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Abstract. In this paper we discuss the assurance of self-adaptive con-
trollers for the Cloud, and we propose a taxonomy of controllers based
on the supported assurance level. Self-adaptive systems for the Cloud
are commonly built by means of controllers that aim to guarantee the
required quality of service while containing costs, through a careful allo-
cation of resources. Controllers determine the allocation of resources at
runtime, based on the inputs and the status of the system, and referring
to some knowledge, usually represented as adaptation rules or models.
Assuring the reliability of self-adaptive controllers account to assuring
that the adaptation rules or models represent well the system evolution.
In this paper, we identify different categories of control models based on
the assurance approaches. We introduce two main dimensions that char-
acterize control models. The dimensions refer to the flexibility and scope
of the system adaptability, and to the accuracy of the assurance results.
We group control models in three main classes that depend on the kind
of supported assurance that may be checked either at design or runtime.
Controllers that support assurance of the control models at design time
privilege reliability over adaptability. They usually represent the system
at a high granularity level and come with high costs. Controllers that
support assurance of the control models at runtime privilege adaptabil-
ity over reliability. They represent the system at a finer granularity level
and come with reduced costs. Controllers that combine different models
may balance verification at design and runtime and find a good trade off
between reliability, adaptability, granularity and costs.

1 Introduction

The Cloud paradigm allows for a more efficient use of computing resources, by
decoupling software applications from their execution environment. The Cloud
infrastructure disconnects applications from the execution environments by in-
troducing a stack of abstraction layers that isolate the execution infrastructure
—Infrastructure as a Service (IaaS)- the overall platform —Platform as a Service
(PaaS)— and the provided services —Software as a Service (SaaS)—[1].

In this chapter, we focus on the IaaS layer that takes care of allocating re-
sources to applications. Applications shall guarantee the qualities specified by
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their service level agreements (SLA), which usually associate penalties to SLA
violations. At the same time resources come with costs, and providers aim to
minimize costs, in order to increase competitiveness and profit [19]. To cope
with an unpredictable set of combinations of application requests, service level
agreements and usage patterns, the IaaS layers implement self-adaptive con-
trollers, that is, controllers that adapt to different scenarios of applications to
be executed, service requirements and traffic conditions.

1.1 An Example of Dynamic Resource Provisioning in the Cloud

To decide how to efficiently allocate resources, self-adaptive controllers refer to
some knowledge that is provided in the form of either rules or models. Self-
adaptive controllers use rules or models to evaluate different strategies, and
chose the best possible tactic to cope with a degrading quality of service in the
presence of varying traffic conditions, while avoiding indirect interferences be-
tween applications. Dually, self-adaptive controllers use rules or models to chose
the right strategy to cope with increasing costs due to overallocated resources
when traffic and application conditions change.

We exemplify the problem of devising controllers for dynamic resource al-
location in the Cloud, by reporting a brief experience in managing an elastic
application based on the Sun Grid Engine (SGE) middleware. SGE follows a
standard Grid computing architecture with a singleton master node and a set of
executor nodes: The master receives jobs that are dispatched to the executors
that run them. The middleware has been deployed in a Cloud infrastructure,
where virtual execution nodes can be allocated dynamically.

In Figure[Il we report the results of different runs of the system subject to an
identical workload but different controllers. The workload lasts thirty minutes
and fluctuates in time. It consists of video conversion jobs that execute in six
seconds on average. The SLA of the application consists of a single SLO over
the response time, and specifies that the system must complete the jobs in less
than two minutes in average. The goal of the controller is to dynamically adjust
the number of executor VMs to respect the SLO while minimizing costs that
depend on the number of used VMs.

The plot depicts the workload in terms of requests per period, number of
active executors, number of jobs in the system, and measured response time for
two different runs. The continuous red line represents the system when controlled
by a self-adaptive Kriging-based controller as described in [27]. We can see that
the number of executors changes over time and the response time is always below
the 2-minute threshold, marked with the dotted blue line in the figure.

The dashed green line represents the behaviour of a state-of-the-art static rule-
based controller as presented by Rodero-Merino et al. in [22]. In the experiment,
we set the scaling up rule threshold for the queue length to 15 jobs per executor:
each time the ratio between the number of jobs in the queue divided by the
number of active executors exceeds this threshold, the system spawns a new
executor VM instance. We set the scaling down threshold to 5 jobs per executor.
We can see that SLA is violated in correspondence of the second peak in the
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Fig. 1. Configuration, queue, and response time evolution for the SGE using Kriging-
based and rule-based control

workload. This suggests that, albeit the rule-based system seems to scale up
quickly enough in correspondence of the first workload peak, although using
more resources in comparison to the Kriging-based controller, it does not cope
well wit the second peak.

The example gives an intuitive idea of the type of actions and decisions that
a cloud controller is required to take. The example is deliberately simple, since
it has only one controlled variable, i.e., the number of executor nodes, and con-
siders a single type of request. Typical Cloud-based applications are much more
complex, since they combine different types of components and services, and
hence have a large configuration space. Moreover, the range of served requests
typically involves different sets of components causing possible software or hard-
ware contentions that eventually impact on the performance of the applica-
tions. To this end, the application workload miz, that is the number and type of
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incoming requests, typically has a considerable effect on the application response
time.

The assurance of self-adaptive controllers requires examining a potentially un-
limited set of unpredictable configurations that arise when the system adapts to
different execution conditions. While designing self-adaptive controllers is a hard
and challenging job, the assurance of self-adaptive controllers is an even harder
task, since assurance techniques must cope with infinitely many unpredictable
configurations.

In this chapter, we identify two main dimensions of this problem, the tar-
get levels of assurance and adaptability, and we propose a classification of self
adaptive controllers induced by these two dimensions. We argue that rules and
models defined at design time privilege assurance over adaptability, being stat-
ically verifiable, but incapable of dealing with situations not foreseen at design
time. On the other hand, rules and models that can change at runtime privilege
adaptability over assurance, being able to deal with unpredictable situations,
but verifiable only under certain conditions. We identify combinations of design
and runtime elements that reach a good compromise between assurance and
adaptability, and we distinguish some outliers that come from particular choices
Or uses.

This chapter is organized as follows. Section 2] discusses the many dimensions
of the problem and introduces an assurance-base taxonomy for self-adaptive
controllers. Section Bl overviews the main approaches based on rules or models
defined at design time. Section Ml presents the main approaches where models
and rules are adapted at runtime. Section [0l discusses combinations of different
kinds of approaches. Section [0l indicates the main research directions in the field.

2 Assurance and Adaptability

When assigning resources to applications, the Cloud shall solve the dilemma
of allocating as many resources as possible, to reduce the violations of the ser-
vice level agreement, while allocating as few resources as possible, to increase
the profit and optimize the resource usage. The variety of available resources
with different characteristics and costs, the variability and unpredictability of
workload conditions, and the different effects of various configurations of re-
source allocations make the problem extremely hard if not impossible to solve
algorithmically at design time. Self-adaptive controllers aim to identify suitable
allocations of resources at runtime, based on some knowledge encapsulated in
the controllers in the form of rules or models.

