
Emerging Techniques for the Engineering

of Self-Adaptive High-Integrity Software

Radu Calinescu

Department of Computer Science, University of York, UK
radu.calinescu@york.ac.uk

The journey of a thousand miles begins beneath one’s feet.

Lao Tzu

Abstract. The demand for cost effectiveness and increased flexibility
has driven the fast-paced adoption of software systems in areas where
requirement violations may lead to financial loss or loss of life. Many of
these software systems need to deliver not only high integrity but also self
adaptation to the continual changes that characterise such application
areas. A challenge long solved by control theory for continuous-behaviour
systems was thus reopened in the realm of software systems. Software
engineering needs to embark on a quest for self-adaptive high-integrity
software. This paper explains the growing need for software capable of
both self-adaptation and high integrity, and explores the starting point
for the quest to make it a reality. We overview emerging techniques for
the engineering of self-adaptive high-integrity software, propose a service-
based architecture that aims to integrate these techniques, and discuss
opportunities for future research.

1 Introduction

A growing number of software and software-controlled systems are built to adapt
to changes in their environment, requirements and internal state. These self-
adaptive software systems [19,56] can successfully reconfigure themselves in re-
sponse to sensor-detected changes, typically through using a combination of
heuristics, simulation and artificial intelligence techniques.

The development of successful self-adaptive software within hardly a decade
since the advent of autonomic computing [35,38] is a remarkable achievement.
Nevertheless, this achievement alone is insufficient for an important class of
applications in which self-adaptive software plays an increasingly significant role.
These are applications for which requirement violations may lead to loss of life
or financial loss. Healthcare, transportation and finance are among the domains
that rely on such safety-critical or business-critical applications.

Clearly, self-adaptive software used in safety-critical and business-critical ap-
plications must be characterised by high integrity—in the sense specified by the
NIST definition [52]:

J. Cámara et al. (Eds.): Assurances for Self-Adaptive Systems, LNCS 7740, pp. 297–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

298 R. Calinescu

“High integrity software is software that must be trusted to work de-
pendably in some critical function, and whose failure to do so may have
catastrophic results, such as serious injury, loss of life or property, busi-
ness failure or breach of security.”

This definition requires high-integrity software to “work dependably”, which
Meyer [48] equates with a combination of three properties:

1. correctness—compliance with the specification;
2. robustness—ability to withstand erroneous use outside the specification;
3. security—ability to withstand malicious use outside the specification.

As emphasised in a position paper [11] that motivated the work described here,
software engineering tools for building software that is both correct and robust do
exist. They include formal verification and validation (V&V), design by contract,
and quality assurance [9,48,52].

However, for self-adaptive software, the three properties listed above must
continue to hold as the software evolves to adapt to change. This additional
requirement changes everything, because traditional software engineering ap-
proaches to developing high-integrity software were devised for off-line use dur-
ing the design or V&V stages of the software lifecycle. As described in [11],
“they operate with models, properties, assumptions and conjectures that in
the case of self-adaptive software are unknown until the application is deployed
and running—and which change over time.” The range of changes that can
affect self-adaptive software systems is extremely large or, in the case of
large-scale complex systems like those discussed in [57], unbounded. Therefore,
analysing the adaptation state space off-line is impractical in the first case, and
unfeasible in the latter. Analogous techniques that can be applied automati-
cally, while the system is running, are required for self-adaptive high-integrity
software.

This challenge of simultaneous adaptation and high integrity has long been
addressed by control theory, albeit primarily for continuous-behaviour systems
(e.g., [26]). As cost savings and the need for increased flexibility have led to the
replacement of these systems with software-based ones, the challenge is again
open—for both software-only and embedded (or cyber-physical) systems.

The rest of the paper explores several aspects of self-adaptive high-integrity
software, and discusses a service-based architecture for building software systems
with these characteristics. Section 2 describes several archetypal applications
that require self-adaptive high-integrity software. Section 3 overviews emerging
software engineering techniques that support the development of self-adaptive
high-integrity software, and discusses the current trend to implement critical
software applications through the dynamic integration of heterogeneous services.
Section 4 introduces a generic service-based software architecture that employs a
combination of these techniques to produce self-adaptive high-integrity software.
Finally, a preliminary research agenda is discussed in Section 5.

