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Abstract. We extend our study of Motion Planning via Manifold Samples
(MMS), a general algorithmic framework that combines geometric methods
for the exact and complete analysis of low-dimensional configuration spaces
with sampling-based approaches that are appropriate for higher dimensions.
The framework explores the configuration space by taking samples that are
low-dimensional manifolds of the configuration space capturing its connec-
tivity much better than isolated point samples. The contributions of this
paper are as follows: (i) We present a recursive application of MMS in a six-
dimensional configuration space, enabling the coordination of two polygonal
robots translating and rotating amidst polygonal obstacles. In the adduced
experiments for the more demanding test cases MMS clearly outperforms
PRM, with over 20-fold speedup in a coordination-tight setting. (ii) A prob-
abilistic completeness proof for the most prevalent case, namely MMS with
samples that are affine subspaces. (iii) A closer examination of the test cases
reveals that MMS has, in comparison to standard sampling-based algorithms,
a significant advantage in scenarios containing high-dimensional narrow pas-
sages. This provokes a novel characterization of narrow passages which at-
tempts to capture their dimensionality, an attribute that had been (to a large
extent) unattended in previous definitions.
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1 Introduction

Configuration spaces, or C-spaces, are fundamental tools for studying a large
variety of systems. A point in a d-dimensional C-space describes one state
(or configuration) of a system governed by d parameters. C-spaces appear
in diverse domains such as graphical animation, surgical planning, compu-
tational biology and computer games. For a general overview of the subject
and its applications see [9, 23, 25]. The most typical and prevalent example
are C-spaces describing mobile systems (“robots”) with d degrees of freedom
(dof s) moving in some workspace amongst obstacles. As every point in the
configuration space C corresponds to a free or forbidden pose of the robot, C
decomposes into disjoint sets Cfree and Cforb, respectively. Thus, the motion-
planning problem is commonly reduced to the problem of finding a path that
is fully contained within Cfree.

1.1 Background

C-spaces haven been intensively studied for over three decades. Fundamen-
tally, two major approaches exist:

(i) Analytic Solutions: The theoretical foundations, such as the introduc-
tion of C-spaces [27] and the understanding that constructing a C-space is
computationally hard with respect to the number of dofs [29], were already
laid in the late 1970’s and early 1980’s in the context of motion planing.
Exact analytic solutions to the general motion planning problem as well as
for various low-dimensional instances have been proposed in [4, 7, 8, 32] and
[2, 3, 15, 27, 31], respectively. For a survey of related approaches see [33].
However, only recent advances in applied aspects of computational geometry
made robust implementations for important building blocks available. For
instance, Minkowski sums, which allow the representation of the C-space of a
translating robot, have robust and exact two- and three-dimensional imple-
mentations [13, 14, 36]. Likewise, implementations of planar arrangements1

for curves [35, C.30], could be used as essential components in [32].

(ii) Sampling-Based Approaches: Sampling-based approaches, such as
Probabilistic Roadmaps (PRM) [20], Expansive Space Trees (EST) [17] and
Rapidly-exploring Random Trees (RRT) [24], as well as their many variants,
aim to capture the connectivity of Cfree in a graph data structure, via random
sampling of configurations. For a general survey on the field see [9, 25]. As op-
posed to analytic solutions these approaches are also applicable to problems
with a large number of dof . Importantly, the PRM and RRT algorithms
were shown to be probabilistically complete [18, 21, 22], that is, they are

1 A subdivision of the plane into zero-dimensional, one-dimensional and two-
dimensional cells, called vertices, edges and faces, respectively induced by the
curves.
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guaranteed to find a valid solution, if one exists. However, the required run-
ning time for finding such a solution cannot be computed for new queries
at run-time. This is especially problematic as these algorithms suffer from
high sensitivity to the so-called “narrow passage” problem, e.g., where the
robot is required to move in environments cluttered with obstacles, having
low clearance.

Though there are also some hybrid approaches [11, 16, 26, 37] it is apparent
that the arsenal of currently available motion-planning algorithms lacks a
general scheme applicable to high-dimensional problems with little or low
sensitivity to narrow passages. In [30] we introduced a framework for Motion
Planning via Manifold Samples (MMS), which should also be considered as
a hybrid approach. In a setting considering a three-dimensional C-space it
was capable of achieving twenty-fold (and more) speedup factor in running
time when compared to the PRM algorithm when used for planning paths
within narrow passages. We believe that the speedup presented in [30] does
not present a mere algorithmic advantage for a specific implemented instance
but a fundamental advantage of the framework when solving scenarios with
narrow passages.

This study attempts to continue developing the MMS framework as a
tool to overcome the gap mentioned in existing motion-planning algorithms.
We briefly present the scheme and continue to a preliminary discussion on
applying MMS in high-dimensional C-spaces, which motivates this paper.

