
Model-Driven Development of Safe

Self-optimizing Mechatronic Systems
with MechatronicUML�

Holger Giese1 and Wilhelm Schäfer2

1 Hasso Plattner Institute for Software Systems Engineering
at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

2 Heinz Nixdorf Institute at the University of Paderborn
Zukunftsmeile 1, D-33102 Paderborn, Germany

wilhelm@uni-paderborn.de

Abstract. Software is expected to become the dominant driver for
innovation for the next generation of advanced distributed embedded
real-time systems (advanced mechatronic systems). Software will build
communities of autonomous agents at runtime which exploit local and
global networking to enhance and optimize their functionality leading to
self-adaptation or self-optimization. However, current development tech-
niques are not capable of providing the safety guarantees required for this
class of systems. Our approach, MechatronicUML, addresses the outlined
challenge by proposing a coherent and integrated model-driven develop-
ment approach which supports the modeling and verification of safety
guarantees for systems with reconfiguration of software components at
runtime. Modeling is based on a syntactically and semantically rigor-
ously defined and partially refined subset of UML. Verification is based
on a special type of decomposition and compositional model checking to
make it scalable.

1 Introduction

Software has become an intrinsic part of complex distributed embedded real-time
systems, also referred to as mechatronic systems. In many cases these systems
are used in a safety-critical environment and implement themselves as so-called
safety-critical applications. Consequently, the development of software control-
ling these systems has to undergo a rigorous process including the prevention of
faults, employing adequate and well-founded modeling concepts, and the verifi-
cation of crucial safety properties in order to detect critical faults.

� This work was developed partially in the course of the Special Research Initiative
614 – Self-optimizing Concepts and Structures in Mechanical Engineering – at the
University of Paderborn, and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.

J. Cámara et al. (Eds.): Assurances for Self-Adaptive Systems, LNCS 7740, pp. 152–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 153

The outlined requirements are also valid for the next generation of advanced
mechatronic systems. These systems are expected to behave more intelligently
than today’s systems by building communities of autonomous agents which ex-
ploit local and global networking to enhance their functionality [1] also named
cyber-physical systems. Such mechatronic systems will employ different forms
of reconfiguration to enable self-adaptation [2] often particularly targeting self-
optimization in this domain. These forms of reconfiguration include complex
coordination protocols which require execution in real-time, reconfiguration of
control algorithms as well as components, and the coordination of the agents
at runtime to adjust their behavior to the changing system goals. However, the
available development techniques cannot handle systems with these advanced
forms of reconfiguration.

We address this challenge with the model-driven MechatronicUML
(mUML) development approach, which combines domain specific modeling and
refinement techniques with verification based on compositional model checking.
The approach suggests modeling the software by using a refined UML com-
ponent model, including the detailed definition of ports, connectors, and pat-
terns/collaborations. We further refine the component model to define proper
integration between discrete and continuous control so that the reconfiguration
of hierarchical component systems can be described in a modular way. Composi-
tional model checking is based on a domain specific decomposition of the system
specification into individually checkable components and patterns/collaborations
based on a common predefined architectural model. The basis for formal verifi-
cation, a formal semantics for the concepts taken from UML, is given in [3].

The paper contains the following new contributions: (1) A comprehensive
overview of the rationale behind the mUML MDD approach combining mod-
eling and verification, previously covered only partially in [4, 5]. (2) A rigor-
ous integration of the previously only independently outlined mUML modeling
concepts for modeling hierarchies of reconfigurable components with hybrid be-
havior [6–10] and the real-time coordination of mechatronic agents [6, 7]. (3)
Finally, an approach for the overall verification based on the modular verifica-
tion concepts for hierarchies of reconfigurable components with hybrid behav-
ior [6–10] and the compositional verification of the real-time coordination of
mechatronic agents [6, 7] which has not been covered before.

The structure of this paper is as follows: The next section provides an overview
of the mUML approach and introduces our running example, explains the un-
derlying general architectural model, outlines how self-optimization takes place
in this architecture, and provides an overview of the modeling and verification
of mUML models. Section 3 introduces the modeling concepts in the form of
a component model permitting specific structural reconfiguration as well as be-
havior specification. The concepts for modeling real-time coordination of the
components are also outlined. In Section 4 the local safety criteria which have
to be verified are defined and it is shown that their composition ensures global
safety. In Section 5 we review existing work in the field and compare it with our
approach. The last section concludes the paper.

154 H. Giese and W. Schäfer

2 The Approach

As a specific example of an advanced mechatronic system, we use the Paderborn-
based RailCab research project (http://www-nbp.upb.de/en), which aims at
combining a passive track system with intelligent shuttles operating individually
and making independent and decentralized operational decisions. The project is
funded by a number of German research organizations. A test track has been
built to the scale of 1:2.5 so that the project’s concetps can be tested in real
operation and not just on paper (cf. Fig. 1(a)).

(a) Test track

reflective information processing

cognitive information processing

a
c
ti

o
n

le
v
e
l

p
la

n
n

in
g

le
v
e
l

A B

C sequencer

control B

control C

motor information processing

control A

reflective loop

cognitive loop

motor loop

cognitive operator

model-based self-optimization

behavior-based self-optimization

reflective operator

controller

Operator-Controller-Module (OCM)

...
configuration

control

emergency

s
o

ft
re

a
l
ti

m
e

h
a
rd

re
a
l
ti

m
e

plant

action level

hard real time

planning level

soft real time

(b) OCM architecture and its elements

Fig. 1. The test track of the RailCab project and the OCM architecture

The RailCab project aims to provide the comfort of individual transport con-
cerning scheduling and on-demand availability of transportation as well as indi-
vidually equipped cars together with the cost and resource effectiveness of public
transport. The modular railway system combines sophisticated undercarriages
with the advantages of new actuation techniques as employed in the Transrapid
(http://www.transrapid.de) to increase passenger comfort while still enabling
high speed transportation and (re)using the existing railway tracks.

One particular goal of the project is to reduce the energy consumption due to
air resistance by coordinating the autonomously operating shuttles in such a way
that they build convoys whenever possible. Such convoys are built on-demand
and the shuttles travel only a few centimeters apart from each other (up to

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 155

0.5m) so that a high reduction of energy consumption is achieved. Consequently,
coordination between the speed control units of the shuttles becomes a safety-
critical aspect and results in a number of hard real-time constraints which have
to be addressed when designing the control software of the shuttles and the
real-time coordination between the shuttles.

2.1 The General Architectural Model

In order to build such a complex software system, the mUML approach follows
a general local architectural model of a system component for self-optimizing
mechatronic systems given by the Operator-Controller-Module (OCM) as de-
picted in Fig. 1(b) (cf. [11]).

The OCM reflects the strict hierarchical construction of autonomous mecha-
tronic systems, including the hardware components structured, into three levels:
(1) On the lowest level of the OCM is the controller (C) including an arbitrary
number of alternative control strategies (also called modes from an external per-
spective). Within the OCM’s innermost loop, the currently active control strat-
egy processes measurements obtained via sensors and produces control signals for
the actuators. As it directly affects the plant, it is called a motor loop. The soft-
ware processing is necessarily quasi-continuous and includes smooth switching
between the alternative control strategies described by some form of differential
equations or difference equations. (2) The controller is controlled by the reflec-
tive operator (RO), in which monitoring and controlling routines are executed.
The reflective operator operates in a predominantly event-oriented manner and
thus includes a control automaton with a number of discrete control states and
transitions between them. It does not access the actuators of the system directly,
but may modify the controller and initiate the switch between different control
modes and its related strategies. Furthermore, it serves as the connecting element
to the cognitive level of the OCM. (3) The topmost level of the OCM is called
the cognitive operator (CO). On this level, the system can gather information
concerning itself and its environment and use it for the improvement of its own
behavior. (i.e. possibly complex, time-consuming computations for long-range
planning.)

The distinction between the reflective and cognitive operator clearly decou-
ples control under hard real-time constraints from long-range planning and the
resulting input for self-optimization. In general the OCM-hierarchy defines a
strictly hierarchical control flow. Each level tries to execute control as much as
possible locally, but reconfiguration of components is decided on the next higher
level similar to the reference architecture for adaptive and self-managed systems
suggested in [12].

To also describe the overall architecture, the OCM hierarchy can be nested,
where each nesting level may include an OCM. However, these levels do not
include the controller part. Controllers, which implement the continuous part
of the software, usually exist only on the lowest level of a nested OCM hier-
archy. As an example, consider the above mentioned shuttles of the RailCab
project. The architecture is defined by OCMs with their reflective operators and

156 H. Giese and W. Schäfer

linear drive OCM

energy

subsystem

RO+C

track control OCM

motion

control

RO+C

shuttle

RO+C

suspension tilt OCM

hierarchical decomposition (hard real-time)

peer-to-peer coordination (soft real-time)

motion

control

CO

energy

sub-

system

CO

safe decoupled guidance (soft real-time)

shuttle

RO+C

shuttle

CO

shuttle

CO

peer-to-peer coordination (hard real-time)

shuttle OCM shuttle OCM

motion control OCM energy subsystem OCM

Fig. 2. The hierarchy of OCMs of a shuttle and its connections to other shuttles

the controllers as depicted in Fig. 2. A shuttle consists of components like the
suspension/tilt module, the engine, the tracking module etc. which in turn are
defined by OCMs.

As a complete mechatronic system usually consists of several concurrently run-
ning components, a further possibility for communication between components
besides the strict hierarchical control flow exists. Top-level OCMs of several
nested hierarchies, which usually represent a major system component, may act
as freely interacting software agents in the overall architecture in addition to the
strict hierarchies. This means that agents exchange information and collaborate
in a peer-to-peer manner but that no central control is defined anymore. As ex-
amples of such major system components consider the different shuttles, stations
and possibly job brokers involved with the RailCab project. These agents inter-
act with each other in form of collaborations with well-defined role interfaces.
In principle, the controllers of different agents can interact with each other, as
well as the reflective operators and the cognitive operators, each on their corre-
sponding levels. In any case their interaction is limited to a peer-to-peer style
with individual messages rather than centralized, broadcasted messages.

2.2 Self-adaptation and Self-optimization

Self-optimization by means of self-adaptation can be realized in rather different
forms in the outlined general architectural model depending on the specific self-
optimization goals and the impact the different elements have concerning the
characteristics that should be optimized.