Emerging Techniques for Self-Adaptive High-Integrity Software 299

2 Critical Applications Requiring Self-Adaptive
High-Integrity Software

This section overviews a selection of critical applications from three applica-
tion domains, explaining why they each need software that supports both self
adaptation and high integrity.

Healthcare. The fast ageing of the world’s population is accommodated by many
developed countries through healthcare budget increases that exceed the overall
rate of economic growth. As this approach is unsustainable in the long term, IT-
enabled ambient assisted living is perceived as an effective long-term solution for
the monitoring of patients with chronic diseases and mobility-related conditions.

Ambient assisted living applications that employ wearable systems for health
monitoring and use remote services for vital parameter analysis, medical record
access, etc. could extend the time that elderly people manage independently at
home, thus reducing healthcare costs and also improving their quality of life.
Software-controlled systems integrating this 24-hour patient monitoring equip-
ment with adaptive infusion pumps are envisaged as a potential extension of this
solution [39,40]. (Infusion pumps are medical devices for the controlled delivery
of medication and nutrients into a patient’s body.) Medical conditions that could
benefit from this approach include chronic cardiac and respiratory problems, di-
abetes, and high-risk pregnancies [33]. Nevertheless, software-controlled infusion
pumps have a poor safety record even when used in a non-adaptive operating
mode [58], so their integration into adaptive, closed-loop control solutions raises
major concerns.

Transportation. In Europe alone, the transport sector is required to achieve
“a reduction of at least 60% of greenhouse gas emissions by 2050 with respect
to 1990” [22] as a contribution towards limiting climate change below 2◦C. To
achieve this objective, the manufaturers of next-generation vehicles and the plan-
ners of future road infrastructure will use safety–critical self-adaptive software to
inform and help drivers respond to changes in traffic conditions, reducing travel
time and fuel consumption, and improving road safety [30,34]. Despite signif-
icant advances in the underlying technology, security and reliability concerns
have been raised about these applications [1,44].

Finance. In the finance industry, stock exchange transactions are increasingly
carried out by automated trading systems that can react faster than their human
counterparts. Furthermore, the adoption of adaptive, business-critical software
trading agents in recent years has led to highly flexible applications whose effec-
tiveness often matches that of human experts [21,37].

Nevertheless, self-adaptation in automated trading agents is a double-edged
sword. Unsuitable adaptation might have been one of the causes of the still not
fully explained 6th May 2010 Flash Crash that wiped $1 trillion in market value
for a 20-minute period [24] and of the lower-impact but equally worrying 8.1%
plunge in the natural gas price for 15 seconds on 8th June 2011 [49].

300 R. Calinescu

Table 1. Techniques that can help support the development and operation of self-
adaptive high-integrity software

Technique/Research
area

Description Examples

models @ runtime

Models of the functional and/or non-functional
software behaviour are analysed at runtime, in or-
der to select system configurations that satisfy the
requirements.

[8,29,31,50]

on-line learning

The parameters and/or structure of the models
used to establish reliability, performance or func-
tional properties of self-adaptive software are es-
timated at runtime, based on observations of the
software behaviour.

[7,14,25,59]

quantitative model
checking @ runtime

Non-functional software requirements are ex-
pressed as probabilistic temporal-logic properties,
and are analysed at runtime, to predict or detect
requirement violations and to guide adaptation.

[16,17,25,27,42]

runtime verification

Finite, partial execution traces are analysed for-
mally to detect requirements violations, and the
analysis may trigger runtime software adapta-
tions.

[6,43,45,54]

runtime certification
The dependability of self-adaptive software is
(re)certified after each runtime reconfiguration
step.

[23,55]

model-driven
development @

runtime

Runtime architectural changes are achieved
through the on-line synthesis of the connectors
required to include new software components into
the adaptive system.

[7,10,20,36]

3 Background

3.1 Techniques for Self-Adaptive High-Integrity Software

This section (adapted from our previous work in [11]) describes the main re-
search areas in which effort has been dedicated to the development of techniques
that have the potential to support the realisation of self-adaptive high-integrity
software. Table 1 summarises these results.

