Querying Process Models Repositories by Aggregated
Graph Search

Sherif Sakr', Ahmed Awad?, and Matthias Kunze?

! National ICT Australia (NICTA) and University of New South Wales, Australia
ssakr@cse.unsw.edu.au
2 Faculty of Computers and Information, Cairo University, Egypt
a.gaafar@fci-cu.edu.eg
3 Hasso-Plattner-Institute, University of Potsdam, Germany
matthias.kunze@hpi.uni-potsdam.de

Abstract. Business process modeling is essential in any process improvement
project. Yet, it is a time consuming and an error-prone step. With a rapidly in-
creasing number of process models developed by different process designers, it
becomes crucial for business process designers to reuse knowledge existing in
model repositories, e.g., to find solutions for a recurring situation. Process model
querying provides powerful means to address this situation. However, current ap-
proaches fail if no single process model satisfies all constraints of a query.

In this paper, we present a novel approach for querying business process mod-
els repositories, where a query is decomposed into several subqueries. Each sub-
query is then used to obtain matching fragments from process models stored in
the repository. New process models are constructed from these fragments, which
may originate from different process models. By this, several processes are assem-
bled from matching fragments and presented to the process designer as a ranked
list. The main advantage of our approach is that the designer does not need to
specify the subqueries, as they are derived automatically.

Keywords: Business process design, Reuse, Querying business processes, Pro-
cess model composition.

1 Introduction

Business Process Management (BPM) aims at the automated support and coordina-
tion of business in an integrated manner by capturing, implementing, controlling, and
evaluating all activities taking place in an environment that defines the enterprise [1]].
Business process modeling is an essential first step in the business process engineering
chain, as they enable a better understanding of the organization’s operations by facili-
tating communication between business analysts and IT experts.

In general, designing a new business process model is a tedious and error-prone task
that requires identifying the activities that need to be performed, ordering of their ex-
ecution, handling exceptional cases that can occur, etc. Therefore, in any organization,
business process models represent a main source of business knowledge, typically scat-
tered among several IT systems, business documents, and the minds of involved people.
This knowledge is usually reused each time a process model is created or updated, how-
ever, in an ad-hoc and generally uncontrolled fashion. Thus, it is of great value to have

M. La Rosa and P. Soffer (Eds.): BPM 2012 Workshops, LNBIP 132, pp. 573-585] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

574 S. Sakr, A. Awad, and M. Kunze

systematic, flexible, and effective mechanisms to query and reuse the available knowl-
edge of process model repositories to reduce time and effort, and improve the quality
newly designed business process model.

Business process repositories have been developed along with techniques to access
models, and associate them with metadata [2J3]]. While search and retrieval of pro-
cess models are largely based on keyword and full text search, certain approaches to
effectively query process models according to their semantics have been proposed re-
cently [4J516]]. Based on the same notion of a query that is formulated to search a process
repositories, these approaches fail, if no single process model satisfies all constraints in
the query, i.e., they return no result.

In this paper, we present a novel approach for querying business process models,
where the answer of a query graph can be assembled of fragments from different pro-
cess models, when a single process model can not satisfy all the query constraints. Here,
business process designers are enabled to compose new process models by reusing mul-
tiple fragments from different process models. The main advantage of our approach
is that the designer does not need to specify components of the query, which shall be
mapped to fragments in matched process models. Instead, the query is decomposed au-
tomatically into subqueries and each subquery is matched against the process model
repository to retrieve matching fragments. The retrieved fragments are then combined
to provide answers matching the query in form of a ranked list, from which the designer
can select.

We implemented a proof of concept of our approach top of existing software, namely
the open modeling platform Oryx [2] and the BPMN-Q query language [4/7/8]. BPMN-Q
is a visual query language that closely resembles BPMN and thus, facilitates formulat-
ing queries even for non-technical users and novices in a business domain. The benefits
of this approach is that it enables designing new process models by reusing fragments
from several existing process models, by automatic query decomposition and match-
ing on a fine-granular level of process fragments; hence, effectively reducing time and
effort, while improving the quality and maturity of newly designed processes.