The most obvious location for self-adaptive behavior is the cognitive opera-
tor. Due to the decoupling from the hard real-time processing complex process-
ing steps for the self-optimization of a single OCM can be realized here. In a

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 157

subsequent step they have to be enacted by influencing the behavior of the reflec-
tive operator and the controller accordingly. Due to the temporal decoupling the
cognitive operator itself can remain outside the critical part of the software and it
is sufficient to only consider all possible effects the cognitive operator may have on
the reflective operator and controller. Usually, the reflective operator with all its
configuration variants that can be steered by the cognitive operator is designed
as a safety envelope. By ensuring that all configurations of the reflective opera-
tor work properly and abstracting from the possible configuration advices from
the cognitive operator, we can still ensure safe self-optimizing behavior. However,
what this scheme does not help to guarantee is that the self-optimization itself is
successful. An OCM optimizing its reflective operator and controller by taking the
long term changes of the controlled hardware due to abrasion into account is an
example for such a self-optimization for a single OCM.

It is also possible to achieve self-optimization for a whole hierarchy of OCMs
where the higher level reflective operators steer the subordinated OCMs to
achieve a self-optimization for the whole hierarchy. Again the cognitive oper-
ators can play the role of driving the decisions. However, in this case the lower
level OCMs and their cognitive operators are guided by the higher level OCMs
which determine what are their optimization goals. Thus, here we got a com-
plex interplay of local analysis and planning activities similar to a hierarchical
optimization problem where the solutions identified at the higher level OCMs
influence the search space that is considered at the lower level OCMs. Similar to
the local case the reflective operators and their interaction can be studied with-
out taking the complex behavior in the cognitive operators into account. The
composition of the reflective operators become a safety envelop that protects the
system against failures in the self-optimization. Again, the scheme does not help
to guarantee that the self-optimization across a whole hierarchy of OCMs per-
forms well and necessarily results in an improved system behavior. The energy
management in a shuttle is an example for a self-optimization across a hierarchy
of OCMs. While the overall OCM has to decide how much energy could be at
most consumed by each lower level OCM to achieve the current higher level
goals, the lower level OCMs try to optimize their energy consumption and the
performance that can be achieved taking the constraints and precedences of the
higher level OCMs into account only looking at their local scope.

Furthermore, also the agents and their peer-to-peer coordination can be em-
ployed to achieve a self-adaptation of the overall system. However, in this case
two rather different cases can occur.

We can have the case that a behavior of a group of agents shows some emer-
gent behavior due to the employed peer-to-peer protocols often referred to as
self-organization. These emergent properties of the behavior may result in self-
optimization but may also simply provide some required system properties. Here,
the role interfaces provide some protection that can be exploited and depending
on the complexity of the protocols guarantees for the emergent behavior are pos-
sible. The collision freedom for the shuttles later considered in this paper falls
under this case.

158 H. Giese and W. Schäfer

In contrast to such emergent properties, the peer-to-peer coordination of the
agents can also result in a self-optimization by exchanging information about
the context such that the other agents benefit from this. Again, the role inter-
faces permit to ensure that the overall protocol works. However, as the data
exchange and the related data processing can be rather complex, the scheme
does not permit to guarantee that the information exchange effectively results
in self-optimization. Furthermore, the scheme can not exclude that erroneous
data result in unsafe behavior. Consequently, in this case no development-time
solution is provided and problems with the exchanged data have to be detected
at run-time and related fallback strategies must be available (c.f. runtime verifi-
cation). Shuttles that exchange data about the track characteristics to improve
their performance (c.f. [13]) are an example for this case of group-wise self-
optimization. Note that for safety reasons besides the optimized controller that
exploits the data about the track characteristics in addition a fallback controller
that also works in case no data is available and a unit to detect whether the
optimized controller does not perform well have been part of the related system
design.

2.3 Modular and Compositional Verification

Our MDD approach takes the general model of Fig. 2 as an informal architectural
basis. It provides a formal definition of arbitrary OCM hierarchies, their behav-
ior as well as their peer-to-peer communication using a refined UML component
model and a refined notion of statecharts including the definition of timing con-
straints and hybrid behavior. This definition is the input for our model checking
approach, which uses standard real-time model checkers, but before using them
decomposes the overall system in such a way that the individual parts can be
checked separately. Additional checks that the interfaces are well-defined inter-
faces and that the components refine their interfaces then guarantee, that when
composing the models the separately checked safety properties are also guaran-
teed for complex composed system.

As all safety and time-critical aspects are handled by the reflective opera-
tors and controllers, peer-to-peer communication (across the hierarchy) is also
allowed between the different cognitive operators at different levels in the nested
OCM hierarchies. This may facilitate complex planning and the required in-
formation exchange between different components, but the interface between a
reflective and cognitive operator in each component and on each nesting level
respectively will ensure that no unsafe behavior can result from the interaction
with the cognitive operators.

2.4 Tool Support and Code Generation

To complete the approach,mUML is supported by the FUJABA Real-Time Tool
Suite CASE tool [13–15] and includes a code-generation scheme [16–19] that
maps all the high-level timing constraints of the models to underlying real-time
operating system and scheduling technologies. Additional schedulability checks

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 159

then ensure that the code executed on real-time operating systems provides the
same safety guarantees as the models. Thus, the safety guarantees obtained via
checking the models can also be transferred to the code level (c.f. [3]). In addition,
an alternative mapping scheme onto Simulink and Stateflow Models [20] has been
developed to facilitate also commercial simulation and code-generation tools.

3 Modeling

In this section we describe our solution for modeling OCM hierarchies as well as
peer-to-peer networks as outlined in Fig. 2 using our extended UML component
model.

3.1 The Hierarchical Component Model

To first capture OCM-like hierarchies, we describe a component model with a
static structure adjusted to the needs of mechatronic systems. We then extend
this component model to also cover the case of reconfiguration.

Component Structure. To support the coupling of time-continuous control
behavior with discrete behavior, we extend the definition of ports in the UML
component model. Ports may also be defined by time-continuous variables. While
a signal is sent and received at discrete points in time (cf. SignalEvent in UML),
a time-continuous variable has a well-defined value for each point in time.

As an example the mUML model of the OCM of the shuttle responsible for
travelling either in convoy or stand alone mode is depicted in Fig. 3. The Shut-

tle component instance sh contains a AccelerationControl (AC) component instance
ac representing the reflective operator and controller and a Planer component
instance pl representing the cognitive operator. The reflective operator which
mediates between the other two OCM components is represented by the shut-
tle component sh itself. This component computes the acceleration needed to
achieve a specific goal (keeping a specified speed level or keeping a specified dis-
tance from the predecessor). The AccelerationControl component has five incoming
continuous ports and one outgoing continuous port. We distinguish here between
permanent ports and optional ports. The former are depicted by a black triangle
and the latter by a white triangle to indicate that they are only active in some
of the modes as introduced later when considering reconfiguration.

The incoming continuous ports are for the values current velocity vcur, the
current distance Δcur, and the velocity of the front shuttle vFront provided by
sensors, and the required velocity vreq and the required distance Δreq which
are parameterized reference inputs. The outgoing port sends acceleration values
to the appropriate hardware actuator devices. In addition, the ac component
contains discrete behavior to switch between keeping a certain distance and
keeping the velocity at a constant level, and is thus a hybrid component.

160 H. Giese and W. Schäfer

pl:Planer

c:Convoy
c:Convoy

rearRole:RearRole
frontRole:FrontRole

ac:AC

Shuttle

vcur
vreq

Δcur

�OCM�

Δreq
vFront

vreq
a

�C�

�RO� �CO�

a

Δcur
Δreq

vFront
vcur

Fig. 3. Example for a component structure of a Shuttle OCM

The specification of component behavior is given by (extended) UML state
machines called Real-Time Statecharts (RTSC) [16, 21, 22], which provide ad-
ditional constructs to describe time-dependent behavior and information such
as deadlines and worst case execution times (WCET). We introduce RTSC and
their extension to a hybrid variant only informally here.

isConvoyOk
/ noConvoy

when(convoyUseful)
/ buildConvoy

defaultH wait

when(convoyNotUseful)
/ doBreakConvoy

convoyFront
isConvoyOK
/ convoyOK

noConvoy convoyRear
breakConvoy /

breakConvoy /

d1

d1

d1

{t0}
d1 [15 ≤ t0]

d1

d1

d1

Fig. 4. Behavior of the Shuttle component

In Fig. 4 the internal behavior of the Shuttle component of Fig. 3 is defined by
a RTSC. As an example for a typical real-time requirement a deadline interval d1
is used to describe the state change from state noConvoy to state convoyFront which
has to be finished within the given interval. Similarly, deadlines are defined to
constrain the time an object may remain in a certain state. Transition guards
may contain conditions which depend on the current value of a clock.

In general, clocks, time guards, and time invariants from timed automata
[23, 24] are combined with expressive modeling concepts existing in UML state
machines. RTSC are thus more expressive than plain or hierarchical timed au-
tomata models and permit emulation of limited UML state machine concepts for
time such as after and when. In addition RTSC supports the definition of flexible

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 161

timer conditions that must held over a series of states. Buffering of timing events
is not needed and does not exist in this approach. This avoids non predictable
effects which may exist in the UML state machines as well as their extensions
which use external timers [25].

Extending RTSC to specify continuous behavior is done similarly to the ba-
sic hybrid automata approaches like [26–29] by the possibility of assigning a
configuration of controllers to a particular state for Hybrid RTSCs (HRTSCs).

:Velocity Controller

DistanceControl

:Distance Controller

VelocityControl

applyVC

applyDC

a a
vFirst

Δreq

Δcurvcur

vreq

df2

ffade2

df1ffade1

Fig. 5. Behavior of the AC component

An example of this is the hybrid behavior of an Acceleration Control (AC) com-
ponent which is embedded into the Shuttle component. It consists of two discrete
control modes which specify whether the shuttle is operating in velocity control
mode or distance control mode respectively (see Fig. 5). Furthermore, it has con-
tinuous inputs and outputs. Depending on the active discrete mode, either the
current and the required velocity are used as input, or the current and required
distance to the front shuttle as well as the velocity of the first shuttle are used.
The output a is the acceleration in both modes. In this example each configu-
ration consists of one single feedback controller, while usually a configuration of
subordinated blocks representing a number of (continuous) controllers might be
assigned to each state.

