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Preface

During the past decade, one of the most important challenges in software
engineering has been to face the increasing complexity that affects software-
intensive systems, regarding not only their development, but most importantly,
their operation and maintenance, which cannot be entrusted to human operators
because of cost and dependability issues. One of the most successful techniques
to date when dealing with these issues is endowing systems with the ability
to self-adapt. Such systems monitor themselves at run-time through a variety
of probes, reflecting the observed behavior to a control layer that compares it
against a model of expected system behavior. When any anomalies or conditions
for improvement are detected, they attempt to address the situation (e.g., repair
a problem, optimize operation) through a set of effectors placed in the system.
Despite recent advances in this area, one key aspect of self-adaptive systems that
remains to be tackled in depth is assurances: the provision of evidence that the
system satisfies its stated functional and non-functional requirements during its
operation in the presence of self-adaptation.

This book is one of the outcomes of the ESEC/FSE 2011 Workshop on Assur-
ances for Self-Adaptive Systems (ASAS) held in Szeged, Hungary, in September
2011, which comprised discussions about the fundamental principles, models,
methods, techniques, mechanisms, state-of-the-art, and challenges for the provi-
sion of assurances in self-adaptive software systems. The book includes extended
versions of some of the papers presented during the workshop, as well as invited
papers from recognized experts. All the papers in this book were peer-reviewed.
The book consists of four parts: “Formal Verification,” “Models and Middle-
ware,” “Failure Prediction,” and “Assurance Techniques.”

The first part of the book, entitled “Formal Verification,” consists of five
papers describing approaches to the formal verification of systems featuring dif-
ferent self-* properties.

The first paper by Cordy, Classen, Heymans, Legay, and Schobbens, enti-
tled “Model Checking Adaptive Software with Featured Transition Systems,”
presents a formal framework for modeling and analyzing adaptive systems based
on featured transition systems, including a model able to capture dynamically
changing features in the system and its environment (AFTS), a logic (adaCTL)
to express system properties, and algorithms for model checking AFTS models
against adaCTL formulae.

The second paper by Filieri and Tamburrelli, entitled “Probabilistic Verifi-
cation at Runtime for Self-Adaptive Systems,” presents an approach to prob-
abilistic verification at run-time for self-adaptive systems based on parametric
model checking. Concretely, the authors present a method for the evaluation of
the probabilistic logic R-PCTL on parametric discrete-time Markov chains with
rewards that relies on algebraic computation.
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The third paper by Salaün, Etchevers, De Palma, Boyer, and Coupaye,
entitled “Verification of a Self-Configuration Protocol for Distributed Applica-
tions in the Cloud,” discusses the verification of a configuration protocol for
distributed applications in the cloud, where multiple components have to be
configured concurrently while respecting some dependencies. The authors use
formal verification to check that the protocol for self-configuration complies with
a formal specification of its expected behavior, considering aspects such as the
order in which components are started, or the correct order of the messages
being exchanged.

The fourth paper on formal verification by Nafz, Steghöfer, Seebach, and Reif,
entitled “Formal Modeling and Verification of Self-Organizing Systems Based on
Observer/Controller-Architectures,” presents an approach to formal modeling
and compositional verification of self-* systems. To achieve their goal, the authors
build upon the use of the observer/controller pattern and a verification approach
based on rely and guarantee, effectively dividing the verification of the self-*
system into two parts: the verification of the functional aspects of the system,
and the verification of its self-* features. The approach is illustrated using two
different case studies.

The fifth paper by Priesterjahn, Steenken, and Tichy, entitled “Timed Hazard
Analysis of Self-Healing Systems,” describes an approach for the timed analysis
of hazards in component-based self-healing systems. The approach enables the
assessment of the effectiveness of reconfiguration operations by determining if
these can be completed before the system reaches an unsafe state derived from
the propagation of the faults that triggered the reconfiguration in the first place.

Part two of this book, entitled “Models and Middleware,” consists of three
papers describing approaches on how robustness of autonomous and mobile sys-
tems can be improved by employing model-driven development and self-adapting
middleware infrastructures.

The first paper by Giese and Schäfer, entitled “Model-Driven Development
of Safe Self-Optimizing Mechatronic Systems with MechatronicUML,” describes
a model-driven development approach that combines modeling using a syntac-
tically and semantically rigorously defined, refined subset of UML and formal
verification to deal with safety guarantees in distributed, embedded, real-time
systems. Formal verification is based on decomposition and compositional model
checking, which enables the scalability of the approach.

The second paper on models, entitled “Model-Based Reasoning for Self-
Adaptive Systems — Theory and Practice,” by Steinbauer and Wotawa discusses
model-based reasoning and its application to self-adaptive systems in the context
of autonomous mobile robots. The paper extends the standard sense-plan-act
control paradigm with a model-based reasoning engine. The applicability of the
proposed approach is demonstrated in the context of a couple of case studies,
which involve repairing software at run-time and handling hardware faults in the
driving unit of an autonomous mobile robot.

The last paper of this part by Baresi, Guinea, and Saeedi, entitled “Achiev-
ing Self-Adaptation Through Dynamic Group Management” discusses a self-
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adapting middleware infrastructure that exploits the group abstraction to pro-
vide designers with powerful means to tackle the design and operation of large,
dynamic software systems. The middleware is evaluated in the context of a self-
adaptive industrialized greenhouse.

Part three of the book covers “Failure Prediction” and includes two papers
on how system reconfiguration can be affected by failure prediction.

In the first paper of this part, entitled “Accurate Proactive Adaptation of
Service-Oriented Systems,” Metzger, Sammodi, and Pohl review solutions for
measuring and ensuring the accuracy of online service quality predictions. They
analyze their applicability in the context of third-party services, identify some
shortcomings, and propose online testing as an alternative approach to achieve
accuracy. The conclusion was that obtaining accurate online quality predictions
is still a challenging endeavor.

The second paper “Failure Avoidance in Configurable Systems Through Fea-
ture Locality” by Garvin, Cohen, and Dwyer proposes a framework for failure
avoidance by reconfiguration in which the framework models individual failure
dependence on the system configuration, since these models can be learned more
quickly and with less effort. In order to predict the behavior of failures according
to historic failure models, the paper exploits a tendency for failures to depend on
similar combinations of features. The conclusion is that the adopted technique
performs quite well preventing and reconfiguring away from those failures that
it targets.

Part four of the book on “Assurance Techniques” contains two papers cover-
ing a wide range of techniques.

The first paper of this part, entitled “Emerging Techniques for the Engi-
neering of Self-Adaptive High-Integrity Software,” by Calinescu, provides an
overview on emerging techniques for the engineering of self-adaptive high-integrity
software. It proposes a service-based architecture that aims to integrate these
techniques, and discusses opportunities for future research.

The second paper “Assurance of Self-Adaptive Controllers for the Cloud,” by
Gambi, Toffetti, and Pezzé, discusses the assurance of self-adaptive controllers
for the Cloud, and proposes a taxonomy of controllers based on the supported
assurance level. The focus of the paper is on the infrastructure as a service (IaaS)
layer that takes care of allocating resources to applications. The authors iden-
tify two main dimensions for obtaining assurances for self-adaptive controllers,
the target levels of assurance and adaptability, and propose a classification of
self-adaptive controllers induced by these two dimensions. They also identify
combinations of design-time and run-time elements that reach a good compro-
mise between assurance and adaptability, and distinguish some outliers that
come from particular choices or uses.

Although the papers in this book have covered a wide range of topics regard-
ing assurances for self-adaptive systems, one could still identify several chal-
lenges associated with the field, just to name some: combine development-time
rationale with run-time decision making, select and deploy during run-time the
appropriate verification and validation tools and techniques for the generation



VIII Preface

of evidence, and analyze the collected evidence in order to build arguments that
should be evaluated against the goals of the system. Moreover, as the system
evolves, it may require different degrees of assurance, thus one needs to consider
that these assurances need to be dynamically provided depending on the changes
that may affect the system, its goals, or the context in which it operates. Nev-
ertheless, we hope that this book will prove valuable for both practitioners and
researchers working in the area of assurances for self-adaptive systems, and will
be a stepping stone for future research.

We would like to thank all the authors of the book chapters for their excellent
contributions, the participants of the ESEC/FSE 2011 Workshop on Assurances
for Self-Adaptive Systems (ASAS) for their inspiring participation in moving
this field forward, and Alfred Hofmann and his team at Springer for helping us
to publish this book. Last but not least, we deeply appreciate the great efforts of
the following expert reviewers who helped us ensure that the contributions are
of high quality: L. Baresi, R. Calinescu, A. Classen, M. Cohen, C.E. da Silva,
V. De Florio, N. De Palma, M. Dwyer, H. Giese, L. Grunske, S. Guinea, A. Legay,
A. Metzger, R. Mirandola, M. Pezzè, P. Saeedi, G. Salaün, B. Schmerl, P.-Y.
Schobbens, H. Seebach, G. Steinbauer, G. Tamburrelli, M. Tichy, G. Toffetti,
M. Vieira, F. Wotawa, and several anonymous reviewers.

November 2012 Javier Cámara
Rogério de Lemos

Carlo Ghezzi
Antónia Lopes
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Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



Model Checking Adaptive Software

with Featured Transition Systems

Maxime Cordy1,�, Andreas Classen1, Patrick Heymans2,
Axel Legay3, and Pierre-Yves Schobbens1
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INRIA Lille-Nord Europe – Universit Lille 1, France

LIFL – CNRS, France
phe@info.fundp.ac.be

3 INRIA Rennes, France
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axel.legay@inria.fr

Abstract. We propose to see adaptive systems as systems with highly
dynamic features. We model as features both the reconfigurations of the
system, but also the changes of the environment, such as failure modes.
The resilience of the system can then be defined as the fact that the
system can select an adequate reconfiguration for each possible change
of the environment. We must take into account that reconfiguration is
often a major undertaking for the system: it has a high cost and it
might make functions of the system unavailable for some time. These
constraints are domain-specific. In this paper, we therefore provide a
modelling language to describe these aspects, and a property language
to describe the requirements on the adaptive system. We design algo-
rithms that determine how the system must reconfigure itself to satisfy
its intended requirements.

1 Introduction

Our society increasingly entrusts computerized systems with complex and criti-
cal tasks. These systems have to be adapted, or adapt themselves, to a rapidly
evolving environment, while accomplishing their tasks reliably. Due to the short
reaction times required, some of these adaptations have to be performed auto-
matically, leading to self-adaptive systems. Such systems are usually architected
in two levels: The base level manages the basic tasks of the system. It has a
simple design that allows rapid response times, but does not allow to respond
to exceptional conditions. For instance, a satellite control system is in charge of
maintaining the attitude of the satellite so that the solar panels face the sun. It

� FNRS Research Fellow.

J. Cámara et al. (Eds.): Assurances for Self-Adaptive Systems, LNCS 7740, pp. 1–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Cordy et al.

must react rapidly when the satellite starts to spin. On the other hand, the adap-
tive level can detect a change of conditions, and reprogram the base system to
adapt to these new conditions. Again, the base system is efficient, but often not
exhaustive. For instance, when entering the shadow of a planet, the system will
be adapted to give priority to the orientation of the data transmission antenna.

In this paper, we propose to model such adaptation by the notion of feature,
borrowed from product lines engineering. Classically, a feature is an added func-
tionality to the system, that responds to a (new) need of the customer. Here, a
feature can also be an adaption to environmental conditions. For uniformity, we
also model such evolutions of the environment (in which we might include some
parts of the system itself) as special “features”. They can be failures (in which
case the associated behaviour describes the failure mode and effects), increase
of power of an attacker (in which case the associated behaviour describes the
modus operandi of attacks), etc.

In some cases, preserving the functionality of the system is not possible, e.g.
in the presence of severe failures. Therefore the requirements need to allow for
degraded functionality in such cases, and thus our requirements logic (Section 4)
also should include dependency on features. For instance, when a solar panel is
damaged, the satellite is allowed to shut down some of its non-prioritary facilities
(e.g., observation of aurora borealis) to preserve its vital functions (e.g., avoiding
falling on Earth) instead. We thus define resilience as the capacity to ensure
such conditional requirements in presence of a changing environment (at end of
Section 4).

More concretely, our contributions are the following: we propose in Section
3 a fundamental framework, called A-FTS, to model the evolution of both the
environment and the adaptive system, and in Section 4 AdaCTL, a temporal
logic to describe the requirements on such a system. The next step is, naturally,
to check whether the model satisfies the requirements in face of a changing
environment, i.e., its resilience. This resilience-checking problem departs from
the classical model-checking problem in several ways, and thus requires specific
adaptations of the classical algorithms, presented in Section 5.

Finally, we compare our approach to extant work in Section 6. This paper
only addresses modelling and checking the behaviour of an adaptive system.
We briefly sketch the other tools needed for a more comprehensive approach to
(self-)adaptive systems in Section 7.

2 Background

In order to make this paper self-contained, we first recapitulate essential defini-
tions related to SPL modelling and verification.

Model checking is a well-known technique for verifying software-intensive sys-
tems against temporal properties. In a nutshell, given the model of a system M
and a temporal property Φ, a model-checking algorithm determines whether or
not M satisfies Φ, written M |= Φ. One may use labelled transition system (LTS)
as such a model.
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Definition 1. An LTS is a tuple (S,Act, trans, I, AP, L) where S is a set of
states, Act is a set of actions, trans ⊆ S × S is a transition relation, I ⊂ S is
a set of initial states, AP is a set of atomic propositions, and L : S → 2AP is a
labelling function that associates every states with the set of atomic propositions
satisfied by this state.

We call an execution (or run) of the system an alternating sequence of states
and actions. The semantics of an LTS, noted [[.]]LTS , is then its set of executions,
that is,

[[ts]]LTS = {s0, α0, s1, α1, . . . , si, αi, . . . | s0 ∈ I ∧ (si, αi, si+1) ∈ trans}. (2.1)

In the context of SPLs, the model-checking problem becomes more complex
as it requires to identify the exact set of products that do not satisfy a given
property [17]. To answer it, one can model each product with an LTS and model-
check each of them separately. However, for a SPL of n features, this would
require O(2n) calls to a model checker. Given that distinct products of an SPL
may have commonalities in their behaviour, there is a need for concise models
and efficient algorithms able to distinguish between commonality and variability.

In this paper, we assume that the variability is captured in a feature model,
features being atomic units of difference between products. A product is then
uniquely defined by a set of features.

Definition 2. Let F be a set of features. Then a product p is a subset of F , that
is, p ∈ P(F ) where P denotes the powerset.

Several representations exist for feature models. Here, we remain at an abstract
level and consider feature models independently of their representation. More
precisely, we stick to the semantics of Schobbens et al. [47] and assume that a
feature model defines a set of valid products, i.e., a set of authorized combina-
tions of features.

Definition 3. A feature model is a couple

d = (F, [[d]] ⊆ P(P(F ))) (2.2)

where F is a set of features, and [[d]] is the set of valid combinations of features.

Given the similarities between different products, SPL modelling approaches
aim to capture both their commonality and their variability in a compact man-
ner [8,22,7,17]. Most of them rely on the use of variability operators that deter-
mine which parts of the model may or may not be present in a given product;
the non-variable parts being shared by all the products. For instance, we pro-
posed Featured Transition Systems (FTS) as an extension of Labelled Transition
Systems (LTS) meant to model the behaviour of SPLs [17]. FTS model design-
time variability of the system behaviour by labelling transitions (i.e., executions
of actions) between two states of the system with Boolean constraints defined
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over the set of features. Then a given product is able to trigger a given transi-
tion if and only if its set of features satisfies the associated constraints. Such a
constraint is called feature expression and is formally defined as follows.

Definition 4. A feature expression exp defined over a set of features F is a
total function

exp : P(F ) → {�,⊥}. (2.3)

For a given product p, exp(p) returns � if and only if the features of p satisfies
the constraints expressed by exp. In this case, we say that p satisfies exp. We
denote by [[exp]] ⊆ P(F ) the set of products that satisfy exp and by � the feature
expression such that [[�]] = P(F ). In FTS, we use feature expressions to restrict
the set of products able to execute a given transition [16].

Definition 5. An FTS is a tuple (S,Act, trans, I, AP, L, d, γ), where

– S,Act, trans, I, AP, L are defined as in Definition 1,
– d is a feature diagram,
– γ : trans → P(F ) → {�,⊥} is a total function, labelling each transition

with a feature expression.

Thanks to the use of feature expressions, an FTS is a compact representation
for a set of LTS, namely one per product. One can obtain the LTS modelling
the behaviour of a given product by computing the projection of the FTS onto
that product [17].

Definition 6. The projection of an FTS fts to a product p ∈ [[d]], noted fts |p,
is the LTS (S, Act, trans′, I, AP, L) where trans′ = {t ∈ trans | p ∈ [[γ(t)]]}.

The semantics of an FTS M = (S,Act, trans, I, AP, L, d, γ), noted [[fts]]FTS ,
is then defined as a function that associates a product with the semantics of its
projection:

[[M]]FTS : P(F ) → (S ×Act)ω : ∀p ∈ [[d]] • [[M]]FTS(p) = [[M |c]]LTS (2.4)

Model checking an FTS against a property Φ comes down to distinguishing
between the products that satisfy Φ and the ones that do not. This leads us to a
new notion of satisfiability |=F , which is not Boolean. Formally, if M is an FTS
defined over a feature model d and Φ is a property, we have

(M |=F Φ) = {p ∈ [[d]] • M |p |= Φ} (2.5)

Given the importance of features in SPLs, a suitable logic should include spe-
cial operators that reason over them. For this purpose, we defined a featured
extension of the Computational Tree Logic (CTL) [15]. It is called fCTL. Any
formula defined in this logic has the form [χ]Φ where χ is a feature expression
and Φ is a CTL formula. Given an FTS M defined over a feature model d and
a product p ∈ [[d]], p satisfies [χ]Φ if and only if p does not satisfy χ or M |p
satisfies Φ.
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3 Modelling the Behaviour of Dynamic SPLs

One way to model a dynamically adaptive software is to represent it as a set
of static programs and transitions between them [51]. A transition between two
programs models an adaptation of the system, which may be needed in case of
changes in the properties of the environment. Since those programs are usually
meant to satisfy the same set of high-level goals, they likely share commonalities
in their structure and behaviour. Moreover, nowadays an increasing number of
software systems are designed as product lines and we observe the emergence of
Dynamic Software Product Lines (DSPLs) [33], especially in the mobile software
industry. In order to cope with changing architectures and environments, these
SPLs are equipped with the ability to change their set of features at runtime. In
this context, we call configuration the set of features of a system at a particular
point of time, and reconfiguration the process of altering the configuration of
this system. The details of such reconfigurations are often hidden to the user
who can only witness which features of the system have changed.

However, behavioural modelling approaches for SPLs like FTS do not con-
sider that an SPL may have to adapt its behaviour due to unexpected changes
in the environment. In other words, a given configuration is chosen and fixed
through the whole execution of the system, which is thus completely dependent
to the environment. Here, we propose a new modelling formalism that allows
dynamic reconfiguration. More precisely, we introduce Adaptive Featured Tran-
sition Systems (A-FTS), an extension of FTS meant for modelling DSPLs. A-
FTS explicitly represent the variability of both the system and its environment.
The latter is defined as a set of features, such that an environment feature is a
Boolean characteristic of the environment that may change over time and that
the software has the ability to perceive. The capability of the software to execute
a transition thus depends on both its features and those of the environment. For
the system, we distinguish between fixed, non-mutable features and adaptable
features. To capture the variability of both the system and the environment, we
now define a feature model as a tuple

d = (F, Fs ⊆ F, Fa ⊆ Fs, [[d]] ⊆ P(P(F ))) (3.1)

where F is the set of all the features, Fs is the set of the system’s features, Fa is
the set of the system’s adaptable features, and [[d]] the set of valid configurations.
We also assume that the system and the environment do not share any feature,
so that we can define the set of the environment features (noted Fe) as F \ Fs.
According to the above, we define a system configuration (resp. an environment
configuration) as a subset of Fs (resp. Fe), and a (complete) configuration is the
union of these two.

An adaptable feature may be enabled or disabled at some points during the
execution. Unexpected variations in the environment may force the software
to adapt its configuration so that it still works properly according to intended
requirements. Given that objective, we consider that after the system executes a
transition, it is able to observe the features of the environment that are enabled
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at that time. According to the current configuration of the environment, the
system may alter its own configuration so that it avoids failure or undesirable
situations. Since we do not yet consider real-time constraints, we suppose that
these reconfigurations are atomic and instantaneous. However, the system can be
forbidden to reconfigure itself at some point because it must first terminate the
execution of a given sequence of actions. In particular contexts, the environment
can also be stable during a given period. The following formal definition of A-
FTS takes all these considerations into account.

Definition 7. An A-FTS is a tuple (S,Act, trans, i, AP, L, d, γ) where

– S, Act, I ⊆ S, AP , and L : S → P(AP ) are defined as in Definition 1;
– d = (F, Fs, Fa, [[d]]) is the feature model modelling the variability of both the

system and the environment;
– γ : S × Act × S → (P(F ) × P(F ) → {�,⊥}) is a function that defines the

transition relation.

Note that unlike LTS and FTS, the transition relation is not defined as a set
called trans. Instead, we use the function γ to encode symbolically which tran-
sitions exist, which products can execute them and how the configuration of the
system and the environment evolve. More precisely, this function allows us to:

1. Determine whether of not the system can reach a state s′ by executing an
action α from a state s. If that is not the case then γ(s, α, s′) is a function that
returns a ⊥ whatever the configuration of the system and the environment.

2. Restrict the set of configurations able to execute such a transition. Let us
suppose that the the system can reach s′ from s by executing α if and only
if its features satisfy the feature expression exp. For any system’s configura-
tions c ∈ [[exp]], c′ ∈ P(Fs) and environment’s configurations e, e′ ∈ P(Fe),
we have γ(s, α, s′)(c ∪ e, c′ ∪ e′). This definition of transition relation is thus
more general than in FTS.

3. Restrain how the configuration of the system and the environment can evolve
after the execution of the transition. For instance, let us suppose that if the
system moves from s to s′ by executing α while in configuration c then it
cannot change its configuration at all. To express that constraint we define
that for any system’s configuration c and environment’s configurations e and
e′, we have for any c′ that γ(s, α, s′)(c ∪ e, c′ ∪ e′) =⊥.

Note that γ must be defined such that only the adaptable features of the system
may be enabled or disabled during runtime:

(c \ c′) ∪ (c′ \ c) �⊆ Fa =⇒ ¬γ(s, α, s′)(c ∪ e, c′ ∪ e′) (3.2)

for any s, α, s, c, c′, e, e′. Moreover, any reconfiguration of the system and the
environment must ensure that the new configuration is valid (that is, it must
satisfy the constraints of the feature model). Accordingly, the function γ must
be such that:

c′ ∪ e′ �∈ [[d]] =⇒ ¬γ(s, α, s′)(c ∪ e, c′ ∪ e′) (3.3)

for any s, α, s, c, c′, e, e′.
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Example 8. An example of an A-FTS is graphically illustrated in Figure 1.
It depicts a small behavioural model of an adaptive routing protocol inspired by
the case study of Zhang et al. [51]. The system has one adaptable feature en-
cryption, which leads to two possible configurations. Similarly, the environment
has one feature safe that may or may not be enabled. Initially, the system is in
state ready. Once it receives a message, it enters the state received. Then, it
routes the message and enters either routed-safe or routed-unsafe depend-
ing on whether the environment is safe or not. This information is captured by
the environment’s feature safe. In our graphical representation, we model these
restrictions by writing the feature expression that must be satisfied by the cur-
rent configuration of the system and the environment for the transition to be
executable. Formally, we make use of the transition relation γ for defining those
restrictions. For instance, we know that the transition between received and
routed-unsafe cannot be executed in a safe environment; accordingly, we de-
fine γ such that

¬γ(received, route(), routed-unsafe)(c ∪ e, c′ ∪ e′) (3.4)

where safe ∈ e and for any e′,c,c′. In order to increase readability, we do not
explicitly represent the whole definition of the function γ.

If the environment is safe then the system simply sends the message, reaches
the state sent-safe and ends up going back to the state ready. If the environ-
ment is not safe and if the system’s feature encryption is enabled, then the system
encrypts the message and sends it afterwards. Otherwise, it sends the message
unencrypted. In every case, the system eventually returns to state ready. In our
graphical representation, the set of atomic propositions satisfied by a given state
is written directly below it.

Additionally, we define that once the system has routed the message it cannot
change its configuration until it reaches state ready again. Similarly, we suppose
that the feature of the environment are stable between the routing and the sending.
We capture those restrictions by means of the transition relation γ. For instance,
we have

γ(routed-safe, send(), sent)(c ∪ e, c′ ∪ e′) ⇔ (c = c′ ∧ e = e′). (3.5)

for any c, c′, e, e′. A property of interest for this system is that while the environ-
ment is unsafe, no package is sent before it is encrypted. Further in the paper,
we introduce a new logic able to express such properties.

As mentioned in Section 2, an (infinite) execution of a transition system is defined
as an alternating sequence of “states” and actions. Unlike LTS and FTS, the
concept of state in A-FTS does not only refer to the state of the system itself,
but also to its configuration as well as that of the environment. In order to avoid
ambiguity, we call that a macrostate.

Definition 9. Let M be an A-FTS. Then a macrostate of M is a triplet

(s, c, e) ⊆ S × P(Fs)× P(Fe).



8 M. Cordy et al.

ready received

routed-

safe

sent-

encrypt

sent

routed-

unsafe

{sent}

{sent, encrypt}

∅∅

∅

receive() /

ro
ut

e(
) /

 sa
fe

route() / ¬safe

send() /

send() /
 ¬encrypt

send() / encrypt

ready() /

ready() /

∅

Fig. 1. The A-FTS modelling the adaptive routing protocol

For example, one of the macrostates of the A-FTS presented in Example 8 is
(ready, ∅, {safe}). If the A-FTS is in this macrostate, it means that the system
is in state ready, has not the feature encryption enabled and executes in a safe
environment. Then once the action receive() is executed, the A-FTS can reach
one of the following four macrostates: (receive(), ∅, ∅), (receive(), ∅, safe),
(receive(), encryption, ∅), and (receive(), encryption, safe). The actual ma-
crostate depends on how the environment evolves and how the system decides
to reconfigure itself.

Definition 10. A run in an A-FTS M is a sequence of the form

(s0, c0, e0)α0(s1, c1, e1)α1 . . . (si, ci, ei)αi . . .

where (s0, c0, e0) ∈ I ×P(Fs)×P(Fe) is called the initial macrostate and where
for every i ∈ N we have γ(si, αi, si+1)(ci ∪ ei, ci+1 ∪ ei+1).

Note that this definition allows the system to start in any valid configuration.
For instance, a run in the A-FTS described in Example 8 is

(ready, ∅, {safe}) receive() (ready, {encrypt}, ∅) route()

(routed-unsafe, {encrypt}, ∅) send() (sent-encrypt) ready()

(ready, ∅, {safe}) . . . (3.6)

As for FTS, we define the projection of an A-FTS onto a configuration c as the
A-FTS obtained by setting its initial configuration to c. The resulting A-FTS is
noted M |c and is such that
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[[M |c]] = {(s0, c0, e0)α0(s1, c1, e1)α1 . . . (si, ci, ei)αi · · · ∈ [[M]] |
s0 ∈ I ∧ c0 = c ∧ ∀i ∈ N • (si, ci, ei) ⊆ S × P(Fs)× P(Fe)}. (3.7)

Then the semantics of an A-FTS is a function that associates a system configura-
tion c with the set of executions where the system starts in configuration c.

Definition 11. Let M be an A-FTS. The semantics of M is the function

[[M]] : P(Fs) → (S × P(Fs)× P(Fe)×Act)ω • [[M]](c) = [[M |c]] (3.8)

According to the above semantics, there is a close relation between A-FTS,
FTS and LTS. An FTS is an A-FTS where the environment has an established,
unchanging configuration and where the system starts in any valid configuration
and never modifies it, that is

∀(s0, c0, e0)α0(s1, c1, e1)α1 . . . (si, ci, ei)αi · · · ∈ [[M]] •

∀i ∈ N • ci = ci+1 ∧ ei = ei+1. (3.9)

A sufficient condition for that condition to hold is that γ(s, α, s′)(f, f ′) returns
⊥ whenever f �= f ′. In this case, two runs differ only by (1) the actions chosen
by the environment and (2) the states reached by the system. Furthermore, the
projection of this FTS onto a configuration c (i.e. an LTS) is equivalent to the
projection of this special A-FTS to c.

4 The AdaCTL Logic

To express properties that a DSPL must satisfy, we use a variant of the fCTL
logic. The resulting logic, called Adaptive Configuration Time Logic (AdaCTL),
extends the syntax of fCTL to allow further reasoning over the features. Also,
its semantics is different because it takes into account that the system and the
environment are not always allowed to change their own configuration. In this
section, we introduce the syntax and the semantics of AdaCTL and provide an
example of properties that can be expressed in this logic.

4.1 Syntax

We can classify the AdaCTL formulae into three categories. The first type of
formula is called feature formula. It has the form

Ψ ::= [χ]Φ (4.1)

where χ is a feature expression and Φ is a state formula. To increase readability,
when the feature expression χ is equivalent to �, we omit it; that is, for any
state formula Φ, we define that
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Φ � [�]Φ. (4.2)

A state formula is defined over a set AP of atomic propositions and is built
according to the following grammar:

Φ ::= � | a | Ψ1 ∧ Ψ2 | ¬Ψ | Aϕ | Eϕ (4.3)

where a ∈ AP , Ψ , Ψ1 and Ψ2 are feature formulae, and ϕ is a path formula. This
latter category of AdaCTL formula is defined as follows:

ϕ ::= ©Ψ | Ψ1U Ψ2 | Ψ1R Ψ2 (4.4)

where Ψ , Ψ1, and Ψ2 are feature formulae, © is the next operator, U is the until
operator, and R is the release operator.

Before providing AdaCTL with a formal semantics, we first explain it intu-
itively for each type of formula. A feature formula [χ]Φ means that if the system
is in a given macrostate (s, c, e) such that the configuration of the system and
the environment satisfy the feature expression χ (that is, c ∪ e ∈ [[χ]]), then s
must satisfy the state formula Φ. It is thus very similar to an fCTL formula. The
difference is that in fCTL, a feature expression occurs before the top-level state
formula only, whereas AdaCTL allows it to occur before any state formula. This
provides more flexible ways to reason on the features. In particular, if we want to
express that a feature f must be enabled, we may use the formula [¬f ] ⊥, which
is satisfied if and only if the system is in a configuration where f is enabled.
Moreover, while authorizing feature expressions to occur at any level of a for-
mula would not change the expressiveness of fCTL, it increases that of AdaCTL.
For example, since the environment is modelled as a set of features varying over
time, AdaCTL formulae can model changes of objectives with respect to what
happened in the past.

A state formula is a formula defined over a state. Any macrostate satisfies the
formula �. A macrostate (s,c,e) satisfies a if and only if a belongs to the set of
atomic propositions in L(s); it satisfies the conjunction of two formulae if and
only if it satisfies both. Also, the negation of a formula is satisfied if and only
if the formula itself is not satisfied. The AdaCTL operator E is similar to the
existential operator of CTL: a macrostate m satisfies the formula Eϕ if and only
if there exists a path starting from m that satisfies ϕ.

The most subtle difference between AdaCTL and the other two logics lies in
the semantics of formulae of the form Aϕ. A macrostate m satisfies Aϕ if and
only if starting from m, the system can ensure by means of reconfigurations that
any forthcoming execution will satisfy ϕ regardless of the environment.

As in CTL, a path π satisfies the AdaCTL path formula ©Ψ if and only if the
first macrostate of π (that is, the macrostate following the initial one) satisfies
the feature formula Ψ . A path π satisfies Ψ1UΨ2 if and only if it eventually
reaches a macrostate mj that satisfies Ψ2 and every macrostate before mj on π
satisfies Ψ1. Finally, π satisfies Ψ1RΨ2 if and only if every macrostate reached by
π satisfies Ψ2 unless a previously reached macrostate satisfied Ψ1.



Model Checking Adaptive Software 11

From the until and the release operator, one can derive two additional, in-
tensively used operators: eventually (♦) and forever (�). Intuitively, a path π
satisfies ♦Ψ if and only if there exists a macrostate along π that satisfies Ψ ; π
satisfies �Ψ if and only if every macrostate along this path satisfies Ψ . Formally,
these two operators are obtained as follows:

[χ]E♦Ψ = [χ]E(� U Ψ) (4.5)

[χ]A♦Ψ = [χ]A(� U Ψ) (4.6)

[χ]E�Ψ = [χ]E(� R Ψ) (4.7)

[χ]A�Ψ = [χ]A(� R Ψ) (4.8)

Example 12. We now provide an example of AdaCTL formula. Let us con-
sider the A-FTS presented in Example 8 and the property according which the
system must ensure that in an unsafe environment, no packet is sent before it is
encrypted. We can express this property as the AdaCTL formula

A�([¬safe]A(¬sent U[¬safe]encrypted)) (4.9)

The � operator is needed because the environment can become unsafe at any mo-
ment. According to this formula, from every macrostate where the environment
feature safe is disabled, the system must eventually reach a macrostate where
either the atomic proposition encrypted is satisfied or the environment is safe
again; any macrostate reached in the mean time must be such that the atomic
proposition sent is not satisfied.

Example 13. Assume we model the requirements for a satellite to normally
always maintain altitude (a) and make observations (o), but in case the solar
panels are damaged (failure d), the second requirement can be dropped:

A�( a ∧ [¬d]o ) (4.10)

In classical CTL, the R operator is derived from the operator of U and the
negation. Consequently, � is also derived from ♦ and the negation. However, as
we will show further in this section, this definition is not suitable in AdaCTL
because A and E are not dual. Hence the need for considering R as a primitive
operator that cannot be derived from the others.

4.2 Semantics

Before providing AdaCTL with a formal semantics, we first formalise the notions
of strategy for both the system and the environment. Intuitively, a strategy
for the system determines how the systems reacts (that is, how it reconfigures
itself) according to what happened in the past. We call that a reconfiguration
strategy.
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Definition 14. Let M = (S,Act, trans, i, AP, L, d, γ) be an A-FTS. A recon-
figuration strategy is a function

StrC : (S × P(Fs)× P(Fe))
+ × S × P(Fe) → P(Fs) (4.11)

where X∗ is the type of the sequences of Xs.

Intuitively, the system modifies its configuration according to the sequence of all
the macrostates that have been previously visited, the next state that is reached
and the next configuration of the environment.

Similarly, we can encode non-deterministic choices and uncontrolled configu-
ration as a strategy for the environment.

Definition 15. Let M = (S,Act, trans, i, AP, L, d, γ) be an A-FTS. An envi-
ronment strategy is a function

StrE : (S × P(Fs)× P(Fe))
+ → Act× P(Fe) (4.12)

An environment strategy thus associates the sequence of macrostates that have
already been visited with an action and a new configuration for the environment.
These definitions of strategy are closely related to those found in the Alternating
Time Logic (ATL) theory [2]. If the notion of feature were absent, AdaCTL
model checking could be regarded as a particular case of ATL model checking.
We discuss the link between these two logics more thoroughly in Section 6.

Given an initial macrostate init = (s0, c0, e0), an environment strategy StrE ,
and a reconfiguration strategy StrC , applying StrE and StrC from init results
in a unique execution

Path(init, StrC , StrE) = (s0, c0, e0)α0(s1, c1, e1)α1 . . .

such that ∀i ∈ N we have

(αi, ei+1) = StrE(s0, c0, e0, . . . , si, ci, ei) (4.13)

ci+1 = StrC(s0, c0, e0, . . . , si, ci, ei, si+1, ei+1). (4.14)

This run is valid according to M if and only if it is part of the semantics
of M, that is, Path(Init, StrC , StrE) ∈ [[M]]. More generally, we denote by
Path(m,StrC , StrE) the path starting from a macrostate m induced by the
environment strategy StratE and the reconfiguration strategy StratC .

Following the definition of valid execution, we define that an environment
strategy StrE is valid according to M if and only if it cannot lead to invalid
executions.

∀init ∈ I × P(Fs)× P(Fe) • ∀StrC • Path(init, StrC , StrE) ∈ [[M]] (4.15)

We define similarly the validity of a reconfiguration strategy StrC :

∀init ∈ I × P(Fs)× P(Fe) • ∀StrE • Path(init, StrC , StrE) ∈ [[M]] (4.16)

From now on, we consider only valid strategies. Then, we define the semantics
of AdaCTL as follows.



Model Checking Adaptive Software 13

Definition 16. Let M be an A-FTS, (s, c, e) one of its macrostates. Then the
satisfiability of an AdaCTL feature or state formula by M in macrostate (s, c, e)
is determined according to the following rules:

M, (s, c, e) |= [χ]Φ ⇔ c ∪ e �∈ [[χ]] ∨M, (s, c, e) |= Φ

M, (s, c, e) |= � ⇔ �
M, (s, c, e) |= a ⇔ a ∈ L(s)

M, (s, c, e) |= Φ1 ∧ Φ2 ⇔ M, (s, c, e) |= Φ1 ∧M, (s, c, e) |= Φ2

M, (s, c, e) |= ¬Φ ⇔ ¬(M, (s, c, e) |= Φ)

M, (s, c, e) |= Eϕ ⇔ ∃StrC • ∃StrE • M, Path((s, c, e), StrC , StrE) |= ϕ

M, (s, c, e) |= Aϕ ⇔ ∃StrC • ∀StrE • M, Path((s, c, e), StrC , StrE) |= ϕ

The semantics of path formulae is very similar to that of CTL path formulae:

M, π |= ©Ψ ⇔ π[1] |= Ψ

M, π |= Ψ1UΨ2 ⇔ ∃j ≥ 0 • π[j] |= Ψ2 ∧ ∀i ≤ j • π[i] |= Ψ1

M, π |= Ψ1RΨ2 ⇔ (∀j ≥ 0 • π[j] |= Ψ2) ∨ (∃i • π[i] |= Ψ1 ∧ ∀k ≤ i • π[k] |= Ψ2)

where π is a path, π[0] is the initial macrostate of π, and π[i+1] is the macrostate
following π[i] in π.

According to the above, we define that M |c satisfies an AdaCTL formula Ψ if
and only if for any initial state i of M and environment configuration e, M
satisfies the formula in macrostate (i, c, e); that is,

(M |c |= Ψ) ⇔ ∀i ∈ I • ∀e ∈ P(Fe) • M(i, c, e) |= Ψ. (4.17)

This leads us to the more general satisfiability relation of an AdaCTL formula
by an A-FTS. As for FTS and fCTL, this relation, noted |=F is not boolean [19].
Instead, it is defined as the set of configurations such that when starting in such
a configuration, the A-FTS satisfies the formula.

Definition 17. Let M be an A-FTS and Ψ an AdaCTL formula. Then,

(M |=F Ψ) = {c ∈ P(Fs) | M |c |= Ψ} (4.18)

Definition 18. A formula Ψ is called an absolute requirement if it contains
no feature (i.e. no occurrence of the [χ] operator). It is called conditional if
it contains non-adaptable system features. It is called adaptive if it contains
the A operator. A system is called adaptive if it has adaptive requirements and
adaptable features.

Definition 19. An adaptive system M with requirements Φ is called resilient
if there is an initial configuration such that all its requirements are satisfied:
M |=F Φ �= ∅.
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This implies that, for each adaptive requirement, the system must be equipped
with adaptation strategies that allow him to react to any environment (re)confi-
guration, in particular to any failure.

For instance, if M is the A-FTS presented in Example 8 and Ψ is the adaptive
requirement given in Example 12, we have

(M |=F Ψ) = P(Fs) (4.19)

since for any initial configuration, there exists a reconfiguration strategy that
ensures the satisfaction of Ψ . One such strategy would be to enable the feature
encrypt as soon as the system reaches the state received. However, if setting
up this feature requires some time (for downloading the encryption code, etc.),
the system has to wait that the feature is enabled before sending the message.

Note that according to the above semantics, A and E are not dual. We prove
this for the © operator.

Theorem 20. Let Ψ be an AdaCTL feature formula. We have

A© Ψ �= ¬(E © ¬Ψ) (4.20)

Proof. Let us assume that A and E are dual for the © operator. Let us consider
the two AdaCTL formulae A © A © a and E © E © ¬a where a is an atomic
proposition. Then, for any A-FTS M and system configuration c, if M |c satisfies
the former then it does not satisfy the latter and vice-versa. Let M be the A-
FTS shown in Figure 2 where f is a feature of the system. It turns out that
M |c |= A©A© a for any configuration c. Indeed, once in state 2 the system
can change its configuration such that f is not enabled. In this case, only state 3
is reachable and the formula is thus satisfied regardless of the action chosen by
the environment and its configuration. On the other hand, M |c |= E © E © ¬a
for any c as well. Once in state 2, if the system change its configuration such
that f is enabled, the system can reach state 4. Since M satisfies both formulae
and given that it is impossible for an A-FTS to satisfy both a formula and its
negation, the duality law does not hold. �
The above counterexample also denies the duality law for the ♦, the �, the Uand
the Roperators. Since the proof is very similar, we omit it.

Theorem 21. Let Ψ be an AdaCTL feature formula. We have

A(Ψ1UΨ2) �= ¬(E(¬Ψ1R¬Ψ2)) (4.21)

E(Ψ1UΨ2) �= ¬(A(¬Ψ1R¬Ψ2)) (4.22)

A♦Ψ �= ¬(E�¬Ψ) (4.23)

E♦Ψ �= ¬(A�¬Ψ). (4.24)

This implies that A cannot be expressed in terms of E . Thus, when model check-
ing an A-FTS against an AdaCTL formula, we have to consider the operator A
and E separately. On the contrary, the usual expansion laws still hold. Basically,
an expansion law allows to express an operator in terms of formulae that the
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Fig. 2. Counterexample for the duality laws

current state must satisfy to satisfy the formula defined by the operator. For
instance, the expansion law for A(Ψ1UΨ2) expresses that this formula is satis-
fied if and only if Ψ2 immediately holds or if Ψ1 holds and the formula holds
in the next state. As for CTL, the AdaCTL model checking algorithms make
intensively use of these laws, as we will see in the next section.

Theorem 22. Let Ψ, Ψ1, Ψ2 be AdaCTL formulae. Then we have the following
expansion laws:

A(Ψ1UΨ2) ≡ Ψ2 ∨ (Ψ1 ∧A©A(Ψ1UΨ2)) (4.25)

A(Ψ1RΨ2) ≡ Ψ2 ∧ (Ψ1 ∨A©A(Ψ1RΨ2)) (4.26)

A(♦Ψ) ≡ Ψ ∧ A©A♦Ψ (4.27)

A(�Ψ) ≡ Ψ ∧ A©A�Ψ (4.28)

E(Ψ1UΨ2) ≡ Ψ2 ∨ (Ψ1 ∧ E © E(Ψ1UΨ2)) (4.29)

E(Ψ1RΨ2) ≡ Ψ2 ∧ (Ψ1 ∨ E © E(Ψ1RΨ2)) (4.30)

E(♦Ψ) ≡ Ψ ∧ E © E♦Ψ (4.31)

E(�Ψ) ≡ Ψ ∧ E © E�Ψ (4.32)

Proof. We prove only the expansion law of A(Ψ1UΨ2). The other proofs involving
the A operator either can be derived from this one or follow a similar pattern.
The proofs related to E are implied from the expansion laws in CTL.

For any m = (s, c, e), StE, and StC , the initial state of Path(m,StC , StE)
is m and thus depends on neither StC nor StE. Accordingly, the semantics of
A(Ψ1UΨ2) is equivalent to

(M,m |= Ψ2) ∨ ((M,m |= Ψ1) ∧ ∃StrC • ∀StrE •

Path(Path(m,StrC , StrE)[1], StrC , StrE) |= Ψ1UΨ2 (4.33)
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On the other hand,

M,m |= (Ψ2 ∨ (Ψ1 ∧A©A(Ψ1UΨ2))) (4.34)

is equivalent to

(M,m |= Ψ2) ∨ ((M,m |= Ψ1) ∧ ∃Str′C • ∀Str′E •

Path(m,Str′C , Str
′
E) |= ©A(Ψ1UΨ2) (4.35)

which can be re-written as

(M,m |= Ψ2) ∨ ((M,m |= Ψ1) ∧ ∃Str′C • ∀Str′E • ∃Str′′C • ∀Str′′E •

Path(Path(m,Str′C , Str
′
E)[1], Str

′′
C , Str

′′
E) |= Ψ1UΨ2 (4.36)

We immediately have that Equation (4.33) implies Equation (4.36); in this case,
we have StrC = Str′C = Str′′C . Next, we define the strategy Str′′′C such that Str′′′C
behaves like Str′C for the first transition, and like Str′′′C for the subsequent ones.
Then for any Str′′′E we have that

Path(Path(m,Str′′′C , Str′′′E )[1], Str′′′C , Str′′′E ) |= Ψ1UΨ2. (4.37)

Equations (4.33) and (4.36) are thus equivalent and we have proven the expan-
sion law. �

The expansion laws for A(ϕ) imply that if StrC is the reconfiguration strategy
such that ∀StrE • Path(m,StrC , StrE) |= ϕ then every macrostate m’ reached
on this path is such that M,m′ |= A(ϕ).

5 Algorithms

As previously mentioned, model checking an A-FTS against an AdaCTL for-
mula comes down to identifying the initial configurations such that for any
initial state and initial environment configuration, the A-FTS satisfies the for-
mula when the system starts in such a configuration. In this section, we pro-
pose an algorithm to compute the satisfaction relation between an A-FTS M
and an AdaCTL formula Ψ . For the sake of readability and conciseness,
we present only the algorithms in their explicit form. Following our previous
work on fCTL model checking [16], we can transform them into symbolic al-
gorithms by using the same encoding techniques. The basic idea is to encode
states, configurations, and the transition relation as Boolean functions. Then,
symbolic algorithms work with those functions instead of their explicit coun-
terpart (see [16] for more details). Note that the conversion of the transition
relation in A-FTS is facilitated since it is already defined as a Boolean
function.
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5.1 AdaCTL Model Checking

We first decompose Ψ into its parse tree. Basically, the parse tree of a formula is
a tree such that each node represents a subformula of Ψ , the root is Ψ itself, and
the leaves are atomic propositions. For example, the parse tree of the AdaCTL
formula given in Example 12 is shown in Figure 3. Then, starting from the leaves
and for every subformula Ψ ′, we compute the set of macrostates

Sat(Ψ ′) = {(s, c, e) ∈ S × P(Fs)× P(Fe) | M, (s, c, e) |= Ψ ′} (5.1)

for every subformula Ψ ′ of Ψ . Once we have determined the set of macrostates
satisfying the whole formula Ψ , we infer the set (M |=F Ψ). This method al-
lows us to decompose the verification of a formula into smaller and independent
problems. It is thus similar to the fCTL and the standard CTL model check-
ing algorithms [16,15]. However, it has to cope with (1) macrostates instead of
states, (2) dynamic features, and (3) the A quantifier, which does not exist in
the other two logics.

The computation of the set of macrostates satisfying feature and state formu-
lae directly follows from their semantics.

Sat([χ]Φ) = {(s, c, e) ∈ S × P(Fs)× P(Fe) | c ∪ e �∈ [[χ]]} ∪ Sat(Φ) (5.2)

Sat(�) = S × P(Fs)× P(Fe) (5.3)

Sat(a) = {(s, c, e) ∈ S × P(Fs)× P(Fe) | a ∈ L(s)} (5.4)

Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) (5.5)

Sat(¬Ψ) = S × P(Fs)× P(Fe) \ Sat(Ψ) (5.6)

The first step towards computing a set of the form Sat(Eϕ) or Sat(Aϕ) is the
definition and the computation of predecessors set. The notion of predecessors
is, however, different depending on whether we consider the E quantifier or the
A quantifier.

In the former case, a macrostate m is an E-predecessor of m′ if and only if
from m, the macrostate m′ can be reached in one transition. More generally, let
S be a set of macrostates. Then the E-predecessors set of S, noted PreE (S), is



18 M. Cordy et al.

defined as the set of macrostates from which a macrostate in S can be reached
in one transition. Formally,

PreE(S) = {(s, c, e) | ∃α ∈ Act, (s′, c′, e′) ∈ S •

γ(s, α, s′)(c ∪ e, c′ ∪ e′)}}. (5.7)

In the latter case, we define that m is an A-predecessor of m′ if the system can
come up with a valid strategy such that when in m, it is ensured that m′ will be
reached after the execution of the next transition. Similarly to the previous case,
we define the A-predecessor set of a set of macrostates S. Intuitively, it is the set
of macrostates such that the system can ensure that after the execution of the
next transition, it will reach a macrostate of S. Given that the system chooses its
next configuration after the next state and the new environment configuration
have been determined, it is defined as

PreA(S) = {(s, c, e) | ∀α ∈ Act, s′ ∈ S, e′ ∈ P(Fe) •

(∃c′′ ∈ P(Fs) • γ(s, α, s′)(c ∪ e, c′′ ∪ e′) ⇒
(∃c′ ∈ P(Fs) • γ(s, α, s′)(c ∪ e, c′ ∪ e′) ∧ (s′, c′, e′) ∈ S)). (5.8)

Let

D(s, c, e, α, s′, e′) = {(s′, c′, e′) ∈ S × P(Fs)× P(Fe)

| γ(s, α, s′)(c ∪ e, c′ ∪ e′)} (5.9)

then PreA(S) is equivalent to⋂
α,s′,e′

{(s, c, e) | (D(s, c, e, α, s′, e′) = ∅) ∨ (D(s, c, e, α, s′, e′) ∩ S �= ∅)} (5.10)

Since the semantics of E is similar to that of the existential quantifier in CTL,
the set of macrostates satisfying a formula of the form Eϕ is computed as in the
basic CTL model checking algorithm. Sat(E © Ψ) is the set of macrostate such
that in one transition, the system can reach a state s′, be in configuration c′

and the environment can be in a configuration e′ such that (s′, c′, e′) satisfies ϕ.
Formally, we have

Sat(E(©Ψ)) = PreE(Sat(Ψ)) (5.11)

On the other hand, E(Ψ1UΨ2) is the smallest set S satisfying

Sat(Ψ2) ⊆ S (5.12)

Sat(Ψ1) ∩ PreE(S) ⊆ S; (5.13)

E(Ψ1RΨ2) is the largest set S satisfying

S ⊆ Sat(Ψ2) (5.14)

S ⊆ Sat(Ψ1) ∪ PreE(S) (5.15)
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Both can be computed through fixed-point computation [15]. The corresponding
algorithms being identical to their CTL counterpart, we omit them here.

We focus now on the A quantifier. Basically, the satisfaction sets have a similar
definition than those for the E quantifier; the difference is that the A quantifier
requires the computation of the A-predecessors instead of the E-predecessors.
For the next operator, we have the following.

Theorem 23.
Sat(A© Ψ) = PreA(Ψ) (5.16)

Proof. Follows from the semantics of A© Ψ and the definition of PreA(Ψ).

We obtain Sat(A(Ψ1UΨ2)) through a fixed-point computation. This result relies
on the following theorem.

Theorem 24. Sat(A(Ψ1UΨ2)) is the smallest set S satisfying

Sat(Ψ2) ⊆ S (5.17)

Sat(Ψ1) ∩ PreA(S) ⊆ S (5.18)

Proof. First, it directly follows from the expansion law of the Uoperator (see
Theorem 22) that Sat(A(Ψ1UΨ2)) satisfies Equations (5.17–5.18). It remains to
show that any set S satisfying those Equations is a superset of Sat(A(Ψ1UΨ2)).

Let m ∈ Sat(A(Ψ1UΨ2)). We distinguish between m ∈ Sat(Φ2) and m �∈
Sat(Φ2).

(a) If m ∈ Sat(Φ2) then m ∈ S by Equation 5.17.
(b) Otherwise, by definition of Sat(A(Ψ1UΨ2)), we have

∃StrC • ∀StrE • Path(m,StrC , StrE) |= Ψ1UΨ2.

It means that StrC ensures that from m, we eventually reach a macrostate
that is in Sat(Ψ2). Let k be the largest number of transitions needed by StrC
to reach from m such a macrostate, and let mk this macrostate. Then mk ∈ S
by Equation 5.17. Before reaching mk, we must first reach a macrostate
mk−1 ∈ Sat(Ψ1) such that from mk−1, StrC ensures to reach mk in one
transition regardless of the strategy of the environment. Such a macrostate
is reached in at most k − 1 transitions, and belongs to PreA({mk}) ⊆
PreA(Sat(Ψ2)), and is thus in S by Equation (5.18). By induction on the
maximum number of transitions needed to reach a macrostate in Sat(Ψ2),
we obtain that m ∈ S.

The proof is then complete. �

In order to compute Sat(Ψ1UΨ2), we define the function

TU : P(S × P(Fs)× P(Fe)) → P(S × P(Fs)× P(Fe))

• TU(S) = S ∪ (PreA(S) ∩ Sat(Φ1)). (5.19)
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Then, according to the Knaster-Tarski theorem and following Theorem 24, this
set is the fixed-point of the function TU when it is first applied to Sat(Ψ2), that
is,

Sat(A(Ψ1UΨ2)) = Si • ∀j ≥ i • Sj = Si (5.20)

where ∀j ∈ N

S0 = Sat(Ψ2) (5.21)

Sj+1 = T (Sj) (5.22)

The computation of Sat(A(Ψ1RΨ2)) follows a very similar procedure. For this
reason, we omit the proof.

Theorem 25. Sat(A(Ψ1RΨ2)) is the largest set S satisfying

S ⊆ Sat(Ψ2) (5.23)

S ⊆ Sat(Ψ1) ∪ PreA(S) (5.24)

Accordingly, this set can be computed as the fixed-point of the function

TR : P(S × P(Fs)× P(Fe)) → P(S × P(Fs)× P(Fe))

• TR(S) = S ∩ PreA(S). (5.25)

first applied to Sat(Ψ2).

Example 26. We illustrate the definitions of E-predecessors and A-predecessors,
as well as the above model checking algorithm. Let us consider the small A-
FTS shown in Figure 2, which we verify against the formulae E © E © ¬a and
A©A©a. First, the algorithm determines which macrostates satisfy the atomic
proposition a:

Sat(a) = {(3, c, e)}.

As ¬a occurs in the first formulae, it computes the corresponding satisfaction
set by complementing the above:

Sat(¬a) = {(i, c, e) | i ∈ {1, 2, 4}}.

We focus on E-predecessors first. A macrostate satisfies E © ¬a if and only if
from this macrostate, the system may reach a set in Sat(¬a) in one transition.
Hence,

Sat(E © ¬a) = {(i, c, e) | i ∈ {1, 4} ∨ (i = 2 ∧ f ∈ c)}.

Indeed, from state 1 the system can reach state 2 regardless of its configuration
and that of the environment; from state 2 it can reach state 4 if feature f is
enabled; and it can always loop on state 4. For the same reasons, the macrostates
satisfying the whole property is given by

Sat(E © E © ¬a) = {(i, c, e) | i ∈ {1, 4} ∨ (i = 2 ∧ f ∈ c)}.
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A macrostate satisfies A©a if and only if from this macrostate, the system can
ensure it will reach a macrostate satisfying a. Regardless of the configuration
of the system and the environment, the former will remain in state 3 once it
reaches this state. Moreover, if the system is in state 2 and feature f is disabled,
it will necessarily reach state 3 after the next transition. From state 1, the system
cannot reach state 3 in one transition. The corresponding satisfaction set is thus:

Sat(A© a) = {(3, c, e)} ∪ {(2, c, e) | f �∈ c}

The definition of Sat(A©A© a) is identical except that this time, the system
can satisfy the formula from state 1. The configuration of the system does not
matter here since the system may modify it once it reaches state 2. We have

Sat(A©A© a) = {(3, c, e)} ∪ {(2, c, e) | f �∈ c} ∪ {1, c, e}.

5.2 Time Complexity

We now discuss the computational time complexity of checking an A-FTS M
against an arbitrary AdaCTL formula Ψ . Our algorithm recursively computes the
satisfactions sets of the subformulae of Ψ . Its time complexity is thus linear in the
size of Ψ . The satisfaction sets that are the most costly to compute are those for
the U and the R operators. Let us assume that we encode the satisfaction sets and
the transition relation symbolically. As in classical CTL model checking, the time
complexity of computing Sat(E(Φ1UΦ2)) and Sat(E(Φ2RΦ2)) is bounded by the
number of macrostates, i.e., |S|.2|Fs|.2|Fe|. This is because when computing the
corresponding smallest (resp. greatest) fixed-point, if the fixed-point has not been
reached then the application of the corresponding function removes (resp. adds)
at least one element. Computing the sets Sat(A(Φ1UΦ2)) and Sat(A(Ψ1RΦ2))
is more costly because each application of the functions TU and TR requires the
computation of PreA(S). The time complexity of this computation is bounded
by the number of states multiplied the number of environment configurations,
that is, |S|.2|Fe|. Since the number of needed applications of TU and TR is also
bounded by the number of macrostates, we obtain the following result.

Theorem 27. The time complexity of model checking an A-FTS against an
AdaCTL formula Ψ is bounded by O(|S|2.22.|Fe|.2|Fs|).

Although it is theoretically dominated by 22.|Fe| and is thus in EXPTIME, in
practice |S|2 is often bigger.

6 Related Work

To the best of our knowledge, this paper is the first to tackle formal verification
of self-adaptive SPLs. Consequently, we can only discuss related work in static
SPL model checking and verification of adaptive systems.
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6.1 SPL Model Checking

The need for quality assurance techniques in SPLs has been recognized as an
important issue and we have observed the emergence of several techniques for
solving the SPL model-checking problem. Most of them rely on the use of an
automata-based formalism to model the behaviour of an SPL, and on the def-
inition of dedicated checking algorithms. Fischbein et al. [30] were the first to
propose modal transition systems to model product lines. In a nutshell, modal
transition systems are LTS with mandatory and optional transitions, the lat-
ter being transitions that are not executable by all the products. To make this
formalism more suitable in the context of SPLs, Fantechi and Gnesi [26] en-
riched it with variability operators and Asirelli et al. [6] equipped it with a logic
able to express constraints on variable behaviour. Similarly, Gruler et al. [36]
introduced PL-CCS, an extension of the CCS process algebra with variability
operators able to express optionality. Instead of introducing a new formalism, Li
et al. [40] proposed to model the behaviour of features with independent, single-
system models. More precisely, they model both the system without features and
the features as finite state machines. Then, the behaviour of a specific product
is obtained by clinging its features onto the system.