Models @ runtime. A growing number of research projects are investigating the
use of models to steer the runtime adaptation of software systems. The types of
models used by these projects range from architectural models [29,31] to paramet-
ric models of the valid system configurations [50] and data-flow automata [8].

The approach proposed in [29,31] employs formal analysis of architectural
models in order to achieve software adaptation. In contrast, the “dynamic soft-
ware product line” approach described in [50] achieves this runtime adaptation
by starting with a collection of system configurations whose non-functional prop-
erties are analysed and quantified off-line. A technique called “aspect-oriented

Emerging Techniques for Self-Adaptive High-Integrity Software 301

model reasoning’ is then used at runtime, to select and adopt the optimal config-
uration according to a set of well-defined requirements. Finally, the approach in
[8] uses synthesised data-flow automata to model the behaviour of web services
and to support their automatic composition into software applications.

On-line learning. The effectiveness of model-based reasoning about the proper-
ties of a software system depends on the accuracy of the models used in the anal-
ysis. This dependency is particularly relevant for self-adaptive software, where
the system evolution in response to changes can easily render obsolete the very
models used to guide this evolution. This serious limitation is addressed by
on-line learning techniques that use observations of the software behaviour to
maintain the analysed models up to date.

The project presented in [7], for instance, is actively working on the devel-
opment of a suite of statistical and automata learning techniques for inferring
the functional semantics and the behavioural semantics of networked systems,
respectively.

In the related approaches proposed in [14,25], the self-adaptation of service-
based systems with strict reliability requirements is achieved through the analysis
of discrete-time Markovian models whose transition probabilities are learnt on-
line by using Bayesian learning techniques. An analogous method for predicting
the response time of software components by using Kalman filter estimators is
described in [59]. This method enables the use of accurate queueing models in
the runtime analysis of the performance-related properties of certain types of
self-adaptive software.

Quantitative model checking @ runtime. Recent research aimed at improving the
dependability of self-adaptive software systems has proposed the use of quanti-
tative model checking in the runtime adaptation process [12,13,16,17,25]. Quan-
titative model checking [41] is a mathematically-based technique for establishing
the correctness, performance and reliability of systems characterised by stochas-
tic behaviour.

Quantitative model checking is traditionally used for the off-line analysis
of system properties expressed in temporal-logics extended with probabilities,
costs and rewards. In the ’@runtime’ variant of the technique advocated in
[13,16,17,25], this analysis is performed on-line, on continually updated ver-
sions of the software model and of its non-functional properties. The results
of the analysis are used to guide adaptation in ways that guarantee that the
software continues to satisfy its requirements despite changes in environment,
workload and internal state. Maintaining the model up to date involves the ap-
plication of the learning techniques described earlier in the paper [14,25,59], to
ensure that model parameters (e.g., the transition probabilities of discrete-time
Markov chains or the transition rates of continuous-time Markov chains) reflect
the evolution of the software behaviour. In contrast, the updates in the anal-
ysed properties correspond to user-initiated modifications in the non-functional
requirements of the software.

302 R. Calinescu

Given the potentially high overheads of quantitative model checking, using
the technique successfully in a runtime setting requires the exploitation of re-
cent research into improving its scalability [27,42]. The results presented in [27]
achieve significant scalability improvements by precomputing the quantitative
properties of the self-adaptive software off-line, as symbolic expressions whose
parameters are the variable success and failure probabilities of the software com-
ponents. The complementary approach in [42] works by restricting the runtime
analysis to those parts of the model that are affected by change, and reusing the
results from the previous analysis of all other parts.

Runtime verification. Runtime verification [45,47,54] is a technique that com-
plements off-line testing with the runtime monitoring and extraction of finite
software execution traces, followed by the analysis of these traces against a for-
mal specification of the correct software behaviour. This specification is described
using formalisms that range from temporal logics [45,54] and regular expressions
[2] to state machines [4] and rule systems [5]. In extended variants of the tech-
nique, the runtime detection of violations in the software requirements is used
to trigger adaptions that have a remedial effect [6,43].

