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Abstract. An effective design of effective and efficient self-adaptive sys-
tems may rely on several existing approaches. Software models and model
checking techniques at run time represent one of them since they support
automatic reasoning about such changes, detect harmful configurations,
and potentially enable appropriate (self-)reactions. However, traditional
model checking techniques and tools may not be applied as they are at
run time, since they hardly meet the constraints imposed by on-the-fly
analysis, in terms of execution time and memory occupation. For this
reason, efficient run-time model checking represents a crucial research
challenge.

This paper precisely addresses this issue and focuses on probabilistic
run-time model checking in which reliability models are given in terms of
Discrete Time Markov Chains which are verified at run-time against a set
of requirements expressed as logical formulae. In particular, the paper
discusses the use of probabilistic model checking at run-time for self-
adaptive systems by surveying and comparing the existing approaches
divided in two categories: state-elimination algorithms and algebra-based
algorithms. The discussion is supported by a realistic example and by
empirical experiments.

1 Introduction

Software is the driving engine of modern society. Most human activities, includ-
ing the most critical ones, are either software enabled or entirely managed by
software. As software is becoming ubiquitous and society increasingly relies on
it, the adverse impact of unreliable or unpredictable software cannot be toler-
ated. Indeed, software systems have to be able to evolve correspondingly to their
deployment environment in order to guarantee a seamless fulfillment of desired
requirements and ensure a minimal downtime. In response to this challenge,
current Software Engineering aims at designing Self-Adaptive Systems which are
able to react and reconfigure themselves minimizing human intervention and
ideally guaranteeing a lifelong requirement fulfillment. To date, Software Engi-
neering research in self-adaptive systems has produced promising initial results,
as illustrated for example in [24]. However, even if these findings provide an es-
sential step towards a set of effective and efficient solutions for self-adaptation,
they are not the end of the story as building these dependable systems is still
unclear and requires further investigation.
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Designers must ensure that any critical requirement of the system continues to
be satisfied before, during and after unforeseen scenarios. By this we mean that
software systems are required to be dependable, to avoid damaging effects due to
violated requirements that can range from loss of business to loss of human lives.
At the same time, the complexity of modern software systems has grown enor-
mously in the past years with users always demanding for new features and better
quality of service. Software systems changed from being monolithic and central-
ized to modular, distributed, and dynamic. They are increasingly composed of
heterogeneous components and infrastructures on which software is configured
and deployed. When an application is initially designed, software engineers of-
ten only have a partial and incomplete knowledge of the external environment
in which the application will be embedded at run time. Design may therefore
be subject to high uncertainty. This is further exacerbated by the fact that the
structure of the application, in terms of components and interconnections, often
changes dynamically. New components may become available and published by
providers for use by potential clients. Some components may disappear, or be-
come obsolete, and new ones may be discovered dynamically. This may happen,
for example, in the case of Web service-based systems [6,7]. This also happens in
pervasive computing scenarios where devices that run application components
are mobile [27]. Because of mobility, and more generally context change, certain
components may become unreachable, while others become visible during the
application’s lifetime. Finally, requirements also change continuously and un-
predictably, in a way that is hard to anticipate when systems are initially built.
Because of uncertainty and continuous external changes the software application
is subject to continuous adaptation and evolution.

This paper focuses on how analyzing and comparing existing approaches
aimed at managing run-time changes by verifying that the software evolves dy-
namically without disrupting the dependability of applications. Dependability
includes attributes such as reliability, availability, performance, safety, security.
In this paper we focus our attention on two main dependability requirements that
typically arise in the case of decentralized and distributed applications: namely,
reliability and performance. Both reliability and performance depend on envi-
ronment conditions that are hard to predict at design time, and are subject to a
high degree of uncertainty. For example, performance may depend on end-user
profiles, on network congestion, on load conditions of external services that are
integrated in the application. Similarly, reliability may depend on the behavior
of the network and of the external services that compose the application being
built.

Existing approaches focus on supporting the development and operation of
complex and dynamically evolvable software systems leveraging on Formal Mod-
els. These formal models are built at design time to support an initial assessment
that the application satisfies the requirements. Models are then kept alive at run
time and continuously verified to check that the changes with respect to the
design-time assumptions do not lead to requirements violations. This requires
efficient mechanisms for run-time verification. If requirements violations are
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detected, appropriate actions must be undertaken, ranging from off-line evo-
lution to on-line adaptation. In particular, much research is currently investi-
gating the extent to which the software can respond to predicted or detected
requirements violation through self-managed reactions, in an autonomic man-
ner. These, however, are out of the scope of this paper, which only focuses on
describing run-time verification approaches.

Verification at runtime of reliability and performance properties for self-
adaptive systems typically relies on Probabilistic Models such as: Discrete Time
Markov Chains and Discrete Time Markov Rewards Models. This paper intro-
duces these formalisms and subsequently illustrates and compares the approaches
for efficient runtime verification. In particular, our contribution is structured as
follows. Section 2 describe the mathematical foundations of Markov Chains and
PCTL (i.e., the logic commonly adopted to verify properties on discrete Markov
models). Such mathematical concepts are described by relying on a realistic ex-
ample also introduced in this section and used throughout the paper to illustrate
the different model checking techniques. Section 3 dicusses and compares the
existing approaches for run-time verification. Finally, 5 draws some remarking
conclusions and illustrates potential future work.

2 Probabilistic Models for Run-Time Verification

This section provides an introduction to the probabilistic models adopted to
express reliability and performance properties for self-adaptive systems. In this
section we provide a brief introduction to the mathematical concepts used
throughout the paper. In particular in Sections 2.3 and 2.4 we describe respec-
tively the Probabilistic Computational Tree Logic and its extension with rewards
used to represent properties of systems to be verified at runtime. The reader can
refer to [4,5] for a comprehensive in-depth treatment of these concepts.

2.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are a widely accepted formalism to
model reliability of systems built by integrating different components. In partic-
ular, they proved to be useful for an early assessment or prediction of reliability
[21]. The adoption of DTMCs implies that the modeled system meets, with some
tolerable approximation, the Markov property–described below. This issue can
be easily verified as discussed in [8,14].

DTMCs are discrete stochastic processes with the Markov property, accord-
ing to which the probability distribution of future states depends only upon the
current state. They are defined as a Kripke structure with probabilistic
transitions among states. States represent possible configurations of the sys-
tem. Transitions among states occur at discrete time and have an associated
probability.
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Formally, a (labeled) DTMC is a tuple (S, S0,P, L) where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– P : S × S → [0, 1] is a stochastic matrix (∀s ∈ S | ∑s′∈S P(s, s′) = 1).

An element P(si, sj) represents the probability that the next state of the
process will be sj given that the current state is si.

– L : S → 2AP is a labeling function. AP is a set of atomic propositions. The
labeling function associates to each state the set of atomic propositions that
are true in that state.