As explained by Apel et al. [4], one can also use single-systemmodel-checking to
verify an SPL. In this case, however, the model-checker determines only whether
or not there exists a product violating an intended property. The advantage of this
approach is that it allows one to benefit from all the existing optimisations imple-
mented in classical model-checkers. However, the goal of our work is more general
since we want to pinpoint exactly all the misbehaving products or configurations.

The closest work on SPLs verification related to this paper is our previous
work about FTS. In [17], we introduced a first definition of FTS, in which tran-
sitions are labelled with features and can have priority over each other. We
also designed an algorithm for model checking an FTS against an LTL formula.
In [16], we provided a new definition of FTS based on feature expressions (i.e.
the one given in this paper); we also defined the fCTL logic and proposed sym-
bolic model-checking algorithms for FTS. In a recent work [19], we extended
the notion of simulation to the context of SPLs and we showed how FTS ab-
straction can reduce the verification time. In another work, we made use of this
new relation to identify special classes of features and reduced the overhead of
reverification when such features are introduced in an SPL [18].

The major difference between FTS and A-FTS are (1) the presence of a (pos-
sibly hostile) environment, (2) the presence of variability in both the system and
its environment, and (3) the ability of the system and the environment to change
their features at runtime. Because of those differences, reasoning on A-FTS re-
quires the definition of a new logic to define the properties to be verified, i.e.,
AdaCTL. In particular, fCTL is not suitable in this context because it permits
to reason on neither dynamic features nor an external environment. AdaCTL is
thus different from fCTL in both syntax and semantics, in the same way as the
classical logics ATL and CTL are different. A comparison between AdaCTL and
ATL is given further in this section.
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6.2 Verification of Adaptive Systems

The verification of adaptive systems is a topic that received a lot of attention
from the scientific community. The work related to that context being particu-
larly large, we focus here on the most recent results.

In their research roadmap for adaptive systems [13], Cheng et al. stated that in
the context of adaptive systems, the objective of quality assurance is to provide
evidence that the system is able to cope with changes in its objectives and its
environment. The classical validation and verification methods being meant for
stable systems, there is a crucial need for novel techniques specific to adaptive
systems. They presented a framework for adaptive systems assurance, in which
the system, the goals, and the context are subject to modifications. This results
in a succession of models for the system and properties to verify. In our work, such
a model is the LTS resulting from fixing the configuration of the state and the
environment and removing the transitions unavailable for these configurations;
the succession of properties can be expressed by AdaCTL feature formula.

Following the idea of representing adaptive systems as a succession of models,
several verification methods model them as a set of programs [1,38,39,51]. To
ensure the satisfaction of intended properties in an unstable environment, the
system is able to make transitions between those programs. The execution of such
transitions is called an adaptation. By performing those, the system modifies its
future behaviour. In this context, one distinguishes between local properties that
specific programs must satisfy, global properties that must be satisfied by any
execution of the system, and transitional properties that must hold during an
adaptation.

To specify the transitional properties, Zhang et al. proposed a new logic called
A-LTL [50]. In their recent work [51], they provided an algorithm based on
marking to verify an adaptive system against an A-LTL formula. Although we
do not tackle the same problems, there are similarities in their work and ours.
Transposed to our work, a program of an adaptive system can be regarded as
a particular configuration. Although A-LTL and AdaCTL have incomparable
expressiveness, we can also express properties specific to some configurations as
well as transitional properties by using AdaCTL feature formulae.

Closer to the notion of dynamic software product lines, Kulkarni et al. [39]
consider that an adaptive system is a program able to add or remove components
during runtime. Our definition of A-FTS is more general, as the effect of features
is not limited to the addition or the removal of components. Instead of traditional
model checking, they use proof lattice as an alternative solution for verifying that
all possible adaptations satisfy all the global properties.

Instead of functional requirements, Filieri et al. [27] tackles the verification of
non-functional requirements like reliability in the context of adaptive systems.
For this purpose, they propose novel algorithms for checking efficiently paramet-
ric Markov models (viz. parametric discrete-time Markov chains). Combining our
work with theirs is an interesting perspective, as it could allow us to quantify
the impact of adding or removing features at runtime in terms of reliability,
performance or even energy consumption.
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6.3 AdaCTL and ATL

As briefly mentioned in Section 4, there is a close relationship between AdaCTL
and the Alternating Time Logic (ATL) of Alur et al. [2]. Without going into much
detail or providing formal proofs, we compare our work with theirs and identify
the commonalities and differences between the two. ATL is a logic able to express
temporal properties on multi-agent systems and concurrent game structures. It
provides a special quantifier << A >> where A is a set of agents or players
working together to meet specific goals. The semantics of this operator makes
use of a definition of strategy as well : << A >> ϕ is satisfied if and only if the
players in A can find a strategy such that any execution following this strategy
satisfies ϕ. Given that definition, the AdaCTL quantifier A is clearly similar to
<< Sys >> whereas E is similar to << Sys,Env >>, Sys being the system
and Env being the environment.

The difference between the two logics is that in AdaCTL, the transition rela-
tion depends on the configuration of both the adaptable and the non-adaptable
features. Because of these features, the satisfiability relation is not binary and
is thus more general than in ATL. Similarly, an A-FTS with a unique initial
configuration can be translated into a two-player turn-based concurrent game
structure. In this game, the players are the system and the environment. The
action of the former is the choice of its new configuration. For the latter, it is
the choice of an action and of its new configuration. In the end, this work can be
regarded as a generalization of turn-based, 2-players concurrent game structures
in the same way that FTS generalizes LTS.

7 Conclusion

We have presented a well-founded framework for the modelling and analysis of
(self-)adaptive systems. We proposed a fundamental model, A-FTS, and a logic,
AdaCTL, that are the basis for algorithms for analyzing resilience. This brings
a number of benefits:

1. A sound theoretical basis;
2. An integration of static adaptation and dynamic adaptation, in its two vari-

ants: external adaptation and self-adaption by applying a pre-programmed
change at the adequate point of time;

3. A clear, checkable definition of resilience;
4. Providing counterexamples when resilience fails.

These benefits mainly impact the predictability of self-adaptive systems.
However, we are well aware that many topics need further development be-

fore our methodology can be used routinely by engineers. A-FTS are just a
fundamental model, that is used by the tools but leads to lengthy descriptions,
difficult to manage by humans. It is therefore important to provide more man-
ageable high-level languages, that can be compiled (on-the-fly) to A-FTS. These
languages need to cover different levels of abstraction: the most abstract levels
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allowing a rapid analysis, while the most detailed can be directly used to gen-
erate executable code. This raise the question of refinement : can we guarantee
that the analysis performed at the abstract level remains valid at the more con-
crete level? This question can be solved e.g. using alternating refinement [3].
This refinement should be compositional, so that modules of the system can be
detailed independently, allowing teams to operate in parallel, on one hand, and
analysis tools to cope with complexity, on the other.

Some features have a cross-cutting nature: we cannot simply add a module to
the system to realize them. That is why we designed A-FTS with a low grain,
where individual transitions can refer to features. As a consequence, first, fea-
tures are spread over the whole A-FTS, and may be difficult to grasp; second, the
addition of a supplementary feature is difficult, since each transition might need
a revision. We plan thus to use (extensions of) the aspect-oriented approach to
maintain a more localized and independent description of each feature (previous
work on this topic includes [16,31,41]). The addition of a new feature will then
hopefully be more understandable. We consider as still unrealistic, though, to
hope that all features can be developed without being aware of other features,
and that the weaving process will solve all emergent interactions. This raises
the problem of defining, detecting and helping to solve feature interactions. A
number of interesting approaches [34,10] are available, but the problem is still
pressing and largely unsolved.

We modelled failures as a subtype of environment features, which allows us to
describe failure modes and effects. To have a realistic analysis of failures, we need
to also model their probabilities, and to integrate (at least) classical methods for
failure and reliability analysis [25].

A-FTS is based on the notion of a global state, so that all the information
is available to both the system and its environment, and the strategies com-
puted can rely on the unbounded past. In our setting, it is demonstrated that
a bounded amount of information about the past is sufficient (finite memory).
Techniques such as antichains [28] can be used to heuristically compute strate-
gies that require a small memory. However, assuming complete observation is
not realistic in most systems, and in general we need to switch to the notion
of partial observation [14,5]. Unfortunately, the problem becomes highly com-
plex and often even undecidable [11]. The known (expensive) techniques rely on
building all possible evolutions of the environment corresponding to the obser-
vations so far [14,37]. A particular, easier problem is the diagnostic of failures
[46]: from the partial observation provided by its sensors, can the system infer
what has failed [46,9]? Can it perform diagnostic actions to help inferring it?
Can it remedy to possible failures, even with a partial, ongoing diagnostic [44]?
Can it perform the diagnostic against an active adversary [9]?

On the other hand, we have assumed that the self-adaptive system can choose
among a set of preprogrammed dynamic system features. This more powerful
than it seems, since the system can, if needed, chain several features to construct
a complex plan to resist to a hostile environment. In particular, we can model
self-programming systems by giving as features, the atomic instructions to be
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assembled. If the atomic instructions are infinite in number, however, our tech-
nique does not apply. In the long term, this might become a relevant challenge
for deeply self-adaptive autonomous systems.

Since they are domain-specific, we did not consider the technical means by
which new features will be added to a running system. This usually requires to
bring the system to a clean state, where the code can be adapted, downloading
the new code, before switching to the new configuration. This reconfiguration
might require resources that temporarily decrease the performance of the system.
Neither we did consider constraints on the implementation. For instance, a dis-
tributed implementation might be required [29]. Finally, our current algorithms
only provides any strategy satisfying the requirements, but no notion of prefer-
ence among strategies is introduced. In particular, one could prefer strategies
that use less memory, require less computation, or minimize some user-defined
cost.

Many systems operate in a continuous physical environment. Hybrid models
can be used to integrate the modelling of the continuous and discrete parts
[48,21]. Furthermore, a realistic strategy for a hybrid system must be robust, i.e.
able to cope with small disturbances [42]. A first step we did in this direction is
to incorporate real-time [49,43,20].

In summary, we hope to complement our approach with others, as needed
by the vast and multi-disciplinary area of self-adaptive systems, that are ex-
pected to progressively enter all domains [32], starting with controllers for space
[12], networked systems [35,24], robotics [53], anti-intrusion systems [45], cloud
computing [52,23], etc. where the need is most pressing.
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Abstract. An effective design of effective and efficient self-adaptive sys-
tems may rely on several existing approaches. Software models and model
checking techniques at run time represent one of them since they support
automatic reasoning about such changes, detect harmful configurations,
and potentially enable appropriate (self-)reactions. However, traditional
model checking techniques and tools may not be applied as they are at
run time, since they hardly meet the constraints imposed by on-the-fly
analysis, in terms of execution time and memory occupation. For this
reason, efficient run-time model checking represents a crucial research
challenge.

This paper precisely addresses this issue and focuses on probabilistic
run-time model checking in which reliability models are given in terms of
Discrete Time Markov Chains which are verified at run-time against a set
of requirements expressed as logical formulae. In particular, the paper
discusses the use of probabilistic model checking at run-time for self-
adaptive systems by surveying and comparing the existing approaches
divided in two categories: state-elimination algorithms and algebra-based
algorithms. The discussion is supported by a realistic example and by
empirical experiments.

1 Introduction

Software is the driving engine of modern society. Most human activities, includ-
ing the most critical ones, are either software enabled or entirely managed by
software. As software is becoming ubiquitous and society increasingly relies on
it, the adverse impact of unreliable or unpredictable software cannot be toler-
ated. Indeed, software systems have to be able to evolve correspondingly to their
deployment environment in order to guarantee a seamless fulfillment of desired
requirements and ensure a minimal downtime. In response to this challenge,
current Software Engineering aims at designing Self-Adaptive Systems which are
able to react and reconfigure themselves minimizing human intervention and
ideally guaranteeing a lifelong requirement fulfillment. To date, Software Engi-
neering research in self-adaptive systems has produced promising initial results,
as illustrated for example in [24]. However, even if these findings provide an es-
sential step towards a set of effective and efficient solutions for self-adaptation,
they are not the end of the story as building these dependable systems is still
unclear and requires further investigation.

J. Cámara et al. (Eds.): Assurances for Self-Adaptive Systems, LNCS 7740, pp. 30–59, 2013.
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Designers must ensure that any critical requirement of the system continues to
be satisfied before, during and after unforeseen scenarios. By this we mean that
software systems are required to be dependable, to avoid damaging effects due to
violated requirements that can range from loss of business to loss of human lives.
At the same time, the complexity of modern software systems has grown enor-
mously in the past years with users always demanding for new features and better
quality of service. Software systems changed from being monolithic and central-
ized to modular, distributed, and dynamic. They are increasingly composed of
heterogeneous components and infrastructures on which software is configured
and deployed. When an application is initially designed, software engineers of-
ten only have a partial and incomplete knowledge of the external environment
in which the application will be embedded at run time. Design may therefore
be subject to high uncertainty. This is further exacerbated by the fact that the
structure of the application, in terms of components and interconnections, often
changes dynamically. New components may become available and published by
providers for use by potential clients. Some components may disappear, or be-
come obsolete, and new ones may be discovered dynamically. This may happen,
for example, in the case of Web service-based systems [6,7]. This also happens in
pervasive computing scenarios where devices that run application components
are mobile [27]. Because of mobility, and more generally context change, certain
components may become unreachable, while others become visible during the
application’s lifetime. Finally, requirements also change continuously and un-
predictably, in a way that is hard to anticipate when systems are initially built.
Because of uncertainty and continuous external changes the software application
is subject to continuous adaptation and evolution.

This paper focuses on how analyzing and comparing existing approaches
aimed at managing run-time changes by verifying that the software evolves dy-
namically without disrupting the dependability of applications. Dependability
includes attributes such as reliability, availability, performance, safety, security.
In this paper we focus our attention on two main dependability requirements that
typically arise in the case of decentralized and distributed applications: namely,
reliability and performance. Both reliability and performance depend on envi-
ronment conditions that are hard to predict at design time, and are subject to a
high degree of uncertainty. For example, performance may depend on end-user
profiles, on network congestion, on load conditions of external services that are
integrated in the application. Similarly, reliability may depend on the behavior
of the network and of the external services that compose the application being
built.

Existing approaches focus on supporting the development and operation of
complex and dynamically evolvable software systems leveraging on Formal Mod-
els. These formal models are built at design time to support an initial assessment
that the application satisfies the requirements. Models are then kept alive at run
time and continuously verified to check that the changes with respect to the
design-time assumptions do not lead to requirements violations. This requires
efficient mechanisms for run-time verification. If requirements violations are
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detected, appropriate actions must be undertaken, ranging from off-line evo-
lution to on-line adaptation. In particular, much research is currently investi-
gating the extent to which the software can respond to predicted or detected
requirements violation through self-managed reactions, in an autonomic man-
ner. These, however, are out of the scope of this paper, which only focuses on
describing run-time verification approaches.

Verification at runtime of reliability and performance properties for self-
adaptive systems typically relies on Probabilistic Models such as: Discrete Time
Markov Chains and Discrete Time Markov Rewards Models. This paper intro-
duces these formalisms and subsequently illustrates and compares the approaches
for efficient runtime verification. In particular, our contribution is structured as
follows. Section 2 describe the mathematical foundations of Markov Chains and
PCTL (i.e., the logic commonly adopted to verify properties on discrete Markov
models). Such mathematical concepts are described by relying on a realistic ex-
ample also introduced in this section and used throughout the paper to illustrate
the different model checking techniques. Section 3 dicusses and compares the
existing approaches for run-time verification. Finally, 5 draws some remarking
conclusions and illustrates potential future work.

2 Probabilistic Models for Run-Time Verification

This section provides an introduction to the probabilistic models adopted to
express reliability and performance properties for self-adaptive systems. In this
section we provide a brief introduction to the mathematical concepts used
throughout the paper. In particular in Sections 2.3 and 2.4 we describe respec-
tively the Probabilistic Computational Tree Logic and its extension with rewards
used to represent properties of systems to be verified at runtime. The reader can
refer to [4,5] for a comprehensive in-depth treatment of these concepts.

2.1 Discrete Time Markov Chains

Discrete Time Markov Chains (DTMCs) are a widely accepted formalism to
model reliability of systems built by integrating different components. In partic-
ular, they proved to be useful for an early assessment or prediction of reliability
[21]. The adoption of DTMCs implies that the modeled system meets, with some
tolerable approximation, the Markov property–described below. This issue can
be easily verified as discussed in [8,14].

DTMCs are discrete stochastic processes with the Markov property, accord-
ing to which the probability distribution of future states depends only upon the
current state. They are defined as a Kripke structure with probabilistic
transitions among states. States represent possible configurations of the sys-
tem. Transitions among states occur at discrete time and have an associated
probability.



Probabilistic Verification at Runtime for Self-Adaptive Systems 33

Formally, a (labeled) DTMC is a tuple (S, S0,P, L) where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– P : S × S → [0, 1] is a stochastic matrix (∀s ∈ S |

∑
s′∈S P(s, s′) = 1).

An element P(si, sj) represents the probability that the next state of the
process will be sj given that the current state is si.

– L : S → 2AP is a labeling function. AP is a set of atomic propositions. The
labeling function associates to each state the set of atomic propositions that
are true in that state.

A state s ∈ S is said to be an absorbing state if P(s, s) = 1 otherwise the state
is a transient state. If a DTMC contains at least one absorbing state, the DTMC
itself is said to be an absorbing DTMC. We further assume that in our models
for any transient state there is a non zero probability of reaching at least one of
the absorbing states. In the simplest model for reliability analysis, the DTMC
will have two absorbing states, representing the correct accomplishment of the
task and the task’s failure, respectively. The use of absorbing states is commonly
extended to modeling different failure conditions. For example, different failure
states may be associated with the invocation of different external services. The
set of failures to look for is strictly domain-dependent.

In an absorbing DTMC with r absorbing states and t transient states, rows
and columns of the transition matrix P can be reordered such that P is in the
following canonical form:

P =

(
Q R
0 I

)
(1)

where I is an r by r identity matrix, 0 is an r by t zero matrix, R is a nonzero
t by r matrix and Q is a t by t matrix.
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Consider now two distinct transient states si and sj . The probability of moving
from si to sj in exactly 2 steps is

∑
sx∈S P (si, sx) · P (sx, sj). Generalizing, for

a k-steps path and recalling the definition of matrix product, it follows that the
probability of moving from any transient state si to any other transient state
sj in exactly k steps corresponds to the entry (si, sj) of the matrix Qk. As a
natural generalization, we can define Q0, which represents the probability of
moving from each state si to sj in 0 steps, as the identity t by t matrix, whose
elements are 1 iff si = sj [15].

Due to the fact that R must be a nonzero matrix, and P is a stochastic matrix,
Q has uniform-norm strictly less than 1, thus Qn → 0 as n → ∞, which implies
that eventually the process will be absorbed with probability 1.

Let us consider for example the DTMC in Figure 1, which represents a typical
web architecture. The system comprises an HTTP Proxy server, a Web server
and an application server. In addition, structured data and static content (e.g.,
files, images, etc.) are respectively stored in a Database server and File server.
Both of them are cached by ad-hoc cache servers. Each state is labelled by a
numeric label and by a couple in the form n1/n2, its meaning will be clear later
on. States 7, 8 and 9 are absorbing states. The former represents the failure of
serving an incoming request due to an unavailable server (e.g., overloaded server
or maintenance downtime). The latter represent the endpoint of a correct HTTP
request. Transitions among non-absorbing states reports the probability for an
HTTP request of passing from one element of the architecture to the other. For
example transition 0− 1 indicates the probability that a request is associated to
static or dynamic content. Transition 1 − 1 indicates instead the probability of
an HTTP self-redirect.

Conversely, transitions to absorbing states indicates the final outcome in pro-
cessing a request. We use variables as transition labels to indicate that the value
of the corresponding probability is unknown, and may change over time. For
example transitions 3− 4 and 5− 6 indicate the cache hit probability.

In matrix form, the same DTMC would be characterized by the following
matrices Q and R:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 (1− y)0.3 0 (1− y)0.7 0 0 0
0 0.2 0.55 0 0 0 0
0 0 0 0 0 0.7 0
0 0 0 0 1− x 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1− z
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y 0 0
0 0.25 0
0 0.3 0
0 x 0
0 1− w w
0 z 0
0 1− k k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Notice that the parameters necessary to model a system with a DTMC (i.e.,
the values in the DTMC matrix) may be obtained by experimental results as
well as by estimates extracted by similar systems or by previous version of the
system under design. Finally, the system reported in this section is just a toy
example that we use to introduce the proposed approach. However, the concepts
described hereafter apply seamlessly to real systems which might have thousands
of states and failures.

2.2 Discrete Time Markov Rewards Models

A D-MRM [1] is a DTMC augmented with rewards, through which one can
quantify a benefit (or loss) due to the residence in a specific state or the move
along a certain transition. A D-MRM has an underlying DTMC, through which
designers can provide a high-level model for the system’s control flow by
abstracting the execution state space into a finite set of abstract states rele-
vant to the verification1. As illustrated later on, D-MRM may be used to model
performance properties or even properties concerning costs (e.g., energy con-
sumptions).

A reward is a non-negative value assigned to a state or a transition. Rewards
can represent information such as average execution time, power consumption,
number of I/O operations, or even cost of an outsourced operation. A D-MRM
is a tuple (S, S0, P, L, ρ, i) where:

– S is a finite set of states,
– S0 ⊆ S is a set of initial states,
– P : S × S → [0, 1] is a stochastic matrix (∀s ∈ S |

∑
s′∈S P (s, s′) = 1).

An element P (si, sj) represents the probability that the next state of the
process will be sj given that the current state is si,

– L : S → 2AP is a labeling function which assigns to each state the set of
Atomic Propositions that are true in the state,

– ρ : S → R≥0 is a state reward function assigning to each state a non-negative
real number,

– ι : S × S → R≥0 is a transition reward function assigning a non-negative
real number to each transition.

To understand how rewards are gained, we need to precisely state how the sys-
tem modeled by the D-MRM evolves over a sequence of time steps. At step 0 the
system enters the initial state s0. At step 1, the system gains the reward ρ(s0)
associated with the initial state and moves to a new state (say, s1), gaining also
the reward ι(s0, s1). The cumulated reward when the system enters state s1 is
ρ(s0) + ι(s0, s1). At step 2, it gains the reward ρ(s1) associated with state s1,
and then exits it gaining also the reward associated with the chosen transition,

1 The adoption of an underlying Markov model implies that the modeled system meets,
with some tolerable approximation, the Markov property, according to which the
probability distribution of future states depend only on the current state.
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and so on. In summary, the state reward is acquired if the D-MRM resides in
state si for one time step. The reward associated with a transition ι(si, sj) is
gained as the process makes an instantaneous move from state si to state sj . A
state s ∈ S is said to be an absorbing state if P (s, s) = 1. If a D-MRM contains
at least one absorbing state, the D-MRM itself is said to be an absorbing D-
MRM. If the absorbing states are reachable, in any number of time steps, from
transient ones, it can be shown that any execution will eventually be absorbed
with probability 1 (as proved for DTMCs in [29]). We assume D-MRMs to be
well-formed, i.e. all states are reachable from the initial state and for all non
absorbing states it is possible to reach a least one absorbing state.

Transitions can be defined through a matrix P where P (si, sj) represents the
probability associated with the transition from state si to state sj . Let us now
consider two distinct states si and sj . The probability of moving from si to sj in
2 steps is

∑
sx∈S P (si, sx)·P (sx, sj). Generalizing to a k-steps path and recalling

the definition of matrix product, the probability of moving from any state si to
any other state sj in k steps corresponds to the entry (si, sj) of the matrix P k.
As a natural generalization, we can define P 0 (representing the probability of
moving from a state si to a state sj in 0 steps) as the identity matrix, whose
elements are 1 iff si = sj [15,29].

Variability can be modeled quite simply in D-MRMs. We assume that variabil-
ity does not affect the structure of the models, only parameters. In our case, it
only affects the possible values used to label transition probabilities and rewards.
This is usually expressive enough to accommodate changes in the environment
that affect our system.

2.3 Probabilistic Computation Tree Logic

Formal languages to express properties of systems modeled through DTMCs
have been studied in the past and several proposals are supported by model
checkers to prove that a model satisfies a given property. In this paper, we focus
on Probabilistic Computation Tree Logic (PCTL) [19,2], a logic that can be used
to express a number of interesting reliability properties.

PCTL is defined by the following syntax:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P��p (Ψ)

Ψ ::= XΦ | ΦU≤tΦ

where p ∈ [0, 1], ��∈ {<,≤, >,≥}, t ∈ N ∪ {∞}, and a represents an atomic
proposition. The temporal operator X is called Next and U is called Until.
Formulae generated from Φ are referred to as state formulae and they can be
evaluated to either true or false in every single state, while formulae generated
from Ψ are named path formulae and their truth is to be evaluated for each
execution path.
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The satisfaction relation for PCTL is defined for a state s as:

s |= true

s |= a iff a ∈ L(s)

s |= ¬Φ iff s � Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P��p(Ψ) iff Pr(s |= Ψ) �� p

A complete formal definition of Pr(s |= Ψ) can be found in [5]; details are
omitted here for simplicity. Intuitively, its value is the probability of the set of
paths starting in s and satisfying Ψ .Given a path π, we denote its i-th state
as π[i]; π[0] is the initial state of the path. The satisfaction relation for a path
formula with respect to a path π originating in s (π[0] = s) is defined as:

π |= XΦ iff π[1] |= Φ

π |= Φ1U
≤tΦ2 iff ∃ 0 ≤ j ≤ t

(π[j] |= Φ2 ∧ (∀0 ≤ k < j π[k] |= Φ1))

From the Next and Until operators it is possible to derive others. For example,
the Eventually operator (often represented by the �≤t symbol) is defined as:

�≤tφ ≡ true U≤tφ

It is customary to abbreviate U≤∞ and �≤∞ as U and �, respectively
PCTL can naturally represent reliability-related properties for a DTMCmodel

of the application. For example, we may easily express constraints that must
be satisfied concerning the probability of reaching absorbing failure or success
states from a given initial state. These properties belong to the general class of
reachability properties. Reachability properties are expressed as P��p(� Φ), which
expresses the fact that the probability of reaching any state satisfying Φ has to
be in the interval defined by constraint �� p. In most cases, Φ just corresponds
to the atomic proposition that is true only in an absorbing state of the DTMC.
In the case of a failure state, the probability bound is expressed as ≤ x, where
x represents the upper bound for the failure probability; for a success state it
would be instead expressed as ≥ x, where x is the lower bound for success.
PCTL is an expressive language through which more complex properties than
plain reachability may be expressed. Such properties would be typically domain-
dependent, and their definition is delegated to system designers.

Recalling our example of Figure 1, we may have the following reliability re-
quirements:

– R1:“The probability of successfully handling a request is greater than 0.999”
– R2:“The probability for a request of being dropped by the file server of the

database server because of too many concurrent connections is less than
0.001”

– R3:“The probability for a request of experiencing an error HTTP 503 (e.g.,
too many incoming requests) is less than 0.001”
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– R4:“The probability for a request of dynamic content of experiencing a cache
miss is less than 0.25”

– R5:“The probability for a request of static content of experiencing a cache
miss is less than 0.15”

These requirements can be translated into PCTL as shown in Table 1, where
the notation s = n refers to the identification of state n according to Fig. 1.
Notice that these requirements have different sets of initial states: R1-3 must
be evaluated starting from state 0 (i.e., S0 = {0}) while R4-5 must be evaluated
starting respectively from state 1 and 3.

Table 1. Requirements translation in PCTL

Req. PCTL

R1 P≥0.999(true U s = 8) = P≥0.999(� s = 8)
R2 P≤0.001(true U s = 9) = P≤0.001(� s = 9)
R3 P≤0.001(X s = 7)
R4 P≤0.25(true U s = 6) in s = 1
R5 P≥0.15(X s = 4) in s = 3

Given the formalisms explained so far, we can introduce in the next section the
proposed approach which allow to efficiently verify non-functional requirements
such as R1− 5 at run-time via synthesis of symbolic expressions.

2.4 Extending PCTL with Rewards

R-PCTL is a logic language to express properties of a D-MRM. it is defined as
follows [25]:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P��p (Ψ) | R��r (Θ)

Ψ ::= X Φ | Φ U Φ | Φ U≤t Φ

Θ ::= I=k | C≤k | � Φ

Formulae Φ are named state formulae and can be evaluated over a boolean
domain (true, false) in each state. Formulae Ψ are named path formulae and
describe a pattern that can be matched over the set of all possible paths orig-
inating in a given state. Symbol �� stands for a relational operator in the set
{≤, <,≥, >}, p ∈ [0, 1] is a probability bound, r ∈ R≥0, and k ∈ Z≥0. trueUΦ
can be shortened by the eventually operator �Φ, with exactly the same semantics.
The expressions defined by Θ support the specification of reward patterns.

Let us now informally discuss the semantics of R-PCTL, first ignoring reward
formulae. The intuitive meaning of the formula P��p(Ψ) evaluated in a state s,
where Ψ is a path formula, is: the probability for the set of paths originating
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from s and satisfying Ψ meets the bound expressed as �� p. More precisely, the
satisfaction relation for (non-reward) state formulae is defined for a state s as:

s |= true

s |= a iff a ∈ L(s)

s |= ¬Φ iff s � Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P��p(Ψ) iff Pr(s |= Ψ) �� p)

A formal definition of how to compute Pr(s |= Ψ) is presented in [5]. The intu-
ition is that its value corresponds to the probability of taking a path that satisfies
Ψ , among all the, possibly infinite, paths originating in s. The satisfaction rela-
tion for a path formula with respect to a path π originating in s (π[0] = s) is
defined as:

π |= XΦ iff π[1] |= Φ

π |= ΦUΨ iff ∃j ≥ 0.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

π |= ΦU≤tΨ iff ∃0 ≤ j ≤ t.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

Let us now focus on the semantics of the rewards fragment of R-PCTL. We
intuitively define how a state s can satisfy a formula R��r (Θ) depending on the
way the reward expression Θ is formulated.

– R��r(I
=k) is true in state s if the expected state reward to be gained in the

state entered at step k along the paths originating in s meets the bound �� r.
– R��r(C

≤k) is true in state s if, from state s, the expected reward cumulated
after k steps meets the bound �� r.

– R��r(�Φ) is true in state s if, from state s, the expected reward cumulated
before a state satisfying Φ is reached meets the bound �� r.

The third construct can be used, for example, to state the global costs of the
running systems, that is, until the execution reaches a completion state, usually
modeled by an absorbing state because of its definitive nature.

A formal semantics for the reward fragment of R-PCTL can be found in [25].
Intuitively, the expected reward R(Θ) for all possible paths exiting a given state
s and satisfying the pattern Θ can be computed as the sum of the rewards for
each path of those paths, weighted by the probability for that path to be taken.
Even in case the set of paths originating from s is infinite, the resulting infinite
series can be proved to converge [5]. Notice that the probability for a path to be
taken is the joint probability of all its transitions to fire, which can be computed
as the product of the probabilities associated with the transitions thanks to the
Markov assumption[29]. We now need to define how the expected value X for
the reward can be computed for a given path ω = s0s1s2 . . . of the D-MRM and
for a given pattern:
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XI=k(ω) = ρ(sk) (2)

XC≤k(ω) =

{
0 if k = 0∑k−1

i=0 ρ(si) + ι(si, si+1) otherwise
(3)

XFΦ(ω) =

⎧⎪⎪⎨⎪⎪⎩
0 if s0 |= Φ
∞ if ∀i si � Φ∑min{j|sj |=Φ}−1

i=0

ρ(si) + ι(si, si+1) otherwise

(4)

In Section 3 we will show how the value of XΘ can be computed with algebraic
techniques taking into account the presence of both numeric values and variable
parameters in the D-MRM model.

Exploiting rewards we are able to express more complex requirements which
may consider for example costs or latencies. Let us recall our example of Figure
1 and let us imagine to deploy the system as follows. Let us imagine to have
a separate machine for each server. In particular let us imagine the scenario in
which we deploy the database and the file server on a Cloud infrastructure in
which bandwidth and space are billed (e.g., Amazon Simple Storage Service2).
In this setting we are now able to interpret the couple of numbers associated to
each state in Figure 1. The first number indicates the average latency, in seconds,
needed to process the request including the network latency. The second number
indicates the average cost for each request for being processed by the state. For
example the database server state has an average cost for each request equal to
0.07$. Given these details we may express requirements such as:

– R6:“The average cost for the system is less than 0.03 $ for each request”
– R7:“The average response time for a given request is less than 0.022s”

These requirements can be translated into R-PCTL as shown in Table 2.

Table 2. Requirements translation in R-PCTL

Req. R-PCTL

R6 R≤0.03(trueU 7 ≤ s ≤ 9)
R7 R≤0.022(trueU 7 ≤ s ≤ 9)

3 Probabilistic Verification at Runtime: Existing
Approaches

Standard verification techniques for PCTL properties over DTMCs are not suit-
able, in general, for runtime analysis because of the intrinsic time constraints

2 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/
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required by solvers. Some approaches have brought state-of-the-art probabilistic
model-checkers at runtime [7], providing a suitable infrastructure for many ap-
plications. Nonetheless these approaches are not general enough for at least two
reasons.

Notice that, the complexity of verification can be too high in case of large
systems to make the analysis meet its time constraints [9,22]. Second, analysis
procedures may be unsuitable for low power devices where the large number
of operations required for mathematical iterative algorithms commonly used by
model-checkers may result in excessive time and energy consumption.

Model-checking can be improved in many situations both in terms of analysis
algorithms, e.g. by applying space-reduction techniques (e.g. [23,3]), and via the
reuse of previous results, thus opening the way for incremental analysis [26].

Besides improving standard model-checking procedures, a different approach
have recently gained relevance for runtime analysis. In its seminal work [11],
Daws describes a procedure for parametric probabilistic model-checking of a
subset of PCTL over DTMCs. This result trod an effective path for bringing
probabilistic verification at runtime, by allowing to split the analysis process
in two steps. The first consists in the parametric analysis of the model with
respect to the desired property, whose result is a closed mathematical expression
depending on the symbolic variables appearing in the model. This step is quite
complex in terms of computational time, but it can be accomplished once for
all at design-time, when time is usually not a strong constraint. At runtime all
that is needed to obtain the actual analysis response is to replace the symbolic
variables with the actual values provided from modeling, as soon as they are
discovered. The evaluation of a mathematical expression, is in general a much
simpler task than model-checking, and can be performed in a very short time
even on low power devices, as we shown in [12].

The main focus of this section is on parametric probabilistic verification of
PCTL properties over DTMCs. In Section 3.1 we will introduce the algorithm
of Daws and the subsequent improvements and implementations. In Section 3.2
we present an alternative method for parametric analysis which overcomes the
limitations of Daws’ algorithm, covering the entire family of PCTL formulae
with an improved performance.

3.1 State Elimination Algorithms

The first approach for parametric model-checking of DTMCs has been proposed
in [11]. The main contribution of that seminal work concerned the synthesis of
parametric closed formulae through a state elimination algorithm, analogous to
the one used in automata theory to synthesize regular expressions from finite
state automata [20].

More precisely, Daws’ algorithm allows to compute a closed mathematical ex-
pression corresponding to the probability of reaching a set of target states in any
number of steps. In terms of PCTL, this corresponds to computing Pr(true U φ),
with the further constraint that φ can only be a boolean combination of atomic
formulae, i.e. it has to be possible to identify the set of states in which φ holds
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at design time and this set is not going to change at runtime. We will refer to
this family of reachability formulae as flat.

In the next section we will introduce Daws’ algorithm for reachability analysis.
Afterward, in Section 3.1, we will cover its extension for the analysis of a subset
of rewards formulae.

Flat Reachability Analysis. The core idea of Daws’ algorithm is to consider
the probability values labeling DTMC transitions as letters of an alphabet. Under
this interpretation the DTMC can be seen as a finite state automaton for which
it can be synthesized a variant of the regular expressions by adapting the well
known state elimination algorithm [20]. Such variants of the regular expressions
are named stochastic regular expressions (SREs)[11] and can be evaluated to
rational mathematical expressions. The construction of SREs corresponding to
the evaluation of flat reachability formulae on a DTMC is addressed by the first
part of this section.

Given a flat reachability formula true U φ and a DTMC D, it possible to
identify the set of states T of D that satisfy φ. We will call these states target
states.

In order to simplify the exposition, let us assume for now that all the target
states are absorbing. We will later relax this assumption.

We also assume the model to be well-formed, meaning that all the states are
reachable from the initial state s0. We can also prune out all the states (and the
corresponding transitions) from which it is not possible to reach any of the target
states. The model we obtain may no longer be a DTMC, since the elimination of
a subset of the transitions may lead to sub-stochastic states, i.e. the sum of the
outgoing probabilities is lower than 1, nonetheless the reduced model preserves
all the information needed for the computation of the reachability formulae (a
proof of correctness can be found in [18]).

Daws’ algorithm consist in eliminating all the states of the reduced model but
the targets and the initial state. A state elimination step is described in Figure
2. When eliminating state s, the algorithm considers all the pairs (si, sj) where
si is a direct predecessor of s and sj is a direct successor of s. When eliminating
s, the transition probability from si to sj is increased by a term representing the
probability of reaching sj from si through s. Such a term is, roughly, the sum
of the probabilities of all the possible paths, that can be computed by iterating
on the length k of a path:

∞∑
k=0

pap
k
cpb =

papb
1− pc

(5)

The state elimination terminates when the model is composed of the initial state
s0 directly connected to each of the target states. Each of these transitions will
be labeled by an SRE representing the probability of reaching the specific tar-
get state. The value of Pr(true U φ) is just the sum of all those SRE. As it
can be guessed from Figure 2, an SRE is essentially a rational expression, whose
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Fig. 2. SRE synthesis algorithm

numerator and denominator are polynomials having as variable the labels of
DTMC transitions.

In order to generalize the approach to deal with transient target states too,
it suffices to pre-process the DTMC by making all the target states absorbing.
Indeed, a formula (true U φ) is satisfied by a path as soon as it firstly reaches any
of the states in which φ holds, hence its satisfiability is not affected if the states
in which φ holds are made absorbing. Turning a transient state into absorbing
could make other states unreachable from s0; such unreachable states have to
be pruned out in order to regain a well-formed model.

In [18], Daws’ algorithm has been implemented in the tool PARAM. An effec-
tive improvement provided by PARAM to the original algorithm of [11] consists
in replacing the transition labels corresponding to numeric transitions by their
actual value after each state elimination. This allows to exploit arithmetic simpli-
fication of the intermediate SREs that can significantly speed-up both memory
consumption and subsequent mathematical operations due to state eliminations,
as shown in [18].

The result of executing PARAM is a closed rational expression having as
variable only the symbolic parameters of the model, since numeric ones have
been already evaluated by the tool. Such an expression is then evaluated at
runtime.

In our example, requirementR1 is formalized through a flat reachability prop-
erty. Its parametric verification a design-time produces the following expression:

Pr(true U s = 8) = 1− y − 0.7 · w + 0.7 · x · w + 0.144375 · z · k + 0.7 · y · w
+ −0.7 · y · x · w − 0.144375 · k + 0.144375 · y · k

−0.144375 · y · z · k

When the actual values of parameters x, y, w, z, and k become available at run-
time, it would suffice to substitute them in the previous expression to obtain
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the probability of reaching state 8. If the obtained result is ≥ 0.999, then R1 is
satisfied. Otherwise it is not.

Cumulative Rewards Analysis. A second major contribution of PARAM
with respect to Daws’ algorithm is its extension to deal with D-MRMs. Given as
input a D-MRM D and a set of target states T , PARAM is able to compute the
expected cumulative reward until a state in T is reached. The precise semantic
of this measure has been provided in Equation (4).

The algorithm is again based on the state elimination procedure. Considering
the pairs (si, sj) of direct predecessors and direct successors of a state s, respec-
tively, the goal is to obtain the transition reward ι(si, sj) for the new transition
from si to sj after eliminating s. A step of this state elimination procedure is
described in Figure 3, where a label p/r represents either the transition prob-
ability and the transition reward ι or the state name and its state reward ρ,
respectively.

Fig. 3. State elimination for D-MRM

The value of pe is computed as for reachability analysis as papb

1−pc
, while the

value of re can be computed as the sum of the reward accumulated over all the
possible paths from si to sj through s as (with respect to the path length k):
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re =

∞∑
k=0

(pap
k
cpb) · (ι(si, s) + ρ(s) + (ρ(s) + ι(s, s)) · k + ι(s, sj))

= ι(si, s) + ρ(s) + ι(s, sj) +
pc

1− pc
(ρ(s) + ι(s, s)) (6)

The proof of correctness of the algorithms in this section can be found in [18].
As for reachability analysis, the resulting expected accumulated reward is

again a rational expression with numerator and denominator being polynomials
having as variables the symbolic parameters of the D-MRM, whether transition
probabilities or rewards. The evaluation of such an expression at runtime requires
just to replace the parameters with the numeric values coming from monitors,
providing a far more efficient verification than model-checking.

In our example, R6 requires the computation of an expected cumulated cost
of a transaction. Its parametric analysis at design time produces the following
expression:

XF (7≤s≤9) = 0.03810625+ 0.028 · y · x− 0.028 · x− 0.03810625 · y
−0.01010625 · z + 0.01010625 · y · z

Design-Time Complexity. SRE can easily become very long and costly to
manipulate. Indeed, analogously to regular expressions on finite state automata,
the size of a SRE can grow as nΘ(logn), where n is the number of states of the
DTMC [16]. Such long expressions may take time to be manipulated at each
state elimination step and may require a high memory consumption when the
size of the model growths. The number of state elimination steps are in the
order of Θ(n3), as it can be easily proved [18], but the actual time each of them
takes heavily depends on the complexity of the mathematical operation to be
perfomed to combine SREs.

Though in the worst case nΘ(logn) constitutes a complexity lower bound for
computing SREs, in realistic software models most of the transitions can be as-
sumed to be labeled by numeric values. Hence, by exploiting this assumption,
instead of computing the full SRE taking transition labels as literals, PARAM
intertwines the state elimination algorithm and the partial evaluation of numeri-
cal terms appearing in SREs. In other terms, at each step of the state elimination
algorithm, the numeric labels are treated as numbers, thus allowing for the arith-
metic simplification of intermediate results.

This induces a significant saving in the size of intermediate rational function
representations, and hence an improvement in the actual computation time, as
empirically shown in [18].

As a final remark, notice that the synthesis of the final rational expression
may go through a large number of intermediate steps. In order to avoid any loss
of accuracy, PARAM uses infinite precision rational numbers instead of double
precision.
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3.2 Linear Algebra Approaches

As shown in the previous section, PARAM is able to deal with reachability for-
mulae and expected accumulated rewards, which are two subset of the properties
that can be expressed in (R-)PCTL, though the most commonly used.

In this section we illustrate an approach, named WorkingMom (WM), able
to deal with the entire (R-)PCTL to obtain a set of parametric closed formula
through the use of linear algebraic algorithms. We will firstly show how to com-
pute flat reachability formulae and then generalize the approach to cover the
entire PCTL. Afterwards, we will present the algorithms to deal with the re-
ward fragment of R-PCTL.

Flat Reachability Analysis. We start by focusing on flat reachability formu-
lae for absorbing states. Recalling the structure of the transition matrix for an
absorbing DTMC given in Equation (1), the matrix I−Q (where I is the identity
matrix of the same size of Q) has an inverse N and N = I+Q+Q2+Q3+ · · · =∑∞

i=0 Q
i [29]. Recall from Section 2.1 that an entry qij of the matrixQ represents

the probability of moving from the transient state si to the transient state sj in
exactly one time step. The entry nij of N represents the number of times the
Markov process is expected to visit the transient state sj before being absorbed,
given that it started from state si. Notice that a Markov process is considered
absorbed when it reaches any of the absorbing states. Notice that Qn → 0 when
n → ∞ (as discussed in Section 2.1), thus after enough time the process will
always eventually be absorbed, no matter which state it started in.

Every time the process accesses a transient state si, it has a probability of
being absorbed in the next time step in the absorbing state sj given by the entry
rij of the matrix R. Generalizing to all the pairs (si, sj) where si is transient
and sj is absorbing, we can get the absorbing distribution B of the DTMC as:

B = N × R

An entry bij of the matrix B represents the probability for the process of being
eventually absorbed in sj (in any number of states), given that it started from
si. B is by construction a t× r matrix, where t is the number of transient states
and r the number of absorbing ones.

Given a DTMC D and a set T of target absorbing states, the probability of
reaching T from the initial state s0 can be computed as:

Pr(true U T ) =
∑
sj∈T

b0j (7)

The goal of design-time pre-computation is to compute the value of Equation (7).
Depending on the size of the system and the availability of a parallel execution

environment the computation of the matrix B can be performed in different
ways. In [12] we introduced a computational approach entirely based on matrix
operations that can be straightforwardly suitable for parallelization. In this paper
we will instead focus on how to efficiently compute matrix B in a sequential
environment.
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An entry bij can be computed, by definition of matrix product, as:

bij =
∑

k=0..t−1

nik · rkj (8)

Entries rij are readily available from matrix R. Entries nik belongs instead to
the i-th row of matrix N , that is the inverse of I −Q.

By recalling the definition of inverse of a generic square matrix A, we know
that A ·A−1 = I. Thus, if we are interested in computing the i-th column of the
matrix A−1 we can simply solve the following linear system of equations:

A · v = ei (9)

where ei is the i-th column of the identity matrix, i.e. a column vector having
all zero elements but for the i-th that is 1, and v is the unknown vector corre-
sponding to the i-th column of A−1. Since in Equation (8) we are required to
know the entries of the i-th row of the matrix N = (I −Q)−1, we can exploit a
property of the transpose of invertible matrices, namely (A−1)T = (AT )−1), to
compute those entries.

Indeed, we are interested to the i-th row of (I − Q)−1, which is equal to
the i-th column of ((I − Q)−1)T ), which is in turn equal to the i-th column of
((I −Q)T )−1, by the just mentioned property.

The problem of calculating the a row of the matrix N and, through (8), of B
can be reduced to the solution of a linear system of equations. This solution may
take a long time to be performed by using out of the shelf algorithms. Though the
peculiarities of many DTMC classes, such as the models derived from software
artifacts, can be effectively exploited to improve the design time efficiency, as it
will be later discussed in Section 3.2.

The solution of (8) leads again to the generation of a closed rational expres-
sion, equivalent to the one computed by means of PARAM. This expression can
then be brought at runtime for efficient evaluation as soon as monitors provide
the actual values for symbolic parameters.

Analogously to Section 3.1, in order to generalize the procedure to the reach-
ability of transient states it is sufficient to pre-process the model by making the
target transient states absorbing. As already said, this operation may make some
of the states of the DTMC unreachable from s0. The unreachable states have to
be pruned to obtain a well-formed model.

Extending to Entire PCTL. Flat reachability is the most widely used type of
PCTL properties [17]. Nonetheless there are relevant requirements that cannot
be easily expressed in terms of flat reachability formulae.

In this section we will incrementally show how to handle the entire PCTL by
means of the WM approach. We will start by extending the reachability approach
to the case of generic flat until formulae P��p (φ1 U φ2), where φ1 is no longer
constrained to be equal to true. Afterward we will present algorithms to verify
the bounded operators X and U≤t. Finally we will relax the constraint for the
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inner state formulae to be flat and allow the nesting of temporal operators, thus
covering the entire PCTL.

Flat Until Formulae. The core idea for analyzing generic flat until formulae is
to reduce the problem to the analysis of equivalent reachability formulae, and
then apply the solution procedures already seen.

Starting from a DTMC D and a flat until formula P��p (φ1 U φ2), we will
construct a new DTMC D̄ and a flat reachability formula upon D̄ equivalent to
the desired property of D. In order to construct D̄ the following procedure has
to be applied on D:

1. Add two absorbing states sgoal and sstop
2. For all the states where φ2 holds, remove all the outgoing transitions and

put a single one (with probability 1) toward sgoal
3. For all the states where ¬(φ1∨φ2) holds, remove all the outgoing transitions

and put a single one toward sstop.

Computing on D̄ the flat reachability property P��p (true U sgoal) provides the
same result as computing the flat until probability of P��p (φ1 U φ2).

The rationale behind the previous procedure is that a path satisfying (φ1 U φ2)
cannot pass from any state where neither φ1 nor φ2 hold (point 2) and has to
eventually reach a state where φ2 holds (point 1). At this point it is possible
to apply the same mathematical machinery previously introduced for flat reach-
ability of absorbing states, namely the solution of Equation (8) for the entry
b0 sgoal .

As a final remark, notice that flat reachability formulae are special cases of
flat until ones. They have been presented separately for the sake of simplifying
the exposition.

Flat Next and Bounded Until. Let us focus now on the parametric analysis of
Next and Bounded Until flat formulae.

The set of paths to be considered in order to estimate the probability of a path
formula X φ in a state si is composed by all the 1-step long paths originating
in si. Under the hypothesis of flat formulae, the truth of φ can be computed
once for all at design time. As we stated in Section 2.1, the transition matrix
P contains the probability of moving from a state to another in a single step.
Hence, to compute the probability of reaching, from a state si, a state where φ
holds in 1 step, the following procedure is in place:

Pr(X φ1) =
∑

sj |=φ1

pij (10)

For example, applying (10) in state s3 to verify the requirement R5 of our
example leads, as it should be easy to guess, to 1− x .

A similar procedure applies to the case bounded flat until. Indeed, each path
originating in si and satisfying φ1U

≤tφ2, at a certain step k ≤ t will reach a
state sj where φ2 holds, and for all the previous steps φ1 has to hold. If we
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exploit the same construction used in the case of flat until formulae to construct
the modified DTMC D̄, each of these paths corresponds to a path in D̄ that
exactly at time step k+1 reaches the state sgoal, by construction. Being sgoal an
absorbing state it is non going to be left by the path. Hence, we can conclude
that any path of D satisfying φ1U

≤tφ2 corresponds to a path in D̄ being at time
t+ 1 in state sgoal.

The probability distribution of the states reached by a DTMC after exactly
(t+ 1) time steps can be computed by elevating the transition matrix P to the
t+ 1-th power:

Pr(φ1U
≤tφ2) = (P t+1)s0sgoal (11)

Nested Formulae. We have so far restricted the analysis of PCTL formulae to
what we called the flat fragment, that is, the set of formulae where the argu-
ments of a path operator are boolean combinations of atomic propositions only.
The peculiarity of flat formulae is that it is always possible at design time to
identify the states where a state formula φ holds, and thus generate a parametric
expression by means of the procedures previously exposed.

In the case of nested formulae, that is formulae P��p (Ψ) where at least one
sub-formula of ψ is again a path formula, some information needed to compute
the desired parametric expression may only become available at runtime. For
example, the set of states satisfying R1 will be known only at runtime, because
it depends on the actual values assigned to the model parameters. If for example
such a state formula would appear as the right-hand operand of an until operator,
it would not be possible to apply at design time the procedures exposed so far,
since it would not be possible to identify the target states. Indeed, to evaluate
a formula with nested P��p (·) operators, so far we needed to know in which
states its sub-formulae are satisfied, and this, in general, depends on the value
of the model parameters. The same consideration can be applied recursively to
sub-formulae of a sub-formula, until we reach a flat one that can be directly
analyzed.

To deal with this issue we want to delay at runtime the evaluation of a nested
formula, when all the knowledge concerning its sub-formulae has been gathered,
without loosing the benefits of parametric verification.

Let us focus on until formulae. The solution previously provided is based
on the construction of the modified DTMC D̄. Such a construction requires to
disconnect certain states from their successors and to connect them to either sgoal
or sstop. Then, for what has been previously explained, the resulting parametric
expression would be the entry bs0sgoal of the matrix B computed as in (8) on
D̄. In order to delay at runtime the decision about the connection of a state to
sgoal or to sstop, all is needed is the addition of three more parameters per state.
The first will be a coefficient mi that multiplies all the elements pij of D. The
second and the third are, respectively, two terms aigoal and aistop to be put in
correspondence of the entries psisgoal and psisstop of the matrix P of D̄. The three
additional parameters can assume values 0 or 1, and their intuitive purpose is
the following: assigning 0 to a parameter mi disconnects state si from all its



50 A. Filieri and G. Tamburrelli

successors; assigning 1 to either aigoal or aistop connects state si to state sgoal or
sstop, respectively.

Computing bs0sgoal at design time will lead to a parametric expression hav-
ing as variables both the model parameters and the additional parameters mi,
aigoal, and aistop for each state si. At runtime, when information about the
sub-formulae of a nested formula becomes available, the value of the additional
parameters can be set in order to adapt the expression to reflect the convenient
transformation of D̄. Applying this procedure recursively on nested formulae
allows to keep the benefits of parametric analysis, though it would require at
most as many evaluations as the nesting depth of the formulae. Assuming most
of the nested formulae to have just a few nesting levels, the impact on runtime
complexity would still be limited. Another drawback in parametric analysis of
nested formulae is that the resulting mathematical expressions could be longer
than in the case of flat formulae due to the presence of more parameters, but the
evaluation time is still not comparable with the execution of a model-checking
routine for a system large enough.

Finally, the computation of next and bounded until nested formulae follows
the same principle described for until ones, and they have to be computed on
the model instrumented with the additional parameters mi, aigoal, and aistop.
The adaptation of the mathematical procedure for the Next operator is a trivial
exercise.

Reward Analysis. Equations (2), (3), and (4) of Section 2.4 formalize the
semantics of the three specification patterns for reward formulae defined for R-
PCTL. In this section we will provide mathematical algorithms for the analysis
of each of them.

The following mathematical procedures are based on the notion of expected
reward along a set of paths originating from a state si. In Section 2.4 this value
has been intuitively defined as the sum of the rewards cumulated along each of
those paths, weighted by the probability for that path to be taken. Since such a
sum may contain infinite terms and could be unfeasible to compute directly, we
need a different procedure more suitable for an efficient mathematical solution.
Exploiting the Markov property and the linearity of the expected value [29], the
computation of the expected reward for a (non empty) path originating in si
can be computed as the sum of the state reward ρ(si) gained in state si and the
expected reward to be gained in each of the possible successors of si, weighted by
the probability of moving toward it. Applying this observation to all the states
S of a D-MRM leads to the following linear system of equations:

ri = ρ(si) +
∑
sj∈S

pij · (ι(si, sj) + rj) (12)

where ri is the expected reward over all the paths originating in si.
In order to simplify the exposition, we will refer in this section only to flat

R-PCTL formulae, meaning that in path formulae �φ, φ may not contain any of
the occurrence of the modal operators P��p (·) and R��r (·). The extension to the
nested fragment of R-PCTL can be achieved by instrumenting the D-MRM with
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additional parameters as it has been done previously for nested PCTL formulae.
As further simplifying assumption, in this Section we will focus on state rewards
only. Transition rewards can always be mapped into state rewards of a modified
D-MRM automatically.

Let us start with the parametric analysis of formulae R��r (�φ). Recalling (4)
and (12), we can define the computation of the expected cumulated rewards over
all the paths satisfying �φ and originating in a state si as the solution of the
following linear system of equations:

ri =

⎧⎨⎩
0 if si |= Φ
∞ if si is absorbing and si � Φ

ρ(si) +
∑

sj∈S pij · rj otherwise
(13)

The rational behind (13) is intuitive: a state si satisfying φmarks the satisfaction
of the path formula �φ and thus the end of the reward accumulation, on the other
hand, an absorbing state that does not satisfy φ marks a path that will never
satisfy �φ and thus contribute to the accumulation of rewards as an infinite cost,
as from the definition in (4).

Notice that the solution of (13) leads to a polynomial expression having as
variables the model parameters, whether they label transition probabilities or
state rewards. For example, the parametric verification of requirementsR7 leads
to the following expression (notice that in this case we are considering as state
reward the average execution time):

XF (7≤s≤9) = 0.21734375+ 0.084 · y · x− 0.084 · x− 0.21734375 · y
−0.02165625 · z + 0.02165625 · y · z

Concerning formulae R��r (I=k), from (2) it can be computed as the sum of
the rewards of every state reached in exactly k time steps, weighted by the
probability of reaching it. Recall that the probability of reaching a state sj from
a state si in exactly k time steps is the entry (pk)ij of the matrix P k. Let us
define the column vector ρ̄ = [ρ(s0), ρ(s1), ρ(s2), . . . ]. The expected reward X=k

can be computed for all the paths originating from a state si by the following
equation:

XI=k = P k · ρ̄
∣∣∣∣
i

(14)

where |i indicates the i-th element of the resulting vector.
Finally, formulae R��r (C≤k) require to compute the cumulated reward along

all possible paths up to the k-th step. For the previous consideration, the ex-
pected reward gained at the j-th step is exactly P k · ρ̄. Thus, to compute the
cumulated reward up to the k-th step with k ≥ 1 it is possible to apply the
following equation:
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XC≤k =
k−1∑
i=0

P i · ρ̄
∥∥∥∥
0

(15)

When k = 0, XC≤k = 0 by definition (3).
This section concludes the exposition of the mathematical machinery used

within the WM approach. Most of the mathematical procedures exposed so
far relies on the ability to efficiently and accurately solve a linear system of
equations. In the next section we will briefly sketch the basics of the solution
strategy currently used in the WM approach.

Design-Time Complexity. Solving linear systems of equations is a well stud-
ied mathematical problem, even though most of the computational approaches
concern numerical solution and cannot deal with symbolic parameters [28]. The
most popular algorithms to solve linear equation systems embedded in proba-
bilistic model-checkers are iterative ones [30,28], which can efficiently solve even
large systems with the desired precision in the final result and without requiring
a large amount of memory.

In the WM approach it is no possible to adopt the same strategy because
iterative methods do not deal conveniently with symbolic parameters. Indeed,
the presence of unknown parameters makes hard to assess the convergence of
the iterative algorithm. For this reason we adopted a direct method to solve
the system. Direct methods have the additional benefit of not loosing precision
in the results, and both parallel and sequential algorithms have been provided.
More specifically we are interested in direct methods for the solution of sparse
linear systems [10] because a Markov model for a software system is likely to
have only a few non-zero entries for each row of the matrix Q, since a component
or a task are usually designed to directly interact with only a few counterparts.

