimization search. Thus the decomposition re-
sults — according to the AGR model briefly described in section 1 — in a
role organizational structure shown at Figure 1. It consists of possible groups,
their structures, described by means of admissible roles and interactions between
them. This organizational structure contains the following group structures:

– Computational Group Structure. It contains two roles: a Task Manager and
Computational Agent implementing a computational method. The agent
playing the Task Manager role can control more Computational Agents.

– Search Group Structure consisting of two roles: a Search Agent and Opti-
mized Agent. It is representing search problem in a general search space.

– Data Group Structure contains a Data Sink and Data Source which provides
it with data, e.g. training and testing data for computational agent.

The role model allows simplifying the construction of more complex computa-
tional multi-agent systems by its decomposition to the simple group structures
and roles, which the agents are assigned to. Moreover, the position of an agent
in a MAS in every moment of the run-time is defined by its roles without need
to take account of its internal architecture or concrete methods it implements.
It also reduces a space of possible responding agent when interactions are estab-
lished, and the model will be used for matchmaking.

3 Description Logic Model of Computational MAS

The family of Description Logic (DL), fragment of first-order logic, is nowadays
a de facto standard for ontology description language for formal reasoning [2].
In DL, a knowledge base is divided into a T-Box (terminological box), which



26 O. Kaźık and R. Neruda

contains expressions describing concept hierarchy, and an A-Box (assertional
box) containing ground sentences.

Web Ontology Language (OWL), an expressive knowledge representation lan-
guage, is based on description logic [20]. Semantics of OWL is designed for sce-
narios where the complete information cannot be assumed, thus it adopts the
Open World Assumption (OWA). According to the OWA, a statement cannot
be inferred to be false only on the basis of a failure to prove it. If the complete
knowledge is assumed, the T-Box axioms cannot be used as Integrity Constraints
(ICs) which would test validity of the knowledge base under OWA. In order to
check integrity constraints, the Closed World Assumption (CWA) is necessary.
There are several approaches simulating the CWA by different formalisms, e.g.
rules or queries [20].

We continue in the effort to describe the computational MAS in the descrip-
tion logic model [16]. Our model would incorporate the concepts of group and
role. In paper [17], we have elaborated basic role-based model of computational
MAS in description logic under OWA. Limitation of standard OWL interpreta-
tion under OWA often leads to extension of description logic by other formalism
(such as SWRL-rules [14]). We chose the solution where CWA axioms as integrity
constraints are expressed in the same OWL language [20] since it preserves the
model homogeneity. The authors presented an IC validation solution reducing
the IC validation problem to SPARQL query [18] answering. Moreover, they in-
troduced a prototype IC validator extending Pellet [19], the OWL reasoner. For
example, the constraint that every service is provided an agent:

Service � ∃isProvidedBy.Agent

would not be violated if there is defined a service without agent in an A-Box.
The SPARQL representation of this IC would be the following query:

ASK WHERE {

?x rdf:type Service.

OPTIONAL {

?x isProvidedBy ?y.

?y rdf:type Agent.

}

FILTER(!BOUND(?y))

}

Thus we divided the T-Box of the proposed model into two parts. The first
part contains axioms describing mainly the concept hierarchy and the necessary
relations between their instances. This schema is interpreted under the OWA
and defines the facts the reasoner will infer from the given A-Box. In the second
part, there are constraints which define the integrity conditions of the system
related mainly to the capabilities of agents. These are interpreted under the
CWA. Axioms of T-Box are distinguished in the following text by a subscript
of the inclusion axiom symbol. A standard schema axiom interpreted under the
OWA is in the form C �O E1. An integrity constraint under the CWA has the



Role-Based Management and Matchmaking in Data-Mining MAS 27

form C �C E2. The time-dependent information, the current state of the system,
is in an A-Box of the ontology.

In the following, we describe a definition of the generic AGR concepts in DL.
As we have already mentioned, a role is defined as a set of capabilities, i.e. actions
(interactions) an agent assuming this role can use, and a set of responsibilities
or events the agent should handle. A group is then described by a set of roles
the group contains. A hierarchy of concepts should respect this. In the model,
the running agents, groups and initiators are represented as individuals in A-
Box. Their roles (i.e. sets of agents with common interface) and group-types are
classes defined in T-Box statically.

The T-Box contains the following superior concepts (see Figure 2 left):

– Responder is a responsibility of a role. It stands for a type of interaction
protocol the agent can handle.