The problem of building efficient self-adaptive controllers has been the tar-
get of several research projects, which resulted in many approaches that differ
for the models used to capture the knowledge of the system and for the strate-
gies to identify a suitable configuration while reacting to changes of workload
conditions. The models of system behavior that are used in self-adaptive con-
trollers span from simple rules to complex analytic or surrogate models. Some
approaches require models to be defined and tuned at design time, others define
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and tune models at runtime, depending on the nature of the models, the com-
plexity of the system and the reliability requirements of the controllers. Rules
and analytic models, like queuing networks, must be defined and tuned at design
time and hardly adapt to unpredictable configurations, while surrogate models,
like Kriging models, may be defined and tuned at runtime and can adapt to
emerging scenarios. Defining proper analytic models for complex systems may
require a considerable effort, but their reliability can be assured analytically or
experimentally before deployment. Surrogate models can be tuned dynamically
according to the system behavior either at testing or runtime independently from
the complexity of the modeled system, but their reliability can be assured only
on the basis of some hypothesis on the behavior of the system that may not be
statically verifiable.

In this paper we argue that there is no best model for self-adaptive con-
trollers, rather different models can be used for different purposes and under
different conditions. We followed a systematic process to identify a set of repre-
sentative approaches in literature that we use here as a reference. The first step
of the process consisted of surveying the papers published in the main journals
(ACM and IEEE Transactions) and conferences (ICAC, ICSE, Cloud, HotCloud,
ACDC, GRID, ICDCS, ASPLOS) relevant for Cloud-computing and distributed
or adaptive systems, and identifying the main proposals to deal with scaling or
resource-provisioning controllers. Among these approaches, we identified a set of
common dimensions (for example, the type of models used, the control logic, the
artificial intelligence technique) that we used for clustering the different work.
For each cluster we identified a representative by choosing the approach that is
more directly applicable to cloud-computing controllers and that is supported
by experimental results, and we use the representative to indicate the set of
proposals.

We propose a taxonomy of controllers built along two main axes: assurance
and adaptability. Assurance refers to the possibility of measuring the predictabil-
ity of the runtime behavior, and thus to the level of reliability of the system.
Adaptability refers to the capability of the model to cope with changing and
evolving configurations, and thus to the level of flexibility and learning capa-
bilities of the system. We chose these two criteria since they provide a clear
representation of the main trade-off one has to face when choosing a controller
approach. On one hand it is desirable for a controller to be adaptable, to com-
plement the information available at design time with monitoring data from the
running system, to adapt to the newly gathered information, and to continuously
learn the most appropriate control behavior. On the other hand, a continuously
adapted control behavior might practically diverge from the control desired at
design time violating some important assumptions or requirements and providing
no formal guarantees on its properties.

Assurance. We estimated the assurance level of the different approaches by
considering the formality of the control model, the hypothesis on the system
behavior and the correspondence between the system and the model:
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Fig. 2. A taxonomy of approaches for self-adaptive controllers

Formality of the Control Model. This accounts for the amount of formal
guarantees that the approach gives on the model or control. For instance, in
traditional control theory, under proper assumptions, the controlled system
can be guaranteed to converge to an equilibrium point within a given range
of oscillations.

Hypothesis on the System Behavior. This accounts for the set of assump-
tions on the system behavior that need to be valid for the approach to
correctly model the system. For instance, control theory assumes system lin-
earity, while Kriging models assume a certain degree of smoothness of the
modeled system.

Correspondence between the System and the Model. This accounts for
the (timely) coherence between the current state of the system and its run-
time models.

Adaptability. We estimated the adaptability of the different approaches by
considering three main aspects:
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Support for Adaptation. This accounts for the amount of details of the model
that are fixed at design-time, the amount of details that can be partially
adapted or extended by combining additional models (hybrid), and the
amount of detailed that the controller can learn from system monitoring
data collected at runtime.

Degree of Adaptation. This accounts for the number of parameters and the
degrees of freedom that can be changed in a model, spanning from fixed mod-
els, to linear-, polynomial-, regression models all the way to non-parametric
models (for example, splines).

Frequency of Adaptation. This accounts for the costs of retraining in terms
of speed and frequency, and measures how well a controller can use new
monitoring information.

Figure 2 illustrates the two-dimensional space induced by the metrics we chose
for classification. The adaptability axis is partitioned in three sections that corre-
spond to approaches that are implemented at design time and have no provision
for being updated, hybrid approaches that typically combine several models with
limited adaptation capability, and solutions supporting runtime update of the
control logic / models, respectively. Among these partitions, controllers with
higher degrees of adaptation, or higher frequency of adaptation are moved to
the right. The assurance axis is partitioned in two sections corresponding to the
approaches that provide formal guarantees on the controller behavior, and the
one that do not come with formal proof mechanisms.

Figure [2] presents a dispersion graph of the approaches organized along the
two dimensions. In the figure, the approaches are indicated by means of the first
author of the paper that bet represents the approach, the publication venue,
and the reference number. We specify the nature of the proposed approaches by
means of symbols that are explained in the labels.

The regions roughly identified in the figure emphasize easily identifiable sim-
ilarities in the considered approaches which can be coarsely classified as being
either analytic, black box, rule based, or hybrid.

Analytic. Analytic approaches tend to privilege reliability over adaptability.
They rely on models that can be statically analyzed to formally prove stability
and other important properties of the controllers, and thus they usually provide
a high assurance level. However, they must be defined at design time, typically
come with high costs in terms of modeling and system knowledge, and are only
applicable under strong assumptions (for example, at least ‘local’ system linear-
ity in control theory), and thus come with reduced adaptability. These models
tend to accumulate in the top left corner of the figure.

Black Box. Approaches that use black box models tend to privilege adaptabil-
ity over reliability. They rely on surrogate models built from monitoring data
that can be automatically updated at runtime, while the system is running.
Thus, they can adapt to situations that arise only at runtime resulting in high
adaptability. However, they provide little support for analysis and formal assur-
ance, and rely mostly on assumptions about the system behavior that may not
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be always easy to check statically and enforce dynamically. Thus they provide a
lower assurance level than analytic approaches. In the figure these models occupy
two distinct regions, the bottom right and the bottom left areas. The bottom
right region corresponds to approaches based on black box models initialized
and updated at runtime that can achieve high adaptability albeit at the price of
a lesser assurance level. The bottom left region corresponds to approaches based
on black box models that are used in a framework where they are initialized
and updated at design time and not at runtime, thus giving up the adaptability
that derive from the possibility of adapting to emerging scenarios at runtime,
without gaining much in terms of assurance level.

Rule Based. Approaches based on rules appear in different flavors and span all
over the taxonomy space depending on whether rules are fixed at design time and
do not change, or new rules are discovered and possibly applied after approval,
or the rule set is updated at runtime.

Hybrid. Approaches that combine design time and runtime techniques aim to
conjugate the adaptability of models used at runtime with the assurance gained
with models used at design time. In the figure, they occupy the middle region.
In the following sections, we illustrate the different classes of the approaches con-
sidering the adaptability axis. SectionBldiscusses static (design-time) approaches,
Section Ml presents approaches that support runtime updates, and Section
overviews hybrid approaches that combine both solutions. Each section is orga-
nized by clustering approaches that have some commonality (for example, in the
type of control logic, in the nature of the models). For each cluster we outline a
relevant set of sample approaches, and discuss in detail few representative ones,
stressing the relations and trade-offs between assurance level and adaptability.

3 Static Approaches and Design Time Assurance

We use the term static approaches to indicate approaches based on models of the
controlled system that are defined and verified at design time and not modified,
updated, or tuned in production, after system deployment. We refer to these mod-
els as static models to stress the design nature of their construction and analy-
sis. These models privilege design time assurance over runtime adaptability: The
models of the system identified at design time are not changed during runtime
activities to preserve the validity of the design time proofs used to identify sys-
tem wviability zones that are defined as states in which the system operation is not
compromised [25], along with the main properties of the system behavior.