Sparsity of the linear system can be exploited to obtain a faster computation.
Since [13], we implemented a solver based on structured Gaussian elimination
and Markowitz pivoting [10]. Structured Gaussian elimination is a variation of
the widely used method to triangularize linear systems which allows to reduce
the solution of a large sparse equation system to the solution of a small dense
one. This collapse can significantly reduce the size of the system to be actually
solved. A core element of structured Gaussian elimination is the strategy used
to select the order in which elements of the original system will be eliminated.
In fact, each elimination step may reduce the sparsity of the obtained system,
reducing in turn the global effectiveness of the method. This problem is known
as fill-in. In order to reduce the fill-in during the elimination steps we adopted
Markovitz pivoting as a selection strategy of the next element to be eliminated.
Other strategies can be more suitable for specific cases but their discussion as
well as mathematical details concerning structured Gaussian elimination and
Markovitz pivoting are beyond the scope of this paper. The interested reader
may refer for example to [10].
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Finally, in order to avoid any loss of accuracy during intermediate computation
steps, the WM solver uses infinite precision rational numbers for all the numeric
values appearing in the models. All the mathematical procedures for the WM
approach have been implemented in Maple 153.

4 Empirical Evaluation

In this section we provide an empirical evaluation of the tools presented in Sec-
tion 3. For the verification we focus on the propertyR��r (Fφ), where φ identifies
the unique absorbing target state defined in all the test cases. We chose this prop-
erty since it embeds a reachability formula that is both the most widely used in
practical verification and the most complex to compute for the two tools. We are
interested in evaluating the execution time of just the design time phase. The
runtime verification, being just the evaluation of polynomial forms, takes a very
short time even for very large parametric formulae, as discussed in [12].

We will provide a first comparative study of the two approaches with respect
to two dimensions of the problem, namely the number of states and the number of
symbolic parameters. Though this cannot be considered a complete comparison
of the approaches, it provides a glimpse of how the their current implementations
scale with respect to the two dimensions investigated and gives to the reader an
insight about the actual computation time needed for parametric analysis of
D-MRM models.

Beside PARAM and WM we added a graph from a modified WM where the
linear system of equation is solved by means of the built-in solver of Maple
15. This would provide an evidence of the effectiveness of the chosen solution
strategy for the actual WM.

All the models used for the tests are well-formed and generated randomly.
Since we are interested in comparing the efficiency of verification algorithms, we
disabled the pre-processing procedure implementing state-reduction algorithms
for D-MRM that are enabled by default in PARAM. The same pre-processing
could be implemented also for the WM, but is out of of the scope of this paper.

The execution environment is a Dual Intel(R) Xeon(R) CPU E5530 @ 2.40
GHz with 8Gb of ram, equipped with GNU Linux Ubuntu server 11.04 64bit.
All the tests considered in this section did not overrun the available memory.

Due to the high variability in the actual execution time, we reported the
average execution time with a thick black line and the maximum measured
execution time in a dashed thin line.

Figure 4 reports the execution time of the two tools with respect to the number
of states. All the samples have exactly 5 outgoing transitions from each transient
state. There are 5 parametric transitions and 2 parametric rewards for a total
of 7 symbolic parameters. The sample set is composed by 50 samples.

As shown in Figure 4(a), the execution time slightly grows with respect to the
number of states for PARAM. Nonetheless there is a strong variability in the
average execution time due to the impact on the solver of the specific topology

3 http://www.maplesoft.com

http://www.maplesoft.com
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of each case. This factor will affect most of the tests proposed in this section
and need further investigations to conveniently characterize input model with
respect to the topology of their D-MRM. A main difference between PARAM
and the approaches based on linear algebra is the order of magnitude of the
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execution times, being in the first case up to 104 time higher. There are instead
no significant differences between the Maple built-in solver and the WM.

Figure 5 shows the execution time of the three solver when the number of
parameters changes. All the models have exactly 100 states, with 5 outgoing
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transitions per state. The parameters are distributed between transitions prob-
ability and rewards, without duplication of the same symbol.

We limited the number of parameters to 10 because of the long execution time
required by PARAM, as shown in Figure 5(a). In this figure, it is clear that the
execution time grows sharply with the number of parameters, taking more than
2h to process models with just 10 symbolic parameters. Maple built-in solver
provides a quite reasonable performance, taking no more the 0.2s in our tests,
while the WM is slightly faster than this.

When the number of parameters growths up to 45, the benefits of the WM
solution strategy become more visible (Fig. 6). Indeed, the built-in solver of
Maple reaches a maximum execution time of about 3h, while the WM took no
more than 7 minutes in the worst case. This last analysis has been performed
on 200 randomly generated test cases, 50 per observation point.

Concluding, besides a global glimpse of what could be the actual execution
time of state of the art tools for parametric verification of Markov models, the
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tests in this section show that the number of states and the number of parameters
do not satisfactorily characterize the performance of the solver. Indeed there is
a relevant distance from the maximum and the average execution time as a sign
of the high variance in the measures. This suggests that specific topologies my
affect, positively or negatively, the performance of the solver so far implemented,
and need further investigation.

5 Conclusions and Future Work

Evolving systems require efficient verification procedure in order to timely
reveal violations of their requirements. Many quantitative attribute related to
the quality of service provided by the system heavily depends on environmental
factors, such as the usage scenario and the interactions with external compo-
nents. Those environmental factors are often out from our control and sub-
ject to unpredictable changes. A probabilistic framework could be a convenient
mean to deal with this uncertainty and the availability of probabilistic model-
checkers allows one to formalize and verify quantitative requirements in a fully
automatic way.

Nonetheless, re-running a model-checker after any detected change may ham-
per the verification performance, making the system unresponsive or unable to
identify the problem on time. Parametric model-checking shown to be an effec-
tive replacement for evolvable systems since it allows to partially evaluate the
requirements at design time producing closed mathematical formulae quickly
evaluable at runtime. The main burden of parametric model checking consists in
design time computation that can be quite expensive in terms of computational
time. Although the time is not supposed to be a too strict issue during design,
the availability of efficient tools could speed up the entire process and provide a
better interaction with the system designers.

The state of the art parametric verifiers provide reasonable performances for
design-time computation, though their execution time strongly depends on the
topology of each input model. This dependency has to be further investigated
in order to select for each input the most efficient methodology.

Future steps in probabilistic parametric verification should focus on scalability
issues that may arise in case of large models, as well as on supporting more
complex models and properties, such as continuous time Markov chains that are
widely used for software performance analysis. A further limitation of current
tools is that they do not allow changes in the structure of the model that are not
expressible as an assignment to its parameters. Overcoming this limitation could
open the way to a significantly broader application in the field of self-adaptive
systems.

Acknowledgments. This research has been funded by the EU, Programme
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Abstract. Distributed applications in the cloud are composed of a set
of virtual machines running a set of interconnected software components.
In this context, setting up, (re)configuring, and monitoring these applica-
tions is a real burden since a software application may depend on several
remote software and virtual machine configurations. These management
tasks involve many complex protocols, which fully automate these tasks
while preserving application consistency. In this paper, we focus on a
self-configuration protocol, which is able to configure a whole distributed
application without requiring any centralized server. The high degree of
parallelism involved in this protocol makes its design complicated and
error-prone. In order to check that this protocol works as expected, we
specify it in LOTOS NT and verify it using the CADP toolbox. The
use of these formal techniques and tools helped to detect a bug in the
protocol, and served as a workbench to experiment with several possible
communication models.

1 Introduction

Cloud computing emerged a few years ago as a major topic in modern program-
ming. It leverages hosting platforms based on virtualization, and promises to
deliver resources and applications that are faster and cheaper with a new soft-
ware licensing and billing model based on the pay-per-use concept. For service
providers, this means the opportunity to develop, deploy and sell cloud applica-
tions worldwide without having to invest upfront in expensive IT infrastructure.

Distributed applications in the cloud are composed of a set of virtual machines
(VMs) running a set of interconnected software components. However, the task
of configuring distributed applications is a real burden. Indeed, each VM includes
many software configuration parameters. Some of them refer to local configura-
tion aspects (e.g., pool size, authentication data) whereas others contribute to
the definition of the interconnections between the remote elements (e.g., IP ad-
dress and port to access a server). Therefore, once it has been instantiated, each
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VM has to apply a set of dynamic settings in order to properly configure the
distributed application. On the whole, existing deployment solutions rarely take
into account these different configuration parameters, which are mostly managed
by dedicated scripts that do not work completly automatically (human interven-
tion is needed). Moreover, these solutions are application-dependent and only
work for specific distributed applications to be deployed: Google App Engine
for instance only deploys Web applications whose code conforms to very spe-
cific APIs (e.g., no Java threads), Microsoft Azure only supports applications
based on Microsoft technologies, Salesforce only focuses on customer relationship
management, etc.

In this paper, we present an abstract model for describing component-based
applications and an innovative self-configuration protocol which automates the
deployment of these distributed applications in the cloud. Once the VMs are
instantiated, the self-configuration protocol is able to configure the whole ap-
plication without requiring any centralized server and does not require a com-
plex scripting effort. The high degree of parallelism involved in this protocol
makes its design complicated and error-prone. Consequently, we decided to
formally specify and verify this protocol in order to find possible bugs using
state-of-the-art model checking techniques. The self-configuration protocol was
specified using the specification language LOTOS NT [9] (LNT for short) and
verified using CADP verification tools [15]. LNT is a simplified variant of the
E-LOTOS standard [19] that combines the best features of imperative program-
ming languages and value-passing process algebras. LNT has a user-friendly
syntax, and supports the description of complex data types written using a func-
tional specification language. Since LNT relies on classic programming
paradigms, this greatly simplifies the design and analysis process, and reduces
the gap between the specification and the real implementation of the system.
In this work, these formal techniques and tools helped to detect a major bug
in the protocol, which was corrected in the Java reference implementation. The
LNT specification also served as a workbench to experiment with several possible
communication models, and these experiments helped us to avoid an erroneous
design.

It is worth emphasizing that the self-configuration protocol is one of the base
components of a French project called OpenCloudware1, aiming at building an
open software engineering platform, for the collaborative development of dis-
tributed applications to be deployed on multiple Cloud infrastructures. Open-
Cloudware is a funded project that started in 2012 for three years and involves
many companies and research centers in France.

The rest of this paper is organized as follows. Section 2 introduces the dis-
tributed application model and the self-configuration protocol. We present the
LNT specification of the protocol in Section 3 and its verification in Section 4.
After comparing our experience with related work in Section 5, we conclude this
paper in Section 6.

1 See http://opencloudware.org for more details.
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2 Self-configuration Protocol

2.1 Application Model

The configuration of a cloud application is specified using a global model com-
posed of a set of interconnected software components running on different VMs.
A component is a runtime entity that has some configuration parameters and
one or more interfaces. An interface is an access point to a component that sup-
ports a finite set of methods. Interfaces can be of two kinds: server interfaces,
which correspond to access points accepting incoming method calls, and client
interfaces, which correspond to access points supporting outgoing method calls.
Bindings make explicit connections between components’ client interfaces and
server interfaces. A binding is local if the components involved in the binding are
running on the same VM. A remote binding is a binding between a client inter-
face of a local component and a server interface provided by a component located
in another VM. A client interface is also characterized by a property named con-
tingency, which indicates whether this interface is optional or mandatory. By
extension, the contingency of a binding corresponds to the contingency of its
client side. A component has also a lifecycle that represents its state (started
or stopped). Finally, an application model identifies each VM belonging to the
application, the set of components running on each VM, and their local/remote
bindings. A simple example of application model is given in Figure 1 (left), where
c stands for client and s for server.

Fig. 1. Example of application configuration (left) and self-configuration protocol ex-
ecution (right)

2.2 Self-configuration Principles

The configuration starts when the deployment manager instantiates all VMs.
Each VM embeds a configurator which drives and encodes most of the self-
configuration behaviour. A virtual machine is also equipped with two buffers
(one input buffer and one output buffer) for communicating with the other VMs.
All communications transit through a MOM.
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Each VM embeds the application model and a configurator. It is worth observ-
ing that embedding the whole application model on each VM is not an optimal
solution, particularly if the system is planned to be reconfigured. Here, we made
this simplification because we focused only on deployment. An alternative solu-
tion could be to embed only on each virtual machine the information necessary
for its (re)configuration, that is information about the (remote) components
connected to local components.

The configurator manages the configuration of the components inside the
VM, and participates in the binding configuration between components and in
the application start-up. To this end, each configurator has the ability to create
and configure components, send server interfaces (for binding purposes), bind
component client interfaces to server ones, start components, and send messages
to other VMs indicating that a local component has been started. To bind a
client interface, the local configurator in charge of the component on the client
side needs the corresponding server interface, that is, the required information to
access to this interface (IP, port, etc.). This server interface can be local (in this
case the local configurator can manage this by itself), or it can be remote (in this
case the remote configurator sends the server interface to the local configurator
of the corresponding remote VM).

The configurators send their server interfaces and start messages, according
to the application model, through a Message Oriented Middleware [4] (MOM).
MOMs implement a message buffering system that enables configurators to ex-
change messages in a reliable and asynchronous way. From a local point of view,
each VM is equipped with two buffers, one output buffer storing messages des-
tinated to other VMS and one input buffer storing messages coming from other
VMs.

It is worth observing that, for scalability purposes, the self-configuration pro-
tocol used to configure distributed applications is decentralized. Once the VMs
are instantiated, the self-configuration protocol is able to configure the whole
application without requiring any centralized server. The self-configuration pro-
tocol is also loosely-coupled. Each VM starts the self-configuration protocol just
after the boot sequence (instantiation of VMs by the deployment manager) with-
out needing to know about the state of other VMs. The configuration of the dis-
tributed application will progress each time a VM belonging to the application
becomes available. This avoids the need for global synchronization between VMs
during the configuration protocol.

2.3 Protocol Description

The protocol execution is driven by the configurators embedded on each VM.
All configurators evolve in parallel, and each of them carries out various tasks
following a precise workflow that is summarized in Figure 2 where boxes identi-
fied using natural numbers (❶, ❷, etc.) correspond to specific actions (CREATEVM,
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CREATECOMPO, etc.). Diamonds stand for choices, and each choice is accompanied
by a list of box identifiers that can be reached from this point.

Based on the application model, the configurator starts (❶), successively cre-
ates all the components described in the model for this VM (❷), and binds local
components (❸). Note that diamonds in the workflow propose several options,
because a VM may not have local bindings for instance, and in such a case, the
configurator jumps to the next step. In order to set up remote bindings, both
VMs need to interact by exchanging messages through the MOM (❹). For each
binding associated to two components C1 and C2 (involved respectively in the
binding between a server interface and a client interface), the configurator K1

(responsible for C1) sends the server interface to configurator K2 (responsible
for C2). This server interface includes all information required by C2 to interact
with C1, that is, when K2 receives a message containing such an interface, it
proceeds with the binding of C2 to C1.

Fig. 2. Configurator workflow

Once the configurator has sent all its server interfaces, it can launch the
process for starting the applicative components. The configurator first launches
the local components that can be started (❺). At that moment in the protocol
execution, the only components that can be started are components without
mandatory client interfaces or components whose mandatory client interfaces
are all connected to local components. For each component Cserver then started,
the configurator sends to every remote component connected to it through an
application binding, a start message (❻) indicating to the remote component that
this Cserver component is started. When the configurator has started all the local
components that can be launched, it starts reading from its input communication
buffer (❼). Two kinds of message can be received: (i) upon receiving a binding
request message, the configurator binds the local component to the remote one
(❽), (ii) upon receiving a message indicating that a remote component has been
started, the configurator keeps track of this information and goes back to ❺
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in order to check whether other local components can be started (those with
all mandatory client interfaces connected and corresponding server components
started).

Figure 1 provides an application example (left) and the corresponding self-
configuration protocol execution (right). This execution scenario shows the com-
munications exchanged between the VM configurators to start the application.
We can see that first the VM3 configurator (in charge of C4) sends a binding
message with C4 server interface to VM2 configurator (in charge of C3). VM2
sends C3 server interface to VM1 configurator. Upon receptions both configu-
rators can make these bindings effective. When VM3 starts C4, a message is
sent to VM2. Upon reception, VM2 can start C3, and sends a message to VM1
indicating that C3 has been started.

2.4 Implementation

From an implementation point of view, we rely on the Open Virtualization For-
mat [1] (OVF) in order to describe an application, that is a set of interconnected
components hosted on various virtual machines. OVF is an open and extensible
standard for packaging and distributing virtual appliances or software to be run
in virtual machines. However, OVF is not designed for describing architectural
aspects (components, interfaces, bindings). Therefore, we have proposed an ex-
tension of OVF, which aims at offering an architectural view of the distributed
application which is embedded within the VMs of an OVF package. Using OVF
offers higher level control abstractions, compared to specific configuration scripts
existing in current industrial solutions.

Our extension of OVF enables the description of a distributed application
through an XML-based description encompassing not only the notions of hard-
ware requirements, disk images, etc., but also components, interfaces, and
bindings. Adding the notion of VM to each component description (using the
virtual-node tag) also enables the description of the distribution constraints of
components within virtual machines.

The deployment engine is implemented in Java and builds upon this ADL to
configure automatically an application described with this formalism. We have
already used this process for deploying real applications such as Springoo, CLIF,
or Tune. Springoo is a Java EE multitiered application enabling the manage-
ment of markets, offers, and services in a company. CLIF [12] is a load injection
framework, which provides a Java-based, open source, generic infrastructure to
generate load on any kind of systems, and gather performance measurements
(requests response times, computing resources usage, etc.). Tune [8] is a global
autonomic management system in Java. Evaluation results show that the self-
configuration protocol allows a human administrator to reduce significantly the
duration for deploying a large number of applications. A more detailed descrip-
tion of the self-configuration protocol (description, technical details, evaluation,
etc.) can be found in [13,14].
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3 Specification

We specified the protocol in LNT [9], one of the input languages of the CADP
verification toolbox [15]. We chose LNT as our specification language because
(i) it provides expressive enough operators, in particular rich datatype descrip-
tions, for modelling the self-configuration protocol, (ii) its user-friendly notation
simplifies the specification writing, and (iii) it is equipped with state-of-the-art
verification tools in order to check that the protocol respects some key-properties.

3.1 LNT in a Nutshell

LNT is a simplified variant of the E-LOTOS standard [19] that combines the
best features of imperative programming languages and value-passing process
algebras. LNT supports both the description of complex data types and of con-
current processes using the same user-friendly syntax. LNT formal operational
semantics is defined in terms of LTSs (Labelled Transition Systems).

LNT processes are built from actions, sequential compositions (;), conditions
(if .. then .. else .. end if), assignments (:=), looping behaviours (loop .. end
loop), choices (select .. [] .. end select), and parallel compositions (par .. || ..
end par). Communication is carried out by rendezvous on a set of synchroniza-
tion actions (multiway synchronization points) with bidirectional transmission
of multiple values. Synchronizations may also contain optional guards (where)
expressing Boolean conditions on received values. Processes are parameterized
by sets of actions (alphabets) and input/output data variables.

LNT specifications can be analysed using CADP, a verification toolbox that
has been in continuous development since the late 80s. CADP is dedicated to the
design, analysis, and verification of asynchronous systems consisting of concur-
rent processes interacting via message passing. The toolbox contains about 70
tools and libraries that can be used to make different analyses such as simulation,
model checking, equivalence checking, compositional verification, test case gen-
eration, or performance evaluation. CADP was successfully applied to real-world
and industrial case studies in many different fields such as telecommunication
protocols, hardware design, embedded systems, or avionics.

In the rest of this section, we will present a few excerpts of the self-
configuration protocol LNT specification.

3.2 Data Types and Functions

Data types are used to describe the distributed application model, that is, VMs,
components, interfaces (client and server), bindings between components, mes-
sages, buffers, etc. We show below a few examples of data types. An application
(TApplication) consists of a set of VMs and a set of bindings. A VM (TVM)
consists of an identifier and a set of components. A component (TComponent)
is characterized by an identifier, a set of client interfaces, and a set of server
interfaces. A client interface (TClient) is a couple (identifier, contingency), the
contingency (TClientType) being either mandatory or optional.
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type TApplication is
tapplication (vms: TVMSet, bindings: TBindingSet)

end type

type TVMSet is set of TVM end type

type TVM is
tvm (id: TID, cs: TComponentSet)

end type

type TComponent is
tcompo (id: TID, cs: TClientSet, ss: TServerSet)

end type

type TClient is
tclient (id: TID, contingency: TClientType)

end type

type TClientType is mandatory, optional end type

Functions apply on data expressions which describe the distributed application.
These functions are necessary for three kinds of computation: (i) extracting infor-
mation from the application model, (ii) describing buffers and basic operations
on them, (iii) keeping track of the started components to know when another
component can be started, i.e., when all its mandatory client interfaces are con-
nected to started components. Functions are also defined to check that there
is no cycle of mandatory client interfaces through bindings in the application
model, and that all the mandatory client interfaces are bound. Let us show, for
illustration purposes, the function add, which adds a message m to a buffer q

storing messages in a list with respect to a FIFO strategy (we add messages at
the end of the buffer and read from the beginning). TBuffer is specified as a list
of messages of type TMessage, equipped with classic constructors cons and nil.
It is worth observing in this example that LNT uses the classic ingredients of
functional programming, namely pattern matching and recursion.

function add (m: TMessage, q: TBuffer): TBuffer is

case q in
var hd: TMessage, tl: TBuffer in

nil -> return cons(m,nil)
| cons(hd,tl) -> return cons(hd,add(m,tl))

end case

end function

3.3 Processes

They are used to specify VMs (configurator, input and output buffer), the com-
munication layer (MOM), and the whole system consisting of VMs interacting
through the MOM. Each VM consists of a configurator and two buffers, namely
bufferIn and bufferOut, which store input and output messages, respectively.
The configurator drives the behaviour of each VM, and encodes most of the
protocol functionality. The MOM process reproduces the communication media
behaviour used to make VMs interact together. The MOM is equipped with a
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set of FIFO buffers in order to store messages being exchanged. There is a buffer
for each VM, and messages transiting by the MOM are temporarily stored in
the buffer corresponding to the VM to which the message is destinated.

For illustration purposes, we present two excerpts of LNT processes. The
first one is the SELFCONFIG process, which encodes the behaviour of the whole
protocol. We give in Figure 3 an architectural view of this process with the MOM
and as many instances of the configurator and buffer processes as there are VMs.

Fig. 3. Architectural view of the whole protocol

The SELFCONFIG process defines first the list of actions used in its behaviour
(CREATEVM, SEND, etc.). Actions can be typed (with the types of their parame-
ters), but this is optional and we use the keyword any in that case. This process
applies on an input application defined in function appli(). A pair of actions
(CHECKCYCLE and CHECKMANDATORY) are introduced at the beginning of the pro-
cess body for verification purposes. These actions have as parameters Boolean
values computed by calling functions, e.g., check cycle mandatory, which in-
dicate whether the input application respects some structural constraints, e.g.,
absence of cycle through mandatory client interfaces.

The LNT parallel composition is expressed with the par construct followed
by the list of actions that must synchronize (nothing for pure interleaving). The
first process called in the SELFCONFIG process is the MOM, which is composed in
parallel with the rest of the system, and synchronizes with the other processes
on BINDMSGi and STARTMSGi messages (i=1,2). More precisely, the MOM has
five possible behaviours: it can receive a binding (BINDMSG1) or a start message
(STARTMSG1), send a binding (BINDMSG2) or a start message (STARTMSG2) if one
of its buffers is not empty, or terminate (FINISH). Messages suffixed with 1

correspond to emissions from a VM to the MOM, and messages suffixed with 2

correspond to emissions from the MOM to a VM.
After the MOM, a piece of specification (deployment manager) is in charge of

instantiating the set of VMs (CREATEVM). Finally, as many VMs as are present in
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the input application (two machines VM1 and VM2 in the specification below) are
generated. Since the number of VMs depends on the application, this LNT pro-
cess is generated automatically for each new application, by a Python program
we wrote. Each machine consists of a configurator, which synchronizes with two
local buffers (bufferIn and bufferOut) on messages SEND and RECEIVE. The
two buffers as well as the MOM are initialised empty.

It is worth noting that we use two kinds of action in our specification: actions
which corresponds to communications between two processes (SEND and RECEIVE

for synchronizations within a VM, BINDMSG and STARTMSG for synchronizations
between VMs), and actions tagging specific moments of the execution that will be
useful in the next section to analyse the protocol (CHECKCYCLE, CHECKMANDATORY,
CREATEVM, CREATECOMPO, LOCALBIND, REMOTEBIND, STARTCOMPO, and FINISH).
For instance, termination of the protocol is made explicit by a synchronization
involving all processes on FINISH. Here is an example of SELFCONFIG process
(for two VMs identified by VM1 and VM2):

process SELFCONFIG [CREATEVM:any, SEND:any, ..] is
var appli: TApplication in
appli:=appli();

CHECKCYCLE (!check cycle mandatory(appli));

CHECKMANDATORY(!check mandatory connected(..));

par BINDMSG1, BINDMSG2, STARTMSG1, .. in
MOM[..](vmbuffer(VM1,nil),vmbuffer(VM2,nil))

||

par CREATEVM, FINISH in
par FINISH in (* deployment manager *)

CREATEVM (!VM1) ; FINISH

||

CREATEVM (!VM2) ; FINISH

end par
||

par FINISH in
(* first machine, VM1 *)

par SEND, RECEIVE, FINISH in
configurator [..] (VM1,appli)

||

par FINISH in
bufferOut[SEND,BINDMSG1,..](nil)

||

bufferIn[RECEIVE,BINDMSG2,..](VM1,nil)
end par

end par
||

... (* second virtual machine, VM2 *)

end par end par end par end var
end process

Now we detail the bufferIn process which can synchronize with other pro-
cesses (MOM and local configurator) on four actions, namely RECEIVE, BINDMSG,
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STARMSG, and FINISH. This process also has two data parameters corresponding
to the identifier of its VM, and to the buffer storing messages. Its behaviour
is a choice (select in LNT) among different possibilities: bufferIn can either
(i) store messages coming from the MOM and destinated to its VM, or (ii) inter-
act with the local configurator when the configurator decides to read from the
input buffer. In the first case, two kinds of messages can be received: a request for
binding (BINDMSG), or a message announcing that a remote component has been
started (STARTMSG). In both cases, a message (TMessage) is built from the infor-
mation provided as parameter to the action (i.e., csvr, cclt, etc.) and stored
in the local buffer (add(..)). In order to ensure that the input buffer receives
only messages destinated to its VM, we use a LNT feature which makes mes-
sages with sent parameters synchronize only if they share common parameters.
In this case, we use the VM identifier (!vmid, first parameter of BINDMSG and
STARTMSG messages). This means that the MOM process will also use such VM
identifiers as first parameter of these messages. In the second case, if the buffer
is not empty, a message may be retrieved and treated by the local configurator
(synchronization on RECEIVE).

process bufferIn [RECEIVE:any,BINDMSG:any,STARTMSG:any,FINISH:any]
(vmid: TID, q: TBuffer) is

var recip, csvr, cclt, idclt, idsvr: TID, m: TMessage in
select
BINDMSG (!vmid, ?csvr, ?cclt, ?idclt, ?idsvr) ;

bufferIn [RECEIVE,BINDMSG,STARTMSG,FINISH]

(vmid,add(bindmsg(vmid,csvr,cclt,idclt,idsvr),q))

[]

STARTMSG (!vmid, ?csvr, ?cclt) ;

bufferIn [RECEIVE,BINDMSG,STARTMSG,FINISH]

(vmid,add(startmsg(vmid,csvr,cclt),q))

[]

if not(empty(q)) then
m:=retrieve(q); RECEIVE (!vmid, !m);

bufferIn [RECEIVE,BINDMSG,STARTMSG,FINISH] (vmid,remove(q))

else
bufferIn [RECEIVE,BINDMSG,STARTMSG,FINISH] (vmid,q)

end if
[]

FINISH

end select
end var

end process

4 Verification

To verify the protocol, we apply the LNT specification of the protocol to a set of
distributed applications to be configured. From the specification and the target
application, CADP exploration tools generate an LTS describing all the possible
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executions of the protocol. In this LTS, transitions are labelled with the actions
introduced previously, and we use these actions to check that the protocol works
as expected.

4.1 Verification Tasks

We identified three facets of the protocol that must be preserved by the protocol,
that are structural invariants, temporal properties, and lifecyles.

Invariants. First of all, we verify that each input application respects a few
structural properties, such as “there is no cycle in the application through manda-
tory client interfaces” or “all mandatory client interfaces are connected”. This
is checked at the beginning of the protocol using functions which extract this
information from the application model given as input. These functions re-
turn Boolean values which are then passed as parameters to specific actions
(CHECKCYCLE and CHECKMANDATORY). Then, we use a safety property to check
that these actions do not appear in the LTS with the wrong Boolean parameter.
For instance, we never want the CHECKCYCLE action to have a TRUE parame-
ter value indicating that there is a cycle of mandatory client interfaces. This
is written as follows in μ-calculus, the temporal logic used in CADP, and such
properties are verified automatically using the EVALUATOR model checker [24]:

[ true* . "CHECKCYCLE !TRUE" ] false

Properties. Secondly, we use model checking techniques to verify that some key-
properties are respected during the protocol execution. To do so, we formalise in
μ-calculus (and check) 14 safety and liveness properties that must be preserved
by the configuration protocol. Here are a few examples of these properties:

– FINISH is eventually reached in all paths

mu X . (< true > true and [ not ’FINISH’ ] X)

– A STARTMSG2 message cannot appear before a STARTMSG1 message with the
same parameters

[ true*.STARTMSG2 ?vm:String ?cx:String ?cy:String.
true*.STARTMSG1 !vm !cx !cy ] false

Note that we use the latest version of EVALUATOR (4.0) which enables
us to formulate properties on actions and data terms. Here for example, we
relate parameters in both messages saying that the VM (vm) and components
(cx and cy) concerned by this message must be the same.

– A component cannot be started before the components it depends on

[ true* . ’STARTCOMPO !.* !C1’ . true* . ’STARTCOMPO !.* !C2’ ] false

This property is automatically generated from the application model be-
cause it depends on the bindings for each component. As an example, if a
component C1 is connected through a mandatory client interface to a com-
ponent C2, we generate the property above meaning that we will never find
a sequence where C1 is started before C2.
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– All components are eventually started

( mu X . ( <true> true and [ not ’STARTCOMPO !.* !C1’ ] X ) )

and

( mu X . ( < true > true and [ not ’STARTCOMPO !.* !C2’ ] X ) )

and ...

This property is also generated because the number of components and their
identifiers depend on the application model.

Lifecycles. Finally, we check that each VM behaviour isolated from the whole
LTS respects the correct ordering of actions. To do so, on the one hand, we have
specified an LTS corresponding to the configurator lifecycle. This LTS is obtained
by flattening the workflow presented in Figure 2 and consists of 8 states and
26 transitions. On the other hand, we apply successively hiding and reduction
techniques on the whole state space to keep configurator actions corresponding to
a specific VM. Then, we check that the resulting LTS is included (branching pre-
order) into the first one (configurator lifecycle) using the Bisimulator equivalence
checker [5]. For each application, we also extract the MOM behaviour and check
that it is included in the LTS given in Figure 4.

Fig. 4. LTS representing the MOM lifecycle

4.2 Experiments

They were conducted on about 150 applications, which are quite different and
enabled us to check boundary cases. For instance, we used applications where
components can be started in parallel (interleaving) and others where they can
only be started in a very precise order. It is worth observing that, as model
checking helps to fing bugs, the more examples we check, the more chances we
have to find problems in the protocol.

Table 1 summarizes some of the results obtained on application examples
of our dataset. Each example is characterized in terms of number of virtual
machines, number of components, and number of local/remote bindings (“b.”
stand for bindings in the table). We give the size of the LTS generated using
CADP by enumerating all the possible executions of the system, as well as the
time to obtain this LTS and verify all the features presented above (checking
invariants, properties, and lifecycles). The resulting LTS has been minimized
using strong reduction.
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Experiments have been carried out on a Xeon W3550 (3.07GHz, 12GB RAM)
running Linux, and it takes about 3 days to generate and check all the examples
of our database. We can see first that systems involving only a couple of virtual
machines and a few remote bindings are generated and checked in reasonable
time (examples 0010, 0061, and 0090 in Table 1).

Computation times and LTS sizes grow exponentially as the number of re-
mote bindings and VMs increase. As far as remote bindings are concerned, the
more bindings, the more messages exchanged among VMs. This results in large
LTSs (see, e.g., example 0092) which are generated quite fastly because the num-
ber of processes in parallel is reasonable (3 VMs in example 0092 for instance).
In this case, verification takes time because LTSs have to be traversed exhaus-
tively. This is also interesting to note the size and time increase when looking
at examples 0086, 0087, and 0088 where by adding one remote binding, the LTS
size approximately doubles as well as verification time. In contrast, we can see
that the number of local bindings can be quite high without really impacting
size and time verification results. Similarly, the number of components does not
really affect the results (see, e.g., example 0010).

If we focus now on the number of VMs, we can see that when we have systems
with four VMs, LTS generation time grow exponentially (examples 0136 and
0145). This is because the number of processes evolving in parallel increase with
the number of VMs and this makes the exploration step very time consuming.
The resulting LTS is quite small though and its verification pretty fast.

Fortunately, our goal here was not to fight the state explosion problem, but to
find possible bugs in the protocol. Most bugs do not come from the system’s size,
but from boundary cases where enumerative tools are very efficient by exploring
all the possible execution scenarios.

4.3 Issues Identified

The specification and verification helped us to detect a major bug in the protocol
and to experiment on the communication model. Firstly, there was a problem in
the way local components are started during the protocol execution. After read-
ing a message from the input buffer, the configurator must check all its local
components, and start those with mandatory client interfaces bound to started
components. However, one traversal of the local components is not enough. In-
deed, launching a local component can make other local components startable.
Consequently, starting local components must be done in successive iterations,
the algorithm stops when no more components can be started. If this is not
implemented as a fix point, the protocol does not ensure that all components
involved in the architectue are eventually started. This bug was detected quite
early during the verification process (after a few examples) thanks to one of the
properties presented in Section 4.1 (all components are eventually started). It
was corrected in both the specification and the Java implementation.

Secondly, there are many ways to implement the MOM. We used our specifi-
cation, modifying the MOM process, to carry out experiments on how communi-
cation among VMs could be implemented (no MOM, MOM with one buffer, two
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Table 1. Experimental results

Size LTS Time (m:s)
VMs compo. local b. remote b. (states/transitions) LTS gen. Verification

0010 2 15 2 2 1,788/4,943 0:09 2:23

0061 2 6 3 5 5,091/18,354 0:10 1:45

0090 2 6 3 8 33,486/137,401 0:50 6:44

0092 2 6 9 10 81,822/349,319 1:20 27:20

0122 3 6 6 0 514/1,346 0:14 00:26

0038 3 5 0 4 31,334/109,315 4:01 8:15

0086 3 6 34 4 60,851/226,217 8:14 19:30

0087 3 6 34 5 153,056/645,168 14:02 49:42

0088 3 6 34 6 306,136/1,392,439 25:53 98:42

0136 4 4 0 3 3,350/11,997 84:24 1:02

0145 4 7 4 2 18,314/78,206 191:20 6:02

buffers, MOM with n buffers, 2n buffers, etc.). We found out that using a single
buffer in the MOM is erroneous because the protocol can get momentarily stuck
if a VM is not yet started, and the first message in the buffer has to be sent out
to that VM. One buffer per machine is necessary to avoid these blocking issues,
and this MOM structure was chosen after having carried out these experiments.

5 Related Work

The formalisms and mechanisms offered by the industrial solutions for config-
uring applications in the cloud are generally basic, proprietary, not exhaustive,
and not extensible: they permit neither a fine-grained description of the dis-
tributed application nor the management of its deployment process. Moreover,
such solutions have often important restrictions concerning:

– the programming models like Google App Engine that only deploys Web
applications whose code must conform to very specific APIs (e.g., no Java
threads)

– the underlying technologies like Microsoft Azure that is confined to the ap-
plications based on Microsoft technologies

– the business domains they address like Salesforce that focuses on customer
relationship management

A few recent projects [16,10,25] proposed languages and configuration protocols
for distributed applications in the cloud. [10] adopts a model driven approach
with extensions of the Essential Meta-Object Facility (EMOF ) abstract syntax2

to describe a distributed application, its requirements towards the underlying

2 This syntax has been defined by the Model Driven Architecture (MDA) initiative of
the Object Management Group (OMG).
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execution platforms, and its architectural constraints (e.g., concerning place-
ment and collocation). Regarding the configuration protocol, particularly the
distributed bindings configuration and the activation order of components that
are the core of the present paper, [10] does not work in a decentralized fashion,
and this harms the scalability of applications that can be deployed. Moreover,
this works does not consider the reliability of the proposed protocol, whereas
we focused here on the self-configuration verification and showed its necessity to
detect subtle bugs.

[25] suggests an extension of SmartFrog [16] that enables an automated and
optimized allocation of cloud resources for application deployment. It is based
on a declarative description of the available resources and of the components
building up a distributed application. Descriptions of applicative architectures
and resources are defined using the Distributed Application Description Language
(DADL). This language describes, on the one hand, the applications constraints
related to the resources in terms of Service Level Agreements (SLAs) and, on the
other hand, elasticity constraints. Compared to the present paper, [25] focuses
on the language aspects and intends to address the optimal resources allocation.
It does not give any details concerning the deployment process itself, which was
our focus here.

There exist many approaches which aim at specifying and verifying dis-
tributed components and component-based architectures. In the 90s, several
works [21,22,2,29] focused on dynamic reconfiguration of component-based
systems, and proposed various formal notations (Darwin, Wright, etc.) to spec-
ify component-based systems whose architectures can evolve at runtime (ad-
dition/removal of components/bindings). Here, our goal was rather to verify
the protocol at hand, to be sure that the corresponding Java implementation
worked as expected. In [22,23], the authors show how to formally analyse be-
havioural models of components using LTSA. Another related work is [11], where
the authors verify some temporal properties using model checking techniques
on a dynamic reconfiguration protocol used in agent-based applications. Re-
cently, [6] reported on the co-design and specification of the reconfiguration pro-
tocol of a component-based platform, intended as the foundation for building
robust dynamic systems. The formal analysis of this protocol helped to detect
several issues which were corrected in the corresponding implementation. CADP
is richer in terms of verification techniques than LTSA, which does not propose
any tool for equivalence checking for instance. Moreover, LNT user-friendliness
and expressiveness for specifying both behaviours and data types (e.g., FIFO
buffers) makes it very convenient compared to other specification languages.
Other toolboxes might have been used, such as SPIN [18] or MCRL2 [17]. LNT
is more intuitive than Promela or the MCRL2 input language, and CADP also
provides efficient model checking tools.

In [20], the authors present the formal verification of an operating system
microkernel. They proved the functional correctness of the microkernel using the
Isabelle theorem prover. The formal specification was generated automatically
from an Haskell prototype, and the final implementation was manually encoded
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in C. This formal process helped to detect and correct many bugs in the system
algorithms. Here, we focused on an alternative approach which requires much less
effort in the verification process (automated versus semi-automated verification).
Nevertheless, although model checking techniques are very suitable to detect
bugs in any kind of application, they do not ensure correctness of the system as
it may be achieved using theorem proving techniques.

In [3], the authors present a formal framework for behavioural specification of
distributed Fractal components. This specification relies on the pNet model that
serves as a low-level semantic framework for expressing the behaviour of various
classes of distributed languages. They also propose a connection to CADP tools
in order to check properties on these specifications. A graphical toolset for veri-
fying AADL models is presented in [7]. This platform integrates several existing
tools such as the NuSMV symbolic model checker or the MRMC probabilistic
model checker. As far as autonomic systems are concerned, a few recent solutions
have been proposed to analyse such systems. For example, in [28], the authors
present the application of ASSL (Autonomic System Specification Language) to
the NASA Voyager mission. In their paper, they show how liveness properties can
be checked on ASSL specifications, and also plan to consider safety properties.
The verification toolbox we use here already provides model checking techniques
for liveness and safety properties, and many other formal analysis tools.

A preliminary version of this work has been presented in [27]. It is extended
here in several aspects:

– the presentation of the protocol was extended, particularly with details on
its implementation;

– the specification of the self-configuration protocol is presented with more
details. In particular, we show and comment on several excerpts of the LNT
specification;

– the dataset of applications consists now of 150 applications (100 before);
– we have added a subsection in Section 4 dedicated to experimental results

where we present LTS sizes and computation times for several representative
examples of our dataset;

– the related work section was revised and enhanced;
– we present in the conclusion some lessons learned from our experience.

6 Concluding Remarks

We have presented in this paper a cloud computing protocol self-configuring a
set of components distributed over several VMs. This protocol is highly parallel
and loosely-coupled, and this makes its design error-prone. In order to check that
some key-properties are ensured, we have specified and verified it using state-
of-the-art specification languages and verification tools. During the verification
phase, we found a bug in the protocol using model checking techniques, which
was corrected in the Java implementation.
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As a result, we would like to emphasize lessons we have learned during this
experience:

– Specification and verification techniques were introduced lately in the design
process; the Java implementation was already available, but still under de-
velopment. The goal was to detect bugs in pathological cases as the one we
found. We could have started from the formal specification as advocated by
classic software development processes, but this does not seem a good option
for protocol designers who are not experts in formal methods. Coming up
with code generation techniques might be an argument for convincing them
to do so in the future.

– LNT, thanks to its user-friendly and programming-like notation, makes the
formal specification accessible to non-experts and deeply simplifies the spec-
ification writing. Its expressive language enables the specification of concur-
rent behaviours and complex data types. In particular, LNT turned out to
be suitable for specifying self-management protocols that exist in the lastest
generation of component-based autonomic systems.

– The use of formal verification tools was successful because it helped to debug
the protocol. All verification steps are fully automated, but the writing of
temporal properties. However, we had to face state space explosion and this
obliges us to validate applications involving only a few VMs.

– Formal techniques were used not only to chase bugs but also as a work-
bench for experimenting with different communication features (point-to-
point, broadcast, different ways of implementing buffers, etc). This last point
can particularly be of interest for optimizing an implementation (e.g., the
number of buffers) while preserving the same behaviour (wrt. a bisimulation
notion [26] for example).

– This work shows that formal techniques and tools are not only of inter-
est for critical systems but are also necessary for the design and develop-
ment of complex system protocols existing in dynamically (re)configurable
component-based systems.

A short-term perspective is to extend the protocol to take component failures
into account. When a component fails, it may impact the whole application, yet
we want our protocol to keep on starting and configuring as many VMs and
components as possible. The extended protocol will be extensively validated
using verification tools to check some new properties raised by the introduction
of failure, e.g., a component connected through a mandatory client interface to
a failed component will never be started.

A long-term perspective would be to propose code generation techniques in
OO programming languages (which is the main paradigm used in this commu-
nity) for rapid prototyping purposes. This could also be used for implement-
ing protocols starting from the formal specification and then generating code
automatically.
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Abstract. Self-* systems have the ability to adapt to a changing environment
and to compensate component failures by reorganizing themselves. However, as
these systems make autonomous decisions, their behavior is hard to predict. With-
out behavioral guarantees their acceptance, especially in safety critical applica-
tions, is arguable. This chapter presents a rigorous specification and verification
approach for self-* systems that allows giving behavioral guarantees despite of
the unpredictability of self-* properties. It is based on the Restore Invariant Ap-
proach that allows the developer to define a corridor of correct behavior in which
the system shows the expected properties.

The approach defines relies (behavior the components can expect) and guaran-
tees (behavior that each component will provide) to specify the general require-
ments on the interaction between the components of the system on a formal basis.
If heterogeneous multi-agent systems with self-* properties are modeled so that
relies are implied by the other components’ guarantees, it is possible to formally
verify correct system behavior. When using observer/controller architectures the
approach also allows systematic decomposition and modular verification. We il-
lustrate the approach by applying it to two different case studies – an adaptive
production cell and autonomous virtual power plants.

Keywords: Adaptive Systems, Self-* Properties, Formal Methods, Verification,
Multi-Agent Systems, Observer/Controller.

1 From Design Time to Runtime

Adaptive systems are not yet the silver bullet they are often hyped to be. It turns out that
attempts to manage the complexity of modern cyber-physical systems or large-scale IT-
systems often introduce a lot of complexity. While this might make the surrounding
infrastructure simpler, e.g., by decreasing the number of administrators required to su-
pervise a server farm, the transparency and controllability of the systems are reduced
and thus is their trustworthiness. It is obvious that systems in which decisions are will-
ingly relegated from design time to runtime pose many new challenges to regulators,
standardization committees, and certification authorities, especially with regard to de-
ployment of self-* systems in safety- and mission-critical domains.

One of the main tools in the certification of safety-critical systems are formal meth-
ods. A thorough formal analysis of a computer system can reveal flaws and bugs that
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are not identifiable by validation techniques such as testing. However, formal methods
usually rely on sophisticated models of the system and its individual components. If the
system is open and not all components are known at design time, it is impossible to cre-
ate such a comprehensive model. Additionally, it is quite difficult to grasp the complex
and diverse interactions that can occur in an open, adaptive system and it is even more
difficult to verify all possible cases of interleaved communications.

If, however, it were possible to specify the external behavior of each system com-
ponent in an abstract fashion and show that the individual components do not inter-
fere with each other, internal models could be discarded while the behavior of the
ensemble could still be verified. The rely/guarantee (R/G) paradigm first introduced
by Jones in [21] and Misra and Chandy in [26] provides such a theoretical frame-
work. It allows specifying guarantees provided by the components if they can rely on
properties guaranteed by the environment or other components. This allows integrat-
ing arbitrary components without knowledge of their internal behavior, a major differ-
ence to most of the related approaches that are outlined in Sect. 2. The R/G paradigm
is also ideally suited to capture the modularity of a system that can be decomposed
into several types of components. We use this ability to decompose the system into
a functional part and a part incorporating the self-* intelligence, represented by an
observer/controller (o/c) [34]. This observer/controller architectural pattern encapsu-
lates a feedback loop and is similar to the MAPE cycle [20] in the field of Autonomic
Computing [28].

This chapter presents an integrated approach that enables the engineer to verify func-
tional properties and thus give behavioral guarantees during design time without re-
stricting the flexibility of the system during runtime. Its strengths are modularity, a
top-down view of the system consistent with software engineering processes [38], and
its independence of the self-adaptation algorithm used. It can therefore deal with arbi-
trary system changes at runtime and is scalable with respect to the number of agents in
the system. The approach consists of the following elements:

– the Restore Invariant Approach (RIA), introduced in Sect. 3, is the theoretical
framework required to model adaptive behavior and detect misbehavior at runtime;

– a verification approach based on RIA and the observer/controller architectural pat-
tern (Sect. 4) that uses the rely/guarantee paradigm to show correct functional and
reconfiguration behavior at design time as detailed in Sect. 5;

– an online result checking technique that allows the use of arbitrary self-* algorithms
while maintaining functional correctness of the system, detailed in Sect. 6.

The target systems of this approach are systems based on an observer/controller archi-
tecture which implement their self-* properties by changing and adapting component
configurations. In the following, we will always refer to self-* systems and imply this
characteristic. This chapter focuses on the conceptional and theoretical foundations and
omits the implementation details due to space restrictions, although the presented con-
cepts were implemented for the case studies of an adaptive production scenario pre-
sented in Sect. 7 and autonomous virtual power plants, presented in Sect. 8. For more
details on the implementation issues refer to [2, 30, 39].
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2 State of the Art

There are several approaches for formal specification and verification of self-* systems
related to the work presented here. This section presents the most important of them.
Additional related work which focuses on single aspects of the overall approach will be
introduced in the respective sections.

Wooldridge and Dunne state in [47] that the environment is essential for the verifi-
cation of agents. They present a formal model in which the behavior of an agent and its
interaction with the environment are described as a sequence of interleaved agent and
environment actions. The framework used in this chapter reflects this idea and allows
detailed modeling of the feedback loops in a self-* system, while still providing the
ability for arbitrary system behavior. In contrast to Wooldridge and Dunne, the distinc-
tion of environment and system transitions in our approach is part of the used logical
framework and thus allows the use of a comprehensive verification theory, including
compositional reasoning with rely/guarantee. Further the behavior is restricted by a cor-
ridor of correct behavior formulated by constraints, which allows to specify the agent’s
behavior on an abstract level without having to consider the particular implementation.

In [41], Smith and Sanders present a top-down approach for incremental formal de-
velopment of self-organizing systems. An abstract specification for the complete system
is refined stepwise down to component level. The correctness of the system is ensured
by verification of the refinement steps. The Z notation is used as specification formal-
ism. Their approach does not distinguish self-* and functional behavior, as they do
not focus on a particular architecture. Instead they look at various applications and
show how refinement can be applied in each specific case. In contrast, by focusing on
an observer/controller-architecture, we can derive generic properties for applications
based on this architecture. Nevertheless, their work provides good strategies for the re-
finement between different abstraction layers which are similar to the decomposition
steps presented in this chapter and can provide useful guidance for further refinement
on agent level, e.g., when considering hierarchical observer/controller-architectures.

Giese et al. present a modeling and verification approach in [9, 18] for self-adaptive
mechatronic systems. The interaction between the components is modeled by so called
coordination patterns describing the structural adaptation process. The system states are
modeled as graphs and their dynamic behavior as graph transformations. A composi-
tional verification approach also utilizing the rely/guarantee paradigm allows verifying
safety properties that can be formalized as structural invariants over the graph transfor-
mation system. The coordination patterns in their approach are similar to parts of the
corridor specification in the Restore Invariant Approach, as both are specifying a correct
system structure. The rely/guarantees used here specify the requirements on the com-
ponents’ behavior in order to exhibit the desired properties as long the system is within
the corridor and the requirements on the self-* process. Their approach does not make
this distinction and directly uses the specification of the component behavior, which
together with the coordination patterns combines functional and self-* behavior. Their
approach therefore does not allow to change the implementation of the self-* behavior
without the need of performing the complete verification again.
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There are a number of further approaches focused on analyzing adaptive systems.
Kramer and Magee [24] use automata to specify the properties of an adaptive system
and use LTSA (Labelled Transition System Analyser) for automatic analysis of execu-
tion scenarios. Their approach does not consider modular reasoning as presented here.
In [49] Zhang et al. present a modular approach based on model checking for adap-
tive programs against global invariants and transitional properties formulated in Linear
Temporal Logic (LTL). They present a model checking algorithm for the verification of
adaptive programs, such as an adaptive routing protocol. In contrast to the work here,
they focus solely on the verification technique and not on the specification of adaptive
systems. They also do not consider the formalization of uncertainty introduced by the
environment.

3 The Restore Invariant Approach

The Restore Invariant Approach (RIA) allows defining a corridor of correct behavior.
The system tries to operate within the corridor as long as possible. Due to unexpected
disturbances the system leaves the corridor. Disturbances can be changes in the en-
vironment, failures, new or leaving agents, or new objectives, for instance. Whenever
the corridor is left the system initiates a self-* phase and tries to reconfigure in order
to return to the corridor. This concept is further elaborated in Sect. 3.1. As Sect. 3.2
shows, the concepts of RIA and the behavioral corridor are the foundation for system
verification. An additional element necessary to enable successful reconfiguration is a
safe state the system can reach in case of a failure, as outlined in Sect. 3.3. Finally, the
concepts of RIA also allow to give a clear distinction between systems that have self-*
properties and those that don’t as described in Sect. 3.4.

3.1 Corridors of Correct Behavior

The basic idea behind the Restore Invariant Approach is to constrain the behavior of
the system so that it only exhibits correct behavior. An advantage of this approach is
that the system retains its flexibility and is still able to adapt during runtime and make
decisions autonomously.

From a formal point of view, a system can be described as a transition system SYS =
(S,→, I,AP,L), where S is the set of states, →⊆ S× S a transition relation, I ⊆ S a set
of initial states, AP a set of atomic propositions and L a labeling function. A trace π of
the system is then given by a sequence of states si ∈ S whose states are related by the
transition relation and which starts in an initial state s0.

π = s0,s1,s2, . . . ,sn

Fig. 1 shows an example trace of an abstract transition system SYS which tries to stay
within the corridor. The system recognizes a violation of the corridor and triggers a
self-* process in order to reach a state within the corridor.
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Fig. 1. Corridor of correct behavior of a self-* system [31]

Formally the specification of the corridor corresponds to a predicate logic formula1 –
the invariant INVRIA – which is evaluated over a system state. The term “invariant” is
used as the system’s goal is to maintain the invariant on the entire system trace. The
invariant differentiates the system states into those that exhibit correct behavior and
those that do not. This allows to separate the states into two disjoint sets: a set Sfunc

of functional states and a set Sreconf of reconfiguration states. The functional states are
states within the corridor in which the system shows its desired behavior. The reconfig-
uration states are states outside the corridor in which reconfiguration is necessary. This
abstract definition can accommodate a variety of situations in the system that can lead
to adaptations. If, e.g., new agents that enter the system should trigger a reconfiguration,
the invariant will have to be formulated so that an idle agent or one that has not been
configured violates it. The system will then switch to a reconfiguration state as soon as
such a situation occurs.

Related Work: In [17], Gärtner presents a similar classification of the state space for
fault tolerant systems. He distinguishes three kinds of states: a set of invariant states, in
which the system exhibits the desired properties, corresponding to the functional states
of RIA; a set of states constituting the fault span, containing all invariant states and
additionally all states which are tolerable by the system and from which the system
eventually returns into an invariant state; finally, the set of all possible states.

Another classification of the state space of Organic Computing systems is proposed
by Schmeck et al. in [37]. The target space contains the states the system should try
to reach. If this is not possible, the system should at least try to get into a state of the
acceptance space. The survival space consists of all states outside the acceptance space
from which the system can get back into the acceptance or target space. All remaining

1 Theoretically, a temporal logic formula could be used instead of a predicate logic formula.
However, it is unclear how a system can evaluate a temporal invariant during runtime and
decide whether it is violated or not. In order to decide this, the system would have to predict the
future behavior. In the area of runtime verification the correctness of temporal logic properties
is checked during runtime. For example, Leucker et al. try to monitor temporal logic properties
during runtime [6]. In each step the property can be true, false or inconclusive. In this chapter
predicate logic is used to formulate the invariant, although the general approach is not limited
to it. The use of predicate logic means that the invariant can be evaluated in each state and it
can be decided whether a state is within the corridor or not.



Formal Modeling and Verification of Self-* Systems 85

states are states within the dead space with no possibility to get back into the acceptance
space. Compared to the corridors of RIA, Schmeck et al. split the functional states into
target and acceptance space to distinguish optimal and non-optimal but correct states.

Both classifications separate the reconfiguration states into a set of states in which
a path back into a functional state exists and a set where no path exists anymore. The
classifications are used to describe the behavior of a self-* system on an abstract level.
The specification of behavioral corridors in RIA exceeds these classifications by pro-
viding the tools to clearly define the different sets of states and to use these definitions
both at design time to provide techniques for formal analysis (see Sect. 5) as well as at
runtime to monitor the correct behavior of the system (see Sect. 6).

3.2 Behavioral Guarantees Based on RIA

By distinguishing functional and reconfiguration states, the requirements for the self-*
properties of the system can be specified using the invariant. Whenever the invariant is
violated, the system has to try to return to the corridor and to restore the invariant. The
invariant is also a sufficient condition for system states that exhibit the expected behav-
ior. That means that the system exhibits correct behavior when in a state in which the
invariant holds. The correctness of the functional behavior of the system can therefore
be verified independently of the self-* mechanisms. For the verification of the functional
system it is assumed that there exists a mechanism that restores the invariant when it is
violated. For a specific self-* mechanism it has to be proven that this assumption holds.

The definition of corridors has several more advantages compared to an explicit list-
ing of all states. First, it is usually hard or expensive to find and list all states that are
valid. It is often easier to formulate common properties that valid states need to exhibit.
The abstraction induced by the invariant reduces the complexity of formal reasoning
and the separate treatment of functional properties and self-* behavior can be exploited
in order to give behavioral guarantees. In Sect. 5, a more detailed insight into this and
an approach for providing behavioral guarantees will be given.

3.3 Safe Reconfiguration with Quiescent States

To ensure correct reconfiguration the system may not perform any actions that interfere
with the reconfiguration process. Therefore the first task in a self-* phase is to transition
the involved system components to a consistent and passive state in which they perform
no critical actions. In literature this state is often called quiescent state [13, 22, 33, 48].
Kramer and Magee define a quiescent state in [22] as a state in which an agent is in
a locally consistent and passive state, where it performs no actions which disrupt the
reconfiguration. They also identify a quiescent state as a necessary condition for recon-
figuration [23]. In a later work Vandewoude et al. [45] presented tranquility, a weaker
condition for consistent reconfiguration. It allows an agent to still be involved in a trans-
action if it stops actively processing requests. As quiescence implies tranquility we use
the stronger concept in the following, although it is possible to use the weaker condi-
tion in order to specify the requirements on an agent’s behavior regarding a consistent
reconfiguration.
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working quiescent
INVRIA 

INV violated 

INV restored 

Fig. 2. Abtract view of a system’s behavior

Fig. 2 shows the life-cycle of a self-* system that uses the Restore Invariant Ap-
proach. As long as the invariant holds, the system is within the corridor and can exhibit
the expected behavior. When a failure occurs, the invariant is violated and the system
starts a self-* phase. The first step is a transition to a quiescent state to be able to per-
form the actual reconfiguration process. In many cases, it is not necessary for the whole
system to enter a quiescent state. Often it is sufficient that only the affected part of the
system becomes quiescent, while the rest of the system can still be working. A chal-
lenge here is to identify the parts that need to be included into the reconfiguration. This
question is not examined here. For details on this topic refer to [1, 40]. As soon as re-
configuration is finished and the invariant is restored, the system leaves the quiescent
state and starts working again (functional phase).

What quiescence means is application-specific and has to be defined in the context
of the considered application. A quiescent state can be a truly passive state in which an
agent stops all actions until the reconfiguration process finishes (see Sect. 7) but also
a state in which the agent continues acting according to the old configuration until the
new one is calculated (see Sect. 8). The specifics of the quiescent state depend on the
kind of reconfiguration used in a system and the conditions for a consistent switch to
a new configuration. In Sect. 5 we will have a closer look at how these transitions are
initiated with respect to a certain system architecture.