Switching smoothly between different controllers requires the specification of
an output cross-fading function (cf. [9]). In our example we have the fading
functions ffade1

and ffade2
and a minimal and a maximal fading duration (df1

respectively df2), which specify how the outputs of the two controllers have to
be faded when changing the controller.

In the example depicted in Fig. 5, the state-dependent continuous behavior is
specified by blocks assigned to the states VelocityControl and DistanceControl. If an
RTSC contains hierarchies and thus comprises state configurations rather than
single states, the assigned controller configuration is the union of all configura-
tions assigned to the states of the current state configuration.

Component Structure with Reconfiguration. While the outlined static
component model supports the specification of nested component structures,
it does not cover the possibility of components having changing input/output
interfaces depending on the current system state. As an example take the AC

162 H. Giese and W. Schäfer

component of Fig. 5. If you consider the shuttle component, then the AC compo-
nent should be in state VelocityControl only if the shuttle is in state noConvoy or
convoyFront. In this case the AC component requires two inputs. If the shuttle is
in state convoyRear, however, the AC component should be in state DistanceControl

and requires three inputs.
To cover nested components with changing input/output (i.e. OCM hierar-

chies with reconfiguration), we introduce an extension of the known concept
of hybrid behavior that assigns a configuration of embedded (possibly hybrid)
component instances to each state instead of control behavior only. The related
HRTSC depicted in Fig. 6 extends Fig. 4 accordingly.

H wait

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

convoyFront noConvoy
default

/ doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRear

ac:AC [DistanceControl]
breakConvoy / breakConvoy /

/ buildConvoy
when(convoyUseful)

Synchronization

ac:AC [VelocityControl] ac:AC [VelocityControl]

d1

d1

d1

Δcur
Δreq
vFront

d1

d1

d1

d1

vcur

vreq

vcur

vreq
a a

a

Fig. 6. Behavioral embedding

Fig. 6 depicts the orthogonal Synchronization state, whose sub-states embed
different configurations, each consisting of one AC instance ac and its current
mode and continuous interface. It is thus specified that ac has to be in mode
DistanceControl when Synchronization is in state convoyRear. If Synchronization is in
state noConvoy or convoyFront, ac has to be in mode VelocityControl. Consequently a
state change within the orthogonal Synchronization state implies a mode change
in its embedded ac component.

Referring to the example in Fig. 6, the internals of a component behavior,
such as the AC component, need not be known in order to embed a component
behavior specification into the HRTSC of its superior component, i.e. assign
it to certain states. Internal in this case are the definitions of the controllers
as given in Fig. 5. Rather, it is enough to specify an interface statechart for
each component that defines the externally relevant behavior. Fig. 7 gives an
example of the interface statechart of the AC component. Note that continuous
ports only available on a subset of the modes become optional ports while those
ports supported become permanent ports (cf. also Fig. 3).

The externally relevant behavior includes the definition of the different control
modes, the modes’ continuous inputs and outputs as well as the dependencies
between outputs and inputs, and the deadline information for switches between
the control modes. The specific control strategy employed in each mode, whether
fading is required for a transition, the kind of fading function applied for a

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 163

applyDC

applyVC

AC [VelocityControl] AC [DistanceControl]

Δcur

df1

df2

vcur

vreq
Δreq
vFront

a a

Fig. 7. Interface statechart of the AC component

transition, and which embedded components are active in each mode are imple-
mentation details not relevant to the external view of an interface statechart.

In each component may exist states that are related to potentially unsafe
situations. Therefore, we refer to a component as locally safe if such states can
be excluded for a given context. Also when the components do not work prop-
erly together or when the reconfiguration across multiple levels via the interface
statecharts does result in any violations of the specified timing constraints, the
assumptions of the composed components are not fulfilled and thus their local
safety is no longer guaranteed. In the later considered models, in case of such
an incompatibility the composed behavior will exhibit a deadlock.1 Thus we
can conclude that a hierarchical system of components is safe as long as the
components are locally safe and the composition does not result in a deadlock.2

In our example the Shuttle builds a hierarchy of components, where each Shuttle

instance contains a single supervised embedded component instance of type AC.
The local safety guarantees that each local OCM is safe. The deadlock freedom
guarantees that the complex reconfiguration fulfills all timing constraints.

Definition 1. The overall safety of a hierarchical system is given if all compo-
nent are locally safe and the overall behavior does not contain any deadlock.

In our example we have the Shuttle agents with a single supervised embedded com-
ponent instance of type AC. Within the shuttles the switching has to adhere to the
timing constraints for cross-fading the outputs and the commitments concerning
braking in different collaborations must be not in conflict. The deadlock freedom
guarantees that the complex reconfiguration fulfills all timing constraints for the
reconfiguration present at the different levels of the hierarchy.

The remaining part of the architecture, consisting of the cognitive operators
and their interconnections, is additionally covered by related components that

1 This concerns the usual definition of a deadlock but also so-called time stopping
deadlocks. A time stopping deadlock means that a system cannot progress due to
an inconsistency in the definition of timing constraints of transitions or states.

2 We assume here that required non-local safety properties that relate to a number
atomic components in a system are considered part of a local safety properties of
a hierarchical element that contains all in the required safety property involved
elements.

164 H. Giese and W. Schäfer

are connected with the safety-critical hierarchical core only via unsafe ports that
decouple the core from the rest.

3.2 The Peer-to-Peer Coordination Model

Besides the hierarchical component structures and their hybrid behavior as ad-
dressed in the last section, mUML specifications can also capture peer-to-peer
interaction of autonomous mechatronic systems (cf. Fig. 2). At the peer-to-peer
level the interaction between components is specified in mUML by so-called co-
ordination patterns. At this level no hybrid behavior exists anymore because
communication between components is only based on discrete events and corre-
sponding actions. Therefore these patterns can be described by a refinement of
the loosely defined collaboration and pattern concepts in UML using RTSC to
specify the behavior of roles and connectors.

Real-Time Coordination Pattern. Real-time coordination patterns allow to
specify the interaction between multiple mechatronic agents using UML collab-
orations so that the behavior is rigorously defined. Therefore a real-time coordi-
nation pattern includes a description of the roles involved agents may play . The
agents can interact only via these roles and connectors that connects them. Each
role and connector in turn are specified by an RTSC that captures the behavior
permitted and expected from each role as well as the communication medium.

distance

:Shuttle :Shuttle

:Convoy
Coordination

FrontRole RearRole

rearRole frontRole

Shuttle 2 Shuttle 1

Fig. 8. Component Instance Diagram and Pattern Instance

The communication between two shuttles necessary to build a convoy is one
such real-time coordination pattern. Fig. 8 shows a ConvoyCoordination pattern
instance between two shuttles. It defines a drastically simplified protocol for
building and breaking convoys based on two roles, namely the rear role and the
front role (see Fig. 9).

Initially, both roles are in state noConvoy::default, which means that they specify
the situation where a shuttle is not a member of a convoy. The rear role non-
deterministically chooses whether to propose building a convoy or not. After
choosing to propose a convoy, a message is sent to another shuttle, or rather its
front role instantiation. The front role non-deterministically chooses to reject or
to accept the proposal after at most 1000 msec. In the first case, both statecharts

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 165

default

wait

noConvoy

answerdefault

default

/ rearRole.breakConvoyRejected
rearRole.breakConvoyProposal

/ rearRole.convoyProposalRejected

rearRole.convoyProposal /

convoy
/ rearRole.breakConvoy
rearRole.breakConvoyProposal

/ rearRole.startConvoy

wait

noConvoy

convoy

frontRole.convoyProposalRejected /

/ frontRole.convoyProposal

wait
frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal

default

frontRole.breakConvoy / frontRole.startConvoy /

a) Rear Role

b) Front Role

{t0}
[1 ≤ t0 ≤ 1000]

Fig. 9. RTSC of the RearRole role and the FrontRole role

revert to the noConvoy::default state. In the second case, both roles switch to the
convoy::default state.

Eventually, the rear shuttle non-deterministically chooses to propose breaking
the convoy and sends this proposal to the front shuttle. The front shuttle non-
deterministically chooses to reject or accept that proposal. In the first case, both
shuttles remain in convoy-mode. In the second case, the front shuttle replies with
an approval message and both roles switch into their respective noConvoy::default

states.
The connector which represents the wireless network does not need to be

specified by an explicit statechart specification here, but instead by its QoS
characteristics such as throughput, maximal delay etc. in the form of connector
attributes. In our example we assume that the connector forwards incoming
signals with a delay of between 1 to 5 msec. The connector is unsafe in the sense
that it might fail at any time so that we set our specific QoS characteristic reliable

to false.
The specification of safety properties is given by declarative constraints which

are defined using temporal logic using a state-based temporal extension of the
Object Constraint Language (OCL) called RT-OCL [30]. As the examples in
this paper only contain formulas in pure OCL, we further omit any details of
RT-OCL here.

A safety property of this pattern is that a shuttle should only make an emer-
gency brake when it is not taking the front position in a convoy. Using an atomic
proposition CanBrakeFully, which specifies whether a shuttle can brake with full
strength, the required safety property is that when an implementation of the
rear role is in state convoy the atomic proposition CanBrakeFully must be true and

166 H. Giese and W. Schäfer

when an implementation of the front role is in state convoy the atomic proposi-
tion CanBrakeFully must be false. The following OCL role invariants ψ1 and ψ2

are used to describe these restrictions.3

context <comp> inv: <frontRole>.oclInState(convoy) implies not self.CanBrakeFully (1)

context <comp> inv: <rearRole>.oclInState(convoy) implies self.CanBrakeFully (2)

Atomic Agent. When defining the behavior of an agent like a shuttle using
predefined patterns such as e.g. the ConvoyCoordination pattern mentioned above,
the predefined role behavior has to be refined and synchronized. The following
example illustrates this step.

convoyOk

wait

waitdefault

rearRole.breakConvoyProposalRejected /

rearRole.convoyProposal / isConvoyOK

noConvoy / rearRole.convoyProposalRejectednoConvoy

/ breakConvoy
rearRole.breakConvoy

doBreakConvoy
/ rearRole.breakConvoyProposal

default

Convoy

/ frontRole.breakConvoyRejected
frontRole.breakConvoyProposal

default

default

 breakConvoy

frontRole.breakConvoyProposal
/ frontRole.breakConvoy

H wait

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

frontRole

rearRole

frontRole.startConvoy /

buildConvoy / frontRole.convoyProposal

frontRole.convoyProposalRejected / breakConvoy

wait

convoy

noConvoy

convoyFront noConvoy
default

/ doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRear

breakConvoy / breakConvoy /

/ buildConvoy
when(convoyUseful)

Synchronization

/ rearRole.startConvoy

d1

dc

dc

dc dc

dc
dc

dc

dc

dc

dc dc

d1

d1

d1

d1

d1

d1

Fig. 10. Behavior of the Shuttle agent

3 The context <comp> enclosed in angle brackets is employed here as a placeholder for
the component which realizes the role via one of its ports.

