
From Petri Nets to Guard-Stage-Milestone

Models

Viara Popova and Marlon Dumas

Institute of Computer Science,
University of Tartu, J. Liivi 2,

Tartu 50409, Estonia
{viara.popova,marlon.dumas}@ut.ee

Abstract. Artifact-centric modeling is an approach for modeling busi-
ness processes based on business artifacts, i.e., entities that are central for
the company’s operations. Existing process mining methods usually focus
on traditional process-centric rather than artifact-centric models. Fur-
thermore, currently no methods exist for discovering models in Guard-
Stage-Milestone (GSM) notation from event logs. To bridge this gap, we
propose a method for translating Petri Net models into GSM which gives
the possibility to use the numerous existing algorithms for mining Petri
Nets for discovering the life cycles of single artifacts and then generating
GSM models.

Keywords: Artifact-Centric Modeling, Guard-Stage-Milestone, Petri
Nets, Process Mining.

1 Introduction

Artifact-centric modeling is a new promising approach for modeling business
processes based on the so-called business artifacts [2,9] - key entities driving the
company’s operations and whose life cycles define the overall business process.
An artifact type contains an information model with all data relevant for the
entities of that type as well as a life cycle model which specifies how the entity can
progress responding to events and undergoing transformations from its creation
until it is archived.

Most existing work on business artifacts has focused on the use of life cycle
models based on variants of finite state machines. Recently, a new approach was
introduced - the Guard-Stage-Milestone (GSM) meta-model [5,6] for artifact
life cycles which is more declarative than the finite state machine variants, and
supports hierarchy and parallelism within a single artifact instance.

Some of the advantages of GSM [5,6] are in the intuitive nature of the used
constructs which reflect the way stakeholders think about their business. Fur-
thermore, its hierarchical structure allows for a high-level, abstract view on the
operations while still being executable. It supports a wide range of process types,

M. La Rosa and P. Soffer (Eds.): BPM 2012 Workshops, LNBIP 132, pp. 340–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



From Petri Nets to GSM Models 341

from the highly prescriptive to the highly descriptive. It also provides a natu-
ral, modular structuring for specifying the overall behavior and constraints of a
model of business operations in terms of ECA-like rules.

Currently, GSM models are created manually which can require a lot of effort
and domain knowledge. The area of Process Mining focuses on developing meth-
ods for automatic discovery and analysis of process models such as conformance
checking, repair and so on. Most existing methods consider only process-centric
models, most often Petri Nets (PN) and no methods have been developed that
are applicable to GSM models. In order to bridge the gap, this paper proposes
a method for translating PN models to models in GSM. As a result, existing
methods can be applied for discovering the life cycles of the separate artifacts
which can then be represented as GSM models. Furthermore, manually created
PN can be translated to GSM which allows to explore and reuse existing model
libraries, case studies and domain knowledge.

The method presented in this paper is implemented as a software plug-in
for ProM, a generic open-source framework and architecture for implementing
process mining tools in a standard environment [13] which is the de facto industry
standard in process mining. The implementation is part of the ArtifactModeling
package which is available from www.processmining.org.

The paper is organized as follows. Section 2 introduces the case study used for
illustration. Section 3 gives a brief overview of the modeling approaches needed
for the presentation of the contribution of the paper. Sections 4, 5 and 6 introduce
the method for translating PN models to GSM proposed in this paper. Finally,
section 7 concludes the paper.

2 Case Study

As a case study we consider a model of an order-to-cash process as follows. The
process starts when the manufacturer receives a purchase order from a customer
for a product that needs to be manufactured. This product typically requires
multiple components or materials which need to be sourced from suppliers. To
keep track of this process, the manufacturer first creates the so-called work order
which includes multiple line items - one for each required component. Multiple
suppliers can supply the same materials thus the manufacturer needs to select
suppliers first then place a number of material orders to the selected ones.

Suppliers can accept or reject the orders. If an order is rejected by the supplier
then a new supplier is found for these components. If accepted, the order is
assembled and delivered and, in parallel, an invoice is sent to the manufacturer.
When all material orders for the same purchase order are received, the product
is assembled and delivered to the customer and an invoice is sent for it.

The customer can cancel a purchase order. The request for cancellation is for-
warded to the suppliers and assessed. If accepted, cancellation fee is determined,
otherwise the order is delivered and invoiced in full.

Figure 1 shows one way of modeling the order-to-cash example using Proclet
notation as will be described in the next section.