1.2 Motion Planning via Manifold Samples

The framework is presented as a means to explore the entire C-space, or, in
motion-planning terminology as a multi-query planner, consisting of a pre-
processing stage and a query stage. The preprocessing stage constructs the
connectivity graph G of C, a data structure that captures the connectivity of C
using low-dimensional manifolds as samples. The manifolds are decomposed
into cells in Cfree and Cforb in an analytic manner; we call a cell of the decom-
posed manifold that lies in Cfree a free space cell (FSC). The FSCs serve as
nodes in G. Two nodes are connected by an edge if their corresponding FSCs
intersect. See Fig. 1 for an illustration.

Once G has been constructed it can be queried for paths between two con-
figurations qs, qt ∈ Cfree in the following manner: A manifold that contains qs
in one of its FSCs is generated and decomposed (similarly for qt). These
FSCs and their appropriate edges are added to G. We compute a path γ in G
between the FSCs that contain qs and qt. If such a path is found in G, it can
be (rather straightforwardly) transformed into a continuous path in Cfree by
planning a path within each FSC in γ.
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Fig. 1 Three-dimensional C-spaces: The left side illustrates two families of mani-
folds where the decomposed cells are darkly shaded. The right side illustrates their
intersection that induces the graph G. Figure taken from [30].

1.3 MMS in Higher Dimensions

The successful application of MMS in [30] to a three-dimensional C-space
can be misleading when we come to apply it to higher dimensions. The heart
of the scheme is the choice of manifolds from which we sample. Informally,
for the scheme to work we must require that the used set of manifolds M
fulfills the following conditions.

C1. The manifolds in M cover the C-space.
C2. A pair of surfaces chosen uniformly and independently2 at random from

M intersect with significant probability.
C3. Manifolds need to be of very low dimension as MMS requires an analytic

description of the C-space when restricted to a manifold. Otherwise the
machinery for a construction of this description is not readily available.

For MMS to work in C-spaces of dimension d, ConditionC2 has a prerequisite
that the sum of dimensions of a pair of manifolds chosen uniformly and
independently at random from M is at least d with significant probability.
This means in particular that M will consist of manifolds of dimension3 �d

2�.
With this prerequisite in mind, there is already much to gain from using our
existing and strong machinery for analyzing two-dimensional manifolds [5,
6, 12], while fulfilling the conditions above: We can solve motion-planning
problems with four degrees of freedom, at the strength level that MMS offers,
which is higher than that of standard sampling-based tools.

2 The requirement that the choices are independent stems from the way we prove
completeness of the method. It is not necessarily an essential component of the
method itself.

3 The precise statement is somewhat more involved and does not contribute much
to the informal discussion here. Roughly, M should comprise manifolds of di-
mension � d

2
� or higher and possibly manifolds of their co-dimension.
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However, we wish to advance to higher-dimensional C-spaces in which
satisfying all the above conditions at once is in general impossible. We next
discuss two possible relaxations of the conditions above that can lead to
effective extensions of MMS to higher dimensions.

Dependent Choice of Manifolds: If we insist on using only very low-
dimensional manifolds even in higher-dimensional C-spaces, then to guaran-
tee that pairs of manifolds intersect, we need to impose some dependence
between the choices of manifolds, i.e., relaxing condition C2. A natural way
to impose intersections between manifolds is to adapt the framework of tree-
based planners like RRT [24]. When we add a new manifold, we insist that it
connects either directly or by a sequence of manifolds to the set of manifolds
collected in the data structure (tree in the case of RRT) so far.

Approximating Manifolds of High Dimension: As we do not have the
machinery to exactly analyze C-spaces restricted to manifolds of dimension
three or higher, we suggest to substitute exact decomposition of the manifolds
as induced by the C-space by some approximation. i.e., relaxing conditionC3.
There are various ways to carefully approximate C-spaces. In the rest of the
paper we take the approach of a recursive application of MMS.

In Section 2 we demonstrate this recursive application for a specific prob-
lem in a six-dimensional configuration space, namely the coordination of two
planar polygonal robots translating and rotating amidst polygonal obsta-
cles. In the adduced experiments for the more demanding test cases MMS
clearly outperforms PRM, with over 20-fold speedup in an especially tight
setting. Section 3 provides the theoretical foundations for using MMS in a
recursive fashion. In Section 4 we examine the significant advantage of MMS
with respect to prevailing sampling-based approaches in scenarios containing
high-dimensional narrow passages. This provokes a novel characterization of
narrow passages which attempts to capture their dimensionality. We conclude
with an outlook on further work in Section 5.