Runtime verification is particularly suitable for self-adaptive software, where
the ability to use off-line testing to identify requirement violations is even more
limited than in the case of traditional, non-adaptive software.

Runtime certification. Runtime certification [55] refers to the on-line certification
of the dependability of self-adaptive software. The technique aims to augment
the fault detection, identification and reconfiguration approach from [23] with
guarantees that the chosen software reconfigurations do not have a negative
impact on dependability. The certification is achieved by means of model-based
runtime verification.

Model-driven development @ runtime. Model-driven development @ runtime
techniques were recently proposed [7,10,20,36] for the on-line synthesis of inter-
faces (or connectors) between the dynamically selected components of
self-adaptive software systems. The approach is currently applicable to service-
oriented software architectures, whose web service components expose standards-
based WSDL “models” [7,10,20]. These models are used to synthesise the
connectors required to integrate new components into an existing software ar-
chitecture as part of the adaptation process, while the framework proposed in
[36] enables the formal characterisation and verification of these connectors.

3.2 Critical Application Development through Service Integration

National and international strategic research agendas envisage that the types
of safety-critical and business-critical applications described in Sections 1–2 will
be increasingly developed through the dynamic integration of software services
[28,51,53]. These services are expected to be flexible and shareable, to belong to
multiple applications at the same time, and to self-adapt in response to change.

Emerging Techniques for Self-Adaptive High-Integrity Software 303

The research-funding programmes set up to support fundamental and applied
research leading to the development of such services specify that they will need to
interoperate across a range of platforms that includes private and public clouds,
Internet of Things (IoT) and Internet of Contents (IoC). In other words, they
need to be self-adaptive high-integrity services capable of on-the-fly integration
into critical software applications that inherit the capabilities of their component
services.

4 Towards a Service-Based Architecture Integrating
“@ Runtime” Techniques for Self Adaptation
and High Integrity

The vision of service-based future critical applications described above is il-
lustrated in Figure 1, which depicts the high-level architecture of two of the
applications mentioned in Section 2. The first application is an ambient assisted
living system assembled from:

– wearable vital parameter monitoring (e.g., [3]) and infusion pump (e.g., [46])
IoT devices;

– medical record (MR) and vital parameter analysis (VPA) services running
on a private cloud;

– public-cloud services such as emergency (Emerg), pharmacy (Pharm), ac-
cident and emergency (A&E), weather forecast (WF) and roadmap (Rmap).

The last two of these services are also part of a road traffic information system,
which also comprises:

– smart-vehicle and traffic-sensor IoT components;
– private-cloud traffic analysis (TA) services.

Each legacy or newly developed component of the service-based software archi-
tecture from Figure 1 is wrapped into an appropriately configured instance of
a reusable self-adaptive high-integrity service. This should be a standards-based
service that augments traditional service-oriented architecture (SOA) function-
ality with enhanced versions of the techniques described in Section 3.1, therefore
enabling the transparent integration of these “@runtime” techniques into critical
software applications.

Figure 2 shows a possible prototype architecture for such a self-adaptive
high-integrity service. The elements of this architecture employ the “@runtime”
techniques from Section 3.1 as described below.

Self-adaptive high-integrity middleware. The application-independent, reconfig-
urable self-adaptive high-integrity middleware at the core of the architecture
continually learns, maintains and exploits detailed, accurate and up-to-date be-
havioural models of peer services and of the system components it provides a
wrapper for. To achieve this, the middleware uses a combination of:

304 R. Calinescu

Private
Cloud

Internet of Things

Private
Cloud

Road traffic

Ambient assisted living information system

Public
Cloud

Pharm

A&E

Emerg

MR VPA

WF

Rmap

TA

system

Key:

self-adaptive
high-integrity
service

Fig. 1. Critical applications assembled through the cross-platform integration of inter-
operable services

(a) “models @ runtime” (to maintain a set of models that reflect the evolution
of its own behaviour and of the behaviour of its peer services);

(b) on-line learning techniques (to update its models);
(c) quantitative model checking @ runtime, and runtime verification techniques

(to guide its dependable adaptation); and
(d) runtime certification (to certify itself for the benefit of peer services and of

the applications it belongs to).