– Initiator represents an action from a capability set, and it is coupled to a
particular Responder. The functional role isInitiatorOf relates to the agent
which the action uses. The role sendsTo contains the responding agents to
which the action is connected.

– RequestInit is a subclass of the previous concept which defines only those
initiators that send messages to one agent (unlike e.g. the contract net pro-
tocol).

– Agent is a class of all running agents and it is a superclass of all agents’ roles.
The role-agent assignment is achieved simply by a concept assertion of the
agent individual in A-Box. The inverse functional roles hasInitiator (inverse
of isInitiatorOf) and hasResponder couple an agent with particular actions
and responsibilities. While the hasResponder relation is a fixed property, the
hasInitiator occurs only when a corresponding connection is established.
Finally, the functional role isMemberOf indicates belonging to a group.

– Group concept represents a group in a MAS. It has only an inverse of
the memberOf role, called hasAgent. This relation has two subroles: func-
tional hasOwner indicating the member agent which created the group and
rankAndFile of all other member agents.

Now we begin to implement our domain specific groups and roles for our domain
— computational MAS. The computational group structure contains agents with
assigned roles of a task manager and one or more computational agent. Between
the task manager and each computational agent a control interaction exists.

The sending of control messages between the task manager (TaskManager),
which initiates this connection, and the computational agent (CompAgent) which
performs the computational method is modeled by two concepts, an initiator
(ControlMsgInit) and a responder (ControlMsgResp). The initiator of this
connection is an instance of ControlMsgInit which is a subclass of the Initiator
class. It sends messages only to an agent with a running responder handling these
messages, and it is coupled with a Task Manager role as a capability. The schema
file of the ontology contains axioms of the initiator concept hierarchy:

ControlMsgInit �O Initiator



28 O. Kaźık and R. Neruda

Fig. 2. Left: Superior concepts and their relations in T-Box of the role model. Right:
A-Box state of the simple computational MAS configuration with computational and
data group.

The control message responder is a simple descendant of the Responder concept
and this class contains the instance ControlMsg. The schema axioms follow:

ControlMsgResp �O Responder

ControlMsgResp(ControlMsg)

The following integrity constraints for this concept check the roles of initiating
and responding agents:

ControlMsgInit �C ∀sendsTo.∃hasResponder.ControlMsgResp

� ∀isInitiatorOf.TaskManager

Role definitions are descendants of the Agent concept and have to contain their
responsibilities, i.e. responders (capabilities are defined on the initiator side).
The responsibility of the computational agent (CompAgent) is to respond on
the control connections. These are axioms inserted in the schema set:

CompAgent �O Agent� � hasResponder.ControlMsg

The task manager (TaskManager) role only sends messages in a group:

TaskManager �O Agent



Role-Based Management and Matchmaking in Data-Mining MAS 29

Finally, the computational group (CompGroup) contains only the agents which
have asserted that they have the computational agent, task manager or data
source role. The subclass-axiom is important for open world reasoning:

CompGroup �O Group

On the other hand, admission (as an owner or general member) of the agent
with a wrong role has to be checked by the following closed world constraint:

CompGroup �C ∀hasAgent.(CompAgent � TaskManager)

� ∀hasOwner.TaskManager

� ∀rankAndFile.CompAgent

The data group structure consists of two roles: the data source owning the group,
and the data sink. Between the agents with these two roles is interaction pro-
viding data. The data sink requests for certain data the data source which sends
them back. The following axioms for these concepts are similar to those for the
computational group:

DataMsgInit �O RequestInit

DataMsgInit �C ∀sendsTo.∃hasResponder.DataMsgResp

� ∀isInitiatorOf.DataSink

DataMsgResp �O Responder

DataMsgResp(DataMsg)

DataSource �O Agent� � hasResponder.DataMsg

DataSink �O Agent

DataGroup �C ∀hasAgent.(DataSource �DataSink)

� ∀hasOwner.DataSource

� ∀rankAndFile.DataSink

The elementary computational scenario fits these two group structures. At Fig-
ure 2 right, there is A-Box state of the DL model. It contains two group in-
dividuals, Group1 which is instance of CompGroup and Group2 with type
DataGroup. The depicted MAS consists of the following three agents: the Task
Manager Manager, Data Source ARFFReader, and RBF agent implementing
RBF Neural Network which has two roles: Computational Agent and Data Sink.
The individuals Init1 and Init2 are two initiators realising the control and data
connections.

