
Automatic Discovery of Data-Centric
and Artifact-Centric Processes

Erik H.J. Nooijen, Boudewijn F. van Dongen, and Dirk Fahland

Eindhoven University of Technology
Eindhoven, The Netherlands

enooijen@gmail.com, {b.f.v.dongen,d.fahland}@tue.nl

Abstract. Process discovery is a technique that allows for automatically discov-
ering a process model from recorded executions of a process as it happens in re-
ality. This technique has successfully been applied for classical processes where
one process execution is constituted by a single case with a unique case identi-
fier. Data-centric and artifact-centric systems such as ERP systems violate this
assumption. Here a process execution is driven by process data having various
notions of interrelated identifiers that distinguish the various interrelated data ob-
jects of the process. Classical process mining techniques fail in this setting. This
paper presents an automatic technique for discovering for each notion of data
object in the process a separate process model that describes the evolution of
this object, also known as artifact life-cycle model. Given a relational database
that stores process execution information of a data-centric system, the technique
extracts event information, case identifiers and their interrelations, discovers the
central process data objects and their associated events, and decomposes the data
source into multiple logs, each describing the cases of a separate data object.
Then classical process discovery techniques can be applied to obtain a process
model for each object. The technique is implemented and has been evaluated on
the production ERP system of a large retailer.

Keywords: artifact, process discovery, ERP system, event log.

1 Introduction

Process discovery is a technique for automatically discovering a process model from
recorded executions of the process. The technique is successfully applied for classical
processes where each process execution is recorded as a case (the sequence of its events)
in an event log. Each event of the process is related to exactly one case by a case id. [1]

However, when looking at the data models of ERP products such as SAP Business
Suite, Microsoft Dynamics AX, Oracle E-Business Suite, Exact Globe, Infor ERP, and
Oracle JD Edwards EnterpriseOne, one can easily see that this assumption is not valid
for real-life processes, which are data-centric. There are one-to-many and many-to-
many relationships between data objects, such as customers, orderlines, orders, deliv-
eries, payments, etc., and a single event can relate to and update several objects. Such
systems do not have a unique notion of a process instance by which we can trace and
isolate its executions, and process discovery fails.

M. La Rosa and P. Soffer (Eds.): BPM 2012 Workshops, LNBIP 132, pp. 316–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Discovery of Artifact-Centric Processes 317

Schema
extraction

Identify artifact
schema(s)

Generate
event log

Apply control
flow discovery

techniques

Artifact schema
identification

Artifact lifecycle
discovery

Structured
dataset

Artifact
schema(s)

Database
schema

Schema-log
mapping

Event log

Create schema-
log mappingFor each

artifact

Lifecycle model

Fig. 1. Approach to Artifact Discovery

Previous approaches to use this data for process discovery particularly failed to sep-
arate events related to various objects; in particular analyzing what was part of the
process was hard and time consuming [11, 15, 16]. The artifact-centric approach [7]
provides an appropriate conceptual lense: the entire process is seen as a set of inter-
acting business entities called artifacts. Each of these artifacts can be described by an
information schema (called an artifact schema) and a non-trivial lifecycle describing
how the artifact evolves through a process execution [9, 10].

Process discovery for artifact-centric processes is an unsolved problem. The prob-
lem reads as follow. We assume a structured data source R to be given that contains
information about the events that have occurred in past process executions, usually in
the form of timestamps written in the records of R. For example, we found production
databases of ERP systems to satisfy this assumption. From this data source, we want
to discover (1) the artifacts (i.e., business entities) of the process, (2) their information
model (i.e., artifact schema), and (3) the life-cycle model of each artifact.