The most popular static approaches are based on either analytical models
or rules and thresholds, while only some static approaches are based based on
black-box and surrogate models defined and tuned before deployment. Analyti-
cal models can be divided in (1) time invariant models that describe the system
steady state behavior, and (2) time varying models that describe the evolu-
tion and the transitory phases of the system behavior. Time invariant models
are mathematical relations derived by analyzing queuing networks, Petri nets
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and Markov chains, time varying models are typically dynamic state-equations
commonly used in classic control theory.

Rules and threshold are constructs building upon logical expressions that are
used to trigger control actions. Controllers implemented by means of rules and
thresholds are amenable to being transformed into formal representations and
proven to satisfy, at least to some extent, predictable behavioral properties. For
example, one can prove the absence of conflicts and contradictions in sets of
rules, and the termination of the rule triggering process.

Black-box and surrogate models are derived from empirical data obtained
by executing the systems. They capture the relationships between input and
output variables and are commonly used by controllers as oracles, that is, to
predict possible system behaviors in terms of the same input/output variables.
Although black-box and surrogate models are amenable to runtime adaptation,
in some cases they are used as the core of static approaches. These approaches do
not consider the additional adaptability that derive from these models, rather,
they focus on the cost of deriving accurate analytical models that decreases
dramatically when referring to black-box and analytic models.

Being defined at design time and not updated at runtime, static approaches
rely heavily on the correctness and completeness of the knowledge encoded in
their models. This implies an extensive degree of experience and understanding
of the system behavior, and generally high costs in terms of model identifica-
tion and/or synthesis. Moreover, formal approaches, in particular classic control
theory, are generally applicable under strong assumptions in terms of linearity,
monotonicity, and reliability of the controlled system, thus significantly reducing
the system viability zones. Under these assumptions, feedback-loop approaches
can be proven robust to a certain degree of error in the estimation of the model
parameters, hence they can provide effective control actions (for example, main-
taining a performance metric within a certain range) even without self-tuning
at runtime. However, both errors in parameter estimation and wrong assump-
tions on system behavior properties can consistently reduce the efficiency of the
control in terms of possible SLO violations or resource assignment.

In the rest of this section, we provide representative examples for each class
of static approaches that are and can be used inside Cloud IaaS controllers.

3.1 Approaches Based on Control Theory

Cloud controllers based on control theory adapt classic control theory techniques
in the context of computing systems aiming to design adaptive, robust, and stable
systems [I7]. Here we provide only basic information about classic control theory.
Interested readers can refer to the classic book by Hellerstein et al. for additional
details on control theory approaches to managing computing systems [9].

Some approaches adapt standard control techniques, such as proportional, in-
tegral and derivative techniques, to synthesize self-adaptive controllers for the
Cloud. These controllers rely on simple models and provide formal guarantees
on the behavior of the system, but rely on very strong assumptions that are
not verified in highly varying environments. Other approaches try to extend the
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scope of applicability of controllers based on classic control theory, by proposing
complex parametric models where part of the parameters are unknown at de-
sign time. These approaches can still provide a limited set of formal guarantees
depending on the assumption of proper on-line estimation methods.

An interesting example of approaches that apply classic control theory for
designing Cloud controllers is the control theoretic solution that Maggio et al.
propose to deal with self-optimization problems [16]. This solution is developed
in the context of a common framework for monitoring system performances
and adjust the allocation of resources to applications in order to guarantee a
predefined service level.

Classic Control. Maggio et al. start with a simple (stateless and linear) model
of the system that assumes a monotonic relation between allocated resources and
application target performance. Then, they synthesize a Deadbeat controller,
which is a common choice in the context of standard control theory, to track the
target performance signal. They study the transient behavior of this controller by
setting different parameters to estimate the approximation of the input signal,
and to decide if the controller can effectively regulate the system despite its
variations. When they cannot determine the suitability of the current model,
they further refine the model by introducing more complex techniques and see
if the new models are conclusive.

Advanced Control. Maggio et al. improve the basic deadbeat controller by
adding an identification block that supports the online estimations of the un-
known system parameters. They extend the controller by means of a Kalman
filter and a Recursive Least Square algorithm. They observe that adopting more
complex solutions, i.e., solutions that use more parameters to describe the re-
lationship between the controlled and target variable, increases the difficulty to
prove suitable control properties.

Multi Model Adaptive Control. A good example of multi model controllers
is the approach of Patikirikorala et al. who use a particular instantiation of Multi-
Model Switching and Tuning (MMST) adaptive control [20]. In a nutshell, they
define several (fixed) linear models that describe the system behavior in different
working conditions, and synthesize different single-model controllers following
the classic control theory. The overall controller monitors the system variables,
computes an error metric for each of the models, and enable only the single-
model controller that correspond to the minimum predicted error.

Approaches based on control theory provide high guarantees in terms of as-
surance: stability and dynamic properties of the controller and controlled system
can be proved in rigorous mathematical terms. Accurate system identification
further increases the control reliability.

Classic single-model approaches require simpler proofs and provide a clear
separation between system regions where the control offers formal guarantees
(viability regions) and where not. Multi-model approaches are more flexible and
are meant to cover wider viability regions. In these approaches, each controller
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behaves as in single-model approaches, but no formal guarantees are offered
when the overall control logic switches them on and off.

The high assurance level of classic controllers is based on strict assumptions
of the behavior of the controlled system that may not be always demonstrated
in practice.

3.2 Threshold and Rule Based Approaches

Threshold Based. Threshold-based policies are popular in current industrial
applications, as they are simple and intuitive to understand. They are applied
by defining lower and upper limits on target metrics that, when crossed, trigger
reconfiguration actions. Threshold-based controllers are used in many companies
such as Amazo, RightScaleE and Scalifl. In many controllers currently used in
industrial applications, upper and lower bounds are defined by the customers
referring to low level metrics, such as CPU usage. Customers define also the
corresponding reconfiguration actions. Dutreilh et al. [7] experiment with static
threshold-based policies that rely on high level SLA metrics, such as response
time. They define control policies based on upper and lower thresholds, fixed
amounts of virtual machines to be either allocated or deallocated, and pairs
of “inertia” durations that support scaling up and scaling down periods. For
instance, if the response time exceeds the upper bound, the controller allocates
virtual machines, and inhibits itself for the corresponding inertia interval. If the
response time drops below the lower bound, the controller deallocates virtual
machines, and again inhibits itself for an inertia interval.

Rule Based. Rule based approaches extend threshold solutions by considering
different types of events, and allowing rules to trigger other rules following the
common ECA (event, condition, action) paradigm. An interesting rule based
approach is Claudia, a rule-based controller for virtualized services proposed by
Rodero-Merino et al. [22]. Claudia is more general than most rule based ap-
proaches, since it considers service life-cycle events and user defined variables,
called Key performance indicators (KPIs), as well as business level metrics that
holistically describe the status of a complete virtualized service and eventu-
ally triggers rules that reconfigure the system. Claudia combines three different
types of rules, all defined by Cloud users: scaling rules that resemble traditional
threshold based approaches and change the number of allocated virtual ma-
chines, reconfiguration rules that act at deployment time and choose the size
and type of virtual machine to be deployed, and business rules that constrain
the automatic scaling behavior with respect to running costs by limiting for
instance the total number of running virtual machines. Business rules consider
also Cloud federation concerns, for instance by migrating virtual machines from
one Cloud provider to another. Claudia monitors the virtual service execution

! mttp://aws.amazon.com/autoscaling/
2 http://www.rightscale.com/
3http://scalr.net/
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and periodically tries to fire user defined rules that eventually trigger suitable
control actions.