The task manager is also able to control more computational agents in par-
allel and to collect their results. This configuration is shown at Figure 3 left in
simplified cheeseboard diagram [10].

The pre-processing agent, i.e. encapsulation of a pre-processing method, ob-
tains data from a data source and provides pre-processed data to other agents.
The options of the pre-processing method and source-file have to be set by a



30 O. Kaźık and R. Neruda

Fig. 3. Left: Example of computational MAS configuration with two computational
agents controlled by single manager, which process the same data in parallel. Right:
Example of computational MAS configuration with a pre-processing agent.

task manager who controls the computation. The pre-processing agent gains
properties of both the data source (it provides data) and computational agent
(it receives data from another source and waits for control messages). Thus the
role of PreprocessingAgent is defined as an intersection of DataSource and
CompAgent:

PreprocessingAgent �O CompAgent �DataSource

According to this definition, the pre-processing agent with this role is able to
be controlled by a task manager in its own computational group and provide
the processed data to another a data sink (e.g. computational agent) as a data
source in data group. It also includes the possibility of creation of chain of agents,
where on the one end is an agent providing original data table and on the other
is a data mining computational method. Diagram of such a configuration with
a pre-processing agent is at Figure 3 right.

The search group structure is defined in a similar way by the following schema
and integrity rules:

SearchMsgResp �O Responder

SearchMsgResp(SearchMsg)

SearchMsgInit �O RequestInit

SearchMsgInit �C ∀sendsTo.∃hasResponder.SearchMsgResp

� ∀isInitiatorOf.OptimizedAgent

OptimizedAgent �O Agent

SearchAgent �O Agent� � hasResponder.SearchMsg

SearchGroup �O Group

SearchGroup �C ∀hasAgent.(OptimizedAgent� SearchAgent)

� ∀hasOwner.OptimizedAgent

� ∀rankAndFile.SearchAgent



Role-Based Management and Matchmaking in Data-Mining MAS 31

Fig. 4. The configuration of parameter-space search

This structure has various ways how it can be utilized. It can be used for op-
timization of computational agent’s inner variables but also for meta-learning,
i.e. finding of optimal options of certain computational method. In this case
the agent does not control directly computational methods, but a meta-learning
agent whose goal is finding the options with lowest resulting error rate. The
meta-learning agent is optimized by a search method, and in the same time it
controls the CAs representing the computational method. Such a configuration
is shown at Figure 4. Here the options of the RBF neural network on certain
data are optimized with Genetic Algorithm.

4 Management of the Model

To coordinate the run-time role organization of a MAS built according to the
schemas and constraints of T-Box, it is necessary to have a central authority,
separate agent in which the DL model is represented. Other agents will change
the state of the model and query it by interaction with this agent.

The model is implemented as an ontology agent (OA) in JADE, Java-based
framework for a MAS [3]. The goals of the OA are:

– Keeping track of the current state of MAS. Agents present in the MAS reg-
ister themselves in the OA, state changes of their roles, create and destroy
groups and their membership in them, and establish communication chan-
nels. The OA infers the necessary facts by means of OWA reasoning. The
atomic actions are presented in subsection 4.1.

– Verification of correctness of MAS. The OA controls all changes of the system
and does not allow activities which would violate the integrity constraints.
The integrity constraints are handled by OA in CWA mode, as discussed in
section 3.

– Matchmaking of agents and groups. When exploiting the concept hierarchy,
it is possible to search groups of certain types or agents which have a certain
role, which are members of certain group or that can handle certain types
of messages etc. For the matchmaking queries, see 4.2.



32 O. Kaźık and R. Neruda

Fig. 5. Architecture of the ontology agent

The ontology agent (shown in Figure 5) consists of the request handling mod-
ule which is responsible for processing of incoming requests and replying. It em-
ploys the ontology functions provided by the Pellet OWL-DL reasoner [19] and
its extensions. The ontology model contains an assertional box of the ontology
and describes the current state of the system. The open-world reasoner infers
new facts from axioms in the OWL schema file and content of the A-Box. The
integrity constraints saved in a separate OWL file are converted into SPARQL
queries and run by the SPARQL engine on the ontology model. The SPARQL
engine is also used to answer matchmaking queries.

The communication ontology for contents of OA messages has been created.
This ontology consists of three types of concepts: actions changing state of the
model, matchmaking queries and concepts informing about results of these re-
quests.