In this paper we present a first automatic technique for discovering artifact-centric
processes from a structured data source R. Our technique, illustrated in Fig. 1 reuses
a number of existing techniques and fills in a crucial missing gap to solve the problem.
For the given structured data source R, first the schema SR including column types
and primary and foreign keys is rediscovered (this may be necessary as the documented
schema of R can be incomplete regarding its actual contents, e.g., non-documented for-
eign key relations). Then the schema SR is partitioned into artifact schemas A1, . . . , Ak

using weighted k-means clustering, where k is a parameter chosen by the user. Each ar-
tifact schema Ai describes the information model of one artifact and consists of all
tables that contain relevant information about Ai. We then extract from R a log that
describes all instances of Ai and their evolution over time. For this, we extract from
artifact schema Ai automatically an event specification (called schema-log mapping) in
terms of attributes of Ai. This event type specification is then used to construct database
queries which extract from R all events with their attributes, group them into cases, or-
der them by time stamp, and write the result into a classical log Li of Ai. Each case
of Li is a sequence of events related to the same case id of Ai, which satisfies the

318 E.H.J. Nooijen, B.F. van Dongen, and D. Fahland

assumptions for classical processes. Then a classical process discovery algorithm can
be used to obtain a life-cycle model for artifact Ai.

In the following, we first discuss related work to extracting event information from
data sources in Sect. 2. Sect. 3 presents the techniques to discover artifact schemas from
a relational data source. Sect. 4 presents the main technical contribution of this paper:
to extract event specifications from artifact schemas which is then used for actual log
extraction and life-cycle discovery. We report on experimental results in Sect. 5, and
conclude and discuss open problems in Sect. 6.

2 Related Work

In principle, an artifact-centric model of a running system could be obtained through
interviews of process stakeholders [5], by first looking at what data is important and then
investigating how the process operates on the data [12]. Besides being time-consuming,
this approach suffers from the fact that interviews will reveal how people think the
process should run rather than how it is actually run [1]. Thus, an automated approach
to discovering artifact models from process data sources is preferable.

Over 40 algorithms were developed for control flow discovery given an event log
[17]. The authors of [17] provide an overview of these algorithms and describe when
each algorithm can be applied successfully. The process analysis approach described
in [6] explains how these techniques should be applied and which points of attentions
should be taken into account to improve the quality of the results.

All process discovery techniques assume an event log to be given as input which
consists of a set of cases being sequences of events; events of one case relate to the
same case identifiers [1].

Related work on event log extraction can be separated into support for event log
extraction in general and case studies on event log extraction from specific ERP systems.
The most recent generic approach to event log extraction is XESame [18]. In this, as in
all known generic approaches, first a mapping between source data and event log needs
to be defined manually. Then an algorithm extracts events, sorts them into traces, and
writes traces into a log. In case of XESame the mapping is translated to SQL queries on
a database which returns the events of the log.

The only ERP systems for which event log extraction was studied were SAP [11,15]
and PeopleSoft [16]. A variety of approaches were tested to extract event logs from
these systems. The underlying assumption of these approaches was the existence of
a unique case identifier. As ERP systems in general provide multiple case identifiers,
the majority of these approaches failed; success could only be reported when database
tables were carefully selected by hand. The artifact-centric approach of multiple inter-
related artifacts [7] sheds a better view on data in ERP systems which we exploit in the
following.

3 Discovering Artifact Schemas

In this paper we want to solve the problem of discovering an artifact-centric process
model from a structured data source, i.e., a relational database R. In light of existing

Discovery of Artifact-Centric Processes 319

work discussed in Sect. 2, we need (1) a technique to automatically identify the relevant
case identifiers in R, each case identifier then gives rise to an artifact (a business object
with a life-cycle); (2) a technique to automatically extract from R an event log for
each artifact, preferably by leveraging a generic approach to event log extraction; (3)
discover artifact life-cycle models for each log.

We solve the first problem in this section by applying a number of existing data min-
ing techniques. We solve log extraction by leveraging the generic approach of [18] in
Sect. 4. Finally, artifact life-cycle discovery is solved by applying any classical process
discovery algorithm [1, 17] on the extracted log. Fig. 1 shows the overall approach that
was already outlined in the introduction; in the following we present the details.