Configurator. The domain-specific configurator is used to repurpose the self-
adaptive high-integrity middleware for the application domain (or domains) that
it is meant to operate in. Configured middleware will be able to “speak” the rel-
evant domain-specific language(s) with similarly configured peer services, and
with the administrators and users of applications from these domains. This will
enable, for instance, the exchange and automated translation of domain-specific
requirements into an internal representation that can be analysed automatically
against up-to-date, on-line learnt models. The use of model-driven development
@ runtime techniques will be required to synthesise the software modules sup-
porting this functionality.

Intelligent proxies. The intelligent proxies linking the services belonging to
the same critical application(s) represent significantly enhanced versions of the

Emerging Techniques for Self-Adaptive High-Integrity Software 305

Models @ runtime

Runtime verification

A
d
ap
to
r
in
te
rf
ac
e

System
component

Intelligent proxy

System
component

System
component

C
on

fi
gu

ra
to
r

to/from peer
service middleware

to/from peer
services

from system admin,
users & peer services

O
n
-l
in
e
le
ar
n
in
g

R
u
n
ti
m
e
ce
rt
ifi
ca
ti
on

Self-adaptive
high-integrity
middleware

Quantitative model checking
@ runtime

Fig. 2. Prototype architecture of a self-adaptive high-integrity service that uses the
“@runtime” techniques from Section 3.1

traditional web service proxies used in today’s SOA applications. Thus, in addi-
tion to ensuring service interoperability, the intelligent proxies will continually
monitor the performance and dependability properties (e.g., response time and
success rate) of peer services. They will use the data obtained from this moni-
toring and fast on-line learning algorithms to devise partial peer-service models
that will be assembled into fully-fledged behavioural models by the self-adaptive,
high-integrity middleware.

Adaptor interfaces. The application-specific adaptor interfaces connect hetero-
geneous system components (e.g., the IoT virtual objects and cloud-deployed
services from the applications in Figure 1) to the middleware modules. As a
result, such components:

(a) can benefit from the capabilities provided by the middleware; and
(b) can be organised into interoperable self-adaptive, high-integrity services for

integration into multi-platform critical applications.

5 Conclusion

We argued that software engineering is unprepared for today’s fast-paced adop-
tion of self-adaptive software in safety-critical and business-critical applications.
The existing approaches to engineering the high-integrity software required in such
applications rely on models and properties that do not change over time, and are
underpinned by high-overhead analysis techniques suited for off-line use. Neither
of these prerequisites holds for self-adaptive software, which is typically developed
using “best-effort” techniques that cannot guarantee requirements compliance.

306 R. Calinescu

Software engineering needs to embark on a quest for techniques capable of
delivering high integrity and self adaptation at the same time. The outcome of
this quest should include low-overhead software engineering techniques capable
of fully automated, on-line operation, and novel architectures that integrate these
techniques into high-integrity self-adaptive software systems.

We explored a number of emerging software engineering paradigms that col-
lectively represent the starting point for this quest. The core principle underlying
all these paradigms is that software engineering techniques traditionally used in
the off-line stages of the software life cycle should be complemented by anal-
ogous techniques that are suitable for use at run time. A growing number of
research projects work on new software engineering techniques that match this
description. They include projects that use models at runtime to support the de-
pendable evolution, formal analysis, and certification of self-adaptive software;
and projects concerned with learning and updating the parameters and structure
of these models continually.

Many challenges need to be overcome before we can achieve effective assur-
ances for critical applications that use self-adaptive software. Key among these
challenges is the need for runtime model analysis and verification techniques that
are lightweight, incremental and compositional [15,18,32]. The ability to take full
advantage of such techniques will depend on the successful development of ef-
fective approaches for the on-line learning of the analysed models.

Future software systems will comprise components that join and leave dy-
namically [7,57], so suitable software components will need to be discovered and
their behaviour will need to be learnt “on the fly”. Assembling these software
systems for use in critical applications will require software architectures based
on reconfigurable middleware that integrates state-of-the-art runtime learning
and analysis techniques into an easy-to-use framework. We suggested a possi-
ble service-based architecture for this role and indicated how it could be built
through integrating a number of emerging software engineering techniques, but
significant additional work is required in this area.