The remainder of this paper is organized as follows. We lay out the basics of business
process models and BPMN-Q in Section Pl before Section[3introduces our approach of
querying graph-based repositories by aggregated graph search. Section] describes the
mechanism to decompose the process model query and to aggregate matching process
model fragments to form the query answers. An architectural overview of the imple-
mentation is provided in Section 3l Related work is discussed in Section [6] before we
conclude the paper in Section[7l

2 Preliminaries

This section formally introduces process modeling and querying, which form the ground-
work for our approach.

2.1 Business Process Modeling

Currently, there is a number of business process modeling languages, e.g., BPMN, EPC,
YAWL, and UML Activity Diagram. Despite the variance in their concrete syntax and
expressiveness, they all share the common concepts of tasks, events, gateways (or rout-
ing nodes), artifacts, and resources, as well as relations between them, such as control

Querying Process Models Repositories by Aggregated Graph Search 575

flow. Without loss of generality, we can abstract from particular node types as their exe-
cution semantics are not vital to structural query matching, which is rather based on the
concept of a process model graph.

Definition 1 (Process Model). A process model P is a connected graph (N, E), where
N is a non-empty set of control flow nodes and E C N x N a nonempty set of directed
control flow edges where en (ne) stands for the set of immediate predecessor (succes-
sor) nodes of n € N.

A process model has exactly one start event Ngiqrt € N with no incoming and at
least one outgoing control flow edge, i.e., | ® Ngiart| = O A [Ngiart ® | > 1, and exactly
one end event nenq € N with at least one incoming and no outgoing control flow edge,
i.e,|®nend| > 1A |nenq | = 0. Each other control flow node n € N \ {nstart, Nend }
is on a path from Nggqrt 10 Nend.

A connected sub-graph of a process model is a process model fragment. We refer to a
specific type of process model fragments that have a single entry node and a single exit
node [9] as process model components.

Definition 2 (Process Model Component). A connected subgraph (N', E') of a pro-
cess model (N, E), where N' € N,E' € E, is a process model component PC' iff
it has exactly one incoming boundary node n;, € N', i.e., en;,, C N\ N’ and one
outgoing boundary node noy: € N, i.e., noyre C N\ N'.

2.2 Business Process Model Querying

Based on the definition of process models and process model components, we intro-
duce the concept of process model queries as a means to obtain process components
from a collection of business processes models by structurally matching a query to
each of them. BPMN-Q is a visual process model query language designed to help
business process designers access repositories of business process models [4]. The lan-
guage supports querying the control flow aspects of business process models. Moreover,
it introduces new abstraction concepts that are useful for various querying scenarios.

Definition 3 (BPMN-Q Query). A BPMN-Q query is a tuple
Q = (QC, QCF,QP,isAnonymous) where:
— QC! is a finite set of control flow nodes in a query,
- QCF C QC x QC is the control flow relation between control nodes in a query,
- QP C QC x QC is the path relation between control nodes in a query,
- isAnonymous : QC — {true, false} is a function that determines whether con-
trol flow nodes of a query are anonymous.

Matching Queries to Process Models. A BPMN-Q query is matched to a candidate
process model via a set of refinements to the query. With each refinement nodes (edges)
in a query are replaced with the corresponding nodes (edges) of the matching process
model. If one node can have more than one possible replacement within the process
model, a new, refined copy of the query is created for each possible replacement. We
call the replacement a resolution of an element of the query. Fig. [1l shows a sample
BPMN-Q query along with a match to a process model, highlighted in grey. The query
represents a path edge which connects two nodes, A and D, and returns the set of nodes
that could exist in between these two nodes in the matching process model.