2 The Case of Two Rigid Polygonal Robots

We discuss the MMS framework applied to the case of coordinating the mo-
tion of two polygonal robots Ra and Rb translating and rotating in the
plane amidst polygonal obstacles. Each robot is described by the position
of its reference point ra, rb ∈ R

2 and the amount of counter-clockwise ro-
tation θa, θb with respect to an initial orientation. All placements of Ra in
the workspace W induce the three-dimensional space Ca = R

2 × S1. Sim-
ilarly for Rb. We describe the full system by the six-dimensional C-space
C = Ca × Cb.
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(a) Horizontal slices (b) Vertical lines

Fig. 2 Manifolds families and their FSCs. FSCs of horizontal slices are polygons
while FSCs of vertical lines are intervals along the line.

2.1 Recursive Application of the MMS Framework

We first assume (falsely) that we have the means to decompose three-
dimensional manifolds. Under this assumption, the application of MMS is
straightforward: The set M consists of two families. An element of the first
family of manifolds is defined by fixing Rb at free configurations b ∈ Cb

free

while Ra moves freely inducing the three-dimensional subspaces4 Ca× b. The
second family is defined symmetrically by fixing Ra. As subspace pairs of the
form (a×Cb, Ca×b) intersect at the point (a, b), manifolds of the two families
intersect allowing for connections in the connectivity graph G.

However, we do not have the tools to construct three-dimensional man-
ifolds explicitly. Thus the principal idea is to construct approximations of
these manifolds by another application of MMS. Since for a certain manifold
one robot is fixed, we are left with a three-dimensional C-space in which the
fixed robot is regarded as an obstacle. Essentially this is done by using the
implementation presented in [30] but with a simpler set of manifolds (see also
Fig. 2): (i) Horizontal slices – corresponding to a fixed orientation of the
moving robot while it is free to translate (ii) Vertical lines – corresponding
to a fixed location of the moving robot while it is free to rotate.

Since we only approximate the three dimensional subspaces we have to
make sure that they still intersect. In other words the sampled positions of
a robot must be covered by the approximation of its subspace. To do so we
sample an initial set of angles Θa that is used for the first robot throughout
the entire algorithm. When approximating its subspace (the second robot is
fixed) we take a horizontal slice for each angle in Θa. Conversely, we only fix
the robots position at angles in Θa. We do the same for the second robot and
a set Θb. This way it is ensured that even the approximations of the three
dimensional subspaces intersect.

4 In this paper, when discussing subspaces, we should actually use the term affine
subspaces or linear manifolds. We allow ourselves this (slight) inaccuracy for ease
of reading.
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(a) Random polygons (b) Viking helmet (c) Pacman

Fig. 3 Experimental scenarios. Source and target configurations are drawn in green
and red, respectively.

2.2 Implementation Details

Horizontal Slices: Let Rm and Rf denote the moving and fixed robot,
respectively. Θm denotes the set of angles that is sampled for Rm. A hor-
izontal plane for an angle θm ∈ Θm is defined by the Minkowski sum of
−Rθmwith all obstacles and, in addition, with the fixed robot.5 However, for
each approximation of a three-dimensional affine subspace of robot Rm we
are using the same set of angles, namely Θm. Only the position of robot Rf

changes. Therefore, for all θm ∈ Θm we precompute the Minkowski sum of
robot −Rθm with all obstacles. In order to obtain a concrete slice we only
add the Minkowski sum of −Rθm with Rf by a simple overlay.

Vertical Lines: Fixing the reference point of Rm to some location while it is
free to rotate induces a vertical line in the three-dimensional C-space. Each
vertex (or edge) of the robot in combination with each edge (or vertex) of
an obstacle (or the fixed robot) gives rise to up to two critical angles on this
line. These critical values mark a potential transition between Cforb and Cfree.
Thus a vertical line is constructed by computing these critical angles and the
FSCs are maximal free intervals along this line (for further details see [1]).

2.3 Experimental Results

We demonstrate the performance of our planner using three different scenar-
ios. All scenarios consist of a workspace, obstacles, two robots and one query
(source and target configurations). All reported tests were measured on a
Dell 1440 with one 2.4GHz P8600 Intel Core 2 Duo CPU processor and 3GB
of memory running with a Windows 7 32-bit OS. Preprocessing times pre-
sented are times that yielded at least 80% (minimum of 5 runs) success rate
in solving queries. The algorithm is implemented in C++ based on Cgal [35],

5 −Rθm denotes Rm rotated by θm and reflected about the origin.
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which is used for the geometric primitives, and the Boost graph library [34],
which is used to represent the connectivity graph G.

Fig. 3 illustrates the scenarios where the obstacles are drawn in blue and
the source and target configurations are drawn in green and red, respec-
tively. We used an implementation of the PRM algorithm as provided by the
OOPSMP package [28]. For fair comparison, we did not use cycles in the
roadmap as cycles increase the preprocessing time significantly. We manually
optimized the parameters of each planner over a concrete set. The param-
eters for MMS are: nθ – the number of sampled angles; n� – the number
of vertical lines; nf – the number of times some robot is fixed to a certain
configuration while the three-dimensional C-space of the other is computed.
The parameters used for the PRM are: k – the number of neighbors to which
each milestone should be connected; %st – the percentage of time used to
sample new milestones. The results are summarized in Table 1.