Rule and threshold based approaches can be verified, at least to some extent,
formally. Verifying threshold based controllers is generally simpler than verifying
rule based controllers, because threshold based controllers presents a less com-
plex set of constraints, while full-fledged rule-based systems may have several
conflicting and interdependent rules. Rules are commonly set manually under the
assumption that they are able to capture main phenomena and characteristics of
the system. They remain stable during the runtime and rely on the assumption
that the system evolves only as predicted. Their event and condition clauses
clearly identify the system viability zones that, however, remain fixed and may
not are able to capture unplanned systems evolution.

3.3 Approaches Based on Analytic Models

Controllers based on analytic models use utility functions that combine system
performance metrics and business considerations, like revenue and resource usage
cost, to find desirable system configurations. They compute system performance
metrics (typically the response time) through either different queuing models or
analytical representation of queuing models. Analytical approaches differ each
other mainly in terms of the chosen queuing formalism, the complexity and ac-
curacy of the models, and the policy adopted to solve the optimization problem.

Single QN. Benanni and Menascé [3] combine queueing models and combinato-
rial search to dynamically allocate resources to application environments. They
associate a local controller to each application environment and use queueing
network models (open models for transactional systems, closed model for batch
processing system) to predict the performance metrics of the application envi-
ronment. Each local controller computes a utility measure by combining perfor-
mance metrics, service level agreements and penalty functions, and sends the
computed utility to a global controller that uses a combinatorial search algo-
rithm to identify the final resources allocation of the entire data center, i.e.,
of all the application environments. While exploring the configuration space,
the global controller interacts with the local controllers by suggesting potential
new resource allocations, and the local controllers respond with updated values
of local utilities. The queueing networks and their parameters are defined at
design time.

Architecture Level Performance Model. Huber et al. [10] introduce an ar-
chitecture level descriptive model, from which they derive performance models
that are used by self-adaptive controllers to predict the system behavior. When
the input workload changes, the control algorithm adds resources (virtual ma-
chines) to the system in order to eliminate all actual and predicted service level
agreement violations, then the controller removes the resources that are under-
utilized. Huber et al. assume the availability of the architecture level models
and estimate the parameters of the model at design time, for example, resource
usages, routing/calling probabilities, service times, and possible usage scenarios
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and user classes. Once the model is in place, an automatic procedure transforms
it into a predictive performance model, i.e., a queuing network, that is used
on-demand by the control algorithm.

Mixed Queueing Networks. Bi et al. [4] use an mixed queueing model to
simulate multi-tier applications and define a non-linear optimization problem
over it to dynamically decide on the system at per-tier. The mixed model com-
bines an M/M/c queuing model, for the front-end, with several M/M/1 queueing
models for the per-layer virtual machines. The optimizer uses the model to cal-
culate the number of resources to provision at the each tier according to the
target end-to-end response time for the tier that is assumed to be agreed with
customers.

Multiple QNs. Dejun et al. [6] address Web applications modeled as acyclic
compositions of services using a what-if-analysis and negotiation among the com-
posed services. Each service estimates its own performance variation in the case
of changes of the allocated resource or workload, and pass the estimate up
through the invocation tree to produce local decisions that are incrementally
aggregated all the way up to a root controller. Dejun et al. model the perfor-
mance of each single service as a M/M/n/PS queue, and consider performance
variations for configuration changes of a single VM (+1 or -1 machine per ser-
vice). The controller adjust the predictions by estimating the service time for
the queuing networks at runtime using a feedback control loop: A threshold on
the prediction error of the system performance triggers a new estimation of the
service time by using the latest measured response time. Dejun et al. show the
effectiveness of the proposed controller for different types of compositions, and
claim that a service level agreement for the front-end service allows for finer
control of the composed services than service level agreement thresholds on each
component.

The approaches based on different queuing networks that we review above are
based on the assumption that the chosen queuing model provides a sufficiently
accurate representation of the considered system (plus its workload, processors,
architecture, and bottlenecks) and that the system is inherently stable, that is,
it does not present emerging or unpredicted behaviors. They also make several
assumptions on the system behavior, its relevant components, and the statistical
properties of the workload. Finally, all queuing models require a set of parameters
that are estimated at design time with no provision for adjustment at runtime.

Simple models require to estimate few parameters, hence they are easier to
configure, but may not be very accurate. Complex models can be more accurate
with respect to the system structure, but require to estimate more parameters,
and thus demand extra time, and effort. More complex models do not always
result in higher accuracy, because of the simplifying assumptions that enable
analytically solutions. Richer models (for instance, layered versus plain queuing
networks, or mix-aware versus mixed oblivious solutions) typically offer more
adaptability, that is more possibilities of closer adaptation to the system, albeit
at the cost of higher complexity. In principle, they should be able to provide
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better assurance (at least in terms of a closer resembling representation of the
modeled system); in practice the high number of parameters that need to be
correctly estimated might attenuate the expected improvement.

3.4 Approaches Based on Black Box and Surrogate Models

The use of analytic modes is limited by the need of accurately defining a model
structure and computing many parameters. Black box and surrogate models ad-
dress this problem by generating the models from data gathered during system
executions, and thus obtaining models that correspond to the system by con-
struction. We will see in the next section that black box and surrogate models
can be derived and adjusted at runtime, thus increasing the flexibility and adapt-
ability of the controllers. Here we survey the main models that are proposed to
be tuned before the systems deployment, typically at testing time and during
model training.

Case Based and Clustering. Vasic et al. [30] use a workload signature based
on Hardware Performance Counters (HPC) to cluster workloads, and associate
the identified clusters to previously measured appropriate resource allocations. A
proxy collects and computes workload signatures both in the training and control
phase, by replicating a fraction of the entire application workload that is directed
to a profiler for sampling and measurement. At runtime, a profiler computes
the incoming workload signature, a classifier associates it to a class, and the
controller applies the recorded resource allocation in a single control action. The
controller uses a metric of the certainty of the association of the workload to a
cluster as an indication of the need to trigger a new training of the classifier.
The approach also measures the interference of other applications running in the
same infrastructure, where interference is defined as the ratio of the performance
achieved in production w.r.t. the performance for the same workload signature
and resource assignment measured at training time. Substantially, the system
works as a cache for previously observed combinations of workload signatures and
resource allocations. In case of a cache miss, the default policy is to bring the
controlled system to its maximum resource allocation to prevent service level
objective breaches. Threats to the validity and assurance of the control come
mainly from the choice and appropriateness of the metrics used to compute the
signature and cluster the workloads. In their experiments, the authors report that
the clustering typically results in only few workload classes while applications
can normally have very large workload and configuration spaces.