576 S. Sakr, A. Awad, and M. Kunze

Fig. 1. An example BPMN-Q query with a match to a process model

Basically, the BPMN-Q query processor looks for exact matches of labels of activ-
ities in a query with those in the candidate process model. However, in practice, pro-
cess modelers do not follow a strict naming scheme for activity labels. Thus, the query
would find a small set of matching processes. To tackle this problem, we employed
information retrieval techniques to automate the discovery of semantically similar ac-
tivities [10]. The BPMN-Q query gets modified by substituting each of its activities with
similar ones. With such a substitution step, new BPMN-Q query graphs are generated
to constitute an expanded BPMN-Q query set.

Process components matching a query model will have a similarity score assigned
ranging from O to 1. A similarity score of 1 indicates an exact match between the query
and the process. Lower similarity scores indicate that a match was found between a
semantically similar query and the process model. For more details about the BPMN-Q
query language and its similarity matching mechanism, we refer the reader to [4/10/11]].

3 Querying Process Models By Aggregated Search

The approach presented in this paper is based on the notion of aggregated graph
search [12], where the answer of a process model query can be represented as an aggre-
gation of process model fragments from multiple process models which are stored in
the process model repository.

Definition 4 (Process Model Aggregated Search). Given a process model query q
and a process model repository R = {My, Ma, ..., M}, the problem of aggregated
search of a process model query is to find a set of process models S C R for which
the joining of the matching process model fragments Fir, , F,, ..., Far, from process
models My, Ms, ..., My € S respectively, Fpr, W Fiyr, X ... X Fap,, leads to the
answer of the process model query q.

Fig. 2] shows a BPMN-Q query example which requires containment of an activity
“Check document” that is immediately followed by an activity “Verify customer record”
and two path edges from the latter activity to “Assess risk” and “Open savings account”
respectively. Let us assume that the process model repository consists of the two pro-
cess models which are shown in Fig. Bl Matching the BPMN-Q query to each process
model separately fails to find any match. In particular, query evaluation against process
model P1 fails because there is no path from activity “Verify customer record” to the
“Assess risk” activity. Similarly, the query evaluation against process model P2 fails be-

Querying Process Models Repositories by Aggregated Graph Search 577

_”
Check Verify
documents customer
record
Open

— // savings
account

Fig.2. An example BPMN-Q query

Verify Request
(Cneck castoner e
record satement

P2 Request
Verify : Redquest
Receive loan Check credit report
customer income Assess risk
O"[application documents gl ﬁ'c;rgel:cn;\g Jhadio

Waive

account fee
44
X X

Receive savings
account
application

Open
savings
account

Approve
loan

Fig. 3. Two process models to query

cause there is no path from activity “Verify customer record” to activity “Open savings
account’.

With our aggregation-based query approach, the query is not only matched collec-
tively to each single process model, but the original BPMN-Q query is decomposed
into subqueries which are matched individually against process models and the results
of these sub-queries are aggregated to form the query answers.

4 Query Decomposition and Fragments Aggregation

This section introduces our approach towards above scenario, where a query is not
met by a single process model, whereas subqueries can successfully be matched and
returned fragments are aggregated into a newly designed process model.

4.1 BPMN-Q Query Decomposition

First, we focus on the decomposition of BPMN-Q query graphs. In particular, given an
input BPMN-Q query g, we decompose the query graph into two sets of subqueries:

1. A set of static subqueries Stat(): where each static query represents a set of query
nodes with static labels which are connected with direct flow edges.

2. A set of dynamic subqueries Dyna(): where each dynamic query contains at least
one dynamic query element, e.g., anonymous node or path edge, in addition to a
static join point with another subquery.