Table 1 Comparison With PRM

Scenario MMS PRM Speedup
nθ n� nf t[sec] k % st t[sec]

Random
polygons 5 512 2 8 20 0.025 8 1

Viking
helmet 20 16 10 6.2 14 0.0125 40 6.45

Pacman 5 4 180 17.6 20 0.0125 20 1.14 Fig. 4 Tightness Results

The Random polygons scenario6 is an easy scenario where little coordi-
nation is required. Both planners require the same amount of time to solve
this case. We see that even though our planner uses complex primitives, when
using the right parameters, it can handle simple cases with no overhead when
compared to the PRM algorithm.

The Viking-helmet scenario consists of two narrow passages that each
robot needs to pass through. Moreover, coordination is required for the two
robots to exchange places in the lower chamber. We see that the running times
of the MMS are favorable when compared to the PRM implementation. Note
that although each robot is required to move along a narrow passage, the
motion along this passage does not require coordination between the robots.

The Pacman scenario, in which the two robots need to exchange places,
requires coordination of the robots: they are required to move into a position
where the C-shaped robot, or pacman, “swallows” the square robot, the pac-
man is then required to rotate around the robot. Finally the two robots should
move apart (see Fig. 5). We ran this scenario several times, progressively in-
creasing the square robot size. This caused a “tightening” of the passages
containing the desired path. Fig. 4 demonstrates the preprocessing time as

6 A scenario provided as part of the OOPSMP distribution.
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a function of the tightness of the problem for both planners. A tightness of
zero denotes the base scenario (Fig. 3c) while a tightness of one denotes the
tightest solvable case. Our algorithm has less sensitivity to the tightness of
the problem as opposed to the PRM algorithm. In the tightest experiment
solved by the PRM, MMS runs 20 times faster. We ran the experiment on a
tighter scenario but the PRM algorithm terminated after 5000 seconds due
to lack of memory resources. We believe that behavior of the algorithms with
respect to the tightness of the passage is a fundamental difference between
the two algorithms and discuss its origin in Section 4.

(a) The square robot moves into
a position where the pacman can
engulf it

(b) The pacman engulfs the
square robot

Fig. 5 Example of a path in the Pacman Scenario

3 Probabilistic Completeness of MMS

It has been shown that PRM, using point samples, is probabilistically com-
plete (see, e.g., [9, C.7]). At first glance it may seem that if the scheme is
complete for point samples then it is evidently complete when these samples
are substituted with manifold samples: manifolds of dimension one or higher
guarantee better coverage of the configuration space. However, there is a cru-
cial difference between PRM and MMS when it comes to connectivity. The
completeness proof for PRM relies, among others facts, on the fact that if
the straight line segment in the configuration space connecting two nearby
samples lies in the free space, then the nodes corresponding to these two con-
figurations are connected by an edge in the roadmap graph. The connectivity
in MMS is attained through intersections of manifolds, which may require a
chain of subpaths on several distinct manifolds to connect two nearby free
configurations. This is what makes the completeness proof for MMS non
trivial and is expressed in Lemma 3.2 below.

We present a probabilistic completeness proof for the MMS framework
for the case where the configuration space C is the d-dimensional Euclidean
space R

d while MMS is taking samples from two perpendicular affine sub-
spaces, the sum of whose dimension is d. Assuming Euclidean space does not
impose a real restriction as long as the actual C-space can be embedded into
a Euclidean space. Also in more complex cases such as periodic parameters
this only requires some minor technical modifications.
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(a) (b)

Fig. 6 Two-dimensional sketch: balls and manifolds are presented as circles and
lines, respectively. (a) Intersection of two ρ/

√
2-intersecting manifolds. (b) Con-

struction of a path as defined in Lemma 3.2.

Let A and B denote such subspaces and let k and d − k be their dimen-
sions, respectively. As C is decomposed into two perpendicular subspaces,
a point p = (a1, . . . , ak, b1, . . . , bd−k) ∈ C may be represented as the pair
of points (a, b) from subspaces A and B. Under this assumption, the set of
manifolds M consists of two families of (d − k) and k-dimensional mani-
folds MB and MA. Family MA consists of all manifolds that are defined
by fixing a point a0 ∈ A while the remaining d − k parameters are variable,
MB is defined symmetrically. Two manifolds m(a) ∈ MA and m(b) ∈ MB

always intersect in exactly one point, i.e., m(a) ∩ m(b) = (a, b) ∈ C.
Let BC

r (p) = {q ∈ C | dist(p, q) ≤ r} define a ball in C of radius r centered
at p ∈ C, where dist denotes the Euclidean metric on C. Likewise, BB

r (b)
and BA

r (a) denote (d− k) and k-dimensional balls in B and A, respectively.

