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Abstract. Optical human motion capture system can be applied in
commercial use, but require expensive studio-like environments which
cannot be fulfilled for daily-life use. We present a substitute system:
a real-time motion capture system based on micro sensors, which is
ubiquity, low-cost and able to reconstruct human motion almost in any
environment in real-time. This system consists of three subsystems: a
sensor subsystem, a data fusion subsystem and an animation subsystem.
Experiments show that our system can reconstruct motions and render
animations in real-time, and reach the accuracy of optical human motion
capture system
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1 Introduction

Human Motion capture (Mocap) has wide applications in many areas, such as
virtual reality, interactive game, sports training and film-making, etc. It has
attracted lots of research interests in the last two decades, and a number of Mo-
cap system have been developed, including optical system, mechanical system,
inertial system, magnetic system and hybrid system.

Among all the motion capture techniques, optical Mocap is one of the most
mature ones, such as Vicon[1]. In optical Mocap, a subject is asked to wear
retro-reflective or light emitting markers. Exact 3D locations of these markers
are computed from the images which are recorded by certain number of high res-
olution surrounding cameras, in order to form the motion of the subject. Optical
Mocap systems are of their high accuracy and fast update rates. However, they
need multiple high speed and high resolution cameras structured and calibrated
in a dedicated studio, which restricts applications into a studio-like environment;
the systems are quite complex and have the line-of-sight problem.

Mechanical systems, such as Gypsy[2], employ an exoskeleton which is at-
tached to the articulated body segments to measure joint angles by goniometers
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directly. They are transportable and work with any PC for real time perfor-
mance. However, the main disadvantage of them is that it impedes motion and
is uncomfortable to wear for extended time periods[3].

Inertial motion capture systems, such as Verhaert’s ALERT system[4], use
gyroscopes or accelerometers placed on each body segment to measure orienta-
tion. They are portable, and do not have the line-of-sight problem. However, the
measurements drift significantly over extended time periods.

Magnetic systems, such as MotionStar[5], use a magnetic field (generated by
a magnetic coil or earth magnetic field) to determine both position and orien-
tation of body segments. They can achieve good accuracy in the situation of
no interference. However, they have high power consumption and are extremely
sensitive to the ferromagnetism in the environment.

Ultrasonic systems, such as Cricket location system[6], employ a set of ultra-
sonic pulse emitters which are worn by a subject and a set of receivers which are
placed at fixed locations in the environment, in order to determine each emitter’s
location by time-of-flight and triangulation. They are of high tracking accuracy.
However, the signal interference is seriously[3,7].

Among all the systems, the research on human motion capture using miniature
inertial/magnetic sensors becomes more and more attractive. In Micro-sensor
Motion capture (MMocap), miniature inertial and magnetic sensor nodes are
attached to body segments. Segment orientation and position can be estimated
from the fusion of sensory data. Based on the estimated orientation and posi-
tion, together with the length of each segment and the arranging relationship
between segments, the motion of the whole body can be obtained. MMocap has
no line-of-sight requirements, and no emitters to install. Thus, MMocap systems
can be applied in a variety of applications almost everywhere. In this paper,
we present the design of our ambulatory real-time MMocap system using wear-
able miniature sensor nodes, which are placed at human body segments. The
collected motion signals from micro-sensor nodes are then used to estimate ori-
entations and positions by fusion of sensory data. A sensor data-driven hierarchy
human motion model is developed and driven by estimated motion information
for real-time motion reconstruction. The experimental results have shown that
our motion capture system can capture human motion and drive animation in
real-time without drift and delay.

The rest of the paper is organized as follows. Section 2-4 describes the design of
the prototype system, including the hardware design and the 3D human motion
reconstruction. Particularly, section 4 will discuss the data fusion approach for
motion information. And the experimental results will be given in Section 5.

2 Sensor Subsystem

The system of our wearable real-time micro-sensor motion capture is imple-
mented by three subsystems: sensor subsystem, data fusion subsystem and the
animation subsystem. As depicted in Figure 1: The sensor subsystem samples
and gathers human motion signals, and transmits sensor data to data fusion
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subsystem. Data fusion subsystem fuses data to obtain the motion information,
and sends the motion information to the animation subsystem. The animation
subsystem renders animation using an avatar in the 3D virtual space in real-
time. The fusion subsystem and the animation subsystem are both implemented
in a PC-like terminal which also controls sensor subsystem. The communication
between the sensor subsystem and the fusion subsystem is operated wirelessly
via Bluetooth or Wi-Fi.

The sensor subsystem is described in this section. Animation subsystem is
briefed in section 3. The data fusion subsystem will be discussed in section 4.