578 S. Sakr, A. Awad, and M. Kunze

Algorithm 1. Decomposition Process of a BPMN-Q Query

Require: BPMN-Q Query: g,
Ensure: A Set of Static Sub-queries: StatQ
A Set of Dynamic Sub-queries: Dyna@
A Set of Join Points: JP
. Split Points:= IdentifyQuerySplitPoints(q);

1
2: StatQ:= DetectConnectedStaticNodes(q);
3: forall P € SplitPoints do
4. ifA(Q € DynaQ | P € Q) then
S5: if P.Type == AnonymousActivity OR P.Type == GenericNode then
6: if P HasIncomingEdges AND P.HasOutgoingEdges then
7: DQ@Q1:= TraverseBackwardToFirstStaticPoint(P);
8: D(@Q2:= TraverseForwardToFirstStaticPoint(P);
9: Dyna@Q.Add(DQ1);
10: DynaQ.Add(DQ2);
11: JP.Add(P);
12: else if P.HasIncomingEdges AND NOT P.HasOutgoingEdges then
13: Join Point:= GetFirstStaticPointByBackwardTraversal(P);
14: DQ:= TraverseBackwardToFirstStaticPoint(P);
15: DynaQ.Add(DQ);
16: JP.Add(Join Point);
17: else if P.HasOutgoingEdges AND NOT P.HasIncomingEdges then
18: Join Point:= GetFirstStaticPointByForwardTraversal(P);
19: DQ:= TraverseForwardToFirstStaticPoint(P);
20: DynaQ.Add(DQ);
21: JP.Add(Join Point);
22: end if
23: else if P.Type == PathEdge then
24: Join Point:= GetFirstStaticPointByBackwardTraversal(P);
25: EndPoint:= GetFirstStaticPointByForwardTraversal(P);
26: DQ:= SubGraph(JoinPoint, EndPoint);
27: JP.Add(Join Point);
28: end if
29: end if
30: end for

31: forall Q € DynaQ do
32: if Q.HasNoStaticNodes then

33: ExtendQuerySubgraphToIncludeStaticNode(Q);
34: J P Replace(Q.OriginalJoinPoint,Q .NewStaticNode);
35: end if

36: end for

37: return StatQ, DynaQ, JP;

Algorithm [T] describes the steps of our BPMN-Q query decomposition mechanism. We
start by identifying the set of split points of the input BPMN-Q query (Line 1). In
particular, we specify the split points in a BPMN-Q query by the existence of any of the
following BPMN-Q language constructs [4].

Anonymous Node. These nodes resemble activity nodes, but are distinguished by the
(@) sign at the beginning of the node label. This query construct is used to allow
usage of unknown activities in a query.

Path Edge. This query construct states that there must be a path from the source activ-
ity A to the destination activity B where the path edge is bound to all nodes and
edges between the two nodes.

After determining the set of the split points, the set of decomposed static sub-queries
(Stat@) is determined by identifying each set of nodes in the input query which have
static labels and are connected by direct flow edges (Line 2). It should be noted that

Querying Process Models Repositories by Aggregated Graph Search 579

static queries cannot contain any of the identified query split points. In addition, a static
nodes of the input query cannot be included in more than one decomposed static query.
The set of dynamic decomposed queries (Dyna@) is specified based on the identified
query split points as follows:

— If the split node is of the type anonymous node, then the dynamic queries are spec-
ified according to the following conditions:

o If the split node, SN, has incoming edges and outgoing edges, then two dy-
namic queries are constructed (Lines 6 to 11).

The first dynamic query, D@1, is constructed by traversing the query graph
backwardly starting from the split point to the first node, ST'1, with a static
label or until no further nodes can be reached. The query subgraph that includes
the split point SN and ST'1 represents DQ1.