342 V. Popova and M. Dumas

3 Background

We first give the necessary background in order to present the PN to GSM
translation method by a very brief introduction to both modeling approaches.

Petri nets [8] are an established tool for modeling and analyzing workflow
processes. They have been used in a wide variety of contexts and a great number
of the developed process mining techniques assume or generate Petri Nets.

A PN is a directed bipartite graph with two types of nodes called places (rep-
resented by circles) and transitions (represented by rectangles) connected with
arcs. Intuitively, the transitions correspond to activities while the places are con-
ditions necessary for the activity to be executed. Transitions which correspond
to business-relevant activities observable in the actual execution of the process
will be called visible transitions, otherwise they are invisible transitions. A la-
beled PN is a net with a labeling function that assigns a label (name) for each
place and transition. Invisible transitions are assigned a special label τ .

An arc can only connect a place to a transition or a transition to a place. A
place p is called a pre-place of a transition t iff there exists a directed arc from
p to t. A place p is called a post-place of transition t iff there exists a directed
arc from t to p. Similarly we define a pre-transition and a post-transition to a
place.

At any time a place contains zero of more tokens. The current state of the PN
is the distribution of tokens over the places of the net. A transition t is enabled
iff each pre-place p of t contains at least one token. An enabled transition may
fire. If transition t fires, then t consumes one token from each pre-place p of t
and produces one token in each post-place p of t.

In order to use the PN notation for modeling artifact-centric systems, we need
a generalization of PN which reflects the artifact structure and interactions. For
this, Proclets [12] can be used as discussed in the following paragraphs.

A proclet P = (N, ports) is a labeled PN, which describes the internal life
cycle of one artifact, and a set of ports, through which P can communicate
with other proclets. Relations between several proclets are described in a proclet
system P = ({P1, . . . , Pn}, C) consisting of a set of proclets {P1, . . . , Pn} and
a set C of channels. Each channel (p, q) ∈ C connects two ports p and q of
two proclets of P which send and receive messages along these channels. The
channels also reflects the relations between entity types: annotations at the ports
define how many instances of a proclet interact with how many instances of
another proclet. Each half-round shape represents a port: the bow indicates the
direction of communication. A dashed line between 2 ports denotes a channel of
the system. Creation and termination of an artifact instance is expressed by a
respective transition, drawn in bold lines.

Fig. 1 shows one way of modeling the order-to-cash example as a proclet
system of two proclets that model artifacts PurchaseOrder and MaterialOrder.

Proclets are suitable for describing multi-artifact systems due to the anno-
tations 1, ?,+ in the ports [12]. The first annotation, called cardinality, spec-
ifies how many messages one proclet instance sends to (receives from) other
instances when the attached transition occurs. The second annotation,



From Petri Nets to GSM Models 343

Fig. 1. The Proclet model of the Order-to-Cash example

multiplicity, specifies how often this port is used in the lifetime of a proclet
instance. For example, the port of DetermineSuppliers has cardinality + and
multiplicity + denoting that a PurchaseOrder instance sends out one or more
messages with ordered items to multiple MaterialOrders and this can happen
once or multiple times in the lifetime of the PurchaseOrder instance.

In this paper we concentrate on the artifact life cycle rather than the commu-
nication between artifacts. Therefore we only consider single proclets which are
in fact Petri nets. In the rest of this paper we talk about translating Petri net
models to GSM models. All the results are in fact applicable for proclets and
thus for single artifact life cycle models.

The Guard-Stage-Milestone meta-model [5,6] provides a more declara-
tive approach for modeling artifact life cycles which allows a natural way for
representing hierarchy and parallelism within the same instance of an artifact
and between instances of different artifacts.



344 V. Popova and M. Dumas

The key GSM elements for representing the artifact life cycle are stages, guards
and milestones which are defined as follows.

Milestones correspond to business-relevant operational objectives, and are
achieved (and possibly invalidated) based on triggering events and/or condi-
tions over the information models of active artifact instances. Stages correspond
to clusters of activity preformed for, with or by an artifact instance intended
to achieve one of the milestones belonging to the stage. Guards control when
stages are activated, and, as with milestones, are based on triggering events
and/or conditions. A stage can have one or more guards and one or more mile-
stones. It becomes active (or open) when a guard becomes true and inactive (or
closed) when a milestone becomes true.

Furthermore, sentries are used in guards and milestones, to control when
stages open and when milestones are achieved or invalidated. Sentries represent
the triggering event type and/or a condition of the guards and milestones. The
events may be external or internal, and both the internal events and the condi-
tions may refer to the artifact instance under consideration, and to other artifact
instances in the artifact system.