3.4 Comparing Systems with and without Self-* Properties

Based on the classification of functional and reconfiguration states, the difference be-
tween systems with and without self-* properties can be explained. Fig. 3 shows an
abstract system with three states. If the system leaves the corridor and enters a state serr

that violates the invariant, it is therefore outside the corridor. In safety-critical applica-
tions, serr is typically some kind of fail-safe state to avoid harm to human beings and the
system’s environment. In a fail-safe state the system still fulfills its safety properties, but
usually does not guarantee any liveness properties such as progress or termination [17].

A traditional system with no self-* capabilities nor redundancy cannot reach a func-
tional state once it has reached an error state (see Fig. 3(a)). In contrast, a self-* sys-
tem (Fig. 3(b)) can return to a functional state (s4), e.g., by reconfiguring itself. This
implies that the relevant agents have to be put into a quiescent state in order to be
reconfiguered consistently. During the reconfiguration, the system is changed so that
redundancy within the system can be used to compensate for failures. Thus, com-
ponent failures reduce the level of redundancy limiting potential future reconfigura-
tions. The changes in the system are often enacted as part of a self-* process that
changes the internal structure of the system. We distinguish two kinds of redundancy:
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(a) System without self-* capabilities
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Fig. 3. Behavior of a traditional system compared to a system with self-* capabilites

local redundancy, where one part of the system contains all redundancy; and distributed
redundancy, where the redundancy is spread over the system. While the former can be
exploited without the need of self-* properties, the latter can only be enabled by enact-
ing a new system structure. Such distributed redundancy plus self-* properties is also
able to compensate for the complete failure of a part of the system. Pure local redun-
dancy is always subject to single-point failures and thus limits a system’s recoverability.
Hence the combination of redundancy and self-* properties can considerably contribute
to a robust and flexible system.

4 Observer/Controller-Architectures

So far, the self-* system was considered in a very abstract and formal fashion. In this
section, the observer/controller-architecture, a common architecture of self-* systems is
considered. Based on this architecture, the formal modeling and verification approach
with RIA is explained in detail in Sect. 5.

A way to integrate adaptivity in a system is the introduction of feedback loops [12,
14]. A change in the system or its environment triggers a reaction within the system
that causes a subsequent change and so forth. Such loops can be used to model the
adaptiveness of a system and to understand the dynamics that occur in a system [42].

In this work, the generic observer/controller-architecture proposed by Richter et al.
in [34] is used and refined. The architecture shown in Fig. 4 is one realization of the
feedback loop principle: a functional system is observed and the observations are re-
ported to the controller which in turn effects the system in a way that it deems best
to reach the system’s goals. The actual effect is monitored by the observer. Thus, a
feedback loop is established that guides the adaptation of the system and its behavior.

The functional system in Fig. 4 consists of several autonomous, interacting compo-
nents, so called agents. These components react to control signals from the controller
component, but only in case of changes in the environment which necessitate a recon-
figuration of the functional system. As long as the system behaves correctly according
to the corridor, the o/c-layer is passive and does not interfere with the rest of the sys-
tem. However, the observer monitors the functional system which is equivalent to the
monitoring of the invariant. Whenever the invariant is violated, the observer notifies
the controller. The controller then initiates a reconfiguration of the system. After it
has advised the agent to enter a quiescent state, it starts a reconfiguration mechanism
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observer
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feedbackcalculates 
solution
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Fig. 4. An observer/controller-architecture for systems using RIA [16]. It contains a monitor com-
ponent to observe the invariant as well as a result checker to verify solutions of the reconfiguration
algorithm.

calculating a new configuration for the system. The new configuration has to fulfill
the invariant and thus, the system will again exhibit correct behavior after the recon-
figuration. The interaction between the o/c-layer and the functional system is always
observer/controller-initiated.

Fig. 4 suggests that the o/c-layer is a central instance within the system. This is a
sophism since the architecture can be realized in several ways [11]. Depending on the
system’s properties and its application area, each agent can have an individual o/c-layer,
thus achieving a completely decentralized architecture. Multiple layers of observation
and control can be implemented achieving a decentralized, hierarchical architecture.

Components in the system interact horizontally in each layer and vertically between
the layers. Interactions can thus take place only between agents in the functional layer,
between the o/c-layer and the functional layer, and between several o/c-layers, de-
pending on the chosen architecture. Again, what all these possible variations of o/c-
architectures have in common is the strict separation of functional system and o/c-layer
which enables the specification and formal analysis of desired system properties as well
as behavioral guarantees as shown in this chapter.

5 Formal Model of an O/C-Based System

In this section a generic formalization of self-* systems with an o/c-architecture is pre-
sented. Based on the formal framework described in Sect. 5.1 and a compositional rea-
soning paradigm outlined in Sect. 5.2, a formal model for systems based on
o/c-architectures is developed in Sect. 5.3. After showing how such a system can be
decomposed properly in Sect. 5.4, conditions for correct behavior of the individual com-
ponents and interaction between the layers are formulated in Sect. 5.5. The formulated
conditions can be instantiated for specific applications to retrieve the proof obligations
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for the particular agents and the o/c-interaction, effectively allowing a composition ver-
ification approach.

5.1 Formal Framework

To begin with, we want to give a short overview of the formal framework used for mod-
eling and verification. The full details, including a specialized logic and calculus along
with the respective semantics, can be found in [4, 8]. For a tool-supported verification,
these elements have been integrated in the interactive theorem prover KIV [5].

From a formal point of view a run of the system is a sequence of states, which is
called a trace. A state is defined by an evaluation of the systems variables V . A step
consists of a so called system transition followed by an environment transition. A step
therefore consists of three states: an unprimed state si at the beginning of the step, an
intermediate primed state s′i formalizing the evaluation after the system transition, and
a double primed state s′′i for the evaluation after the environment transition. The double
primed state is equal to the unprimed state for the subsequent step (s′′i = si+1). Thus
the system and environment transition alternate, as depicted in Fig. 5. This trace based
view of the system is necessary as the properties one expects from the system and the
guarantees about its behavior are temporal properties. Desired guarantees are, e.g., that
the system never shows some unwanted behavior or a property always holds.

state:

interval:

s0 s0'' s2 s4

system transition
environment transition

step

s1 s3 s3''s1''
s2''s0'

s1' s3'
s2'

Fig. 5. Relation between unprimed, primed and double primed states. A step consists of a system
transition followed by an environment transition.

Besides the variables v there are also primed and double primed variables in order
to accurately formalize the transitions. For each variable v ∈V there is a corresponding
primed variable v′ and double primed variable v′′. The sets of all primed/double-primed
variables is denoted accordingly by V ′ and V ′′.

A system transition (si �→ s′i) can therefore be formulated as a predicate logic formula
over V and V ′ that describes the relation between the values of the variables v ∈ V
before and after the system transition. An environment transition (s′i �→ s′′i ) analogously
describes the changes during an environment transition. As the double primed state is
the unprimed state of the successive state, the value of v′′ in state s′′i is equal to the value
of v in the next successive state si+1. For example, x′ = x+ 1 expresses that the system
increases x by one and x′′ = x′ expresses that during an environment transition x is not
changed. If there is no statement made for a variable in the environment step, this means
that the value can be changed arbitrarily by the environment. This is a crucial feature
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of the framework: if no restriction is put in place, no assumption is made of what the
environment is capable of. It is therefore not necessary to explicitly model everything
the environment can do, but verify the system for completely arbitrary changes in the
environment by consciously under-specifying certain aspects.

While it is a great advantage to be able to leave many aspects of the environment
open, an explicit model of some of the behavior of the environment can be very benefi-
cial in the case of self-* systems [47]. If regarded properly, the system boundary can be
clearly established and thus a clear separation between the system and its environment
can be achieved. This also aids in the modeling of the interactions between the system
and its environment, as exemplified in Sect. 7 and Sect. 8.

Parallel components are expressed through an interleaving operator ‖. The interleav-
ing of two components (agents) Agi and Ag j means that either Agi or Agj can make
a system transition. The particular agent cannot distinguish how many transitions the
other agents have done between two of its steps. From its local point of view everything
occurred in a single environment transition. That means from an agent’s point of view
the system transitions of the other agents are in its environment transitions as well as
changes made by the global environment. This is illustrated in Fig. 6.

view of the total system:

local view of agent Agi:

transition 
of Agj

transition 
of Agi

transition 
of Agi

Fig. 6. Local view of an agent Agi and its relation to the run of the total system

5.2 Compositional Reasoning with Rely/Guarantee

So far we established a global view of the system. However, the goal is to retrieve
properties of single agents and to have a local view on the system but still be able to
guarantee properties of the complete system. The observer/controller-architecture pro-
vides a natural way for the decomposition into several subcomponents. This is depicted
in Fig. 7. The complete system can at first be split into the observer/controller o/c and

SYSfunc 

Ag1||

 o/c   ||

... || Agn

Self-* SYS

Fig. 7. Compositional view of the system structure



Formal Modeling and Verification of Self-* Systems 91

the functional system SYSfunc. Both are running in parallel which is represented by the
interleaving operator ||. The functional system can again be split into several agents
(Ag1, . . . ,Agn) that are running in parallel as well. Of course, the observer/controller
can also consist of several parallel components. This is not considered here, as for the
verification of functional properties only the specification of the complete o/c-layer is
required. However, the approach presented for the functional system works for a de-
composition of the o/c as well.

This modular structure can be used for a compositional verification approach. The
idea behind compositional verification is to reason about properties of the global system
by proving properties of single components only. The main advantage is that reasoning
over single components is usually less complex then reasoning over a parallel system. A
common compositional proof technique is the rely/guarantee paradigm which is used
here and was introduced by Jones in [21] and by Misra and Chandy under the term
assumption-commitment in [26].

The basic idea is that each component guarantees a specific behavior as long as it can
rely on some properties of its environment. The behavior of a component is specified by
a guarantee G(V,V ′) provided by the component. This is expressed as a predicate over
the component’s transitions. To be able to guarantee the specified behavior, the compo-
nent needs to be able to make assumptions about its environment, as it relies on certain
– but not necessarily completely specified – aspects of behavior of its environment. If no
relies are formulated at all and the environment is thus completely arbitrary, a compo-
nent will not be able to give any guarantees, as every system action can immediately be
revoked by the environment2. To create relies that limit the behavior of the environment
as little as possible, they are usually defined by excluding some particular behavior. A
typical property of the environment is that it does not change a component’s internal
variables. Formally, a rely R(V ′,V ′′) is specified over the environment transitions.

The behavior of a component Agi can then be specified using both rely and guar-
antee. As long as the rely Ri(V ′,V ′′) holds, the component guarantees Gi(V,V ′) . This
property is formalized as Ri(V ′,V ′′)

+→ Gi(V,V ′). The rely/guarantee specification ab-
stracts from the internal implementation of the component and specifies the external
behavior a component should exhibit. It is therefore a black box specification.

In order to be able to reason about the global system, a compositionality theorem
developed by Bäumler et al. [7] is used. It describes the necessary correlations between
the local rely/guarantees Ri/Gi of the components Ci and defines the proof obligations
in order to guarantee a global rely/guarantee property R/G of the combined system.
The main obligation is to prove that each component behaves according to its local
rely/guarantee specification. The other obligations ensure the compatibility and consis-
tency among the rely/guarantees, e.g., the guarantee of one component does not violate
the rely of another component.

Theorem 1 (Compositionality theorem). If:

i. for all i = 1, . . . ,n : Ci, Init(V) � Ri(V ′,V ′′)
+→ Gi(V,V ′)

ii. for all i = 1, . . . ,n : Gi(V ′,V ′′) → G(V ′,V ′′)∧
(∧

j=1,...,n∧ j �=i R j(V ′,V ′′)
)

iii. for all i = 1, . . . ,n : Gi(V,V)

2 Note, that from the local view of a component, the environment contains all other components.
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iv. for all i = 1, . . . ,n : Ri(V,V ′)∧Ri(V ′,V ′′)→ Ri(V,V ′′)
v. R(V ′,V ′′) →

(∧
i=1,...,n Ri(V ′,V ′′)

)
vi. ∃ V : Init(V)

then: C1
�
. . .

�
Cn, Init(V) � R(V ′,V ′′)

+→ G(V,V ′)))

The informal meaning of the proof obligations of this theorem are as follows:

i. All components must sustain their guarantee as long as the rely holds. It can be
assumed that an initial condition Init(V) holds in the first step.

ii. The guarantee of each component preserves the global guarantee and does not vio-
late the relies of all other components.

iii. The local guarantee is reflexive, that means it must hold if nothing (no variable) is
changed.

iv. The relies of all components are transitive. With this property, a component’s relies
are preserved even if other components make several steps in a row.

v. All component relies hold if the global rely holds. Therefore, no component rely is
violated in the environment step. This implies that an agent cannot assume that no
failures occur, for instance.

vi. An initial configuration for the system must exist. This ensures that obligation i is
consistent.

If the rely/guarantees fulfill these properties and the component implementation is cor-
rect with respect to its local rely/guarantee property then the global guarantee holds for
the complete interleaved system.

If the system consists of several identical components of the same type only one of
these components has to be proven. The theorem then allows to reason about a system
consisting of an arbitrary (but finite) number of components running in parallel, also
including changing numbers of agents. The proofs are also valid when the number of
agents changes during runtime. Thus, the kinds of adaptivity that can be covered with
this technique include component failures, as well as adding and removing agents. The
adaptivity of the components is realized by changing their parameters.

The compositionality theorem was proven with the interactive theorem prover KIV
and can therefore be directly applied during a proof for a particular system. The ad-
vantage is that the reasoning is tool-supported and that for a particular system only the
local R/G properties have to verified against the components implementation. More in-
formation about the theorem, the resulting proof obligations and technical details can
be found in [36].

5.3 Formal Model of a System Based on an Observer/Controller-Architecture

With these formal foundations in place, it is now possible to define an abstract for-
mal model for systems based on an observer/controller-architecture that can be used
to formally specify the corridor of correct behavior and the requirements for a correct
o/c implementation. The model can then be instantiated for a concrete system to pro-
vide behavioral guarantees by formal verification of the functional system part and an
observer/controller implementation against their respective specifications.
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The system can be described as a set of variables Vall which is split into a set Vfunc

of variables defining the state of the functional system and a set Venv describing the sys-
tem’s environment. The variables in Vfunc again can be split into the following disjoint
sets, as depicted in Fig. 8:

– A set Vconf of variables which contain the configuration of the functional system.
These are the variables (parameters) that can be changed by the observer/controller
during a self-* phase in order to restore the invariant.

– A set Vint of variables that contains the agent’s internal variables. They can only be
changed by the agents. This set contains variables which the agents use for internal
calculations and to store intermediate data.

– All other variables are in Vrest. These variables can be changed by the environment
and describe, e.g., sensor data or hardware status which can both include errors or
be changed at random points in time.

Fig. 8. Abstract o/c-system with different variable sets for environment and functional system

The set of the variables of the functional system therefore is defined as Vfunc :=
Vconf ∪Vint ∪Vrest. The set of Venv models the environment of the system and allows to
express the effect an agent’s action has on its environment. As the agents’ actions alter
the environment, and the environment and the agents are interleaved, feedback loops
can thus be formalized.

Each agent has its own set of variables Vfunc. Additionally the agents have two vari-
ables (flags) reconf and deficient which model the o/c-interaction. The flag reconf sig-
nals an agent that a self-* phase has started and that it should behave passively. The flag
deficient signals an agent that a reconfiguration occurred. The second flag is necessary
as it is theoretically possible that between two steps of an agent several steps of the
remaining system – including a complete reconfiguration – occurred due to the asyn-
chronous execution. In a concrete implementation these flags not necessarily have to be
flags that are set by the o/c directly, they can also be refined to a message passing com-
munication model. Such a model allows interactions between the layers to be conveyed
by messages and complex protocols, e.g., handshake protocols with multiple messages.
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Formally the state of an agent is represented as a tuple:

stateag := ( .id : ID × .reconf: bool × .deficient : bool
× .vconf : Vconf× .vint : Vint× .vrest : Vrest);

The dynamics are modeled as state transitions specifying how the variables of an agent
change during a system step. Formally, this is expressed as transition predicates relating
unprimed and primed variables.

5.4 Decomposition of the Observer/Controller-Architecture

As described above and illustrated in Fig. 7, the self-* system can be decomposed into
several components running in parallel. If we apply the rely/guarantee approach to the
observer/controller-architecture the system can be decomposed in two steps (see Fig. 9).

Ag1 ||

||

... || Agn

Self-* SYS

}

}

first decomposition
for two components

second decomposition
for n agents

RSYSfunc
    GSYSfunc 
+Ro/c       Go/c +

Fig. 9. System structure and compositionality

At first the system is decomposed into the o/c part and the functional system. The
behavior of both is specified with corresponding rely/guarantee properties. On this level
we have a parallel system consisting of two components. For a particular implementa-
tion, the following has to be proven:

– For the o/c part it must be proven that the implementation of the observer/controller
(o/cimpl) is correct with respect to its specification.

o/cimpl |= Ro/c
+→ Go/c (1)

– For the functional system it must be verified that the agents behave according to
their rely/guarantee property.

SYSfunc |= RSYSfunc

+→ GSYSfunc (2)

The first decomposition leads to a separation of concerns. Both system parts can be
treated separately. The rely/guarantee properties specify the interaction between both
layers. This specification and the properties each layer must guarantee ensure that the
complete system exhibits the expected properties. The correctness of the global system
is ensured by a compositionality theorem.

The functional system itself consists again of a number of agents and can be de-
composed in a second step into several agents. The course of action is the same as
for the first decomposition step. The rely/guarantee property of the functional system
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(Eq. 2) is broken down to local rely/guarantee properties for the individual agents and
are enriched with properties about the interaction between the agents themselves. For a
particular implementation Agi of an agent it must be proven that it is correct according
to its R/G specification:

Agi |= Ri
+→ Gi (3)

The R/G specification contains the interaction of the agent with its observer/controller
and other agents with shared variables. It also contains, e.g., the individual contribution
of one agent to the global task.

In the next sub-section we define generic rely/guarantee properties for the first de-
composition step. They specify the requirements on the interaction between the ob-
server/controller and the functional system in order to prove that a property Prop always
holds.

5.5 Rely-Guarantee Definition of the Interaction between Functional
and Self-*-Layers

Before we consider the verification of Eq. 1 and Eq. 2 against a particular implemen-
tation, we need to specify the rely/guarantee properties first. The observer/controller-
architecture reflects the distinction of the two phases of the restore invariant approach.
The functional part is mainly responsible for establishing the functional properties of
the system and therefore is active during the functional phases. The observer/controller-
layer is responsible for monitoring the invariant and reconfiguration in case of an in-
variant violation. It puts the functional part into a quiescent state and is mainly active
during the self-* phases.

Observer/Controller Specification. First, we look at the observer/controller specifi-
cation and its relies and guarantees. A correct o/c implementation has to guarantee that
at the end of every self-* phase the invariant is restored. That means whenever the o/c
signals an agent to leave its quiescent state, INVRIA must hold.

Note that this does not require that the o/c always finds a solution. This would im-
ply a perfect o/c, which is not realistic as sometimes there is no solution possible, e.g.,
when no more redundancy is available in the system. Eq. 4 is sufficient to guarantee
safety properties. Additional requirements can be added to express some quality cri-
teria concerning the reconfiguration. Further, the observer/controller has to guarantee
that it does not interfere with the functional system in functional phases and that it
always puts the agent into a quiescent state before changing the configuration param-
eters (noInterference(Vall,V ′

all)). It also guarantees not to change the agent’s internal
variables (Unchgsys(Vfunc \Vconf)) and not to violate the system properties that should
be proven (denoted here by Prop). These system properties are usually defined by the
developer and are retrieved from the requirements on a particular system.

Go/c(Vall,V ′
all) :↔ (∀ i : (Agi.reconf∧¬ Ag′i.reconf → INVRIA(V ′

all)))

∧ (∀ i : ¬ Ag′i.reconf → noInterference(Vall,V ′
all))

∧ (Prop(Vall) → Prop(V ′
all))

∧ Unchgsys(Vfunc \Vconf)

(4)
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To be able to guarantee this behavior the observer/controller relies on the agents not to
leave their quiescent state themselves. In terms of the reconf variable, this means that it
is only changed on the o/c’s initiative.

Ro/c(V
′
all,V

′′
all) :↔ (∀ i : Ag′i.reconf ↔ Ag′′i .reconf)

∧ (Prop(V ′
all) → Prop(V ′′

all))

The observer/controller also assumes that the property is maintained by the rest of the
system (all the agents currently participating in the system). This is necessary as we
want to prove that the property is never violated by the complete system and the func-
tional system is part of the system as well.

Functional System Specification. The functional system guarantees that it does not
change the configuration on its own. It also has to guarantee the considered property
Prop. Further, the functional system must guarantee to be quiescent during the self-*
phase and only to leave the quiescent state on o/c notifications.

GSYSfunc(Vall,V ′
all) :↔ Vconf = V ′

conf

∧ (Prop(Vall) → Prop(V ′
all))

∧ (∀ i : Agi.reconf → quiescence(Vall,V ′
all))

∧ (∀ i : Agi.reconf → Ag′i.reconf)

To ensure this, it relies on a correct o/c behavior, i.e., the o/c only changes the configura-
tion variables in self-* phases and the internal variables of the agents are only changed
by themselves. It further relies on the remaining part of the system not to violate the
expected property as well.

RSYSfunc(V
′
all,V

′′
all) :↔ (∀ i : ¬ Ag′′i .reconf∧¬ Ag′′i .deficient → Unchgenv(Vconf))

∧ (∀ i : Ag′i.deficient → Ag′′i .deficient)

∧ (Prop(Vall) → Prop(V ′
all))

∧ Unchgenv(Vint)

Applying the compositionality theorem from Sect. 5.2 it can be proven that the abstract
property Prop also holds for the combined system if both parts behave according to their
rely/guarantee specification. The environment of the complete system is still allowed
to arbitrarily change the environment (Venv) and the agents’ variables Vrest which are,
e.g., specifying the agents’ sensor data or hardware status. It is just assumed that the
environment cannot change an agent’s internal variables or configuration parameters.

5.6 The Verification Process

We now have all elements in place that are required to actually verify a concrete appli-
cation. This process is exemplified with two case studies in Sect. 7 and Sect. 8. In all
cases, four general steps have to be followed:
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1. Define formal model, system dynamics, and property:
– define a formal model of the functional system, respectively the agents;
– define the variables describing the system state;
– specify the dynamic behavior, i.e. the state changes;
– specify the property the functional system has to adhere to.

2. Define the corridor and reconfiguration behavior:
– specify the application specific corridor based on the formal model;
– define what the quiescent state of an agent is;
– specify what noInterference means for the observer/controller in the particular

application.
3. Instantiate the abstract rely/guarantees in this section with the application specific

variables and formulas:
– for the observer/controller;
– for the functional system.

4. Verify that the observer/controller and the functional system behave according to
the instantiated rely/guarantee properties.

Following this course of action will verify that the functional system behaves according
to its specification and that the interaction between observer/controller and the func-
tional system is correct. This includes all behavior that takes place when the system is
reconfigured. However, the actual reconfiguration algorithm implemented in the con-
troller part of the o/c is not subject to verification. Therefore, an additional measure
has to be put in place. This measure is discussed in the following section before the
verification process is exemplified with two case studies.

6 Observer/Controller Correctness by Verified Result Checking

The verification of the functional system relies on a correct observer/controller-layer.
For the verification of the functional system it was assumed that the observer/controller
applies configurations that fulfill the invariant. To verify this property, one option is to
reason about the reconfiguration algorithm in question by direct verification. Depending
on the algorithms’ complexity this task can be arbitrarily difficult or even infeasible as
often bio-inspired algorithms, learning techniques or stochastic approaches are used to
implement the self-* features. These algorithms are not necessarily sound nor complete
and thus do not always return valid results which disqualifies them for direct verifi-
cation. In this section we want to give a brief insight into a technique that allows to
formally verify the correctness independent of the particular algorithm with a verified
result checker. Sect. 6.1 outlines the concepts we developed while Sect. 6.2 shows how
the result checker can be derived from the specification and be used in the system. For
more details, refer to [16].

6.1 Foundations of Verified Result Checking

As a technique to avoid direct verification and as an alternative to pure online verifica-
tion [25] of the complete system we developed the concept of verified result checking,
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which combines the classical idea of result checking by Blum, Wasserman and Kan-
nan [10, 46] and formal program verification.

Result checking is a way to ensure the correctness of a program by another program.
In contrast to testing and verification the correctness is not enforced by ensuring the
correctness of the used algorithm itself, but by checking the correctness of all of its
results at runtime. To actually be able to give guarantees in advance, we combine the
result checking approach with design time verification of the particular result checker.
This allows for runtime assurance but design time verification of the algorithm. It also
makes it possible to switch algorithms during runtime, e.g., to have specialized algo-
rithms for different situations. The verification task is reduced to the verification of the
result checker. The program to check whether a configuration is correct is usually sim-
pler than the program to calculate a configuration. This makes verification of the result
checker less complex than the verification of the reconfiguration algorithm.

A result checker is therefore a short program RC that reads the output of the program
to check and returns correct if the result is correct and incorrect otherwise (see
specification below). It is executed after the reconfiguration algorithm and reads the
calculated configuration (Vconf). If the configuration restores the invariant, the checker
returns correct and forwards the configuration. If the configuration is incorrect, it is
blocked and feedback is provided to the reconfiguration algorithm. This feedback can
consist of the parts of the invariant that are violated or – if a metric is available – a
measure of the error of the solution.

Specification of Result Checker (RC)

input configuration (Vconf) of o/cimpl

output ‘correct’ if InvRIA(Vconf), ‘incorrect’, otherwise

While this technique allows to check new configurations for validity, the lack of a
direct verification of the algorithm means that no statement can be made about termina-
tion of the algorithm. Therefore only correctness and quality properties of a configura-
tion that is forwarded to the system but no liveness criteria in the sense of “something
good will eventually happen” about the self-* phase itself can be proven with the re-
sult checking approach. Liveness properties ensure that the system makes progress in
some manner, while safety properties (“something bad will never happen”) are proper-
ties that ensure that there are no threats to life and limb. However, liveness properties in
an self-* system are hard to verify as failures can always occur and additional assump-
tions about the environment have to be made, e.g., assumptions about the frequency of
failures. Failures eat redundancy, in the sense of possibilities that another component
can take over missing functionality. If no redundancy is available, the system can not
compensate a failure any more and therefore, no liveness properties can be guaranteed.
They can thus be treated as a kind of quality properties of a considered implementation.
This might not be a very relevant limitation in practice but will have to be considered
in formal verification. However, the system is still able to guarantee safety properties
which are most interesting for self-* systems anyway.
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Related Work: A similar idea in order to enable the use of unsound algorithms and
still ensure correct results, but not with the focus on formal verification and correctness
guarantees, is presented by Rochner and Müller-Schloer in [35]. They add a so called
guard to their Observer/Controller-architecture that filters the actions calculated by the
controller. In principle, this corresponds to the result checking idea. However, they do
not consider the correctness of the guard itself nor do they describe how such a filter
can be derived systematically.

A related field is runtime verification [25] which deals with checking the correctness
of a property during runtime. This approach tries to completely move the verification
from design to runtime, by developing suitable monitors in order to accurately decide
whether a property holds or not. In contrast to the approach presented here runtime
verification does not deal with the question how a system can be adapted if a violation
is detected. However, ideas and results from the field can be used to develop appropriate
observers in order to detect system failures and invariant violations.

6.2 Deriving und Using a Result Checker

The implementation and the formal specification of a result checker can be systemati-
cally derived from the specification of the invariant. The result checker implementation
is then verified to prove that it returns correct for a configuration if and only if the
invariant INVRIA(conf ) evaluates to true. In [16] a systematic development and veri-
fication of a result checker for self-organizing resource-flow systems is described in
detail.

The invariant can be seen as constraints on the configuration variables, as the corri-
dor is formulated as a predicate INVRIA(V ) over all variables V . It usually constrains
the configuration variables in relation to the remaining variables and therefore describes
correct configurations with respect to the system’s situation. If the invariant is vio-
lated, e.g., due to a failure which is reflected in a change of a variable’s value, the
observer/controller tries to find a new evaluation for the configuration variables, which
re-establishes the invariant.

The reconfiguration task can therefore be considered a constraint satisfaction prob-
lem (CSP) [15, 44]:

CSPreconf := (Vconf ,Dconf , INVRIA(V ))

The decision variables are the configuration variables Vconf with corresponding domains
Dconf and the constraints are defined through the invariant. The goal is to find a valid
evaluation of the configuration variables such that the constraints (invariant) are fulfilled
[29]. Usually one is not only interested in whether a solution is correct or incorrect, but
also in how good a solution is. In case of an incorrect solution detailed feedback is
required in order to find a new and valid configuration. Therefore the result checker can
be extended with a penalty function which quantifies the quality of a configuration.

In case of an invalid result the result checker provides feedback about which con-
straints are violated for which agents. This detailed feedback can than be used by the
self-* algorithm to find a better solution. For instance, if a genetic algorithm is used,
the result checker can be called by the fitness function and used as one element in the
calculation of the fitness values of the configurations in a population.
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Fig. 10. An adaptive production cell with three robots, two transport units, and three tools [19]

7 Application to an Adaptive Production Cell

In this section, the application of the specification and verification approach to a simple
adaptive production cell is described. The cell depicted in Fig. 10 consists of three
robots and two autonomous transport units (carts) connecting them. Every robot can
accomplish three tasks: drill a hole into a workpiece (D); insert a screw into this hole
(I); and tighten the screw with a screwdriver (T). For each task the robots have different
tools which they can switch.

Every workpiece entering the cell has to be processed according to a given order,
e.g., drill, insert, tighten. In case one or more tools break and the current configuration
allows no more correct processing of the incoming workpieces, the observer/controller
is reconfiguring the cell and re-assigning the different tools such that production can
continue. Further the carts have to be re-routed in order to preserve the right processing
sequence. They always have to transport from the drilling robot to the inserting robot
and from the inserting robot to the robot that is tightening the screw. As the system
is deciding on its own which robot is applying which tool, we at least want to have
the guarantee that workpieces are processed correctly: the tools are applied in the right
order and workpieces leaving the cell are fully processed with all three tools.

1. Define Formal Model, System Dynamics, and Property. The first step is to build
a formal model of the production cell. Each robot has, besides the two flags reconf and
deficient for reconfiguration, a variable availableTools describing the set of available
tools and a variable assignedTool for the currently assigned tool. Access to a variable
of a Robot r is denoted by r.assignedTool. The set robots contains all currently partic-
ipating robots. The task is specified as a sequence of tools which should be applied to
a workpiece. A workpiece wp therefore has two variables: wp.state modeling its cur-
rent processing state and wp.task for the task for this workpiece. The set of workpieces
currently in the production cell is denoted with cell. In order to formulate properties
about workpieces leaving the cell, the leaving workpieces are stored in a storage (list
of workpieces). The expected property (Prop) the system should exhibit then is, that
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all workpieces have correct state and leaving workpieces are fully processed. It can be
formulated as follows, where � is the standard prefix operator for lists:

correctProcessing(Vall) :↔ (∀ wp ∈ cell : wp.state � wp.task)

∧ (∀ wp ∈ storage : wp.state = wp.task)

This property should always be maintained by the complete system and its validity on
the entire trace is the behavioral guarantee we want to give for the system.

In [39] an extended variant of the adaptive production cell is described. It includes
correct routing of the carts which was not considered here. This leads to additional prop-
erties in INVRIA, describing correct routes. Carts are also specified with rely/guarantees.
The specification of the corridor and its verification is presented in [32]. Further, the pa-
per contains a role concept for the agents and a detailed model of the dynamics of the
agents modeled with UML-statecharts. The implementation of the production scenario
is described in [30].

2. Define the Corridor and Reconfiguration Behavior. The invariant specifies correct
configurations of the production cell which leads to correct behavior. A valid configura-
tion is one that assigns all needed tools. In other words, for each workpiece in the cell,
all tools of the workpiece’s task have to be assigned. Further, only tools available to a
robot can be assigned.

INVRIA := (∀ wp ∈ cell ∀ t ∈ wp.task : ∃ r ∈ robots : r.assignedTool = t)

∧ (∀ r ∈ robots : r.assignedTool ∈ r.availableTools)

In this application quiescence means that a robot stops during reconfiguration and does
not perform any processing steps, like applying a tool. The observer/controller further-
more guarantees that it does only interfere when a self-* phase was started in before-
hand. This means that the o/c does only change a robot’s assignedTool in functional
phases.

3. Instantiate the Abstract Rely/Guarantees. In order to retrieve the rely/guarantee
properties the variables have to be assigned to the generic variable sets.

Vint := {r.ID | ∀ r ∈ robots}
Vconf := {r.assignedTool | ∀ r ∈ robots}
Vrest := {r.availableTools | ∀ r ∈ robots}
Venv := {wp.state,wp.task | ∀ wp ∈ cell∪ storage}

For this scenario, the robots’ internal variables are merely their IDs. The set of config-
uration variables contains the assignedTool variable of each robot. The availableTools
of each robot can be arbitrarily changed by the environment and are therefore in Vrest.
The environment is thus allowed to change this set which models tool failures but also
maintenance in case the set is extended. From the point of view of the production cell,
the task according to which a workpiece should be processed, the storage and the state
of the workpieces are in Venv. For example, the application of a tool changes the envi-
ronment as the workpiece’s state is manipulated. The task of new workpieces entering
the cell is set by the environment.
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Observer/controller specification. The next step is to instantiate the generic R/G prop-
erty of the observer/controller. The observer/controller has to guarantee that it correctly
restores the invariant at the end of a self-* phase, indicated by changing the robots re-
conf variable, and that it does not interfere in functional phases. It also guarantees that
it does not violate the correctProcessing property and that it only changes the configu-
ration variables. The instantiated guarantee then looks like this:

Go/c(Vall,V ′
all) :↔ (∀ r ∈ robots : r.reconf∧¬ r′.reconf → INVRIA(V ′

all))

∧ (∀ r ∈ robots : ¬ r′.reconf → r′.assignedTool = r.assignedTool)

∧ (correctProcessing(Vall)→ correctProcessing(V ′
all))

∧ Unchgsys(Vfunc \Vconf)

The rely Ro/c for the o/c-layer is the same as the generic one which assumes that the
functional system does not end the self-* phase on its own. Every implementation,
distributed or central, that fulfills this R/G-property is a valid o/c-implementation. For
the production cell scenario a central and a distributed o/c-layer was implemented [1,
29]. The central one uses a constraint solver in order to calculate new valid assignments.
The distributed one is based on coalition formation and tries to find a minimal set of
robots that is able to reconfigure the cell. The correctness in both cases is ensured via a
verified result checker (see Sect. 6) which ensures that only correct configurations are
forwarded to the functional system.

Functional system specification. The rely/guarantee property for the functional system
is retrieved analogously by instantiating the generic property:

GSYSfunc(Vall,V ′
all) :↔ (∀ r ∈ robots : r.assignedTool = r′.assignedTool) (1)

∧ (correctProcessing(Vall) → correctProcessing(V ′
all)) (2)

∧ (∀ r ∈ robots : r.reconf → V ′
all = Vall) (3)

∧ (∀ r ∈ robots : r.reconf → r′.reconf) (4)

The functional part does not change the configuration on its own (1) and guarantees
the expected property correctProcessing (2). It also guarantees to enter the quiescent
state, when a self-* phase was initiated (3). The functional system ensures that it only
leaves the quiescent state when notified by the o/c (4). To be able to guarantee this, the
functional system relies on the o/c not to change the configuration in functional phases.
Further it relies on others to not change its internal variables. In this case, the rely is
identical to the generic RSY S f unc shown on page 96.

As the functional system consists of several robots the next step is to split the R/G
property into properties for the single robot in a second decomposition step. In this
decomposition the interaction between the robots must also be considered, as from the
point of view of each individual robot, the o/c as well as the other robots are in its
environment. The local rely/guarantees are retrieved by restricting the property to the
scope of a single robot. Additionally, each robot has to guarantee that it does not change
the variables of the other robots. The local R/G property for a single robot r then is:
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Gr(Vall,V ′
all) :↔ (r.assignedTool = r′.assignedTool)

∧ (correctProcessing(Vall) → correctProcessing(V ′
all))

∧ (r.reconf → V ′
all = Vall)

∧ (r.reconf → r′.reconf)

The rely is restricted to the local scope analogously.

Rr(V ′
all,V

′′
all) :↔ (¬ r′′.reconf∧¬ r′′.deficient → Unchgenv(Vconf))

∧ (r′.deficient → r′′.deficient)

∧ (correctProcessing(Vall) → correctProcessing(V ′
all))

∧ Unchgenv(r.ID)

4. Verification. For the particular implementation it must be proven that it is correct
with respect to this R/G-specification. Hence, the number of proofs depends on the num-
ber of different agent implementations. In case of a homogeneous system consisting of
identical agents – like the robots – only one proof has to be made, while in heteroge-
neous systems in which different agent types can have different dynamics, the proofs
have to be performed for each agent type separately.

In this application the functional and self-* phases are alternating. Hence, in the qui-
escent state the robots come to a full stop while being reconfigured. On the other end of
the spectrum of quiescent behavior are systems in which the self-* layer works in par-
allel with the functional system permanently. In such a case, the o/c-layer is constantly
applying new configurations and the requirements for the quiescent state must be less
restrictive. Such a system is presented in the next section.

8 Application to Autonomous Virtual Power Plants

Future energy systems require autonomous, decentralized management to deal with
the enormous number of power generators and controllable consumers. Decentralized
power generation and the limitations of the power network make it necessary to lo-
cally manage the balance between power production and consumption in a decentral-
ized fashion. Autonomous Virtual Power Plant s(AVPP) [1, 2] could be the building
blocks of such a future system. One AVPP controls a number of small energy producers
such as biogas plants, solar plants and run-of-the-river power plants. The plants are di-
vided into stochastic ones such as solar and wind generators and controllable ones. The
AVPP’s task is to control the plants in such a way that the load equals the combined
production of the plants by calculating schedules for the controllable plants. The con-
trol decisions are based on forecasts of the plants’ power production and of the load.
A correct schedule for the individual plants can be calculated by a genetic algorithm
or a particle swarm optimizer. The schedule changes as new prognoses come in and
old ones are revised. The AVPP thus self-adapts constantly to new information and to
the new environmental situation, meaning that there are no strictly discernible self-*
and functional phases. In addition, a reactive algorithm compensates for slight errors
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in the predictions by adapting each power plant’s output slightly if current data about
production and load become available [3]. However, the calculation of new power plant
schedules can be seen as the main self-adaptive feature and is thus designated as the
self-* phase in the following.

1. Define Formal Model, System Dynamics, and Property. An AVPP constitutes an
observer/controller that manages a functional system consisting of a set N of individual
power generators. If a power plant does not produce the power it forecast or the load
changes unexpectedly, the invariant of the AVPP is violated and a new schedule has to
be calculated. The total load which should be met is denoted as Lc and is available to the
observer/controller and all power plants. The AVPP calculates schedules for the power
plants based on a load prognosis Lprog which approximates the future load. Each power
plant i ∈ N has a scheduled target output Ptarget,i that is derived from the AVPP’s target
output which in turn is determined by the prognosed load (Ptarget = Lprog = ∑N

i Ptarget,i).
As the schedule is made for several timesteps in advance, Ptarget,Lprog and Ptarget,i are
lists of values. The scheduled target output for time t is denoted by Pt

target,i.
The property (Prop) that is of importance in the energy system is grid stability. The

power grid is sensitive to imbalances between consumption and production. If they
differ, the network frequency changes which can lead to power outages and destroy
equipment. Therefore, the AVPP has to guarantee that – if the forecast of the upcoming
load is good enough – it will always produce as much power as requested. This boils
down to an approximate equality between the scheduled target output of the power
plants for the current timestep and their actual output in this time step:

gridStability(Vall) := Pnow
target ≈

N

∑
i

Pactual,i

Again, it is not sensible to demand strict equality since the prognosis can never be
guaranteed to be exactly equal to the actual load. As there is a band in which the power
grid can operate and the reactive mechanism can compensate slight deviations, this is
not strictly necessary.

2. Define the Corridor and Reconfiguration Behavior. The next step is to formalize
the corridor of correct behavior. A valid configuration is one that describes a valid
schedule for the system and that ensures that in sum as much power is produced as
currently is consumed and that the schedule will be able to cover the consumption
predicted for each timestep t.

The first constraint describes that a plant’s assigned target output has to be either
zero or between the power plant’s minimal and maximal output possibilities.

Ccons : ∀ i, t : Pt
target,i �= 0 → Pmin,i ≤ Pt

target,i ≤ Pmax,i

Further a valid schedule has to assure that the change of output power from one time
step to the next is not greater than the rate of change of a plant (vi).

Cchange : ∀ i, t : |Pt+1
target,i −Pt

target,i| ≤ vi
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In every timestep each plant’s target output should be approximately equal to the current
output (t = now).3

Cbalanced := ∀i : Pnow
target,i ≈ Pactual,i

The current power output varies due to the reactive behavior of the power plants. A
further constraint describes that the difference between the next target output and the
current output may not exceed the rate of change of the plant.

Cvariance := ∀i : |Pnow+1
target,i −Pactual,i| ≤ vi

The schedule for the stochastic power plants also must assure that the scheduled output
approximately equals the forecast:

Cstoch : ∀ i, t : Pt
target,i ≈ Pt

pred,i

The corridor is then defined by the conjunction of all the constraints.

INVRIA(V ) :=Ccons ∧Cchange ∧Cbalanced ∧Cvariance ∧Cstoch

The most common kinds of stochastic power plants are solar and wind power plants.
Their output is directly dependent on the weather which thus has to be modeled within
the system. It is captured in variables that are combined in the set Weather. The output
of a stochastic plant is then a function of Weather.

The noInterference property of the AVPP states that it changes the schedule only
after signaling it. The quiescent state of a power plant in this case only requires the
power plant not to signal the end of a self-* phase itself. This is necessary in order to
guarantee that the invariant holds whenever the end of a self-* phase is signaled. It is
interesting to note that, in comparison to the agents in the production cell, the power
plants can not simply stop whenever a constraint is violated. Instead, in the quiescent
state, the power plants stick to their current schedule until a new schedule has been
calculated. This behavior, however, has no influence on the verification approach.

3. Instantiate the Abstract Rely/Guarantees. The next step is to assign the variables
to the different sets and to instantiate the generic rely/guarantee properties.

Vint := {Pmax,i,Pmin,i,vi,Ppred,i}
Vconf := {Ptarget,i}
Vrest := {Pactual,i}
Venv := {Lc,Weather}

The constants describing the physical limitations of the power plants are internal vari-
ables, like the maximal possible output. Also the forecast of the future output of a plant
is an internal variable. These can not be changed by the environment or the AVPP. The
configuration variables consist of the assigned schedule for each power plant. These can
not be changed by the environment, but by the AVPP. Each power plant has a variable
for the actual power output, which can be changed by the environment. This models
failures such as a broken power generator or connection loss to the power grid which
lead to a change in the actual output. The environment contains the consumer load and
the variables describing the weather.

3 For the verification this is formalized as the difference may not exceed a certain ε.
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Observer/controller specification. Instantiating the generic rely/guarantee properties
for the observer/controller we retrieve the specification of the AVPP’s self-* behavior.

Go/c(Vall,V ′
all) :↔ (∀ i : reconf i ∧¬ reconf ′i → INVRIA(V ′

all))

∧ (∀ i : ¬ reconf ′i → noInterference(Vall,V ′
all))

∧ (gridStability(Vall) → gridStability(V ′
all))

∧ Unchgsys(Vfunc \Vconf)

The AVPP ensures that it always calculates valid schedules for the system, specified
using the invariant INVRIA(V ′

all) and that it does only interfere in self-* phases. The
AVPP also guarantees not to violate gridStability with its actions. As it does neither
produce any power output nor consumes any power and a change of the schedule only
comes into effect in the steps of the power plants, this is trivially true. The AVPP only
changes the configuration variables, i.e., Ptarget,i, of the power plants. It relies on the
power plants not to violate gridStability either and not to leave the quiescent state during
a self-* phase.

R/G-specification of the functional system. The R/G-specification for the functional
system is also received by instantiating the generic R/G property. As the functional
system is composed of the individual power plants, the second decomposition step is
to formulate R/G-Properties for the particular power plant. These local rely/guarantee
properties are obtained as in the previous application by restricting the parts which are
quantified over all power plants to the particular power plant. In this case, there is no
direct interaction between the power plants themselves and thus no additional properties
describing such a communication are necessary. The guarantee for a single power plant
i then looks like:

Gi(Vall,V ′
all) :↔ P′

target,i = Ptarget,i

∧ (gridStability(Vall) → gridStability(V ′
all))

∧ (reconf i → quiescence(Vfunc,V ′
func)

∧ (reconf i → reconf ′i)

A power plant guarantees not to change the schedule on its own and not to violate the
gridStability property. The quiescent state of a power plant is that it adheres to the “old”
schedule as long as a reconfiguration takes place until the AVPP has finished writing
the new schedule and that it does not abort reconfiguration on its own.

In order to be able to guarantee this it must rely on the AVPP not to change the
schedule without notification. It further assumes that no internal variables are changed,
e.g., the maximal and minimal power output of the plant.

Ri(V ′
all,V

′′
all) :↔ (¬ reconf ′′i ∧¬ deficient′′i → Unchgenv(Ptarget,i))

∧ (deficient′i → deficient′′i )

∧ Unchgenv({Pmax,i,Pmin,i,Ppred,i,vi})
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4. Verification. For each type of power plant implementation it has to be proven that it
satisfies these R/G-properties. Analogously it must be verified that the AVPP’s recon-
figuration mechanism adheres to its specification and only calculates valid schedules.
Then it can be deduced that for a finite but arbitrary number of power plants and an
AVPP implementation that adheres to the specification, the gridStability property is
maintained under the assumption that enough power is available in the whole system
to fulfill the load. This rely is formulated in the global environment. In a more detailed
model, the AVPP has the ability to throw-off load and therefore to control the load of
the system in case the power available is insufficient.

Examples for Invariant Violations. The invariant can be violated in several ways. In
case of a stochastic power plant, unforeseen environmental influences such as sudden
weather changes can invalidate the forecast output which leads to a violation of Cstoch

for this power plant. This can lead to a power deficit or surplus, both of which will
have to be dealt with by rescheduling the available deterministic plants. A deterministic
power plant is less likely to deviate from its prognoses, but it is still possible that the
power plant goes offline unexpectedly. In this case, Cbalanced is violated and other plants
have to be rescheduled to compensate for the missing power. A further violation can
occur if the load suddenly changes and the reactive mechanism of the deterministic
plants changes the actual power output. If this was not foreseen in the prognoses, this
leads to a deviation form the scheduled target load of the plant. If this deviation is too
big, either Cbalanced or Cvariance are violated.

In all cases the AVPP calculates a new schedule that is adapted to the new situation
and which fulfills the invariant again. The reactive mechanism of the power plants en-
sures that grid stability is maintained. An invariant violation shows that the dynamics
of the systems are unable to handle the current circumstances and adaptation is needed.

9 Conclusion and Outlook

This chapter presented an approach for formal modeling and compositional verification
of self-* systems based on observer/controller-architectures which realize self-* capa-
bilities by adapting configuration parameters of the participating components. The ar-
chitecture separates the self-* and the functional behavior of the system. This separation
is exploited by the Restore Invariant Approach in order to allow a separate verification
of the functional and self-* part of the system. For the verification of the functional part
a particular behavior of the observer/controller-layer is assumed and vice versa. This
is specified by an invariant that defines the corridor of correct behavior in which func-
tional correctness is ensured. The functional system is decomposed into properties over
single agents. Compositional reasoning ensures the correctness of the overall system by
proofs over single agents.

For the verification of the observer/controller behavior, verified result checking is
applied. This allows moving the verification task to design time while correctness is
assured during runtime. As correctness is ensured independently of the reconfiguration
algorithms, these can be switched during runtime. This also allows the use of algorithms
often used in self-* and nature-inspired systems that are neither sound nor complete.
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By focusing on a specific architecture, generic properties that all applications have
in common can be formulated. These can be instantiated for an application to retrieve
the respective proof obligation. For the formal model and its verification, common for-
malisms and techniques are used that have successfully been applied to traditional sys-
tems. This allows to benefit of all advantages, like proof support, but still allows to
express the important aspects of self-* systems. The framework includes explicit con-
sideration of the environment, enabling reasoning about feedback loops which are a
major aspect when considering self-* systems. However, the explicit model of the en-
vironment does not restrict the approach, as unforeseen changes of the environment
are implicitly assumed when not specified otherwise. By providing such a fragmentary
specification, uncertain behavior or arbitrary behavior can be modeled.

The approach was applied to two applications to illustrate the various aspects and
differences, like continuous adaptation without the need of a strong quiescent state com-
pared to alternating phases which need an explicit quiescent state for synchronization
and correct reconfiguration.

In conclusion, the presented approach allows giving behavioral guarantees despite
the self-* properties of the system. It provides a framework for formal modeling and
verification of a system which enables formal proofs without restricting the flexibility
of the system to adapt to unforeseen situations. This will hopefully raise the acceptance
of self-* systems and facilitates the use of these techniques in safety-critical domains.

Future research will include the consideration of hierarchical architectures with a
multi-layered observer/controller structure paired with the functional system, e.g., as
presented by Müller-Schloer and Sick in [27]. Such an architecture can be beneficial in
the AVPP scenario, where superordinate AVPPs could coordinate the actions of ones
located on a lower level. Every level introduces new interaction possibilities that need
to be considered in the formal model.

Another interesting extension of the presented approach is to allow the definition of
soft corridors where a violation does not cause a reconfiguration right away but allows
a fine-grained reaction to problems. The mentioned works in the field of runtime ver-
ification could provide useful instructions for the development of monitors in order to
recognize a corridor violation quickly. An interesting challenge to solve is to synthe-
size appropriate monitors based on a given corridor specification and to find methods
to decide on a violation early enough.

So far, the verification approach was only applied for safety properties which state
that a property is never violated. A next step is to investigate the verification of liveness
properties, like e.g., progress properties. This could be done in a similar fashion as
presented in [43], where the rely/guarantee approach was already successfully applied
to prove liveness properties of lock free algorithms. However, the verification of self-*
systems is more complicated, as failures have to be considered. If failures can happen
arbitrarily often, there is no possibility to ensure progress of the system. Therefore an
approach must be found that restricts the environment, e.g., the frequency of failures.
The challenge is to make assumptions that are realistic and still allow failures to happen.

Behavioral guarantees are a major step towards the acceptance of self-* systems
and their application in safety-critical domains. Therefore the development of suitable
techniques and tools is important. This chapter presented one approach to tackle these
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challenges. However, it also illustrated how difficult the task is and that there are open
questions that will need to be tackled in order to extend the scope of formal techniques
to the full range of self-* systems.
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Abstract. Self-healing can be used to reduce hazards in embedded real-
time systems which are applied in safety-critical environments. These
systems may react to failures by a structural reconfiguration of the ar-
chitecture during runtime. This means the exchange of components or
the modification of the components’ connections, in order to avoid that
a failure results in a hazard. This reaction is subject to hard real-time
constraints because reacting too late does not yield the intended effects.
Consequently, it is necessary to analyze the propagation of failures in
the architectural configuration over time with respect to the structural
reconfiguration. However, current approaches do not take into account
the timing properties of the failure propagation and the structural recon-
figuration. In this paper, we present a hazard analysis approach which
specifically considers these timing properties. We illustrate our approach
by an example case study from the RailCab project. Further, we demon-
strate the scalability of the approach by experiments.

Keywords: Hazard Analysis, Real-time, Reconfiguration, System Safety.

1 Introduction

Safety-critical systems like cars, airplanes, trains, and medical devices are subject
to rigorous analyses to ensure safety of persons, goods or the environment [23,40].
Hazard analysis approaches play a key role as hazards which might lead to
accidents have to be identified and handled accordingly.

Hazard analysis approaches typically follow either a bottom-up approach, e.g.,
Failure Mode Effect Analysis (FMEA), or a top-down approach, e.g., Fault Tree
Analysis (FTA). In the last couple of years, the trend has been to exploit the
component structure of safety-critical systems to improve the hazard analysis
[12, 15, 16, 18, 22, 30, 44].

These hazard analysis approaches require that the component structure does
not change at runtime as they do not account for different architectural config-
urations (from now on configuration). However, this prevents their application
to systems which employ self-* techniques which has become a major trend in
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engineering complex systems (cf. [7]) as these systems change their behavior,
e.g., by structural reconfiguration of the configuration [27], at runtime.

Self-* systems adapt autonomously to changes in the system itself, such as
failing physical components, or in the environment, such as unexpected external
stresses on the system. For safety-critical systems, self-healing is one specific
self-* technique that can be used to reduce the probability of hazards. This
is achieved by an appropriate reaction after detecting an error to avoid the
hazardous situation.

We propose to use particularly the structural reconfiguration of the config-
uration as a way to stop the propagation of failures through the component
structure [3] before they result in a hazard. This is achieved by reconfigur-
ing intentionally into an appropriate configuration. This can be achieved, e.g.,
by disconnecting a failed subconfiguration and starting other components. Our
structural reconfiguration allows for modifying complex configurations in a flex-
ible manner. This is achieved by specifying structural reconfigurations by graph
transformations [11].

In order to judge whether a reconfiguration reduces the probability of the haz-
ard successfully, we must consider that failures continue to propagate even dur-
ing the reconfiguration [31]. Therefore, a correct hazard analysis of self-healing
systems must take the propagation times of failures, the duration of the recon-
figuration, and the change that results from the reconfiguration into account.

Current automated hazard analysis approaches [1, 8, 14, 17, 24, 43] take either
the propagation times of failures or the effects of structural reconfiguration on
the failure propagation into account, but not both. They are thus not suitable
for the hazard analysis of self-healing systems.

In this paper, we present a timed hazard analysis for reconfigurable systems
that employ self-healing (extending a previous approach in [33]). This approach
particularly considers timing characteristics of the failure propagation as well
as the reconfiguration. We employ formal specifications for the timed structural
reconfiguration based on the graph transformation formalism and for the timed
failure propagation in the architecture. Furthermore, we use timed automata for
the specification of the behavior of components.

Our timed hazard analysis checks whether the structural reconfigurations are
executed fast enough such that a hazard is avoided successfully. We restrict
the expensive analysis of the time properties to a small part of the component
structure by exploiting the fact that graph transformations are applied locally.
By this, we improve the scalability of the timed hazard analysis. The scalability
is shown by an experiment.

In the next section, we give an overview of our timed hazard analysis. In Sec-
tion 3, we present our running example. We then introduce the model used for
timed hazard analysis in Section 4. These are the models for the system architec-
ture and the reconfiguration as well as the modeling of timed failure propagation
and its formalization. The timed hazard analysis approach in Section 5 then uses
these formal models to gauge the effectiveness of any given reconfiguration with
respect to hazard reduction. We show results from the simulation experiments
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in Section 6. Section 7 contains a discussion of related work. We conclude and
give an outlook on future work in Section 8.

2 Overview of the Approach

Our timed hazard analysis checks for a given self-healing operation whether
this operations fulfills the self-healing successfully or not. This means, it checks
whether a failure is stopped on time to prevent the hazard from occurring.
We therefore assume that the self-healing action is given before our analysis is
applied.

Our timed hazard analysis follows the terminology of Laprie et al. [3]. Fail-
ures are the externally visible deviation from the component’s behavior. They
are associated with ports where the component instances interact with their en-
vironment. Errors are the manifestation of a fault in the state of a component,
whereas a fault is the cause of an error. Errors are restricted to the internals of
the component.

Timed Hazard Analysis

Configuration Timed 
Automata

DGTR TFPG1

e

f

Success/
No success

Hazard

Fig. 1. Overview of timed hazard analysis

Fig. 1 shows an overview of our timed hazard analysis. In the beginning the
following models are given: A system in form of a configuration that specifies a
component-based system architecture, the behavior of each component defined
by a timed automaton, the failure propagation of each component specified by
a Timed Failure Propagation Graph1 (TFPG), a hazard, and the self-healing

1 A Timed Failure Propagation Graph specifies the propagation of failures through
components and the propagation times of failures between different nodes in the
system.
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action in form of a Durative Graph Transformation Rule2 (DGTR). All these
models need to be specified manually by the developer. TFPGs may be generated
automatically from timed automata by our approach published in [32]. However,
this is out of scope of this paper.

Timed hazard analysis computes automatically the success of the self-healing
operation given by the DGTR on the given system. First, the minimal cut sets
(MCS)s3 of the given hazard are computed. For all these MCSs, it is checked
how far the errors of each MCS may propagate through the system after they
have been detected and before the reconfiguration is executed. This is done by
reachability analysis on Time Petri Nets [36]. Time Petri Nets are the underlying
semantics of TFPGs. The result is the state of errors and failures in the system
at the time that the reconfiguration is executed. The timed hazard analysis
then determines how the reconfiguration effects this state of errors and failures.
Finally, it checks whether the errors and failures that remain in the system
after the reconfiguration still cause the hazard. If they can not lead to a hazard
anymore, the self-healing is successful in reducing the hazard.

3 Running Example

Our running example is adapted from the RailCab4 – a rail vehicle that is devel-
oped by the RailCab project at the University of Paderborn. The vision of the
RailCab project is a mechatronic rail system where autonomous vehicles called
RailCabs apply the linear drive technology, as used by the Transrapid system,
but travel on the existing passive track system of a standard railway system. This
system is currently under construction and a first version of the controlling soft-
ware of the physically existing system has been built using the approach of [19].
RailCabs drive in a convoy in order to reduce energy consumption caused by
air resistance and to achieve a higher system throughput. Such convoys require
small distances between the RailCabs. These required small distances make the
drive in convoy a very safety-critical operation. The correct speed of all vehicles
of a convoy must be guaranteed. Further, contrary to regular rail vehicles, the
RailCab has an active steering. When driving around curves and over switches,
the RailCab has to steer accordingly. The active steering is also used to reduce
wheel flange abrasion.

We illustrate our timed hazard analysis by a simplified subsystem of the Rail-
Cab. The configuration is depicted in Fig. 2. The subsystem consists of the two
subsystems Speed and Steering that control the RailCab’s driving speed and steer-
ing angle. This subsystem is a safety-critical part of the RailCab. A wrong speed
or steering angle can lead to harmful accidents like derailment. The architecture
of this subsystem has been adapted from earlier works [19].