Similarly, DQ?2 is constructed by traversing the query graph forwardly to
the first node, ST'2, with a static label or until no further nodes can be reached.
The query subgraph that includes the split point SN and ST'2 represents DQ)2.
In this case, the split node (SNV) represents the join point between D@1 and
DQ2.

o If the split node, SNV, has only incoming edges but no outgoing edges, then one
dynamic query is constructed (Lines 12 to 16) by traversing the query graph
backwardly starting from the split point to the first node, ST, with a static
label. The query subgraph that includes the split point, SN, and ST represents
DQ. The static node, ST, represents the join point between D() and the (static
or dynamic) query to which ST belongs.

o If the split node, SN, has only outgoing edges but no incoming edges, then
also one dynamic query is constructed (Lines 17 to 21) by traversing the query
graph forwardly starting from the split point to the first node, S7°, with a static
label, to construct D). Also in this case, the static node, ST, represents the join
point between D@ and the (static or dynamic) query to which ST belongs.

— If the split node is of the type path edge, then one dynamic query is specified (Lines
23 to 27) by traversing the query graph backwardly starting from the source node of
the path edge to the first node, S7'1, with a static label and then traversing the query
graph forwardly starting from the destination node of the path edge to the first node,
ST2, with a static label. The dynamic query, D@, represents the subgraph between
ST1 and ST2, where ST1 represents the join point between D(and the query to
which the node ST'1 belongs.

The last step of our decomposition process is to verify that each dynamic sub-query has
at least one node with a static label. It could occur that the dynamic query is generated
with no static node if the traversal from the split point backwardly or forwardly stops
by reaching a start or end node. If any sub-query fails to satisfy this condition, then it
is expanded from its join point forwardly or backwardly until the first reachable static
point and the join point is correspondingly adjusted (Lines 30 to 35). There will be no
decomposition case if the input query does not have any node with a static label. It
should be noted that each split point can be only included in one dynamic sub-query
(Line 4).

580 S. Sakr, A. Awad, and M. Kunze

Query execution starts by matching each query in the set of static sub-queries (StatQ)
against the process model repository. In principle, the evaluation process of static sub-
queries represent the traditional subgraph query matching problem, where exact or ap-
proximate means can be applied. The search process terminates if any of the decom-
posed static sub-queries has no match. Otherwise, query execution continues to evaluate
each query in the set of dynamic sub-queries (DynaQ@).

The results of both, static and dynamic, sub-queries, which may originate from differ-
ent process models, are then joined to form the aggregated answer of the input query q.
Fig.[@(a))illustrates the static and dynamic sub-queries from the decomposed BPMN-Q
query of Fig.[2l Fig.[4(b)]illustrates an aggregated query answer that combines process
model fragments from the two process models which are presented in Fig.[3l

4.2 Aggregating the Process Model Fragments

The main task of a query processor is to evaluate the BPMN-Q queries of the decom-
posed static or dynamic sub-queries, which are discovered according to the decompo-
sition process of Section 4]l against the process model repository. For each BPMN-Q
sub-query, a result set is returned that comprises matched process model components.
These matched components could represent exact or similar matches for the query mod-
els, cf. Section[2.2] In case of similar matches, each matched process model component
is then attached with its similarity score (5'5), which is computed during the query eval-
uation process. In case of an exact match, the value of this similarity score is equal to 1
for each matched component of the result set [[LO].

From multiple matched components for each sub-query, which usually belong to
different process models, follows that we can have several possible aggregation results
that originate from distinct process models. Each potentially aggregated result needs
to include exactly one component from the answer set of each sub-query. Clearly, it
is inconvenient for process designers to go through this potentially very large list of
aggregated models to select among them.

Therefore, the set of possible aggregated results are ranked according to various
criteria, applying a ranking process that starts by initially ranking the matched process
model components inside the answer set of each query based on their similarity scores.
Then, it computes a ranking score for each possible aggregated model, by a number of

Request
credit report
from rating

agency

Request
income Assess risk
satement

Verify

Check

=
record

Open
savings
account

Request
income
satement

Waive
account fee
44
& &

(a) Query Decomposition (b) Aggregated Query Answer

Fig. 4. BPMN-Q Query Decomposition and Aggregated Search for Business Process Models

Querying Process Models Repositories by Aggregated Graph Search 581

elementary aggregation scores. In the following we describe two basic scores, further
measures that also incorporate meta data are discussed in [13].