A state s ∈ S is said to be an absorbing state if P(s, s) = 1 otherwise the state
is a transient state. If a DTMC contains at least one absorbing state, the DTMC
itself is said to be an absorbing DTMC. We further assume that in our models
for any transient state there is a non zero probability of reaching at least one of
the absorbing states. In the simplest model for reliability analysis, the DTMC
will have two absorbing states, representing the correct accomplishment of the
task and the task’s failure, respectively. The use of absorbing states is commonly
extended to modeling different failure conditions. For example, different failure
states may be associated with the invocation of different external services. The
set of failures to look for is strictly domain-dependent.

In an absorbing DTMC with r absorbing states and t transient states, rows
and columns of the transition matrix P can be reordered such that P is in the
following canonical form:

P =

(
Q R
0 I

)

(1)

where I is an r by r identity matrix, 0 is an r by t zero matrix, R is a nonzero
t by r matrix and Q is a t by t matrix.

3
0.05/0

Cache 
Server

Http 
Response

8 1

1
0.1/0

Web Server

2
0.12/0

Application 
Server

6
0.15/
0.07

Database 
Server

5
0.1/0

Data Cache 
Server

4
0.12/
0.04

File Server
Http 503 Server 

Unavailable

7 1

0
0/0

Http Proxy 
Server

y

(1-y)*0.3

(1-y)*0.7

0.55

0.25

x

(1-x)

(1-w)

z (1-k)

(1-z)0.7

0.3

0.20

Error: too many 
connections

9 1

k

w

Fig. 1. DTMC Example



34 A. Filieri and G. Tamburrelli

Consider now two distinct transient states si and sj . The probability of moving
from si to sj in exactly 2 steps is

∑
sx∈S P (si, sx) · P (sx, sj). Generalizing, for

a k-steps path and recalling the definition of matrix product, it follows that the
probability of moving from any transient state si to any other transient state
sj in exactly k steps corresponds to the entry (si, sj) of the matrix Qk. As a
natural generalization, we can define Q0, which represents the probability of
moving from each state si to sj in 0 steps, as the identity t by t matrix, whose
elements are 1 iff si = sj [15].

Due to the fact that R must be a nonzero matrix, and P is a stochastic matrix,
Q has uniform-norm strictly less than 1, thus Qn → 0 as n→ ∞, which implies
that eventually the process will be absorbed with probability 1.

Let us consider for example the DTMC in Figure 1, which represents a typical
web architecture. The system comprises an HTTP Proxy server, a Web server
and an application server. In addition, structured data and static content (e.g.,
files, images, etc.) are respectively stored in a Database server and File server.
Both of them are cached by ad-hoc cache servers. Each state is labelled by a
numeric label and by a couple in the form n1/n2, its meaning will be clear later
on. States 7, 8 and 9 are absorbing states. The former represents the failure of
serving an incoming request due to an unavailable server (e.g., overloaded server
or maintenance downtime). The latter represent the endpoint of a correct HTTP
request. Transitions among non-absorbing states reports the probability for an
HTTP request of passing from one element of the architecture to the other. For
example transition 0− 1 indicates the probability that a request is associated to
static or dynamic content. Transition 1 − 1 indicates instead the probability of
an HTTP self-redirect.

Conversely, transitions to absorbing states indicates the final outcome in pro-
cessing a request. We use variables as transition labels to indicate that the value
of the corresponding probability is unknown, and may change over time. For
example transitions 3− 4 and 5− 6 indicate the cache hit probability.

In matrix form, the same DTMC would be characterized by the following
matrices Q and R:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 (1− y)0.3 0 (1− y)0.7 0 0 0
0 0.2 0.55 0 0 0 0
0 0 0 0 0 0.7 0
0 0 0 0 1− x 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1− z
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y 0 0
0 0.25 0
0 0.3 0
0 x 0
0 1− w w
0 z 0
0 1− k k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Notice that the parameters necessary to model a system with a DTMC (i.e.,
the values in the DTMC matrix) may be obtained by experimental results as
well as by estimates extracted by similar systems or by previous version of the
system under design. Finally, the system reported in this section is just a toy
example that we use to introduce the proposed approach. However, the concepts
described hereafter apply seamlessly to real systems which might have thousands
of states and failures.

2.2 Discrete Time Markov Rewards Models

A D-MRM [1] is a DTMC augmented with rewards, through which one can
quantify a benefit (or loss) due to the residence in a specific state or the move
along a certain transition. A D-MRM has an underlying DTMC, through which
designers can provide a high-level model for the system’s control flow by
abstracting the execution state space into a finite set of abstract states rele-
vant to the verification1. As illustrated later on, D-MRM may be used to model
performance properties or even properties concerning costs (e.g., energy con-
sumptions).

A reward is a non-negative value assigned to a state or a transition. Rewards
can represent information such as average execution time, power consumption,
number of I/O operations, or even cost of an outsourced operation. A D-MRM
is a tuple (S, S0, P, L, ρ, i) where:

– S is a finite set of states,
– S0 ⊆ S is a set of initial states,
– P : S × S → [0, 1] is a stochastic matrix (∀s ∈ S | ∑s′∈S P (s, s

′) = 1).
An element P (si, sj) represents the probability that the next state of the
process will be sj given that the current state is si,

– L : S → 2AP is a labeling function which assigns to each state the set of
Atomic Propositions that are true in the state,

– ρ : S → R≥0 is a state reward function assigning to each state a non-negative
real number,

– ι : S × S → R≥0 is a transition reward function assigning a non-negative
real number to each transition.

To understand how rewards are gained, we need to precisely state how the sys-
tem modeled by the D-MRM evolves over a sequence of time steps. At step 0 the
system enters the initial state s0. At step 1, the system gains the reward ρ(s0)
associated with the initial state and moves to a new state (say, s1), gaining also
the reward ι(s0, s1). The cumulated reward when the system enters state s1 is
ρ(s0) + ι(s0, s1). At step 2, it gains the reward ρ(s1) associated with state s1,
and then exits it gaining also the reward associated with the chosen transition,

1 The adoption of an underlying Markov model implies that the modeled system meets,
with some tolerable approximation, the Markov property, according to which the
probability distribution of future states depend only on the current state.
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and so on. In summary, the state reward is acquired if the D-MRM resides in
state si for one time step. The reward associated with a transition ι(si, sj) is
gained as the process makes an instantaneous move from state si to state sj . A
state s ∈ S is said to be an absorbing state if P (s, s) = 1. If a D-MRM contains
at least one absorbing state, the D-MRM itself is said to be an absorbing D-
MRM. If the absorbing states are reachable, in any number of time steps, from
transient ones, it can be shown that any execution will eventually be absorbed
with probability 1 (as proved for DTMCs in [29]). We assume D-MRMs to be
well-formed, i.e. all states are reachable from the initial state and for all non
absorbing states it is possible to reach a least one absorbing state.

Transitions can be defined through a matrix P where P (si, sj) represents the
probability associated with the transition from state si to state sj . Let us now
consider two distinct states si and sj . The probability of moving from si to sj in
2 steps is

∑
sx∈S P (si, sx)·P (sx, sj). Generalizing to a k-steps path and recalling

the definition of matrix product, the probability of moving from any state si to
any other state sj in k steps corresponds to the entry (si, sj) of the matrix P k.
As a natural generalization, we can define P 0 (representing the probability of
moving from a state si to a state sj in 0 steps) as the identity matrix, whose
elements are 1 iff si = sj [15,29].