4 Petri Nets to GSM Models - The General Approach

A straightforward approach to translating PNs to GSM models would proceed
as follows. The visible transitions of the PN represent activities which are part
of the business process. Therefore it is logical to represent them as atomic stages
where the activity corresponds to the task associated with the stage. The control
flow of the PN can then be encoded using the guards and milestones of these
stages.

It is possible to use an explicit representation of the places of the PN using a
collection of variables which will be part of the information model of the GSM
component. These variables will be assigned true or false simulating the presence
or absence of tokens in the places. This will be a relatively intuitive approach for
designers skilled in the PN notation. However we argue that this would make the
model less intuitive to the user and the relations between the tasks and stages
become implicit and not easy to trace. Here we take a different approach which
will be discussed in this section at a more general level and in the next sections
in more detail.

The intuition behind this approach is that the immediate ordering relations
between transitions in the PN are extracted, translated into conditions and com-
bined using appropriate logical operators (for AND- and OR-splits and joins)
into sentries which are then assigned to the guards. The milestones are assigned
sentries that depend on the execution of the task associated with the stage - a
milestone is achieved as soon as the task is executed and is invalidated when the
stage is re-opened.

As an example, consider the transition ResearchPO from the order-to-cash
model in Fig. 1. It can only be executed after the transition ConfirmPO has been
executed and there is a token in the connecting place. This can be represented



From Petri Nets to GSM Models 345

as a part of a GSM model in the following way. Both transitions are represented
by atomic stages. The guard of the stage ResearchPO has a sentry with expres-
sion (given here informally) “on ConfirmPOMilestone.achieved()” and will become
true when the event of achieving the milestone of stage ConfirmPO occurs. The
milestone of stage ResearchPO has a sentry “on ResearchPOTask.executed()” and
will become true when the associated task is executed. Similarly the milestone
of ConfirmPO has a sentry “on ConfirmPOTask.executed()”.

While this example is very straightforward, a number of factors can complicate
the sentries. Most importantly, we need to consider the possibility of revisiting
a stage multiple times - this can be the case when the corresponding transition
in the PN is part of a loop. Furthermore the transition might depend on the
execution of multiple pre-transitions together and this cannot be represented
using events - conditions need to be used instead. The conditions should express
the fact that new executions of the pre-transitions have occurred. This means
that the last execution of each relevant pre-transition occurred after the last
execution of the transition in focus but also after every “alternative” transition,
i.e., transition that is an alternative choice.

For example consider the transition CompletePO in Fig. 1 which can only fire
if both ShipProduct and SendInvoice have fired. While this is not part of the
model, imagine the hypothetical situation that CompletePO, ShipProduct and
SendInvoice were part of a loop and could be executed multiple times. Since a sen-
try cannot contain multiple events, the guard of CompletePO has to be expressed
by conditions instead. The näıve solution “if ShipProductTask.hasBeenExecuted()
and SendInvoiceTask.hasBeenExecuted()” which checks if the two tasks have been
executed in the past is not correct, since it becomes true the first time the ac-
tivities ShipProduct and SendInvoice were executed and cannot reflect any new
execution after that. We need a different expression to represent that new ex-
ecutions have occurred that have not yet triggered an execution of ConfirmPO.
This will be discussed in detail later in the next section.

Another factor that needs to be considered is the presence of invisible tran-
sitions, i.e., transitions without associated activity in the real world. For such
invisible transitions no stage will be generated. Therefore, in order to compose
the guard sentries, only visible pre-transitions should be considered. Thus we
need to backtrack in the PN until we reach a visible transition and “collect”
the relevant conditions of the branches we traverse. As an example, consider the
transition DetermineSuppliers in Fig. 1. It can fire multiple times - at first when
CreateWO has been executed and then every time the invisible pre-transition
represented by a black rectangle fires. We backtrack to find the pre-places of the
invisible transition and their pre-transitions. Here we determine that the only
such pre-transition is ReceiveSupplResponse and this branch has an associated
condition - we can only take this branch if the supplier rejects an order and a
new supplier has to be determined.

With all these considerations in mind, the resulting guard sentry can become
more complex and partly lose its advantage of being able to give intuition about
how the execution of one task influences the execution of others. In order to solve



346 V. Popova and M. Dumas

this problem, we apply methods for decomposing the expression into multiple
simpler sentries which are then assigned to separate guards of the same stage.
The composition and decomposition of guard sentries will be described more
precisely in the next section.