3.1 Assumed Input and Schema Extraction

We assume a relational database R (e.g., an ERP system’s database) to be given as input
for the discovery. We assume that R recorded its state evolved over time in timestamp
attributes, for instance, important updates of a record were logged in a separate attribute.
We found this to be a feasible assumption for many ERP systems in practice. If R has
no historic information, then process discovery is infeasible, however, one could use
trigger mechanisms of active databases to log updates of R in a generic way.

To identify the relevant case identifers in R and corresponding artifact schemas, the
schema information of R needs to be complete: each column has to have type, each
table needs a primary key and functional dependencies between tables need to be docu-
mented as foreign key relations. However in reality, schema information in ERP system
databases is often incomplete [15,16]; typically due to data dependencies created at the
application layer that are not documented in R. Thus, schema extraction techniques
may be required to reconstruct the database schema. Various techniques exist to group
columns into a number of attributes with the same domain [3,22], to rediscover primary
keys of a table [2] and to rediscover foreign keys between tables [4,13,21]. A particular
focus has to be put on identifying timestamp attributes of R as these document events
of the process. A detailed comparison is given in [14].

The result of schema extraction is a relational schema S = (T ,F ,D , dom) of the
database with a set T of table schemas and a set F of foreign keys. Each table schema
T = (C T ,C p) ∈ T contains a set C T of columns and a primary key C p ⊆ CT ; let
C denote all columns of S. Each F = (Tp,C p, Tc,C c) ∈ F is a foreign key from
parent table Tp with primary key C p to child table Tc with referencing columns C c.
Function dom : C → D assigns each column a domain from the set D of domains.

Note that schema extraction techniques discover data dependencies of the application
that are not documented in the database [15,16]. For instance when a column C in R is
used as a unique index by the application, but not declared as primary key in R, schema
extraction will identify C as primary key. Correspondingly, undocumented foreign key
relations (used in the application, but not declared as such) are identified.

3.2 Discovering Artifact Schemas

Database R and its schema S contain all process data as a whole. The idea of artifacts
is to decompose this data into the business objects, or artifacts, of the process. Each

320 E.H.J. Nooijen, B.F. van Dongen, and D. Fahland

artifact instance has a unique identifier and follows a life-cycle describing how at-
tributes of the artifact change as the process evolves. An artifact schema describes
the data model of an artifact in terms of R. Technically, an artifact schema A =
(T ,F ,D , dom , Tm) is a relational schema (T ,F ,D , dom) that distinguishes a main
table Tm ∈ T of the artifact, the primary key of the main table is the identifier of the
artifact. All other tables in A define additional attributes of the artifact.

In principle, one could identify artifact schemas from S through interviews [12]. In
the following, we identify artifact schemas A1, . . . , Ak from S automatically through
clustering. The idea is that business objects (and in particular their identifiers) materi-
alize in R as somehow “important” tables. Attributes of these artifacts are materialized
in “auxiliary” tables related to the “important” tables, thus, the tables that constitute an
artifact form a cluster of corresponding tables. Such clusters of tables can be identified
using standard schema summarization techniques [19, 20].

Schema summarization first defines a distance between any two tables in S (based on
the actual records in the tables of R). The distance function between tables incorporate
two factors: importance and foreign key relations.

1. Importance of a table is defined by its entropy (the more unique records a table has,
the more important it is). The higher the importance of two tables is, the farther
they are away (each important table defines a business object, two business objects
should be represented separately).

2. Foreign key relations between tables associate auxiliary tables to important tables.
Here, a child table is closer to a parent table if there are more records in the parent
table relating to the child table. Various definitions are possible [14].

The concrete definition of the distance function between two tables based on their
records is omitted here for space limitations, see [14] for details. Based on this dis-
tance function the tables of S are clustered into k clusters (for a user-chosen number k)
using weighted k-means clustering. In the clusters, all tables of one cluster are closer
to each other than to any table in another cluster. Experience has shown that in each
cluster, a unique main table Tm with the least distance to all other tables in the cluster
exists [19,20]. Thus, the clustering returns a set {A1, ..., Ak} of artifact schemas which
solves the first problem: to automatically discover artifact schemas from a structured
datasource.