Variability can be modeled quite simply in D-MRMs. We assume that variabil-
ity does not affect the structure of the models, only parameters. In our case, it
only affects the possible values used to label transition probabilities and rewards.
This is usually expressive enough to accommodate changes in the environment
that affect our system.

2.3 Probabilistic Computation Tree Logic

Formal languages to express properties of systems modeled through DTMCs
have been studied in the past and several proposals are supported by model
checkers to prove that a model satisfies a given property. In this paper, we focus
on Probabilistic Computation Tree Logic (PCTL) [19,2], a logic that can be used
to express a number of interesting reliability properties.

PCTL is defined by the following syntax:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P��p (Ψ)

Ψ ::= XΦ | ΦU≤tΦ

where p ∈ [0, 1], ��∈ {<,≤, >,≥}, t ∈ N ∪ {∞}, and a represents an atomic
proposition. The temporal operator X is called Next and U is called Until.
Formulae generated from Φ are referred to as state formulae and they can be
evaluated to either true or false in every single state, while formulae generated
from Ψ are named path formulae and their truth is to be evaluated for each
execution path.
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The satisfaction relation for PCTL is defined for a state s as:

s |= true

s |= a iff a ∈ L(s)

s |= ¬Φ iff s � Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P��p(Ψ) iff Pr(s |= Ψ) �� p

A complete formal definition of Pr(s |= Ψ) can be found in [5]; details are
omitted here for simplicity. Intuitively, its value is the probability of the set of
paths starting in s and satisfying Ψ .Given a path π, we denote its i-th state
as π[i]; π[0] is the initial state of the path. The satisfaction relation for a path
formula with respect to a path π originating in s (π[0] = s) is defined as:

π |= XΦ iff π[1] |= Φ

π |= Φ1U
≤tΦ2 iff ∃ 0 ≤ j ≤ t

(π[j] |= Φ2 ∧ (∀0 ≤ k < j π[k] |= Φ1))

From the Next and Until operators it is possible to derive others. For example,
the Eventually operator (often represented by the �≤t symbol) is defined as:

�≤tφ ≡ true U≤tφ

It is customary to abbreviate U≤∞ and �≤∞ as U and �, respectively
PCTL can naturally represent reliability-related properties for a DTMCmodel

of the application. For example, we may easily express constraints that must
be satisfied concerning the probability of reaching absorbing failure or success
states from a given initial state. These properties belong to the general class of
reachability properties. Reachability properties are expressed as P��p(� Φ), which
expresses the fact that the probability of reaching any state satisfying Φ has to
be in the interval defined by constraint �� p. In most cases, Φ just corresponds
to the atomic proposition that is true only in an absorbing state of the DTMC.
In the case of a failure state, the probability bound is expressed as ≤ x, where
x represents the upper bound for the failure probability; for a success state it
would be instead expressed as ≥ x, where x is the lower bound for success.
PCTL is an expressive language through which more complex properties than
plain reachability may be expressed. Such properties would be typically domain-
dependent, and their definition is delegated to system designers.

Recalling our example of Figure 1, we may have the following reliability re-
quirements:

– R1:“The probability of successfully handling a request is greater than 0.999”
– R2:“The probability for a request of being dropped by the file server of the

database server because of too many concurrent connections is less than
0.001”

– R3:“The probability for a request of experiencing an error HTTP 503 (e.g.,
too many incoming requests) is less than 0.001”
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– R4:“The probability for a request of dynamic content of experiencing a cache
miss is less than 0.25”

– R5:“The probability for a request of static content of experiencing a cache
miss is less than 0.15”

These requirements can be translated into PCTL as shown in Table 1, where
the notation s = n refers to the identification of state n according to Fig. 1.
Notice that these requirements have different sets of initial states: R1-3 must
be evaluated starting from state 0 (i.e., S0 = {0}) while R4-5 must be evaluated
starting respectively from state 1 and 3.

Table 1. Requirements translation in PCTL

Req. PCTL

R1 P≥0.999(true U s = 8) = P≥0.999(� s = 8)
R2 P≤0.001(true U s = 9) = P≤0.001(� s = 9)
R3 P≤0.001(X s = 7)
R4 P≤0.25(true U s = 6) in s = 1
R5 P≥0.15(X s = 4) in s = 3

Given the formalisms explained so far, we can introduce in the next section the
proposed approach which allow to efficiently verify non-functional requirements
such as R1− 5 at run-time via synthesis of symbolic expressions.

2.4 Extending PCTL with Rewards

R-PCTL is a logic language to express properties of a D-MRM. it is defined as
follows [25]:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P��p (Ψ) | R��r (Θ)

Ψ ::= X Φ | Φ U Φ | Φ U≤t Φ

Θ ::= I=k | C≤k |  Φ

Formulae Φ are named state formulae and can be evaluated over a boolean
domain (true, false) in each state. Formulae Ψ are named path formulae and
describe a pattern that can be matched over the set of all possible paths orig-
inating in a given state. Symbol �� stands for a relational operator in the set
{≤, <,≥, >}, p ∈ [0, 1] is a probability bound, r ∈ R≥0, and k ∈ Z≥0. trueUΦ
can be shortened by the eventually operator Φ, with exactly the same semantics.
The expressions defined by Θ support the specification of reward patterns.

Let us now informally discuss the semantics of R-PCTL, first ignoring reward
formulae. The intuitive meaning of the formula P��p(Ψ) evaluated in a state s,
where Ψ is a path formula, is: the probability for the set of paths originating
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from s and satisfying Ψ meets the bound expressed as �� p. More precisely, the
satisfaction relation for (non-reward) state formulae is defined for a state s as:

s |= true

s |= a iff a ∈ L(s)

s |= ¬Φ iff s � Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P��p(Ψ) iff Pr(s |= Ψ) �� p)

A formal definition of how to compute Pr(s |= Ψ) is presented in [5]. The intu-
ition is that its value corresponds to the probability of taking a path that satisfies
Ψ , among all the, possibly infinite, paths originating in s. The satisfaction rela-
tion for a path formula with respect to a path π originating in s (π[0] = s) is
defined as:

π |= XΦ iff π[1] |= Φ

π |= ΦUΨ iff ∃j ≥ 0.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

π |= ΦU≤tΨ iff ∃0 ≤ j ≤ t.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

Let us now focus on the semantics of the rewards fragment of R-PCTL. We
intuitively define how a state s can satisfy a formula R��r (Θ) depending on the
way the reward expression Θ is formulated.

– R��r(I
=k) is true in state s if the expected state reward to be gained in the

state entered at step k along the paths originating in s meets the bound �� r.
– R��r(C

≤k) is true in state s if, from state s, the expected reward cumulated
after k steps meets the bound �� r.

– R��r(Φ) is true in state s if, from state s, the expected reward cumulated
before a state satisfying Φ is reached meets the bound �� r.