Let to be the “origin”, i.e., the (visible) transition for which we compose
a guard. At a more abstract level the proposed method for generating guard
sentries for the stage of to proceeds as follows:

Step 1: Find the relevant branch conditions and the pre-transitions whose
execution will (help) trigger the execution of to.

Step 2: Decompose into groups that can be represented by separate guards.
Step 3: For each group, determine the appropriate format of the sentry and

generate its expression.

5 Guard Sentries Generation

Our approach for achieving step 1 is inspired by the research presented in [10] for
translating BPMN models and UML activity Diagrams into BPEL. It generates
so-called precondition sets for all activities which encode possible ways of en-
abling an activity. Next, all the precondition sets with their associated activities,
are transformed into a set of Event-Condition-Action (ECA) rules.

Before giving the precise definitions of the approach proposed here, we first
illustrate the intuition behind it by a couple of examples. Consider the transi-
tion CompletePO in Fig. 1. In order for it to be enabled and subsequently fire,
there need to be tokens in both of its pre-places. Therefore the precondition for
enabling CompletePO is a conjunction of two expressions, each of which related
to one pre-place and representing the fact that there is a token in this pre-place.
This token could come from exactly one of the pre-transitions of this place.
Consider for example the transition AssembleProduct. It has one pre-place which
has two pre-transitions. Therefore the precondition here is a disjunction of two
expressions each related to the firing of one pre-transition.

Thus the general form of the composed expression is a conjunction of disjunc-
tions of expressions. These expressions, however, can themselves be conjunctions
of disjunctions. This happens when a pre-transition is invisible (not observable
in reality) and we need to consider recursively its pre-places and pre-transitions.
The building blocks of the composed expression are expressions each of which
corresponds to the firing of one visible transition t that can (help) trigger the
firing of the transition in focus to (the “origin”). We denote each of these build-
ing blocks by prcExpression(t, to) for a transition t with respect to to and they
will be discussed in the next section.

Furthermore, the presence of a token in a pre-place is not a guarantee that
a transition will fire. In the case of AssembleProduct, a token in its pre-place
enables two transitions, AssembleProduct and SendCancellationInvoiceCust, but
only one will fire. Which one is determined by conditions associated with each
outgoing arc of the place. These conditions are domain-specific and, in the fol-
lowing, we assume that these conditions are given - they can be provided by



From Petri Nets to GSM Models 347

the user or mined from the logs using existing tools such as the decision miner
from [11]. Therefore, the general form of the composed expression should have
these conditions added to the conjunction.

The following more precise definitions reflect these intuitions on the general
form of the expression and its recursive nature. By prc(to) we denote the com-
posed expression (of “pre-conditions”) of the guard sentry for a stage/transition
to. Let IA(to) be the set of incoming arcs in to and let conda be a condition
associated with the arc a if the connected pre-place is a decision point (i.e., a
place with multiple outgoing arcs) or true if it is not a decision point (no con-
dition). Also, init denotes the specific expression of the event of the creation of
the artifact instance, e.g. “onCreate()”, PT (a) is the set of pre-transitions tp
connected to the pre-place of the arc a.

We can then define prc(to) using a recursive definition as follows:

prc(to) =
∧

a∈IA(to)

Pa ∧ conda

where Pa is defined as:

Pa =

{
init if Pa is the initial place,∨

p∈PT(a) Tp otherwise.

Tp, in turn, is defined as follows:

Tp =

{
prcExpression(tp, to) if tp is a visible transition,

prc(tp) if tp is an invisible transition.

Here, as mentioned earlier, prcExpression(tp, to) is the specific expression that
will be added to the sentry condition for each relevant visible transition tp with
respect to the “origin” to. Their format will be discussed in the next section.

The expression for prc(to) can be represented in a tree structure in a straight-
forward way. The internal nodes of the tree represent logical operators (“and”
or “or”) with are applied on their child branches. The leaves represent either
transitions that need to fire (which will be represented in the guard sentry by
an expression prcExpression(tp, to) for the specific transition tp in the leaf) or
decision point conditions that need to be true in order the “origin” transition
to to be able to fire. In the following we use the words tree and expression
interchangeably since, in this context, they represent the same information.