Another important challenge is the development of novel approaches for
achieving the levels of component interoperability required by high-integrity self-
adaptive software. These approaches will have to be based on new standards for
expressing a broad range of functional and non-functional properties of software
components, and on scalable techniques for inferring the system-level properties
from the component properties.

Future safety-critical and business-critical applications will comprise large
numbers of embedded (or cyber-physical) systems. Ensuring that these applica-
tions achieve both high integrity and self adaptation will require the integration
of the software engineering advances mentioned above with established control
theory techniques.

Last but not least, there is the problem of “who watches the watchmen”:
the intelligent future middleware underpinning the high-integrity self-adaptive
software systems of the future will itself need to be certified or self-certifiable.

Emerging Techniques for Self-Adaptive High-Integrity Software 307

Acknowledgements. This work was partly supported by the UK Engineering
and Physical Sciences Research Council grant EP/H042644/1. The author is
grateful to Octavian Pastravanu for the insightful discussion about control theory
approaches to developing continuous-behaviour self-adaptive systems.

References

1. Aijaz, A., Bochow, B., Dotzer, F., Festag, A., Gerlach, M., Kroh, R., Leinmuller,
T.: Attacks on inter vehicle communication systems - an analysis. In: Proc. 3nd
Intl. Workshop Intelligent Transportation, pp. 189–194 (2006)

2. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA 2005), pp. 345–364. ACM (2005)

3. Anliker, U., et al.: AMON: a wearable multiparameter medical monitoring and
alert system. IEEE Transactions on Information Technology in Biomedicine 8(4),
415–427 (2004)

4. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for Trace Analysis.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

5. Barringer, H., Havelund, K., Rydeheard, D., Groce, A.: Rule Systems for Runtime
Verification: A Short Tutorial. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 1–24. Springer, Heidelberg (2009)

6. Bauer, A., Leucker, M., Schallhart, C.: Model-based methods for the runtime anal-
ysis of reactive distributed systems. In: Proc. Australian Software Engineering
Conference, pp. 243–252 (2006)

7. Bennaceur, A., Howar, F., Issarny, V., Johansson, R., Moschitti, A., Spalazzese, R.,
Steffen, B., Sykes, D.: Machine Learning for Emergent Middleware. In: Proceedings
of the Joint Workshop on Intelligent Methods for Software System Engineering
(2012)

8. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, pp. 141–150. ACM
(2009)

9. Burton, S., Clark, J., Galloway, A., McDermid, J.: Automated V&V for high
integrity systems, a targeted formal methods approach. In: NASA Langley Formal
Methods Workshop (January 2000),
ftp://ftp.cs.york.ac.uk/pub/hise/NASALangley.pdf (last retrieved on
September 10, 2012)

10. Calinescu, R.: Run-time connector synthesis for autonomic systems of systems.
Journal On Advances in Intelligent Systems 2(2-3), 376–386 (2009)

11. Calinescu, R.: When the requirements for adaptation and high integrity meet. In:
Proceedings of the 8th Workshop on Assurances for Self-Adaptive Systems (ASAS
2011), pp. 1–4. ACM, New York (2011)

12. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimisation in service-based systems. IEEE Trans-
actions on Software Engineering 37(3), 387–409 (2011)

ftp://ftp.cs.york.ac.uk/pub/hise/NASALangley.pdf

308 R. Calinescu

13. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM 55(9),
69–77 (2012)

14. Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve Marko-
vian model learning in QoS engineering. In: Proceedings 2nd ACM/SPEC Inter-
national Conference on Performance Engineering, pp. 505–510 (2011)

15. Calinescu, R., Kikuchi, S.: Formal Methods @ Runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011)

16. Calinescu, R., Kwiatkowska, M.: CADS*: Computer-Aided Development of Self-*
Systems. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp.
421–424. Springer, Heidelberg (2009)

17. Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement auto-
nomic IT systems. In: Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), pp. 100–110 (2009)