The third construct can be used, for example, to state the global costs of the
running systems, that is, until the execution reaches a completion state, usually
modeled by an absorbing state because of its definitive nature.

A formal semantics for the reward fragment of R-PCTL can be found in [25].
Intuitively, the expected reward R(Θ) for all possible paths exiting a given state
s and satisfying the pattern Θ can be computed as the sum of the rewards for
each path of those paths, weighted by the probability for that path to be taken.
Even in case the set of paths originating from s is infinite, the resulting infinite
series can be proved to converge [5]. Notice that the probability for a path to be
taken is the joint probability of all its transitions to fire, which can be computed
as the product of the probabilities associated with the transitions thanks to the
Markov assumption[29]. We now need to define how the expected value X for
the reward can be computed for a given path ω = s0s1s2 . . . of the D-MRM and
for a given pattern:
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XI=k(ω) = ρ(sk) (2)

XC≤k(ω) =

{
0 if k = 0
∑k−1

i=0 ρ(si) + ι(si, si+1) otherwise
(3)

XFΦ(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if s0 |= Φ
∞ if ∀i si � Φ
∑min{j|sj |=Φ}−1

i=0

ρ(si) + ι(si, si+1) otherwise

(4)

In Section 3 we will show how the value of XΘ can be computed with algebraic
techniques taking into account the presence of both numeric values and variable
parameters in the D-MRM model.

Exploiting rewards we are able to express more complex requirements which
may consider for example costs or latencies. Let us recall our example of Figure
1 and let us imagine to deploy the system as follows. Let us imagine to have
a separate machine for each server. In particular let us imagine the scenario in
which we deploy the database and the file server on a Cloud infrastructure in
which bandwidth and space are billed (e.g., Amazon Simple Storage Service2).
In this setting we are now able to interpret the couple of numbers associated to
each state in Figure 1. The first number indicates the average latency, in seconds,
needed to process the request including the network latency. The second number
indicates the average cost for each request for being processed by the state. For
example the database server state has an average cost for each request equal to
0.07$. Given these details we may express requirements such as:

– R6:“The average cost for the system is less than 0.03 $ for each request”
– R7:“The average response time for a given request is less than 0.022s”

These requirements can be translated into R-PCTL as shown in Table 2.

Table 2. Requirements translation in R-PCTL

Req. R-PCTL

R6 R≤0.03(trueU 7 ≤ s ≤ 9)
R7 R≤0.022(trueU 7 ≤ s ≤ 9)

3 Probabilistic Verification at Runtime: Existing
Approaches

Standard verification techniques for PCTL properties over DTMCs are not suit-
able, in general, for runtime analysis because of the intrinsic time constraints

2 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/
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required by solvers. Some approaches have brought state-of-the-art probabilistic
model-checkers at runtime [7], providing a suitable infrastructure for many ap-
plications. Nonetheless these approaches are not general enough for at least two
reasons.

Notice that, the complexity of verification can be too high in case of large
systems to make the analysis meet its time constraints [9,22]. Second, analysis
procedures may be unsuitable for low power devices where the large number
of operations required for mathematical iterative algorithms commonly used by
model-checkers may result in excessive time and energy consumption.

Model-checking can be improved in many situations both in terms of analysis
algorithms, e.g. by applying space-reduction techniques (e.g. [23,3]), and via the
reuse of previous results, thus opening the way for incremental analysis [26].

Besides improving standard model-checking procedures, a different approach
have recently gained relevance for runtime analysis. In its seminal work [11],
Daws describes a procedure for parametric probabilistic model-checking of a
subset of PCTL over DTMCs. This result trod an effective path for bringing
probabilistic verification at runtime, by allowing to split the analysis process
in two steps. The first consists in the parametric analysis of the model with
respect to the desired property, whose result is a closed mathematical expression
depending on the symbolic variables appearing in the model. This step is quite
complex in terms of computational time, but it can be accomplished once for
all at design-time, when time is usually not a strong constraint. At runtime all
that is needed to obtain the actual analysis response is to replace the symbolic
variables with the actual values provided from modeling, as soon as they are
discovered. The evaluation of a mathematical expression, is in general a much
simpler task than model-checking, and can be performed in a very short time
even on low power devices, as we shown in [12].

The main focus of this section is on parametric probabilistic verification of
PCTL properties over DTMCs. In Section 3.1 we will introduce the algorithm
of Daws and the subsequent improvements and implementations. In Section 3.2
we present an alternative method for parametric analysis which overcomes the
limitations of Daws’ algorithm, covering the entire family of PCTL formulae
with an improved performance.

3.1 State Elimination Algorithms

The first approach for parametric model-checking of DTMCs has been proposed
in [11]. The main contribution of that seminal work concerned the synthesis of
parametric closed formulae through a state elimination algorithm, analogous to
the one used in automata theory to synthesize regular expressions from finite
state automata [20].

More precisely, Daws’ algorithm allows to compute a closed mathematical ex-
pression corresponding to the probability of reaching a set of target states in any
number of steps. In terms of PCTL, this corresponds to computing Pr(true U φ),
with the further constraint that φ can only be a boolean combination of atomic
formulae, i.e. it has to be possible to identify the set of states in which φ holds
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at design time and this set is not going to change at runtime. We will refer to
this family of reachability formulae as flat.

In the next section we will introduce Daws’ algorithm for reachability analysis.
Afterward, in Section 3.1, we will cover its extension for the analysis of a subset
of rewards formulae.

Flat Reachability Analysis. The core idea of Daws’ algorithm is to consider
the probability values labeling DTMC transitions as letters of an alphabet. Under
this interpretation the DTMC can be seen as a finite state automaton for which
it can be synthesized a variant of the regular expressions by adapting the well
known state elimination algorithm [20]. Such variants of the regular expressions
are named stochastic regular expressions (SREs)[11] and can be evaluated to
rational mathematical expressions. The construction of SREs corresponding to
the evaluation of flat reachability formulae on a DTMC is addressed by the first
part of this section.

Given a flat reachability formula true U φ and a DTMC D, it possible to
identify the set of states T of D that satisfy φ. We will call these states target
states.

In order to simplify the exposition, let us assume for now that all the target
states are absorbing. We will later relax this assumption.

We also assume the model to be well-formed, meaning that all the states are
reachable from the initial state s0. We can also prune out all the states (and the
corresponding transitions) from which it is not possible to reach any of the target
states. The model we obtain may no longer be a DTMC, since the elimination of
a subset of the transitions may lead to sub-stochastic states, i.e. the sum of the
outgoing probabilities is lower than 1, nonetheless the reduced model preserves
all the information needed for the computation of the reachability formulae (a
proof of correctness can be found in [18]).