Combined Similarity Matching Score (CS). This score multiplies the respective sim-
ilarity scores S.S of each aggregated model component mc; with regards to the
matched sub-query

CS(cep) =TT, SS(mc;)

where n represents the number of the model components.

Homogeneity Score (HS). Model components that originate from the same process
model shall be preferred over those that stem from different models to increase a
result model’s homogeneity and consistency. The pair homogeneity score, PH.S,
computes the homogeneity of each unique pair (mc;, me;) of the model compo-
nents by their origin:

PHS(mc;,me;) = {

0 if the original models of the pair are different
1 if the original models of the pair are the same

In general, the number of unique different pairs n is equal to C(C; D where ¢ is
the number of process model components. The homogeneity score of an aggregate
model is then computed bj

HS(cep) = iz PHS(udp;)

n

where udp represent a unique pair of model components (mc;, mc;) and n repre-
sent the total number of unique different pairs.

The final ranking score of a candidate aggregated model is computed by the weighted
sum of the elementary scores above,

FinalScore(cep) = wy * CS(cep) + wa x HS(cep)

where w; represents a weighting factor for a scoring element which can be configured
and adjusted by the end-user, while w; + w2 = 1. Initially, process designers can rely
on a uniform regression parameter where all weighting factors have the same value, i.e.,
w; = 0.5. With the continuous usage of the system, workload data can be gathered
to generate significant training datasets that can be used as an input for a regression
analysis process to deduce optimized weighting factors [14]].

5 Framework Architecture

In this section, we describe the architecture of our implementation for the aggregated
graph search framework for querying repositories of business process models, illus-
trated in Fig.[3l which consists of the following main components.

Process Model Repository. Instead of building our approach on top of a proprietary
repository, it shall be connected to several, potentially disparate repositories, obtain
and maintain process models stored remotely. Repositories do not only store mod-
els [15]], but also a set of metadata, which can be used for aggregation and ranking.

582

S. Sakr, A. Awad, and M. Kunze

R
Ov

Process Modeling and Querying Environment |

o)

i

Client

query results

Query Decomposer
T

Fragments Aggregator |

Query

Process
Model

Processor

Process Model
)

Indexer

Server

HTTP

Internal Storage

| Uniform Language Interface |

o o o

| Repository, | | Repository, | Repository,

HTTP

Fig. 5. Framework Architecture

Query Processor & Process Model Indexes. The query processor evaluates queries
received from the query interface [[7]. It provides support for relaxation and refine-
ment of user queries. In case the queries do not return sufficient results, the query
processor is able to relax the query according to some similarity notions [10/16]. In
order to further improve the searching, process models could be indexed upfront to
expedite query evaluations [17].

Process Modeling and Querying Environment. provides the process designer with a
user-friendly modeling and querying interface [2]]. Users express their queries using
the BPMN-Q language [4]. The query decomposer identifies the candidate decom-
posed sub-queries, cf. Section]l and passes them to the query processor. The
returned set of process model fragments for each query will then be combined and
aggregated by the fragment aggregator and return a ranked list of aggregated pro-
cess models as a result of the input query, cf. Sectiond.2]

The process modeling environment of our framework is the Oryx editor, an extensible
process modeling platform for research, designed to model and manage process models
online [2]]. The Query interface and query processor for BPMN-Q [4l7] components
have been implemented as plugins to the Oryx editor and are able to run process model
queries against the Oryx online process model repository. The query decomposer and
fragment aggregator components are implemented as plugins to the Oryx editor that
uses the BPMN-Q query processor to evaluate the results of each decomposed query and
then returns the ranked aggregations to the end-user. Our architecture acknowledges the
existence of a multitude of different process model repositories, which is the rationale
behind the decoupling of a process modeling, querying, and aggregation components
from a particular process model repository.