The parameter k determines how many artifacts shall be returned. If k is chosen
wrongly, say k = 1, the artifacts will have an unnatural shape. We found an iterative
approach of gradually increasing k until the rightly shaped artifacts appear, to be feasi-
ble. Finding the right number k based on R alone might require domain knowledge or
more sophisticated technique, which we consider as further work.

4 Extracting Logs and Discovering Life-Cycles

Having discovered artifact schemas A1, ..., Ak from R, the next step is to extract for
each artifact Ai a log Li describing the life-cycle of Ai. The artifact schema Ai con-
tains all structural information of this artifact, including timestamp attributes that record
when an instance of Ai changed its state. The actual information is stored in R and has
to be extracted.

Discovery of Artifact-Centric Processes 321

For this we define a schema-log mapping that defines (1) a set of event types identified
in Ai, and (2) a mapping from the attributes and tables of Ai to these event types. This
mapping can then be used to construct database queries which extract the actual events
from R. In the following, we first present a automatic approach to discover a schema-
log mapping from Ai, and then discuss the log extraction based on this mapping.

4.1 Automatically Discovering a Schema-Log Mapping

Schema-to-log mappings can be identified automatically by a four-step approach based
on timestamps and foreign key relations, which are available by the techniques of
Sect. 3. The first step of the approach is to identify event (type) columns based on their
domain: Exactly one event should be created for each value in one of these columns.
The remaining columns are then assigned as attributes to either the artifact instances or
to one or more event types. The event type and attribute information is used to create
event mappings. Finally these event mappings and artifact instance attribute informa-
tion are combined to create a trace mapping. The result of the algorithm is an event log
trace mapping TM = (CTID, Tfrom,F link ,EM ,AMT,LAT) with:

– columns CTID identify the different traces,
– main tableTfrom, links to other tables of the artifact in the form of foreign keysF link,
– a set of event mappings EM , a set of attribute mappings AMT of the trace, and

set of list attributes LAT of the trace.

Each event mapping EM = (event comlumn name,CEID, Ce, Tfrom,F link,
AM E,LAE) ∈ EM defines one event type of the artifact with:

– event event column name,
– columns CEID defining the eventID,
– event column Ce defining the time stamp of the event,
– main table Tfrom, links to other tables in the form of foreign keys F link , and
– attribute mappings AM E and list attributes LAE of the event type.

A list attribute (of a trace or of an event) is an attribute with multiple values and defined
by the list attribute mapping LA = (key,CAID, Tfrom,Ffink ,AM L,LAL) with:

– the given key,
– attributeID columns CAID,
– main table Tfrom, links to other tables in the form of foreign keys F link , and
– attribute mappings AM L and list attributes LAL.

Finally each attribute mapping defines an attribute with a single value, i.e., AM =
(name, type, Ca) ∈ AM has a given name, type and attribute column Ca. Note that
a list attribute can recursively contain further list attributes.

Algorithm 1 shows the CREATETRACEMAPPING algorithm which creates a map-
ping from a schema to an event log. First all event types in the artifact schema are iden-
tified automatically (line 1). Then columns are assigned as attributes to traces (lines 2
to 4) and events (lines 7 and 8). Next mappings are created for event types (lines 9 and
10) and the trace (lines 13 and 14) using the CREATEMAPPING algorithm shown in

322 E.H.J. Nooijen, B.F. van Dongen, and D. Fahland

Algorithm 1. CreateTraceMapping(S)
Require: An artifact schema S = (T ,F ,D , dom, Tm)
1: ET ← IdentifyEventTypes(S)
2: T instance ← {Tm} ∪AllParents({Tm},S)
3: T instance ← T instance ∪ SelectInstanceChildTables(Tm,T instance,S)
4: CA ← GetNonEventColumns(T instance)
5: EM ← ∅
6: for all ET = (TET, Ce) ∈ ET do
7: T event ← {TET} ∪ SelectEventAttributeTables (TET, {TET} ∪T instance,S)
8: C a ← GetNonEventColumns(T event \T instance)
9: (CEID, Tfrom,F link,AME,LAE)← CreateMapping(Tm, TET ,T event,C a,S)

10: EM ← (event column name,CEID, Ce, Tfrom,F link,AME,LAE)
11: EM ← EM ∪ {EM}
12: end for
13: (CTID, Tfrom,F link,AMT,LAT)← CreateMapping(Tm, Tm,T instance,CA,S)
14: TM ← (CTID, Tfrom,F link,EM ,AMT,LAT)
15: return A TraceMapping TM for the artifact

Algorithm 2. The steps in the algorithms are briefly described below. Further details of
the algorithms can be found in [14].