Daws’ algorithm consist in eliminating all the states of the reduced model but
the targets and the initial state. A state elimination step is described in Figure
2. When eliminating state s, the algorithm considers all the pairs (si, sj) where
si is a direct predecessor of s and sj is a direct successor of s. When eliminating
s, the transition probability from si to sj is increased by a term representing the
probability of reaching sj from si through s. Such a term is, roughly, the sum
of the probabilities of all the possible paths, that can be computed by iterating
on the length k of a path:

∞∑

k=0

pap
k
cpb =

papb
1− pc

(5)

The state elimination terminates when the model is composed of the initial state
s0 directly connected to each of the target states. Each of these transitions will
be labeled by an SRE representing the probability of reaching the specific tar-
get state. The value of Pr(true U φ) is just the sum of all those SRE. As it
can be guessed from Figure 2, an SRE is essentially a rational expression, whose



Probabilistic Verification at Runtime for Self-Adaptive Systems 43

Fig. 2. SRE synthesis algorithm

numerator and denominator are polynomials having as variable the labels of
DTMC transitions.

In order to generalize the approach to deal with transient target states too,
it suffices to pre-process the DTMC by making all the target states absorbing.
Indeed, a formula (true U φ) is satisfied by a path as soon as it firstly reaches any
of the states in which φ holds, hence its satisfiability is not affected if the states
in which φ holds are made absorbing. Turning a transient state into absorbing
could make other states unreachable from s0; such unreachable states have to
be pruned out in order to regain a well-formed model.

In [18], Daws’ algorithm has been implemented in the tool PARAM. An effec-
tive improvement provided by PARAM to the original algorithm of [11] consists
in replacing the transition labels corresponding to numeric transitions by their
actual value after each state elimination. This allows to exploit arithmetic simpli-
fication of the intermediate SREs that can significantly speed-up both memory
consumption and subsequent mathematical operations due to state eliminations,
as shown in [18].

The result of executing PARAM is a closed rational expression having as
variable only the symbolic parameters of the model, since numeric ones have
been already evaluated by the tool. Such an expression is then evaluated at
runtime.

In our example, requirementR1 is formalized through a flat reachability prop-
erty. Its parametric verification a design-time produces the following expression:

Pr(true U s = 8) = 1− y − 0.7 · w + 0.7 · x · w + 0.144375 · z · k + 0.7 · y · w
+ −0.7 · y · x · w − 0.144375 · k + 0.144375 · y · k

−0.144375 · y · z · k
When the actual values of parameters x, y, w, z, and k become available at run-
time, it would suffice to substitute them in the previous expression to obtain
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the probability of reaching state 8. If the obtained result is ≥ 0.999, then R1 is
satisfied. Otherwise it is not.

Cumulative Rewards Analysis. A second major contribution of PARAM
with respect to Daws’ algorithm is its extension to deal with D-MRMs. Given as
input a D-MRM D and a set of target states T , PARAM is able to compute the
expected cumulative reward until a state in T is reached. The precise semantic
of this measure has been provided in Equation (4).

The algorithm is again based on the state elimination procedure. Considering
the pairs (si, sj) of direct predecessors and direct successors of a state s, respec-
tively, the goal is to obtain the transition reward ι(si, sj) for the new transition
from si to sj after eliminating s. A step of this state elimination procedure is
described in Figure 3, where a label p/r represents either the transition prob-
ability and the transition reward ι or the state name and its state reward ρ,
respectively.

Fig. 3. State elimination for D-MRM

The value of pe is computed as for reachability analysis as papb

1−pc
, while the

value of re can be computed as the sum of the reward accumulated over all the
possible paths from si to sj through s as (with respect to the path length k):
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re =

∞∑

k=0

(pap
k
cpb) · (ι(si, s) + ρ(s) + (ρ(s) + ι(s, s)) · k + ι(s, sj))

= ι(si, s) + ρ(s) + ι(s, sj) +
pc

1− pc
(ρ(s) + ι(s, s)) (6)

The proof of correctness of the algorithms in this section can be found in [18].
As for reachability analysis, the resulting expected accumulated reward is

again a rational expression with numerator and denominator being polynomials
having as variables the symbolic parameters of the D-MRM, whether transition
probabilities or rewards. The evaluation of such an expression at runtime requires
just to replace the parameters with the numeric values coming from monitors,
providing a far more efficient verification than model-checking.

In our example, R6 requires the computation of an expected cumulated cost
of a transaction. Its parametric analysis at design time produces the following
expression:

XF (7≤s≤9) = 0.03810625+ 0.028 · y · x− 0.028 · x− 0.03810625 · y
−0.01010625 · z + 0.01010625 · y · z

Design-Time Complexity. SRE can easily become very long and costly to
manipulate. Indeed, analogously to regular expressions on finite state automata,
the size of a SRE can grow as nΘ(logn), where n is the number of states of the
DTMC [16]. Such long expressions may take time to be manipulated at each
state elimination step and may require a high memory consumption when the
size of the model growths. The number of state elimination steps are in the
order of Θ(n3), as it can be easily proved [18], but the actual time each of them
takes heavily depends on the complexity of the mathematical operation to be
perfomed to combine SREs.

Though in the worst case nΘ(logn) constitutes a complexity lower bound for
computing SREs, in realistic software models most of the transitions can be as-
sumed to be labeled by numeric values. Hence, by exploiting this assumption,
instead of computing the full SRE taking transition labels as literals, PARAM
intertwines the state elimination algorithm and the partial evaluation of numeri-
cal terms appearing in SREs. In other terms, at each step of the state elimination
algorithm, the numeric labels are treated as numbers, thus allowing for the arith-
metic simplification of intermediate results.

This induces a significant saving in the size of intermediate rational function
representations, and hence an improvement in the actual computation time, as
empirically shown in [18].

As a final remark, notice that the synthesis of the final rational expression
may go through a large number of intermediate steps. In order to avoid any loss
of accuracy, PARAM uses infinite precision rational numbers instead of double
precision.
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3.2 Linear Algebra Approaches

As shown in the previous section, PARAM is able to deal with reachability for-
mulae and expected accumulated rewards, which are two subset of the properties
that can be expressed in (R-)PCTL, though the most commonly used.

In this section we illustrate an approach, named WorkingMom (WM), able
to deal with the entire (R-)PCTL to obtain a set of parametric closed formula
through the use of linear algebraic algorithms. We will firstly show how to com-
pute flat reachability formulae and then generalize the approach to cover the
entire PCTL. Afterwards, we will present the algorithms to deal with the re-
ward fragment of R-PCTL.

Flat Reachability Analysis. We start by focusing on flat reachability formu-
lae for absorbing states. Recalling the structure of the transition matrix for an
absorbing DTMC given in Equation (1), the matrix I−Q (where I is the identity
matrix of the same size of Q) has an inverse N and N = I+Q+Q2+Q3+ · · · =∑∞

i=0Q
i [29]. Recall from Section 2.1 that an entry qij of the matrixQ represents

the probability of moving from the transient state si to the transient state sj in
exactly one time step. The entry nij of N represents the number of times the
Markov process is expected to visit the transient state sj before being absorbed,
given that it started from state si. Notice that a Markov process is considered
absorbed when it reaches any of the absorbing states. Notice that Qn → 0 when
n → ∞ (as discussed in Section 2.1), thus after enough time the process will
always eventually be absorbed, no matter which state it started in.