2 A Durative Graph Transformation Rule defines a structural reconfiguration and the
time needed to execute this reconfiguration.

3 Cut sets are combinations of errors that lead to a hazard. MCS are a minimum
combination of errors that lead to a hazard. If one error is removed from a MCS,
the hazard can not occur.

4 http://www.railcab.de

http://www.railcab.de
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Fig. 2. Start Configuration of the Application Example
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The subsystem Speed measures the current speed with two independent speed
sensors s1:SpeedSensor and s2:SpeedSensor. These two signals are read by
pl:Plausibility, which computes the difference between them. If the difference is
too high, the system reconfigures such that the speed sensors are replaced by
GPS. Otherwise, the values are forwarded to se:SpeedEval which calculates the
current driving speed. The current driving speed is forwarded to sc:SpeedCtrl

which calculates the target electric current. This target electric current is for-
warded to cc:CurrentCtrl which computes the electric current to be set on the
engine in order to reach the target speed.

The subsystem ts:TargetSpeed computes the target speed under the considera-
tion of reference data, such as the target speed and target position provided by
the vehicle driving in front, and the current longitudinal position of the RailCab
on the track. The reference data is provided by the components wl:WLAN and
ref:RefData via wireless network. Further, the position is updated every 15 meters
by a proximity switch prox:ProxSwitch which is evaluated by pe:ProxyEval.

The subsystem Steering uses eddy current sensors5, to measure the lateral po-
sition of the RailCab on the track. Each of the four wheels has a pair of eddy
current sensors, e.g., ed1a:EddyCurrentSensor and ed1b:EddyCurrentSensor. Each pair
is evaluated by a software component, e.g., ev1:EddyEval. The pairs of eddy cur-
rent sensors are interconnected diagonally such that cp:CenterPos calculates the
lateral position of the RailCab by intersecting the two resulting diagonals as
shown in Fig. 3.

Based on the input of tp:TrackPos, ta:TargetSteeringAngle calculates a target
steering angle. The component sc:SteeringCtrl determines the necessary con-
trol values for the steering actuators based on the target steering angle input
from ta:TargetSteeringAngle and the RailCab’s position on the track input from
cp:CenterPos.

Center

ed1a/ed1b ed2a/ed2b

ed3a/ed3b ed4a/ed4b

Fig. 3. Schema of Calculation of Center Position

It is a hazardous situation if the RailCab is driving at a wrong speed, e.g., if
cc:CurrentCtrl outputs wrong values. A wrong speed could lead to derailment or
a collision with another vehicle. This is particularly dangerous, if the RailCab

5 Eddy current sensors measure the field strength of the electric field that is induced
by moving an electrically conductive body in a magnetic field.
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is part of a convoy which implies low distances of less than one meter between
the vehicles. A wrong speed may occur if at least one of the speed sensors, e.g,
s1:SpeedSensor emits wrong values.

In order to prevent this hazard, the system detects the error by checking the
difference between the values of the two speed sensors. If this difference becomes
too high, the system reacts by deleting the connector between se:SpeedEval and
ts:TargetSpeed and switching on a GPS subsystem6 that now measures the Rail-
Cab’s driving speed.

pl : Plausibility

s1 : Speed
Sensor

s2 : Speed
Sensor

se : SpeedEval
sc : SpeedCtrl

cc : CurrentCtrl

e

0

40

(a) Reconfiguration at a Clock Value of 40 Time Units

wrong
speed

pl : Plausibility

s1 : Speed
Sensor

s2 : Speed
Sensor

se : SpeedEval
sc : SpeedCtrl

cc : CurrentCtrl

e

90

0

(b) Reconfiguration at a Clock Value of 90 Time Units

Fig. 4. Failure Propagation during Reconfiguration

Figure 4 shows the effects of this reconfiguration for different points of time.
In Fig. 4(a) the reconfiguration is executed 40 time units after the detection of
the error in s1:SpeedSensor. The failure has not propagated to the components
ts:TargetSpeed and sc:SpeedCtrl as the reconfiguration has changed the structure
before this happens. In Fig. 4(b), the reconfiguration is executed 90 time units
after error detection. Even though the reconfiguration has been executed, the

6 The GPS subsystem is not active before significant errors in the speed sensors are
detected. GPS is less reliable than the speed sensors, because it only works if the
satellites are visible. Satellites are not visible if the RailCab enters a tunnel. We
consider the GPS-mode as degraded mode.
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failure has already propagated to the component sc:SpeedCtrl and caused the
hazard.

To prevent the latter case, our hazard analysis takes time properties into ac-
count. The basic idea here is that the propagation of a failure can be stopped
by reconfiguring the component structure into another component structure in
which the error does not cause a hazard. For that to be possible, the reconfigu-
ration has to be faster than the propagation of this error.

4 Modeling the System

In this section we present our models that specify the system architecture, the
reconfiguration of the system architecture and the system behavior. With our
system model we strive to provide a sound formal foundation on which we will
build our hazard analysis. The starting point for this is UML.

From UML component and deployment diagrams we derive our concept of
configuration that forms the static part of the system model. For the dynamic
part, we consider two types of behavior: reconfiguration and stateful internal
behavior / message passing. For reconfigurations we use extended graph trans-
formation rules that we apply to the graphs that constitute component struc-
tures. For modeling the internal behavior of the component instances and their
communication with each other we use networks of timed automata [2].

4.1 System Architecture

For our system architecture, we focus on the structural view, namely components
and connectors. A component encapsulates its inner structure and behavior and
allows interaction with other components only via its interfaces. In our compo-
nent model, the interfaces are realized by ports. We distinguish component types
and component instances. Component types define a component with ports that
can be used to derive a number of component instances. Each component type
can be instantiated multiple times. Note that ports are never instantiated on
their own. They are rather instantiated as adjuncts of their respective compo-
nent type.

A configuration is a concrete assembly of component instances, connected
by connectors at the port instances, which we illustrate by UML component
diagrams. A configuration of our running example7 is shown in Fig. 2. Due to
reconfiguration a system has several possible configurations.

We will define the necessary elements of our approach formally in order to
put our approach on a solid mathematical footing. In choosing and developing
these definitions, we will strive to keep as close to our immediate needs as pos-
sible to facilitate easy implementation and local proofs. This means that we use
a comparatively high number of definitions that are tailored to the specific needs

7 For later usage, some connectors are named.
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of each part of our approach. While there is merit to the idea of creating a
more comprehensive formalism that encompasses the entire approach using a
small, unified set of definitions, our immediate goals conflict with this idea. We
therefore leave it as future work.

We start with the definition of the system architecture, called configurations.
Each configuration is based on a component specification. We define a component
specification as a type graph as defined in [11].

Definition 4.1 (Component Specification)
The component specification sys is a type graph [11] sys = (Vsys, Esys, ssys, tsys)
over a set of component types K, a set of port types P , and a set of connector
types L with

– Vsys = K ∪ P ∪ L,
– ssys : E �→ V the source function, and
– tsys : E �→ V the target function.

Thus, a component specification specifies a system in that it determines what
component, port and connector types exist, what port types are associated with
these component types, and which port types can be connected by which connec-
tors. A particular configuration, i.e. a runtime state, of a system is then defined
by a set of instances of these types, together with a relation showing intercon-
nection between port instances. We define a configuration as a typed graph as
defined in [11] based on the type graph of the component specification.

Definition 4.2 (Configuration)
We define K the set of component instances of K, P the set of port in-
stances of P , and L ⊆ P × P the set of connector instances of L. Let
sys = {Vsys, Esys, ssys, tsys} be a component specification.

A configuration w = (Gconf , type) of a component specification sys is a typed
graph, where Gconf = (Vconf , Econf , sconf , tconf) is a graph with the vertices
Vconf = K ∪ P , the edges Econf = L, and the source and target function sconf
and tconf and type is a graph morphism typing Gconf over sys.

The set of all configurations of a component specification sys is denoted by
Wsys. By k.p, we denote port type p of component type k. The same notation
holds for component instances.

4.2 Structural Reconfiguration

For the definition of our structural reconfiguration we use durative graph trans-
formation rules (DGTR) [10]. Reconfiguration means changing the set of com-
ponent instances and their interconnections at runtime. Thus, a reconfiguration
transforms one configuration into another configuration. A DGTR is a classic
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graph transformation rule (cf. [10,11]) extended by a time interval that specifies
the minimum and maximum time needed to execute the DGTR.

Any DGTR consists of two graphs, a left hand side(LHS) and a right hand
side(RHS). In our case, each of the graphs represents a subconfiguration [41].

In order to achieve a succinct notation for a DGTR, we merge both the LHS
and the RHS into one graph, annotating the parts occurring in the LHS but not
in the RHS with the stereotype «destroy» and elements occurring in the RHS
but not in the LHS by «create». These stereotypes are implicitly carried over
to the sub objects of an element, e.g., the deletion of a component results in the
deletion of the component’s ports, too.

Figure 5 shows the DGTR for our example. The DGTR specifies that the
connector between instances of the component types SpeedEval and SpeedCtrl

including the corresponding ports are deleted. On the other hand, the component
instances GPS:GPS and ge:GPSEval, a connector between them, and a port at
ts:TargetSpeed including a connector between ge:GPSEval and ts:TargetSpeed are
created. Figure 5 also shows the matching of the ports represented by dashed
arrows. This matching is part of the DGTR. Note that for the sake of clarity we
have chosen a simple example that is easy to follow.

In addition to the LHS and RHS, each DGTR has a time interval, called
duration, that specifies the minimum and maximum time units it takes to apply
the DGTR to a configuration during runtime. This duration includes the time
for created components to start up and for deleted components to shut down.

The time interval in Fig. 5 specifies that at least 30 and at most 42 time
units elapse from the time when the application of the rule is initiated and the
last change in the configuration that completes the rule. We assume that this
information is known by the system developer. We now give a formal definition
of a DGTR.

Definition 4.3 (Durative Graph Transformation Rule)
A durative graph transformation rule (DGTR) is a tuple r = (LHS,RHS, d).
LHS and RHS are typed graphs as defined in [11]. d = [dmin, dmax] with
dmin, dmax ∈ R≥0, dmin ≤ dmax is the duration of time needed to transform
LHS into RHS.

In our approach, DGTRs are defined for component types. This means, DGTRs
are specific to the component specification of a system but not specific to a
configuration. DGTR application, of course, takes place on component instances
rather than component types.

We assume that each DGTR has its own clock that starts at zero, when the
execution of the DGTR is started. The duration interval of the DGTR refers to
this internal clock.

The application of a DGTR to a graph requires to identify a matching of the
DGTR’s left hand side to the configuration.
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s2 : Speed
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Fig. 5. Application of a DGTR on a configuration

Definition 4.4 (Matching)
Let c be a configuration and r = (LHS,RHS, d) a DGTR both typed over a
component specification sys. We define a matching m(c, r) of the DGTR r on
the configuration c as a subgraph isomorphism [11] of LHS on c.

Matchings require to be isomorphic. When using a homomorphism, it is possible
to match two distinct nodes in the left hand side to the same node of the config-
uration. This may lead to undesired behavior if for example the DGTR defines
that one of these nodes should be preserved while the other should be deleted
(cf. [11]).
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We assume that no concurrent reconfigurations occur, i.e., all aspects of the
reconfiguration are described as single DGTRs or sequences of DGTRs. This is to
exclude the possibility of unintentional interference between DGTRs that might
lead to arbitrary intermediate configurations or an over- or underestimation of
the execution time.

The duration of the DGTR only specifies the minimum and maximum time
needed to execute all its operations. Consequently, we do not know, which oper-
ation of the DGTR is executed at which point in time. Therefore, we assume the
worst case for our analysis: The DGTR is executed at the latest point of time
possible and all operations are executed in zero time. With this assumption,
the failures can propagate the farthest possible through the system before the
reconfiguration is applied.

4.3 System Behavior

We model the behavior of software components by timed automata as defined
in [4]. A timed automaton is a finite automaton that is extended by a set of
real-valued variables called clocks. These clocks measure the elapse of time. By
using timed automata, the developer defines time dependent behavior. Thus, the
behavior of the component does not only depend on its input, but also on the
point in time at which these inputs are received. This is essential for modeling
real-time systems.

In order to maintain a separation of concerns [26], i.e., not to mix the com-
ponent’s functional behavior with its self-healing behavior, the behavior of each
component is specified by at least two timed automata. One timed automaton
specifies the functional behavior. The other specifies the self-healing behavior,
i.e., error detection and the resulting initiation of reconfiguration.

For the definition of timed automata, we require a definition of clock con-
straints first. They are used to model conditions on the values of clocks in a
timed automaton.

Definition 4.5 (Clock Constraint)

Let C be a set of real-valued clocks. A clock constraint B is a conjunctive
formula of atomic constraints of the form x ∼ n or x − y ∼ n for x, y ∈ C,
∼∈ {≤, <,=, >,≥} and n ∈ N. We use B(C) to denote the set of clock
constraints. [4]

The set of clock constraints is now used in the definition of a timed automaton.
Based on the clocks, a timed automaton specifies time guards, clock resets, and
invariants. A time guard is a clock constraint that restricts the execution of a
transition to a specific time interval. A clock reset sets the value of a clock back
to 0 while a transition is fired. Invariants are clock constraints associated with
locations that forbid that a timed automaton stays in a location when the clock
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values exceed the values of the invariant. We extend the timed automata of [4]
by side effects that represent the execution of methods for reconfiguration.

Definition 4.6 (Timed Automaton)

A timed automaton A is a tuple A = (L, l0, C,Σ,R,E, I) where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– C is a finite set of clocks,
– Σ = (D × {?, !}) ∪ {τ}) is a finite set of actions where D is a set of action

names and τ is the empty action,
– R is the set of side effects, ε ∈ R is the empty side effect,
– E ⊆ L × B(C)× Σ × R × 2C × L is the set of edges where ϕ ∈ B(C) is the

transition guard and λ ∈ 2C are the clock resets, and
– I : L → B(C) assigns clock constraints to locations, the invariants.

We shall write l
ϕ,a,r,λ−−−−→ l′ when (l, ϕ, a, r, λ, l′) ∈ E.

In addition to time guards and resets, a transition may carry an action symbol of
Σ that specifies input actions and output actions of the timed automaton. Input
actions are denoted by ?, output actions by !. In order that only actions are
transmitted between the TA of components that are connected by a connector,
we relate actions to connectors. We thus use actions of the form co.m. co specifies
the name of the connector and m the message name.

Figure 6 shows an example of timed automata. The TA of Fig. 6(a) specifies
the functional behavior of the component type Plausibility. The TA of Fig. 6(b)
specifies the self-healing behavior of the component type Plausibility.

The timed automaton of Fig. 6(a) consists of four locations l1 to l4 and four
transitions connecting the locations. l1 is the starting location. Starting locations
are marked by a by double circles. The invariant c1 ≤ 2 of location l1 specifies

l2 l3
co1.s1?

c1≥1 
co2.s2?

c1≥3
copl.checks1s2!

c1≥4
co3.forwards1s2!

c1≥ 6
c1:=0

l1

c1≤4 c1≤5 c1≤7

l4

c1≤2

(a) Functional Behavior

l2l1 l3 l4
copl.checks1s2?

c2:=0
{computeDiff()}

c2≥1
co3.switchToGPS!

c2≥13
diff ≤ difftarget

c2≥10

l5
diff>difftarget

c2≥10

c2≤2 c2≤12 c2≤14

(b) Self-healing Behavior

Fig. 6. Timed Automata of the Component Type Plausibility
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that l1 may only be active while the value of c1 is less than or equal to 2.
Accordingly, the time guard c1 ≥ 1 restricts the firing of the transition to a
minimal value of 1 of clock l1. The term c1 := 0 at the transition from l4 to l1
sets the clock c1 back to 0.

The timed automaton of Fig. 6(b) receives the sensors values s1 and s2 by the
action copl.checks1s2?. Then, it computes the difference between these values. If
the difference is lesser than or equal to acceptable difference diff target, the timed
automaton switches back to the initial state. Otherwise, a failure has been de-
tected. In this case the self-healing is triggered by the action co3.switchToGPS!.

l2

l3

co3.forwards1s2?
c3:=0

{computeSpeed()}
c3≥4co4.speed!

c3≥70

l1

c3≤5

c3≤75

(a) Functional Behavior

l2

co3.switchToGPS?
c4:=0

co4.switchToGPS!
c4≥1

l1 c4≤2

(b) Self-healing Behavior

Fig. 7. Timed Automata of the Component Type SpeedEval

l2
co4.speed?

c5:=0
co5.pos?

c5≥3

                  {computeTargetCurrent()}
c5≥7co6.targetCurrent!

c5≥27

c5≤2 c5≤10

c5≤35

l1 l3

l4

(a) Functional Behavior

co4.switchToGPS?
{executeRec()}

l1

(b) Self-healing
Behavior

Fig. 8. Timed Automata of Component Type SpeedControl

Figure 7 shows the TA that specify the functional behavior (cf. Fig. 7(a))
and the self-healing behavior (cf. Fig. 7(b)) of the component type SpeedEval.
Figure 8 shows the TA that specify the functional behavior (cf. Fig. 8(a)) and
the self-healing behavior (cf. Fig. 8(b)) of the component type SpeedCtrl.

For each connector, we create a timed automaton that models the delay that
is introduced by the connector. For component-internal communication each
component has a component-internal connector that has no delay. It thus is not
modeled as a timed automaton.

Figure 9 shows the timed automata that model the behavior of the connectors
between pl:Plausibility and se:SpeedEval (cf. Fig. 9(a)), and between se:SpeedEval
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l2

co3.switchToGPS?
cco3:=0

cco3≥1
co3.switchToGPS!

l1

cco3≤2

l3
cco3≥1

co3.forwards1s2!

co3.forwards1s2?
cco3:=0

cco3≤2

(a) Behavior of Connector co3

l2

co4.switchToGPS?
cco4:=0

cco4≥1
co4.switchToGPS!

l1

cco4≤2

l3
cco4≥1

co4.speed!

co4.speed?
cco4:=0

cco4≤2

(b) Behavior of Connector co4

Fig. 9. Timed Automata Specifying Connector Behavior

and sc:SpeedCtrl (cf Fig. 9(b)). The transition from l1 to l2 in the timed automaton
of Fig. 9(a) receives the action co3.switchToGPS?. The timed automaton then
waits for a maximum of 2 time units in l2. The transition from l2 to l1 is fired
the earliest when clock cco3 has a value of 1. Then, action co3.switchToGPS!
is sent. Thus, the timed automaton of Fig. 9(a) models a minimum delay of 1
time unit and a maximum delay of 2 time units.

In our example, the input action co1.s1? specifies that message s1 is re-
ceived via connector co1. co1 is the connector that connects s1:SpeedSensor and
pl:Plausibility. The output action co3.forwards1s2! specifies that forwards1s2
is sent via connector co3. The action copl.checks1s2! of the TA of Fig. 6(a) is
sent via the component-internal connector copl to the TA of Fig. 6(b) in the
same component. Note that we abstract from real sensor data in our behavioral
models.

Given the timed automata of Fig. 6, they can now interact with each other
using the joint set of actions Σ. Such a set of interacting timed automata is
referred to as a network of timed automata [4]. We formalize networks of timed
automata as follows.

Definition 4.7 (Network of Timed Automata)
A network of timed automata NTA consists of n ∈ N timed automata A1, . . . , An

with n ≥ 2. For all Ai, Aj ∈ NTA with i, j ∈ {1, . . . , n}, i �= j: Li ∩ Lj = ∅,
Ci ∩ Cj = ∅ and Σi = Σj = Σ.

The TA of Fig. 6-8 build an NTA as they communicate via synchronizations.
The TA of Fig. 6(a) and 6(b) for example synchronize via copl.checks1s2. With
this the TA of Fig. 6(a) forwards the data of the speed sensors s1:SpeedSensor and
s2:SpeedSensor to the TA of Fig. 6(b). Before, the TA of Fig. 6(a) has received
the values from the speed sensors by co1.s1? and co2.s2?. After this, the TA of
Fig. 6(a) forwards the values s1 and s2 to SpeedEval (cf. Fig. 7(a)).

The TA of Fig. 6(b) computes the difference of both values by the side effect
computeDiff(). If the difference diff is bigger than the target-difference, i.e., an error
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has been detected, the TA triggers a reconfiguration by co4.switchToGPS. This
trigger is forwarded by the self-healing automaton of the component SpeedEval

(cf. Fig. 7(b)) to the self-healing automaton of component SpeedCtrl (cf. Fig. 8(b))
by co6.switchToGPS. When this message arrives at the self-healing automaton of
component TargetSpeed (cf. Fig. 8(b)), the actual reconfiguration is triggered by
executeRec().

4.4 Timed Failure Propagation

Having defined the system structure and behavior, we model the system’s failure
propagation, giving particular attention to its time properties.

We type errors and failures using an extensible failure classification like the one
from Fenelon et al. [13]. This allows for the abstraction from concrete errors and
failures. This in turn allows for a more precise specification of failure propagation
between components. We distinguish the general error and failure classes service
and value. A value error specifies that a value deviates from a correct value, e.g.,
an erroneous value in the memory of a component. A service error specifies that
no value at all is present, e.g., a component crashed.

We use timed failure propagation graphs (TFPGs) to relate an outgoing fail-
ure to a set of combinations of errors, incoming failures, and outgoing failures of
embedded components. Timing annotations enable the calculation of the prop-
agation times of failures.

For a component specification sys = (Vsys, Esys, ssys, tsys) over the compo-
nent types K and the port types P , we first specify the error and failure variables
for each component type and then we specify the TFPG for each component
type manually. Error and failure variables are named according to the following
scheme: fd

k.p,ft and ek,ft for k ∈ K, p ∈ P , ft ∈ {value, service}, and d ∈ {i, o}.
ft is the set of error and failure classes. i and o specify the direction of failures
– i stands for incoming and o for outgoing.

For a configuration, we instantiate error and failure variables when instan-
tiating component types. The notation, described above, holds for component
instances and port instances analogously. This instantiation makes all error and
failure variable instances unique.

Definition 4.8 (Timed Failure Propagation Graph)
We define I = {[Δtmin, Δtmax] | Δtmin, Δtmax ∈ Q≥0, Δtmin ≤ Δtmax} as the
set of propagation time intervals, E as the set of error variables, F as the set
of failure variables, and O = {&,≥1} as the set of operators.

We then define the timed failure propagation graph (TFPG) T =
(V,E, fs, ft, l, ι, η) as a labeled graph (cf. [11]) over ({E ∪ F ∪O}, I) where

– V is the set of nodes,
– E ⊆ V × V is the set of edges,
– fs, ft : E → V are the source and target functions,
– l : V → {E ∪ F ∪O} is the node labeling function, and
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– ι : E → I is the edge labeling function.
– η : V → {active, inactive}

We define δ+(v) = |{e ∈ E | fs(e) = v}| as the out-degree and δ−(v) = |{e ∈
E | ft(e) = v}| as the in-degree of a node v ∈ V . Let N0 = {v ∈ V | δ−(v) = 0}.
Then ∀v ∈ V0 : l(v) ∈ E and ∀v ∈ V \ V0 : l(v) ∈ F ∪ O hold. This means,
all nodes with in-degree zero are labeled with error variables. All other nodes are
labeled with either a failure variable or a logical operator ≥1 or &.

We avoid real numbers as interval bound to enable mapping to time petri nets.
This mapping will be introduced in Definition 4.10.

The TFPG of a configuration is built by connecting the TFPGs of all com-
ponent instances by the connectors. In order to analyze the delays of inter-
component communication, the developer has to assign propagation time inter-
vals to the connectors. Figure 10 shows a configuration of the speed control and
steering control subsystems from Fig. 2 with the TFPG. Of course, the annotated
time values are fictitious.

When a failure propagates through the system over time, we model this fact by
the activation of the error and failure variables of the TFPG. In order to express
which error or failure variable has been activated, we set the associated node
to ”active”. When the error or failure propagates further through the system,
subsequent failure are set to “active”.

To model this flow, we add a formal semantics in form of a time petri net [6]
to our TFPG. Time petri nets are marked petri nets [36] with a time extension.
In this paper, we consider time petri nets in which a transition is labeled with a
time interval. Each transition has a clock that is set to 0 each time the transition
is enabled. The transition can only fire if this clock has a value that lies within
the transition’s time interval.

We now give the formal definition of a time petri net as presented in [6]. We
assume the same semantics.

Definition 4.9 (Time Petri Net (TPN) [6])
A timed petri net (TPN) T is a tuple (P, T, ·(.), (.)·,M0, (α, β)) where

– P = {p1, p2, ..., p|P |} is a finite set of places,
– T = {t1, t2, ..., t|T |} is a finite set of transitions,

– ·(.) : T �→ N|P | is the backward incidence mapping,
– (.)· : T �→ N|P | is the forward incidence mapping,

– M0 ∈ N
|P |
0 is the initial marking,

– α ∈ (Q≥0)
|T | and β ∈ (Q≥0 ∪ {∞})|T | are the earliest and the latest firing

time mappings.

We use the morphism defined in Definition 4.10 below to map a TFPG to a TPN.
Nodes of the TFPG are mapped to places and edges to transitions. Propagation
time intervals become firing time mappings. The minimum propagation time is
mapped to the earliest firing time mapping and the maximum propagation time
to the latest firing time mapping.
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Fig. 10. Configuration with TFPGs
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The backward and forward incidence mappings of the TPN are represented
by vectors. There exists one vector for backward and forward incidence mapping
for each transition, respectively. The size of each vector equals the number of
places in the TPN. The entries of the backward incidence mapping specify the
number of tokens needed to activate the transition. The entries of the forward
incidence mapping specify the number of tokens that move from the transition
into the subsequent place.

The backward incidence mapping of a transition t has an entry greater than
zero at the index of place p if there exists an edge that originates from p and
ends in t. To model the propagation over logical nodes in the TFPG correctly, we
need to restrict the propagation via edges leaving AND-nodes in the TFPG. This
is achieved by setting the backward incidence mapping of transitions leaving an
AND-node to the sum of edges entering the AND-node. The forward incidence
mapping of transition t is 1 at the index of place p if p has an incoming edge
that originates from t.

Active nodes in the TFPG are mapped to the initial marking. Elements that
correspond to active nodes in the TFPG are set to 1. All others are set to 0.

Definition 4.10 (Morphism from TFPG to TPN)
We define a graph morphism μ : T �→ T from a TFPG T = (V,E, fs, ft, l, ι, η)
to a TPN T = (P, T,· (.), (.)·,M0, (α, β)) as a tuple μ = (μN , μE , μP ) where

– μN : V → P (bijective),
– μE : E → T (bijective),

– μI : I → (Q
|T |
≥0 ,Q

|T |
≥0) (bijective) is the mapping from the set of propagation

intervals to the earliest and latest firing time mappings.

with

– For all t ∈ T the backward incidence mapping is described by ·(t) =
(v1, ..., v|P |), where

vi =

{
x μ−1

N (pi) = ft(μ
−1
E (t))

0 else

with

x =

{
δ−(fs(μ

−1
E (t))) l(fs(μ

−1
E (t))) = &

1 else

This means that the backward incidence mapping has only one element that
is not zero. This element is the transition following a node labeled with &,
and it is set to the in-degree of this &-node.

– For all t ∈ T the forward incidence mapping is described by (t)· =
(b1, ..., b|P |), where

bi =

{
1 μ−1

N (pi) = fs(μ
−1
E (t))

0 else
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This means that the forward incidence mapping has only one element that is
one.

– M0 = (m1, ...,m|P |), where

mi =

{
1 η(μ−1(pi)) = active

0 else

– α = (α1, ..., α|T |) where αi = min(ι(μ−1
E (ti)))

– β = (β1, ..., β|T |) where βi = max(ι(μ−1
E (ti)))

Figure 11 shows the TPN of the TFPG of Fig. 10. For better understanding, the
labels of the nodes of the TFPG are shown at the corresponding places of the
TPN. These labels can be referenced by the reverse application of the morphism
and then applying the labeling function of the TFPG: l(μ−1(P )).

In order to make statements about error and failure variables being active or
inactive at a point of time, we define the state of a TFPG. As a basis for this, we
give the definition of a state of TPNs as used in [6]. A state of a TPN specifies a
marking for a period of time. This period of time is represented by a clock zone.

Definition 4.11 (Clock Zone)
Let C be a set of clocks and B ∈ 2B(C). A clock zone c is a set of clock interpre-
tations described by conjunction of clock constraints, i.e.

c =
∧
b∈B

b.

If C has k clocks, then c represents a convex set in the k-dimensional euclidean
space. [2]

We use normalized clock zones.

Definition 4.12 (Normalized Clock Zone)
A clock zone c is called normalized, iff for any given clock a or clock pair a, b it
contains either exactly two constraints, or none. The first of these two constrains
must use <,≤, while the second must use >,≥. This guarantees a contiguous
valid interval for each clock or clock pair.

We further define the set of all clock zones by C and the function ρ : C �→ 2C

that returns the set of clocks C of a clock zone c.

In the remainder we refer to normalize clock zones as clock zones. The definition
of a clock zone is now used to define the state of a TPN and a TFPG.
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Fig. 11. TPN of the TFPG of Fig. 10 for the state (A, [45, 61])
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Definition 4.13 (State of a TPN, State of a TFPG)
A state s = (m, c) of a TPN T = (P, T,· (.), (.)·,M0, (α, β)) is defined by a
marking m ∈ N|P | and a clock zone c [6].

A state q = (A, C) of a TFPG T = (V,E, fs, ft, l, ι) is defined by a set of active
error or failure variables A and a set of clock zones C . Let T be the underlying
TPN of T and T = μ(T ) the corresponding morphism. Let M = (m1, ...,m|P |) ∈
N|P | be a marking in T . Then

A =

⎛⎝ |P |⋃
i=1

{l(μ−1
N (pi)) | mi > 0}

⎞⎠ ∩ (E ∪ F)

The set A collects all active error and failure variables represented by a token in
the underlying TPN of the TFPG during the time span specified by the clock
zone.

A state of a TFPG may represent more than one marking of a TPN. This is
because, the clock zone of a TFPG state may cover more than one clock zone of
a TPN state.

Figure 11 illustrates the state (A, [45, 61]). A is a marking for the clock zone
[45, 61]. It contains the elements that correspond to the places labeled with
f i
se.p1,v, f

i
ref.p1,v, and &. The places initially marked with a token were es1,v,

ewl,v and eed2a,s.
Finally, we have to specify hazards. We use boolean formulas to specify the

combinations of outgoing failures of a configuration that cause hazards.

Definition 4.14 (Hazard)
A hazard h is defined by a boolean formula ψ over the failure variables F of a
component specification sys.

The boolean formula ψ that defines the hazard is represented by a fault tree.
This fault tree connects the outgoing failures of the configuration with the hazard
as the top event. Thus, we do not specify propagation time intervals for it. We
construct the fault tree by applying manual fault tree analysis [20].

Note that the hazard is defined on the component specification. However, as we
analyze configurations, we replace the failure variables in the hazard definition by
the instantiated failure variables for each configuration. In the case of multiple
instances, e.g., multiple component instances of a component type, we use a
disjunction of all instantiated failure variables as a pessimistic abstraction. If
this is not appropriate, the developer can manually define the hazard using a
fault tree for each configuration individually.

Figure 12 shows the fault tree for the hazard hwrongPos that represents the
hazard of a wrong position of the RailCab on the track (cf. Sec. 3) already
using the replaced instantiated failure variables. The cause of this hazard is
a wrong speed or wrong steering angle due to cc:CurrentCtrl or tc:SteeringCtrl

emitting wrong values. This is represented by the failure variables fo
cc.p2,v and
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hwrongPos

focc.p2,v fotc.p2,v

≥1

Fig. 12. Fault tree of the Hazard ”wrong position”

fo
tc.p2,v in Fig. 12. The hazard is described by the formula ψ = hwrongPos ⇔
fo
cc.p2,v ∨ fo

tc.p2,v.

5 Timed Hazard Analysis

Having modeled the failure propagation of our system, we can now perform
the timed hazard analysis. Given the configuration, its TFPG, a DGTR, and a
matching, the analysis is done in five steps:

Step 1. Determine the minimal cut sets.
Step 2. Determine the reconfiguration delay.
Step 3. Extract the affected subgraph of the configuration’s TFPG.
Step 4. Analyze the reachability of failures on the affected subgraph.
Step 5. Analyze the success of the reconfiguration.

In Step 1, we compute the minimal cut sets (MCS) of the hazard that is to be
reduced by applying our untimed hazard analysis [15]. Steps 2, 3, 4, and 5 are
then performed for each MCS that the reconfiguration should address. In Step
2, we compute the critical time. This is the time span between the detection
of the error or failure and the last point in time when the reconfiguration can
be executed. This time span corresponds to the time during which a failure will
propagate through the system before the reconfiguration is applied. The critical
time is determined by means of the reachable behavior of the configuration. In
Step 3, we extract that part from the system’s TFPG that is affected by the
reconfiguration, namely the affected subgraph. It is the part of the TFPG that
is matched by the DGTR and all paths that lead from error variables into this
matching. In Step 4, we perform a reachability analysis on the underlying TPN
of the affected subgraph. It analyzes how far failures propagate through the
affected subgraph during the critical time.

The naive approach of our analysis would be to perform the reachability anal-
ysis on the whole TFPG and then apply the changes specified in the DGTR
and perform the reachability analysis for an infinite runtime of the system. But
reachability analysis on TPNs [6] is equivalent to timed model checking which is
exponential on the number of states and clocks [2]. We improve the performance
and thus the feasibility of our analysis by performing the reachability analysis on
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TPNs only on the part of the configuration that is affected by the reconfiguration.
By reducing the number of places of the TPN considered by the reachability
analysis we also reduce the number of clocks which have to be analyzed. Thus,
we expect an exponentially lower runtime depending on the number of places
and clocks not considered by the reachability analysis.

After the reachability analysis, the DGTR is applied to the TFPG. The state
of this TFPG contains all errors and failures that are active after the application
of the reconfiguration. In Step 5, we analyze whether the reconfiguration was
successful in preventing the hazard of the MCS. For this, we assign the state
of the active error and failure variables resulting from Step 4 to the TFPG
of the whole configuration after the reconfiguration. The TFPG represents the
situation of errors and failures in the configuration after the reconfiguration.
On this TFPG, we perform our untimed hazard analysis. If all resulting MCSs
contain at least one inactive error or failure, the reconfiguration has prevented
the hazard successfully for the MCS.

One may argue that there are failures that are not addressed by the recon-
figuration. These failures may propagate to the hazard without being addressed
by the reachability analysis. Step 5 assures that theses failures are detected.

It cannot happen that paths are created by the DGTR that build a ”bridge”
that lets a failure slip through the self-healing. Hence, it does not occur that the
analysis yields that the failure can be stopped though it is not. This is due to the
semantics of DGTRs: First, all objects that are to be destroyed, are removed.
Then, all objects that are to be created are created.

Cycles in the TFPG can also be handled by our analysis because we map our
TFPG to a TPN. The reachability analysis of [6] can handle cycles in TPNs.
Further, the untimed analysis of [15] can handle cycles, as well.

In the following, we present the five steps in detail using our running example.

Step 1 – Determine the Minimal Cut sets

The boolean formula of a hazard (cf. Definition 4.14) contains all failure variables
that build the top-level failures of the TFPGs of the configuration. A TFPG
defines the MCS, i.e., the set of possible causes, for such a top-level failure, [23].

To compute the MCSs, the TFPG (without propagation time intervals) can
be transformed into a boolean formula ϕ. For this, all nodes of the TFPG with
out-degree greater than one have to be divided into sub-nodes with out-degree
one. Furthermore, all paths consisting solely of failure nodes are replaced by
edges. The result is a syntax tree of ϕ that can be mapped to the corresponding
boolean formula ϕ.

The MCS can be computed from ϕ using different approaches (exact ones
[25,34,42] or heuristics [5,38,39]). As the focus of this paper is not on computing
prime implicants of boolean formulas, we refer the interested reader to these
publications for details.

It follows a formal definition of cut sets and MCS.
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Definition 5.1 (Cut set, Minimal Cut set)
A cut set s to a failure propagation formula ϕ of a TFPG T is a conjunction of
literals over variables in ϕ such that s → ϕ is a tautology. It can be interpreted as
an assignment of boolean values to a subset of the variables in ϕ that guarantees
that ϕ evaluates to true. The set of all such cut sets for ϕ is denoted S (ϕ).

A cut set s for ϕ is a minimal cut set (MCS) iff no sub-term of s is a cut set
for ϕ. The set of MCSs for ϕ is denoted Sm (ϕ).

The MCSs of the failure propagation graph of Fig. 10 are {es1,v}, {es2,v}, {ewl,v},
{eed1a,s, eed1b,s}, {eed2a,s, eed2b,s}, {eed3a,s, eed3b,s}, and
{eed4a,s, eed4b,s}.

Step 2 – Determine the Reconfiguration Delay

The reconfigurations that we consider represent the reaction to a detected failure
in the system. In most cases, the reconfiguration is not executed immediately
after the failure has been detected. Typically, the information that a reconfig-
uration has to be applied must be transmitted to the component at which the
reconfiguration is executed. This transmission results in a delay between the de-
tection of an error or failure and the execution of the reconfiguration, namely
the critical time. This delay has to be taken into account for the reachability
analysis of Step 4, as it is the time span in which errors and failures propagate
through the system before the execution of the reconfiguration.

The critical time is the sum of the reconfiguration delay and the duration of
the DGTR. The reconfiguration delay is the time span between the detection
of an error or failure and the start of the execution of the DGTR. The duration
of the DGTR, i.e., the duration of the execution of the reconfiguration is given
by the time interval of the DGTR (cf. Section 4.2).

We determine the reconfiguration delay by analyzing the reachable behavior
of the configuration by means of a zone graph [4]. A zone graph contains all
runtime states that a network of timed automata (NTA) (cf. Definition 4.7) may
visit during its execution. Note that we pessimistically abstract from the real
sensor data and the computation on this data. Instead, we consider all possible
paths. From the zone graph we extract all paths that contain the message of the
detection of the error or failure and the execution of the reconfiguration. The
reconfiguration delay is the delay of the path with the maximum delay.

The runtime states of an NTA always consist of the active locations of all
contained timed automata and a clock value assignment that assigns a value to
each clock. Since clock values are real numbers, there exist infinitely many clock
value assignments and, thus, infinitely many states. A reachability analysis that
searches the whole state space would not terminate. The problem is tackled by
using clock zones as presented in Definition 4.11 that abstract sets of states with
the same locations into a single zone [2].
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Based on the definition of clock zones, the semantics of an NTA is defined by
its zone graph [2, 4]. The zone graph contains all possible runtime states of the
NTA.

Definition 5.2 (Zone Graph)
Given is an NTA Ai = (Li, l0i , Ci, Σ,R,Ei, Ii), i ∈ N. Its reachable state space
is given by a zone graph Z = (S, s0, Σ

′, T ) where S is the set of states, s0 is
the initial state, Σ′ is the set of transition labels and T ⊆ S ×Σ′ × S the set of
transitions.

Definition 5.3 (Construction of Zone Graph)
Let Ai and Z be as in Def. 5.2. States are tuples (l, c) where l is a location
vector that stores the active location for each automaton and c is a clock zone
storing the possible clock interpretations. Let li denote the ith element of the
location vector l representing the active location of Ai and l[l′i/li] the vector l
with li being substituted with l′i. In s0 = (linit, cinit), linit,i = l0,i for all Ai

and all clocks c0j ∈ cinit have value 0. We define the set of transition labels
by Σ′ = {δ} ∪ {(i, τ)|i ∈ {1, . . . , n}} ∪ Σ′

act with Σ′
act = {((i, a?), (j, a!))|i ∈

{1, . . . , n}, j ∈ {1, . . . , n}, a ∈ Σ}. Let ej = (lj , ϕj , aj, rj , λj , l
′
j) ∈ Ej and em =

(lm, ϕm, am, rm, λm, l′m) ∈ Em with j �= m. The transitions of the zone graph Z
are defined by the rules:

(1) (l, c) δ−→ (l, c + d) if c ∈ I(l) and (c + d) ∈ I(l), where I(l) =
∧

li∈l I(li) and
d ∈ R+

(2) (l, c)
(j,τ)−−−→ (l[l′j/lj], c′) if lj

ϕj ,τ,λj−−−−−→ l′j, c′ = ((c ∧ ϕj)[λj �→ 0]) ∧ I(l[l′j/lj])

(3) (l, c)
(j,r)−−−→ (l[l′j/lj], c′) if lj

ϕj ,r,λj−−−−→ l′j, c′ = ((c ∧ ϕj)[λj �→ 0]) ∧ I(l[l′j/lj])

(4) (l, c)
((j,a?,r),(m,a!,s))−−−−−−−−−−−→ (l[l′j/lj][l

′
m/lm], c′) where r, q ∈ R if

(a) lj
ϕj ,a?,r,λj−−−−−−→ l′j, lm

ϕm,a!,q,λm−−−−−−−→ l′m, with r = ε or q = ε and
(b) c′ = ((c ∧ ϕj ∧ ϕm)[λj ∪ λm �→ 0]) ∧ I(l[l′j/lj][l

′
m/lm]). (cf. [4])

In the zone graph, four kinds of transitions numbered (1), (2), (3), (4) in Defi-
nition 5.2 may occur that represent different actions of the NTA. The NTA may
(1) delay, i.e., no transition fires and time δ passes. If (2) the transition is marked
with τ , a single timed automaton in the network fires a transition without any
further synchronization. If (3) the transition carries a side effect r, a single timed
automaton in the network fires a transition where the side effect r is executed.
If (4) two transitions of different time automata exist that use the same action
name while one is an output action (!) and the other one is an input action (?),
the two transitions may fire synchronously. Only one of these transitions may
carry a side effect to avoid interference.

For the computation of the reconfiguration delay, we extract all paths from
the zone graph that have the error or failure detection of the respective error
or failure and a subsequent reconfiguration as a reaction. We then compute the
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runtime of these paths with the help of the clock zones of the zone graph paths.
The longest runtime over all these paths is the reconfiguration delay.

Since the clocks of the timed automata of the NTA may be reset to 0 by clock
resets, the values of the clocks along the path of the zone graph do not reflect the
amount of time that was spent on a path directly. Instead, they only measure
the time that elapsed after the last reset. Thus, we need to sum up the time
that elapsed between two resets along a path of the zone graph. This is done by
partitioning the paths into sub paths that start and end at transitions where a
reset occurred.

Definition 5.4 (Maximum Runtime Time of a Zone Graph Path)
Consider a path p ∈ P in the zone graph Z of an NTA with Ai =
(Li, l0, Ci, Σ,Ei, Ii) with p = t1, . . . , tl, ti = (si, σi, si+1), si = (li, ci) and Cp

the clock zones of p.
For a the set of clocks Cp = {c ∈ C|c = ρ(Cp)} of the path p, we partition p

into t11, . . . , t1n1 , t21, . . . , t2n2 , . . . , tm1, . . . , tmnm by removing all edges {ei,j ∈
Ei|λj �= ∅} from p that contain clock resets.

For a partition pi = ti1, . . . , tini , its corresponding clock zones ci1, . . . , cin(i+1)
,

and for each clock cj ∈ Cp, we define the following values:

t0i,j = limcj→−∞(∃c1, . . . , cj−1, cj+1, . . . , c|C| ∈ Cp : ci1)
t1i,j = limcj→∞(∃c1, . . . , cj−1, cj+1, . . . , c|C| ∈ Cp : ci(ni+1))

The maximum runtime time of path p is defined by

ϑmax(p) = min
j∈{1,...,|Cp|}

m∑
i=1

(t1i,j − t0i,j)

For each clock cj , we compute the minimum value t0i,j that satisfies the clock

zone zi1 of the first transition of the partition pi and the maximum value t1i,j
that satisfies the clock zone ci(ni+1) of the last transition of pi. This clock value
must also be a valid clock zone for all other clock zones of the transition. Then,
we compute runtime of the path as the sum of the differences of t1i,j − t0i,j of
all partitions for each clock. Of all sums of all clocks, we take the minimum,
because we must choose the clock values such that all clock zones are satisfied.
This corresponds to the minimum runtime8 over all clocks.

In our example, the delay between the reception of the value of the speed
sensor s1:SpeedSensor in the timed automaton of Fig. 6(a) and the final trigger
of the DGTR by the execution of the side effect in the timed automaton of Fig.
8(b) is [18, 21]. The critical time, i.e, the time between the arrival of the failure
at the component until the completion of the reconfiguration, is calculated by
adding the reconfiguration delay and the duration of the DGTR. In our example,
this is [15 + 30, 19 + 42] = [45, 61].

8 We take the greatest value of the minimum values and the smallest value of the
maximum values to satisfy all clock zones.
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Step 3 – Extract the Affected Subgraph of the Configuration’s TFPG

In Step 3, we extract the subgraph of the TFPG that is affected by the recon-
figuration and which we will use in Step 4. By only performing the reachability
analysis on this subgraph, we improve the feasibility of our analysis.

Definition 5.5 (Affected Subgraph of a TFPG)
Let w = (G = (V,E, s, t) , type : G → sys) be a configuration for a system
sys, P = (L,R, d) be a DGTR, matched into G by m. Let further T =
(Vt, Et, st, tt, ι, ν) be the TFPG for w. Let the correspondence between T and
w be expressed by ζ : Vt → V .

We then define the set of affected nodes of G by

VA =
(
ζ−1 ◦m

)
(L \R)

The affected subgraph GA of G is induced by the nodes of a set X of paths
x = n1, . . . , nm where each x ∈ X meets the following conditions:

– l (v1) ∈ E (path starts in an error)

– h (vm) �∈ VA (path ends at a non-affected node)

– h (vm−1) ∈ VA (the penultimate node of each path is an affected node)

– For all extensions of x,
h(ni) �∈ VA holds for i > m. (path is maximal)

The affected subgraph consists of the affected nodes, all paths that lead from
error nodes to the affected nodes, and the direct successors of the affected nodes.
The affected nodes are those node that either appear in the LHS and not in
the RHS. They are therefore the nodes which are altered by the DGTR. The
affected nodes are needed to judge on the effect of the DGTR on the TFPG.
The affected nodes are connected to all nodes of error variables that cause the
failures represented by the affected nodes. We can thus analyze whether failures
may propagate to the affected nodes. The successors of the affected nodes are
needed to analyze whether failures leave the affected part and may still lead to
failures which cause the hazard. This information is used in Step 5 to analyze
whether the failures that remain in the system may still cause the hazard.

An example that illustrates the affected part of the TFPG of Fig. 10 is shown
in Fig. 13. The matching was introduced in Fig. 5. The affected subgraph consists
of the two paths es1,v, ...,≥1 and es2,v, ...,≥1.

In order to perform the reachability analysis in Step 4, we have to set the
state of the affected part, i.e., the errors and failures that are active. These are
the error and failures that have been detected by the system’s error detection.
In our example, the state of the affected subgraph is set to ({f i

pl.p1,v}, [45, 61]).
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Fig. 13. Affected Part of the Configuration
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Step 4 – Analyze Reachability of Failures on Affected TFPG

We now analyze the effect that the DGTR has on the occurrence of a hazard.
The DGTR influences the affected subgraph of the TFPG. It may remove error
and failure variables or stop errors and failures from propagating further through
the system.

We start with the TFPG T of a configuration w and the state of T at the
time of the detection of the error or failure. We compute the state (A, z) of
the TFPG T for the time interval specified by the reconfiguration delay. The
set A then contains all error and failure variables that may be active before the
DGTR is executed completely. We take the state at the completion of the DGTR
since we do not know exactly, when the individual operations in the DGTR will
be performed. By regarding the end of the execution of the DGTR we let the
failures propagate the farthest possible path. With this state of the TFPG we
apply the DGTR to the TFPG. This means, we change the configuration and at
the same time the TFPG according to the DGTR. From this TFPG, we extract
the active error and failure variables. These correspond to the errors and failures
that remain in the system after the reconfiguration. This computation is made
by Algorithm 1.

Algorithm 1 AnalyzeAffectedSubgraph

Input: c = (K,P , t, L) a configuration,
TA = (V,E, fs, ft, l, ι, η) the affected subgraph,
A ⊆ E ∪ F the active error and failure variables,
r = (LHS,RHS, d) the DGTR

Output: A′′ the active error and failure variables after the reconfiguration for the
lifetime of the system

1: T = μ(GA) with M0 = (m1, ..., m|P |) with

mi =

{
1 (μ−1(pi)) ∈ A

0 else

2: A′ := ComputeTFPGState (T ,d)
3: c

r⇒ ĉ
4: T̂A = (V̂ , Ê, f̂s, f̂t, l̂, ι̂) := buildAffectedSubgraph(ĉ)
5: A′′ = {x ∈ A′ | x ∈ l̂(V̂ )}
6: return A′′

Algorithm 1 first creates the TPN of the affected subgraph with the same
state as the TFPG (Line 1). On this TPN, it computes the state of the affected
subgraph for the duration of the execution of the DGTR (Line 2). This step
is explained in further detail in Algorithm 2 below. The algorithm then applies
the DGTR on the underlying configuration of the affected subgraph (Line 3)
and builds the affected subgraph of the resulting configuration (cf. Step 2) (Line
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4). The remaining active error and failure variables of the affected subgraph are
collected in A′′ (Line 5) and returned (Line 6).

Algorithm 2 computes the state of a TFPG by the corresponding TPN and
a clock zone. First, it computes the set M of reachable markings of the TPN
for the clock zone c using the approach of [6] (Line 2). All nodes of the TFPG
of which the corresponding place in the TPN contains a token in at least one
marking in M are gathered in the set A. (Lines 3-9). Then, A holds all error
and failure variables that may be active during c.

Algorithm 2 ComputeTFPGState

Input: TPN T , clock zone c
Output: A the set of active error and failure variables for the clock zone c
1: A = ∅

2: M = getReachableMarkings(T , z)
3: for all M ∈ M do
4: for i = 1 to |P | do
5: if mi > 0 then
6: A = A ∪ l(μ−1(pi))
7: end if
8: end for
9: end for
10: return A

Figure 14 shows states of the TPN and the TFPG of the affected subgraph
during the analysis. Figure 14(a) shows the state of the TPN T of the affected
subgraph of Fig. 13 at the point in time when the failure is detected. Failure
variable f i

pl.p1,v has been activated because the failure has been recognized by
the component instance pl:Plausibility. Figure 14(b) shows the state of the TPN
T at the end of the duration of the reconfiguration but before the application
of the DGTR. During the critical time [45, 61] of the DGTR shown in Fig. 5
the failure variables f i

pl.p1,v, f
o
pl.p3,v, and f i

se.p1,v are reachable in the TPN. They
may thus be activated in the real system. Figure 14(c) shows the TFPG marked
with the active error and failure variables of the set A′ that correspond to the
marked places in the TPN of Fig. 14(b). This is the state of the TFPG at the
end of the reconfiguration time.

Step 5 – Analyze Success of Reconfiguration

In the last step, we analyze whether the remaining active error and failure vari-
ables can still cause the hazard that was to be reduced. For this, we compute the
MCSs of the TFPG T ′ of the configuration after the reconfiguration and check
if these MCSs only contain active error or failure variables.

We take the set A′′ of active error and failure variables that remain in the
system after the reconfiguration, i.e., that were the result of Algorithm 1.
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Fig. 14. TPN and TFPG during Reconfiguration

We assign A′′, i.e., the active error and failure variables to the TFPG T ′ of
the whole system after the application of the reconfiguration.

Before applying the untimed hazard analysis [15], we modify T ′ such that
active failure nodes become basic events. Basic events are nodes that have an
in-degree of zero. Thus, according to Definition 4.8, all nodes labeled with error
variables are basic events. In our untimed hazard analysis, MCS only contain
such basic events. But T ′ may contain active failure variables of which none of
the causing error variables are active. Consequently, the MCSs resulting from this
TFPG may contain inactive error variables resulting in active failure variables.
A failure that leads to the hazard would not be recognized.

In order to make failure nodes basic events, we delete the incoming edges of
all failure nodes. In this way only the failure node with the shortest distance to
the outgoing failure that is part of the hazard specification (cf. Definition 4.14)
remains connected to this outgoing failure.

Figure 15 shows the system’s TFPG after the execution of the DGTR. Due
to the application of the DGTR, the edge between fo

se.p2,c and f i
sc.p1,v has been

removed. Further, the incoming edges of f i
pl.p1,v, f

o
pl.p3,v, and f i

se.p1,v have been
removed because these failure variables are active.

We compute the MCSs of this modified TFPG using our untimed hazard
analysis. Then, we check whether any of the resulting MCSs only contains ac-
tive error or failure variables. If there is no such MCS, the hazard cannot occur,
because in each MCS all error and failure variables have to be active to cause
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Fig. 15. Reduced TFPG of Step 5
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the hazard. If we find an MCS that only consists of active error and failure
variables, the hazard cannot be prevented by the applied reconfiguration.

For the TFPG of Fig. 15, we get the MCSs {f i
sc.p1,v}, {egps,s}, {ewl,w},

{eed1a,s, eed1b,s}, {eed2a,s, eed2b,s}, {eed3a,s, eed3b,s}, and {eed4a,s, eed4b,s}. The set
of active failure variables is {f i

pl.p1,v, f
o
pl.p3,v, f

i
se.p1,v}. None of the resulting MCSs

contains these variables. Thus, the hazard has been reduced successfully.
The presented approach handles multiple errors as well as single errors. This

is guaranteed by applying Step 2 to 5 to cut sets instead of single errors. These
cut sets contain either multiple or single errors depending on which errors are
causing the hazard.

In our timed hazard analysis errors and failures are analyzed differently de-
pending on whether they are affected by the reconfiguration or not. Errors and
failures that are handled by the reconfiguration are considered in Steps 3 and 4
because we need to know how far they may propagate during the critical time.
Step 5 addresses all errors and failures. Here we want to know whether errors
and failures that remain in the system after reconfiguration still may lead to the
hazard.

6 Evaluation

The evaluation results we present stem from the application of timed hazard
analysis on a generated component structure. We aim at analyzing the impact
of the optimization of the analysis. For this we apply the timed hazard analysis
two times on the same model. First, the reachability analysis is only applied on
the affected part. Second, we apply it on the full TFPG. We particularly focus
on the execution time with respect to the size of the TFPG. We omit the part
of the reachability analysis of Step 2 (cf. Sec. 5).

Our generated configurations have a structure as illustrated in Fig. 16. The
TFPG consists of the two paths e1, . . . , fj3 and e2, . . . , fj3. The reconfiguration
deletes failure variables fn and fj1 and the edges between them (highlighted
in red). Thus, the affected part is built by the path e1, . . . , fj1. For evaluation,
we extended the length of both paths equally by one component instance per
evaluation step. We repeated the experiment with different numbers of paths in
the affected part as sketched in Fig. 16.

The evaluation experiments were executed on a SuSE 11.4 machine with 72
GB RAM and 8 64-bit CPUs with 2.2 GHz clock and 8 MB cache memory.

Figures 17(a) and 17(b) show the runtimes9 for component structures with
an affected part containing 1 and 2 paths, respectively. Note, that the vertical
axis has a logarithmic scale. The green lines with triangles show the runtimes of
the optimized analysis with respect to path length. The red lines with diamonds
show the same fact for the reachability analysis applied on the whole system. In
both diagrams, the time saving is significant. Thus, the optimization increases
the feasibility of the approach significantly.

9 Note that only a single CPU was used for each experiment.
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Fig. 17. Evaluation Results

With our approach, we are able to analyze the example with a length of 29
components and 2 paths in the affected part in 321 seconds using our optimiza-
tion. The same analysis takes 17401 seconds without the optimization.

7 Related Work

There already exist methods for the hazard analysis of technical systems
[1, 8, 17, 21, 24, 28, 29, 43].

Approaches that apply model checking for hazard analysis are the works of
Güdemann et al. [28] and Colvin et al. [8]. Due to state explosion, the method
of [28] is only applicable with bounded model checking and can thus not show
the absence of flaws. In contrast, our approach can handle the whole system, as
our failure propagation graph are an abstraction of the system behavior.

The approaches of Palshikar [29] and Walker et al. [43] take the temporal
ordering of errors into account. In contrast to our approach, the analysis yields
minimal cut sequences, i.e., sequences of events that are necessary to cause an
event, but no concrete time values.

Approaches that consider concrete time values are the works of Colvin et
al. [8], Abdelwahed et al. [1], Güdemann et al. [28], Grunske et al. [17] and
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Magott et al. [24]. In [24] fault trees are used that encode temporal properties in
gates. They compute temporal dependencies between errors whereas we are com-
puting propagation times. The approach of [8] performs a timed Failure Modes
and Effects Analysis on timed Behavior Trees. In [17] State Event Fault Trees
(SEFT) – Fault Trees combined with state charts – are used. The SEFTs are
transformed to Deterministic and Stochastic Petri Nets which contain probabil-
ity distributions over time for their transitions. The method of [28] is a formal
approach for the fault tree analysis by model checking. All these methods allow
statements about temporal properties of hazards. Though, they do not analyze
propagation times.

The approaches of [29], [43], [8], and [24] do not consider reconfiguration.
Approaches that analyze reconfigurable systems are the approaches of [1], [28],
and [17]. But they all do not take complex structural rule-based reconfiguration
into account. The approach of [17] analyzes each configuration individually, but
not the changes themselves. In [28] reconfiguration is specified by state changes
and invariants that the system has to satisfy. The method of [1] uses mode vari-
ables on their models to switch part of their models on and off. Unlike all these
approaches we specify graph transformation rules that define the reconfigura-
tions that can be executed. These reconfiguration rules enable us to analyze
failure propagation during the process of reconfiguration.

Another field related to our approach is model-based diagnosis [9, 35]. These
approaches aim at diagnosing the root failures of individual components based on
observations of the system’s faulty behavior. The mentioned approaches mainly
use first-order logic to model the behavior of the system. They use the model
to derive the minimal set of components whose failures explain an observation.
While the employed model shares similarities with our timed failure propagation
models, we assume that we are able to directly observe the root failures and
we use the failure propagation models to check that a hazard is successfully
reduced by structural reconfiguration in reaction to the detection of the root
failures. However, these approaches may complement ours with respect to failure
diagnosis.