An example of such a tree is given in Figure 2 constructed for the tran-
sition AssembleProduct. Looking at the model in Figure 1 we can see that
AssembleProduct can only fire if there is a token in its pre-place and the
condition associated with the connecting arc is true. We denote this condi-
tion here as Condition 1. The token can arrive from two possible transitions
- ReceiveSupplCancellationResponse or the invisible transition represented as a
black rectangle. We need to traverse back from the invisible transition and find
out that it can only fire if the transition ReceiveSupplResponse fires and the con-
dition associated with the connecting arc is true (we denote this condition by



348 V. Popova and M. Dumas

Fig. 2. An example of an expression tree which will be used to generate the guard(s)
for stage AssembleProduct

Fig. 3. The expression tree for stage AssembleProduct in DNF

Condition 2). This analysis results in the tree in Figure 2. The leaves of the tree
are named by the corresponding transition or condition and, in fact, represent
the specific expression for that transition/condition. However we delay the exact
formulation of the expressions until the tree is built and analyzed, as will be
described in the next section.

As mentioned earlier, an intermediate step of the algorithms decomposes
prc(to) into several expressions which then are used to generate separate guards
of the stage. Since prc(to) is a logical formula, we can convert it into Disjunctive
Normal Form and assign each conjunction to a separate guard sentry.

After converting the example tree from Figure 2 into DNF, we now have the
tree in Figure 3. Each child of the root node will generate one separate guard
- here we have two guards. Intuitively the first guard tells us that the stage
will open if task ReceiveSupplCancellationResponse was executed and Condition
1 is true. Similarly, the second guard tells us that the stage will open if task
ReceiveSupplResponse was executed and both Condition 1 and Condition 2 are
true.

As a final step, the prcExpression(tp, to) for the leaves of the tree are assigned
as discussed in the next section.



From Petri Nets to GSM Models 349

6 Formats for Pre-condition Expressions

In this section we look into the expressions prcExpression(tp, to) in more details
and define their format. Their assignment is delayed until the end, after prc(to)
is composed and, if needed, decomposed into separate sentries. Only then it can
be decided which format each expression should take. We consider two possible
formats for the expression of prcExpression(tp, to) depending on the context as
discussed below.

The most simple case is when prc(to) contains only one transition tp with
its expression prcExpression(tp, to) and init is not present in prc(to). Then
prcExpression(tp, to) can be replaced by the event corresponding to the finished
execution of the activity of tp, we denote this by “on tp executed”. It can be
expressed using the event of achieving the milestone of the stage of tp or, alter-
natively, the closing of that stage among other options.

For example, for to = ReceiveSupplCancellationResponse the expres-
sion tree contains only one leaf corresponding to the transition tp =
SendRequestToSuppliers, i.e., the only way to enable to is by a token produced by
tp and this token cannot be consumed by another transition. Then the expression
for tp and to will be prc(to) = prcExpression(tp, to) = “on tp executed”.

If this is not the case, i.e., multiple transitions are present, then a more com-
plex version of the expression needs to be included since we cannot use more
than one event in the sentry. This form of the expression is discussed in the
following paragraphs.

We introduce the following notation: for transitions t1 and t2, t1
τ−→ t2 iff there

exists a directed path in the graph of the net from t1 to t2 containing no visible
transitions other than t1 and t2.

We now define the following set of “alternative” transitions to to, i.e., visible
transitions that are connected to a place on the path from tp to to:

Alt(tp, to) = {t | ∃ place p : tp
τ−→ p

τ−→ to ∧ p
τ−→ t}.

Alt(tp, to) are the set of transitions that “compete” with to for the token
produced by tp. Therefore in order to represent the situation when a token
is present in the pre-place of to and the stage to should be opened we need to
consider whether any of the “alternative” transitions have occurred (and “stolen”
the token). Note that, according to this definition, to will also belong to the set.

Let us consider again the stage to = AssembleProduct and the expression
tree in Fig. 3. Here we can use the simple format of the expressions for
each leaf since in each branch there is only one transition. However for il-
lustration purposes we assume that more that one transition was present in
each branch and we need to use the more complex format for the expressions
as follows. For the leaf tp = ReceiveSupplCancellationResponse, Alt(tp, to) =
{SendCancellationInvoiceCust, AssembleProduct}. Looking at Fig. 1, we can see
that the transition SendCancellationInvoiceCust is indeed an “alternative” to
AssembleProduct in the sense that is can “steal” the token produced by the
transition ReceiveSupplCancellationResponse in the connecting place. Similarly,



350 V. Popova and M. Dumas

for tp = ReceiveSupplResponse, Alt(tp, to) = {ReceiveCancellationRequest,
SendCancellationInvoiceCust, AssembleProduct}.

Then we define the expression as follows:

prcExpression(tp, to) =
∧

ts∈Alt(tp ,to)

executedAfter(tp, ts).