Definition 1 (ρ-intersecting). For ρ > 0 we term a manifold m(a) ∈
MA ρ-intersecting for a point p ∈ C if m(a) ∩BC

ρ (p) �= ∅, i.e., if a ∈ BA
ρ (pA),

where pA is the projection of p into A. Similarly for manifolds in B.

A feasible path γ is a continuous mapping from the interval [0, 1] into Cfree.
The image of a path is defined as Im(γ) = {γ(α) | α ∈ [0, 1]}. We show
that for any collision-free path γp,q of clearance ρ > 0 between two config-
urations p and q, the probability that MMS constructs a path from p to q
with distance at most ρ from γp,q on the union of the sampled manifolds is
positive. Moreover, the probability of failing to find such a path by the MMS
algorithm decreases exponentially with the number of samples.

Lemma 3.1 For p ∈ C and ρ > 0 let m(a) ∈ MA and m(b) ∈ MB be two
manifolds that are ρ/

√
2-intersecting. Their intersection point p′ = (a, b) =

m(a) ∩m(b) is in BC
ρ (p).

For an illustration of Lemma 3.1 see Figure 6a. The proof (given in [1])
follows immediately from elementary properties of Rd. Lemma 3.2 is more
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important as it establishes connections. Informally, it shows that for any two
points p and q, a manifold m(b) ∈ MB that is close to both points enables
a connection between two manifolds m(ap),m(aq) ∈ MA that are close to p
and q, respectively.

Lemma 3.2 Let p, q ∈ C be two points such that dist(p, q) ≤ ρ and
let m(ap),m(aq) ∈ MA be two ρ/

√
2-intersecting manifolds for p and q

respectively. Let m(b) ∈ MB be a manifold that is simultaneously ρ/
√
2-

intersecting for p and q and let p′ = (ap, pB) ∈ BC
ρ (p) and q′ = (aq, qB) ∈

BC
ρ (q) be the projection of p and q on m(ap) and m(aq), respectively.

There exists a path γp′,q′ between p′ and q′ such that Im(γp′,q′) ⊆ (BC
ρ (p)∪

BC
ρ (q)) ∩ (m(ap) ∪m(b) ∪m(aq)), i.e. there is a path lying on the manifolds

within the union of the balls.

Proof. Let p′′ = m(ap) ∩ m(b) = (ap, b) and q′′ = m(aq) ∩ m(b) = (aq, b)
denote the intersection point of m(ap) and m(aq) with m(b), respectively.
Moreover, let p′′′ = (pA, b) ∈ BC

ρ (p) and q′′′ = (qA, b) ∈ BC
ρ (q) denote the pro-

jections of p and q on m(b). We show that the path composed of the segments
(p′, p′′), (p′′, p′′′), (p′′′, q′′′), (q′′′, q′′) and (q′′, q′) fulfills the requirements. See
Fig. 6b.

By Lemma 3.1 the intersection points p′′ and q′′ are insideBC
ρ (p) and BC

ρ (q),
respectively. Thus, by convexity of each ball the segments (p′, p′′) ⊂ m(qp)
and (q′, q′′) ⊂ m(aq) as well as the segments (p′′, p′′′), (q′′, q′′′) ⊂ m(b) are in
(BC

ρ (p) ∪BC
ρ (q)).

It remains to show that (p′′′, q′′′) ⊂ m(b) is inside (BC
ρ (p)∪BC

ρ (q)). Recall
that dist(p, q) ≤ ρ and therefore dist(p′′′, q′′′) ≤ ρ. Let p̄ be a point on
the segment (p′′′, q′′′) that, w.l.o.g, is closer to p′′′. Thus dist(p̄, p′′′) ≤ ρ/2.
The manifold m(b) is ρ/

√
2-intersecting, thus dist(p, p′′′) ≤ ρ/

√
2. As the

segments (p, p′′′) and (p′′′, p̄) are perpendicular it holds:

dist(p, p̄) =
√
dist(p, p′′′)2 + dist(p′′′, p̄)2 ≤

√
ρ2/2 + ρ2/4 < ρ.

�

Theorem 3.3 Let p, q ∈ Cfree such that there exists a collision-free path
γp,q ∈ Γ of length L and clearance ρ between p and q. Then the probability
of the MMS algorithm to return a path between p and q after generating nA

and nB manifolds from families MA and MB is:

Pr[(p, q)SUCCESS] = 1− Pr[(p, q)FAILURE]

≥ 1−
⌈
L

ρ

⌉
[(1− μA)

nA + (1− μB)
nB ] ,

where μA and μB are some positive constants.