Querying Process Models Repositories by Aggregated Graph Search 583

6 Related Work

Business process model search is a vivid topic among researchers and has attracted many
solutions that can generally be distinguished in similarity search and process model
querying [18]. An essential aspect of comparing processes is the alignment of process
nodes [19]. That s, to discover relationships in one process model and map them to a sec-
ond one, corresponding nodes must be discovered first. In most cases simple techniques
such as string edit distance, n-grams, etc have been used. More complex techniques ad-
dress one-to-many and many-to-many alignments to compensate for different levels of
model granularity [19120]. While we rely on simple, i.e., one-to-one, mappings to keep
the paper concise, also complex mappings could be employed in our case.

With regards to to address process model similarity search, different structural tech-
niques have been applied. For instance, in [16] the graph-edit-distance was used to
assess how much two process graphs resemble each other; graph homomorphisms have
been used to find models that embrace a given query model [21]. More sophisticated
approaches address path resolution in graphs, i.e., if two nodes in a query model are con-
nected by an edge, there must exist a path consisting of edges and nodes that connects
correlating nodes in the stored models. Examples are BP-QL [5] which is restricted to
BPEL and uses XML to formulate queries, IPM-QL that requires a custom XML rep-
resentation for models and query, and BPMN-Q [4] where a visual query language that
resembles the BPMN notation has been proposed for process model querying. The work
presented in this paper, leverages BPMN-Q. Further querying approaches addressed be-
havior [22/23] or ontological information [6]]. In principle, our approach is fully agnos-
tic with respect to integrating and reusing any similarity matching technique for process
models into the query processor component.

None of these works addressed decomposing a query into several fragments, query-
ing stored process models with each of these fragments, and constructing of a new
model from matches that originate from different models. In earlier work [[13]], we have
presented an approach for reusing process model components based on the notion of
a partial process model which consists of static and dynamic components. The static
components represent the concrete aspects of the process model, while the dynamic
components are BPMN-Q queries explicitly defined by a user. Upon search, each dy-
namic component is matched against models in the repository and returned fragments
are to be embedded in the overall process, thus completing the static components.

Here, we develop our approach one step further, such that the specification of static
and dynamic components are provided automatically without any user involvement.
The idea of aggregated graph search has been introduced for the basic exact subgraph
matching problem in [12], where the authors present a decomposition of labelled, di-
rected graphs into a relational data schema and means to efficiently query this knowl-
edge by means of SQL. However, the decomposition of a BPMN-Q query is more
complex, as the graphs comprise advanced semantics, i.e., different node types must
be distinguished during search along with the generic node type that is kind of a wild
card; matching of nodes must address the anonymous activity. Further, BPMN-Q pro-
vides path-edges that may resolve to a path consisting of several edges in a model to
be matched. Hence, more sophisticated means are required to decompose, store, and
retrieve models, and aggregate matched fragments.

584 S. Sakr, A. Awad, and M. Kunze

7 Conclusion

In this paper, we introduced a new approach for querying and reusing knowledge con-
tained in business process model repositories. In this approach, the answer of a process
model query can be represented as an assembly of different process model fragments
from multiple process models, when a single process model can not satisfy all the query
constraints. To achieve this, the query is automatically decomposed into several sub-
queries and the results of each sub-query—fragments of matched process models in the
repository—are aggregated to form a new process model that satisfies the query. A list
of possible aggregations is ranked in order to provide the business process designer with
the closest answers for his query.