Every time the process accesses a transient state si, it has a probability of
being absorbed in the next time step in the absorbing state sj given by the entry
rij of the matrix R. Generalizing to all the pairs (si, sj) where si is transient
and sj is absorbing, we can get the absorbing distribution B of the DTMC as:

B = N × R

An entry bij of the matrix B represents the probability for the process of being
eventually absorbed in sj (in any number of states), given that it started from
si. B is by construction a t× r matrix, where t is the number of transient states
and r the number of absorbing ones.

Given a DTMC D and a set T of target absorbing states, the probability of
reaching T from the initial state s0 can be computed as:

Pr(true U T ) =
∑

sj∈T

b0j (7)

The goal of design-time pre-computation is to compute the value of Equation (7).
Depending on the size of the system and the availability of a parallel execution

environment the computation of the matrix B can be performed in different
ways. In [12] we introduced a computational approach entirely based on matrix
operations that can be straightforwardly suitable for parallelization. In this paper
we will instead focus on how to efficiently compute matrix B in a sequential
environment.
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An entry bij can be computed, by definition of matrix product, as:

bij =
∑

k=0..t−1

nik · rkj (8)

Entries rij are readily available from matrix R. Entries nik belongs instead to
the i-th row of matrix N , that is the inverse of I −Q.

By recalling the definition of inverse of a generic square matrix A, we know
that A ·A−1 = I. Thus, if we are interested in computing the i-th column of the
matrix A−1 we can simply solve the following linear system of equations:

A · v = ei (9)

where ei is the i-th column of the identity matrix, i.e. a column vector having
all zero elements but for the i-th that is 1, and v is the unknown vector corre-
sponding to the i-th column of A−1. Since in Equation (8) we are required to
know the entries of the i-th row of the matrix N = (I −Q)−1, we can exploit a
property of the transpose of invertible matrices, namely (A−1)T = (AT )−1), to
compute those entries.

Indeed, we are interested to the i-th row of (I − Q)−1, which is equal to
the i-th column of ((I − Q)−1)T ), which is in turn equal to the i-th column of
((I −Q)T )−1, by the just mentioned property.

The problem of calculating the a row of the matrix N and, through (8), of B
can be reduced to the solution of a linear system of equations. This solution may
take a long time to be performed by using out of the shelf algorithms. Though the
peculiarities of many DTMC classes, such as the models derived from software
artifacts, can be effectively exploited to improve the design time efficiency, as it
will be later discussed in Section 3.2.

The solution of (8) leads again to the generation of a closed rational expres-
sion, equivalent to the one computed by means of PARAM. This expression can
then be brought at runtime for efficient evaluation as soon as monitors provide
the actual values for symbolic parameters.

Analogously to Section 3.1, in order to generalize the procedure to the reach-
ability of transient states it is sufficient to pre-process the model by making the
target transient states absorbing. As already said, this operation may make some
of the states of the DTMC unreachable from s0. The unreachable states have to
be pruned to obtain a well-formed model.

Extending to Entire PCTL. Flat reachability is the most widely used type of
PCTL properties [17]. Nonetheless there are relevant requirements that cannot
be easily expressed in terms of flat reachability formulae.

In this section we will incrementally show how to handle the entire PCTL by
means of the WM approach. We will start by extending the reachability approach
to the case of generic flat until formulae P��p (φ1 U φ2), where φ1 is no longer
constrained to be equal to true. Afterward we will present algorithms to verify
the bounded operators X and U≤t. Finally we will relax the constraint for the
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inner state formulae to be flat and allow the nesting of temporal operators, thus
covering the entire PCTL.

Flat Until Formulae. The core idea for analyzing generic flat until formulae is
to reduce the problem to the analysis of equivalent reachability formulae, and
then apply the solution procedures already seen.

Starting from a DTMC D and a flat until formula P��p (φ1 U φ2), we will
construct a new DTMC D̄ and a flat reachability formula upon D̄ equivalent to
the desired property of D. In order to construct D̄ the following procedure has
to be applied on D:

1. Add two absorbing states sgoal and sstop
2. For all the states where φ2 holds, remove all the outgoing transitions and

put a single one (with probability 1) toward sgoal
3. For all the states where ¬(φ1∨φ2) holds, remove all the outgoing transitions

and put a single one toward sstop.

Computing on D̄ the flat reachability property P��p (true U sgoal) provides the
same result as computing the flat until probability of P��p (φ1 U φ2).

The rationale behind the previous procedure is that a path satisfying (φ1 U φ2)
cannot pass from any state where neither φ1 nor φ2 hold (point 2) and has to
eventually reach a state where φ2 holds (point 1). At this point it is possible
to apply the same mathematical machinery previously introduced for flat reach-
ability of absorbing states, namely the solution of Equation (8) for the entry
b0 sgoal .

As a final remark, notice that flat reachability formulae are special cases of
flat until ones. They have been presented separately for the sake of simplifying
the exposition.

Flat Next and Bounded Until. Let us focus now on the parametric analysis of
Next and Bounded Until flat formulae.

The set of paths to be considered in order to estimate the probability of a path
formula X φ in a state si is composed by all the 1-step long paths originating
in si. Under the hypothesis of flat formulae, the truth of φ can be computed
once for all at design time. As we stated in Section 2.1, the transition matrix
P contains the probability of moving from a state to another in a single step.
Hence, to compute the probability of reaching, from a state si, a state where φ
holds in 1 step, the following procedure is in place:

Pr(X φ1) =
∑

sj |=φ1

pij (10)

For example, applying (10) in state s3 to verify the requirement R5 of our
example leads, as it should be easy to guess, to 1− x .

A similar procedure applies to the case bounded flat until. Indeed, each path
originating in si and satisfying φ1U

≤tφ2, at a certain step k ≤ t will reach a
state sj where φ2 holds, and for all the previous steps φ1 has to hold. If we
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exploit the same construction used in the case of flat until formulae to construct
the modified DTMC D̄, each of these paths corresponds to a path in D̄ that
exactly at time step k+1 reaches the state sgoal, by construction. Being sgoal an
absorbing state it is non going to be left by the path. Hence, we can conclude
that any path of D satisfying φ1U

≤tφ2 corresponds to a path in D̄ being at time
t+ 1 in state sgoal.

The probability distribution of the states reached by a DTMC after exactly
(t+ 1) time steps can be computed by elevating the transition matrix P to the
t+ 1-th power:

Pr(φ1U
≤tφ2) = (P t+1)s0sgoal (11)

Nested Formulae. We have so far restricted the analysis of PCTL formulae to
what we called the flat fragment, that is, the set of formulae where the argu-
ments of a path operator are boolean combinations of atomic propositions only.
The peculiarity of flat formulae is that it is always possible at design time to
identify the states where a state formula φ holds, and thus generate a parametric
expression by means of the procedures previously exposed.

In the case of nested formulae, that is formulae P��p (Ψ) where at least one
sub-formula of ψ is again a path formula, some information needed to compute
the desired parametric expression may only become available at runtime. For
example, the set of states satisfying R1 will be known only at runtime, because
it depends on the actual values assigned to the model parameters. If for example
such a state formula would appear as the right-hand operand of an until operator,
it would not be possible to apply at design time the procedures exposed so far,
since it would not be possible to identify the target states. Indeed, to evaluate
a formula with nested P��p (·) operators, so far we needed to know in which
states its sub-formulae are satisfied, and this, in general, depends on the value
of the model parameters. The same consideration can be applied recursively to
sub-formulae of a sub-formula, until we reach a flat one that can be directly
analyzed.