Multiple Surrogates. Trushkowsky at al. [28] address the on-line reconfigu-
ration of storage systems in response to workload changes under stringent per-
formance requirements. The controller manages SCADS [2], a key-value store
that offers eventual consistency and an easy partitioning of the key-value stores,
hence natively supports replication and elasticity. Two specific issues make the
problem hard: 1) to scale a data-intensive system, data items must be moved
or copied across instances, impacting negatively on service performance, and 2)
high percentiles of response time have much higher variance (and therefore are
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much harder to control) than the center of the distribution (average response
time). The latter issue can cause oscillations in classical closed-loop control.
Trushkowsky at al. tackle these issues by introducing a model predictive control:
The controller refers to a model of the system and its current state to compute
the optimal sequence of control actions, executes the first action of the sequence,
and then recomputes the optimal sequence of control actions to chose the next
actions. The system performance model coupled with workload statistics can
predict whether a server is likely to meet its service level objectives. In the
case of predicted violations, the controller either spawns new server instances
or activates “hot” standby ones, and copies or migrates data bins using a copy-
duration model for planning. Trushkowsky at al. builds the server performance
models using statistical machine learning (SML) on data obtained through off-
line controlled experimental runs with steady state workloads. They claim that
simple changes in workload will not affect the accuracy of these models, that
however can degrade over time if the application or the underlying data change
consistently, for instance when an individual request returns more data than
during training. In this case, the off-line models would have to be rebuilt in pro-
duction. The approach uses a linear classification model with logistic regression
to predict whether a given workload mix (get and put operations) and intensity
are likely to cause service level objective violations. The copy-duration model is
obtained off-line through the linear regression of samples gathered by running
copy operations on servers under different workload rates.

Multiple Surrogate Models. Sharma et al. [23] present Kingfisher, a cost-
aware system to scale elastic applications. Kingfisher relies on several models
that capture capacity, costs and reaction time concerns, and a linear optimiza-
tion to solve the cost- transition-time- aware control problems. Pricing models,
elasticity mechanism models (migration, replication, etc. on the different plat-
forms) and server capacity (for different resource allocations) are all obtained
empirically at design time. The controller uses the models at runtime to solve the
integer linear program that accounts for both infrastructure and transition costs
and derives appropriate control actions. Kingfisher assumes that applications
have a multi-tier software architecture where each tier has its own quality of
service requirements that must be met by provisioning sufficient capacity. More-
over, Kingfisher assumes the availability of a perfect forecaster that is defined as
forecaster that knows the workload in advance, as well as the perfect estimation
of the per-tier peak-workloads. To solve the integer linear program in reasonable
time and for not trivial applications, Kingfisher employs a greedy heuristic with
a bounded worst case.

Black-box surrogate models provide an assurance level lower than analytic
models, because the quality of these approaches depends on properties that are
difficult to formalize and measure at design time. For example, the quality of such
models depends largely on the amount and quality of the data collected from
the system runs, their distribution in the input/output features space, the train-
ing /fitting procedures adopted. Being dependent only on data collected at design
time, these models may not reflect accurately the real production environment.
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Designers must assume that the drift between testing and staging environment
is negligible. Moreover, they assume that the system behavior remains stable
at runtime. In a sense, these approaches leverages black-box surrogate model
because of they capability to learn relations between system variables that are
unknown or too complex to estimate precisely; however, they do not leverage this
inner capability outside the design time activity, thus limiting the adaptability
of the controllers.

3.5 Approaches Based on Heterogenous Models

Some approaches address the limitations of the different techniques by suitably
combining heterogeneous static techniques.

Regression. Lim et al. [I5] combine a cloud controller that manages the com-
pute infrastructure with an application controller that manages the resource
assignments for each application to satisfy some a given performance goal. For
the application controller, they propose to use a classical integral control to add
and remove virtual machines based on average virtual machine CPU utilization.
Integral control can be proved stable for a continuous control signal. Unfortu-
nately the interface between the cloud and application controller consists of a
coarse grained actuator, since one cannot add a fraction of a virtual machine,
thus causing possible oscillations of the controlled system. To mitigate this ef-
fect, Lim et al. use a proportional thresholding technique, where higher and
lower thresholds become smaller as system size increases, rather than a fixed
target value for CPU utilization. They also use linear regression to model the
relationship between the CPU utilization and the cluster size.

Surrogate Model Analytic and Heuristics. Jung et al. [I2] focus on con-
trollers that take into account the costs of system adaptation actions considering
both the applications (for example the horizontal scaling) and the infrastructure
(for example the live migration of virtual machines and virtual machine CPU al-
location) concerns. Thus, they differ from most cloud providers that maintain a
separation of concerns, hiding infrastructural control decisions from cloud clients.

The controller relies on an estimator that uses 1) automatic off-line exper-
imentation to build a cost table quantifying performance degradation for each
type of control action and workload, 2) layered queue networks (LQN) to predict
the performance of each system configuration given a workload (LQN parame-
ters are estimated offline), and 3) an ARMA filter to estimate the duration for
which the current workload will remain stable (i.e., within a band B). The esti-
mate of the duration of the stability of the workload is used to decide whether
expensive (long term) control actions are worth or not. The controller searches
through the graph of all possible control actions to find the sequence of control
actions that maximizes a utility function that takes into account benefits and
penalties expressed in terms of the application service level objectives, as well
as the relative impact of all the control actions.
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Approaches that combine heterogeneous models increase the adaptability with
respect to the single static approaches, at the price of reducing the provided
assurance level.

4 Dynamic Approaches and Runtime Assurance

We use the term dynamic approaches to indicate approaches based on models of
the controlled system that are tuned at runtime, after system deployment. We
refer to these models as dynamic models to stress the runtime nature of their con-
struction. These approaches privilege runtime adaptability over assurance. They
produce an accurate representation of the modeled system by characterizing the
system behavior through metrics collected from the actual system execution.
Typically, they build an initial version of the model at staging-time from a set of
training samples, and then update the model continuously at runtime while the
system is running. Thus, they can adapt to unforeseen changes and behaviors.

Different classes of dynamic approaches are characterized by the type of sur-
rogate model they adopt, ranging from several forms of regression (for example,
linear, quadratic, LOESS and Kriging) to machine learning techniques (for ex-
ample, neural networks and reinforcement learning). Different model types imply
different query and update strategies, to account for instance for the possibility
of incrementally updating a model or the time and computational complexity of
a complete re-training.

Dynamic approaches typically model either a single or a combination of sys-
tem performance metrics as a function of some endogenous system properties
that represent the system configuration in terms of both system characteristics,
for example, number of allocated VM instances, CPU cores or threads, and ex-
ogenous factors, such as for instance the workload applied to the system or the
influence of other services co-located in the same infrastructure. The approaches
surveyed in this section often differ in terms of the considered metrics and the
characterization of the workload features (for instance, workload intensity or ser-
vice mix), but share some important features. They are highly flexible, and adapt
easily to the measured system behavior, because of the ability to learn from and
adapt to emerging behaviors, and this is extremely important for instance when
the configuration or workload space is too vast for extensive exploration at stag-
ing time. They impose few requirements on the experience and knowledge of
the modeled system functioning and behavior, because the samples required for
training the models come from externally measurable system features.

The adaptive nature of dynamic approaches is both their main feature and
their Achille’s heal: The ability of constantly change and adapt makes them
particularly well suited to highly dynamic systems and, at the same time, makes
it hard to assure the quality of the resulting system, and to estimate the correct
partition of model training effort between staging time (bootstraping) and on-line
learning.

In the following, we survey the main approaches of this category distinguishing
between approaches based on surrogate models and approaches based on machine
learning.
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4.1 Approaches Based on Surrogate Models

Surrogate models are build from sample executions of the modeled system, and
describe the behavior of a system in terms of relations between input and out-
put features that can be continuously updated with monitoring data. They are
commonly used to describe either the steady-state behavior or the mid-to-long
time horizon behavior projections. Self-adaptive controllers use surrogate mod-
els to predict the close future, given both the current and the estimated values
of the input features. Some controllers use surrogate models also to support op-
timization procedures that explore the system configuration space to find the
most suitable system configurations. Less commonly, surrogate models are used
to provide model predictive control, where models are used to simulate and track
the evolution of the system state under possible control actions, in order to plan
for the most suitable ones. Such control strategy aims to maximize the control
utility over a receding time horizon.