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 167

Fig. 10 depicts the behavior of the Shuttle agent from Fig. 3. The HRTSC
consists of three orthogonal states FrontRole, RearRole and Synchronization.

FrontRole and RearRole describe the port behavior. They are refinements of the
role behaviors in Fig. 9 and specify in detail the communication that is required
to build and to break convoys. Syntactical refinement rules or a special checking
procedure, outlined later in Section 4, are used to ensure that the refinement does
not invalidate any safety properties which have been verified for the (non-refined)
pattern already. Basically, only the non-determinism possibly still existing in a
RTSC defining a role is reduced by the refinement.

An additional internal HRTSC is used to specify the synchronization. In our
example, Synchronization coordinates the communication and is responsible for
initiating and breaking convoys. The three sub-states of Synchronization model
whether the shuttle is in the convoy at the first position (convoyFront), at second
position (convoyRear) or whether no convoy is built at all (noConvoy).

core

rest

M
p1
P1

M
Sh

1

M
Sh

2

M
Sh

n

M
p2
P2

M
pn−1
Pn−1

Fig. 11. Peer-to-peer composition of agents (upper part), hierarchies within the agents
(middle part) and decomposition into a safety-critical core and a arbitrarily structured
rest (bottom and middle part)

A system built by a set of atomic agents and pattern instances (Fig. 11 upper
part) then describes the free peer-to-peer interaction of the agents by pattern
instances.

Definition 2. A peer-to-peer system is safe if for the behavior ensures that

– all agents/components are locally safe,
– no deadlock can occur,
– all RT-OCL constraints of pattern instances are fulfilled, and
– all OCL role invariants of agent instances are fulfilled.

In our example we have the Shuttle agents connected via instances of the Con-

voyCoordination pattern. The RT-OCL constraints guarantee that no collision is

168 H. Giese and W. Schäfer

possible for shuttles connected by ConvoyCoordination pattern instances. The OCL
role invariants ensure that the agents behave consistently with the guarantees
related to their roles, e.g. a shuttle will brake accordingly when the state of the
role of the ConvoyCoordination pattern requires it. However, the pure peer-to-peer
system does not cover the embedding of subordinated components such as the
AC component.

Hierarchical Agents with Reflective Operator. In case of a hierarchical
agent, besides refining and synchronizing the assigned role behavior, the recon-
figuration of the embedded hybrid component hierarchy also has to be specified.

convoyOk

wait

waitdefault

rearRole.breakConvoyProposalRejected /

rearRole.convoyProposal / isConvoyOK

noConvoy / rearRole.convoyProposalRejectednoConvoy

/ breakConvoy
rearRole.breakConvoy

doBreakConvoy
/ rearRole.breakConvoyProposal

default

Convoy

/ frontRole.breakConvoyRejected
frontRole.breakConvoyProposal

default

default

 breakConvoy

frontRole.breakConvoyProposal
/ frontRole.breakConvoy

H wait

ac:AC [VelocityControl] ac:AC [VelocityControl]

/ rearRole.startConvoy

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

frontRole

rearRole

frontRole.startConvoy /

buildConvoy / frontRole.convoyProposal

frontRole.convoyProposalRejected / breakConvoy

wait

convoy

noConvoy

convoyFront noConvoy
default

/ doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRear

ac:AC [DistanceControl]
breakConvoy / breakConvoy /

/ buildConvoy
when(convoyUseful)

Synchronization

a

dc

dc

dc dc

dc
dc

vcur

vreq
a

vcur

vreq

dc

dc

dc

dc dc

d1

d1

d1

a

Δcur
Δreq
vFront

d1

d1

d1

d1

Fig. 12. Behavior of the Shuttle agent

An instance of the hybrid component type AC is assigned to the different three
sub-states of Synchronization. In state convoyFront and state noConvoy the embedded
controller is run in mode VelocityControl, but in state convoyRear mode DistanceControl

is used to ensure a proper distance to the other shuttle (Fig. 12).

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 169

Our approach for the modeling of a hierarchy of OCMs, as depicted in Fig. 2
without cognitive operators, is based on the observation that it can be modeled
as hierarchal agents that coordinate themselves by pattern instances. While the
free peer-to-peer interaction of the top-level OCMs can be captured by pattern
instances, a hierarchical system of configurable components can be used to cover
the hierarchies of reflective operators and controllers (Fig. 11 middle part).

Hierarchical Agents with Cognitive Operator. However, the cognitive op-
erators do not really fit into this picture as they do not fit into the hard real-time
processing scheme established by the hierarchy of reflective operators but form
their own, often less strict, structures. For the cognitive operators, verification is
usually not feasible, or at least extremely expensive, due to their intelligent be-
havior. Their tight integration within the safety-critical and hard real-time part
of the system is thus problematic. However, we can require the boundary ports
to be unsafe ports to express that you cannot rely on the offered interaction.
Therefore, such unsafe ports can be used to decouple the safety-critical parts of
the system from those for which safe operation cannot be guaranteed such as
the cognitive operators.

H wait

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

convoyFront noConvoy
default

/ doBreakConvoy
pl.c.convoyNotUseful()

after (15 msec)

convoyRear

ac:AC [DistanceControl]
breakConvoy / breakConvoy /

/ buildConvoy

Synchronization

ac:AC [VelocityControl] ac:AC [VelocityControl]

pl.c.convoyNotUseful()

pl.c.convoyUseful()

pl.c.convoyUseful()

pl.c.convoyUseful()

pl.c.convoyNotUseful()

d1

d1

d1

Δcur
Δreq
vFront

d1

d1

d1

d1

vcur

vreq
a

vcur

vreq

a

a

Fig. 13. Decoupling of the unreliable, soft real-time, planning component

In Fig. 13, the unsafe port pl.c connecting the soft real-time planning of the
cognitive operator with the safety-critical, hard real-time processing of the re-
flective operator as depicted in Fig. 3) is used to steer proposing convoys. If the
planning component suggests building a convoy with the rear shuttle, it indi-
cates this by sending a pl.c.convoyUseful() message. If it deduces that a convoy with
the rear shuttle should be broken up it sends pl.c.convoyNotUseful(). The depicted
behavior is therefore able to handle both messages in any state so that erro-
neously sent messages of the planning component cannot result in unsafe shuttle
behavior.

Our approach for the modeling of the safety-critical core of a hierarchy of
OCMs as depicted in Fig. 2 employs hierarchical agents and pattern instances
as outlined in Fig. 11. The remaining part of the architecture consisting of the
cognitive operators and their interconnections is additionally covered by related

170 H. Giese and W. Schäfer

components that are connected with the safety-critical core only via unsafe ports
as depicted in Fig. 11.

Definition 3. A system with included core system is safe if the core behavior
ensure that

– all agents/components are locally safe,
– no deadlock can occur,
– all RT-OCL constraints of pattern instances of the core are fulfilled, and
– all OCL role invariants of agent instances of the core are fulfilled.

In our example we have the Shuttle agents connected via instances of the ConvoyCoor-

dinationpattern. For each Shuttle instance, a single supervised embedded component
instance of type AC exists. The deadlock freedom guarantees that the complex re-
configuration fulfills all timing constraints. The RT-OCL constraints guarantee
that no collision is possible for shuttles connected by ConvoyCoordination pattern in-
stances. The OCL role invariants ensure that the agents behave consistently with
the guarantees related to their roles, e.g. a shuttle will brake accordingly when the
state of the role of the ConvoyCoordination pattern requires this.

4 Modular and Compositional Verification

This section outlines how the modular and compositional formal verification
of self-optimizing systems developed with the mUML approach can guarantee
safety. These results are based on the rigorous definitions for the employed con-
cepts also provided in this section (please note that some more fundamental
definitions and additionally required consistency and well-formedness conditions
can be found in [3]).

The key aspect of our approach is that our notion of a consistent core system
enables a modular and compositional verification where only the single compo-
nent types and patterns with their interfaces resp. embeddings are considered.
For hierarchal systems (including agent subsystems) we can exploit the modular
structure to derive the safety of all included component instances only looking
at the single component types as well as their interface and embeddings (see
Section 4.1 and Theorem 1). A compositional scheme also allows the safety of
all pattern instances to be ensured only by looking into the patterns and their
roles and connectors as well as the conformance of all components with respect
to the ports which are attached to the roles (see Section 4.2 and Theorem 2).
Due to the manner in which the core is decoupled from the rest of the system
via unsafe ports, we can further show that this result cannot be invalidated by
the rest of the system (see Section 4.3 and Theorem 3). These separate results
can be employed to guarantee that a complete system is safe via modular and
compositional verification (see Section 4.3 and Corollary 1), essentially only by
looking at the types and without considering the complete system or any larger
subsystem with all its component and pattern instances explicitly. Consequently,
existing model checking techniques can be employed as the usual state explosion
due to parallel composition of multiple instances is avoided.

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 171

4.3

4.1

4.2

M
p1
P1

M
Sh

1

M
Sh

2

M
Sh

n

M
p2
P2

M
pn−1
Pn−1

Fig. 14. Decomposition of the core system for the verification

4.1 Hierarchical Component Model

Syntax, Semantics and Safety. In the following we describe the resulting be-
havior using automata (M) as well as their parallel composition (‖). The formal
semantics are defined in [3]. We also refer to [3] for the additional required consis-
tency and well-formedness conditions between the component model, structure,
and behavior.

An OCL or RT-OCL property φ is well-defined for a behaviorM if φ only refers
to properties of the states ofM. In the following, we describe that an OCL or RT-
OCL property φ holds for a given real-time behavior M by M |= φ. In addition,
the special symbol δ is used to specify that a deadlock exists. We further restrict
the considered RT-OCL properties to compositional ones that were preserved by
the parallel composition (‖) if the composition result is deadlock free (c.f. [6,7]).