4.1 Actions in the Model

During their life-time, the agents in the system will change their roles as well as
position in the system. In order to affect the state of the role-based model, it uses
several atomic actions which are sent to the ontology model. These actions result
in changing of assertions in the A-Box of the model and are validated by the
integrity constraints. If any of the ICs is violated, the change is not performed.
In this case the action ends by failure.

The following types of actions are allowed in the MAS model:

– RegisterAgent — creates a new individual of type Agent and returns its
name.

– DeregisterAgent— removes the individual which corresponds to the agent
from the model.

– SetRole(role) — adds declaration of agent’s role in the A-Box. E.g. if the
agent a sets its role to computational agent, the OA adds in the A-Box the
assertion CompAgent(a).

– RemoveRole(role) — removes the role declaration from the A-Box.
– CreateGroup(grpType)— creates new individual defining group and declare

it to type grpType. The relation hasOwner is created between the creating
agent and the new group. Successful action returns name of the new group
individual.



Role-Based Management and Matchmaking in Data-Mining MAS 33

– DestroyGroup(grpName) — removes the individual grpName and all its as-
sertions (including agents’ membership).

– EnterGroup(grpName) — adds the relation rankAndFile between group
grpName and the requesting agent. This change of state can be in contradic-
tion with allowed roles in the group.

– LeaveGroup(groupName)— removes all relations hasAgent, hasOwner and
rankAndFile between the agent and the group.

– CreateInitiator(initType)— creates an individual defining communica-
tion initiator. The concept assertion of this individual with class initType
and role assertion hasInitiator between the agent and initiator individuals
are added. The successful action returns name of the initiator. The action
can contradict the assumptions about associations of roles and initiators’
types.

– DestroyInitiator(initName)— removes the individual initName with all
its assertions.

– CreateConnections(initName, receivers) — has as a result addition of
sequence of sendsTo role assertions between initiator initName and the
agents in the receivers. The action can be refused if the initiator type
does not match with responders of any agent.

– DestroyConnections(initName, receivers) — removes all such asser-
tions.

4.2 Matchmaking of Agents and Groups

The query engine of the model containing current MAS state is employed as
a service for agents, which want to find suitable partners in the system for
collaboration. The agents are also able to relate to the system by means of
social concepts, e.g. groups or roles. The matchmaking requests of agents or
groups are transformed by the OA into SPARQL queries [20] and executed on
the inferred model.

The concept getAgent(grpName, responderTypes, role) specifies proper-
ties of demanded agent, i.e. the group it should be member of, list of communica-
tion types it should handle, and its role. For example, the matchmaking problem
of finding of computing agent (i.e. has a type of CompAgent), which is member
of group g, is converted to the following SPARQL query over the inferred A-Box
of the model:

SELECT ?Agent WHERE {

?Agent rdf:type CompAgent.

?Agent isMemberOf g.

}

The ontology agent sends back in the inform message the list of agents matching
with these properties.

Likewise, the request getGroup(grpType) returns list of groups in the MAS
with specified type grpType.



34 O. Kaźık and R. Neruda

5 Conclusions

In order to support the real-world data-mining processes, the models of compu-
tational group, data group, search group, and pre-processing agent have been
included. The computational agent can stand for whole computational group and
realize various ensemble methods. The meta-learning scenario as well as external
learning can be described and implemented in this model by means of general
search schema. The proposed model of pre-processing also allows defining chains
of pre-processing agents gradually solving the input data inconsistencies.

The ontology agent representing the model of current MAS state has been
implemented. The ontology agent allows general management, correctness veri-
fication and matchmaking of the MAS with concepts of agents, roles and groups.
For this purpose, reasoning and querying of the DL model is employed.

Both the deduction axioms and integrity constraints are defined in the same
formalism of OWL-DL with distinction of open-world and closed-world assump-
tions. So far, some of these ideas have been incorporated into an existing agent-
oriented data-mining system [13] with promising results.

In comparison with other role based models, the proposed model supports
analysis, design and implementation phase of development. Moreover it defines it
in a formal model of the OWL-DL standard. This allows including of automated
reasoning methods, and utilizing them in run-time management.

Further research will be put in ontology classification of computational meth-
ods, their parameters and input data. This model will broaden the possibilities of
the model to express the computational MAS dynamics. This unified model will
support the construction of computational MAS according to a demanded task,
finding suitable methods and agents in the system, and possibly its visualization.