To deal with this issue we want to delay at runtime the evaluation of a nested
formula, when all the knowledge concerning its sub-formulae has been gathered,
without loosing the benefits of parametric verification.

Let us focus on until formulae. The solution previously provided is based
on the construction of the modified DTMC D̄. Such a construction requires to
disconnect certain states from their successors and to connect them to either sgoal
or sstop. Then, for what has been previously explained, the resulting parametric
expression would be the entry bs0sgoal of the matrix B computed as in (8) on
D̄. In order to delay at runtime the decision about the connection of a state to
sgoal or to sstop, all is needed is the addition of three more parameters per state.
The first will be a coefficient mi that multiplies all the elements pij of D. The
second and the third are, respectively, two terms aigoal and aistop to be put in
correspondence of the entries psisgoal and psisstop of the matrix P of D̄. The three
additional parameters can assume values 0 or 1, and their intuitive purpose is
the following: assigning 0 to a parameter mi disconnects state si from all its
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successors; assigning 1 to either aigoal or aistop connects state si to state sgoal or
sstop, respectively.

Computing bs0sgoal at design time will lead to a parametric expression hav-
ing as variables both the model parameters and the additional parameters mi,
aigoal, and aistop for each state si. At runtime, when information about the
sub-formulae of a nested formula becomes available, the value of the additional
parameters can be set in order to adapt the expression to reflect the convenient
transformation of D̄. Applying this procedure recursively on nested formulae
allows to keep the benefits of parametric analysis, though it would require at
most as many evaluations as the nesting depth of the formulae. Assuming most
of the nested formulae to have just a few nesting levels, the impact on runtime
complexity would still be limited. Another drawback in parametric analysis of
nested formulae is that the resulting mathematical expressions could be longer
than in the case of flat formulae due to the presence of more parameters, but the
evaluation time is still not comparable with the execution of a model-checking
routine for a system large enough.

Finally, the computation of next and bounded until nested formulae follows
the same principle described for until ones, and they have to be computed on
the model instrumented with the additional parameters mi, aigoal, and aistop.
The adaptation of the mathematical procedure for the Next operator is a trivial
exercise.

Reward Analysis. Equations (2), (3), and (4) of Section 2.4 formalize the
semantics of the three specification patterns for reward formulae defined for R-
PCTL. In this section we will provide mathematical algorithms for the analysis
of each of them.

The following mathematical procedures are based on the notion of expected
reward along a set of paths originating from a state si. In Section 2.4 this value
has been intuitively defined as the sum of the rewards cumulated along each of
those paths, weighted by the probability for that path to be taken. Since such a
sum may contain infinite terms and could be unfeasible to compute directly, we
need a different procedure more suitable for an efficient mathematical solution.
Exploiting the Markov property and the linearity of the expected value [29], the
computation of the expected reward for a (non empty) path originating in si
can be computed as the sum of the state reward ρ(si) gained in state si and the
expected reward to be gained in each of the possible successors of si, weighted by
the probability of moving toward it. Applying this observation to all the states
S of a D-MRM leads to the following linear system of equations:

ri = ρ(si) +
∑

sj∈S

pij · (ι(si, sj) + rj) (12)

where ri is the expected reward over all the paths originating in si.
In order to simplify the exposition, we will refer in this section only to flat

R-PCTL formulae, meaning that in path formulae φ, φ may not contain any of
the occurrence of the modal operators P��p (·) and R��r (·). The extension to the
nested fragment of R-PCTL can be achieved by instrumenting the D-MRM with
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additional parameters as it has been done previously for nested PCTL formulae.
As further simplifying assumption, in this Section we will focus on state rewards
only. Transition rewards can always be mapped into state rewards of a modified
D-MRM automatically.

Let us start with the parametric analysis of formulae R��r (φ). Recalling (4)
and (12), we can define the computation of the expected cumulated rewards over
all the paths satisfying φ and originating in a state si as the solution of the
following linear system of equations:

ri =

⎧
⎨

⎩

0 if si |= Φ
∞ if si is absorbing and si � Φ

ρ(si) +
∑

sj∈S pij · rj otherwise
(13)

The rational behind (13) is intuitive: a state si satisfying φmarks the satisfaction
of the path formula φ and thus the end of the reward accumulation, on the other
hand, an absorbing state that does not satisfy φ marks a path that will never
satisfy φ and thus contribute to the accumulation of rewards as an infinite cost,
as from the definition in (4).

Notice that the solution of (13) leads to a polynomial expression having as
variables the model parameters, whether they label transition probabilities or
state rewards. For example, the parametric verification of requirementsR7 leads
to the following expression (notice that in this case we are considering as state
reward the average execution time):

XF (7≤s≤9) = 0.21734375+ 0.084 · y · x− 0.084 · x− 0.21734375 · y
−0.02165625 · z + 0.02165625 · y · z

Concerning formulae R��r (I=k), from (2) it can be computed as the sum of
the rewards of every state reached in exactly k time steps, weighted by the
probability of reaching it. Recall that the probability of reaching a state sj from
a state si in exactly k time steps is the entry (pk)ij of the matrix P k. Let us
define the column vector ρ̄ = [ρ(s0), ρ(s1), ρ(s2), . . . ]. The expected reward X=k

can be computed for all the paths originating from a state si by the following
equation:

XI=k = P k · ρ̄
∣
∣
∣
∣
i

(14)

where |i indicates the i-th element of the resulting vector.
Finally, formulae R��r (C≤k) require to compute the cumulated reward along

all possible paths up to the k-th step. For the previous consideration, the ex-
pected reward gained at the j-th step is exactly P k · ρ̄. Thus, to compute the
cumulated reward up to the k-th step with k ≥ 1 it is possible to apply the
following equation:
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XC≤k =
k−1∑
i=0

P i · ρ̄
∥
∥
∥
∥
0

(15)

When k = 0, XC≤k = 0 by definition (3).
This section concludes the exposition of the mathematical machinery used

within the WM approach. Most of the mathematical procedures exposed so
far relies on the ability to efficiently and accurately solve a linear system of
equations. In the next section we will briefly sketch the basics of the solution
strategy currently used in the WM approach.

Design-Time Complexity. Solving linear systems of equations is a well stud-
ied mathematical problem, even though most of the computational approaches
concern numerical solution and cannot deal with symbolic parameters [28]. The
most popular algorithms to solve linear equation systems embedded in proba-
bilistic model-checkers are iterative ones [30,28], which can efficiently solve even
large systems with the desired precision in the final result and without requiring
a large amount of memory.