Event types are identified by selecting all columns with a timestamp domain as event
columns, except for columns that are part of a parent table of the main table. The latter
columns are excluded since they are identical for several instances and therefore less
likely to be events. For each event column an event type ET is constructed with event

Algorithm 2. CreateMapping(Tm, T0,T attr,C attr,S)
Require: A main artifact table Tm, base table T0 (with primary key C ID), a set of attribute

tables T attr, a set of attribute columns C attr and an artifact schema S
1: Tfrom ← Tm

2: F link ← Path(Tm, T0)
3: AM ← ∅
4: LA← ∅
5: (T one2one,T one2many)← SplitOneAndMany(T0,S)
6: for all T ∈ (T one2one ∩T attr) ∪ {T0} do
7: F link ← F link ∪ Path(T0, T)
8: for all C ∈ CT ∩C attr do
9: AM ← CreateAttributeMapping (C)

10: AM ← AM ∪ {AM}
11: end for
12: end for
13: T attr ← T attr \T one2one

14: for all T ∈ T one2many do
15: if T ∈ T attr ∨ (T attr ∩ AllChildren(T,S) �= ∅ then
16: LA← CreateMapping(Tm, T,T attr,C attr,S)
17: LA← LA ∪ {LA}
18: end if
19: end for
20: return general mapping item (C ID, Tfrom,F link,AM ,LA)

Discovery of Artifact-Centric Processes 323

table TET, event column Ce and an initially empty set of event attribute columns C a.
TET is the table that contains Ce.

All columns that are not considered to be events are considered to be attributes.
These attribute columns are assigned to the most specific event possible or as instance
attributes if it is not possible to assign them to a specific event. For example: If an at-
tribute column is part of a table without event columns, then it will be assigned to event
columns in the parent table (assuming they exist). If there are event columns in the same
table, the attribute columns will be assigned to those event columns. The assignment is
done based on the table that contains the column as following.

Columns in the set of artifact instance tables T instance are assigned as instance at-
tributes. The set of artifact instance tables consists of the main artifact table, all of its
parents and all children that do not have another parent table with event columns (the
instance child tables).

For each event type, all columns in the corresponding set of event attribute tables
T event are assigned as event attributes. For event columns in the main artifact table there
are no separate event attributes, thus then the set is empty. Otherwise the set consists of
(1) the event table TET, (2) all child tables for which there is a foreign key path from
the event table to the child table that does not contain another event table and (3) all
parent tables of the child tables that are not part of the set of instance tables T instance

and do not have another event table as one of their parents. Note that the second subset
may contain tables that are also assigned to other event types.

The CreateMapping algorithm creates a tuple (C ID, Tfrom,F link,AM ,LA) called
a “general mapping item” that serves as the basis for a trace mapping, event mapping
or list attribute mapping. The basic idea is that each created mapping consists of a set
of tables for which only one record exists for each record in the chosen base table T0,
thus ensuring that multiple values do not occur. The algorithm starts by splitting the
given attribute tables T attr into a set for which this condition holds T one2one and a
set of attribute tables for which this condition does not hold Tone2many as explained
below. One mapping is then created for the base table and all tables in T one2one. This
mapping contains a number of submappings (the list attributes LA) as required for the
tables in T one2many. Note that to create an event mapping the event column Ce and an
event name are added to the resulting general mapping item (as shown on line 10 of
Algorithm 1), and to create a trace mapping the set of event mappings EM is added (as
shown on line 14 of Algorithm 1).