Fig. 1. Our MMocap system contains three subsystems: sensor subsystem, data fusion
subsystem and animation subsystem

Sensor subsystem consists of two parts: a base station and certain micro-
sensor nodes. Sensor nodes sample human motion signals, and send them to the
base station via I2C protocol. On each body segment a sensor node is fixed.
Measurement units on node are MEMS micro-sensors including a triad micro
accelerometer, a triad micro magnetometer, and a triad micro gyroscope. The
accelerometer measures acceleration data which is mixed with human motion
acceleration and earth gravity acceleration. The magnetometer measures local
earth magnetic field. The gyroscope measures angular rates. The motion infor-
mation required by animation system can be filtered from those data in the data
fusion subsystem detailed in section 4.

Sensor nodes are wired connected to the base station using shielded cables.
The sampling rate can be adjusted according to applications, and up to 200Hz.
Rechargeable Li-ion battery pack is used to provide power for the sensor sub-
system. Taking the range of human activity and exercise level of comfort into
account, the system uses wireless communications to send data between the base
station and the data fusion subsystem. Depending on different circumstances,
the system uses two different wireless communication protocols: Bluetooth and
Wi-Fi, while the former one for indoor applications, and the latter one for out-
door applications.
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3 Animation Subsystem

The motion information from the data fusion subsystem will be sent to the
animation subsystem to drive an avatar in the 3D virtual space for real-time
human motion reconstruction. During the motion reconstruction, an articulated
anatomic skeleton human model is utilized to represent the subject’s body struc-
ture. The model is composed of chains of bone segments linked by joints. It
comprises a total of 16 segments. We assume that each bone segment is rigid
and their shape does not change during the motion. Each segment has 6 DOFs
(degree of freedom), three of them represent position and the other three orien-
tation.

The DOF of the articulated body model is represented by a hierarchical struc-
ture. In this structure, body segments keep a parent-child hierarchy relationship,
which is maintained by a topological tree as shown in Figure 2. The root of the
tree is the pelvis segment, which is also the Center of Mass (CoM) of the avatar.
Each segment is the child node of the parent segment, except the root segment.
The human model is driven by motion parameters, given by the data fusion sub-
system, which results in the real-time animation of human motion. The motion
parameters include orientations and positions of body segments.

Animation system may be rendered using OpenGL or D3D technology, or in
Maya or OGRE.

(a) (b)

Fig. 2. The hierarchical model of the animation subsystem

4 Data Fusion Subsystem

As mentioned above, on each body segment a sensor node is fixed. The data
fusion subsystem receives sensor signals and fuses them to obtain motion in-
formation. The motion information mainly includes orientation and position of
each body segment.

The data fusion subsystem first performs cross-modality fusion, which esti-
mates orientation quaternions from the three different modalities of sensors. This
process is accomplished by the orientation estimation. We use a quaternion to
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represent the orientation of each body segment. A quaternion consists of a vector
part e = (q1, q2, q3)

T ∈ R
3 and a scalar part q4 ∈ R, where the superscript T

denotes the transpose of a vector:

q = (eT , q4)
T =

(
q1, q2, q3, q4

)T
(1)

By a unit quaternion q, any given vector r∈R3 in the reference frame can be
rotated into the sensor frame:

b = h(q) = C(q)r (2)

where b∈R3 is the representation vector r in the sensor frame, and C(q) is the
orientation matrix of the transformation from the reference frame to the sensor
frame:

C(q) = (q24 − eTe)I3 + 2eeT − 2q4[e×] (3)

where I3 denotes 3 × 3 identity matrix, and the operator [e×] represents the
standard vector cross-product:

[e×] =

⎛

⎝
0 −q3 q2
q3 0 −q1
−q2 q1 0

⎞

⎠ (4)

Before the analysis it is necessary to define the coordinate systems. First, there
exists a Global Coordinate System (GCS) which is earth related and time invari-
ant. GCS is taken as the reference frame. Second, a Body Coordinate System
(BCS) is attached to each body segment which is time variant coinciding with
segment motion. The origin of each BCS is determined by the anatomical frame
and is defined in the center of the functional axes as shown in Figure 3. Third,
a Sensor Coordinate System (SCS) is defined by each sensor node itself and
also coincides with segment motion. For the convenience of analysis, GCS, BCS,
and SCS are also denoted as the reference frame, the body frame and the sensor
frame, respectively. The estimated orientation quaternions are between GCS and
SCS, denoted as qGS

t . The orientation quaternions employed by the displacement
estimation are between GCS and BCS, denoted as qGB

t . The transformation from
qGS
t and qGB

t can be performed by the initialization process.