Splines and LOESS Regression. Bodik et al. [5] use statistical machine learn-
ing, and in particular smoothing splines and local regression (LOESS), to build
performance models of the controlled system. Bodik et al.’s models represent
response time as a function of workload intensity and system configuration. The
controllers increase the robustness and the adaptivity to changes, by means of
model management techniques (i.e., online training and change point detection)
that update the model, track its quality and eventually rebuild it from scratch.
The models are trained with data obtained online from the production environ-
ment. The controllers are conservative: They start from the maximum allowed
allocation of resources, and decrease the allocation, while incrementally learn-
ing optimal configurations, to minimize service disruptions in exploration mode.
Building models entirely from online samples simplifies the training phase, but
may result in slow convergence of the models to new and possibly temporary
system behaviors.

Kriging Models. In a recent work, we proposed an autonomic controller for
horizontal scalability based on performance models of the controlled system. For
each service level objective, the controller builds a different Kriging model that
represents the objective metric (for instance the response time or the through-
put) as a function of the number and types of virtual machine instances (system
configuration) and a representation of the workload intensity and mix. Kriging
models, also called Gaussian Process Regressions (GPRs), approximate target
functions by means of a spatial correlation of samples. They extend traditional
linear regression with a statistical framework that allows them to predict the
value of the target function in un-sampled locations together with a confidence
measure. In the Kriging based approach, training samples are collected by mea-
suring the system behavior first at staging time to build an initial version of the
models, and then in production to continuously updated them. As more samples
are used, the accuracy of the model improves, while the uncertainty decreases,
and the time to build the model increases. To avoid the collection of unman-
ageable sets of samples, many of which do not provide additional information
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to the model, the controller filters out old samples belonging to the same con-
figuration. Kriging based approaches pair predictions with confidence measures
that support the implementation of robust control policies (by tuning the de-
sired risk of violations, impacting on assurance), and drive the exploration and
exploitation decisions when learning the system behavior, thus improving over
other regression mechanisms.

The assurance of surrogate-based self-adaptive controllers relates to (1) the
ability of the models to accurately represent system behavior also in the presence
of noisy and missing data, that is, when the quality of data interpolation and
regression decreases, (2) the speed of convergence of the learning process, and (3)
the accuracy of the quantification of the uncertainty of the model predictions. For
example, models that are updated online and frequently, that do not need a large
training set, and that can provide an accurate measure of confidence for their
predictions, provide higher assurance than models that are updated infrequently
and cannot provide any confidence interval for their predictions. Controllers that
continuously monitor the quality (accuracy, prediction error, etc.) of the models,
and account for completely rebuilding of the models whenever necessary can
adapt faster to emerging system behaviors than controllers that merely update
the models with new data.

4.2 Approaches Based on Machine Learning

Machine learning techniques are commonly divided in model-based and model-
free techniques, depending on the use of models. Both classes of techniques are
exploited to build self adaptive controllers. The most popular control solutions
that refer to model based techniques use artificial neural networks (ANN), while
popular model-free techniques use reinforcement learning (RL) and clustering
applied to the discovery of control rules. In model based solutions, the accuracy of
the results depend on crucial choices such as the model structure and the training
data, thus no a priori guarantees can be enforced. In model-free solutions, the
level of assurance depends on the learning rate, the instability /evolution pace
of the controlled system and the size of the action-configuration space, which is
proportional to the amount of possible control actions.

Artificial Neural Networks. Artificial neural networks use training samples
to build a model of system dynamics that can predict the system reaction to
different inputs. The structure of the network and the quality of the training
data are critical to the performance [17] and must decided by the designers off-
line. After the initial supervised training that sets all the internal parameters,
artificial neural networks can be updated on-line by a back-propagation pro-
cedure based on punishment-reward concepts. Maggio et al. [I6] implement a
neural network to control the amount of resources allocated to process at the
OS level that guarantees a given service level. Although the context is different
from Cloud computing (where artificial neural network based controllers have
not been used yet) the basic concepts of modeling and dynamically allocate
resources are similar.
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Reinforcement Learning. Controllers based on reinforcement learning learn
directly optimal control policies, that is, the best set of actions to apply when-
ever the system enter a state, and thus do not require a model of the system. At
runtime, reinforcement learning-based controllers adopt a trial-and-error learn-
ing strategy and apply (at least at the beginning) random actions. Effects on
the system, and controllers utility function, resort either in action reward (if the
actions increased the utility) or punishment (if the actions damages the system,
thus lowering the utility). Reinforcement learning solutions suffer from poor scal-
ability in the action-state space and from long convergence rates. To alleviate
these limitations, Li and Venugopal [I3] propose a distributed implementation
of reinforcement learning based self-adaptive controllers. In this solution, each
processing node, i.e, a virtual machine, is an independent entity and incorporates
a local controller that runs a Q-Learning algorithm. Local updates to the model
are pushed to the other controllers via a distributed hash table, so that collabo-
rating controllers can learn the state-action-reward model quickly. At run time,
each controller takes scaling decisions based on the shared model and aims to
maximize the reward function while model updates are continuously published.

Clustering for Fuzzy Rules. Xu et al. [32] propose a dynamic approach based
on fuzzy rules. The controller applies fuzzy modeling to learn the relationship
between workload and resource demand, and uses clustering to update the rules
at runtime. The controller is organized in two levels: at the lower level, local
controllers are associated to physical resources and decide about the resource
needs of the virtual applications deployed on the node; at the higher level, a
global controller receives all the resource needs from the local controllers, and
solves the resulting global optimization problem to decide the final resource al-
location. Local controllers estimate the needs of resources at regular intervals
for each virtualized application by means of fuzzy inferences: Each controller
receives workload data, fuzzifies them, triggers the fuzzy rules, and finally pro-
duces the output crispy. At the same time, controllers analyze the monitoring
data to derive new fuzzy rules, adapt existing ones, and remove not optimal rules
from the knowledge base. Fuzzy rules are obtained by filtering and clustering raw
monitoring data as they reach the controller: Data are filtered if they refer to
mappings that lead to service level agreement violations, and then are clustered
based on the density of surrounding data points. Eventually, a single rule is as-
sociated with each cluster. The controller defines an initial set of clusters, thus a
set of fuzzy rules, offline using data from staging experiments, and updates the
fuzzy rules at runtime, by adapting the size and number of clusters.

Control solutions based on machine learning techniques are in principle the
most flexible solutions, since they can learn any kind of relations either directly
modeling the system or capturing the optimal control policy. However, this ex-
treme adaptability come at the cost of the impossibility of proving stability,
convergence or any other properties important for control purposes. In particu-
lar, artificial neural network and reinforcement learning solutions do not provide
any automatic means to evaluate the goodness of their fit nor their predictions,
and designers have to either believe in them or not, and employ some external
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mechanism to track their error and retrain (whenever it is possible) the model.
Machine learning solutions can be useful where the complexity of the controlled
system makes it infeasible the construction of any satisfactory analytical solu-
tion or white box model, or when designers have no a-priori information about
the behavior of the controlled system.