Basis for the hierarchical component model are reconfigurable component types
defined as follows:

Definition 4. A reconfigurable component type C = (SC ,MC , φC) is given by
a mode-dependent internal structure SC for a mode set L, an internal behavior
MC with mode set L, and a local safety property φC .

A mode-dependent internal structure for a given mode set L is a tuple E =
(IS , ES ,mapS), where ES is a function describing the mode-dependent embedded
components for a given mode set L (it assigns to each state l ∈ L a set of
embeddings that are pairs of the form (o, (M, l)) where o is an occurrence name
and (M, l) is a pair consisting of an interface statechart M and one of its modes
l). IS is a function describing the mode-dependent interface for a given mode set
L (it assigns an interface consisting of a set of pairs of unique port names and
port declarations to each state l ∈ L), and mapS is a mode-dependent mapping
for a given mode set L (it assigns a mapping describing the connectors between
ports in each mode to each state l ∈ L). More details can be found in [3].

The behavior MC also includes the forwarding behavior related to each mode
in L which ensures that signals from the embedded components are routed as
specified in the HRTSC (see [3]).

172 H. Giese and W. Schäfer

A reconfigurable hierarchical subsystem consisting of a number of reconfig-
urable components as depicted in Fig. 11 (middle) is then constructed as follows:

Definition 5. A hierarchical subsystem with reconfiguration Sh is a tuple
(OSh , cSh) with OSh ⊆ ℘(N+

C) a set of instance names and cSh a function
which maps each instance o ∈ OSh to a related reconfigurable component type.

The behavior and safety property of a such hierarchical subsystem with recon-
figuration Sh = (OSh , cSh) is then given by

MSh := ‖
o∈O

Sh

M
o
c
Sh (o) φSh := ∧

o∈O
Sh

φoc
Sh (o).

For such a hierarchical subsystem with reconfiguration we have to ensure that all
components are locally safe and have to exclude that the interaction or timing
constraints invalidates the local safety of the components. Therefore, we define
it as safe if its behavior guarantees the local safety of the components and is
deadlock free (by providing a formal version for Definition 1).

Definition 6. A hierarchical subsystem with reconfiguration Sh is safe if its
behavior MSh is well-formed, ensures local safety (M

Sh |= φSh), and deadlock
free (M

Sh |= ¬δ).

Modular Verification. We exploit the well-defined hierarchy of an agent to
prove local safety and deadlock freedom. Thus, we first look at the atomic com-
ponents and the bottom of the hierarchies, then the embedding steps, and finally
demonstrate that for the required behavioral consistency of the whole hierarchy,
these two local checks are sufficient. To denote the behavior that results when re-
stricting a hybrid reconfiguration automata to the real-time behavior and clocks
we use an operator RT () (see [3]).

Atomic Component Types. The locally safe operation of a component type C
requires that component behavior MC itself cannot result in a deadlock. A com-
ponent without embedding is therefore locally safe if

MC well-formed ∧ RT (MC) |= φC ∧ ¬δ. (3)

To further ensure that, in a given system, all embedded occurrences represented
by their interface statecharts M

i
I are behaviorally consistent with the related

embedded components with respect to behavior M
o
C , we have to ensure that

real-time refinement holds:

RT (MC) �RT M
i
I . (4)

Model checking is employed to fully automate the checking of condition 3. In
many cases the required refinement condition 4 means the safe transfer of timing

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 173

M
Sh

M
on
Cn

M
i1
I1

M
in
In

M
o
C

RT (Mo
C)‖Mi1

I1
‖ . . . ‖Min

In
�RT M

i

checking the embedding (cond. 5)
RT (Mo

C)‖Mi1
I1

‖. . .‖Min
In

|= φo
C ∧ ¬δ

M
i
I check interface refinement (cond. 6)

Fig. 15. Hierarchical verification via interface abstraction and component-wise checks

constraints from one level to the next one, and can be guaranteed following
syntactical refinement rules (cf. [9]).

In more complex cases, model checking also has to be employed (cf. [31–33]).4

Hierarchical Component Types. In a strict hierarchical system the continuous
model for a state of the system can become undefined if the resulting contin-
uous equations contain a cycle. Refinement guarantees that any dependency
between an input and output in the behavior of embedded component occur-
rences Mo1

C1
, . . . ,Mon

Cn
of a component is also present in their interface statecharts

M
i1
I1
, . . . ,Min

In
. Therefore, checking that the interface statechart combined with

the embedding HRTSC M
o
C is well-formed and sufficient to exclude cycles in the

resulting continuous models.
Additionally, the locally safe synchronization of the fading-durations in the

different components has to be ensured. We need to therefore ensure that the
composition of the component behavior with the embedded interface statecharts
cannot result in a deadlock.

A component with embedding is therefore only locally safe for the accordingly
relabeled embedded interface statecharts Mi1

I1
, . . . ,Min

In
if

M
o
C‖Mi1

I1
‖ . . . ‖Min

In
well-formed ∧RT (Mo

C)‖Mi1
I1
‖ . . . ‖Min

In
|= φoC ∧ ¬δ. (5)

As with the atomic case in condition 4 we also have to show that the interface
statechart Mi

I alone is a real-time abstraction of the HRTSC M
o
C combined with

the interface statecharts of all subcomponents. For behavioral consistency it is
necessary that the real-time abstraction of the component behavior in form of
the interface statechart Mi

I in fact refines the behavior which results when we

4 As with the general form of hybrid systems considered here reachability is undecid-
able [34] and we cannot expect to find an automatic solution for the general problem.
However, the developed techniques cover all relevant cases in practice for mUML.

174 H. Giese and W. Schäfer

compose the component behavior M
o
C with all accordingly relabeled embedded

interface statecharts Mi1
I1
, . . . ,Min

In
:

RT (MC)‖Mi1
I1
‖ . . . ‖Min

In
�RT M

i
I . (6)

Model checking is employed to fully automate the checking of condition 5 like in
case of checking condition 3. Therefore, the interface statecharts are considered
in addition to the component behavior.

In case of simple interface statecharts condition 6 can be checked at the syn-
tactical level. It only has to be considered whether each transition in the HRTSC
and the related transitions in the interface statecharts of the aggregated subcom-
ponents are consistent (cf. [9]).

Assume the example in Fig. 12 and 6 which specifies that a change from state
noConvoy to convoyRear has to be finished after 200 msec and that this change im-
plies a change of the embedded AC component from VelocityControl to DistanceControl.
Then, in Fig. 7, the minimal fading duration may not be above 200 msec.

Besides this purely syntactical check for simple interface statecharts, the em-
bedding of more general notions of interface statecharts can be addressed using
model checking (cf. [31–33]).

Thus, for components with embedded components, either syntactical checks or
more advanced model checking techniques can be employed to check condition 6.

Hierarchical Systems. Checking local safety for all component types embedded
in one hierarchal component guarantees that the whole hierarchy cannot become
deadlocked. The following theorem proves that the local safety and behavioral
consistency, which has been checked for each embedding, is sufficient to ensured
that the behavior, which results when the component and all its direct subcom-
ponents M

o1
C1
, . . . ,Mon

Cn
are considered and is a refinement of the HRTSC M

o
C

(�RT).

Theorem 1. For a consistent hierarchical subsystem Sh = (Oc
Sh , cSh) with

unique top-level component o ∈ Oc ∩NC , only locally safe embedded components
o1, . . . , on (Oc = {o, o1, . . . , on}; see condition 3 and 5) and where all embed-
dings are behaviorally consistent (see condition 4 or 6) holds for the real-time
abstraction RT (Mo

c
Sh (o)) of the HRTSC M

o
c
Sh (o):

RT (Mo
c
Sh (o)‖Mo1

c
Sh(o1)

‖ . . . ‖Mon
c
Sh (on)

) �RT RT (Mo
c
Sh (o)) and (7)

RT (Mo
c
Sh (o)‖Mo1

c
Sh (o1)

‖ . . . ‖Mon
c
Sh (on)

) |= φoc
Sh (o) ∧ ¬δ (8)

Proof. (sketch) We can show the required result by induction over the depth
over the hierarchical component structure using condition 4 and condition 6,
substituting the component step-wise for the component interfaces for the whole
subsystem beneath. For each such substitution we can conclude from the condition
for the type that the same relation holds for all specific instances. Thus, the top-
level component is refined by the whole hierarchical component concerning its

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 175

real-time behavior, based on the fact that �RT is a precongruence for ‖, and that
we only require a finite number of substitution steps. Furthermore, φoc

Sh (o) ∧ ¬δ
is guaranteed as the safety properties in φoc

Sh (o) are compositional and ¬δ is

guaranteed as deadlock freedom has been checked for the top component.

4.2 Peer-to-Peer Coordination Model

Syntax, Semantics and Safety. The main ingredients of peer-to-peer sys-
tems are the real-time coordination patterns and agents. We will also cover the
integration of the pure peer-to-peer scheme with the hierarchies present in the
agents as well as the decoupled cognitive operators via unsafe ports.

Real-Time Coordination Pattern. Channel delays and reliability are both of cru-
cial importance to the real-time coordination patterns. We address them explic-
itly by giving one RTSC for each connector. A real-time pattern is then formally
defined as follows:

Definition 7. A real-time coordination pattern (collaboration type) P is a tuple
(RP , ΨP , φP , CP) with RP a set of roles (ri,M

ri
P) for ri ∈ NR a role name and

M
ri
P a role behavior in the form of a RTSC, a set ΨP of OCL invariants ψ1, . . . ,

ψk for each role, the RT-OCL pattern constraint φP , and the atomic component
type CP representing the connectors.5

For connector instance (collaboration instances) o ∈ N+
C of the pattern P we

refer to the pattern constraints as φoP and to the related behavior as Mo
P which

is derived from MP for CP = (SP ,MP) by renaming the ports accordingly.