18. Calinescu, R., Kikuchi, S., Johnson, K.: Using Compositional Verification to Man-
age Change in Large-Scale Complex IT Systems. In: Large-Scale Complex IT Sys-
tems - Development, Operation and Management. LNCS, vol. 7539, pp. 303–329.
Springer (2012)

19. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

20. Cavallaro, L., Di Nitto, E., Pelliccione, P., Pradella, M., Tivoli, M.: Synthesiz-
ing adapters for conversational web-services from their WSDL interface. In: ICSE
2010 SEAMS: Workshop on Software Engineering for Adaptive and Self-Managing
Systems, pp. 104–113 (2010)

21. Collins, J., Ketter, W., Gini, M.: Flexible decision control in an autonomous trading
agent. Electronic Commerce Research & Appl. 8(2), 91–105 (2009)

22. COM(2011) 144: European Commission. Roadmap to a Single European
Transport Area Towards a competitive and resource efficient transport system
(2011), http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF (last retrieved on September 10,
2012)

23. Crow, J., Rushby, J.: Model-based reconfiguration: Diagnosis and recovery. NASA
Contractor Report 4596, NASA Langley Research Center, Hampton, VA (Work
performed by SRI International) (May 1994)

24. Easley, D., de Prado, M.M.L., O’Hara, M.: The microstructure of the ‘Flash Crash’:
Flow toxicity, liquidity crashes and the probability of informed trading. Journal of
Portofolio Management 37(2), 118–128 (2011)

25. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time adaptation. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 111–121. IEEE Computer Society Press (2009)

26. Feng, G., Lozano, R.: Adaptive Control Systems. Elsevier (1999)
27. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model

checking. In: Proceedings of the 33rd International Conference on Software En-
gineering, IEEE Computer Society (2011)

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF

Emerging Techniques for Self-Adaptive High-Integrity Software 309

28. Future Internet Assembly. Research Roadmap Towards Framework 8: Research
Priorities for the Future Internet (2011),
http://fisa.future-internet.eu/images/0/0c/

Future Internet Assembly Research Roadmap V1.pdf

29. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Software 23, 62–70 (2006)

30. Fritsch, S., Senart, A., Schmidt, D.C., Clarke, S.: Time-bounded adaptation for
automotive system software. In: Proceedings of the 30th International Conference
on Software Engineering, ICSE 2008, pp. 571–580. ACM, New York (2008)

31. Garlan, D., Schmerl, B.R.: Using architectural models at runtime: Research chal-
lenges. In: European Workshop Software Architecture, pp. 200–205 (2004)

32. Ghezzi, C.: Evolution, adaptation and the quest for incrementality. In: Preproceed-
ings of the 17th Monterey Workshop on Development, Operation and Management
of Large-Scale Complex IT Systems, pp. 79–88 (2012)

33. Ghini, V., Ferretti, S., Panzieri, F.: M-Hippocrates: Enabling Reliable and Inter-
active Mobile Health Services. IT Professional 14(3), 29–35 (2012)

34. Hartenstein, H., Laberteaux, K.P. (eds.): VANET: Vehicular Applications and
Inter-Networking Technologies. John Wiley & Sons (2009)

35. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, mod-
els, and applications. ACM Comp. Surveys 40(3), 1–28 (2008)

36. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-Layer Connector Syn-
thesis: Beyond State of the Art in Middleware Interoperability. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg
(2011)

37. Izumi, K., Toriumi, F., Matsui, H.: Evaluation of automated-trading strategies
using an artificial market. Neurocomputing 72(16-18), 3469–3476 (2009)

38. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
Journal 36(1), 41–50 (2003)

39. Kovatchev, B.: Closed loop control for type 1 diabetes. British Medical Journal 342,
d1911 (2011)

40. Kramer, G.C., Kinsky, M.P., Prough, D.S., Salinas, J., Sondeen, J.L., Hazel-Scerbo,
M.L., Mitchell, C.E.: Closed-loop control of fluid therapy for treatment of hypo-
volemia. Journal of Trauma-Injury Infection & Critical Care 64(4), S333–S341
(2008)

41. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In: Proc.
6th Joint Meeting of the European Software Engineering Conf. and the ACM
SIGSOFT Symp. Foundations of Software Engineering, pp. 449–458. ACM Press
(2007)

42. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
Markov decision processes. In: Proceedings 2011 IEEE/IFIP International Confer-
ence Dependable Systems and Networks (2011)

43. Kyas, M., Prisacariu, C., Schneider, G.: Run-Time Monitoring of Electronic Con-
tracts. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA
2008. LNCS, vol. 5311, pp. 397–407. Springer, Heidelberg (2008)

44. Lee, U., Cheung, R., Gerla, M.: Emerging vehicular applications. In: Olariu, S.,
Weigle, M.C. (eds.) Vehicular Networks: From Theory to Practice. Chapman and
Hall/CRC (2009)

45. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

http://fisa.future-internet.eu/images/0/0c/Future_Internet_Assembly_Research_Roadmap_V1.pdf
http://fisa.future-internet.eu/images/0/0c/Future_Internet_Assembly_Research_Roadmap_V1.pdf

310 R. Calinescu

46. Mastrototaro, J., Lee, S.: The Integrated MiniMed Paradigm Real-Time Insulin
Pump and Glucose Monitoring System: Implications for Improved Patient Out-
comes. Diabetes Technology & Therapeutics 11(s1), 37–43 (2009)

47. Meredith, P., Roşu, G.: Runtime Verification with the RV System. In: Barringer, H.,
Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O.,
Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 136–152. Springer, Heidelberg
(2010)

48. Meyer, B.: Dependable Software. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) De-
pendable Systems: Software, Computing, Networks. LNCS, vol. 4028, pp. 1–33.
Springer, Heidelberg (2006)

49. Meyer, G.: Traders flummoxed by natural gas ‘flash crash’. Financial Times (June
9, 2011)

50. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@run.time
to support dynamic adaptation. Computer 42, 44–51 (2009)

51. Networked European Software and Services Initiative. Research Priorities
for the next Framework Programme for Research and Technological De-
velopment FP8 (May 2011), http://www.nessi-europe.com/files/Docs/NESSI

%20SRA update May 2011 V1-0.pdf

52. Wallace, D.R., Ippolito, L.M., Kuhn, D.R.: High Integrity Software Standards and
Guidelines. NIST SP 500-204, National Institute of Standards and Technology,
Gaithersburg, MD, 20899 (September 1992)

53. National Science Foundation. Cyberinfrastructure Framework for 21st Century Sci-
ence and Engineering. A Vision and Strategy for Data in Science, Engineering, and
Education (April 2012),
http://www.nsf.gov/od/oci/cif21/DataVision2012.pdf

54. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
573–586. Springer, Heidelberg (2006)

55. Rushby, J.: Runtime Certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008)

56. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

57. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, J.T., Kwiatkowska, M.,
McDermid, J., Paige, R.: Large-scale complex IT systems. Communications of the
ACM 55(7), 71–77 (2012)

58. Food, U.S.: Drug Administration — Center for Devices and Radiolog-
ical Health. Infusion pump improvement initiative, White paper (April
2010), http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/

GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm (last re-
trieved on September 10, 2012)

59. Zheng, T., Woodside, M., Litoiu, M.: Performance model estimation and tracking
using optimal filters. IEEE Transactions on Software Engineering 34(3), 391–406
(2008)

http://www.nessi-europe.com/files/Docs/NESSI%20SRA_update_May_2011_V1-0.pdf
http://www.nessi-europe.com/files/Docs/NESSI%20SRA_update_May_2011_V1-0.pdf
http://www.nsf.gov/od/oci/cif21/DataVision2012.pdf
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm205424.htm

	Emerging Techniques for the Engineering
of Self-Adaptive High-Integrity Software
	Introduction
	Critical Applications Requiring Self-Adaptive High-Integrity Software
	Background
	Techniques for Self-Adaptive High-Integrity Software
	Critical Application Development through Service Integration

	Towards a Service-Based Architecture Integrating ``@ Runtime'' Techniques for Self Adaptation and High Integrity
	Conclusion
	References