5 Hybrid Approaches and Combined Design and
Runtime Assurance

We use the term hybrid approaches to indicate approaches that combine static
and dynamic techniques to benefit from high adaptability while guaranteeing
high assurance level. Static and dynamic approaches can be combined in many
different ways, resulting in different blends of assurance and adaptability.

We distinguish two classes of hybrid approaches depending on the adopted
merging strategy: (1) approaches that augment static solutions with learning
and (self-)adapting capabilities, and (2) approaches that complement dynamic
solutions with static models to modulate the effects of learning on the control
behavior. Approaches that augment static technique with learning capabilities
aim to increase the level of adaptability while maintaining a high assurance level.
Approaches that combine dynamic solution with static model aim to improve
assurance while limiting the loss along the adaptability dimension.

5.1 Static Approaches Augmented with Learning Capabilities

Static approaches augmented with learning and self-adapting capabilities in-
crease the adaptability of the underlying static technique while maintaining high
assurance level. They try to augment the size of viability zones by allowing the
control solutions to deal with unseen and emerging behaviors that may differ
from the design time assumptions. Augmented static solutions either relying on
static models with online parameters tuning, or on static models that are rebuilt
while the system is running.

Static Model with Online Parameter Tuning Approaches that augment
static models with online parameter tuning are based on a core static model
whose parameters are updated at runtime using monitoring data. The update
and learning processes proceed in parallel with the controller activities.

LQN and Kalman Filter. Woodside, Zheng and Litoiu [31] propose a model-
based feed-forward solution centered around a layered queueing network model
of the system whose parameters are recomputed online. The controller uses the
model to predict the system performance depending on the monitored workload,
and to optimize the system configuration, in terms of server configurations and
resources allocation. The controller adapts the parameters at runtime by means
of an Extended Kalman Filter: The filter keeps updating the parameters until
the residual error is below a threshold, and in this way the controller relies al-
ways on an accurate model of the system. The tracking filter greatly improves
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the robustness of the control algorithm in the presence of parameter drift. More-
over, extended Kalman filters have proven optimal properties when the relations
between variables are linear, and are expected to have near-optimal properties
if non-linearities are involved depending on the local properties around the op-
erating point.

QN and Regression. Urgaonkar et al. [29] propose a dynamic capacity pro-
visioning model for multi-tier Internet applications that uses queuing networks
to determine the provisioning of resources for each tier of the application. Dif-
ferently from the previous work, Urgaonkar et al. use online monitoring data
to estimate the session arrival rate, the session duration and other parameters
that are fed to the queuing network for the predictions. The proposed controller
combines predictive and reactive methods to determine when to provision re-
sources, to cater for respectively long-term / cyclic and short-term / unpredicted
variations in the application workload. The controller computes long-term pro-
visioning with the queuing network model where each tier is modeled as G/G/1
queue, and tiers are linked with replication factors to describe how the work-
load demand is distributed inside the controlled system. The controller deals
with short-term variations of the load by means of a sentry component that
implements admission control policies.

QN and Clustering. Singh et al. [24] use a queueing network to model the
system as well, but they rely on mix-aware provisioning techniques to handle non-
stationarity in workload mix and volumes. The controller employes k-means clus-
tering to automatically classify the workload mix and uses the queuing model to
predict the server capacity and support configuration optimization. The “work-
load class” is the parameter estimated online by the controller that keeps the
model up to date. The initial clustering is computed off-line following an iterative
and empirical process. On-line clusters are adjusted (split/merge) whenever the
error of the estimated cluster predicted mean service time is greater than a given
threshold with respect to the mean service time monitored by the mix-determiner.
Maximum number and size of clusters are specified beforehand. Similar to the
other approaches in this group, Singh et al. assume that the system can be mod-
eled as a pipeline of independent tiers, for which per-tier service level agreement
can be defined, and per-tier demands can be derived from the incoming one. The
clustering allows to determine precisely the different types of requests in the work-
load improving the accuracy of results form the queuing model.

These approaches share the adoption of an analytic system representation
(either queuing networks or layered queuing networks) whose structure remains
unchanged. They achieve a limited degree of adaptability by estimating one or
more parameters online. This caters for situations in which there is a need for
minor adjustments with respect to design time expectations on system behavior,
but the limits imposed by the initial queuing network model prevent the control
from adapting to any possible emergent behavior related for instance to non-
modeled system bottlenecks.
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Model Update. Approaches that rebuild the model at runtime use a control
model that is modified or completely rebuilt at system runtime, either periodi-
cally at a fixed time interval or whenever some indicative metric (for instance,
a prediction error) crosses an acceptable threshold value.

Rule Base with Bayesian Classification. Jung et al. [I1I] propose a rule
based approach, where rules are automatically generated by means of a machine
learning process. The controller uses the rules as in static approaches: It monitors
system variables, for instance, the workload, and triggers the control rules when
necessary, e.g. when there is a match with the workload intensity, to change the
system configuration. The controlled systems are modeled by means of layered
queuing network models whose parameters are estimated offline, at design time.
The controller then uses the layered queuing network models in a two step dis-
covery process that is carried out at runtime in parallel with the control loop: (i)
The controller randomly chooses a set of input workloads, searches for the cor-
responding optimal system configurations, and encodes the results as rules; (ii)
It interpolates all the data via a Bayesian classification algorithm that derives
a decision tree saved as policy. The decision tree covers the whole configuration
space — thus not only the rules obtained in step (i) — and the learning algorithm
can be configured to prune or merge, similar subtrees and configurations to sim-
plify the rule set. The process produces a new decision tree with a finite number
of leaves, i.e., system configurations, with a high degree of predictability and
verifiability because the new tree encodes all the possible system configurations
a priori enabling further decision to be taken at business level. The optimiza-
tion procedure is based on a heuristic gradient search and considers both the
system configuration, i.e. the number of replicas for each virtual machine, and
their placement on a set of physical nodes. It assumes that the system utility
monotonically decreases as resources are deallocated. The quality of the con-
trol, measured in terms of utility, depends on three critical factors: the model
accuracy, the number of workloads considered during the optimization, and the
“compactness” of the decision-tree, as more compact trees are less accurate.

QRS Model and Clustering. Quiroz et al. [2I] propose a decentralized online
clustering approach to detect patterns and trends in resource demands for jobs
in Grid systems, and use this information to optimize the provisioning of virtual
resources. The control is fully decentralized: In each control window, the clus-
tering algorithm analyzes the incoming jobs and produces a number of target
virtual machine classes. The number of virtual machines that must be provi-
sioned is proportional to the volume of the incoming job for each class. Jobs
are either assigned to the available virtual machines as they arrive or wait for
the right virtual machine to start. Eventually, each local controller triggers the
creation of new virtual machines to process the waiting jobs. Controllers rely
on a model to estimate application service time based on Quadratic Response
Surface Model (QRSM). The QRSM is fitted using long-term application perfor-
mance monitoring data, and it is used at runtime to provide feedback about the
quality of the clustering, i.e., the appropriateness of requested resources for the



334 A. Gambi, G. Toffetti, and M. Pezze

incoming jobs and their ability to meet QoS constraints. Given the actual re-
sources, the QRS model is used to predict the response time for the estimated
workload. This prediction is compared against the quality of service require-
ment and the controller uses the model to adjust the class attributes computed
by the clustering. The controller then uses the quality measures obtained from
the QRSM as an oracle to re-trigger the evaluation of the clusters with the
decentralized online clustering algorithm.