Agents. To capture agents which realize the peer-to-peer interaction of au-
tonomous mechatronic systems as well as the embedding of complex hierarchies
(cf. Fig. 2), we define an agent as a special component as follows:

Definition 8. An agent is a reconfigurable hierarchical component type A =
(SA,MA, φA) with SA = (IA, EA,mapA) such that the interface is mode-
independent (IA is constant) and the internal behavior MA is decomposed
into M

s
A‖Mp1

A ‖ . . . ‖Mph

A where M
pi

A refines the port behavior M
pi

i for IA =
{(p1,M1), . . . , (ph,Mh)}.
The ports of an agent are assumed either to be not considered within our be-
havioral model (unsafe ports) or related to a specific role of a pattern instance
(regular port). The set of associated OCL role invariants ψ1, . . . , ψh of A by
ΨA and the resulting overall component OCL role invariant ψA is therefore de-
rived by combining the related OCL role invariants (ψ1 ∧ · · · ∧ ψh). For agent
instances o ∈ N+

C we refer to the component OCL role invariant as ψo
A. A hi-

erarchical system with an agent as top level component type is further named
agent subsystem.

5 A real-time pattern is consistent if the roles cover the complete interaction which is
possible via the component representing the related connectors (see [3]).

176 H. Giese and W. Schäfer

Peer-to-Peer System. Peer-to-peer systems are built by composing atomic agents
via pattern instances as depicted in Fig. 11. The composition of atomic agents
via pattern instances depicted in Fig. 11 as upper part of the core can be formally
defined as follows:

Definition 9. A peer-to-peer system Sp is a tuple
(Oc

Sp , O
p
Sp , cSp , pSp ,mapSp) with Oc

Sp ⊆ ℘(NC) a set of instance names
of atomic agents c1, . . . , cn, O

p
Sp ⊆ ℘(NC) a set of instance names of the

connector components representing patterns p1, . . . , pm with Oc
Sp ∩ Op

Sp = ∅,
cSp a function which maps to each instance ci ∈ Oc

Sp a related component type,
pSp a function which maps to each instance pj ∈ Op

Sp the related pattern, and
mapSp : (Op.NQ) → ((Oc ∩ NC).NQ) a bijective mapping which connects ports
of components representing the pattern connectors with the ports of the root
components of agents.

For such a peer-to-peer system Sp = (Oc
Sp , O

p
Sp , cSp , pSp ,mapSp) we have to

combine the behavior related to the agent instances and pattern instances. The
overall behavior and safety property of a system as depicted in Fig. 11 as upper
part of the core is given by

MSp :=

(
‖

c∈Oc
Sp

M
c
cSp (c)

)
‖
(

‖
p∈Op

Sp

M
p
pSp (p)

)
φSp := ∧

c∈Oc
Sp

φccSp (c).

The safety of a peer-to-peer system can then be formally defined referring to the
overall behavior, pattern constraints, and component invariants as follows (by
providing a formal version for Definition 2):

Definition 10. A peer-to-peer system Sp = (Oc
Sp , O

p
Sp , cSp , pSp ,mapSp) is

safe if the following conditions are fulfilled by the behavior MSp :

– all agents are locally safe and no deadlock occurs: MSp |= φSp ∧ ¬δ (9)

– All RT-OCL constraints of patterns are fulfilled: MSp |= ∧o∈Op
Sp
φo (10)

– All OCL role invariants of the agents are fulfilled: MSp |= ∧o∈Oc
Sp
ψo. (11)

Compositional Verification. To guarantee that the peer-to-peer real-time
coordination of the whole system is safe, we have to look locally at the patterns
and the role refinement by the agents (cf. Fig. 16) before we can compose these
results for the peer-to-peer coordination.

Pattern Verification. We verify whether the behavioral requirement in form of
safety properties specified by means of RT-OCL hold for a real-time pattern.
If the requirement is fulfilled, the pattern is locally safe. Formally, a real-time
pattern P = (RP , ΨP , φP , CP) with a set R of roles with a name and a RTSCs for

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 177

B

PROJ(MA, α(M
pj
Qj

)) �RT M
pj
Qj

check the role refinement (see condition 14)

M
s‖Mr

1‖ . . . ‖Mr
h

check the pattern (see condition 12)
M

r1
P ‖ . . . ‖Mrk

P ‖MP |= φP ∧ ¬δ

check the agent/component (see condition 13)
M

s
C‖Mp1

C ‖ . . . ‖Mph
C |= ψA ∧ φA ∧ ¬δ

Fig. 16. Verification of peer-to-peer structures via patterns and role refinement

each role (r1,M
r1
P), . . . , (rk,M

rk
P) and behaviorMP for the connector component

CP = (SP ,MP) is a locally safe real-time pattern if:

M
r1
P ‖ . . . ‖Mrk

P ‖MP |= φP ∧ ¬δ. (12)

The behavior Mr1
P ‖ . . . ‖Mrk

P ‖MP is supposed to be a closed real-time behavior
and can thus be verified using a real-time model checker for RTSC by checking
whether the constraint φ ∧ ¬δ holds.

In our example we generate model checker input from the RTSC for FrontRole,
RearRole and an additional RTSC for the implicitly defined connector.

Agent Verification. Besides the patterns also the agents have to be verified. We
have to verify whether the agent behavior respects the role RTSC and the role
invariants defined as local safety of the agent.

An agent A = (SA,MA, φA) with internal behavior MA can be decomposed
into M

s
C‖Mp1

C1
‖ . . . ‖Mph

Ch
. The RTSCs M

p1

C1
, . . . ,Mph

Ch
have to refine the port be-

havior Mp1

Q1
, . . . ,Mph

Qh
for IA = {(p1,MQ1

), . . . , (ph,MQh
)} and the HRTSC M

s
C

describes the component internal synchronization, and the reconfiguration and
embedding of subordinated hybrid reconfigurable components. Such an agent
with agent OCL role invariant ψA the is locally safe if:

M
s
C‖Mp1

C1
‖ . . . ‖Mph

Ch
|= ψA ∧ φA ∧ ¬δ (13)

Using the related RTSC RT (Ms
C) instead of the HRTSC M

s
C we can use a real-

time model checker to prove ψA ∧ φA ∧ ¬δ. As ψA ∧ φA ∧ ¬δ does not refer
to any continuous variables which are not clock variables, the verification result
for RT (Ms

C‖Mp1

C1
‖ . . . ‖Mph

Ch
) also holds for Ms

C‖Mp1

C1
‖ . . . ‖Mph

Ch
if the embedding is

safe (cf. Section 4.1). Note that, as RT (Ms
C)‖Mp1

C1
‖ . . . ‖Mph

Ch
is an open model, we

assume the erratic but guaranteed execution of external signals when performing
the model checking as outlined in [14].

178 H. Giese and W. Schäfer

In our example the invariant for the shuttle component is automatically de-
rived from the role invariants ψ1 and ψ2 (see constraints (1) and (2)). In the
resulting invariant, frontRole and rearRole are now specific names for navigation to
the associated ports. The same abstract shuttle property CanBrakeFully is replaced
by the or-combination of all states of the synchronization chart which fulfill
them: not self.CanBrakeFully equals Synchronization::convoyFront) and self.CanBrakeFully

equals Synchronization::convoyFront or Synchronization::convoyyRear or shorter not Syn-

chronization::convoyFront).

context Shuttle inv:
(oclInState(frontRole::convoy) implies oclInState(Synchronization::convoyFront)) and
(oclInState(rearRole::convoy) implies not oclInState(Synchronization::convoyFront))

Regular Ports. Each port RTSC M r
j of the agent A has to refine the port be-

havior M
pj

Qj
for IA = {(p1,M1), . . . , (ph,Mh)} which is equal to the connected

pattern role behavior. The whole agent behavior MA restricted to the interface
of the port (pj ,Mj) has to result in such a refinement.

PROJ(MA, α(M
pj

Qj
)) �RT M

pj

Qj
. (14)

where PROJ(M, A) denotes the automaton which results when all transitions
with input and output signals not present in A are replaced by non-deterministic
ones (cf. [14]) for an automaton M and a given set of labels A.

To ensure that MA refines each of the role protocols associated to its
ports, we propose the use of syntactical refinement rules which ensure
PROJ(MA, α(M

pj

Qj
)) �RT M

pj

Qj
. Requiring disjoint signal labels and checking in

addition MA |= ¬δ, we can then ensure that condition 14 holds. Alternatively,
model checking can be employed to also fully automate this task (cf. [31–33]).

The RTSC in Fig. 12 is a refinement of the roles from Fig. 9. Consequently, it
needs to be ensured that the embedding of AC only refines the specified real-time
behavior from Fig. 12 and does not add additional behavior, or be in conflict
with the real-time specification of this super-ordinated component.

Unsafe Ports. In order to be able to verify partial systems, we have initially
introduced the classification unsafe ports. For these unsafe ports proper decou-
pling but no refinement has to be checked to ensure safety. The idea includes
two steps. (1) When checking condition 13 for the component type that has an
unsafe port in the case of either a top level or embedded component instance,
we simply consider the transitions that interact with an unsafe port to occur
erratic and non-urgent. (2) An additional verification step proves that the un-
safe port cannot block the component behavior. We therefore use a function
NDET to transform the RTSC of the port into another one where all external
communication is replaced by purely erratic non-deterministic behavior.

To ensure safety we then have to check that the unsafe role RTSC M
pj

Qj
trans-

formed by NDET is deadlock free so that the component can never be blocked
via this port.

NDET (M
pj

Qj
) |= ¬δ (15)

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 179

In our example the decoupled interaction designed in Fig. 13 results in an unsafe
port. The resulting check transforms the role RTSC using NDET and then checks
the resulting RTSC for deadlocks.

Peer to Peer Model Verification. These separate results can be composed using
a compositional reasoning scheme to conclude that the peer-to-peer coordination
is safe (as outlined in [7] for the case without unsafe ports).

Theorem 2. A consistent peer-to-peer system Sc =
(Oc

Sc , O
p
Sc , cSc , pSc ,mapSc) is safe if

– all patterns are locally safe (condition 12),
– all agents/components are locally safe (condition 13),
– all ports are behavioral consistent (condition 14), and
– all unsafe ports are behavioral consistent (condition 15).

Proof. (sketch) As we restricted the RT-OCL constraints to compositional prop-
erties and only considered the real-time behavior of the top-level components,
we can use the border built by the ports and roles to also prove the con-
straints φP and invariants ψCj compositionally. We therefore use the local checks
for the real-time patterns and top-level hybrid components and the refinement
MA �RT M

p1

Q1
‖ . . . ‖Mph

Qh
(cf. [7]). The advantage of the compositional approach

is that it permits us to verify condition 16, 17, 18 and 19 without building the
state space for MSc . Instead, only the consistency of the overall system, the local
safety for all patterns, components, and the proper behavioral consistency of the
ports concerning the fulfilled roles has to be ensured.