Acknowledgments. Ondřej Kaźık has been supported by the Charles Uni-
versity Grant Agency project no. 629612 and by the SVV project no. 265314.
Roman Neruda has been supported by the Czech Science Foundation project no.
P202/11/1368.

References

1. Albashiri, K.A., Coenen, F.: Agent-Enriched Data Mining Using an Extendable
Framework. In: Cao, L., Gorodetsky, V., Liu, J., Weiss, G., Yu, P.S. (eds.) ADMI
2009. LNCS, vol. 5680, pp. 53–68. Springer, Heidelberg (2009)

2. Baader, F., et al.: The description logic handbook: Theory, implementation, and
applications. Cambridge University Press (2003)

3. Bellifemine, F., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. John Wiley and Sons (2007)

4. Berthold, M.R., et al.: KNIME: The konstanz information miner. In: Data Analysis,
Machine Learning and Applications. Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 319–326. Springer (2008)

5. Bonissone, P.: Soft computing: the convergence of emerging reasoning technologies.
Soft Computing - A Fusion of Foundations, Methodologies and Applications, pp.
6–18 (1997)



Role-Based Management and Matchmaking in Data-Mining MAS 35

6. Cabri, G., Ferrari, L., Leonardi, L.: Agent role-based collaboration and coordina-
tion: a survey about existing approaches. In: Proc. of the Man and Cybernetics
Conf. (2004)

7. Cabri, G., Ferrari, L., Leonardi, L.: Supporting the Development of Multi-agent
Interactions Via Roles. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS,
vol. 3950, pp. 154–166. Springer, Heidelberg (2006)

8. Cao, L.: Data Mining and Multi-agent Integration. Springer (2009)
9. Cao, L., Gorodetsky, V., Mitkas, P.A.: Agent mining: The synergy of agents and

data mining. IEEE Intelligent Systems 24, 64–72 (2009)
10. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An Orga-

nizational View of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J.
(eds.) AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

11. Gibert, K., et al.: On the role of pre and post-processing in environmental data
mining. In: International Congress on Environmental Modelling and Software – 4th
Biennial Meeting, pp. 1937–1958 (2008)

12. Gilat, A.: MATLAB: An Introduction with Applications, 2nd edn. John Wiley and
Sons (2004)

13. Kaźık, O., Pešková, K., Pilát, M., Neruda, R.: Implementation of parameter space
search for meta learning in a data-mining multi-agent system. In: ICMLA, vol. 2,
pp. 366–369. IEEE Computer Society (2011)

14. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuin-
ness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara,
K.: Bringing Semantics to Web Services: The OWL-S Approach. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidel-
berg (2005)

15. Neruda, R.: Emerging Hybrid Computational Models. In: Huang, D.-S., Li, K.,
Irwin, G.W. (eds.) ICIC 2006. LNCS (LNAI), vol. 4114, pp. 379–389. Springer,
Heidelberg (2006)

16. Neruda, R., Beuster, G.: Toward dynamic generation of computational agents by
means of logical descriptions. International Transactions on Systems Science and
Applications, 139–144 (2008)

17. Neruda, R., Kaźık, O.: Role-based design of computational intelligence multi-agent
system. In: MEDES 2010, pp. 95–101 (2010)

18. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Tech. rep.,
W3C (2006)

19. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World
Wide Web 5(2), 51–53 (2007)

20. Sirin, E., Tao, J.: Towards integrity constraints in OWL. In: OWLED. CEUR
Workshop Proceedings, vol. 529 (2009)

21. Soares, C., Brazdil, P.B.: Zoomed Ranking: Selection of Classification Algorithms
Based on Relevant Performance Information. In: Zighed, D.A., Komorowski, J.,
Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126–135. Springer,
Heidelberg (2000)

22. Teetor, P.: R Cookbook. O’Reilly (2011)
23. Weiss, G. (ed.): Multiagent Systems. MIT Press (1999)
24. Wolpert, D.H., Macready, W.G.: No free lunch theorems for search. Tech. rep.,

Santa Fe Institute (1995)
25. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3(3), 285–312 (2000)


	Role-Based Management and Matchmaking in Data-Mining Multi-Agent Systems
	Introduction
	Role Model of Computational MAS Scenario
	Description Logic Model of Computational MAS
	Management of the Model
	Actions in the Model
	Matchmaking of Agents and Groups

	Conclusions
	References