Model-based diagnosis approaches have been enhanced by also supporting
repairs to recover from failures in [45]. This approach is restricted to restarting
of individual components while we employ explicit reconfiguration rules which
support arbitrary structural reconfigurations. Additionally, this approach does
not consider time which is important for embedded safety-critical systems.

8 Conclusion and Future Work

In this paper, we presented an approach for the timed hazard analysis of systems
that reconfigure in order to react to errors in the system, so called self-healing
systems. With our analysis, the system developer is able to analyze whether the
system’s reaction to an error in terms of reconfiguration is fast enough to prevent
a hazard.

In order to analyze the propagation of failures during reconfiguration, we ex-
tended our failure propagation models by propagation times and define a formal
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semantics in terms of Time Petri Nets. This allows for analyzing the reachability
of failures in the failure propagation model over time. Timed hazard analysis
becomes applicable by performing the reachability analysis only on that part of
the system that is affected by the reconfiguration. Further, our approach takes
the delay between the detection of a failure and the reconfiguration into account
by analyzing the system’s behavior in terms of timed automata [4].

The presented approach analyzes the timed automata that model the system
behavior to compute the delay between failure detection and reconfiguration.
Currently, this analysis requires the computation of the reachable state space of
the complete system which may suffer from state space explosion. In the future,
we will work on decomposing the system to address this problem exploiting
existing compositional verification approaches.

The manual specification of TFPGs is error-prone because software of self-
healing systems and thus their software models are very complex. Therefore, we
want to develop an automatic generation of timed failure propagation graphs
from timed automata that specify the behavior of our systems.

We also plan to add probability distributions over time to our propagation
time intervals, as the number and the width of these interval affects the uncer-
tainty of the analysis. With the help of probability distributions we can estimate,
e.g., the most probable propagation times of failures.
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Abstract. Software is expected to become the dominant driver for
innovation for the next generation of advanced distributed embedded
real-time systems (advanced mechatronic systems). Software will build
communities of autonomous agents at runtime which exploit local and
global networking to enhance and optimize their functionality leading to
self-adaptation or self-optimization. However, current development tech-
niques are not capable of providing the safety guarantees required for this
class of systems. Our approach, MechatronicUML, addresses the outlined
challenge by proposing a coherent and integrated model-driven develop-
ment approach which supports the modeling and verification of safety
guarantees for systems with reconfiguration of software components at
runtime. Modeling is based on a syntactically and semantically rigor-
ously defined and partially refined subset of UML. Verification is based
on a special type of decomposition and compositional model checking to
make it scalable.

1 Introduction

Software has become an intrinsic part of complex distributed embedded real-time
systems, also referred to as mechatronic systems. In many cases these systems
are used in a safety-critical environment and implement themselves as so-called
safety-critical applications. Consequently, the development of software control-
ling these systems has to undergo a rigorous process including the prevention of
faults, employing adequate and well-founded modeling concepts, and the verifi-
cation of crucial safety properties in order to detect critical faults.
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The outlined requirements are also valid for the next generation of advanced
mechatronic systems. These systems are expected to behave more intelligently
than today’s systems by building communities of autonomous agents which ex-
ploit local and global networking to enhance their functionality [1] also named
cyber-physical systems. Such mechatronic systems will employ different forms
of reconfiguration to enable self-adaptation [2] often particularly targeting self-
optimization in this domain. These forms of reconfiguration include complex
coordination protocols which require execution in real-time, reconfiguration of
control algorithms as well as components, and the coordination of the agents
at runtime to adjust their behavior to the changing system goals. However, the
available development techniques cannot handle systems with these advanced
forms of reconfiguration.

We address this challenge with the model-driven MechatronicUML
(mUML) development approach, which combines domain specific modeling and
refinement techniques with verification based on compositional model checking.
The approach suggests modeling the software by using a refined UML com-
ponent model, including the detailed definition of ports, connectors, and pat-
terns/collaborations. We further refine the component model to define proper
integration between discrete and continuous control so that the reconfiguration
of hierarchical component systems can be described in a modular way. Composi-
tional model checking is based on a domain specific decomposition of the system
specification into individually checkable components and patterns/collaborations
based on a common predefined architectural model. The basis for formal verifi-
cation, a formal semantics for the concepts taken from UML, is given in [3].

The paper contains the following new contributions: (1) A comprehensive
overview of the rationale behind the mUML MDD approach combining mod-
eling and verification, previously covered only partially in [4, 5]. (2) A rigor-
ous integration of the previously only independently outlined mUML modeling
concepts for modeling hierarchies of reconfigurable components with hybrid be-
havior [6–10] and the real-time coordination of mechatronic agents [6, 7]. (3)
Finally, an approach for the overall verification based on the modular verifica-
tion concepts for hierarchies of reconfigurable components with hybrid behav-
ior [6–10] and the compositional verification of the real-time coordination of
mechatronic agents [6, 7] which has not been covered before.

The structure of this paper is as follows: The next section provides an overview
of the mUML approach and introduces our running example, explains the un-
derlying general architectural model, outlines how self-optimization takes place
in this architecture, and provides an overview of the modeling and verification
of mUML models. Section 3 introduces the modeling concepts in the form of
a component model permitting specific structural reconfiguration as well as be-
havior specification. The concepts for modeling real-time coordination of the
components are also outlined. In Section 4 the local safety criteria which have
to be verified are defined and it is shown that their composition ensures global
safety. In Section 5 we review existing work in the field and compare it with our
approach. The last section concludes the paper.
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2 The Approach

As a specific example of an advanced mechatronic system, we use the Paderborn-
based RailCab research project (http://www-nbp.upb.de/en), which aims at
combining a passive track system with intelligent shuttles operating individually
and making independent and decentralized operational decisions. The project is
funded by a number of German research organizations. A test track has been
built to the scale of 1:2.5 so that the project’s concetps can be tested in real
operation and not just on paper (cf. Fig. 1(a)).

(a) Test track
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Fig. 1. The test track of the RailCab project and the OCM architecture

The RailCab project aims to provide the comfort of individual transport con-
cerning scheduling and on-demand availability of transportation as well as indi-
vidually equipped cars together with the cost and resource effectiveness of public
transport. The modular railway system combines sophisticated undercarriages
with the advantages of new actuation techniques as employed in the Transrapid
(http://www.transrapid.de) to increase passenger comfort while still enabling
high speed transportation and (re)using the existing railway tracks.

One particular goal of the project is to reduce the energy consumption due to
air resistance by coordinating the autonomously operating shuttles in such a way
that they build convoys whenever possible. Such convoys are built on-demand
and the shuttles travel only a few centimeters apart from each other (up to
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0.5m) so that a high reduction of energy consumption is achieved. Consequently,
coordination between the speed control units of the shuttles becomes a safety-
critical aspect and results in a number of hard real-time constraints which have
to be addressed when designing the control software of the shuttles and the
real-time coordination between the shuttles.

2.1 The General Architectural Model

In order to build such a complex software system, the mUML approach follows
a general local architectural model of a system component for self-optimizing
mechatronic systems given by the Operator-Controller-Module (OCM) as de-
picted in Fig. 1(b) (cf. [11]).

The OCM reflects the strict hierarchical construction of autonomous mecha-
tronic systems, including the hardware components structured, into three levels:
(1) On the lowest level of the OCM is the controller (C) including an arbitrary
number of alternative control strategies (also called modes from an external per-
spective). Within the OCM’s innermost loop, the currently active control strat-
egy processes measurements obtained via sensors and produces control signals for
the actuators. As it directly affects the plant, it is called a motor loop. The soft-
ware processing is necessarily quasi-continuous and includes smooth switching
between the alternative control strategies described by some form of differential
equations or difference equations. (2) The controller is controlled by the reflec-
tive operator (RO), in which monitoring and controlling routines are executed.
The reflective operator operates in a predominantly event-oriented manner and
thus includes a control automaton with a number of discrete control states and
transitions between them. It does not access the actuators of the system directly,
but may modify the controller and initiate the switch between different control
modes and its related strategies. Furthermore, it serves as the connecting element
to the cognitive level of the OCM. (3) The topmost level of the OCM is called
the cognitive operator (CO). On this level, the system can gather information
concerning itself and its environment and use it for the improvement of its own
behavior. (i.e. possibly complex, time-consuming computations for long-range
planning.)

The distinction between the reflective and cognitive operator clearly decou-
ples control under hard real-time constraints from long-range planning and the
resulting input for self-optimization. In general the OCM-hierarchy defines a
strictly hierarchical control flow. Each level tries to execute control as much as
possible locally, but reconfiguration of components is decided on the next higher
level similar to the reference architecture for adaptive and self-managed systems
suggested in [12].

To also describe the overall architecture, the OCM hierarchy can be nested,
where each nesting level may include an OCM. However, these levels do not
include the controller part. Controllers, which implement the continuous part
of the software, usually exist only on the lowest level of a nested OCM hier-
archy. As an example, consider the above mentioned shuttles of the RailCab
project. The architecture is defined by OCMs with their reflective operators and
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Fig. 2. The hierarchy of OCMs of a shuttle and its connections to other shuttles

the controllers as depicted in Fig. 2. A shuttle consists of components like the
suspension/tilt module, the engine, the tracking module etc. which in turn are
defined by OCMs.

As a complete mechatronic system usually consists of several concurrently run-
ning components, a further possibility for communication between components
besides the strict hierarchical control flow exists. Top-level OCMs of several
nested hierarchies, which usually represent a major system component, may act
as freely interacting software agents in the overall architecture in addition to the
strict hierarchies. This means that agents exchange information and collaborate
in a peer-to-peer manner but that no central control is defined anymore. As ex-
amples of such major system components consider the different shuttles, stations
and possibly job brokers involved with the RailCab project. These agents inter-
act with each other in form of collaborations with well-defined role interfaces.
In principle, the controllers of different agents can interact with each other, as
well as the reflective operators and the cognitive operators, each on their corre-
sponding levels. In any case their interaction is limited to a peer-to-peer style
with individual messages rather than centralized, broadcasted messages.

2.2 Self-adaptation and Self-optimization

Self-optimization by means of self-adaptation can be realized in rather different
forms in the outlined general architectural model depending on the specific self-
optimization goals and the impact the different elements have concerning the
characteristics that should be optimized.

The most obvious location for self-adaptive behavior is the cognitive opera-
tor. Due to the decoupling from the hard real-time processing complex process-
ing steps for the self-optimization of a single OCM can be realized here. In a
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subsequent step they have to be enacted by influencing the behavior of the reflec-
tive operator and the controller accordingly. Due to the temporal decoupling the
cognitive operator itself can remain outside the critical part of the software and it
is sufficient to only consider all possible effects the cognitive operator may have on
the reflective operator and controller. Usually, the reflective operator with all its
configuration variants that can be steered by the cognitive operator is designed
as a safety envelope. By ensuring that all configurations of the reflective opera-
tor work properly and abstracting from the possible configuration advices from
the cognitive operator, we can still ensure safe self-optimizing behavior. However,
what this scheme does not help to guarantee is that the self-optimization itself is
successful. An OCM optimizing its reflective operator and controller by taking the
long term changes of the controlled hardware due to abrasion into account is an
example for such a self-optimization for a single OCM.

It is also possible to achieve self-optimization for a whole hierarchy of OCMs
where the higher level reflective operators steer the subordinated OCMs to
achieve a self-optimization for the whole hierarchy. Again the cognitive oper-
ators can play the role of driving the decisions. However, in this case the lower
level OCMs and their cognitive operators are guided by the higher level OCMs
which determine what are their optimization goals. Thus, here we got a com-
plex interplay of local analysis and planning activities similar to a hierarchical
optimization problem where the solutions identified at the higher level OCMs
influence the search space that is considered at the lower level OCMs. Similar to
the local case the reflective operators and their interaction can be studied with-
out taking the complex behavior in the cognitive operators into account. The
composition of the reflective operators become a safety envelop that protects the
system against failures in the self-optimization. Again, the scheme does not help
to guarantee that the self-optimization across a whole hierarchy of OCMs per-
forms well and necessarily results in an improved system behavior. The energy
management in a shuttle is an example for a self-optimization across a hierarchy
of OCMs. While the overall OCM has to decide how much energy could be at
most consumed by each lower level OCM to achieve the current higher level
goals, the lower level OCMs try to optimize their energy consumption and the
performance that can be achieved taking the constraints and precedences of the
higher level OCMs into account only looking at their local scope.

Furthermore, also the agents and their peer-to-peer coordination can be em-
ployed to achieve a self-adaptation of the overall system. However, in this case
two rather different cases can occur.

We can have the case that a behavior of a group of agents shows some emer-
gent behavior due to the employed peer-to-peer protocols often referred to as
self-organization. These emergent properties of the behavior may result in self-
optimization but may also simply provide some required system properties. Here,
the role interfaces provide some protection that can be exploited and depending
on the complexity of the protocols guarantees for the emergent behavior are pos-
sible. The collision freedom for the shuttles later considered in this paper falls
under this case.
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In contrast to such emergent properties, the peer-to-peer coordination of the
agents can also result in a self-optimization by exchanging information about
the context such that the other agents benefit from this. Again, the role inter-
faces permit to ensure that the overall protocol works. However, as the data
exchange and the related data processing can be rather complex, the scheme
does not permit to guarantee that the information exchange effectively results
in self-optimization. Furthermore, the scheme can not exclude that erroneous
data result in unsafe behavior. Consequently, in this case no development-time
solution is provided and problems with the exchanged data have to be detected
at run-time and related fallback strategies must be available (c.f. runtime verifi-
cation). Shuttles that exchange data about the track characteristics to improve
their performance (c.f. [13]) are an example for this case of group-wise self-
optimization. Note that for safety reasons besides the optimized controller that
exploits the data about the track characteristics in addition a fallback controller
that also works in case no data is available and a unit to detect whether the
optimized controller does not perform well have been part of the related system
design.

2.3 Modular and Compositional Verification

Our MDD approach takes the general model of Fig. 2 as an informal architectural
basis. It provides a formal definition of arbitrary OCM hierarchies, their behav-
ior as well as their peer-to-peer communication using a refined UML component
model and a refined notion of statecharts including the definition of timing con-
straints and hybrid behavior. This definition is the input for our model checking
approach, which uses standard real-time model checkers, but before using them
decomposes the overall system in such a way that the individual parts can be
checked separately. Additional checks that the interfaces are well-defined inter-
faces and that the components refine their interfaces then guarantee, that when
composing the models the separately checked safety properties are also guaran-
teed for complex composed system.

As all safety and time-critical aspects are handled by the reflective opera-
tors and controllers, peer-to-peer communication (across the hierarchy) is also
allowed between the different cognitive operators at different levels in the nested
OCM hierarchies. This may facilitate complex planning and the required in-
formation exchange between different components, but the interface between a
reflective and cognitive operator in each component and on each nesting level
respectively will ensure that no unsafe behavior can result from the interaction
with the cognitive operators.

2.4 Tool Support and Code Generation

To complete the approach,mUML is supported by the FUJABA Real-Time Tool
Suite CASE tool [13–15] and includes a code-generation scheme [16–19] that
maps all the high-level timing constraints of the models to underlying real-time
operating system and scheduling technologies. Additional schedulability checks
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then ensure that the code executed on real-time operating systems provides the
same safety guarantees as the models. Thus, the safety guarantees obtained via
checking the models can also be transferred to the code level (c.f. [3]). In addition,
an alternative mapping scheme onto Simulink and Stateflow Models [20] has been
developed to facilitate also commercial simulation and code-generation tools.

3 Modeling

In this section we describe our solution for modeling OCM hierarchies as well as
peer-to-peer networks as outlined in Fig. 2 using our extended UML component
model.

3.1 The Hierarchical Component Model

To first capture OCM-like hierarchies, we describe a component model with a
static structure adjusted to the needs of mechatronic systems. We then extend
this component model to also cover the case of reconfiguration.

Component Structure. To support the coupling of time-continuous control
behavior with discrete behavior, we extend the definition of ports in the UML
component model. Ports may also be defined by time-continuous variables. While
a signal is sent and received at discrete points in time (cf. SignalEvent in UML),
a time-continuous variable has a well-defined value for each point in time.

As an example the mUML model of the OCM of the shuttle responsible for
travelling either in convoy or stand alone mode is depicted in Fig. 3. The Shut-

tle component instance sh contains a AccelerationControl (AC) component instance
ac representing the reflective operator and controller and a Planer component
instance pl representing the cognitive operator. The reflective operator which
mediates between the other two OCM components is represented by the shut-
tle component sh itself. This component computes the acceleration needed to
achieve a specific goal (keeping a specified speed level or keeping a specified dis-
tance from the predecessor). The AccelerationControl component has five incoming
continuous ports and one outgoing continuous port. We distinguish here between
permanent ports and optional ports. The former are depicted by a black triangle
and the latter by a white triangle to indicate that they are only active in some
of the modes as introduced later when considering reconfiguration.

The incoming continuous ports are for the values current velocity vcur, the
current distance Δcur, and the velocity of the front shuttle vFront provided by
sensors, and the required velocity vreq and the required distance Δreq which
are parameterized reference inputs. The outgoing port sends acceleration values
to the appropriate hardware actuator devices. In addition, the ac component
contains discrete behavior to switch between keeping a certain distance and
keeping the velocity at a constant level, and is thus a hybrid component.
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Fig. 3. Example for a component structure of a Shuttle OCM

The specification of component behavior is given by (extended) UML state
machines called Real-Time Statecharts (RTSC) [16, 21, 22], which provide ad-
ditional constructs to describe time-dependent behavior and information such
as deadlines and worst case execution times (WCET). We introduce RTSC and
their extension to a hybrid variant only informally here.
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Fig. 4. Behavior of the Shuttle component

In Fig. 4 the internal behavior of the Shuttle component of Fig. 3 is defined by
a RTSC. As an example for a typical real-time requirement a deadline interval d1
is used to describe the state change from state noConvoy to state convoyFront which
has to be finished within the given interval. Similarly, deadlines are defined to
constrain the time an object may remain in a certain state. Transition guards
may contain conditions which depend on the current value of a clock.

In general, clocks, time guards, and time invariants from timed automata
[23, 24] are combined with expressive modeling concepts existing in UML state
machines. RTSC are thus more expressive than plain or hierarchical timed au-
tomata models and permit emulation of limited UML state machine concepts for
time such as after and when. In addition RTSC supports the definition of flexible
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timer conditions that must held over a series of states. Buffering of timing events
is not needed and does not exist in this approach. This avoids non predictable
effects which may exist in the UML state machines as well as their extensions
which use external timers [25].

Extending RTSC to specify continuous behavior is done similarly to the ba-
sic hybrid automata approaches like [26–29] by the possibility of assigning a
configuration of controllers to a particular state for Hybrid RTSCs (HRTSCs).
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Fig. 5. Behavior of the AC component

An example of this is the hybrid behavior of an Acceleration Control (AC) com-
ponent which is embedded into the Shuttle component. It consists of two discrete
control modes which specify whether the shuttle is operating in velocity control
mode or distance control mode respectively (see Fig. 5). Furthermore, it has con-
tinuous inputs and outputs. Depending on the active discrete mode, either the
current and the required velocity are used as input, or the current and required
distance to the front shuttle as well as the velocity of the first shuttle are used.
The output a is the acceleration in both modes. In this example each configu-
ration consists of one single feedback controller, while usually a configuration of
subordinated blocks representing a number of (continuous) controllers might be
assigned to each state.

Switching smoothly between different controllers requires the specification of
an output cross-fading function (cf. [9]). In our example we have the fading
functions ffade1

and ffade2
and a minimal and a maximal fading duration (df1

respectively df2), which specify how the outputs of the two controllers have to
be faded when changing the controller.

In the example depicted in Fig. 5, the state-dependent continuous behavior is
specified by blocks assigned to the states VelocityControl and DistanceControl. If an
RTSC contains hierarchies and thus comprises state configurations rather than
single states, the assigned controller configuration is the union of all configura-
tions assigned to the states of the current state configuration.

Component Structure with Reconfiguration. While the outlined static
component model supports the specification of nested component structures,
it does not cover the possibility of components having changing input/output
interfaces depending on the current system state. As an example take the AC
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component of Fig. 5. If you consider the shuttle component, then the AC compo-
nent should be in state VelocityControl only if the shuttle is in state noConvoy or
convoyFront. In this case the AC component requires two inputs. If the shuttle is
in state convoyRear, however, the AC component should be in state DistanceControl

and requires three inputs.
To cover nested components with changing input/output (i.e. OCM hierar-

chies with reconfiguration), we introduce an extension of the known concept
of hybrid behavior that assigns a configuration of embedded (possibly hybrid)
component instances to each state instead of control behavior only. The related
HRTSC depicted in Fig. 6 extends Fig. 4 accordingly.

H wait

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

convoyFront noConvoy
default

/ doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRear

ac:AC [DistanceControl]
breakConvoy / breakConvoy /

/ buildConvoy
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Fig. 6. Behavioral embedding

Fig. 6 depicts the orthogonal Synchronization state, whose sub-states embed
different configurations, each consisting of one AC instance ac and its current
mode and continuous interface. It is thus specified that ac has to be in mode
DistanceControl when Synchronization is in state convoyRear. If Synchronization is in
state noConvoy or convoyFront, ac has to be in mode VelocityControl. Consequently a
state change within the orthogonal Synchronization state implies a mode change
in its embedded ac component.

Referring to the example in Fig. 6, the internals of a component behavior,
such as the AC component, need not be known in order to embed a component
behavior specification into the HRTSC of its superior component, i.e. assign
it to certain states. Internal in this case are the definitions of the controllers
as given in Fig. 5. Rather, it is enough to specify an interface statechart for
each component that defines the externally relevant behavior. Fig. 7 gives an
example of the interface statechart of the AC component. Note that continuous
ports only available on a subset of the modes become optional ports while those
ports supported become permanent ports (cf. also Fig. 3).

The externally relevant behavior includes the definition of the different control
modes, the modes’ continuous inputs and outputs as well as the dependencies
between outputs and inputs, and the deadline information for switches between
the control modes. The specific control strategy employed in each mode, whether
fading is required for a transition, the kind of fading function applied for a
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Fig. 7. Interface statechart of the AC component

transition, and which embedded components are active in each mode are imple-
mentation details not relevant to the external view of an interface statechart.

In each component may exist states that are related to potentially unsafe
situations. Therefore, we refer to a component as locally safe if such states can
be excluded for a given context. Also when the components do not work prop-
erly together or when the reconfiguration across multiple levels via the interface
statecharts does result in any violations of the specified timing constraints, the
assumptions of the composed components are not fulfilled and thus their local
safety is no longer guaranteed. In the later considered models, in case of such
an incompatibility the composed behavior will exhibit a deadlock.1 Thus we
can conclude that a hierarchical system of components is safe as long as the
components are locally safe and the composition does not result in a deadlock.2

In our example the Shuttle builds a hierarchy of components, where each Shuttle

instance contains a single supervised embedded component instance of type AC.
The local safety guarantees that each local OCM is safe. The deadlock freedom
guarantees that the complex reconfiguration fulfills all timing constraints.

Definition 1. The overall safety of a hierarchical system is given if all compo-
nent are locally safe and the overall behavior does not contain any deadlock.

In our example we have the Shuttle agents with a single supervised embedded com-
ponent instance of type AC. Within the shuttles the switching has to adhere to the
timing constraints for cross-fading the outputs and the commitments concerning
braking in different collaborations must be not in conflict. The deadlock freedom
guarantees that the complex reconfiguration fulfills all timing constraints for the
reconfiguration present at the different levels of the hierarchy.

The remaining part of the architecture, consisting of the cognitive operators
and their interconnections, is additionally covered by related components that

1 This concerns the usual definition of a deadlock but also so-called time stopping
deadlocks. A time stopping deadlock means that a system cannot progress due to
an inconsistency in the definition of timing constraints of transitions or states.

2 We assume here that required non-local safety properties that relate to a number
atomic components in a system are considered part of a local safety properties of
a hierarchical element that contains all in the required safety property involved
elements.
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are connected with the safety-critical hierarchical core only via unsafe ports that
decouple the core from the rest.

3.2 The Peer-to-Peer Coordination Model

Besides the hierarchical component structures and their hybrid behavior as ad-
dressed in the last section, mUML specifications can also capture peer-to-peer
interaction of autonomous mechatronic systems (cf. Fig. 2). At the peer-to-peer
level the interaction between components is specified in mUML by so-called co-
ordination patterns. At this level no hybrid behavior exists anymore because
communication between components is only based on discrete events and corre-
sponding actions. Therefore these patterns can be described by a refinement of
the loosely defined collaboration and pattern concepts in UML using RTSC to
specify the behavior of roles and connectors.

Real-Time Coordination Pattern. Real-time coordination patterns allow to
specify the interaction between multiple mechatronic agents using UML collab-
orations so that the behavior is rigorously defined. Therefore a real-time coordi-
nation pattern includes a description of the roles involved agents may play . The
agents can interact only via these roles and connectors that connects them. Each
role and connector in turn are specified by an RTSC that captures the behavior
permitted and expected from each role as well as the communication medium.

distance 

:Shuttle :Shuttle 

:Convoy 
Coordination 

FrontRole RearRole 

rearRole frontRole 

Shuttle 2 Shuttle 1 

Fig. 8. Component Instance Diagram and Pattern Instance

The communication between two shuttles necessary to build a convoy is one
such real-time coordination pattern. Fig. 8 shows a ConvoyCoordination pattern
instance between two shuttles. It defines a drastically simplified protocol for
building and breaking convoys based on two roles, namely the rear role and the
front role (see Fig. 9).

Initially, both roles are in state noConvoy::default, which means that they specify
the situation where a shuttle is not a member of a convoy. The rear role non-
deterministically chooses whether to propose building a convoy or not. After
choosing to propose a convoy, a message is sent to another shuttle, or rather its
front role instantiation. The front role non-deterministically chooses to reject or
to accept the proposal after at most 1000 msec. In the first case, both statecharts
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{t0}
[1 ≤ t0 ≤ 1000]

Fig. 9. RTSC of the RearRole role and the FrontRole role

revert to the noConvoy::default state. In the second case, both roles switch to the
convoy::default state.

Eventually, the rear shuttle non-deterministically chooses to propose breaking
the convoy and sends this proposal to the front shuttle. The front shuttle non-
deterministically chooses to reject or accept that proposal. In the first case, both
shuttles remain in convoy-mode. In the second case, the front shuttle replies with
an approval message and both roles switch into their respective noConvoy::default

states.
The connector which represents the wireless network does not need to be

specified by an explicit statechart specification here, but instead by its QoS
characteristics such as throughput, maximal delay etc. in the form of connector
attributes. In our example we assume that the connector forwards incoming
signals with a delay of between 1 to 5 msec. The connector is unsafe in the sense
that it might fail at any time so that we set our specific QoS characteristic reliable

to false.
The specification of safety properties is given by declarative constraints which

are defined using temporal logic using a state-based temporal extension of the
Object Constraint Language (OCL) called RT-OCL [30]. As the examples in
this paper only contain formulas in pure OCL, we further omit any details of
RT-OCL here.

A safety property of this pattern is that a shuttle should only make an emer-
gency brake when it is not taking the front position in a convoy. Using an atomic
proposition CanBrakeFully, which specifies whether a shuttle can brake with full
strength, the required safety property is that when an implementation of the
rear role is in state convoy the atomic proposition CanBrakeFully must be true and
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when an implementation of the front role is in state convoy the atomic proposi-
tion CanBrakeFully must be false. The following OCL role invariants ψ1 and ψ2

are used to describe these restrictions.3

context <comp> inv: <frontRole>.oclInState(convoy) implies not self.CanBrakeFully (1)

context <comp> inv: <rearRole>.oclInState(convoy) implies self.CanBrakeFully (2)

Atomic Agent. When defining the behavior of an agent like a shuttle using
predefined patterns such as e.g. the ConvoyCoordination pattern mentioned above,
the predefined role behavior has to be refined and synchronized. The following
example illustrates this step.

convoyOk
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waitdefault
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rearRole.convoyProposal / isConvoyOK

noConvoy / rearRole.convoyProposalRejectednoConvoy
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Fig. 10. Behavior of the Shuttle agent

3 The context <comp> enclosed in angle brackets is employed here as a placeholder for
the component which realizes the role via one of its ports.
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Fig. 10 depicts the behavior of the Shuttle agent from Fig. 3. The HRTSC
consists of three orthogonal states FrontRole, RearRole and Synchronization.

FrontRole and RearRole describe the port behavior. They are refinements of the
role behaviors in Fig. 9 and specify in detail the communication that is required
to build and to break convoys. Syntactical refinement rules or a special checking
procedure, outlined later in Section 4, are used to ensure that the refinement does
not invalidate any safety properties which have been verified for the (non-refined)
pattern already. Basically, only the non-determinism possibly still existing in a
RTSC defining a role is reduced by the refinement.

An additional internal HRTSC is used to specify the synchronization. In our
example, Synchronization coordinates the communication and is responsible for
initiating and breaking convoys. The three sub-states of Synchronization model
whether the shuttle is in the convoy at the first position (convoyFront), at second
position (convoyRear) or whether no convoy is built at all (noConvoy).
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Fig. 11. Peer-to-peer composition of agents (upper part), hierarchies within the agents
(middle part) and decomposition into a safety-critical core and a arbitrarily structured
rest (bottom and middle part)

A system built by a set of atomic agents and pattern instances (Fig. 11 upper
part) then describes the free peer-to-peer interaction of the agents by pattern
instances.

Definition 2. A peer-to-peer system is safe if for the behavior ensures that

– all agents/components are locally safe,
– no deadlock can occur,
– all RT-OCL constraints of pattern instances are fulfilled, and
– all OCL role invariants of agent instances are fulfilled.

In our example we have the Shuttle agents connected via instances of the Con-

voyCoordination pattern. The RT-OCL constraints guarantee that no collision is
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possible for shuttles connected by ConvoyCoordination pattern instances. The OCL
role invariants ensure that the agents behave consistently with the guarantees
related to their roles, e.g. a shuttle will brake accordingly when the state of the
role of the ConvoyCoordination pattern requires it. However, the pure peer-to-peer
system does not cover the embedding of subordinated components such as the
AC component.

Hierarchical Agents with Reflective Operator. In case of a hierarchical
agent, besides refining and synchronizing the assigned role behavior, the recon-
figuration of the embedded hybrid component hierarchy also has to be specified.
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Fig. 12. Behavior of the Shuttle agent

An instance of the hybrid component type AC is assigned to the different three
sub-states of Synchronization. In state convoyFront and state noConvoy the embedded
controller is run in mode VelocityControl, but in state convoyRear mode DistanceControl

is used to ensure a proper distance to the other shuttle (Fig. 12).
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Our approach for the modeling of a hierarchy of OCMs, as depicted in Fig. 2
without cognitive operators, is based on the observation that it can be modeled
as hierarchal agents that coordinate themselves by pattern instances. While the
free peer-to-peer interaction of the top-level OCMs can be captured by pattern
instances, a hierarchical system of configurable components can be used to cover
the hierarchies of reflective operators and controllers (Fig. 11 middle part).

Hierarchical Agents with Cognitive Operator. However, the cognitive op-
erators do not really fit into this picture as they do not fit into the hard real-time
processing scheme established by the hierarchy of reflective operators but form
their own, often less strict, structures. For the cognitive operators, verification is
usually not feasible, or at least extremely expensive, due to their intelligent be-
havior. Their tight integration within the safety-critical and hard real-time part
of the system is thus problematic. However, we can require the boundary ports
to be unsafe ports to express that you cannot rely on the offered interaction.
Therefore, such unsafe ports can be used to decouple the safety-critical parts of
the system from those for which safe operation cannot be guaranteed such as
the cognitive operators.
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Fig. 13. Decoupling of the unreliable, soft real-time, planning component

In Fig. 13, the unsafe port pl.c connecting the soft real-time planning of the
cognitive operator with the safety-critical, hard real-time processing of the re-
flective operator as depicted in Fig. 3) is used to steer proposing convoys. If the
planning component suggests building a convoy with the rear shuttle, it indi-
cates this by sending a pl.c.convoyUseful() message. If it deduces that a convoy with
the rear shuttle should be broken up it sends pl.c.convoyNotUseful(). The depicted
behavior is therefore able to handle both messages in any state so that erro-
neously sent messages of the planning component cannot result in unsafe shuttle
behavior.

Our approach for the modeling of the safety-critical core of a hierarchy of
OCMs as depicted in Fig. 2 employs hierarchical agents and pattern instances
as outlined in Fig. 11. The remaining part of the architecture consisting of the
cognitive operators and their interconnections is additionally covered by related
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components that are connected with the safety-critical core only via unsafe ports
as depicted in Fig. 11.

Definition 3. A system with included core system is safe if the core behavior
ensure that

– all agents/components are locally safe,
– no deadlock can occur,
– all RT-OCL constraints of pattern instances of the core are fulfilled, and
– all OCL role invariants of agent instances of the core are fulfilled.

In our example we have the Shuttle agents connected via instances of the ConvoyCoor-

dinationpattern. For each Shuttle instance, a single supervised embedded component
instance of type AC exists. The deadlock freedom guarantees that the complex re-
configuration fulfills all timing constraints. The RT-OCL constraints guarantee
that no collision is possible for shuttles connected by ConvoyCoordination pattern in-
stances. The OCL role invariants ensure that the agents behave consistently with
the guarantees related to their roles, e.g. a shuttle will brake accordingly when the
state of the role of the ConvoyCoordination pattern requires this.

4 Modular and Compositional Verification

This section outlines how the modular and compositional formal verification
of self-optimizing systems developed with the mUML approach can guarantee
safety. These results are based on the rigorous definitions for the employed con-
cepts also provided in this section (please note that some more fundamental
definitions and additionally required consistency and well-formedness conditions
can be found in [3]).

The key aspect of our approach is that our notion of a consistent core system
enables a modular and compositional verification where only the single compo-
nent types and patterns with their interfaces resp. embeddings are considered.
For hierarchal systems (including agent subsystems) we can exploit the modular
structure to derive the safety of all included component instances only looking
at the single component types as well as their interface and embeddings (see
Section 4.1 and Theorem 1). A compositional scheme also allows the safety of
all pattern instances to be ensured only by looking into the patterns and their
roles and connectors as well as the conformance of all components with respect
to the ports which are attached to the roles (see Section 4.2 and Theorem 2).
Due to the manner in which the core is decoupled from the rest of the system
via unsafe ports, we can further show that this result cannot be invalidated by
the rest of the system (see Section 4.3 and Theorem 3). These separate results
can be employed to guarantee that a complete system is safe via modular and
compositional verification (see Section 4.3 and Corollary 1), essentially only by
looking at the types and without considering the complete system or any larger
subsystem with all its component and pattern instances explicitly. Consequently,
existing model checking techniques can be employed as the usual state explosion
due to parallel composition of multiple instances is avoided.
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Fig. 14. Decomposition of the core system for the verification

4.1 Hierarchical Component Model

Syntax, Semantics and Safety. In the following we describe the resulting be-
havior using automata (M) as well as their parallel composition (‖). The formal
semantics are defined in [3]. We also refer to [3] for the additional required consis-
tency and well-formedness conditions between the component model, structure,
and behavior.

An OCL or RT-OCL property φ is well-defined for a behaviorM if φ only refers
to properties of the states ofM. In the following, we describe that an OCL or RT-
OCL property φ holds for a given real-time behavior M by M |= φ. In addition,
the special symbol δ is used to specify that a deadlock exists. We further restrict
the considered RT-OCL properties to compositional ones that were preserved by
the parallel composition (‖) if the composition result is deadlock free (c.f. [6,7]).

Basis for the hierarchical component model are reconfigurable component types
defined as follows:

Definition 4. A reconfigurable component type C = (SC ,MC , φC) is given by
a mode-dependent internal structure SC for a mode set L, an internal behavior
MC with mode set L, and a local safety property φC .

A mode-dependent internal structure for a given mode set L is a tuple E =
(IS , ES ,mapS), where ES is a function describing the mode-dependent embedded
components for a given mode set L (it assigns to each state l ∈ L a set of
embeddings that are pairs of the form (o, (M, l)) where o is an occurrence name
and (M, l) is a pair consisting of an interface statechart M and one of its modes
l). IS is a function describing the mode-dependent interface for a given mode set
L (it assigns an interface consisting of a set of pairs of unique port names and
port declarations to each state l ∈ L), and mapS is a mode-dependent mapping
for a given mode set L (it assigns a mapping describing the connectors between
ports in each mode to each state l ∈ L). More details can be found in [3].

The behavior MC also includes the forwarding behavior related to each mode
in L which ensures that signals from the embedded components are routed as
specified in the HRTSC (see [3]).
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A reconfigurable hierarchical subsystem consisting of a number of reconfig-
urable components as depicted in Fig. 11 (middle) is then constructed as follows:

Definition 5. A hierarchical subsystem with reconfiguration Sh is a tuple
(OSh , cSh) with OSh ⊆ ℘(N+

C ) a set of instance names and cSh a function
which maps each instance o ∈ OSh to a related reconfigurable component type.

The behavior and safety property of a such hierarchical subsystem with recon-
figuration Sh = (OSh , cSh) is then given by

MSh := ‖
o∈O

Sh

Mo
c
Sh (o) φSh := ∧

o∈O
Sh

φo
c
Sh (o).

For such a hierarchical subsystem with reconfiguration we have to ensure that all
components are locally safe and have to exclude that the interaction or timing
constraints invalidates the local safety of the components. Therefore, we define
it as safe if its behavior guarantees the local safety of the components and is
deadlock free (by providing a formal version for Definition 1).

Definition 6. A hierarchical subsystem with reconfiguration Sh is safe if its
behavior MSh is well-formed, ensures local safety (M

Sh |= φSh), and deadlock
free (M

Sh |= ¬δ).

Modular Verification. We exploit the well-defined hierarchy of an agent to
prove local safety and deadlock freedom. Thus, we first look at the atomic com-
ponents and the bottom of the hierarchies, then the embedding steps, and finally
demonstrate that for the required behavioral consistency of the whole hierarchy,
these two local checks are sufficient. To denote the behavior that results when re-
stricting a hybrid reconfiguration automata to the real-time behavior and clocks
we use an operator RT () (see [3]).

Atomic Component Types. The locally safe operation of a component type C
requires that component behavior MC itself cannot result in a deadlock. A com-
ponent without embedding is therefore locally safe if

MC well-formed ∧ RT (MC) |= φC ∧ ¬δ. (3)

To further ensure that, in a given system, all embedded occurrences represented
by their interface statecharts Mi

I are behaviorally consistent with the related
embedded components with respect to behavior Mo

C , we have to ensure that
real-time refinement holds:

RT (MC) �RT Mi
I . (4)

Model checking is employed to fully automate the checking of condition 3. In
many cases the required refinement condition 4 means the safe transfer of timing
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Fig. 15. Hierarchical verification via interface abstraction and component-wise checks

constraints from one level to the next one, and can be guaranteed following
syntactical refinement rules (cf. [9]).

In more complex cases, model checking also has to be employed (cf. [31–33]).4

Hierarchical Component Types. In a strict hierarchical system the continuous
model for a state of the system can become undefined if the resulting contin-
uous equations contain a cycle. Refinement guarantees that any dependency
between an input and output in the behavior of embedded component occur-
rences Mo1

C1
, . . . ,Mon

Cn
of a component is also present in their interface statecharts

M
i1
I1
, . . . ,Min

In
. Therefore, checking that the interface statechart combined with

the embedding HRTSC Mo
C is well-formed and sufficient to exclude cycles in the

resulting continuous models.
Additionally, the locally safe synchronization of the fading-durations in the

different components has to be ensured. We need to therefore ensure that the
composition of the component behavior with the embedded interface statecharts
cannot result in a deadlock.

A component with embedding is therefore only locally safe for the accordingly
relabeled embedded interface statecharts Mi1

I1
, . . . ,Min

In
if

Mo
C‖Mi1

I1
‖ . . . ‖Min

In
well-formed ∧RT (Mo

C)‖Mi1
I1
‖ . . . ‖Min

In
|= φo

C ∧ ¬δ. (5)

As with the atomic case in condition 4 we also have to show that the interface
statechart Mi

I alone is a real-time abstraction of the HRTSC Mo
C combined with

the interface statecharts of all subcomponents. For behavioral consistency it is
necessary that the real-time abstraction of the component behavior in form of
the interface statechart Mi

I in fact refines the behavior which results when we

4 As with the general form of hybrid systems considered here reachability is undecid-
able [34] and we cannot expect to find an automatic solution for the general problem.
However, the developed techniques cover all relevant cases in practice for mUML.
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compose the component behavior Mo
C with all accordingly relabeled embedded

interface statecharts Mi1
I1
, . . . ,Min

In
:

RT (MC)‖Mi1
I1
‖ . . . ‖Min

In
�RT Mi

I . (6)

Model checking is employed to fully automate the checking of condition 5 like in
case of checking condition 3. Therefore, the interface statecharts are considered
in addition to the component behavior.

In case of simple interface statecharts condition 6 can be checked at the syn-
tactical level. It only has to be considered whether each transition in the HRTSC
and the related transitions in the interface statecharts of the aggregated subcom-
ponents are consistent (cf. [9]).

Assume the example in Fig. 12 and 6 which specifies that a change from state
noConvoy to convoyRear has to be finished after 200 msec and that this change im-
plies a change of the embedded AC component from VelocityControl to DistanceControl.
Then, in Fig. 7, the minimal fading duration may not be above 200 msec.

Besides this purely syntactical check for simple interface statecharts, the em-
bedding of more general notions of interface statecharts can be addressed using
model checking (cf. [31–33]).

Thus, for components with embedded components, either syntactical checks or
more advanced model checking techniques can be employed to check condition 6.

Hierarchical Systems. Checking local safety for all component types embedded
in one hierarchal component guarantees that the whole hierarchy cannot become
deadlocked. The following theorem proves that the local safety and behavioral
consistency, which has been checked for each embedding, is sufficient to ensured
that the behavior, which results when the component and all its direct subcom-
ponents M

o1
C1
, . . . ,Mon

Cn
are considered and is a refinement of the HRTSC Mo

C
(�RT ).

Theorem 1. For a consistent hierarchical subsystem Sh = (Oc
Sh , cSh) with

unique top-level component o ∈ Oc ∩NC , only locally safe embedded components
o1, . . . , on (Oc = {o, o1, . . . , on}; see condition 3 and 5) and where all embed-
dings are behaviorally consistent (see condition 4 or 6) holds for the real-time
abstraction RT (Mo

c
Sh (o)) of the HRTSC Mo

c
Sh (o):

RT (Mo
c
Sh (o)‖M

o1
c
Sh(o1)

‖ . . . ‖Mon
c
Sh (on)

) �RT RT (Mo
c
Sh (o)) and (7)

RT (Mo
c
Sh (o)‖M

o1
c
Sh (o1)

‖ . . . ‖Mon
c
Sh (on)

) |= φo
c
Sh (o) ∧ ¬δ (8)

Proof. (sketch) We can show the required result by induction over the depth
over the hierarchical component structure using condition 4 and condition 6,
substituting the component step-wise for the component interfaces for the whole
subsystem beneath. For each such substitution we can conclude from the condition
for the type that the same relation holds for all specific instances. Thus, the top-
level component is refined by the whole hierarchical component concerning its
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real-time behavior, based on the fact that �RT is a precongruence for ‖, and that
we only require a finite number of substitution steps. Furthermore, φo

c
Sh (o) ∧ ¬δ

is guaranteed as the safety properties in φo
c
Sh (o) are compositional and ¬δ is

guaranteed as deadlock freedom has been checked for the top component.

4.2 Peer-to-Peer Coordination Model

Syntax, Semantics and Safety. The main ingredients of peer-to-peer sys-
tems are the real-time coordination patterns and agents. We will also cover the
integration of the pure peer-to-peer scheme with the hierarchies present in the
agents as well as the decoupled cognitive operators via unsafe ports.

Real-Time Coordination Pattern. Channel delays and reliability are both of cru-
cial importance to the real-time coordination patterns. We address them explic-
itly by giving one RTSC for each connector. A real-time pattern is then formally
defined as follows:

Definition 7. A real-time coordination pattern (collaboration type) P is a tuple
(RP , ΨP , φP , CP) with RP a set of roles (ri,M

ri
P ) for ri ∈ NR a role name and

Mri
P a role behavior in the form of a RTSC, a set ΨP of OCL invariants ψ1, . . . ,

ψk for each role, the RT-OCL pattern constraint φP , and the atomic component
type CP representing the connectors.5

For connector instance (collaboration instances) o ∈ N+
C of the pattern P we

refer to the pattern constraints as φo
P and to the related behavior as Mo

P which
is derived from MP for CP = (SP ,MP) by renaming the ports accordingly.

Agents. To capture agents which realize the peer-to-peer interaction of au-
tonomous mechatronic systems as well as the embedding of complex hierarchies
(cf. Fig. 2), we define an agent as a special component as follows:

Definition 8. An agent is a reconfigurable hierarchical component type A =
(SA,MA, φA) with SA = (IA, EA,mapA) such that the interface is mode-
independent (IA is constant) and the internal behavior MA is decomposed
into Ms

A‖M
p1

A ‖ . . . ‖Mph

A where M
pi

A refines the port behavior M
pi

i for IA =
{(p1,M1), . . . , (ph,Mh)}.

The ports of an agent are assumed either to be not considered within our be-
havioral model (unsafe ports) or related to a specific role of a pattern instance
(regular port). The set of associated OCL role invariants ψ1, . . . , ψh of A by
ΨA and the resulting overall component OCL role invariant ψA is therefore de-
rived by combining the related OCL role invariants (ψ1 ∧ · · · ∧ ψh). For agent
instances o ∈ N+

C we refer to the component OCL role invariant as ψo
A. A hi-

erarchical system with an agent as top level component type is further named
agent subsystem.

5 A real-time pattern is consistent if the roles cover the complete interaction which is
possible via the component representing the related connectors (see [3]).
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Peer-to-Peer System. Peer-to-peer systems are built by composing atomic agents
via pattern instances as depicted in Fig. 11. The composition of atomic agents
via pattern instances depicted in Fig. 11 as upper part of the core can be formally
defined as follows:

Definition 9. A peer-to-peer system Sp is a tuple
(Oc

Sp , O
p
Sp , cSp , pSp ,mapSp) with Oc

Sp ⊆ ℘(NC) a set of instance names
of atomic agents c1, . . . , cn, Op

Sp ⊆ ℘(NC) a set of instance names of the
connector components representing patterns p1, . . . , pm with Oc

Sp ∩ Op
Sp = ∅,

cSp a function which maps to each instance ci ∈ Oc
Sp a related component type,

pSp a function which maps to each instance pj ∈ Op
Sp the related pattern, and

mapSp : (Op.NQ) → ((Oc ∩ NC).NQ) a bijective mapping which connects ports
of components representing the pattern connectors with the ports of the root
components of agents.

For such a peer-to-peer system Sp = (Oc
Sp , O

p
Sp , cSp , pSp ,mapSp) we have to

combine the behavior related to the agent instances and pattern instances. The
overall behavior and safety property of a system as depicted in Fig. 11 as upper
part of the core is given by

MSp :=

(
‖

c∈Oc
Sp

Mc
cSp (c)

)
‖
(

‖
p∈Op

Sp

M
p
pSp (p)

)
φSp := ∧

c∈Oc
Sp

φc
cSp (c).

The safety of a peer-to-peer system can then be formally defined referring to the
overall behavior, pattern constraints, and component invariants as follows (by
providing a formal version for Definition 2):

Definition 10. A peer-to-peer system Sp = (Oc
Sp , O

p
Sp , cSp , pSp ,mapSp) is

safe if the following conditions are fulfilled by the behavior MSp :

– all agents are locally safe and no deadlock occurs: MSp |= φSp ∧ ¬δ (9)

– All RT-OCL constraints of patterns are fulfilled: MSp |= ∧o∈Op
Sp

φo (10)

– All OCL role invariants of the agents are fulfilled: MSp |= ∧o∈Oc
Sp

ψo. (11)

Compositional Verification. To guarantee that the peer-to-peer real-time
coordination of the whole system is safe, we have to look locally at the patterns
and the role refinement by the agents (cf. Fig. 16) before we can compose these
results for the peer-to-peer coordination.

Pattern Verification. We verify whether the behavioral requirement in form of
safety properties specified by means of RT-OCL hold for a real-time pattern.
If the requirement is fulfilled, the pattern is locally safe. Formally, a real-time
pattern P = (RP , ΨP , φP , CP) with a set R of roles with a name and a RTSCs for



Model-Driven Development of Safe Self-optimizing Mechatronic Systems 177

B

PROJ(MA, α(M
pj
Qj

)) �RT M
pj
Qj

check the role refinement (see condition 14)

M
s‖Mr

1‖ . . . ‖Mr
h

check the pattern (see condition 12)
M

r1
P ‖ . . . ‖Mrk

P ‖MP |= φP ∧ ¬δ

check the agent/component (see condition 13)
M

s
C‖Mp1

C ‖ . . . ‖Mph
C |= ψA ∧ φA ∧ ¬δ

Fig. 16. Verification of peer-to-peer structures via patterns and role refinement

each role (r1,M
r1
P ), . . . , (rk,M

rk
P ) and behaviorMP for the connector component

CP = (SP ,MP) is a locally safe real-time pattern if:

M
r1
P ‖ . . . ‖Mrk

P ‖MP |= φP ∧ ¬δ. (12)

The behavior Mr1
P ‖ . . . ‖Mrk

P ‖MP is supposed to be a closed real-time behavior
and can thus be verified using a real-time model checker for RTSC by checking
whether the constraint φ ∧ ¬δ holds.

In our example we generate model checker input from the RTSC for FrontRole,
RearRole and an additional RTSC for the implicitly defined connector.

Agent Verification. Besides the patterns also the agents have to be verified. We
have to verify whether the agent behavior respects the role RTSC and the role
invariants defined as local safety of the agent.

An agent A = (SA,MA, φA) with internal behavior MA can be decomposed
into Ms

C‖M
p1

C1
‖ . . . ‖Mph

Ch
. The RTSCs M

p1

C1
, . . . ,Mph

Ch
have to refine the port be-

havior Mp1

Q1
, . . . ,Mph

Qh
for IA = {(p1,MQ1

), . . . , (ph,MQh
)} and the HRTSC Ms

C
describes the component internal synchronization, and the reconfiguration and
embedding of subordinated hybrid reconfigurable components. Such an agent
with agent OCL role invariant ψA the is locally safe if:

Ms
C‖M

p1

C1
‖ . . . ‖Mph

Ch
|= ψA ∧ φA ∧ ¬δ (13)

Using the related RTSC RT (Ms
C) instead of the HRTSC Ms

C we can use a real-
time model checker to prove ψA ∧ φA ∧ ¬δ. As ψA ∧ φA ∧ ¬δ does not refer
to any continuous variables which are not clock variables, the verification result
for RT (Ms

C‖M
p1

C1
‖ . . . ‖Mph

Ch
) also holds for Ms

C‖M
p1

C1
‖ . . . ‖Mph

Ch
if the embedding is

safe (cf. Section 4.1). Note that, as RT (Ms
C)‖M

p1

C1
‖ . . . ‖Mph

Ch
is an open model, we

assume the erratic but guaranteed execution of external signals when performing
the model checking as outlined in [14].
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In our example the invariant for the shuttle component is automatically de-
rived from the role invariants ψ1 and ψ2 (see constraints (1) and (2)). In the
resulting invariant, frontRole and rearRole are now specific names for navigation to
the associated ports. The same abstract shuttle property CanBrakeFully is replaced
by the or-combination of all states of the synchronization chart which fulfill
them: not self.CanBrakeFully equals Synchronization::convoyFront) and self.CanBrakeFully

equals Synchronization::convoyFront or Synchronization::convoyyRear or shorter not Syn-

chronization::convoyFront).

context Shuttle inv:
(oclInState(frontRole::convoy) implies oclInState(Synchronization::convoyFront)) and
(oclInState(rearRole::convoy) implies not oclInState(Synchronization::convoyFront))

Regular Ports. Each port RTSC M r
j of the agent A has to refine the port be-

havior M
pj

Qj
for IA = {(p1,M1), . . . , (ph,Mh)} which is equal to the connected

pattern role behavior. The whole agent behavior MA restricted to the interface
of the port (pj ,Mj) has to result in such a refinement.

PROJ(MA, α(M
pj

Qj
)) �RT M

pj

Qj
. (14)

where PROJ(M, A) denotes the automaton which results when all transitions
with input and output signals not present in A are replaced by non-deterministic
ones (cf. [14]) for an automaton M and a given set of labels A.

To ensure that MA refines each of the role protocols associated to its
ports, we propose the use of syntactical refinement rules which ensure
PROJ(MA, α(M

pj

Qj
)) �RT M

pj

Qj
. Requiring disjoint signal labels and checking in

addition MA |= ¬δ, we can then ensure that condition 14 holds. Alternatively,
model checking can be employed to also fully automate this task (cf. [31–33]).

The RTSC in Fig. 12 is a refinement of the roles from Fig. 9. Consequently, it
needs to be ensured that the embedding of AC only refines the specified real-time
behavior from Fig. 12 and does not add additional behavior, or be in conflict
with the real-time specification of this super-ordinated component.

Unsafe Ports. In order to be able to verify partial systems, we have initially
introduced the classification unsafe ports. For these unsafe ports proper decou-
pling but no refinement has to be checked to ensure safety. The idea includes
two steps. (1) When checking condition 13 for the component type that has an
unsafe port in the case of either a top level or embedded component instance,
we simply consider the transitions that interact with an unsafe port to occur
erratic and non-urgent. (2) An additional verification step proves that the un-
safe port cannot block the component behavior. We therefore use a function
NDET to transform the RTSC of the port into another one where all external
communication is replaced by purely erratic non-deterministic behavior.

To ensure safety we then have to check that the unsafe role RTSC M
pj

Qj
trans-

formed by NDET is deadlock free so that the component can never be blocked
via this port.

NDET (M
pj

Qj
) |= ¬δ (15)
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In our example the decoupled interaction designed in Fig. 13 results in an unsafe
port. The resulting check transforms the role RTSC using NDET and then checks
the resulting RTSC for deadlocks.

Peer to Peer Model Verification. These separate results can be composed using
a compositional reasoning scheme to conclude that the peer-to-peer coordination
is safe (as outlined in [7] for the case without unsafe ports).

Theorem 2. A consistent peer-to-peer system Sc =
(Oc

Sc , O
p
Sc , cSc , pSc ,mapSc) is safe if

– all patterns are locally safe (condition 12),
– all agents/components are locally safe (condition 13),
– all ports are behavioral consistent (condition 14), and
– all unsafe ports are behavioral consistent (condition 15).

Proof. (sketch) As we restricted the RT-OCL constraints to compositional prop-
erties and only considered the real-time behavior of the top-level components,
we can use the border built by the ports and roles to also prove the con-
straints φP and invariants ψCj compositionally. We therefore use the local checks
for the real-time patterns and top-level hybrid components and the refinement
MA �RT M

p1

Q1
‖ . . . ‖Mph

Qh
(cf. [7]). The advantage of the compositional approach

is that it permits us to verify condition 16, 17, 18 and 19 without building the
state space for MSc . Instead, only the consistency of the overall system, the local
safety for all patterns, components, and the proper behavioral consistency of the
ports concerning the fulfilled roles has to be ensured.

If unsafe ports are also present in the safety-critical subsystem, the check
NDET (M

pj

Qj
) |= ¬δ guarantees that the remaining uncovered environment cannot

invalidate the result which has been achieved for the verified ones, even though
they may not conform to behavior specified by the pattern roles.6

For the peer-to-peer interaction, we employ model checking to check conditions
12, 13, 14, and 15. The compositional reasoning sketched in Theorem 2 proves
that these local checks result in guarantees for the overall system.

It the next section we will extend this result to systems with hierarchical
embedding.

4.3 Overall Model

Syntax, Semantics and Safety. Our approach for the modeling of the safety-
critical core of a hierarchy of OCM, as depicted in Fig. 2, is based on the ob-
servation that it can be formally defined by a set of hierarchical agents and
pattern instances (Fig. 11). While the free peer-to-peer interaction of the top-
level OCMs can be captured by pattern instances, a hierarchical system of con-
figurable components can be used to cover the hierarchies of reflective operators
and controllers.
6 We assume that no invariants and constraints for the un-verified patterns and com-
ponents exist and the related elements in the formal model are set to true.
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The outlined composition of agents via pattern instances to build the safety-
critical core can be formally defined by combining Definition 5 and 9 as follows:

Definition 11. A core system Sc is a tuple (Oc
Sc , O

p
Sc , cSc , pSc ,mapSc) with

Oc
Sc ⊆ ℘(N+

C ) a set of n names of agents relating to the hierarchial systems
(Oc

Sc = Oc
1 ! · · · ! Oc

n and all Sh
i = (Oc

i , cSc |Oc
i
) are hierarchical systems),

Op
Sc ⊆ ℘(NC) a set of instance names p1, . . . , pm of the connector components

representing patterns with Oc
Sc ∩ Op

Sc = ∅, cSc a function which maps to each
instance ci ∈ Oc

Sc a related component type, pSc a function which maps to each
instance pj ∈ Op

Sc the related pattern, and mapSc : (Op.NQ) → ((Oc ∩NC).NQ)
a bijective mapping which connects ports of components representing the pattern
connectors with the ports of the root components of agents.

The remaining part of the architecture consisting of the cognitive operators,
other components outside the core, and their interconnections is also covered
by related components whose connection with the safety-critical core are only
unsafe ports (cf. Fig. 11).

To cover the complete system, including the cognitive operators, we employ
the following extension:

Definition 12. A system S is a tuple (Oc
S, Op

S, cS, pS,mapS) which includes
a core system Sc = (Oc

Sc , O
p
Sc , cSc , pSc ,mapSc).7

For a system S and core Sc we have to combine the behavior related to the
component instances and pattern instances to get the overall behavior:

MS :=

(
‖

c∈Oc
S

Mc
cS(op)

)
‖
(

‖
p∈Op

S

M
p
pS(op)

)
MSc :=

(
‖

c∈Oc
Sc

Mc
cSc (p)

)
‖
(

‖
p∈Op

Sc

M
p
pSc (p)

)
.

In our example we have the top-level component Shuttle which is connected via
map with instances of the ConvoyCoordination pattern. A single supervised embed-
ded component instance of type AC exists for each Shuttle instance.