Here executedAfter(tp, ts) expresses the situation when there is a new execu-
tion of tp which occurs after the last execution of ts, meaning that it is relevant
for triggering the opening of the stage of to. How this will be expressed in the
specific implementation can vary. Here we show how this can be done using the
state of a milestone (achieved or not) and the time a milestone was last toggled.
In that case:

executedAfter(tp, ts) = mp.achieved ∧ mp.lastT oggled > ms.lastT oggled.

In other words, the milestone mp of tp is achieved and it was last toggled after
the milestone ms of ts. Here we rely on the fact that the milestone of a stage
will be invalidated as soon as the stage is reopened. This is ensured by including
an invalidating sentry for each milestone.

For example, for to = AssembleProduct, tp = ReceiveSupplCancellationResponse
and ts = SendCancellationInvoiceCust,

prcExpression(tp, to) = executedAfter(tp, ts) ∧ executedAfter(tp, to) =

= mp.achieved ∧ mp.lastT oggled > ms.lastT oggled ∧
∧mp.lastT oggled > mo.lastT oggled,

in other words, ReceiveSupplCancellationResponse was executed after the last
execution of SendCancellationInvoiceCust and after the last execution of Assemble
Product, i.e., the token in the connecting place has not been consumed yet.

7 Conclusions and Future Work

This paper proposed a method for translating PNs to GSM models which allows
to use existing process mining algorithms for discovering PNs from event logs
and generating GSM models from them. This contributes significantly to solving
the problem of mining artifact-centric models from event logs by generating the
life cycles of artifacts.

Additionally, the information model can be built by considering the logs as
well and extracting the data attributes for each event type of the artifact. Ex-
isting tools such as [11] can be used to mine data-dependent conditions for the
guards based on the discovered information model.

Future work will also develop methods that allow to discover the interactions
between artifacts and thus multi-artifact GSM models can be generated.

The method in this paper generates a flat model where no hierarchy of stages
is used. Future work will also consider methods for stage aggregation. One pos-
sible solution is to use existing algorithms for process abstraction (e.g. [1,3]) for



From Petri Nets to GSM Models 351

business process models and translate the discovered process hierarchy to GSM
stage hierarchy. For example the Refined Process Structure Tree [7] can be a
first step to discovering such a hierarchy.

Acknowledgment. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement no 257593 (ACSI).

References

1. Bose, R.P.J.C., Verbeek, H.M.W., van der Aalst, W.M.P.: Discovering Hierarchical
Process Models using ProM. In: Proc. of CAiSE Forum, CEUR Workshop Proc.,
vol. 734, pp. 33–40 (2011)

2. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Eng. Bull. 32, 3–9 (2009)

3. Günther, C., van der Aalst, W.: Mining activity clusters from low-level event logs,
BETA Working Paper Series, WP 165, TU/e (2006)

4. Hein, J.L.: Discrete Structures, Logic, and Computability. Jones and Bartlett Pub-
lishers (2010)

5. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F(T.), Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing
the Guard-Stage-Milestone Approach for Specifying Business Entity Lifecycles. In:
Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg
(2011)

6. Hull, R., et al.: Business Artifacts with Guard-Stage-Milestone Lifecycles: Manag-
ing Artifact Interactions with Conditions and Events. In: DEBS 2011, pp. 51–62
(2011)

7. Johnson, R., Pearson, D., Pingali, K.: The Program Structure Tree: Computing
Control Regions in Linear Time. In: Proc. of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation, pp. 171–185. ACM (1994)

8. Murata, T.: Petri nets: Properties, Analysis and Applications. In: Proc. of the
IEEE, pp. 541–580 (1989)

9. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

10. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.H.M.: Translating Standard
Process Models to BPEL. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 417–432. Springer, Heidelberg (2006)

11. Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Dustdar, S., Fi-
adeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer,
Heidelberg (2006)

12. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10(4),
443–481 (2001)

13. Verbeek, H., Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.P.: Prom: The
process mining toolkit. In: Proc. of BPM Demonstration Track. CEUR Workshop
Proc., vol. 615 (2010)

14. Wilson, J.: Algorithms for obtaining normal forms of logical expressions. Interna-
tional Journal of Computer Mathematics 27(2), 85–90 (1989)


	From Petri Nets to Guard-Stage-MilestoneModels
	Introduction
	Case Study
	Background
	The General Approach
	Guard Sentries Generation
	Formats for Pre-condition Expressions
	Conclusions and Future Work
	References