In the WM approach it is no possible to adopt the same strategy because
iterative methods do not deal conveniently with symbolic parameters. Indeed,
the presence of unknown parameters makes hard to assess the convergence of
the iterative algorithm. For this reason we adopted a direct method to solve
the system. Direct methods have the additional benefit of not loosing precision
in the results, and both parallel and sequential algorithms have been provided.
More specifically we are interested in direct methods for the solution of sparse
linear systems [10] because a Markov model for a software system is likely to
have only a few non-zero entries for each row of the matrix Q, since a component
or a task are usually designed to directly interact with only a few counterparts.

Sparsity of the linear system can be exploited to obtain a faster computation.
Since [13], we implemented a solver based on structured Gaussian elimination
and Markowitz pivoting [10]. Structured Gaussian elimination is a variation of
the widely used method to triangularize linear systems which allows to reduce
the solution of a large sparse equation system to the solution of a small dense
one. This collapse can significantly reduce the size of the system to be actually
solved. A core element of structured Gaussian elimination is the strategy used
to select the order in which elements of the original system will be eliminated.
In fact, each elimination step may reduce the sparsity of the obtained system,
reducing in turn the global effectiveness of the method. This problem is known
as fill-in. In order to reduce the fill-in during the elimination steps we adopted
Markovitz pivoting as a selection strategy of the next element to be eliminated.
Other strategies can be more suitable for specific cases but their discussion as
well as mathematical details concerning structured Gaussian elimination and
Markovitz pivoting are beyond the scope of this paper. The interested reader
may refer for example to [10].
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Finally, in order to avoid any loss of accuracy during intermediate computation
steps, the WM solver uses infinite precision rational numbers for all the numeric
values appearing in the models. All the mathematical procedures for the WM
approach have been implemented in Maple 153.

4 Empirical Evaluation

In this section we provide an empirical evaluation of the tools presented in Sec-
tion 3. For the verification we focus on the propertyR��r (Fφ), where φ identifies
the unique absorbing target state defined in all the test cases. We chose this prop-
erty since it embeds a reachability formula that is both the most widely used in
practical verification and the most complex to compute for the two tools. We are
interested in evaluating the execution time of just the design time phase. The
runtime verification, being just the evaluation of polynomial forms, takes a very
short time even for very large parametric formulae, as discussed in [12].

We will provide a first comparative study of the two approaches with respect
to two dimensions of the problem, namely the number of states and the number of
symbolic parameters. Though this cannot be considered a complete comparison
of the approaches, it provides a glimpse of how the their current implementations
scale with respect to the two dimensions investigated and gives to the reader an
insight about the actual computation time needed for parametric analysis of
D-MRM models.

Beside PARAM and WM we added a graph from a modified WM where the
linear system of equation is solved by means of the built-in solver of Maple
15. This would provide an evidence of the effectiveness of the chosen solution
strategy for the actual WM.

All the models used for the tests are well-formed and generated randomly.
Since we are interested in comparing the efficiency of verification algorithms, we
disabled the pre-processing procedure implementing state-reduction algorithms
for D-MRM that are enabled by default in PARAM. The same pre-processing
could be implemented also for the WM, but is out of of the scope of this paper.

The execution environment is a Dual Intel(R) Xeon(R) CPU E5530 @ 2.40
GHz with 8Gb of ram, equipped with GNU Linux Ubuntu server 11.04 64bit.
All the tests considered in this section did not overrun the available memory.

Due to the high variability in the actual execution time, we reported the
average execution time with a thick black line and the maximum measured
execution time in a dashed thin line.

Figure 4 reports the execution time of the two tools with respect to the number
of states. All the samples have exactly 5 outgoing transitions from each transient
state. There are 5 parametric transitions and 2 parametric rewards for a total
of 7 symbolic parameters. The sample set is composed by 50 samples.

As shown in Figure 4(a), the execution time slightly grows with respect to the
number of states for PARAM. Nonetheless there is a strong variability in the
average execution time due to the impact on the solver of the specific topology

3 http://www.maplesoft.com

http://www.maplesoft.com
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of each case. This factor will affect most of the tests proposed in this section
and need further investigations to conveniently characterize input model with
respect to the topology of their D-MRM. A main difference between PARAM
and the approaches based on linear algebra is the order of magnitude of the
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execution times, being in the first case up to 104 time higher. There are instead
no significant differences between the Maple built-in solver and the WM.

Figure 5 shows the execution time of the three solver when the number of
parameters changes. All the models have exactly 100 states, with 5 outgoing
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transitions per state. The parameters are distributed between transitions prob-
ability and rewards, without duplication of the same symbol.

We limited the number of parameters to 10 because of the long execution time
required by PARAM, as shown in Figure 5(a). In this figure, it is clear that the
execution time grows sharply with the number of parameters, taking more than
2h to process models with just 10 symbolic parameters. Maple built-in solver
provides a quite reasonable performance, taking no more the 0.2s in our tests,
while the WM is slightly faster than this.

When the number of parameters growths up to 45, the benefits of the WM
solution strategy become more visible (Fig. 6). Indeed, the built-in solver of
Maple reaches a maximum execution time of about 3h, while the WM took no
more than 7 minutes in the worst case. This last analysis has been performed
on 200 randomly generated test cases, 50 per observation point.

Concluding, besides a global glimpse of what could be the actual execution
time of state of the art tools for parametric verification of Markov models, the
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tests in this section show that the number of states and the number of parameters
do not satisfactorily characterize the performance of the solver. Indeed there is
a relevant distance from the maximum and the average execution time as a sign
of the high variance in the measures. This suggests that specific topologies my
affect, positively or negatively, the performance of the solver so far implemented,
and need further investigation.

5 Conclusions and Future Work

Evolving systems require efficient verification procedure in order to timely
reveal violations of their requirements. Many quantitative attribute related to
the quality of service provided by the system heavily depends on environmental
factors, such as the usage scenario and the interactions with external compo-
nents. Those environmental factors are often out from our control and sub-
ject to unpredictable changes. A probabilistic framework could be a convenient
mean to deal with this uncertainty and the availability of probabilistic model-
checkers allows one to formalize and verify quantitative requirements in a fully
automatic way.

Nonetheless, re-running a model-checker after any detected change may ham-
per the verification performance, making the system unresponsive or unable to
identify the problem on time. Parametric model-checking shown to be an effec-
tive replacement for evolvable systems since it allows to partially evaluate the
requirements at design time producing closed mathematical formulae quickly
evaluable at runtime. The main burden of parametric model checking consists in
design time computation that can be quite expensive in terms of computational
time. Although the time is not supposed to be a too strict issue during design,
the availability of efficient tools could speed up the entire process and provide a
better interaction with the system designers.

The state of the art parametric verifiers provide reasonable performances for
design-time computation, though their execution time strongly depends on the
topology of each input model. This dependency has to be further investigated
in order to select for each input the most efficient methodology.

Future steps in probabilistic parametric verification should focus on scalability
issues that may arise in case of large models, as well as on supporting more
complex models and properties, such as continuous time Markov chains that are
widely used for software performance analysis. A further limitation of current
tools is that they do not allow changes in the structure of the model that are not
expressible as an assignment to its parameters. Overcoming this limitation could
open the way to a significantly broader application in the field of self-adaptive
systems.
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