Approaches that rebuild the model at runtime combine some static model,
either a linear queuing network or a response surface model, with a learn-
ing/discovery mechanism that changes the control logic, rule- or clustering-
based, respectively. The static model is derived from design time knowledge
or long-term application historical data, and provides the fixed reference for the
derivation/optimization and evaluation of the runtime-generated control logic. In
a sense, the static model defines fixed boundaries for the controller behavior that
make it predictable (i.e., within the boundaries), while the runtime adaptation
aims at optimizing the control with respect to the measured system behavior.

5.2 Dynamic Approaches with Static Fall-Back

The lack of assurance of purely dynamic models derives from the dynamic nature
of the data used to build and tune the models, that cannot be statically verified
by definition. It is difficult to provide assurance proofs of controller behavior for
approaches based mainly on runtime measurements, that heavily depend on the
availability and quality of the data collected at runtime.

Dynamic approaches with static fall-back aim to improve the accuracy of
these models by complementing the dynamic model with analytic approaches
that might provide a reasonable alternative in the presence of low quality of the
prediction based on the runtime model.

Case Based and Analytic. Malkowski et al. [I8] propose a multi-model con-
troller that combines the horizontal scale controller originally developed by Lim
et al. [T4] as the static approach with an empirical model obtained from runtime
monitoring data. The empirical model uses a throughput vector space (i.e., a list
of throughput values, one for each application interaction-type) to represent the
combination of configuration, workload, and performances achieved by the sys-
tem in a 30-seconds time frame. The empirical model is used to find the smallest
(cheapest) system configuration that satisfies the service level objectives, and is
located within a threshold value in terms of Euclidean distance in the throughput
vector space with respect to the predicted workload. In other terms, it selects
the smallest configuration among the set of visited configurations that were able
to withstand a predicted workload intensity (or a comparably “close” intensity)
without violating service level objectives. The controller switches to the static
approach when the empirical model cannot find a visited configuration within
the distance threshold.

Kriging and Analytic. In our recent work, we proposed a similar approach
where the controller uses an analytical formulation, derived from a queue network
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model, as the static approach, and a Kriging model that interpolates monitoring
data in [8]. Differently from the previous approach, we use an interpolation of
data, i.e., the Kriging model, instead of raw monitoring data, to drive the control
decisions, and use the same model to switch to the queuing network. In fact, the
controller leverages the unique ability of Kriging models to provide a confidence
measure along with performance prediction: If the confidence of the prediction
is too low then the value is discarded and the controller resorts to the queuing
network.

Reinforcement Learning with ANN and Queuing Networks. Tesauro et
al. [26] employ both static and dynamic techniques in an approach that combines
the strengths of reinforcement learning, artificial neural networks and queuing
networks. A static technique is used when the reinforcement learning is in learn-
ing mode; in this period, the controller resorts to the queuing networks to control
the system and collect training data at runtime. To speed up the learning, the
data are used to train a non-linear function approximation, in this case an ar-
tificial neural network, of the Q-function that is used to obtain the learning
rewards. Tesauro and co-authors represent the Q-function using neural networks
instead of traditional look up tables to encode the state-action rewards. Arti-
ficial neural networks interpolate the collected samples and reduce the need of
large training set, improving the controller scalability. By combining reinforce-
ment learning and queuing networks, controllers can avoid poor performance
during the training activities, because all the data are collected using the queu-
ing network policy that provides an acceptable quality level of the control with
respect to the random control actions of the reinforcement learning exploration.
At the same time, controllers can improve their accuracy because steady-state
queuing models are unable to take dynamical effects into account while the re-
inforcement learning can take into account dynamic effects such as transients
and switching delays. Once the reinforcement learning is ready, the controller
releases the queuing network and adopts it. In this period, parameters of the
queue network are continuously updated based on measurements of system be-
havior, and when necessary, the controller can switch back to it and start the
learning process again.

Hybrid approaches achieve high adaptability by using empirically obtained
data to model emerging (and possibly unexpected) behavior such as for in-
stance I/O bottlenecks (typically not modeled in analytic approaches / lay-
ered queuing networks for cloud controllers) or cross-layer interdependencies.
High adaptability aims at a more precise representation of the system behavior
geared towards the realization of more efficient (i.e., in terms of resource usage,
service level objective violations) controllers. To compensate for the dynamic
nature of black box models, and their dependency on possibly high varying
runtime monitoring data, analytic approaches (typically queuing networks) are
used as a safety net to constrain the controller actions. In a sense, analytic
models provide the base controller behavior upon which dynamic solutions can
improve.
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6 Conclusions

In this chapter we presented the current state of the art of self-adaptive con-
trollers for the Cloud Infrastructure as a Service. IaaS self-adaptive controllers
dynamically assign resources to services aiming to strike the balance between
under-provisioning (by minimizing service level agreement violations) and over-
provisioning (by reducing resource assignments) in response to service workload
variations. To efficiently allocate resources, self-adaptive controllers refer to some
knowledge about the system characteristics and behavior that is typically en-
coded in terms of models or rules.

While designing self-adaptive controllers is a challenging task in itself, pro-
viding assurance guarantees on self-adaptive controllers behavior is even harder,
because TaaS controllers typically face unpredictable environmental conditions
(for instance, workloads and co-located services interference) and a very large
space of configurations.

The different models used by the controllers come with different levels of as-
surance and adaptability. The inherent problem with adaptability is that it may
give rise to undesirable emergent properties, impede the ability of administra-
tors to understand system behaviors, and possibly reduce the predictability of
the controlled system. However, controller adaptability may be required for in-
stance in the case of systems too complex to be modeled analytically or whose
environmental conditions and configuration spaces are too vast to be effectively
explored before application deployment.

As it often happens, there is no “best” solution for IaaS controllers, the choice
of the most suitable approach depends very much on the requirements posed
on the control. We considered the trade-off between assurance and adaptabil-
ity by classifying state-of-the-art approaches as belonging to either static (non-
adaptable), dynamic (fully adaptable), or hybrid classes (partially adaptable).
Static approaches privilege assurance over adaptability, being statically verifi-
able, but are less effective in dealing with situations not foreseen at design time.
Dynamic approaches keep learning and adapting to the measured system behav-
ior, hence offer models closer to the actual system behavior, typically resulting
in a more precise (and efficient) control. However, this may come at the cost
of reduced predictability. Hybrid approaches try to compensate the weakness
of each of the previous classes by complementing static approaches with some
degree of adaptability, and dynamic approaches with a fall-back static control.

We expect future research in this area to concentrate even more on hybrid
approaches. The challenge is to be able to closely match system behavior, by
continuously gathering performance measurements and adapting system mod-
els, while not completely giving up on formal proofs and guarantees on controller
actions. To this end, some dynamic approaches, in particular the ones based only
on the latest measured system behavior, might incur in the risk of learning the
behavior of the system while in unperceived abnormal working conditions (for
instance, false positives in monitoring VMs running and working state), thus
building invalid models and consequently implementing the wrong control de-
cisions. Hybrid approaches take advantage of the fall-back to less precise but
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typically more stable design-time models, and offer a safety net for situations
in which the monitoring infrastructure cannot reveal malfunctions. Moreover,
multi-model controllers can utilize possible discrepancies in the predictions from
their different models to implement simple warning mechanisms (for example,
requiring human intervention or interpretation of possible malfunctions) or var-
ious model-update policies, for instance with change-point detection. It is there-
fore our opinion that, independently of the levels of assurance or adaptability
required by an application, multi-model solutions can typically offer a deeper
insight on the controlled system behavior.
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