This approach provides several benefits by reusing materialized business knowledge
which is available in existing process model repositories. The reuse is not only on the
level of a whole process model, but rather on a finer grained level, i.e., process model
fragments. The approach automatically and flexibly collects components from different
process models. Therefore, the approach can effectively reduce the time and effort of the
business process modeling task. It can also effectively improve the quality and maturity
of the newly developed business process models.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Heidelberg (2007)

2. Decker, G., Overdick, H., Weske, M.: Oryx — Sharing Conceptual Models on the Web. In:
Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 536-537.
Springer, Heidelberg (2008)

3. Rosa, M.L., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas,
M., Garcia-Bafiuelos, L.: APROMORE: An advanced process model repository. Expert Syst.
Appl. 38(6), 7029-7040 (2011)

4. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA (2007)

5. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL.
Inf. Syst. 33(6), 477-507 (2008)

6. Markovic, I.: Advanced querying and reasoning on business process models. In: BIS (2008)

7. Sakr, S., Awad, A.: A framework for querying graph-based business process models. In:
WWW (2010)

8. Awad, A., Sakr, S.: Querying Graph-Based Repositories of Business Process Models. In:
Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010.
LNCS, vol. 6193, pp. 33-44. Springer, Heidelberg (2010)

9. Vanhatalo, J., Volzer, H., Koehler, J.: The Refined Process Structure Tree. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100-115. Springer, Hei-
delberg (2008)

10. Awad, A., Polyvyanyy, A., Weske, M.: Semantic Querying of Business Process Models. In:
EDOC (2008)

11. Laue, R., Awad, A.: Visual suggestions for improvements in business process diagrams. J.
Vis. Lang. Comput. 22(5), 385-399 (2011)

12. Le, T.-H., Elghazel, H., Hacid, M.-S.: A Relational-Based Approach for Aggregated Search
in Graph Databases. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012, Part I. LNCS, vol. 7238, pp. 33-47. Springer, Heidelberg (2012)

15.
16.

19.

20.

21.

22.

23.

Querying Process Models Repositories by Aggregated Graph Search 585

. Awad, A., Sakr, S., Kunze, M., Weske, M.: Design by Selection: A Reuse-Based Approach

for Business Process Modeling. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011.
LNCS, vol. 6998, pp. 332-345. Springer, Heidelberg (2011)

. Hwang, C., Hong, D.H., Seok, K.: Support vector interval regression machine for crisp input

and output data. Fuzzy Sets and Systems 157(8) (2006)

Bernstein, P., Dayal, U.: An overview of repository technology. In: VLDB (1994)

Dijkman, R., Dumas, M., Garcia-Bafiuelos, L.: Graph Matching Algorithms for Business
Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.)
BPM 2009. LNCS, vol. 5701, pp. 48-63. Springer, Heidelberg (2009)

. Sakr, S.: GraphREL: A Decomposition-Based and Selectivity-Aware Relational Framework

for Processing Sub-graph Queries. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DAS-
FAA 2009. LNCS, vol. 5463, pp. 123-137. Springer, Heidelberg (2009)

. Dijkman, R.M., Rosa, M.L., Reijers, H.A.: Managing large collections of business process

models - current techniques and challenges. Computers in Industry 63(2), 91-97 (2012)
Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of Correspon-
dences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
483-498. Springer, Heidelberg (2010)

Dijkman, R., Dumas, M., Garcia-Banuelos, L., Kaarik, R.: Aligning Business Process Mod-
els. In: EDOC (2009)

Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral Matchmaking for Service Retrieval.
In: ICWS (2006)

Jin, T., Wang, J., Wen, L.: Querying Business Process Models Based on Semantics. In: Yu,
J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 164-178.
Springer, Heidelberg (2011)

Kunze, M., Weske, M.: Local Behavior Similarity. In: Bider, 1., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) EMMSAD 2012 and BPMDS
2012. LNBIP, vol. 113, pp. 107-120. Springer, Heidelberg (2012)

	Querying Process Models Repositories by Aggregated
Graph Search
	Introduction
	Preliminaries
	Business Process Modeling
	Business Process Model Querying

	Querying Process Models By Aggregated Search
	Query Decomposition and Fragments Aggregation
	BPMN-Q Query Decomposition
	Aggregating the Process Model Fragments

	Framework Architecture
	Related Work
	Conclusion
	References