The constants μA and μB reflect the probability of a manifold to be ρ/
√
2-

intersecting for one or two nearby points, respectively; The proof for
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Theorem 3.3 is rather technical. It involves using Lemma 3.2 repeatedly for
points along the path γp,q of distance less than ρ. We omit the details and
refer the reader to [1] for the full proof.

Recursive Application. The proof of Theorem 3.3 assumes that the sam-
ples are taken using full high-dimensional manifolds. However, Section 2
demonstrates a recursive application of MMS where the approximate samples
are generated by another application of MMS.

In order to obtain a completeness proof for the two-level scheme let γ be a
path of clearance 2ρ. First, assume that the samples taken by the first level of
MMS are exact. Applying Theorem 3.3 for γ and ρ shows that with sufficient
probability MMS would find a set M ′ of manifolds that would contain a path
γ′. Since we required clearance 2ρ but relied on the tighter clearance ρ, it
is guaranteed that γ′ still has clearance ρ. Now, each manifold m′ ∈ M′ is
actually only an approximation constructed by another application of MMS.
Thus, for each m′ ∈ M′ apply Theorem 3.3 to subpath γ′

m′ = γ′ ∩m′ which
has clearance ρ. Concatenation of all the resulting subpaths concludes the
argument. Of course the parameters in the inequality in Theorem 3.3 change
accordingly.

We remark that the recursive approach imposes a mild restriction on the
sampling scheme as the sampling and the approximation must be somewhat
coordinated. Since in theory m(a)∩m(b) = (a, b) we must ensure that points
that we sample from A are contained in every approximation of m(b) ∈ MB

and vise versa. In our implementation this is ensured by restricting the set
of possible angles to those used to approximate m(b) ∈ MB (see Section 2).

4 On the Dimension of Narrow Passages

Consider the pacman scenario illustrated in Fig. 3c of the experiments section.
We obtain a narrow passage by increasing the size of the square-shaped robot
making it harder for the pacman to swallow it. Fig. 4 shows that our approach
is significantly less sensitive to this tightening than the PRM algorithm. In
order to explain this, let us take a closer look at the nature of the narrow
passage for the tightest solvable case.

In order to get from the start placement to
the goal placement, the pacman must swallow the
square, rotate around it and spit it out again. Due
to symmetry it is sufficient to concentrate on the
first part. The figure to the right depicts the tight-
est case, i.e., when the square robot fits exactly into the “mouth” of the
pacman. The gray rectangle indicates the positions of the reference point of
the square such that there is a valid movement of the pacman that will allow
it to swallow the square robot (two-dimensional region, two parameters), the
rotation angle of the square is also important (one additional parameter).
The range of concurrently possible values for all three parameters is small
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but does not tend to zero. The passage becomes narrow by the fact that the
rotation angle of the pacman must correlate exactly with the orientation of
the square to allow for passing through the mouth. Moreover, the set of valid
placements for the reference point of the pacman while swallowing the square
(other parameters being fixed) is a line, i.e., its x and y parameter values are
coupled. Thus, the passage is a four-dimensional object as we have a tight
coupling of two pairs of parameters in a six-dimensional C-space.

The PRM approach has difficulties to sample in this passage since the
measure tends to zero as the size of the square increases. On the other hand,
for our approach the passage is only tight with respect to the correlation of the
two angles. As soon as the MMS samples an (approximated) volume that fixes
the square robot such that the pacman can engulf it, the approximation of
the volume just needs to include a horizontal slice of a suitable angle and the
passage becomes evident in the corresponding Minkowski sum computation.

4.1 Definition of Narrow Passages

Intuition may suggest that narrow passages are tunnel-shaped. However, a
one-dimensional tunnel in a high-dimensional C-spaces would correspond to
a simultaneous coupling of all parameters, which is often not the case. For
instance, the discussion of the pacman scenario shows that the passage is
narrow but that it is still a four-dimensional volume, which proved to be a
considerable advantage for our approach in the experiments. Though, some
sampling based approaches try to take the dimension of a passage into account
(e.g. see [10]) it seems that this aspect is not reflected by existing definitions
that attempt to capture attributes of the C-space. Definitions such as ε-
goodness [19] and expansiveness [17] are able to measure the size of a narrow
passage better than the clearance [18] of a path, but neither incorporates the
dimension of a narrow passage in a very accessible way. As a consequence, we
would like to propose a new set of definitions that attempt to simultaneously
grasp the tightness and the dimension of a passage.

We start by defining the “ordinary” clearance of a path. The character-
ization is based on the notion of homotopy classes of paths with respect
to a set Γs,t, i.e., the set of all paths starting at s and ending at t. For a
path γ0 ∈ Γs,t and its homotopy class H(γ0) we define the clearance of the
class as the largest clearance found among all paths in H(γ0).