Fig. 3. The relationship between the sensor frame, the body frame and the reference
frame
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Orientation estimation is a difficult work in micro-sensor based motion capture
systems. Li Gang (2009) presents an estimation method[8] using UKF algorithm,
but he did not take characteristics of different signal sources into consideration.
As a result disturbance from single source may bring huge error for the entire
system. In consideration of different characteristics of the three signal source,
namely acceleration, angular rate, earth magnetic field, our system use a multi-
model orientation estimation method for data fusion[9]. The randomness of hu-
man motion brings random motions of sensor nodes, as a result of which could
bring different disturbances for different types of sensor node: drift errors for gy-
roscope; human motion acceleration for accelerometer and iron disturbance for
magnetometer. Such errors make degrees of confidence distinct between sensor
types. Thus multi-models for orientation estimation should be considered.

Assuming that there are Nd models sharing the same dynamic model, namely
{Mi}Nd

i=1 , the model probability P{Mi} of the Nd models should satisfy:

P{Mi} ≥ 0 and
∑Nd

i=1 P{Mi} = 1.
In real-time orientation estimation, posterior probability of model Mi in node

j ∈ {1, ..., Ns} should be calculated, where Ns is the number of nodes and
i ∈ {1, ..., Nd} . In our system Ns = 16 and Nd = 4 . Thus the posterior
probability of model Mi in node j can be evaluated by equation:

μ
(j)
i,t = P

{
M

(j)
i,t |Yt

}
=

1

c(j)
Λ
(j)
i,t

Nd∑

l=1

p
(j)
li μ

(j)
l,t−1 (5)

c(j) =

Nd∑

i=1

Λ
(j)
i,t

Nd∑

l=1

p
(j)
li μ

(j)
l,t−1 (6)

where i ∈ {1, ..., Nd} is index of different models;j ∈ {1, ..., Ns} is node index;
Yt = {y1, ...,yt} , yt is the sensor observation in time t ; M j

i,t denotes that node

j uses model i at time t . μ
(j)
i,t is posterior probability of model Mi in node j ;

p
(j)
li is the transforming probability form model l to model i :

p
(j)
li = P

{
M

(j)
i,t |M (j)

l,t−1,Yt−1

}
(7)

Λ
(j)
i,t is the likelihood of model i in node j at time t:

Λ
(j)
i,t = P

{
y
(j)
t |M (j)

i,t ,Yt−1

}
(8)

To estimate accurate orientation, the likelihood and posterior probability men-
tioned above must be obtained. Assuming that orientation of model i in node j

at time t is GSq
(j)
i,t and i ∈ {1, ..., Nd} , j ∈ {1, ..., Ns} , superscript GS denotes

frame transformation from global frame to sensor frame. Quaternion q should
satisfy:

d

dt
q =

1

2
Ω[ω]q (9)
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where Ω[ω] is a 4× 4 skew matrix:

Ω[ω] =

(−[ω×] ω
−ωT 0

)
(10)

ω is the angular velocity:

ω =
(
ωx, ωy, ωz

)T
(11)

operator [ω×] represents the standard vector cross-product in equation (4).
Among three type of measurement units, gyroscope measures angular rate

mixed with bias and noise, the observation of node j ∈ {1, ..., Ns} is:

y
(j)
G,t = ω

(j)
t + h

(j)
G,t + v

(j)
G,t (12)

where G, t means gyroscope observation at time t ; v
(j)
G,t is gyroscope noise,

assuming zero-mean Gaussian noise following distribution N(0,Σ
(j)
G ) here; h

(j)
G,t

is bias vector. As bias of gyroscope varies slowly with respect to its observation,

we model h
(j)
G,t as a random walk model:

h
(j)
G,t = h

(j)
G,t−1 +w

(j)
h,t (13)

where w
(j)
h,t is zero-mean Gaussian white noise.

Then we can get dynamic system equation: system state vector x
(j)
i,t of model

i in node j at time t consists of quaternion GSq
(j)
i,t and bias h

(j)
G,t :

x
(j)
i,t =

(
GSq

(j)
i,t

h
(j)
G,t

)

(14)

the state equation is:

x
(j)
i,t = f

(j)
i,t

(
x
(j)
i,t

)
+w

(j)
i,t

=

(
exp

(
1
2Ω[y

(j)
G,t − h

(j)
G,t]Δ

)
O4×3

O3×4 I3

)

· x(j)
i,t +

(
w

(j)
q,i,t

w
(j)
h,t

)
(15)

The observation of gyroscope is the input of system dynamic model, as a result of
which quaternion orientation estimation is updated using real-time observation
without any lag.