The overall safety of a system combining Definition 6 and 10 can then be
defined referring to the overall behavior, pattern constraints, and component
invariants as follows (by providing a formal version for Definition 3):

Definition 13. A system S = (Oc
S, Op

S, cS, pS,mapS) with included core sys-
tem Sc = (Oc

Sc , O
p
Sc , cSc , pSc ,mapSc) is safe if the following conditions for the

behavior are fulfilled:

– Local safety is fulfilled for the core: MSc |= ∧c∈Oc
Sc

φc
cSc (c) (16)

– Deadlock freedom is guaranteed for the core: MSc |= ¬δ (17)

– All RT-OCL constraints for patterns are fulfilled: MS |= ∧o∈Op
Sc

φo (18)

7 Inclusion of a system in another system is defined formally in [3].



Model-Driven Development of Safe Self-optimizing Mechatronic Systems 181

– All OCL role invariants of agents are fulfilled: MS |= ∧o∈Oc
Sc

ψo
cSc (c) (19)

Condition 17 ensure that the liveness properties defined in the role and port
protocols are guaranteed by the core behavior, while condition 16, 18 and 19
ensure that the safety properties of the patterns and involved agents/components
in the core are fulfilled by the overall behavior.

Overall Verification. For the decomposition of a system into a safety-critical
core and the rest as depicted in Fig. 11 we now show that the safety of the core
is not affected when composed with an arbitrary rest system.

Theorem 3. Any system S = (Oc
S, Op

S, cS, pS,mapS) with included core sys-
tem Sc = (Oc

Sc , O
p
Sc , cSc , pSc ,mapSc) is safe if the core Sc is safe.

Proof. (sketch) Conditions 16 and 17 obviously holds as only the core is consid-
ered and the safety of the core guarantees it. Due to the checks for the unsafe
ports, condition 18 and 19 can also be preserved when composing the core with
the rest.

The following Corollary summarizes that the outlined separate results for the
compositional and modular verification of mUML models can be combined to
ensure the safety of the overall system (as defined in Definition 13).

Corrollary 1. A system S = (Oc
S, Op

S, cS, pS,mapS) with included core sys-
tem Sc = (Oc

Sc , O
p
Sc , cSc , pSc ,mapSc) is safe if

– all embedded component types are locally safe (condition 3 and 5),
– all embeddings are behaviorally consistent (see condition 4 or 6),
– all patterns are locally safe (condition 12),
– all agents are locally safe (condition 13),
– all regular ports are behaviorally consistent (condition 14), and
– all unsafe ports are behaviorally consistent (condition 15).

Proof. (sketch) For the non-hierarchial case the result follows from Theorem 2.
To also take the hierarchical embedding of subordinated components into account,
we refer to Theorem 1 which guarantees that the whole behavior is well-formed
and that the real-time behavior of the top-level components is always only refined
by the behavioral consistent embeddings. The safety of the core system is not
affected by the rest of the system following Theorem 3.

5 Related Work

The UML concepts themselves without the mUML refinements and UML exten-
sion for real-time, such as the UML Profile for Modeling and Analysis of Real-
Time Embedded Systems (MARTE) [35] and its extension MARTE-DAM [36]
for dependability analysis are not sufficient for the model-driven development of
advanced mechatronic systems as targeted in the paper. They are neither defined
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rigorously enough to support a decomposition for the analysis nor appropriately
tailored to support systems with self-optimization. The System Modeling Lan-
guage (SysML) [37], which combines UML concepts with system engineering
concepts has the same limitations and restricts its attention to requirement and
early phases and thus does not provide the required support for the later phases.

The Koala Component Model for Consumer Electronics Software [38] is one
example where reconfiguration has been taken into account in a similar setting.
However, the model is restricted to the component structure only and does not
cover real-time or hybrid behavior.

In the OMEGA project [39], the UML has been extended by additional time
constructs. However, in contrast to our approach, there is no support for hybrid
behavior, and compositional verification is only supported by semi-automatic
verification via theorem proving.

The description of control algorithms by time-continuous variables and cor-
responding ports is similar to other approaches such as HyROOM [40] and the
underlying HyCharts [41]. Masaccio [42] and CHARON [28,43, 44] also support
the component-based modeling of hybrid systems and verification. The soft-
ware’s architecture is specified similarly to ROOM/UML-RT and the behavior is
specified by statecharts whose states are associated with systems of ordinary dif-
ferential equations, differential constraints or Matlab/Simulink block diagrams.
These approaches provide means for the reconfiguration of systems in terms of
changing the continuous behavior. However, it is only possible to reconfigure
the model inside a component on one hierarchy-level. Our approach allows for a
complex reconfiguration altering the structure across more than one hierarchy-
level. For a more comprehensive comparison of a number of modeling techniques
for advanced mechatronic systems, which also addresses the adaptation aspect,
we refer to [45].

Concerning the verification of adaptive behavior, only first attempts exist.
In [46], as in our presented work, verification techniques are employed to ensure
that the self-adaptive behavior does not result in any harm. We additionally
include self-coordinating behavior, suggest a compositional approach which can
also be employed to study systems unable to be addressed as a whole. We also
take real-time and continuous behavior into account. In [47], required properties
for untimed models are checked under the assumption that a self-x capability
of a system will fix certain types of problems in the long run. Also, we have to
provide guarantees for the self-optimizing mechatronic systems in all possible
cases under hard real-time constraints. Due to the multiple involved agents and
their limitations (only local knowledge and limited reasoning capabilities) we
cannot rely on the adaptation capabilities of the agents. Another direction for
assurance is runtime verification [48]. However, it would be too late for the
considered class of safety guarantees if the problems are detected at runtime.
Only in cases where the runtime verification is not required in hard real-time
(and thus remain outside the safe core) such an approach seems reasonable. A
possible orthogonal extension of the presented approach is therefore to perform
such runtime verification steps in the cognitive operator.
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6 Conclusion

The mUML approach enables the model-driven development of mechatronic
systems with advanced capabilities such as self-adaptive run-time behavior by
providing the following three building blocks: (1) A suitable modeling approach
for hierarchical structures of OCMs is provided which supports the specification
of hybrid behavior and the reconfiguration of subsystems in order to support the
reliable self-adaptation of the OCMs. (2) For the level of freely interacting soft-
ware agents, the flexible but safe real-time coordination between the autonomous
mechatronic agents is achieved employing the coordination pattern concept. (3)
The approach integrates the hierarchical OCM structures and flexible interac-
tion of software agents in such a manner that safety properties can be verified
based on compositional checking so that the approach becomes scalable.
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3. Giese, H., Schäfer, W.: Model-driven development of safe self-optimizing mecha-
tronic systems with mechatronic uml. Technical Report tr-ri-12-322, Software En-
gineering Group, Heinz Nixdorf Institute, University of Paderborn, Paderborn,
Germany (2012),
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/GS12.pdf

4. Burmester, S., Tichy, M., Giese, H.: Modeling Reconfigurable Mechatronic Systems
with Mechatronic UML. In: Aßmann, U. (ed.) Proc. of Model Driven Architecture:
Foundations and Applications (MDAFA 2004), Linköping, Sweden, pp. 155–169
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16. Burmester, S., Giese, H., Schäfer, W.: Model-Driven Architecture for Hard Real-
Time Systems: From Platform Independent Models to Code. In: Hartman, A.,
Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 25–40. Springer, Hei-
delberg (2005)

17. Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Mod-
ular Code Synthesis for Reconfigurable Mechatronic Software Components. In:
Bobeanu, C. (ed.) Proc. of European Simulation and Modelling Conference (ESMc
2004), Paris, France, pp. 66–73. EOROSIS Publications, Paris (2004)

18. Giese, H., Henkler, S., Hirsch, M.: A multi-paradigm approach supporting the
modular execution of reconfigurable hybrid systems. Simulation 87(9), 775–808
(2011)

19. Oberschelp, O., Gambuzza, A., Burmester, S., Giese, H.: Modular Generation and
Simulation of Mechatronic Systems. In: Proc. of the 8th World Multi-Conference
on Systemics, Cybernetics and Informatics, SCI, Orlando, USA (July 2004)



Model-Driven Development of Safe Self-optimizing Mechatronic Systems 185

20. Heinzemann, C., Pohlmann, U., Rieke, J., Schäfer, W., Sudmann, O., Tichy, M.:
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Abstract. Internal faults but also external events, or misinterpretations of sensor
inputs as well as failing actuator actions make developing dependable systems
a demanding task. This holds especially in the case where systems heavily in-
teract with their environment. Even in case that the most common faults can be
handled, it is very unlikely to capture all possible faults or interaction patterns at
development time. As a consequence self-adaptive systems that respond to cer-
tain unexpected actions and observations at runtime are required. A pre-requisite
for such system behavior is that the system itself has knowledge about itself and
its objectives, which can be used for adapting its behavior autonomously. In order
to provide a methodology for such systems we propose the use of model-based
reasoning as foundation for adaptive systems. Besides lying out the basic princi-
ples, which allow for assurance of correctness and completeness of the reasoning
results with respect to the underlying system model, we show how these tech-
niques can be used to build self-adaptive mobile robots. In particular the proposed
methodology relies on model-based diagnosis in combination with planning. We
also discuss modeling issues and show how modeling paradigms influences the
outcome of model-based reasoning. Moreover, we introduce some case studies
of self-adaptive systems that rely on model-based reasoning concepts in order
to show their applicability in practice. The case studies include mobile robots
that react on hardware and software failures by applying corrective actions like
restarting subsystems or reconfiguration of system parameters.

1 Introduction

What makes humans successful in interacting with other humans and nature and allows
for reacting to situations, which have not been faced before? There are many potential
answers like the ability to learn, to make associations, and to reason using the available
knowledge that has been gained during a lifespan. Especially, reacting appropriately to
new conditions is important and allows for exploring new territories. Such a capabil-
ity would also be strongly desired for autonomous systems like mobile robots and are
necessary if we want robots to be of more general use for us. A household robot for
example, has to adapt to new homes and changes in the environment smoothly. This
kind of self-adaption is not the only one we are interested in.
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Consider for example a robot where a fault in the hardware occurs. For example,
there is a problem with a connector causing the software to crash. Even in case the soft-
ware is automatically restarted, the fault in the connector again leads to a crash. Without
having control on possible repair actions allowing us to overcome such difficulties the
robot would be lost. A similar situation would happen when a sensor delivers wrong
values or an actuator that does not work as expected but the control system is not ca-
pable to deal with such faults and their consequences. It is worth noting that handling
all possible faults in all situations explicitly via introducing hardcoded measures seems
to be impossible or at least a very tedious task during design. Hence, again there is a
strong requirement for self-adaption in the field of autonomous systems.

The main objective of the work described in the paper is to make an autonomous
mobile system more robust and flexible. Therefore, all sources of malfunctioning, i.e.,
faults in the hardware or software, not considered interactions with the environment
at design time, and wrong beliefs (which might originate from sensor data interpreta-
tions) have to be handled. Flexibility can be gained by allowing a system to continue
its mission even in case of faults if they for example belong to system parts that are not
important to fulfill a give mission. Alternatively, the system reconfigures itself in order
to still provide the necessary functionality.

In order to achieve all of the mentioned objectives for enabling real autonomy the
robot control system has to have means for anomaly detection, root cause analysis,
and repair, which can be summarized as diagnosis. In anomaly detection the expected
behavior in a current state is compared with the observed behavior. In model-based rea-
soning the expected behavior we obtain from a formal description of the system and its
environment, i.e., the model. We assume that the models for behaviors are correct, i.e.,
they reflect the real actual behavior of the robot system. The observations in the robotics
domain come from the sensors. Root cause detection is the part of diagnosis where the
reason for a deviation between the expected and the observed behavior is identified.
We make use of the fault detection model for root cause analysis. The last step of di-
agnosis is repair where appropriate measures for eliminating the undesired effects of
a root cause are taken. It is worth mentioning that repair does not necessarily mean to
replace a faulty component with a spare part. Repair can also be to take compensatory
actions for eliminating undesired effects or reconfigurations of a system for enabling
the wanted functionality.

So why is diagnosis of autonomous systems so difficult? The main reason lies in the
increase of system influences that cannot be foreseen anymore. Almost all nowadays
systems are designed for a particular purpose taking care of the design constraints,
which are more or less limited by the purpose and the field of application. Most of
the constraints are known and careful engineering allows for ensuring functionality as
expected over lifetime. Of course maintenance work is necessary but due to knowledge
about the system and its comprising parts even maintenance actives can be planned
and managed. The situation changes completely when increasing autonomy or the field
of application. In both cases the number of design constraints increases as well. As
a consequence there is a high likelihood that interactions between the system and its
environment, which are not considered during engineering, take place. Such interactions
potentially lead to undesired behavior or even a failure.
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Fig. 1. The sense-plan-act control architecture (a) and its adaptive variant (b)

When it is not possible to keep all necessary design constraints in mind, we have
at least to think about alternatives. In this paper we suggest to move some of the hard
coded decisions a system can take to a more flexible control system that relies on a
model of the system as well as its environment. We argue that unforeseen interactions
with the model-enhanced system might have not the same negative impacts. The rea-
son lies in the fact that the model describes the functionality, the behavior, and other
prerequisites in a declarative way. The model does not describe how to solve a certain
problem. Hence, in case of a misbehavior possible solutions can be derived from the
model directly using a declarative reasoning engine. Of course the reactions to events
that are not considered might be limited if the models do not reflect the behavior of the
overall system.

In this paper we discuss model-based reasoning and its application to self-adaptive
systems in the context of autonomous mobile robots. We extend the standard sense-
plan-act control paradigm depicted in Figure 1(a) with a model-based reasoning engine
(Fig. 1(b)). In the original control paradigm actions are selected on bases of the current
state, which is determined by the measurements obtained from the sensor and the in-
ternal belief, and the mission (or goal) of the robot. The action selection is done by the
planning module and the action module executes the actions. As a consequence of ac-
tion execution the environment is changed, e.g., by driving from a position to another,
which is again measured using the sensors. Hence, there is always a feedback between
action execution and sensing actions in robot control. Although, there are many other
control paradigms for robots available, e.g., Rodney Brooks’s subsumption architec-
ture [1], the underlying principle of actions selected because of sensor information and
internal belief remains the same.

Given the robot’s control loop we are able to identify three kind of faults that can
arise during a mission. First, the sensors might deliver wrong values. Wrong in this
context mean that they do not reflect the state of the environment. For example, a robot
playing soccer sees the ball at a position but the ball is not there. Second, the execution
of actions might fail but remains undetected. An example for this fault is that a robot
want to release and object but fails and still carries the object with her. These two kind
of faults have as consequence a faulty internal belief, which might lead to wrong plans
and dreadful control decisions causing a mission to fail. The third fault category that
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is relevant are faults in the hardware or software. Note that we do not require a design
error causing later on a fault and a failing behavior of the robot. Due to interactions
with the environment, e.g., when being hit by another entity, the robot hardware might
be affected.

The extended control paradigm given in Fig. 1(b) adds a model-based reasoning
(MBR) engine. The MBR engine makes use of a model of the system in order to correct
the execution in case of a fault. The model is assumed to capture the structure of the
system and the behavior of the components. Moreover, system properties as well as
environmental constraints should be part of the model in order to detect situations that
are impossible in reality. The same model is used for detecting inconsistencies as well
as for fault localization and repair. For the latter the knowledge about functionality
of system parts, the mission, and repair actions have to be added. In the following
section we introduce model-based reasoning and how diagnosis can be integrated into
the planning process.

There are many challenges to be solved when using MBR for the purpose of self-
adaptive systems. First of all, developing a model is a hard task. The model should
be compositional, declarative, and capture the function and behavior of the system in
a depth allowing to use an MBR engine for fault detection, localization, and repair.
However, if the model is implemented using basic design principles like the no function
in structure principle, and compositionally large parts of the model can be re-used in
other systems. The second challenge is due to underlying reasoning mechanism, which
is based on non-monotonic reasoning. The used reasoning technique allows for stat-
ing hypotheses about the health state of components. Such hypotheses are asserted and
retracted for computing root causes. The computation complexity of underlying algo-
rithm is high in the worst case, and counter measures like the use of heuristics or certain
optimality criteria have to be undertaken. Note that in practice diagnosis of systems
comprising hundreds to several thousands of components is possible in a reasonable
time. Using integrated circuit examples from industry (ISCAS benchmark suite) it had
be shown that diagnosis of single faults in circuits with up to 1000 components can be
calculated in less than 200 milliseconds on a standard computer while diagnosis of triple
faults can run for up to 5 minutes [2]. If real-time requirements have to be considered,
e.g., react on signals within a few milliseconds, special domain-dependent encoding of
the diagnosis problem can be used [3].

In summary we provide the following contributions:

– We discuss an extension to the well-known sense-control-act architecture used in
autonomous systems. In particular, we add an explicit component for handling
faults, external events, and misinterpretation of sensor inputs.

– We formally introduce the underlying ideas and basic concepts of model-based
reasoning and illustrate them using an example from the robotics domain.

– Furthermore, we introduce an algorithm for diagnosis and self-adaptation. The self-
adaptation algorithm combines diagnosis and planning in order to implement the
extended sense-plan-act control architecture.

The rest of this paper is organized as follows. In the next section we discuss research
related to MBR and self-adaptive systems. We continue with a formal introduction to
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MBR. There we explain the underlying definitions using a running example. Moreover,
we state a simple algorithm for fault localization and show how this algorithm can be
combined with the planning component of the robot’s control architecture. In order to
show the applicability of MBR to self-adaptive systems, we recall several applications.
In particular we show how software can be diagnosed using MBR and how to perform
fault localization for particular robot drives. Finally, we conclude the paper.

2 Related Research

The goal to make an autonomous system comprising hardware or software dependable
in the sense that the system is able to react to neither modeled nor foreseen circum-
stances has a long tradition in the areas of Artificial Intelligence, Robotics and Software
Engineering.

In Robotics the question how decision making and execution can be robustly or-
ganized despite poorly modeled tasks and environments, unreliable perception, and
non-deterministic execution arose early. The three-layer-architecture proposed in [4]
is basically still the foundation for most robot control architectures. There the authors
introduced the idea to structure decision making and execution into three layers with in-
creasing abstraction, deadlines and computational demands. The controller level reacts
directly and fast on sensor inputs and is able to cope with local and immediate prob-
lems like sensor glitches. The sequencer level is responsible for triggering primitive
behaviors in order to achieve a given task. The sequence of behaviors to be executed
is generated by the deliberative level. Whereas the deliberate level is able to incorpo-
rate persistent changes of the environment or the robot’s capabilities in its planning, the
sequencer level is able to deal with problems in the outcome of behaviors by issuing
a re-planning request to the deliberative level. This approach is basically similar to the
proposed method introduced in this paper. However, it differs in two ways. In particular,
using a reasoning engine more precise information on the root cause of a problem can
be obtained that can be used by the sequencer and deliberative level to achieve more
fine-grained modifications of planning and plan execution. For instance, some faulty
actions may be excluded from the planning process. Moreover, the reasoning engine is
able to deliver information on the proper function of system components, which can be
considered by the deliberative level or for reconfiguring the sequencer and controller
level. We will present an example for reconfiguration of defective robot hardware later.
Such interactions with the system are nor foreseen in the original architecture.

Using the ideas of the three-layer-architecture Kramer and Magee [5] presented a
proposal for an architecture for self-adaptive systems. This proposal comprises layers
for component control, change management and goal management. The component
control is responsible for the reconfiguration of individual components. Such reconfig-
uration requests are initiated by change management in order to react to states reported
by the layer below or to new goals. Action at this layer comprises the creation or ter-
mination of components. The goal management is intended to produce plans for the
change management layer in order to achieve certain goal or requirements for the over-
all software system. The main difference of this architecture to the approach presented
in the paper is that it deals mainly with the structure of the system. For instance the ar-
chitecture may take care that a minimum number of redundant modules run at the same
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time. The architecture does not determine how the software system fulfill its mission.
In the approach presented in this paper the planning for achieving a mission and the
reaction to problems in the system and its environment are interwoven in one decision
making and execution module. Therefore, both parts can benefit from each other. For
instance, the mission planner can use information about the current functionality of a
hardware component.

In [6] Avizienis and colleagues provided ed definitions for the taxonomy of faults,
their sources, their properties, and techniques to cope with them. The taxonomy origins
from the secure computing domain and distinguishes basically two type of faults: de-
velopment and operational faults. The former faults are maybe maliciously introduced
in the design and implementation phase whereas the latter faults arise during the op-
eration of the system. The faults mentioned in the introduction the proposed approach
is able to cope with (sensing, execution, hardware and software) belong to the former
group. We consider development faults only to the extent that they lead to transient
problems and can be handled for instance by repeating an action. Even if the taxon-
omy of [6] considers interaction it is limited to direct interaction of components. In
the context of autonomous system a more important source of faults is the interaction
with the environment. Moreover, faults in the autonomous decision making system are
not considered and posts several new challenges. In [7] an extended taxonomy of faults
suitable for autonomous systems was presented. In [8] the taxonomy was enhanced by
faults that origin from properties of the used algorithms. Many of the algorithms used
today in Robotics are probabilistic methods. Therefore, there is a chance that even the
algorithm is implemented correctly it produced inferior results. Moreover, the paper
reports a survey of the occurrence of faults and their impacts in real robot systems.

There are many other applications of MBR for adaptive systems. All of the work we
are discussing in this section deals with MBR at runtime or at least can be applied to
be used at runtime. The first papers deal with on-board diagnosis of cars. Cascio and
colleagues [9] as well as Struss and colleagues [10–13] developed systems that are able
to find and locate faults of car subsystems during operation. Breaking systems as well
as the whole combustion system of cars were modeled. Due to limited computational
resources and real-time requirements the authors rely on simplified models that capture
the essential parts of the car subsystems but ignoring the real quantitative values. In
particular qualitative models [14] are used, where the quantitative values are mapped to
qualitative values. For example, instead of considering temperature values like -4 de-
grees Celsius a qualitative representation like ”cold” is used. In their papers the authors
demonstrated that the combination of qualitative reasoning models and MBR can be
effectively used for on-board fault detection and localization in cars. The repair task,
which would follow fault localization, was not handled.

As part of NASA’s Deep Space 1 mission a control system for spacecrafts that has
capabilities to adapt itself to faults has been introduced [15, 16]. The underlying idea
is to gain autonomy for spacecrafts in order to make increase applicability. The control
system comprises a MBR engine that allows for fault localization and re-configuration
[17] and a reactive planner [18]. The whole system was implemented and successfully
tested during the Deep Space 1 mission. The remote agent experiment is a proof of
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concept that MBR technology is capable of increasing autonomy and a good bases for
self-adaptive systems.

Another domain that is closely related to self-adaptation is reconfiguration where
parts of a system are changed to implement a given functionality of the system. This
might be changes in the structure of the system or changes in the parameters such that
the functionality of the system is adapted to given needs. Configuration and reconfigu-
ration is a still very active research field. Early work that also deals with MBR includes
Crow and Rushby [19], and Stumptner and Wotawa [20]. The latter one deals with
parameter reconfiguration and uses different component modes to determine valid pa-
rameters for the desired functionality. In the paper the authors introduce the foundations
for dynamic adaptations of parameters in case of changes in the functionality.

The WS-Diamond project1 deals with diagnosis and repair of web-services, work-
flows, and service-oriented architectures. The objective of the project was to achieve
self-healing capabilities of web-services [21] where repair is not only a replacement
of software components or services but also requires compensating actions for bring-
ing the faulty system again into a correct state. Moreover, the project also focusses on
general questions like diagnosability and repairability when using certain models of the
system [22]. There are many similarities between WS-Diamond project and our work
in self-adaption of autonomous systems. There is a need for combining diagnosis and
planning. Moreover, some of the models used for diagnosis of web-services can also be
used for software diagnosis of a robot’s control program. However, there are also differ-
ences that come from the application domain. The environment where web-services are
running is more restricted than the real world. In addition faults coming from hardware
or the interaction between faulty hardware and software have no counterpart on side of
web-services.

Karsai and colleagues [23] introduced a approach for integrating diagnosis and con-
trol. Their work is based on Bond graphs for modeling systems in the aeronautic do-
main. Their work is also based on the underlying ideas of MBD. In [24] the authors
present the basic principles using a case study from a fuel system of an airplane. In the
domain of model driven development and advanced mechatronic systems the authors
of [25] introduced an approach that allows to combine multiple modeling methods to
model complex reconfigurable hybrid systems.

3 Model-Based Reasoning

The Artificial Intelligence (AI) field Model-based reasoning (MBR) deals with founda-
tions for obtaining solutions directly from the available knowledge of the real world.
The available knowledge, i.e., the model, represents the structure and the behavior of
those parts of the world that are necessary to know in the context of the application.
The restriction to the context of application is not really a problem because all models
like the theory of physics only represent the parts of interest. Using a model directly is
in contrast to very early work in AI where knowledge about how to obtain a solution
from given facts is used. Hence, in MBR the model does not capture the way of how to

1 see http://wsdiamond.di.unito.it/
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obtain solution but states constraints between the model entities. Because of the direct
use of model MBR is also called reasoning from first principles.

Using a model directly for obtaining solutions increases flexibility, which is neces-
sary in certain application domains like adaptive systems where the degree of adaption
as consequence of events might not be known in advance. It is worth noting that there
was a strong need for a flexible method because traditional AI techniques like rule-
based systems cause high costs in case of adaptions as part of the usual maintenance
process on the available knowledge base. In the early 80th of the last century the foun-
dations of MBR were first published [26–28]. In most of these early papers diagnosis
is the underlying application domain. In this paper, we also make use of model-based
diagnosis (MBD) and rely on the foundations that goes back to Reiter’s [29], and De
Kleer and William’s [30] work.

Motor m

Wheel w

Commands fwd

Current 

meter c

Wheel encoder e

Fig. 2. A partial schematics of a robot drive

Before introducing the formal definitions and an algorithm for MBD, we discuss
the underlying idea using a small example from the Robotics domain taken from [31].
Figure 2 depicts the schematics of a part of a robot drive comprising a current meter
c, a motor m, a wheel w, and a wheel encoder e. The current meter c is for measuring
the current flowing through the motor m. In case of setting m to start moving in a
forward direction using the command fwd, there will be a current. Otherwise, we do
not measure any current using c. If the motor is running, the wheel w should rotate,
which can be measured using the wheel encoder e. Now let us assume that we start
the motor using the fwd command, and observe a nominal current flow using c but no
information coming from the wheel encoder e indicating a rotating wheel.

Using the given information we are able to identify diagnosis candidates. Because
of a measured current flow we can eliminate the cause motor broken when assuming
single faults only. A single fault means that there is only on root cause for on or more
undesired observations. For instance, if the battery of the robot is faulty several com-
ponents might show an undesired behavior even the components are correct. Hence,
only the wheel or the wheel encoder might be faulty. Of course it can also be the case
that an assembly between the wheel or the motor or the encoder might be the reason.
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However, in our model we have not introduced the assembly as an own entity. What we
can conclude from the example is the following: (1) A diagnosis candidate is a compo-
nent that when being faulty explains the given observations; (2) We used the behavior
of the components and their connections for identifying diagnoses; (3) It is possible to
exclude potential causes like the motor from the list of diagnosis candidates; (4) For the
purpose of reasoning we used the underlying assumption that a component is correct or
that it is faulty. For example, when assuming the wheel w to be broken, there will be
no rotation and thus no information coming from the wheel encoder e even in case e is
working as expected.

We now formalize the basic idea of MBD. We start with the definition of diagnosis
models, which are also called system descriptions (SD) in the MBD context. A diagno-
sis model comprises the structure of the system and the behavior of components in case
the component works as expected and alternatively in case the component is in a par-
ticular faulty state. For the case of correctness we use the negation of the predicate AB
where AB stands for abnormal. It is worth noting that in case of abnormal behavior, i.e.,
when AB is true, we do not know the exact behavior. Hence, there are no rules in SD
for this case. Alternatively, a component is in a known fault state (or fault mode) Fi. For
this purpose there will be a predicateFi and a set of rules specifying the faulty behavior.
For each component c ∈ COMP we have a set of possible modes where each mode
represent a particular state. AB and ¬AB is always part of the possible states. In order
to access these states we assume a set MODES that comprises all possible states, and
a function modes : COMP �→ 2MODES mapping components to the possible modes.
For modes we require that ∀c ∈ COMP : {AB,¬AB} ⊆ modes(c) holds.

In the following we introduce the model using first order logic for our example. Note
that the approach is not restricted to first order logic. Any logic that allows for proving
satisfiability works.

Motor: In case of a correct behavior a particular motor is running in forward direction
if there is command for moving forward cmd fwd. In this case there is a current
flowing through the motor. This current can be of nominal value or higher if there
is a strong resistance coming from attached components like wheels. We assume
an abstraction function from the quantitative measurement signal to the qualitative
observation. Usually continuous signals are noisy and dynamic. Therefore, we use
a hysteresis-based approach for the abstraction step [32]. Hence, for all components
X that are motors, the following logical sentence formalize their behavior:

∀X : motor(X) →⎛⎜⎜⎜⎜⎝
¬AB(X) → (cmd fwd → direction(X, fwd))

direction(X, fwd) → torque(X, fwd)
direction(X, fwd) ∧ resistance(X) → current(X,high)

direction(X, fwd) ∧ ¬resistance(X) → current(X,nominal)
current(X,high) ∨ current(X,nominal) → direction(X, fwd)

⎞⎟⎟⎟⎟⎠ (1)

Wheel: The torque provided via the axle is turned into rotations of the wheel. Only in
case of a stuck wheel there is a resistance against the applied torque. But this case
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is not going to be formalized because we are only interested in the correct behavior.
For wheels X we formalize the correct behavior as follows:

∀X : wheel(X) →
(¬AB(X) → (torque(X, fwd) → (rotate(X, fwd) ∧ ¬resistance(X))))

(2)
Current meter: The current meter measures the value of the current. Hence, there is

a one to one correspondence of the current flow and the measurement in case of a
correct behavior. This behavior of a current meter X can be formalized as follows:

∀X : current meter(X) →(
¬AB(X) → (current(X,high) ↔ observed current(X,high))

¬AB(X) → (current(X,nominal) ↔ observed current(X,nominal))

)
(3)

Wheel encoder: The wheel encoder X is providing a frequency only in case of a rota-
tion. For a wheel encoder X we introduce the following logical sentence:

∀X : encoder(X) →
(¬AB(X) → (rotate(X, fwd) ↔ frequency(X)))

(4)

What is now missing to complete the model for our example is a description of the
structure. We first define the components:

motor(m) ∧ wheel(w) ∧ current meter(c) ∧ encoder(e) (5)

Second, we have to define the connections between the components. This can be done
using the following logical sentences:

torque(m, fwd) ↔ torque(w, fwd)
resistance(m) ↔ resistance(w)

current(m,nominal) ↔ current(c, nominal)
current(m,high) ↔ current(c, high)
rotate(w, fwd) ↔ rotate(e, fwd)

(6)

The rules stated in Equations (1) – (6) define the structure and behavior of the model
SD of our small example. For this example the set of components comprise 4 elements,
i.e., COMP = {m, c, w, e}. Moreover, the example makes only use of AB and ¬AB.
Hence, the set of modes only holds these elements: MODES = {AB,¬AB}.

We now define a diagnosis problem formally. Although, we borrow the ideas behind
model-based diagnosis from Reiter [29], we adapt the definitions in order to deal with
fault states. In Reiter’s seminal work only the correct behavior of components is used.
There are many papers also dealing with fault modes like [33] and [34]. Both papers
deal with the relationship between the case of diagnosis without fault modes and the
one with only explicit fault modes, i.e., where there is no explicitly given fault behavior.
Fault modes usually improve diagnosis, i.e., they help to reduce the number of diagnosis
candidates. It is worth noting that sometimes the use of fault modes is not necessary for
improving diagnosis. Handling physical impossibilities seems to be sufficient. See [35]
for a more detailed discussion on this topic.



Model-Based Reasoning for Self-Adaptive Systems 197

Definition 1 (Diagnosis problem). A diagnosis problem is a tuple (SD,COMP,
MODES,modes,OBS), where SD is a model, COMP a set of components,
MODES a set of modes, and modes a function mapping components to their modes,
and OBS a set of observations.

The diagnosis problem for the running example from Fig. 2 comprise the system de-
scription, the component set, the modes and the modes function, which map each com-
ponent to the set {AB,¬AB}. The observations for this example are:
{cmd fwd, observed current(c, nominal),¬frequency(e)}.

A diagnosis in contrast to the original definition of Reiter [29] is a mapping of exactly
one mode to each component such that the observations can be explained. We first
define the term mode assignment.

Definition 2 (Mode assignment). Given a diagnosis problem (SD,COMP,
MODES,modes). A mode assignment Δ is a set where the following properties hold:

1. ∀c ∈ C : ((∃m(c) ∈ Δ)∧m ∈ modes(c))
2. |Δ| = |COMP |

Mode assignments are used to specify that a component is in a certain state. Note that
for simplicity we do not consider temporal changes in mode assignments. If tempo-
ral changes of behavioral states are possible, i.e., in case of non-permanent faults, the
definitions have to be extended.

We are now able to define a diagnosis using mode assignments. The underlying
idea here is to find a certain state of the system, which comprises the states of each
component, such that the corresponding behavior is not in contradiction with the given
observation.

Definition 3 (Diagnosis). Given a diagnosis problem (SD,COMP,OBS). A mode
assignment Δ is a diagnosis if and only if SD ∪OBS ∪Δ is satisfiable.

For our running example the mode assignment {¬AB(m),¬AB(c), AB(w),¬AB(e)}
as well as {¬AB(m),¬AB(c),¬AB(w), AB(e)} are both a diagnosis.

In practice computing all diagnoses is not required. Instead we are interested in the
”most likely” diagnoses or the diagnoses comprising the least faults. In order to de-
fine such ranking of diagnoses we make use of some auxiliary definitions. We first
define a set Sm(Δ) for a mode assignment Δ where m ∈ MODES. The set Sm

comprises all components in the mode assignment with mode m, i.e., Sm(Δ) ≡DEF

{c|m(c) ∈ Δ}. We also assume the existence of a function pm : COMP �→ [0, 1]
that maps components to its probability of being in state m ∈ MODES. Obviously∑

m∈modes(C) pm(C) = 1 must hold for all components c ∈ COMP in order to reflect
that a component c has to be in exactly one state.

For the definition of minimality with respect to the set Sm of components of a di-
agnosis that are in mode m we make use of the following thought. A diagnosis should
be preferred over another diagnosis if the first one assumes less faulty components. In
our case faulty components in a diagnosis have assigned a state m that is not ¬AB.
There are two possibilities to state minimality using this thought. We first define subset
minimality which ensures that there is no diagnosis comprising less correct diagnoses
than the given diagnosis.
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Definition 4 (Subset minimality). A diagnosis Δ for a given diagnosis problem is
subset minimal if and only if there exists no other diagnosis Δ′ for which the following
proposition hold: S¬AB(Δ

′) ⊃ S¬AB(Δ).

Alternatively to subset minimality we might think about preferring diagnoses that are
the smallest ones. This definition of minimality is based on the cardinality of sets.

Definition 5 (Minimal cardinality). A diagnosis Δ for a given diagnosis problem is
minimal with respect to cardinality if and only if there exists no other diagnosis Δ′ for
which the following proposition hold: |S¬AB(Δ

′)| > |S¬AB(Δ)|

Minimality with respect to cardinality can be also seen as a global minimality, because
there are no diagnoses with less faulty components.

The last definition of minimality is based on the probability of a diagnosis. When
assuming that a mode of a component is stochastically independent from each mode
of another component, then the probability of a diagnosis Δ is nothing else than the
product of the probabilities of all single mode assignments in Δ, i.e., Prob(x) ≡DEF∏

m(c)∈Δ pm(c). The independence assumption is quite reasonable even if component
interacts as the probability express the chance that a component fails by itself.

Definition 6 (Most likely diagnosis). A diagnosis Δ for a given diagnosis problem is
the most likely diagnosis if and only if there exists no other diagnosis Δ′ for which the
following proposition hold: Prob(Δ′) < Prob(Δ)

All the above minimality definitions are of practical use. In the hardware domain where
fault probabilities of components are known a most likely or most probable diagnosis
might be the right choice. In situations where the probabilities are not known, minimal-
ity with respect to the size of faulty components might be more appropriate. It is also
worth noting that probabilities can also be used in the context of model-based diagnosis
to determine the next measurements required to distinguish diagnoses. We refer the in-
terested reader to Williams and de Kleer’s paper [30] for an introduction to a method for
optimal measurement selection with respect to the required number of measurements
for locating the fault.

In the following we introduce an algorithm that computes minimal diagnoses up to
a predefined number of faulty components. The algorithm starts assuming that all com-
ponents are working as expected. In case of a contradiction with the given observations,
one after the other component is assumed to switch its mode. Again for each of these
mode assignments a check of consistency is performed, and so on. The process stops
either when the bound is reached or when there are no combinations left. It is also worth
noting, that a check is performed whether there exists a small diagnosis where the cor-
rect components are a superset of the correct components of the currently computed
diagnosis. If this is the case the new diagnosis is removed from the list of candidates,
thus ensuring subset minimality.

In Figure 3 we introduce the MBDIAG algorithm. The algorithm assumes that we
have a theorem prover that allows for checking consistency. This is done by calling the
CHECK method. It is worth noting that the term theorem prover is not only for repre-
senting a system for checking satisfiability of a logical formulae. Instead any algorithm
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Algorithm MBDIAG
Input: A model (SD,COMP,MODES,modes), observations OBS, and the number nAB ≥
0 of faulty component to be searched for.
Output: A set of diagnoses R.

1. Let R be the empty set.
2. Let DS be the set comprising the element {¬AB(c)|c ∈ COMP}, and let n = 0.
3. Let DS′ be the empty set.
4. For all elements Δ ∈ DS do:

(a) If CHECK(SD,Δ,OBS) is consistent, then add Δ to R if there exists no subset min-
imal Δ′ in R.

(b) Otherwise, for all components c where ¬AB(c) ∈ Δ do:
i. For all m ∈ modes(c) \ {¬AB} add Δ′ to DS′ with Δ′ is Δ where ¬AB(c) is

changed to m(c).
5. Let n = n+ 1 and let DS be DS′.
6. If n ≤ nAB and DS 	= ∅, go to 3
7. Otherwise, return R as result.

Fig. 3. The model-based diagnosis algorithm MBDIAG

that allows for deciding whether a given system state together with a formalized model
is contradicting the given observations or not. Hence, a simulator or a constraint solver
can also be used for this purpose.

Obviously MBDIAG terminates because either the bound nAB is reached or no new
diagnosis candidates have to be checked. Moreover, MBDIAG has to compute subset
minimal diagnoses because the others are not added to the result set R. The worst case
complexity is of course exponential in the number of components. However, for single
faults the algorithm is feasible requiring O(|COMP | · |MODES|) steps. Even in case
of double and triple faults MBDIAG is in the worst case polynomial in the number of
components and modes.

There have been many other diagnosis algorithms described in literature. The most
closely to ours is Reiter’s diagnosis algorithm [29] that was corrected by Greiner et al.
[36]. The algorithm is based on conflicts and hitting sets. A conflict basically is a set of
components that when assuming to behave correctly reveal an inconsistency. By com-
bining all these conflicts (via the computation of hitting sets) all minimal diagnoses can
be obtained. Another approach that is based on an assumption based truth maintenance
system [37] was introduced by de Kleer and Williams [30]. Other papers introducing
algorithms for model-based diagnosis include [38], [39], [40], and [41]. The last three
publications are of particular interest because they make use of constraints for repre-
senting models and observations.

3.1 Smart Control

What is missing after performing fault detection and localization is repair. There are
many ways to bring a system to a correct state after a failure. The most straightforward
way is replacing broken components with their spare parts. This cannot be done in
all application domains. Consider for example a spacecraft on mission. Replacing a
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component there is obviously not a feasible option. Repair can also be performed via
changing the system’s structure or configuration in order to meet the current needs.
In this case broken components are excluded and other components take their place.
In practice usually for this case redundant components are used. However, it is also
often possible to use implicit redundancy within an application to make a replacement
that allows for still reaching mission goals. For example, if communication via WiFi
is not possible any more, maybe it is possible to communicate via another means for
communication, which might not be available always but at least sometimes. Hence,
performance of the overall system will degrade but not to a point where the mission is
in danger.

For coming up with a smart repair engine knowledge of possible repair actions as
well as the provided functionality and the goal has to be formalized. Moreover, the
results of diagnosis have also to be considered. We do not discuss planning and the
planning problem in detail here and refer the interested reader to other publications
[42, 43]. Instead we discuss smart plan execution, which is required for really smart
control. Combining MBD and planning is not new. Sun and Weld [44] introduced the
use of planning for diagnosis with the purpose of controlling the diagnostic process
itself. Friedrich and Nejdl [45–47] formalized the process of diagnosis and repair, and
also distinguishes (repair) actions from observations. Our work is based on the previous
work and focusses more on the execution of control using the sense-plan-act paradigm
(see Fig. 1) of mobile autonomous robots.

In the following we introduce the algorithm EXT PSA ARCH [31] that is depicted
in Figure 4. The algorithm makes use of a function SENSE, which returns the cur-
rent state of the autonomous system comprising the internal state and the information
obtained from the sensors. We assume that only reliable sensor information is given.
Therefore, if a diagnosis indicates a sensor fault, the particular sensor is ignored and
its information is not provided anymore. Although time is not handled explicitly in the
algorithm it is worth noting that time exceeds during execution. Thus SENSE represents
the state at a discrete point in time only, where measurements and the internal state are
observed.

The control algorithm starts computing a plan based on the available information,
i.e., the current state provided via the SENSE function, and the planning knowledge
based Mp together with the goal state SG. At the beginning all actions that can be
performed by the system are functioning, and are therefore available for planning.
Afterwards, the plan is executed by sequentially executing the actions. First, the pre-
conditions of the current action a are checked. In case that the pre-conditions are not
fulfilled in the current state, the action cannot be performed. This can happen due to an
external event. As a consequence, re-planning has to be performed and plan execution
starts again using the new plan.

If the pre-conditions of an action are fulfilled, the action is executed. This execu-
tion might be terminated returning a failure. In this case diagnosis has to be performed
that returns diagnoses using the MBDIAG method, from which a leading diagnosis is
obtained. A leading diagnosis can be either the smallest diagnosis or the one with the
highest fault probability. For simplicity we do not handle the case of multiple diag-
noses that cannot be distinguished with the available information. If such case occurs,
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Algorithm EXT PSA ARCH
Input: A planning model Mp, a diagnosis model (SD,COMP,MODES,modes), and the
goal state SG.
Output: Computes and executes a plan from the current state to SG.

1. Let p := PLAN(Mp,SENSE(),SG).
2. While p is not empty do:

(a) Let a be the first action of plan p.
(b) Remove a from p.
(c) If the pre conditions of a are not fulfilled in SENSE(), then go to 1
(d) Otherwise, execute a.
(e) If the execution terminates with a failure, let SΔ be the result of calling

MBDIAG(SD,COMP,MODES,modes, SENSE()), and Δ be the leading diag-
nosis of SΔ.

(f) Δ indicates a sensor failure only, then consider a to be executed without failure and
proceed. Otherwise, remove all actions from the planning model that cannot be longer
used because of diagnosis Δ. Go to 1.

(g) If the effects of a are not fulfilled in SENSE() , then go to 1. Otherwise, continue
executing the plan.

Fig. 4. The smart plan execution algorithm EXT PSA ARCH

measures for distinguishing diagnoses have to be performed, like providing testing pro-
cedures. For example, Wotawa et al. [48] introduce distinguishing test cases for solving
such problems. Hence, we assume that we can always determine a leading diagnosis.
This leading diagnosis is used to either remove actions that cannot be performed any-
more, or to assume that some sensor data is no longer reliable. In the latter case there
is no need to apply re-planning. Instead the action is forced to be executed and the
procedure continues.

The last possibility for a fault occurring during execution is that the effects of an
action are not visible. In this case we again perform re-planning, which might lead to
the case where the current action is re-executed again. Note that this might lead to a
situation where the robot is executing an action again and again due to a sensor failure
or an external event. Therefore, in the implementation the repetition of executions of
the same actions should be tracked and handled appropriately. For example, a diagnosis
step might also be performed.

4 Example Applications

After introducing the foundations of MBR we discuss two of our applications of MBR
in the domain of self-adaptive systems. The applications are in the field of autonomous
mobile robots. Their common objective is to provide adaptation in case of faults occur-
ring either in software or hardware. Although both applications share the same method-
ology, their underlying models are different. In software repair the dependencies be-
tween parameters that are passed from one software component to another are used to
localize the fault. Whereas in the case of adaptive kinematics control the whole kine-
matics of a robot drive is modeled, which requires the use of difference or differential
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equations. Hence, the application also demonstrate very well the bandwidth of models
that are used in MBR.

4.1 Software Repair at Runtime

We first discuss the application of MBD to software repair performed during runtime
on a mobile robot. The work of Steinbauer et al. [49] we are discussing in this sec-
tion distinguishes the fault detection from the fault localization part of diagnosis and
is therefore different to ordinary MBD where both tasks are usually handled using the
same model. The general idea behind the approach is to recover from severe failure as
fast as possible. What the authors had in mind was to tackle cases like deadlocks or
crashes of software components that would lead to a loss of the mobile robot.

Figure 5 shows the dependencies of the underlying robot control architecture taken
from [49]. We see the different components and their potential interactions via messages
and events they are sharing. In the following we discuss the approach used for software
repair comprising fault detection, localization, and the repair step, where fault detection
starts fault localization, which itself starts repair afterwards.

Fig. 5. The robot control architecture from [49]

Fault detection: In [49] fault detection is handled using monitoring. In particular a
watch-dog process is invoked, which takes care of messages that are exchanged be-
tween the components of the control software, and processes and threads necessary for
execution. The watch-dog process checks the following information during runtime:

– Periodic event production, e.g., the motion service has to produce an event every
50 ms.
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– Conditional event production, e.g., there has to be an event WorldState produced
by the world model component after an event ObjectMeasurement occurs.

– Periodic method calls, e.g., the sonar service of the robot should be regularly called
by the behavior engine.

– Spawn processes, e.g., the motion service invokes exactly 6 threads.

The watch-dog raises the fault localization method in case a check fails. In addition every
check that fails also has corresponding observations that are given to the fault localiza-
tion method. The observations state the correctness or incorrectness of certain messages.
For example, if the range sensor data is checked to be faulty, a ¬ok(RangeSensor 2)
observation is generated. It is worth mentioning that the overhead for running the mon-
itoring process can be neglected. In [49] the authors reported less than 1% overhead of
CPU time and less than 5 % of memory consumption.

Fault localization: The fault localization step takes the outcome of detection as input
and tries to identify the root cause. Because of runtime requirements and the fact that
not the whole behavior of the software system (without replicating the whole program
in logic) is available, a simplified model was used in [49]. The model itself only takes
care of dependence information. A component has a dependence relation with another
component if there is a message flow. The underlying idea is not new in the software
domain. Friedrich et al. [50] used data and control dependences for locating bugs in
VHDL programs. Later Wotawa [51] proved the equivalence of Mark Weiser’s slicing
[52] and the dependency-based model.

The idea of the dependence model is as follows. Every component that is correct,
should produce a correct output in case the inputs are correct too. We only need to
formalize this idea where ok (¬ok) is used to represent a correct (incorrect) value of
either an input or output. We describe the model behind the fault localization step using
a small example. Consider the software architecture from Figure 5 and focus on the
components CAN, Motion, and Sonar only. Between CAN and Motion messages are
send on connection CAN 1 and between CAN and Sonar messages are send on con-
nection CAN 2. Since we are only interested in software faults, no information of the
hardware is given, and therefore the CAN component has no input in our model. Hence,
we finally obtain the following system description SD for the small subsystem:

¬AB(CAN) → ok(CAN 1)
¬AB(CAN) → ok(CAN 2)
¬AB(Motion)∧ ok(CAN 1) → ok(MotionDelta)
¬AB(Sonar)∧ ok(CAN 2) → ok(RangeSensor 2)

In the model we have three components COMP = {CAN,Motion, Sonar}, each
having assigned two modes AB and ¬AB. Let us now assume that the fault detector
checks fail for the signals MotionDelta and RangeSensor 2. In this case we have the
following set of observations:

OBS = {¬ok(MotionDelta),¬ok(RangeSensor 2)}
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Obviously when assuming all components to be correct, we obtain a contradiction.
It is easy to show that only the following two mode assignments are subset minimal
diagnoses:

{AB(CAN),¬AB(Motion),¬AB(Sonar)}
{¬AB(CAN), AB(Motion), AB(Sonar)}

When considering the smallest root cause first, only the diagnosis indicating that the
CAN module is faulty remains.

Repair: After localizing the fault Steinbauer et al. introduced a repair approach where
the restart faulty components. In some cases it is also necessary to restart components
that are connected with the faulty ones. The information whether this is necessary is
stored in the strong dependencies (see Fig. 5). If a component like Can fails also the
Sonar module has to be restarted. For the example given in the discussion of fault lo-
calization we see that only CAN has to be restarted in order to bring the system into a
correct state.

The repair step ensures that components, which are relevant for a certain fault, have
to be restarted. This reduces time for bringing a system back to operations. Otherwise,
the whole system has to be restarted, which usually takes a much longer time.

Steinbauer et al. also give some initial results in their paper. In particular they con-
sider two situations. In one the Laser Service was killed. In the other the World Model
was externally terminated. In both cases the diagnostic process detected the failure,
localized the root cause, and brought the robot again to a state where ordinary opera-
tion was guaranteed. Note that the authors also reported the use of the system during a
RoboCup tournament where a crash related to the image processing module has been
solved without human interaction.

From the discussed application on software repair at runtime we are able to draw the
following conclusions: (1) The approach allows for effectively autonomous repair of
software in case of severe faults like crashes and deadlocks. (2) The use of simple mod-
els like the dependency-based model are sufficient in this application domain. (3) The
MBD approach can also be used in cases where fault detection via monitoring is sepa-
rated from fault localization. In this case the monitoring component has to deliver the
formal observations. It might be necessary to perform an abstraction step for this pur-
pose where continuous values are mapped to a qualitative value like ok. Note that there
are other approaches to software debugging where the program itself is used directly
as a model. See for example [53–55]. These approaches can hardly be used directly for
runtime diagnosis and repair because of computation requirements. The availability of
the proper models is a crucial issue for the acceptance of MBR approaches. For many
application the model are handcrafted which is not feasible for larger system or if one
do not has access to all internal details of a module. In [56] the authors presented a ma-
chine learning approach for model acquisition in the context of robot control software.

4.2 Adaptive Kinematics Control

The second application we discuss is a model-based framework that is able to deal with
hardware faults in the driving unit of an autonomous mobile robot. The work presented
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in [57] focusses on the issue of retaining as much as possible of the robot’s functionality
when a hardware fault occurs. The proposed framework is self-adaptive in the sense
that it follows grateful degradation once a fault is detected. If the system is able to
compensate a detected fault it uses model-based reconfiguration. If the system is not
able to compensate the fault it reduces the functionality to a lower level that is known
and stable. Hence, the knowledge of the degraded system can be used in planning and
control afterwards.

Fig. 6. A adaptive robot control framework

Figure 6 depicts the proposed adaptive robot control framework. The left side of
the figure is a classical navigation stack for an autonomous robot [58]. A delibera-
tive control module such as an abstract planner chooses a location where to go next.
Such a movement request is communicated down to a path planner, which calculates a
collision-free path to the requested goal. Once a feasible path is generated the path ex-
ecutor guides the robot along that path by sending immediate motion commands to the
motion controller. The controller converts the motion commands in low-level control
commands for the motors, e.g., speed and direction. Such control architectures (abstract
control flow) and controllers (dedicated control laws) are usually designed and opti-
mized off-line and do not change during operation. In particular the controller sticks on
the kinematics of the robot, the mapping of the control parameter to the robot’s motion.

In the case of a hardware fault, e.g., a motor is stuck, the kinematic changes dras-
tically and immediately. If the control architecture is not aware of such changes, it
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continues its operation and may endanger the mission, the robot, and its environment.
This happens because of the changed and now unknown behavior of the system.

In order to allow the robot to react actively to such incidences the control architec-
ture is extended with diagnosis and reconfiguration modules shown on the right side of
Figure 6. The basic idea is that the architecture determines the operational mode of the
robot drive, i.e., one or more nominal modes and a number of faulty modes, and adapts
the model-based controller on-the-fly to reflect the new kinematics that actually rules
the robot. As long as the model-based controller is able to adapt to the new kinematics,
it simple transparently remaps the commands accordingly. In this case there is no need
that the upper modules recognize that there is a fault. If the controller is not able to
fully compensate a fault, it degrade the functionality to a lower but known and stable
level. Moreover, it informs the upper modules about the degradation in order to allow
the path-planner and the deliberative control to adapt their plans to the new situation.

Figure 7 shows a practical example how the adaptive kinematics control works. The
example shows an omni-directional autonomous robot executing the so-called Eye-
catcher Task. For this task the robot has to follow some given path while always look-
ing towards a fixed point (the colored pole on the figures). This task requires omni-
directional motion capabilities. The robot has to control all three degrees-of-freedom
(DOF) on the plane. Sub-figure (a) shows the correct behavior when the robot works
as expected. The robot drives along a s-shape trajectory. The robot is always directed
towards the pole (see time steps 1,2 and 3). Sub-figure (b) depicts the faulty behavior
when one of the three motors of the robot fail. The fault occurred between time step 1
(still correct) and time step 2 (already a misalignment in the orientation). The control
architecture continues its control without awareness of the fault. This leads to an unex-
pected behavior (time step 3 and 4). Sub-figure (c) shows the robot behavior using the
self-adaptive control architecture. The fault was detected but the model-based controller
was not able to retain the full functionality. The robot possesses three motors which is
the minimum number to provide omnidirectional motion. If one fails the robot has to
degrade its functionality. That is exactly what the model-based controller does. It gives
up one DOF (direction) and retains the capacities that allows it to follow the trajectory.
It is clearly shown that the robot follows the trajectory all the time (time steps 1-4). Only
the direction towards the pole is not maintained anymore. Moreover, the path-planner
and path-execution engine is informed about the limited maneuverability and adapts the
immediate control signals accordingly.

We now discuss the underlying fault detection and localization process as well as the
reconfiguration part.

Fault Detection and Localization: Due to the fact that a robot drive is a dynamic system,
the actuators and sensors are affected by noise, and the control system has to distinguish
several operation modes (different nominal and faulty modes) the fault detection and lo-
calization follows the following approach. The behavior of the system is modeled using
a hybrid automaton [59]. Figure 8 shows a hybrid automaton for the example part of
robot drive depicted in Figure 2. It comprises continuous states, discrete mode states,
continuous behaviors for each mode, mode transitions, and probabilities for each transi-
tion. The example comprises the discrete modes m1 (nominal), m2 (faulty - no torque),
m3 (faulty - stuck), and m0 (unknown mode). The example transition probability P1,2
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Fig. 7. Adaptive kinematics control in action
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is the probability of a change from nominal mode m1 to faulty mode m2. The example
shows a fully connected automaton. Note that some of the connections can be missing if
the transition probability is zero. For instance the probability of a transition from faulty
mode m3 to unknown mode m0 is quite unlikely. For each discrete mode a continuous
behavioral model that relates the continuous input and output values of the system is
attached. The continuous input is the voltage applied to the motor um. The continuous
outputs are the measured rotation velocity ωe and the current drawn ic. The continuous
behaviors are expressed by differential equations. The equations for mode m1, m2 and
m3 are shown in Figure 8. The matrix A comprises constants related to the motor such
as its mechanical and electrical properties. The term Wi represents a normal distributed
random variable representing the noise in the continuous behavior of mode mi. Please
note that the equation for mode m3 is no differential equation but simply constraints
the rotational velocity to zero. As the unknown mode m0 comprises no information on
the actual behavior no equation is given at all. This does not restrict the variables in any
way.

t

dt

(
ic
ωe

)
= A

(
ic
ωe

)
+ bum +W1;m1 (7)

t

dt

(
ic
ωe

)
= A

(
ic
ωe

)
+W2;m2 (8)

ωe = 0 +W3;m3 (9)

m1

m2

m0

m3

P3,0

P1,2

Fig. 8. Hybrid automaton for the example part of a robot drive. The upper part shows the differen-
tial equations for the behaviors in the nominal, no torque and stuck mode. The lower part shows
the possible mode transitions.

Fault detection and localization is done by estimating the continuous state using
the different behavioral models and a multi-hypotheses tracking approach to detect the
current discrete mode. The goal is to find the most probable mode the system is in
based on the past values of the continuous input and outputs. State estimation for the
continuous states is necessary because the system and the measurements are noisy. The
multi-hypotheses tracking returns that sequence of discrete modes (changes) that best
fit with the continuous state estimation.
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If the most probable mode is a faulty mode a fault is detected. The most probable
mode gives also information about the fault localization as each fault mode is connected
to some fault scenario. It is worth noting that one has to provide a discrete mode, tran-
sition probabilities, and a continuous behavioral model for each fault to be detect using
the hybrid automaton approach. Faults that are not modeled are caught by an unspecific
behavioral model for mode m0.

Note that the approach follows our given basic definitions of diagnosis using fault
modes. The only real difference is that a automaton is used instead of a logical descrip-
tion of the behavior. A mode assignment or in this case a particular state, is a diagnosis
if the output is equivalent with the expectations.

Model-based Reconfiguration: Once the most probable operation mode has been iden-
tified the adaptive controller architecture starts repair using reconfiguration.The identi-
fied state gives information about the faulty components and their behavior, e.g., Motor
3 is stuck. The reconfiguration is achieved by treating the faulty components as addi-
tional kinematic constraints. A blocked motor cannot be controlled any more and does
not provide any motion. Using this information one is able to determine the actual kine-
matics of the robot on-line. Moreover, using the actual discrete mode one can derive
degradations in capabilities. Like in the eye-catcher example above. Because of the ge-
ometry of the robot drive and the modes of the motors one can determine whether the
robot drive provides full functionality or not. If the functionality degrades (e.g. an omni-
directional robot degrades to a differential robot) this information is communicated to
the higher level such as a path planner allowing to reconfigure the path planning to the
new kinematics. Even in the case that the fault is very serious and the functionality is
completely lost this information is valuable for the higher levels. They may set the robot
in a inactive safe state and allow for informing an operator.