Definition 2. The clearance of a homotopy class H(γ0) for γ0 ∈ Γs,t is

sup
γ∈H(γ0)

{ sup{ ρ > 0 | Bd
ρ ⊕ Im(γ) ⊆ Cfree } },

where ⊕ denotes the Minkowski sum of two sets, which is the vector sum of
the sets.

By using a d-dimensional ball this definition treats all directions equally, thus
considering the passage of H(γ0) to be a one-dimensional tunnel. We next
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refine this definition by using a k-dimensional disk, which may be placed in
different orientations depending on the position along the path.

Definition 3. For some integer 0 < k ≤ d the k-clearance of H(γ0) is:

sup
γ∈H(γ0)

{ sup{ ρ > 0 | ∃R : [0, 1] → R ∀t ∈ [0, 1] : γ(t)⊕ R(t)Bk
ρ ⊆ Cfree } },

where R is the set of d-dimensional rotation matrices and Bk
ρ is the k-

dimensional ball of radius ρ. In case the map R is required to be continuous
we talk about continuous k-clearance.

Clearly, the k-clearance of H(γ0) for k = d is simply the clearance of H(γ0).
For decreasing values of k, the k-clearance of a homotopy class is a monotonic
increasing sequence. We next define the dimension of a passage using this
sequence, that is, we set the dimension to be the first k for which the clearance
becomes significantly larger7 than the original d-dimensional clearance.

Definition 4. A passage for H(γ0) in R
d of clearance ρ is called

k-dimensional if k is the largest index such that k-clearance(H(γ0)) � ρ.
If for every k k-clearance(H(γ0)) �� ρ then the passage is termed one-
dimensional.

The figure on the right illustrates two
three-dimensional C-spaces consisting of
a narrow passage (yellow) surrounded by
obstacles (blue). Both passages have a
measure of ε2 thus for a PRM like plan-
ner, sampling in either passage is equally
hard as the probability of a uniform point
sample to lie in either one of the narrow
passages is proportional to ε2. However, the two passages are fundamentally
different. The passage depicted on the right-hand side is a one-dimensional
tunnel corresponding to a tight coupling of the three parameters. The pas-
sage depicted on the left-hand side is a two-dimensional flume which is much
easier to intersect by a probabilistic approach that uses manifolds as samples.
Our new definitions formally reveal this difference. For k equals 3, 2 and 1
the k-clearance of the right passage is ε,

√
2ε and larger than 1, respectively.

For the left passage this sequence is ε2 for k = 3 and larger than 1 for k = 2, 1
which characterizes the passage as two-dimensional.

4.2 Discussion

We believe that the definitions introduced in Section 4.1, can be an essential
cornerstone for a formal proof that shows the advantage of manifold samples
over point samples in the presence of high-dimensional narrow passages. We

7 We leave this notion informal as it might depend on the problem at hand.
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sketch the argument briefly. Let Cfree contain a narrow passage of dimension k,
that is, the passage has clearance ρ and k-clearance λ, where λ � ρ. This
implies that it is possible to place discs of dimension k and radius λ � ρ into
the tight passage. The main argument is that for a random linear manifold of
dimension d− k the probability to hit such a disc is proportional to λ, which
is much larger than ρ. The probability also depends on the angle between
the linear subspace containing the disc and the linear manifold. However, by
choosing a proper set of manifold families it should be possible to guarantee
the existence of at least one family for which the angle is bounded.

5 Further Work

The extension of MMS [30] presented here is part of our on-going efforts to-
wards the goal of creating a general scheme for exploring high-dimensional
C-spaces that is less sensitive to narrow passages than currently available
tools. As discussed in Section 1.3 the original scheme imposes a set of con-
ditions that in combination restrict an application of MMS to rather low
dimensions. In this paper we chose to relax condition C3, namely by com-
puting only approximations of three-dimensional manifolds. An alternative
path is to relax condition C2, namely by not sampling the manifolds uni-
formly and independently at random. This would enable the use of manifolds
of low dimension as it allows to enforce intersection. Following this path we
envision a single-query planer that explores a C-space in an RRT-like fashion.

Another possibility is to explore other ways to compute approximative
manifold samples, for instance, the (so far) exact representations of FSCs
could be replaced by much simpler (and thus faster) but conservative8 ap-
proximations. This is certainly applicable to manifold samples of dimension
one or two and should also enable manifold samples of higher dimensions.
We remark that the use of approximations should not harm the probabilistic
completeness as long as it is possible to refine approximations such that they
converge to the exact results (equivalent to increased number of samples).

Using these extensions we wish to apply the scheme to a variety of diffi-
cult problems including assembly maintainability (part removal for mainte-
nance [38]) by employing a single-query variant of the scheme. Additionally,
we intend to extend the scheme to and experiment with motion-planning
problems for highly-redundant robots as well as for fleets of robots, exploit-
ing the symmetries in the respective C-space.