If unsafe ports are also present in the safety-critical subsystem, the check
NDET (M

pj

Qj
) |= ¬δ guarantees that the remaining uncovered environment cannot

invalidate the result which has been achieved for the verified ones, even though
they may not conform to behavior specified by the pattern roles.6

For the peer-to-peer interaction, we employ model checking to check conditions
12, 13, 14, and 15. The compositional reasoning sketched in Theorem 2 proves
that these local checks result in guarantees for the overall system.

It the next section we will extend this result to systems with hierarchical
embedding.

4.3 Overall Model

Syntax, Semantics and Safety. Our approach for the modeling of the safety-
critical core of a hierarchy of OCM, as depicted in Fig. 2, is based on the ob-
servation that it can be formally defined by a set of hierarchical agents and
pattern instances (Fig. 11). While the free peer-to-peer interaction of the top-
level OCMs can be captured by pattern instances, a hierarchical system of con-
figurable components can be used to cover the hierarchies of reflective operators
and controllers.
6 We assume that no invariants and constraints for the un-verified patterns and com-
ponents exist and the related elements in the formal model are set to true.

180 H. Giese and W. Schäfer

The outlined composition of agents via pattern instances to build the safety-
critical core can be formally defined by combining Definition 5 and 9 as follows:

Definition 11. A core system Sc is a tuple (Oc
Sc , O

p
Sc , cSc , pSc ,mapSc) with

Oc
Sc ⊆ ℘(N+

C) a set of n names of agents relating to the hierarchial systems
(Oc

Sc = Oc
1
 · · ·
 Oc

n and all Sh
i = (Oc

i , cSc |Oc
i
) are hierarchical systems),

Op
Sc ⊆ ℘(NC) a set of instance names p1, . . . , pm of the connector components

representing patterns with Oc
Sc ∩ Op

Sc = ∅, cSc a function which maps to each
instance ci ∈ Oc

Sc a related component type, pSc a function which maps to each
instance pj ∈ Op

Sc the related pattern, and mapSc : (Op.NQ) → ((Oc ∩NC).NQ)
a bijective mapping which connects ports of components representing the pattern
connectors with the ports of the root components of agents.

The remaining part of the architecture consisting of the cognitive operators,
other components outside the core, and their interconnections is also covered
by related components whose connection with the safety-critical core are only
unsafe ports (cf. Fig. 11).

To cover the complete system, including the cognitive operators, we employ
the following extension:

Definition 12. A system S is a tuple (Oc
S, O

p
S, cS, pS,mapS) which includes

a core system Sc = (Oc
Sc , O

p
Sc , cSc , pSc ,mapSc).7

For a system S and core Sc we have to combine the behavior related to the
component instances and pattern instances to get the overall behavior:

MS :=

(
‖

c∈Oc
S

M
c
cS(op)

)
‖
(

‖
p∈Op

S

M
p
pS(op)

)
MSc :=

(
‖

c∈Oc
Sc

M
c
cSc (p)

)
‖
(

‖
p∈Op

Sc

M
p
pSc (p)

)
.

In our example we have the top-level component Shuttle which is connected via
map with instances of the ConvoyCoordination pattern. A single supervised embed-
ded component instance of type AC exists for each Shuttle instance.

The overall safety of a system combining Definition 6 and 10 can then be
defined referring to the overall behavior, pattern constraints, and component
invariants as follows (by providing a formal version for Definition 3):

Definition 13. A system S = (Oc
S, O

p
S, cS, pS,mapS) with included core sys-

tem Sc = (Oc
Sc , O

p
Sc , cSc , pSc ,mapSc) is safe if the following conditions for the

behavior are fulfilled:

– Local safety is fulfilled for the core: MSc |= ∧c∈Oc
Sc
φccSc (c) (16)

– Deadlock freedom is guaranteed for the core: MSc |= ¬δ (17)

– All RT-OCL constraints for patterns are fulfilled: MS |= ∧o∈Op
Sc
φo (18)

7 Inclusion of a system in another system is defined formally in [3].

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 181

– All OCL role invariants of agents are fulfilled: MS |= ∧o∈Oc
Sc
ψo
cSc (c) (19)

Condition 17 ensure that the liveness properties defined in the role and port
protocols are guaranteed by the core behavior, while condition 16, 18 and 19
ensure that the safety properties of the patterns and involved agents/components
in the core are fulfilled by the overall behavior.

Overall Verification. For the decomposition of a system into a safety-critical
core and the rest as depicted in Fig. 11 we now show that the safety of the core
is not affected when composed with an arbitrary rest system.

Theorem 3. Any system S = (Oc
S, O

p
S, cS, pS,mapS) with included core sys-

tem Sc = (Oc
Sc , O

p
Sc , cSc , pSc ,mapSc) is safe if the core Sc is safe.

Proof. (sketch) Conditions 16 and 17 obviously holds as only the core is consid-
ered and the safety of the core guarantees it. Due to the checks for the unsafe
ports, condition 18 and 19 can also be preserved when composing the core with
the rest.

The following Corollary summarizes that the outlined separate results for the
compositional and modular verification of mUML models can be combined to
ensure the safety of the overall system (as defined in Definition 13).

Corrollary 1. A system S = (Oc
S, O

p
S, cS, pS,mapS) with included core sys-

tem Sc = (Oc
Sc , O

p
Sc , cSc , pSc ,mapSc) is safe if

– all embedded component types are locally safe (condition 3 and 5),
– all embeddings are behaviorally consistent (see condition 4 or 6),
– all patterns are locally safe (condition 12),
– all agents are locally safe (condition 13),
– all regular ports are behaviorally consistent (condition 14), and
– all unsafe ports are behaviorally consistent (condition 15).

Proof. (sketch) For the non-hierarchial case the result follows from Theorem 2.
To also take the hierarchical embedding of subordinated components into account,
we refer to Theorem 1 which guarantees that the whole behavior is well-formed
and that the real-time behavior of the top-level components is always only refined
by the behavioral consistent embeddings. The safety of the core system is not
affected by the rest of the system following Theorem 3.

5 Related Work

The UML concepts themselves without the mUML refinements and UML exten-
sion for real-time, such as the UML Profile for Modeling and Analysis of Real-
Time Embedded Systems (MARTE) [35] and its extension MARTE-DAM [36]
for dependability analysis are not sufficient for the model-driven development of
advanced mechatronic systems as targeted in the paper. They are neither defined

182 H. Giese and W. Schäfer

rigorously enough to support a decomposition for the analysis nor appropriately
tailored to support systems with self-optimization. The System Modeling Lan-
guage (SysML) [37], which combines UML concepts with system engineering
concepts has the same limitations and restricts its attention to requirement and
early phases and thus does not provide the required support for the later phases.

The Koala Component Model for Consumer Electronics Software [38] is one
example where reconfiguration has been taken into account in a similar setting.
However, the model is restricted to the component structure only and does not
cover real-time or hybrid behavior.

In the OMEGA project [39], the UML has been extended by additional time
constructs. However, in contrast to our approach, there is no support for hybrid
behavior, and compositional verification is only supported by semi-automatic
verification via theorem proving.

The description of control algorithms by time-continuous variables and cor-
responding ports is similar to other approaches such as HyROOM [40] and the
underlying HyCharts [41]. Masaccio [42] and CHARON [28,43, 44] also support
the component-based modeling of hybrid systems and verification. The soft-
ware’s architecture is specified similarly to ROOM/UML-RT and the behavior is
specified by statecharts whose states are associated with systems of ordinary dif-
ferential equations, differential constraints or Matlab/Simulink block diagrams.
These approaches provide means for the reconfiguration of systems in terms of
changing the continuous behavior. However, it is only possible to reconfigure
the model inside a component on one hierarchy-level. Our approach allows for a
complex reconfiguration altering the structure across more than one hierarchy-
level. For a more comprehensive comparison of a number of modeling techniques
for advanced mechatronic systems, which also addresses the adaptation aspect,
we refer to [45].

Concerning the verification of adaptive behavior, only first attempts exist.
In [46], as in our presented work, verification techniques are employed to ensure
that the self-adaptive behavior does not result in any harm. We additionally
include self-coordinating behavior, suggest a compositional approach which can
also be employed to study systems unable to be addressed as a whole. We also
take real-time and continuous behavior into account. In [47], required properties
for untimed models are checked under the assumption that a self-x capability
of a system will fix certain types of problems in the long run. Also, we have to
provide guarantees for the self-optimizing mechatronic systems in all possible
cases under hard real-time constraints. Due to the multiple involved agents and
their limitations (only local knowledge and limited reasoning capabilities) we
cannot rely on the adaptation capabilities of the agents. Another direction for
assurance is runtime verification [48]. However, it would be too late for the
considered class of safety guarantees if the problems are detected at runtime.
Only in cases where the runtime verification is not required in hard real-time
(and thus remain outside the safe core) such an approach seems reasonable. A
possible orthogonal extension of the presented approach is therefore to perform
such runtime verification steps in the cognitive operator.

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 183

6 Conclusion

The mUML approach enables the model-driven development of mechatronic
systems with advanced capabilities such as self-adaptive run-time behavior by
providing the following three building blocks: (1) A suitable modeling approach
for hierarchical structures of OCMs is provided which supports the specification
of hybrid behavior and the reconfiguration of subsystems in order to support the
reliable self-adaptation of the OCMs. (2) For the level of freely interacting soft-
ware agents, the flexible but safe real-time coordination between the autonomous
mechatronic agents is achieved employing the coordination pattern concept. (3)
The approach integrates the hierarchical OCM structures and flexible interac-
tion of software agents in such a manner that safety properties can be verified
based on compositional checking so that the approach becomes scalable.

Acknowledgements. We thank Christian Heinzemann and Stefan Henkler for
their comments on earlier versions of this paper. We are also grateful to all the
other PhD students and students who worked on mUML or implemented the
tool support for the described concepts as extensions for the Fujaba UML CASE
tool.