Among three types of measurement units, magnetometers measure earth mag-
netic field mixed with noise and magnetic distortion:

y
(j)
M,t = B

(j)
M,t +H

(j)
M,t + V

(j)
M,t (16)

where M, t denotes magnetometer observation at time t ; V
(j)
M,t is observation

noise of magnetometers; H
(j)
M,t is magnetic distortion caused by soft or hard iron

disturbances; B
(j)
M,t is earth magnetic field vector on sensor frame.
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Noticed that y
(j)
M,t consists of magnitude as well as direction information, and

only direction useful for orientation estimation. Furthermore, its magnitude in-
formation may lead error in orientation estimation. Thus normalization of equa-
tion (16) should be performed. Moreover, for the sake of multi-model estimation,

bias H
(j)
M,t should be put into noise:

z
(j)
M,i,t = b

(j)
M,i,t + v

(j)
M,i,t (17)

where v
(j)
M,i,t is normalized magnetometer observation noise of model i in node

j at time t , which is modeled as Gaussian distribution N(0,Σ
(j)
M ) ; b

(j)
M,i,t is

earth magnetic field vector on sensor frame. Given a quaternion q
(j)
i,t and earth

magnetic field vector on certain frame rM , magnetometer measurement b
(j)
M,i,t

should be evaluated through:

b
(j)
M,i,t = C

(
q
(j)
i,t

)
· rM (18)

Thus observation equation of magnetometer is:

z
(j)
M,i,t = C

(
q
(j)
i,t

)
· rM + v

(j)
M,i,t (19)

Similarly, for accelerometer we have:

y
(j)
A,t = C

(
q
(j)
i,t

)
· rA +H

(j)
A,t + V

(j)
A,t (20)

where A, t denotes accelerometer observation at time t ; V
(j)
A,t is observation

noise of accelerometer; H
(j)
A,t is human motion acceleration; rA is earth gravity

acceleration measurement on sensor frame.
Noticed that y

(j)
A,t consists of magnitude as well as direction information, and

only direction useful for orientation estimation. Furthermore, its magnitude in-
formation may lead error in orientation estimation. Thus normalization of equa-
tion (20) should be performed. Moreover, for the sake of multi-model estimation,

bias H
(j)
A,t should be put into noise:

z
(j)
A,i,t =

y
(j)
A,t

g
= C

(
q
(j)
i,t

)(rA
g

)
+ v

(j)
A,i,t

(21)

where v
(j)
A,i,t is normalized accelerometer observation noise of model i in node

j at time t , which is modeled as Gaussian distribution N(0,Σ
(j)
A ) ; g is earth

gravity acceleration vector on sensor frame.
Then, system observation equation could be conducted. Assume that system

observation is z
(j)
i,t :

z
(j)
i,t =

(
z
(j)
M,i,t

z
(j)
A,i,t

)

= g
(j)
i,t

(
x
(j)
i,t

)
+ v

(j)
i,t

=

(
C(q

(j)
i,t ) O3×3

O3×3 C(q
(j)
i,t )

)

·
(
rM
rA

g

)
+

(
v
(j)
M,i,t

v
(j)
A,i,t

) (22)
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Assuming that vM,i,t does not correlate with vA,i,t , system observation noise

covariance matrix Rt =

(
Σ

(j)
M,i,t O3×3

O3×3 Σ
(j)
A,i,t

)

Using equation (22) and (15) μ
(j)
i,t = P

{
M

(j)
i,t |Yt

}
could be evaluated. The

final orientation GSq
(j)
t is estimated through:

GSq
(j)

t =

Nd∑

i=1

GSq
(j)

i,t · μ(j)
i,t (23)

5 Experimental Results

Experiment investigates the accuracy of our orientation system in contrast with
optical motion capture system. As is shown in Fig 4, human lower limbs move-
ments are captured by our MMocap system and Osprey optical system[10]. Os-
prey optical system captures human motion using six cameras in 2m × 3m space.
In our contrast experiment, optical markers and micro-sensors are fixed on hu-
man waist, thigh and calf, and both systems capture human motion with 100Hz
sample rate. There are three scenes in our experiments:

1. Scene I: running forward, backward and jump aside repeatedly with left,
right and back turning.

2. Scene II: jumping forward repeatedly with back turning.
3. Scene III: walking forward, backward and step aside repeatedly with left,

right and back turning.

Each scene are sample over 30s for over 5 times. For the convenience of evaluation,
quaternions from fusion methods are transformed into degrees. The estimation

Fig. 4. Contrast experiment between our system and optical system

Table 1. RMSE of MMocap System: mean pm standard deviation

Scene Scene I Scene II Scene III

Angle (deg) 2.66± 2.56 2.42± 1.84 2.44 ± 2.34
Displacement (m) 0.0707 ± 0.0469 0.1673 ± 0.0656 0.0990 ± 0.0374
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RMSE of MMocap system to optical system is summarized in Table 1. It can
be seen that, unlike other methods, the orientation error of our method does
not increase much when the motion acceleration grows. From the comparison of
these results, our algorithm has shown its accuracy, stability and efficiency.
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