The split of tables into the Tone2one and T one2many sets is done by recursively veri-
fying foreign keys in the child direction and the parent direction. In the parent direction
there will always be only one record for each record in the base table. In the child di-
rection it has to be checked if more records exist in the child table for each record in
the base table. A repeated part of the algorithm is the path between two tables which
consists of the sequence of foreign keys connecting those tables; it can be calculated
using e.g. Dijkstra’s algorithm [8].

4.2 Extracting Logs and Discovering Life-Cycles

Extracting logs. The extracted event log-trace mapping TM defines for a given artifact
schema S how to shape the event information contained in the database R into events

324 E.H.J. Nooijen, B.F. van Dongen, and D. Fahland

(with attributes), and how to group events into different traces (distinguished by their
trace ids and having further attributes). This information is sufficient to automatically
extract a classical log (sequences of events) from R. For the extraction, we employ (and
slightly adapt) the log extraction technique of XESame [18]. XESame is a technique and
tool that extracts classical logs in XES format from a database in 4 steps: (1) specify an
event-log to trace mapping, (2) construct database queries to extract data, (3) execute
the queries to populate a cache database and (4) create a XES event log from the cache
database.

The first step in XESame is manual: the user manually specifies an event log-trace
mapping based on the given database tables, columns and keys. Algorithm 1 does the
same, but fully automatically. Thus, by handing the event log-trace mapping to the
second step of XESame, XESame automatically generates the database queries needed
to extract the log. Technically, XESame then extracts for each given event mapping an
event and finally groups events to traces based on the trace mapping.

The events of an event mapping (name,CEID, Ce, Tfrom,F link,AM E,LAE) ∈
EM are extracted by first joining the tables containing the time stamp attribute Ce and
the event id attributeCEID with the main table Tfrom (this may require to include further
tables in the join based on the foreign key relations in F link). Each record in the joined
table defines an event with the given name, that occurred at the time-stamp written in
column Ce. Note that the joined table also contains the trace id columns CTID of Tfrom,
thus associating each event with exactly one trace. Attributes of this event are obtained
from AM E and LAE in a similar way by joining the table containing CEID with the
tables of the id columns of the respective attribute.

All events of all traces are extracted in this way, then grouped by the values on
the trace id columns CTID of Tfrom, and finally ordered by their time-stamp attribute
values. Each group defines a trace which gets additional attributes; again by joining the
main table Tfrom with the attribute identifying tables as specified in the attribute and
list attribute mappings. The resulting traces of events are written in XES format. We
slightly adopted the approach of [18] for our purposes by defining explicit event ids and
attribute ids in the schema-log mapping; details can be found in [14].

Discovering artifact life-cycles. This technique allows to extract logs L1, . . . , Lk for
artifacts A1, . . . , Ak from R. This effectively reduces the problem of discovering ar-
tifact life-cycles in R to the problem of discovering a process model from each log
L1, . . . , Lk. For this problem a large number of existing process discovery algorithms
can be applied [1, 17].

5 Empirical Evaluation

The approach described in the previous sections was evaluated using a prototype imple-
mentation. We evaluated the technique on an artificial data-set RA of an order-to-cash
process, and on a real-life dataset RR obtained from the production ERP system of a
large food wholesale and retail company. RR comprised > 300 tables containing >
40GiB of data. Details on the datasets and the prototype implementation can be found
in [14].

The reallife dataset showed that different steps in our approach are differently hard to
solve. During schema extraction, finding attribute types required >15hrs to discover all

Discovery of Artifact-Centric Processes 325

Table 1. Results on schema-logmapping

|T | |C | |ET | |LA| |AM | time
A1 3 10 0 0 5 <0.5 s
A2 6 23 9 2 8 <0.5 s
A3 10 35 11 3 13 <0.5 s
R1 1 195 23 0 171 <0.1 s
R2 47 869 127 0 841 1.4 s

Fig. 2. Discovered life-cycle of R2

timestamped attribute types. Key discovery is an NP-complete problem; we observed
runtimes of 4.5hrs to find all primary keys in the reallife dataset. Foreign key discovery
took 5hrs to find all single column foreign keys and 6days to find all double column
foreign keys. Finally, artifact schema discovery required approx. 17hrs to compute table
entropies and approx. 5hrs to compute table distances for clustering; clustering itself
succeeded in less than a second. This allows to try various numbers k of clusters to
identify without computational penalty. See [14] for details.