For supplementary material, omitted here for lack of space, the reader is
referred to our web-page http://acg.cs.tau.ac.il/projects/mms.

8 Approximated FSC are contained in Cfree.



328 O. Salzman, M. Hemmer, and D. Halperin

References

1. Salzman, O., Hemmer, M., Halperin, D.: On the Power of Manifold Samples
in Exploring Configuration Spaces and the Dimensionality of Narrow Passages.
CoRR abs/1202.5249 (2012), http://arxiv.org/abs/1202.5249

2. Aronov, B., Sharir, M.: On translational motion planning of a convex polyhe-
dron in 3-space. SIAM J. Comput. 26(6), 1785–1803 (1997)

3. Avnaim, F., Boissonnat, J.D., Faverjon, B.: A practical exact motion planning
algorithm for polygonal object amidst polygonal obstacles. In: Proceedings of
the Workshop on Geometry and Robotics, pp. 67–86. Springer, London (1989)

4. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry, 2nd
edn. Algorithms and Computation in Mathematics. Springer (2006)

5. Berberich, E., Fogel, E., Halperin, D., Kerber, M., Setter, O.: Arrangements on
parametric surfaces II: Concretizations and applications. MCS 4, 67–91 (2010)

6. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements
on parametric surfaces I: General framework and infrastructure. MCS 4, 45–66
(2010)

7. Canny, J.F.: Complexity of Robot Motion Planning (ACM Doctoral Disserta-
tion Award). The MIT Press (1988)

8. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: A singly exponen-
tial stratification scheme for real semi-algebraic varieties and its applications.
Theoretical Computer Science 84(1), 77–105 (1991)

9. Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L.E., Lynch, K.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementa-
tion. MIT Press (2005)

10. Dalibard, S., Laumond, J.P.: Linear dimensionality reduction in random motion
planning. I. J. Robotic Res. 30(12), 1461–1476 (2011)

11. De Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Ge-
ometry: Algorithms and Applications, 3rd edn. Springer (2008)

12. Foegl, E., Halperin, D., Wein, R.: CGAL Arrangements and their Applications.
Springer, Heidelberg (2012)

13. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of
convex polyhedra with applications. CAD 39(11), 929–940 (2007)

14. Hachenberger, P.: Exact Minkowksi sums of polyhedra and exact and efficient
decomposition of polyhedra into convex pieces. Algorithmica 55(2), 329–345
(2009)

15. Halperin, D., Sharir, M.: A near-quadratic algorithm for planning the motion
of a polygon in a polygonal environment. Disc. Comput. Geom. 16(2), 121–134
(1996)

16. Hirsch, S., Halperin, D.: Hybrid Motion Planning: Coordinating Two Discs
Moving Among Polygonal Obstacles in the Plane. In: Boissonat, J.-D., Bur-
dick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundation Robotics.
STAR, vol. 7, pp. 239–255. Springer, Heidelberg (2004)

17. Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration
spaces. Int. J. Comp. Geo. & App. 4, 495–512 (1999)

18. Kavraki, L.E., Kolountzakis, M.N., Latombe, J.C.: Analysis of probabilistic
roadmaps for path planning. IEEE Trans. Robot. Automat. 14(1), 166–171
(1998)

http://arxiv.org/abs/1202.5249


MMS in High-Dimensional Configuration Spaces 329

19. Kavraki, L.E., Latombe, J.C., Motwani, R., Raghavan, P.: Randomized query
processing in robot path planning. JCSS 57(1), 50–60 (1998)

20. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic
roadmaps for path planning in high dimensional configuration spaces. IEEE
Transactions on Robotics and Automation 12(4), 566–580 (1996)

21. Kuffner, J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-
query path planning. In: ICRA, pp. 995–1001 (2000)

22. Ladd, A.M., Kavraki, L.E.: Generalizing the analysis of PRM. In: ICRA, pp.
2120–2125. IEEE Press (2002)

23. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell
(1991)

24. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning.
In Computer Science Dept., Iowa State University Tech. Rep., pp. 98–11 (1998)

25. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge
(2006)

26. Lien, J.M.: Hybrid motion planning using Minkowski sums. In: RSS 2008 (2008)
27. Lozano-Perez, T.: Spatial planning: A configuration space approach. MIT AI

Memo 605 (1980)
28. Plaku, E., Bekris, K.E., Kavraki, L.E.: OOPS for motion planning: An online

open-source programming system. In: ICRA, pp. 3711–3716. IEEE (2007)
29. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: FOCS,

pp. 421–427. IEEE Computer Society, Washington, DC (1979)
30. Salzman, O., Hemmer, M., Raveh, B., Halperin, D.: Motion Planning via Man-

ifold Samples. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
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