References

1. Schäfer, W., Wehrheim, H.: The challenges of building advanced mechatronic sys-
tems. In: FOSE 2007: 2007 Future of Software Engineering, pp. 72–84. IEEE Com-
puter Society, Washington (2007)

2. Sztipanovits, J., Karsai, G., Bapty, T.: Self-adaptive software for signal processing.
Commun. ACM 41(5), 66–73 (1998)

3. Giese, H., Schäfer, W.: Model-driven development of safe self-optimizing mecha-
tronic systems with mechatronic uml. Technical Report tr-ri-12-322, Software En-
gineering Group, Heinz Nixdorf Institute, University of Paderborn, Paderborn,
Germany (2012),
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/GS12.pdf

4. Burmester, S., Tichy, M., Giese, H.: Modeling Reconfigurable Mechatronic Systems
with Mechatronic UML. In: Aßmann, U. (ed.) Proc. of Model Driven Architecture:
Foundations and Applications (MDAFA 2004), Linköping, Sweden, pp. 155–169
(June 2004)

5. Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable
M. In: Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599,
pp. 47–61. Springer, Heidelberg (2005)

6. Giese, H.: A Formal Calculus for the Compositional Pattern-Based Design of Cor-
rect Real-Time Systems. Technical Report tr-ri-03-240, Lehrstuhl für Softwaretech-
nik, Universität Paderborn, Paderborn, Deutschland (July 2003)

7. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compo-
sitional Verification of Real-Time UML Designs. In: Proc. of the 9th European
Software Engineering Conference held Jointly with 11th ACM SIGSOFT interna-
tional Symposium on Foundations of Software Engineering (ESEC/FSE 2011), pp.
38–47. ACM Press (September 2003)

http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/GS12.pdf

184 H. Giese and W. Schäfer

8. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design
of Complex Self-optimizing Mechatronic Systems. In: Araujo, H., Vieira, A., Braz,
J., Encarnacao, B., Carvalho, M. (eds.) Proc. of 1st International Conference on In-
formatics in Control, Automation and Robotics (ICINCO 2004), Setubal, Portugal,
pp. 222–229. INSTICC Press (August 2004)

9. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Ver-
ification of Component-Based Mechatronic Systems with Online-Reconfiguration.
In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 179–188. Springer,
Heidelberg (2004)

10. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the De-
sign of Complex Self-optimizing Mechatronic Systems. In: Informatics in Control,
Automation and Robotics. Kluwer Academic Publishers, Dordrecht (2005)

11. Hestermeyer, T., Oberschelp, O., Giese, H.: Structured Information Processing For
Self-optimizing Mechatronic Systems. In: Araujo, H., Vieira, A., Braz, J., Encar-
nacao, B., Carvalho, M. (eds.) Proc. of 1st International Conference on Informat-
ics in Control, Automation and Robotics (ICINCO 2004), pp. 230–237. INSTICC
Press, Setubal (2004)

12. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 259–268. IEEE Computer
Society, Washington, DC (2007)

13. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool Support for the Design of Self-Optimizing Mechatronic Multi-Agent Systems.
International Journal on Software Tools for Technology Transfer (STTT) 10(3),
207–222 (2008)

14. Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental design and for-
mal verification with UML/RT in the FUJABA real-time tool suite. In: Proc. of
the International Workshop on Specification and Validation of UML Models for
Real Time and Embedded Systems, SVERTS2004, Satellite Event of the 7th In-
ternational Conference on the Unified Modeling Language, UML 2004, pp. 1–20
(October 2004)

15. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The Fujaba Real-
Time Tool Suite: Model-Driven Development of Safety-Critical, Real-Time Sys-
tems. In: Proc. of the 27th International Conference on Software Engineering
(ICSE), St. Louis, Missouri, USA (May 2005)

16. Burmester, S., Giese, H., Schäfer, W.: Model-Driven Architecture for Hard Real-
Time Systems: From Platform Independent Models to Code. In: Hartman, A.,
Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 25–40. Springer, Hei-
delberg (2005)

17. Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Mod-
ular Code Synthesis for Reconfigurable Mechatronic Software Components. In:
Bobeanu, C. (ed.) Proc. of European Simulation and Modelling Conference (ESMc
2004), Paris, France, pp. 66–73. EOROSIS Publications, Paris (2004)

18. Giese, H., Henkler, S., Hirsch, M.: A multi-paradigm approach supporting the
modular execution of reconfigurable hybrid systems. Simulation 87(9), 775–808
(2011)

19. Oberschelp, O., Gambuzza, A., Burmester, S., Giese, H.: Modular Generation and
Simulation of Mechatronic Systems. In: Proc. of the 8th World Multi-Conference
on Systemics, Cybernetics and Informatics, SCI, Orlando, USA (July 2004)

Model-Driven Development of Safe Self-optimizing Mechatronic Systems 185

20. Heinzemann, C., Pohlmann, U., Rieke, J., Schäfer, W., Sudmann, O., Tichy, M.:
Generating simulink and stateflow models from software specifications. In: Pro-
ceedings of the 12th International Design Conference, DESIGN 2012 (May 2012)
(accepted)

21. Giese, H., Burmester, S.: Real-Time Statechart Semantics. Technical Report tr-
ri-03-239, Lehrstuhl für Softwaretechnik, Universität Paderborn, Paderborn, Ger-
many (June 2003)

22. Burmester, S., Giese, H.: The Fujaba Real-Time Statechart PlugIn. In Giese, H.,
Zündorf, A., eds.: Proc. of the first International Fujaba Days 2003, Kassel, Ger-
many. Volume tr-ri-04-247 of Technical Report., pp. 1–8. University of Paderborn
(October 2003)

23. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International
Journal of Software Tools for Technology 1(1) (1997)

24. Henzinger, T.A., Manna, Z., Pnueli, A.: What Good Are Digital Clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

25. OMG: UML Profile for Schedulability, Performance, and Time Specification. OMG
Document ptc/02-03-02 (September 2002)

26. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: The Next Generation. In: Proc.
of the 16th IEEE Real-Time Symposium. IEEE Computer Press (December 1995)

27. Bender, K., Broy, M., Peter, I., Pretschner, A., Stauner, T.: Model based develop-
ment of hybrid systems. In: Modelling, Analysis, and Design of Hybrid Systems.
LNCIS, vol. 279, pp. 37–52. Springer, Heidelberg (2002)

28. Alur, R., Dang, T., Esposito, J., Fierro, R., Hur, Y., Ivancic, F., Kumar, V., Lee, I.,
Mishra, P., Pappas, G., Sokolsky, O.: Hierarchical Hybrid Modeling of Embedded
Systems. In: First Workshop on Embedded Software (2001)

29. Lynch, N.A.: Input/Output Automata: Basic, Timed, Hybrid, Probabilistic, Dy-
namic,.. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp.
191–192. Springer, Heidelberg (2003)

30. Flake, S., Mueller, W.: An OCL Extension for Real-Time Constraints. In: Clark, A.,
Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263, pp. 150–171.
Springer, Heidelberg (2002)

31. Giese, H., Hirsch, M.: Modular Verification of Safe Online-Reconfiguration for
Proactive Components in Mechatronic UML. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 67–78. Springer, Heidelberg (2006)

32. Giese, H., Hirsch, M.: Modular Verification of Safe Online-Reconfiguration for
Proactive Components in Mechatronic UML. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 67–78. Springer, Heidelberg (2006)

33. Giese, H., Hirsch, M.: Checking and Automatic Abstraction for Timed and Hy-
brid Refinement in Mechtronic UML. Technical Report tr-ri-03-266, University of
Paderborn, Paderborn, Germany (December 2005)

34. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? Journal of Computer and System Sciences 57, 94–124 (1998); A
preliminary version appeared in the Proceedings of the 27th Annual Symposium
on Theory of Computing (STOC), pp. 373–382. ACM Press (1995)

35. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems. Version 1.1 (June 2011)

36. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.
Softw. Syst. Model. 10(3), 313–336 (2011)

37. Object Management Group: Systems Modeling Language (SysML) Specification
(January 2005)

186 H. Giese and W. Schäfer

38. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The koala component
model for consumer electronics software. Computer 33(3), 78–85 (2000)

39. Graf, S., Hooman, J.: Correct Development of Embedded Systems. In: Oquendo,
F., Warboys, B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 241–249.
Springer, Heidelberg (2004)

40. Stauner, T., Pretschner, A., Péter, I.: Approaching a Discrete-Continuous UML:
Tool Support and Formalization. In: Gogolla, M., Kobryn, C. (eds.) UML 2001.
LNCS, vol. 2185, pp. 242–257. Springer, Heidelberg (2001)

41. Stauner, T.: Systematic Development of Hybrid Systems. PhD thesis, Technische
Universität München (2001)

42. Henzinger, T.A.: Masaccio: A Formal Model for Embedded Components. In:
Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS
2000. LNCS, vol. 1872, pp. 549–563. Springer, Heidelberg (2000)

43. Alur, R., Ivancic, F., Kim, J., Lee, I., Sokolsky, O.: Generating embedded soft-
ware from hierarchical hybrid models. In: Proceedings of the 2003 ACM SIGPLAN
Conference on Language, Compiler, and Tool for Embedded Systems, pp. 171–182.
ACM Press (2003)

44. Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional Refinement of Hierarchi-
cal Hybrid Systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 33–48. Springer, Heidelberg (2001)

45. Giese, H., Henkler, S.: A survey of approaches for the visual model-driven develop-
ment of next generation software-intensive systems. Journal of Visual Languages
and Computing 17, 528–550 (2006)

46. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE 2006: Proceeding of the 28th International Conference on Software
Engineering, pp. 371–380. ACM Press, New York (2006)

47. Güdemann, M., Ortmeier, F., Reif, W.: Formal Modeling and Verification of Sys-
tems with Self-x Properties. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.)
ATC 2006. LNCS, vol. 4158, pp. 38–47. Springer, Heidelberg (2006)

48. Goldsby, H.J., Cheng, B., Zhang, J.: AMOEBA-RT: Run-Time Verification of
Adaptive Software. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735, pp. 212–224. Springer, Heidelberg (2007)

	Model-Driven Development of Safe
Self-optimizing Mechatronic Systems with MechatronicUML
	Introduction
	The Approach
	The General Architectural Model
	Self-adaptation and Self-optimization
	Modular and Compositional Verification
	Tool Support and Code Generation

	Modeling
	The Hierarchical Component Model
	The Peer-to-Peer Coordination Model

	Modular and Compositional Verification
	Hierarchical Component Model
	Peer-to-Peer Coordination Model
	Overall Model

	Related Work
	Conclusion
	References