For RA we could identify 3 reasonable artifacts (A1-A3). For RR analysis of the
right number of artifacts was more involved. In an iterative approach, we could identify
around 20 different artifacts. The largest one comprised 47 tables over 869 columns see
Tab. 1 which shows the numbers for A1-A3 and two artifacts R1 and R2 of RR. We
then discovered schema-log mappings using the technique of Sect. 4 requiring less then
2 seconds in all cases. Artifacts A2 and A3 follow a life-cycle whereas A1 has no event
associated; a closer analysis revealed that A1 is a static data object that relates instances
of A2 to instances of A3. For R1 and R2 we identified 23 and 127 event types and 171
and 841 attributes, respectively.

Log extraction with XESame took more time as the entire dataset has to be processed.
For artifacts A1-A3 logs of 100-200 traces and approx. 10 events per trace could be
extracted within a few seconds; for R1 and R2 extraction required several hours where
serializing logs files takes the lion share of the time. For validation, we sampled the data

Quote
opening Request

Quote
rejection

quote

Quote
acceptance

quote

Quote
order
adding

Reorder

Delivery
customer

accept
shipment

Customer
payment
invoice
issue

Customer
payment

sent

Quote
customer no
deliverable
notification

Customer
payment
received

Order
opening

Quote
order
adding

Reorder

Order to
supplier

Order
supplier

notification

Order
supplier
shipment

Supplier
payment

issue

Supplier
payment

sent

Supplier
payment
received

Fig. 3. Discovered life-cycle models of A2 and A3 of an order-to-cash process

326 E.H.J. Nooijen, B.F. van Dongen, and D. Fahland

source of R2 to 1000 traces of >246,000 events which required approx. 1hr to execute
the query and approx. 32hrs to write the log file.

Using the Heuristics Miner [1] we obtained the life-cycle model of R2 shown in
Fig. 2. Despite its complex structure it was validated as correct by the process owner.
For A2 and A3 we had expected lifecycle models available; to validate precision of our
technique we checked fitness of the expected models of A2 and A3 to the extracted logs
(i.e., whether the models can replay the log) [1], and obtained high fitness values of 0.99
and 0.95. The lifecycle models discovered from these logs using a genetic miner [1] are
shown in Fig. 3. Note that both life-cycle models share some activities, for instance
reorder, indicating that instances of these artifacts synchronize occasionally through a
process execution on the same event.

6 Conclusion

This paper addressed the problem of automatically discovering a process model of a
data-centric process. Such processes lack a unique notion of a case, but rather provide
multiple notions of cases related to the business objects of the process. Following the
artifact-centric approach [7], we provided a technique to automatically extract artifact
schemas A1, . . . , Ak and corresponding artifact life-cycle logs L1, . . . , Lk which de-
scribe how each of the artifacts evolved during past process executions. From these
logs life-cycle models can be discovered with classical techniques.

Our approach is conceptually similar to the manual interviewing approach of [12] by
first identifying objects and then processes. However, our approach is fully automatic up
to picking the number k of artifacts to be discovered. The complete approach combines
a number of non-trivial, existing techniques for schema discovery, schema summariza-
tion, log extraction, and life-cycle discovery. Technically, we contributed a new and first
automatic discovery of schema-log mapping needed for log extraction. Our technique is
general as it has no restrictions on the input apart from it being a relational database in
which an event’s timestamp is recorded in a separate database column. This assumption
is backed by practice: most ERP systems such as SAP and PeopleSoft record events in
that form. The approach is implemented in a prototype tool and was validated on actual
data from an ERP production system of a large retailer.

However, some open problems remain. Currently, the user has to pick the number k
of artifacts to be discovered. While an iterative approach to find the right k yielding the
“right” artifacts has proven feasible, a more automatic approach to identify the relevant
artifacts of the process is needed. Generally, it could be desirable to include domain
information when discovering artifact schemas. The same remark applies for discover-
ing the schema-log mapping. The identified definition of event types and their attributes
could improve in quality if domain knowledge is included or the mapping is manually
refined afterwards. Finally, our technique currently focuses on discovering artifact life-
cycles, but ignores artifact interactions as they are documented by object relations in
the original data source; more research is required here.

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement no. 257593 (ACSI).

Discovery of Artifact-Centric Processes 327

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. Abedjan, Z., Naumann, F.: Advancing the Discovery of Unique Column Combinations. In:
CIKM 2011, pp. 1565–1570. ACM (2011)

3. Ahmadi, B., Hadjieleftheriou, M., Seidl, T., Srivastava, D., Venkatasubramanian, S.: Type-
Based Categorization of Relational Attributes. In: EDBT 2009, pp. 84–95. ACM (2009)

4. Bauckmann, J., Leser, U., Naumann, F., Tietz, V.: Efficiently Detecting Inclusion Dependen-
cies, pp. 1448–1450. IEEE (April 2007)

5. Bhattacharya, K., Guttman, R., Lyman, K., Heath, I.I.I., Kumaran, S., Nandi, P., Wu, F.,
Athma, P., Freiberg, C., Johannsen, L., et al.: A model-driven approach to industrializing
discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)

6. Bozkaya, M., Gabriels, J., Werf, J.: Process Diagnostics: A Method Based on Process Mining,
pp. 22–27. IEEE (February 2009)

7. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-
tions and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1(1), 269–271 (1959)

9. Dumas, M.: On the Convergence of Data and Process Engineering. In: Eder, J., Bielikova, M.,
Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 19–26. Springer, Heidelberg (2011)

10. Heath, T.: Siena: a tool for modeling and executing artifact-centric business processes (De-
cember 2009)

11. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing Support for Large Scale Process Mining of SAP
Transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007 Work-
shops. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)

12. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Behavior Using Busi-
ness Artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495,
pp. 324–339. Springer, Heidelberg (2007)

13. Marchi, F.D., Lopes, S., Petit, J.M.: Unary and n-ary inclusion dependency discovery in
relational databases. J. Intell. Inf. Syst. 32(1), 53–73 (2009)

14. Nooijen, E.: Artifact-Centric Process Analysis: Process Discovery in ERP Systems (April
2012)

15. Piessens, D.: Event Log Extraction from SAP ECC 6.0 (April 2011)
16. Ramesh, A.: Process mining in PeopleSoft (2006)
17. Tiwari, A., Turner, C., Majeed, B.: A review of business process mining: State-of-the-art and

future trends. Business Process Management Journal 14(1), 5–22 (2008)
18. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame,

and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75.
Springer, Heidelberg (2011)

19. Wu, W., Reinwald, B., Sismanis, Y., Manjrekar, R.: Discovering Topical Structures of
Databases. In: SIGMOD 2008, pp. 1019–1030. ACM (2008)

20. Yang, X., Procopiuc, C.M., Srivastava, D.: Summarizing relational databases. Proc. VLDB
Endow. 2, 634–645 (2009)

21. Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D.: On multi-
column foreign key discovery. Proc. VLDB Endow. 3, 805–814 (2010)

22. Zhang, M., Hadjieleftheriou, M., Ooi, B.C., Procopiuc, C.M., Srivastava, D.: Automatic dis-
covery of attributes in relational databases. In: SIGMOD 2011, pp. 109–120. ACM (2011)

	Automatic Discovery of Data-Centric and Artifact-Centric Processes
	Introduction
	Related Work
	Discovering Artifact Schemas
	Assumed Input and Schema Extraction
	Discovering Artifact Schemas

	Extracting Logs and Discovering Life-Cycles
	Automatically Discovering a Schema-Log Mapping
	Extracting Logs and Discovering Life-Cycles

	Empirical Evaluation
	Conclusion
	References