5 Conclusions

In the paper we introduced the foundations of model-based reasoning in the context
of self-adaptive systems. In particular we present the basic formalization of model-
based diagnosis which is founded on earlier work of several colleagues. Moreover, we
presented our approach to integrate it into a sense-plan-act architecture of autonomous
mobile robots. For this purpose we discussed our extension to a planning and plan
execution framework. Moreover, we also discussed two example applications where
we used model-based reasoning to increase the robustness of a robot system. In the
first application a very abstract dependence model is used to identify failing software
components, which are restarted in order to bring the system again into an operational
state. The second application makes use of a kinematics knowledge of robot drives.
The underlying model captures the behavior using differential equations and explicit
fault models. As a result not only faults can be localized but information on degraded
behavior can be used to change the control algorithms. There are more applications of
model-based reasoning in this domain. We also briefly discussed some of them.

Model-based reasoning provides the necessary foundations for self-adaptive sys-
tems. Not only that some of the underlying challenges like diagnosis can be formalized.
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The approach also ensures that all results are correct and optimal with respect to the
given model. If the model is correct, then the outcome of diagnosis based on the model
has to be correct too. Moreover, the approach can not only be used for hardware di-
agnosis but also for software diagnosis at runtime. The computational overhead of the
method is higher but when using simplifying assumptions like that there are only single
or double faults, model-based reasoning is feasible. Even larger systems up to several
thousand of components can be diagnosed in a reasonable amount of time.

In the domain of autonomous mobile robots using model-based reasoning is a good
choice because there the structure of the hardware as well as the behavior of the compo-
nents are known. Moreover, even fault modes are available for some of the components,
which usually make diagnosis more precise. It is worth noting that in cases where no
knowledge of the faulty behavior is known, the model-based reasoning approach can
still be used. This also distinguishes this approach from others.

Acknowledgments. The work presented in the paper has been funded by the Austrian
Science Fund (FWF) under contract number P22690.
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Abstract. Distributed pervasive systems have been employed in a wide
spectrum of applications, from environmental monitoring to smart trans-
portation, to emergency response. In all these applications high volumes
of typically volatile software components need to coordinate and collab-
orate to achieve a common goal, given a defined set of constraints.

In our A-3 initiative we advocate that the coordination of high vol-
umes of volatile components can be simplified using appropriate group
abstractions. Instead of attempting to coordinate large amounts of com-
ponents, the problem can be reduced to coordinating “groups” of com-
ponents which have a less dynamic behavior. This abstraction effectively
simplifies the design of self-adaptive behavior by making it easier to
achieve component coordination. By design it also prevents the system
from being flooded with coordination messages.

In this chapter we present an extension of our A-3 middleware called
A3-TAG. It is a unified programming model that facilitates the sys-
tem design. Moreover, the middleware internally adopts the same group
abstractions to ensure that message exchanges, and in particular group
broadcasts, are achieved efficiently and robustly. The chapter also
presents an investigation of our approach in the context of a self-adaptive
industrialized greenhouse.

1 Introduction

Distributed and ubiquitous systems have been employed in a wide spectrum
of applications, such as environmental monitoring [1], wildlife tracking [2], in-
telligent agriculture [3], home automation [4], building monitoring and con-
trol [5], smart transportation [6], tracking and surveillance [8], and emergency
response [12]. In all these applications several software components need to col-
laborate to achieve a common goal. Traditionally, many of these distributed sys-
tems are coordinated using some kind of data-gathering capability, the design
of which, in most cases, is closely-coupled with the actual application logic [11].
This makes the systems very inflexible and scarcely scalable: important changes,
when needed, often end up requiring some form of re-coding.

We advocate that these capabilities cannot be dealt with at the application
level; a suitable middleware infrastructure must provide convenient abstractions
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to ease the problem. Moreover, the next generation of distributed, ubiquitous
systems, referred to by some as felicitous systems [13], will be even more de-
manding, and will require that interactions among components be carried out
in a way that is optimal and naturally suited to the circumstances and needs of
the users. The middleware infrastructure should not only be able to present a
unified programming model, and suitable abstractions to ease the realization of
the system, but it should also be able to perform intelligent self-adaptation.

Self-adaptation is the capability of a system to autonomously make deci-
sions on how it should react to changes in the context, or in its functional or
non-functional requirements. However, to implement a self-adaptive distributed
system, the components need to be able to share their knowledge and coordinate
their reactions in an effective and robust way.

A3-TAG (A3 with Tuple-space Assisted Grouping) is an extended version
of our middleware infrastructure A-3 [14,15]. It has been augmented with a
tuple space to ease the coordination among components [7], and through this
coordination facilitate the development of trustable self-adaptive systems.

A3-TAG simplifies the coordination of distributed, ubiquitous systems through
the group abstraction. Instead of attempting to coordinate very large amounts
of components, it reduces the problem to the coordination of “groups” of com-
ponents, which usually are fewer and have a less dynamic behavior. Components
can be grouped together for very different reasons: for example, because they
are conceptually similar, have common goals in the context of the application,
or are physically close one to the another. Each group is managed by a supervi-
sor, which is in charge of the interactions with the other groups (i.e., the other
supervisors).

This chapter provides a thorough presentation of A3-TAG. The tuple-space
assisted grouping enables a stricter separation of concerns between the system’s
application logic and its group management, providing higher assurances that
the middleware will be able to autonomously perform group configuration, dis-
covery, monitoring, and recovery. The introduction of the tuple space also allows
components in the system to delegate state management directly to the mid-
dleware. State is maintained in a distributed fashion, allowing the system to
re-construct itself easily and rapidly when a key component fails. For example,
a failing supervisor can easily be replaced, and the new supervisor will be able
to immediately start where the old one left off.

The key features of A3-TAG are exemplified on a running example based on a
self-adaptive greenhouse. Various sensors are spread out through the greenhouse,
allowing the system to monitor the greenhouse’s temperature, humidity, and
levels of CO2. The greenhouse also has a certain number of fans and irrigation
systems to use when the sensed values drift outside the pre-defined range. The
example shows how group management can minimize the amount of traffic being
generated while the greenhouse is monitored, and shows how the groups can
evolve to cover the evolution of the greenhouse (the plants and flowers it contains)
and the situations in which key components in the system fail.
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The rest of the chapter is organized as follows. Section 2 surveys some related
proposals. Section 3 describes the basic concepts behind A3-TAG and clarifies
the separation of concerns that exists between application logic and group man-
agement. Section 4 explains how the tuple space is used as groups evolve over
time. Section 5 exemplifies the behavior of our middleware in the self-adaptive
greenhouse, Section 6 provides an evaluation of our A3-TAG middleware, and
Section 7 concludes the chapter.

2 Related Work

There is a substantial amount of literature on reconfigurable middleware systems
that focus on problems such as the self-adaptation of the system’s
components [37], others on data sharing [21], still others on spontaneous and
opportunistic coordination [34]. The approaches that have goals that are nearer
to A3-TAG are those that concentrate on automatic component configuration.
Projects like Gaia [35] provide a middleware for automatic configuration in
Smart Environments. These kinds of systems represent highly integrated en-
vironments and support various stationary and mobile devices. However, they
are not designed to function in ad hoc environments, as they rely on an ex-
isting infrastructure. Another example, the RUNES component-based middle-
ware [12], only targets wireless ad hoc networks on embedded systems. Its goal
is to enable scenarios such as emergency response in which devices need to ex-
hibit coordinated behavior. The approach disseminates the configuration tasks
equally among all devices, and does not exploit resource-rich devices in hetero-
geneous environments (i.e. clustering and re-clustering). In order to overcome
the limitations of these approaches, Schuhmann et al. [22] investigated a Hybrid
approach based on the formation of clusters with balanced configuration loads
for resource-rich devices. These devices represent the “active devices”, while the
resource-weak devices remain passive to avoid bottlenecks. The hybrid approach
automatically adjusts its degree of decentralization with respect to the available
resources in the network. This strongly reduces the configuration time and helps
increase users’ acceptance of ubiquitous systems; it represents a large step to-
wards automatic application configuration. Similar ideas have been applied in
the context of the A3-TAG middleware. A first difference, however, is that A3-
TAG is an innovative solution based on group abstraction that can ideally be
used in any kind of dynamic distributed systems. Second, the reason why A-3
groups its components is not limited to load balancing; instead, policies can be
application-specific and are dynamically configurable.

Other interesting works that have similar goals to ours are those that have
flourished in the context of Organic Computing. Research in organic computing
studies nature to learn how it deals with self-∗ properties. Roth et al. [38] have
presented the OCμ middleware. It is a service-oriented middleware for smart
environments. Organic Managers are assigned to each node in the system to pro-
vide sophisticated monitoring and self-∗ property management. They focus on
providing self-configuration (i.e., initial service distribution under constraints),
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self-optimization (i.e., runtime balancing based on an artificial hormone sys-
tem), self-protection, and self-healing (i.e., recovery planning). von Renteln et
al.[39] [40] have a similar approach that focuses on self-organization and self-
healing. They have developed an AHS (Artificial Hormone System) for mapping
computational tasks onto a system’s processing elements. Their approach can
be used under real-time constraints, and provides features such as partial sup-
pression of tasks and distributed task termination. Although these bio-inspired
works have similar goals to ours, they are profoundly different in their approach.
They have proven through simulation to be scalable, robust, and capable of han-
dling malfunctioning components, yet they lack proper design approaches that
support their application. We, on the other hand, focus on developing a novel
architectural style, and the appropriate abstractions, to ease the design of such
systems as much as possible.

Another thriving area of research is that of multi-agent systems for self-
adaptive systems. In Weyns et al.’s works [41] a situated multi-agent system
is structured as a set of interacting autonomous entities that are situated in an
environment. They employ the environment to share information and coordinate
their behavior in a decentralized fashion. In their work an agent is capable of per-
ception (i.e., a filtered sensing of the environment), decision making (i.e., action
selection through an influence-reaction model), and communication (i.e., inter-
action with other agents). In subsequent work [42], the authors used these agents
to develop bio-inspired patterns for delegate MAS (Multi-Agent Systems). They
developed three bio-inspired and light-weight patterns to tackle the problems
of global-to-local and local-to-global information dissemination, and of stability,
i.e., how to limit the continuous system revisions that may be due to arising pos-
sibilities and problems. These works assume a completely decentralized solution,
with all the design complications that this implies. Instead, the A-3 initiative
strives to develop abstractions for reasoning on a decentralized system, without
loosing the advantages of having components that play more “central” roles in
the self-adaptation. A-3 also provides a clearer notion of composition, which we
believe allows the designer to more easily come up with global solutions through
simpler local reasoning.

Another important work in the field of multi-agent systems was provided by
Shehory et al. [43]. In their work they proposed to coordinate multiple agents
through distributed coalition formation. Coalition formation allows a system to
optimally tackle multiple incoming task requests through the prioritization of
these tasks, since in real-world scenarios it may not be even possible to accom-
plish them all. In this work, each agent has a set of quantifiable capabilities,
and each task is described by the capabilities that are required for it to be
performed. Moreover, each completed task produces a quantifiable benefit. A
coalition is a group of agents that group together to perform a common task.
Agents join groups if the joint benefits of the tasks they are able to complete
are at least equal or greater than the benefits they would receive by remaining
outside of the groups. This work differs from ours because it formalizes why
certain agents/components should group together in a system, while we focus
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on the assurances they have once they are grouped. In a sense the works can be
considered complementary, and we are considering further investigation this in
our future work.

Coordination models that are based on message passing (e.g., Publish and
Subscribe) are also of general interest to our work. In these coordination models
data is typically available only at the moment it is published. Generally speaking,
most approaches based on Publish and Subscribe [25] require the simultaneous
presence of all the coordinated parties. Solutions such as lease mechanisms [23]
have been proposed; they can tolerate message loss, however, they also consume
a considerable amount of network resources. In literature there have been in-
vestigations on how to implement data sharing coordination on top of message
passing techniques [21,24,18,26] to overcome this problem. A detailed analysis of
relevant approaches, however, shows that there are still major recurring limita-
tions regarding system flexibility and scalability. In order to manage the diversity
and dynamics of such systems, a middleware needs to be able to self-adapt and
disseminate new configuration tasks depending on the needs and availability of
its components. The A3-TAG initiative is being developed with these two goals
clearly in mind.

Finally, many approaches in the field of self-organizing peer to peer (P2P)
networks focus on means to achieve reasonable performance by avoiding mes-
sage overhead and congestion, such as [36] and [44]. These techniques, however,
have been shown to be costly and inefficient with high churn rates. One way to
overcome these problems has been to introduce group-based solutions. Similarly
to A-3, these choose a number of key peers, that are less prone to suddenly enter
or leave the system, and use them to implement the management duties. Scope-
based approaches [45] connect peers that have common interests, yet this is not
always feasible with mobile peers that have limited resources. Location-based
approaches [46] [47] and proximity-based approaches [49] [48] [50] attempt to
solve these problems by taking into account the peers’ locations and concepts
such as multi-hop forwarding. Nevertheless, these protocols are still not highly
scalable, since they involve all the peers and risk flooding the network. Our ap-
proach is a group-based approach that pushes research in this area forward by
exploiting a more rational distribution of the key peers (i.e., the supervisors) to
obtain greater optimization.

3 A3-TAG’s Main Concepts

A3-TAG simplifies the coordination of distributed systems through the notion
of group. Instead of attempting to coordinate a very large group of components,
which may enter or leave the system freely, we reduce the problem to the co-
ordination of groups of components, which are fewer and less dynamic in their
behavior. Therefore, a group reunites multiple components that we assume can
be coordinated as a unique identity.

When a component enters a group, it can either be a supervisor or a supervised
component. By definition a group can have only one supervisor, and the first
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component to enter the group must assume this role, while it can have as many
supervised components as needed. This allows coordination to be achieved on a
smaller scale. Indeed, supervised components can use intra-group communication
to pass on information to their supervisor(s), so that is can digest the data it
receives and push back any behavioral directives it may have.

The complexity that lies in coordinating the entire system is managed by
composing such groups. This is achieved by allowing components to belong to
more than one group at a time, and to allow them to play different roles in
different groups.

(a) (b)

(c) (d)

Fig. 1. Group composition

Figure 1 illustrates how two groups can be composed. White circles repre-
sent supervised components, while grey circles represent supervisor components.
Two-colored circles represent components playing two different roles in two dif-
ferent groups. In Figure 1(a) we have a supervised component that simultane-
ously belongs to two groups. This means that it sends its information to two
different supervisors. It is up to the supervised component to harmonize any
contrasting directives that might come from its supervisors. Figure 1(b) intro-
duces hierarchical composition. A top group is supervising three components.
However, one of these components is actually hiding the existence of a second
“nested” group. This component contributes to the top group with a digest of
the knowledge it collects from the bottom group. This allows the top group’s
supervisor to have a complete view of the system, without having to interact
with all the components in the system. Figure 1(c) extends this composition by
making it bi-directional. Both supervisors have a complete view of the system.
Finally, Figure 1(d) shows a more “classic” hierarchical solution for coordina-
tion. We have two bottom-level groups, and each group’s supervisor is part of
a higher-level group through which they can be coordinated. The higher-level
group’s supervisor is, at least in this figure, a centralized coordinator.
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3.1 Components

A3-TAG alleviates the development task by allowing the developer to focus
on the application logic that the various components in the system need to
provide. All group management is delegated to the A3-TAG middleware, and is
transparent to the application developer.

When developing an A3-TAG application, the first step is to define the groups
that need to exist within the system. This is achieved by describing each group
with a XML map of application-specific keys and values. The second step is
to define the components that will participate in the system. Components are
also described through application-specific maps, so that the middleware can
automatically map components to groups.

The A-3 style states that each component can belong to multiple groups.
For each group it can either play the role of the supervisor, or the role of a
supervised node. For each role, in each group, the developer is required to provide
a behavioral implementation. When the middleware places a component inside
a group, it tells the component which of its behaviors it needs to activate. If the
component is the first component to join a group, it will activate the supervisor
component behavior for that group; if not, it will activate the corresponding
supervised component behavior.

When developing a component’s behavior, the developer can access three im-
portant features provided by A3-TAG: communication, views, and state manage-
ment. While communication is important both for supervisors and supervised
components, views and state management are currently only provided to super-
visors.

The middleware offers advanced communication capabilities based on asyn-
chronous messaging. Supervisors can send messages to their supervised com-
ponents using broadcast, multicast, and unicast messages. In the first case the
message is sent to all the supervised components that are inside the group. In
the second case the message is sent to a subset of the supervised components.
The subset is determined using component descriptor matching. In practice, if
a supervised component’s descriptor map contains a desired set of values, it will
receive the message. In the last case the message is sent to a single supervised
component, which is determined through its unique identifier. In our current
implementation the identifier is the component’s IP address. Supervised com-
ponents, on the other hand, can only send messages to the supervisor of their
group.

All messaging techniques in A3-TAG provide the following assurances. First
of all, messaging is reliable and communication from the supervisor to the super-
vised nodes is provided with virtual synchrony. Virtual synchrony ensures that
the messages are delivered to all the intended recipients, and in the correct order.
Second, messaging can be temporarily delayed for a recipient if that recipient
has momentarily disconnected from the group. The delay is only successful if the
recipient returns to the group before the message’s timeout expires.
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The middleware also offers views. This allows supervisor components to un-
derstand how many, and what, components are in its group at any given time.
This can be a vital piece of information when determining its own application
logic.

Finally, the middleware offers state management. This allows supervisor com-
ponents to save arbitrary data to the middleware, where they are kept redun-
dantly, so that they can be recovered at a later time. This simplifies supervisor
substitution when there is a supervisor failure, since it allows the new super-
visor to more easily continue from where the previous supervisor left off, with
minimum downtime.

3.2 Assurances Provided by A3-TAG

Despite the many proposed solutions to design and implement self-adaptive sys-
tems, the actual assurances provided by these approaches have been often ne-
glected. Self-adaptive systems can provide effective solutions to tackle real prob-
lems if one can trust their capability to coordinate the distributed components’
reactions to the changes in the context or in the requirements.

A3-TAG tackles assurances at both the architectural and application level. It
is based on group-based communication, and we provide an implementation that
guarantees both virtual synchrony and delayed communication. We also provide
state management through a distributed and reliable tuple space. This means
that vital application data can be stored and later recovered, even after the
component that originally stored the data has left the system. Transparent group
management lets developers assume that group membership is alway correct and
accurate: there is no need to waste resources at the application level to manage
who the members of a group are.

These low-level guarantees, along with groups, can then be exploited to pro-
vide higher-level ones. For example, reliability and robustness can be provided
through special-purpose groups. Instead of having a single supervisor per group,
one may think of defining special-purpose groups of supervisors, containing nodes
that are solely created to be available and ready as backups. The tuple space
ensures that all these nodes have access to the same information, and thus as
soon as the official supervisor disappears, one of its deputies can easily substitute
it and keep the group on track.

Groups can also be exploited to force particular behaviors onto some nodes of
the system. Grouping nodes with similar characteristics and behaviors becomes
very natural, and the boundaries provided by the group become a natural bor-
der against unforeseen behavioral changes. Moreover, groups can help manage
context changes. Indeed, the rules that govern the creation of groups can change
dynamically, and thus they can transparently accommodate changes in the con-
texts of operation. Finally, nodes can come and go, meaning that they can enter
and/or leave contexts freely. This gives designers a lot of flexibility when they
develop their self-adaptive systems.
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4 Inside the A3-TAG Middleware

A3-TAG1 fosters a strong separation of concerns between the application’s log-
ical layer, in which designers define the groups and the components that make
up the system, and the group management that occurs transparently inside the
middleware. This section gives the reader some insights into what actually oc-
curs within the middleware, and how it self-adapts to ensure efficient group
management.

Internally the middleware maintains a topology of so-called coordination
groups. This topology is initially identical to the group topology defined at
the application layer. Indeed, for every application group the middleware starts
a corresponding coordination group. As the system evolves, however, the initial
coordination group evolves to become a complex topology of multiple smaller co-
ordination groups. This is done to optimize the number of active communication
links that are needed to ensure correct and efficient messaging inside the cor-
responding application group, and is completely transparent to the application
developer.

Coordination groups, just like their application-level counterparts, exploit the
main A-3 abstractions. Each coordination group has a supervisor and a set of
supervised components, and coordination groups are composed by allowing com-
ponents to belong to more than one coordination group at a time. The supervi-
sors are automatically managed so that the coordination group topology never
gets disconnected.

Coordination group topology management is achieved by the middleware
mainly to prevent message congestion when there is a sudden increase in the
number of components in a coordination group. If the number of components in
a coordination group exceeds a configurable threshold, the middleware reacts by
splitting the group into two smaller ones, and by connecting them hierarchically
to ensure that no message being sent at the application level is ever lost. This
solution is activated immediately, in order to attempt to solve the congestion
problem as soon as possible. However, this is done at the cost of having to man-
age multiple coordination groups to ensure the consistency of the corresponding
application level group. This is why the system will also periodically attempt to
contract the topology of coordination groups by reducing the number of groups
being used. This is done if the system can remove some of the groups and move
their orphan components into another group, without causing congestion thresh-
old values to be exceeded. As the coordination topology adapts, the coordination
group that contains the application group’s supervisor component is called the
master coordination group.

Our middleware [27] is built as an extension to REDS [28], a distributed pub-
lish and subscribe middleware. REDS implements distributed algorithms that
support the dynamic reconfiguration of its infrastructure, making it resilient to

1 The A3-TAG middleware is currently available for download at
http://code.google.com/p/rtag/ , together with example code, and the con-
figurations we used to evaluate its performance.

http://code.google.com/p/rtag/
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changes in the infrastructure’s own topology. A3-TAG exploits REDS for group
communication and for managing the topology of groups, and adds a shared
memory space under the form of a distributed tuple space that keeps track of
how the topologies of application and coordination groups change as components
enter or leave the system. This is instrumental in how the middleware searches
for a group in which to add a new component, in how it decides to create a new
group and compose it with the rest of the system, and in finding the correct
destinations for when application messages are sent. It is also instrumental in
providing the views and the state management features discussed in the previous
section.

The tuple space is implemented using the LIGHTS framework [32]. LIGHTS
provides the traditional Linda [30] tuple space abstractions, and the modularity
and encapsulation provided by its object-oriented design gave us ample room
for customization. In LIGHTS, processes communicate through a shared tuple
space that acts as a repository of elementary data structures, or tuples. Each
tuple is a sequence of typed fields. They are added to a tuple space by perform-
ing an out(t) operation, and can be removed by executing in(p). They are
anonymous, thus their selection takes place through pattern matching on their
content. The argument p is a pattern whose fields can contain either actuals or
formals. Actuals are values, while formals act like “wild cards”. If multiple tuples
match a template, the tuple space selects one non-deterministically. Tuples can
also be read from the tuple space by using the non-destructive rd(p) operation.
Both in and rd are blocking, that is, if no matching tuple is available in the
tuple space the process performing the operation is suspended until a matching
tuple becomes available. A typical extension is to include a pair of asynchronous
primitives inp and rdp, called probes, that allow non-blocking access to the
tuple space.

Our tuple space contains four different kinds of tuples. Application group
tuples are tuples that are used to keep track of the groups that exist at the
application level. Each tuple contains a description of the group’s supervisor,
and descriptors for the components that exist in that group. Communication
tuples contain the messages that have been sent within the system, and that
are waiting to be removed when their timeout value is up. Coordination group
tuples are conceptually similar to the application group tuples. The middleware
keeps one tuple for each coordination group, and uses them to keep track of the
internal coordination topologies. Each tuple contains a description of the group,
as well as descriptions of its components. State management tuples are used to
store information that the application layer has decided to replicate, and make
available to components that need to replace a failing, or leaving, supervisor.

As previously stated, the middleware will self-adapt its coordination groups
to optimize the message exchanges that occur within the system. In our cur-
rent implementation this occurs as a reaction to one of two possible situations:
either a group has become congested, or the topology of coordination groups
gets disconnected. The middleware will also perform periodical re-organization
to optimize the internal topology.
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Congestion occurs when there are too many components in a group. This is
detected by the middleware, which is continuously keeping track of the nodes
that enter or leave the system in order to keep the application and coordina-
tion group tuples in the tuple space up-to-date. When the middleware sees
that a coordination group has grown beyond the pre-defined threshold, it
attempts to move the excess nodes to another coordination group inside the
same topology.

The middleware starts by looking up one group in the hierarchy, if possible,
to see whether it can send over some nodes. Access to the upper group is
guaranteed by the fact that the congested group’s supervisor is also partic-
ipating in that group, and, therefore, has access to its coordination group
tuple. If there is no room in the upper group, the supervisor asks its super-
vised components if any of them is leading a sub-group, and if they have
room for extra components. If there are no sub-groups, or they have no
room, the supervisor asks one of its supervised components to create a new
sub-group. In general the strategy is to attempt to move nodes not “too far
away” from the congested group. Moving them too far away would be in
contrast with the “cleaning up” that the middleware will later attempt to
contract the topology. All the corresponding coordination tuples in the tuple
space are updated.

More details as to the advantages that the topological re-organization brings
about are provided in Section 6.

Coordination Group Supervisor Failure means that the corresponding co-
ordination group gets momentarily disconnected from the coordination topol-
ogy. This is immediately caught by the middleware, which attempts to re-
connect the coordination group by finding a substitute supervisor. The mid-
dleware contacts all the components in the group and asks each to evaluate
a fitness function. The component with the highest fitness function becomes
the new supervisor. A3-TAG provides a default fitness function that takes
into account the resources that are available at that time to each component
(e.g., battery life). However, we also allow system designers to override the
fitness function to take into account application-specific or context-specific
runtime information.

When a new supervisor has been chosen, it looks into the tuple space to
see where its coordination group was previously attached in the topology. In
practice, it looks at the description of the previous supervisor, which contains
the other groups in which the supervisor was participating. All the corre-
sponding coordination tuples in the tuple space are updated accordingly.

Periodical Re-Organization looks at the coordination tuples inside the tuple
space, and finds two groups that can be merged. In particular, the system
analyzes the topology and merges groups that are far from the master group
with ones that are closer.
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Fig. 2. Group merge

4.1 Adapting the Coordination Group Topology

All the changes in the coordination topology are performed through low-level
group operations such as group creation, discovery, merging, deletion, splitting,
and division.

Creation and Discovery. When a component enters the system the middleware
looks at its application-specific description and attempts to find one or more
coordination groups in which to place it. If there are no groups that can accept
the component, the component must create its own application group and be-
come its supervisor. This will result in the creation of the coordination master
group as well. If the component is not capable of performing as a supervisor, it
cannot join the system until an appropriate group appears. If two components
execute this procedure simultaneously, they might accidentally create two ap-
plication groups matching the same query. However, this is not a problem since
the middleware will proceed to merge them if.

Merges and deletions. When the middleware needs to merge two groups, it deletes
one of the groups and moves all its components to the remaining one. Figure 2
shows an example in which group B is merged into group D: group B is deleted
and its components are moved to group D. Group B contains three components:
component number 5 is its supervisor, while components 8 and 9 are supervised
components. These three become supervised components in group D, and start
being managed by supervisor component 2. Component 9, however, is also a su-
pervisor in a third group; moving component 9 to groupD causes the entire group
to be moved “beneath” groupD. The coordination tuple describing groupB is re-
moved, and the coordination tuple describing groupD is updated to reflect its new
configuration. The coordination tuple describing the group managed by compo-
nent 9 is also modified to reflect its new place in the hierarchy.

Figure 3 illustrates how the middleware can delete groups. Every time we
delete a coordination group, a number of components become orphans, and the
middleware needs to find suitable groups in which to place them. When the mid-
dleware deletes a group inside a hierarchy, the deletion does not propagate to
the sub-groups. In the example, the middleware only deletes group B. Compo-
nents 4, 5, and 6 are all moved into the group managed by component 1, and the
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group managed by component 6 is left intact. In the tuple space the coordination
tuple pertaining to group B is deleted, and the coordination tuples describing
the groups managed by components 1 and 6 are updated accordingly.
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Fig. 3. Group deletion
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Fig. 4. Group split and division

Splits and Divisions. Splits and divisions cause new groups to stem from exist-
ing ones. When the middleware splits a group it takes all the group’s supervised
components and uses them to create n sub-groups that are added hierarchically
“beneath” the original group being split. In the top example of Figure 4, the
middleware splits group A into three sub-groups. One sub-group is already be-
ing managed by component 5. The other two sub-groups are constructed using
components 2, 3, 4, and 6. Two of these are selected to be the new sub-group
supervisors (2 and 5), while the other two become the supervised components
of the new sub-groups (3 and 6). In the tuple space the middleware creates two
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new coordination tuples for the groups managed by components 2 and 5, and
updates the application group and coordination tuples that describe the applica-
tion and coordination groups managed by component 1. When the middleware
divides a group it takes all the group’s components, including the supervisor,
and uses them to create n groups that are placed within the group topology. In
the bottom example of Figure 4, the middleware divides group B into two new
groups supervised by components 2 and 5 respectively. Component 4 is super-
vised in the group managed by component 2, while component 6 is supervised in
the group managed by component 5. In the tuple space the middleware deletes
the coordination tuple that describes group B, and creates new tuples for the
groups managed by components 2 and 5. It also updates the coordination tuple
that described the group managed by component 1 accordingly.

5 A Self-coordinating Greenhouse

The most important factors for the quality and productivity of plant growth
are temperature, humidity, light, and the level of carbon dioxide. Continuous
monitoring of these environmental variables can help us be more aware of the
plants’ needs, as well as speed up their growth while achieving remarkable energy
savings, especially during the winter. The problem is becoming more and more
complex because of the size of some (industrialized) greenhouses and because
of the variety of plans that need to co-exist one by the other. These factors
require means to improve efficiency, and make local adjustments to the lights,
ventilation, irrigation, heating and the other systems supporting the greenhouse.

In our example the greenhouse has been divided into different areas. Each
section has sensors to monitor the area’s temperature, humidity, and CO2 level,
as well as actuators to control fans, the irrigation system, and fertilization sprin-
klers. Plants are brought in and out of the greenhouse on carts, which can be
of different sizes and contain many plants; they must however all have the same
needs in terms of temperature, humidity, and CO2 level. In practice, the most
straight-forward strategy is to keep plants of the same kind, and of the same age,
on the same cart. Our goal is to configure the greenhouse to let carts with similar
needs —in terms of temperature, humidity, and CO2 levels— to be placed in
the same grid area. The continuous monitoring of vital values, along with the
proper activation of the fans and irrigation systems, help maintain the appro-
priate micro-climates for the different species.

We modeled the greenhouse by introducing a group for each grid area in the
greenhouse, one component for each sensor, and one component for each actua-
tor. We then introduced one component for each of the carts that can enter the
greenhouse. Finally, each grid area was given a supervisor component (a dedi-
cated server) capable of identifying the needs of its carts, collecting monitoring
data from its sensors, and issuing enactment directives to the actuators. The
model of the greenhouse is completed by the addition of a group that re-unites
all the area-level supervisors of the greenhouse so that they can cooperate. Fig-
ure 5 shows the initial configuration of two of the greenhouse’s grid areas, in
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which there are no carts. The area’s supervisor is shown as a square. A circle
with an “I” stands for the irrigation actuator, a circle with an “F” stands for
the fan, and a circle with an “Fe” stands for the fertilization sprinkler. Circles
with a “T” are temperature sensors, circles with an “H” are humidity sensors,
and circles with a “C” are CO2 level sensors. Although the figure only shows
four sensors for each type, the actual system actually had many more sensors.

The greenhouse uses A3-TAG to gracefully re-configure itself, both at the ap-
plication and coordination level, to oversee its operation, and cope with anoma-
lies. The following examples cover five basic scenarios about possible anomalies.

5.1 Sudden Change in a Micro-climate

The first scenario we tackle is the sudden rise or fall, within an area, of its
temperature, humidity, or CO2 level. Very rapid changes in a micro-climate can
be very bad for the plants, therefore the area’s supervisor needs to react as soon
as possible.

Let us consider the case in which the temperature of a single area gets too
hot. Under normal circumstances sensors are configured to communicate their
average readings to the supervisor every four hours, and to send an emergency
notification as soon as they sense a temperature that is too high. Since a sensor
can malfunction, or be placed in the wrong position, a single emergency notifi-
cation is not enough to turn on the fans; the supervisor requires that at least
ten sensors report the same high temperatures.

If the problem exists, however, many sensors may notify the supervisor in a
very short amount of time, and this may cause congestion. Therefore, we decided
to implement the following strategy. As soon as a sensor reads a temperature that
is too high, instead of communicating it to the supervisor, it creates a new “Tem-
perature Emergency” sub-group, becomes its supervisor, and connects it to the
area’s supervisor. If other sensors also read temperatures that are too high, in-
stead of telling the supervisor, they join the emergency group. If more than one
emergency group is created concurrently, the groups are merged into a single one.
The supervisor of the emergency group continuously monitors the number of sen-
sors it has in its group. If this number grows beyond a threshold, an emergency
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Fig. 6. The Temperature Emergency sub-group

ticket is sent immediately to the supervisor of the area, which then decides to turn
on the fans. Figure 6 shows the new configuration in the area’s group, as well as
what is going on within the middleware in terms of coordination groups. The ap-
plication layer shows two groups: the area’s main group, supervised by a dedicated
component, and the temperature emergency group, supervised by a sensor that
is also a supervised component in the main group. The coordination layer shows
five groups: the master coordination group, two sub-groups for managing the sen-
sors that are not seeing high temperatures, and two groups for the temperature
emergency group. With this setup, if the sensor supervising the emergency group
fails, the middleware automatically chooses a substitute sensor from within the
group and promotes it be the new supervisor. This has the effect of reconnecting
the emergency group to the area’s coordination group.

5.2 Grid Area Server Dies

The second scenario we tackle in this chapter is the sudden failure of an area’s
supervisor (server), and how to cope with the emergency while the greenhouse
staff replaces it. When a server fails, an entire area becomes unmanaged, and
this can have strong negative consequences on its micro-climate. Our solution
is to exploit the group that re-unites all the servers to elect a replacing server,
that is, the server of one of the other areas, that can take over the failing one.
The selected server now needs to manage two different areas, with two different
sets of requirements in terms of micro-climate.

Figure 7 shows the application-level view of the two adjacent areas. The left
area’s server has failed, and therefore it is no longer part of the system. The group
that re-unites all the servers in the greenhouse selects the server in the right area
to take over. The middleware automatically connects all the components that
were connected to the failing server to the new server, effectively creating the
situation shown in Figure 7. In our application we decided to piggyback sensor
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ids and application group ids to all the messages that are sent to a server. This
allows servers to effectively manage more than one area at a time.

As soon as all the application and coordination groups reflect this new sit-
uation, the server exploits A3-TAG’s state management feature to recover the
micro-climate requirements of the new group it has to manage. Together with
the requirements it also receives information about what chores the old server
was entrusted with, and what chores it had already completed before failing. For
example, let us imagine that the server was told to start the irrigation system
once a night, at midnight, and to keep it on for fifteen minutes. If the server
fails before the fifteen minutes are over, the new server needs to know that the
irrigation system had started, and at what time, in order to correctly complete
the task. Finally, the new server also checks the tuple-space to see if there are
any pending messages for the old server that were not correctly delivered. This is
particularly important in the case shown in Figure 7, in which the old server was
connected to a temperature emergency group that may, or may not, have already
issued its emergency notification. Indeed, it is possible that the notification was
sent, but that the server failed before receiving it. Thanks to the communication
tuples in the tuple-space, this potentially harmful situation is easily managed,
and action can be taken immediately, without waiting for the emergency group
to issue a second delayed warning.

5.3 Aging Plants

The third scenario we tackle is related to the fact that plants age over time:
they grow into new phases of their lives and change requirements in terms of
micro-climate. When the plants on a cart change their requirements, the cart
communicates this to the area’s supervisor through an appropriate message.
These messages lead to changes in the desired temperature, humidity, and CO2
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levels, and in the maximum deviations that would be considered acceptable for
these values. The reason is that when physical objects, such as carts, share a
common space with different requirements, it is impossible to satisfy all of them.
Instead, the system needs to resolve conflicting requirements by adopting an
appropriate strategy. In our example we have decided to adopt a “Least Misery”
strategy, that is one that results in the least discomfort for all the requesting
plants when averaged.

When a cart changes its requirements, the server recalculates the averages,
and checks them against the requirements it has collected for all the carts it is
managing. If all the carts in the area can accept the new averages, the server
instructs the area’s actuators to implement the change in the micro-climate. If
even one cart cannot accept the new averages, the server refuses the cart’s new
requirements and initiates a strategy that will migrate it to a different area.

A

Group of area servers

Area 1 Area 2

New 
Reqs

New 
Reqs

A

accept
?

yes

(1)

(2)(3)

(4)

(5)

Fig. 8. Finding a new group for a cart of aging plants

In order to migrate the cart to a different area, the server exploits the group
that re-unites all the servers in the greenhouse (see Figure 8). In practice, the
cart’s requirements are sent to the top-level supervisor (step 1), which broadcasts
them to all the area servers (step 2). If the areas have enough physical room to
accept the cart, they simulate the “least misery” strategy to see what impact it
would have on their micro-climate and on the carts they are already managing.
A group will declare it can accept the cart only if this does not cause problems
to any of its other carts (step 3). If more than one acceptable group is found,
the server migrates the cart to the one that is nearest (step 4). If no group is
found, the server signals the problem to the greenhouse’s administration.

5.4 Sudden Surge in Specific Plant Requests

The fourth scenario is about the sudden surge in requests for a specific kind of
plant. This is typically tied to festivities. For example, in certain geographical
areas it is common for greenhouses to stock many poinsettias during the month of
December. The reason is that it is a flower commonly associated with Christmas.
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In this case the greenhouse’s goal is to facilitate the selling and re-stock of this
flower. For this reason, the greenhouse decides to use an area that is near its
entrance, and to extend it with a temporary setup that occupies part of the
greenhouse’s parking lot, with temporary fans, a temporary irrigation system,
and temporary sensors.

Since the greenhouse does not want to install an additional server component
just for a few weeks, the system is built to consider the external area as an
extension of the internal one. In practice, the system sees one big application-
layer group, managed by a single server. The high volume of poinsettias entering
and leaving the system provides a good stress test for A3-TAG, since the system
needs to increase its internal coordination groups to avoid congestion, and to
contract then whenever possible. Indeed, as the topology of the coordination
groups expands, more carts need to behave as supervisors and route messages.
However, they become failure points that, if lost, can cause the coordination
group topology to split into two disconnected sub-topologies. These scenarios
are entirely managed by the middleware according to the strategies presented in
Section 4.

5.5 Plant Illness Emergency

The fifth and last scenario regards the insurgence of a plant disease that needed
to be cured, and confined so that it does not spread to nearby plants. In our
greenhouse example there are no sensors that can automatically discover a dis-
ease. Instead, human experts visit the premises once a day to check for sick
plants. When a sick plant is found, the expert uses a smart portable device to
connect to the area being monitored and send a sickness emergency message. De-
pending on the sickness being signaled, the server can react in different ways. It
can decide to react locally by distributing the appropriate medicine through the
area’s fertilization sprinklers, or it can decide to interact with the other servers in
the greenhouse, and have the medicine sprayed in selected neighboring areas or
in all the areas in the greenhouse. Whichever the case, the area servers proceed
independently and turn on their fertilization sprinklers.

Sprinkling medicine is not the only solution that the area’s server can enact.
It can also try to contain the sickness by moving the cart with the sick plants to
a group that only contains plants that cannot be infected. This would hopefully
have the effect of slowing down the contagion, allowing less medicine to be sprin-
kled in the greenhouse. This re-organization is performed similarly to how we
managed the migration of aging plants. Indeed, the server needs to find a group
that has enough room to accept the cart with the sick plants, only has plants
that cannot be infected, and whose micro-climate will continue to be acceptable
for its plants even if the new cart is accepted with its requirements. Finally,
depending on the sickness and on the state of advancement of the contagion, the
system can also decide to remove the cart from the system entirely. In this case,
the system sends a notification to the greenhouse’s administrative team.
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6 Evaluation

The greenhouse scenario requires numerous wireless sensors to be deployed into
a relatively small area, in order to effectively monitor the temperature. When
networks become crowded many typical wireless networking problems can be
aggravated. For example, we can have node interference, routing proliferation,
and nodes can use high transmission power to exchange messages directly with
distant nodes, limiting the reuse of the wireless bandwidth.

A typical solution is to limit the number of neighbors that are within range
of one another. However, this must be achieved in such a way that no messages
are ever lost, not even when the network is showered with events. A3-TAG’s
topology control helps overcome this problem. Instead of using the network to
the full extent of its connectivity, we choose to artificially restrict the network’s
topology. The topology is determined by the subset of active nodes and links
along which direct communication is possible. In A3-TAG we have a network in
which a number of nodes play the special supervisor role. These nodes constitute
the network’s communication “backbone”. Indeed, we communicate using the
links within this backbone, and direct links from all the other nodes towards the
backbone. Furthermore, our self-adaptive topology tries to adapt itself to the
needs of the ongoing communication, even when the network is showered with
events.

To evaluate our approach we need to assess its “scalability”, its “algorithm
overhead”, that is the number of additional messages needed to ensure the de-
sired topology control, its “robustness to churn”, that is its capability to adapt in
acceptable time when there is a high node churn rate, and its “throughput effec-
tiveness”, that is its capability to optimize the active links without jeopardizing
the network’s connectivity and without causing message loss.

Although we have fully implemented the greenhouse example in a simulated
environment, to assess A3-TAG’s performance with respect to the above metrics,
it is sufficient to analyze the behavior of a single, yet highly crowded, area of the
greenhouse. In our tests we setup an application group for a group of sensors that
autonomously read temperature values and send them to their supervisor once
every four hours. When the temperatures become too high or too low, all the
sensors attempt to notify the supervisor at the same time, creating high traffic. In
our experiments we dynamically changed the number of components in the group
to analyze how the middleware scaled, what its algorithm message overhead was,
and its degree of throughput effectiveness. We also artificially created different
churns of components, with different rates, to analyze its robustness.

The tests were conducted under the following assumptions. First, we assume
that the setup does not introduce any sort of communication limitations. Second,
we assume that we can have up to 60 messages per second in our network (MAC
55.6Kbps, payload 40Kbps). Trying to send more messages will cause message
loss and bandwidth reduction. Therefore, throughput effectiveness is achieved
when the number of messages per second sent to a single node is less than 60.

The evaluations were performed as fixed-frequency cycle-based simulations in
PeerSim [10]. In PeerSim peers are activated in a sequential fashion, and are
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executed in isolation, without concurrency. This cycle-based model allowed us
to scale the experiments up to 104 peers. The peers were randomly scattered
within a 7-unit square, and the supervisor node was located in the center of the
square. For each experiment we performed 32 independent runs, obtaining an
estimated P-value of less than 0.5 ∗ 10−1, which means that the experiments are
statistically significant. Here are some of our conclusions:

– Scalability: Our experiments have shown that we are able to apply topology
control up to 104 nodes, and that the approach is conceptually independent
of the network size. In our experiment we established the number of PeerSim
cycles required to go from a completely unbalanced network to an optimized
A3-TAG topology of coordination groups. When we changed the size of the
network from 100 to 5000 nodes, the number of PeerSim cycles required to
adapt the system increased from 6 cycles to 8. The expected worst-case time
complexity for topology control is therefore O(1). For more details on this
conclusion the reader can look to [7].

– Algorithm Message Overhead: Our experiments have shown that the
worst-case hotspot message complexity per peer is O(log(N)). Hotspot mes-
sage complexity is defined as the maximum number of messages sent, re-
ceived, and forwarded by one single element in the network. In a distributed
system the communication load among all elements needs to be balanced
to minimize the hotspot message complexity and avoid overloading any ele-
ment. To measure this metric we had each component send a network-wide
broadcast.

– Robustness to Churn: In our experiments we fixed the network size and
started randomly killing components, and then pinged all the nodes after
4000 milliseconds. We further extended the experiment by re-inserting the
components into the system and waiting another 4000 milliseconds to ping
them again. All the components were able to respond to the ping correctly,
regardless of the churn rate. This experiment is similar to one discussed
in [7], where we compared our approach with a completely decentralized
solution based on LIME.

– Throughput Effectiveness: Figure 9 shows how A3-TAG compares to a
flat network. The graph shows the average number of messages received by
each node per cycle. With A3-TAG this number is shown to be always less
than 40. While, in the flat network, when we go higher than 300 nodes the
average grows to more than 60 messages. The supervisor node might end
up receiving a message several times (from different directions), while other
messages might get lost.

Our evaluations have still not allowed us to understand how to set the optimum
threshold for nodes in a single coordination group. To gather an initial assess-
ment, we followed the guidelines proposed in [9], which state that the number
of neighbors of a single node in a balanced network should grow like a.log(N),
where N is the total number of nodes and a is a bound constant. For a less
than 0.074 the network is asymptotically disconnected, while for a greater than
5.1774 the network is asymptotically connected.
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Fig. 9. Throughput Effectiveness

In our experiments we placed A3-TAG’s coordination group membership thresh-
old to a maximum of 4 nodes, when we had up to 50 nodes in the network. We
then altered this number according to a ∗ log(N), with a equal to 9.5. This al-
lowed us to obtain a fair comparison with flat networking, and allowed us to
avoid having un-optimized topologies. For example, if we were to fix the thresh-
old to 5 when we have 100 nodes, and then keep the same threshold and increase
the number of nodes to 5000, the number of coordination groups would be too
high, and the grouping would be ineffective. If we were to set the threshold to 40
nodes when we have 5000 nodes in the network, and then decrease the number of
nodes to 100, we would end up with just 3 coordination groups. This would not
be much better than having a single big group for all the components. Although
this solution allowed us to gather quite good results, further investigation is
necessary.

7 Conclusions and Future Work

Felicitous systems call for suitable self-adapting middleware infrastructures and
programming models to deal with large, dynamic software systems. A3-TAG
exploits the group abstraction to provide designers with powerful means to tackle
the design and operation of these systems. Moreover, thanks to the A3-TAG
middleware, application components do not need to explicitly deal with group
management, or be worried with inter-component communication. Each node
automatically inherits these capabilities from the group(s) it belongs to. A3-
TAG also continuously adapts its own internal component connection topology
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to preserve group integrity and to ensure message delivery is performant and
robust.

A3-TAG has been developed to avoid any single point of failure and bottle-
necks. Awareness lets failing supervisors be easily replaced, and state manage-
ment lets the new supervisors immediately start from where the old ones left
off. Since the number of supervisors and groups can be changed dynamically,
bottlenecks can be foreseen and prevented accordingly. All these features were
demonstrated in the context of a self-adaptive greenhouse.

The current implementation of A3-TAG is quite demanding in terms of re-
sources and computing capabilities, but many of the underlying concepts could
be used also within networks of devices with limited capabilities (e.g., sensor
networks). To this end, we are thinking of both a light and hybrid versions of
A3-TAG. The former aims to address devices with limited capabilities, while the
latter outsources the supervision to the cloud and concentrates on the integration
of heterogeneous resources.
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Abstract. As service-oriented systems are increasingly composed of
third-party services accessible over the Internet, self-adaptation capabil-
ities promise to make these systems become robust and resilient against
third-party service failures that may negatively impact on system qual-
ity. In such a setting, proactive adaptation capabilities will provide sig-
nificant benefits by predicting pending service failures and mitigating
their negative impact on system quality. Proactive adaptation requires
accurate quality prediction techniques; firstly, because executing unnec-
essary proactive adaptations (due to false positive predictions) might
lead to additional costs or follow-up-failures; secondly, because proactive
adaptation opportunities may be missed (due to false negative predic-
tions). This book chapter reviews solutions for measuring and ensuring
the accuracy of online service quality predictions. It critically analyses
their applicability in the setting of third-party services and supports this
analysis with empirical data.

Keywords: Service-oriented computing, software services, accuracy,
metrics, online quality prediction, online failure prediction.

1 Motivation

Service-orientation is increasingly adopted as a paradigm for building highly dy-
namic, distributed software systems. Those service-oriented systems are built by
composing and integrating individual software services. As a consequence and in
stark contrast to “traditional” software components, not only the development,
quality assurance, and maintenance of the software can be under the control
of third-parties, but the software itself can also be executed and managed by
third-parties [46].

There is an evident trend that service-oriented systems will increasingly be
composed of third-party services accessible over the Internet [56,1]. These third-
party services may include infrastructure services (such as compute and stor-
age resources), platform services (such as middleware and commodity services),
software services (offering specific business functionality), as well as complete
applications offered through the Software-as-a-Service delivery model [5]. As a
consequence, the capabilities and quality of service-oriented systems will more

J. Cámara et al. (Eds.): Assurances for Self-Adaptive Systems, LNCS 7740, pp. 240–265, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and more depend on the quality of their third-party services. Specifically, this
means that service-oriented systems have to become robust and resilient against
failures of their third-party services.

We consider self-adaptation capabilities a key solution to ensure robustness
and resilience against third-party service failures [46,13,41]. In this setting, proac-
tive adaptation capabilities promise significant benefits over reactive adaptation
capabilities. Proactive adaptation allows service-oriented systems to respond to
imminent failures, thus preventing their actual occurrence or mitigating their
impact. As a result, proactive adaptation may avoid the need for costly repair
or compensation activities [26,45,50,6,33,34,28,60].

Online quality prediction techniques are employed to anticipate imminent fail-
ures. Extrapolating past observations of service quality (typically collected by
monitoring the service execution [47]), those techniques provide short-term pre-
dictions of failures, which in turn may trigger proactive adaptations during the
run-time of the service-oriented system.

1.1 Problem Statement and Contributions

The goal of quality prediction is to forecast future quality accurately. Informally,
this means that quality prediction should forecast as many failures as possible,
while – at the same time – generating as few false “alarms” as possible [49].
Accurate predictions are important for proactive adaptation, such as to avoid the
execution of unnecessary proactive adaptations, as well as to not miss proactive
adaptation opportunities.

This book chapter focuses on the following two important challenges for what
concerns accurate quality predictions for adaptive service-oriented systems:

Measuring Accuracy: The literature provides a wide range of metrics to as-
sess the accuracy of prediction techniques. Those metrics have been proposed for
domains such as software engineering (defect prediction), fault-tolerant systems,
cluster computing, and business process management. They include prediction
error metrics (such as root mean squared error, mean absolute error, and rel-
ative error), as well as contingency table metrics (such as precision, recall and
specificity). Although the existing metrics may work well for the above domains,
it remains open whether they can be applied and provide useful results in the
domain of service-oriented systems.

As one key contribution, this chapter revisits existing metrics and analyzes
their potential limitations when applied to service-oriented systems. On the one
hand, we observe that prediction error metrics may be of limited use in assessing
how accurately the need for adaptation may be predicted. On the other hand,
our analysis shows that contingency metrics may be very sensitive to parameters
(such as thresholds for QoS values) and thus may provide quite different results
in slightly different contexts.

Ensuring Accuracy: To ensure accurate predictions, various prediction tech-
niques and prediction models for different domains have been proposed in
the literature (including time series predictions, such as moving average and
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exponential smoothing). Due to the fact that online quality predictions aim at
performing short-term predictions, there is a certain conflict between being re-
sponsive enough to changes in past observations and being too responsive and
thus being perturbed by noise and fluctuations in the past observations [12].

As a key contribution, the chapter shows that similar problems are faced for
short-term prediction of service quality. Complementing previous suggestions on
improving the prediction models [12,3,2], we propose collecting additional (more
frequent) data points to improve prediction accuracy. Specifically, we show that
online testing for service-oriented systems allows systematically collecting such
additional observations.

1.2 Chapter Structure

After an introduction to the fundamentals and state of the art of online quality
prediction for service-oriented systems in Section 2, we review metrics for ac-
curacy assessment in Section 3 and techniques to ensure prediction accuracy in
Section 4. We conclude by sketching remaining research challenges in Section 5.

2 Fundamentals and State of the Art

This section first provides a brief introduction to adaptive service-oriented sys-
tems (Section 2.1), followed by an overview of the state of the art of online quality
prediction (Section 2.2). The section then elaborates on the need for accurate
proactive adaptation (Section 2.3) to motivate the contributions in the remain-
der of the chapter. Finally, it describes the setup of experiments (Section 2.4)
that we will use to empirically support our findings and discussions. Thus, this
section provides the fundamentals for what follows in Sections 3 and 4.

2.1 Adaptive Service-Oriented Systems

The Service Oriented Architecture (SOA) constitutes a set of guiding principles
[32] for building service-oriented systems. Thanks to these principles, servicesmay
separate ownership, maintenance and operation from the use of the software. Ser-
vice users thus do not need to acquire, deploy, and run software because they can
access its functionality remotely through service interfaces. Ownership, mainte-
nance, and operation of the software remains with the service provider [46].

As a result, we can observe the proliferation of third-party software services
that enable organizations to flexibly outsource business functions (typically com-
modity functions) and to focus on the innovative functions which differentiate
one organization from another. As an example, at the time of writing, the seekda
Web service search engine already lists more than 28,000 services on its web-site1.

Integrating third-party services into service-oriented systems implies that these
systems will be subject to changes at run-time in their execution environment that

1 http://webservices.seekda.com/

http://webservices.seekda.com/
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are only under limited control by service integrators [58,55]. Examples include ser-
vice changes, such as new versions of services that are incompatible with previous
versions, the discontinuation of service offerings by their providers, as well as fluc-
tuations in service quality, such as performance, availability and reliability.

Over the past years, many efforts have been made towards adaptive service-
oriented systems.Adaptation refers to the ability of a system to dynamically mod-
ify its behavior and/or structure in response to its perception of the environment
and the system itself, as well as its requirements [15,35]. Adaptive capabilities be-
come essential features to guarantee robust and resilient system operation, once
dynamic changes are not exceptions but the normal behavior imposed on these
systems.

Extensive surveys on adaptive service-oriented systems are provided in [47]
and [38]. The adaptation capabilities that are introduced in the literature fall
into the following two major clusters:

Reactive Adaptation refers to the case in which the system is modified in re-
sponse to deviations in system quality, i.e., failures that are actually observed by
the users of the system. Repair and/or compensation activities have to be executed
as part of the adaptation in order to mitigate the effects of those failures; e.g., the
user is paid a compensation, or certain service invocations are rolled back. Besides
leading to additional costs due to such compensations, reactive adaptation may
have a severe impact on how agilely a system can respond to changes [43,26]. As
examples, the execution of reactive adaptation activities on the running system
can considerably increase execution time and therefore reduce the overall perfor-
mance of the running system, or an adaptation of the systemmight not be possible
at all, e.g., because the system has already terminated in an inconsistent state.

Proactive Adaptation refers to the case in which the need for adaptation is
anticipated and thus preventive action can be taken such as to avoid failures.
Proactive adaptation is thus based on “short-term” predictions, i.e., forecasting
imminent failures that require an adaptation of the running system.

Proactive adaptations can be further classified as described below (Figure 1
provides an illustration using a simple service composition):

a. One class of proactive adaptations aims to execute countermeasures such as
to compensate the impact of actual service failures before they negatively
impact on system quality: As a simple example, if the third-party service s2
in Figure 1a is responding too slow, online quality prediction is used to de-
termine whether this failure in turn implies that the service-oriented system
may respond too slow, and thus may be negatively perceived by its users, or
even violate an SLA agreed upon with its users. As a countermeasure, the
system could replace the not yet invoked service s5 with the faster service
s5′, thereby compensating for the slow response of service s2. Please note
that, due to the time delay between the detection of the service failure of s2
and the observation of the external failure by the user, there is more flexibil-
ity in modifying the system than in the reactive case, i.e., when the system
quality has already been violated.
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Fig. 1. Adaptation types enabled by online failure prediction: a. based on predicted
system failure and b. based on predicted service failure

b. Another class of proactive adaptations aims to execute activities such as to
avoid the impact of predicted service failures. Such type of proactive adap-
tation, allows modifying the system even before a faulty service is actually
being executed. If the system is able to predict that a service failure is im-
minent (but did not yet occur) and that this failure may impact on service
quality, the system can be modified before execution reaches the faulty ser-
vice. As an example, if service s5 in Figure 1b is predicted to respond too
slow (and thus leading to system performance that is too low), that service
could be replaced by a service s5′ known to be faster.

2.2 Online Quality Prediction

As indicated above, proactive adaptation requires prediction of service and/or
system failures.

In various areas of computer science and software engineering, such online
failure prediction or quality prediction has received considerable attention. A re-
cent survey by Salfner et al. provides an excellent overview and taxonomy of the
state of the art in the more traditional area of computer-based systems [49]. Yet,
compared with the increasing complexity, dynamics, and flexibility in these more
traditional areas [49], service-oriented systems face unprecedented levels of dy-
namism, together with a lack of control over third-party services (see Section 2.1).
Thus, different classes of novel techniques as well as adaptations of existing tech-
niques have emerged for predicting the quality of services and service-oriented
systems [42].

Below, we list the major types of those techniques proposed for predicting the
quality of service-oriented systems and for predicting the quality of individual
services, respectively.

2.2.1 Quality Prediction for Service-Oriented Systems
This first class of techniques includes approaches to determine the (end-to-end)
quality of a service-oriented system as perceived by its users.
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– Machine Learning/Data Mining [33,18]: This class of approaches leverages
data mining and machine learning capabilities to train prediction models
using historic monitoring data. Proposed solutions include variants of sta-
tistical methods (such as regression), as well as multi-layer artificial neural
networks [25] for quantitative QoS and decision trees [48] for qualitative QoS.

– Run-time Verification [20,52]: Run-time verification is a formal analysis tech-
nique used to ascertain whether some predefined properties are met at run-
time. The proposed solutions typically suggest using run-time model check-
ing of the service composition model to determine whether it will effectively
be possible for the execution of the service-oriented system to finish success-
fully.

– Static Analysis [29]: Static analysis systematically examines an artifact to
infer certain properties. These properties can include approximations of the
future of the computation; e.g., it can be used to predict ranges (i.e., upper
and lower bounds) for the behavior of the remainder of the computation. Pro-
posed solutions use the service composition structure of the service-oriented
system as a basis to forecast QoS deviations by mapping it to a constraint
satisfaction problem (CSP) [4].

– Simulation [30,31]: During simulation, dynamic models are executed to
mimic the behavior of service-oriented systems and thus to predict their fu-
ture behavior and quality properties. For example, service compositions are
transformed into dynamic models which also model the resources available
to execute system (e.g., number of simultaneous threads). These approaches
often resort to discrete event simulation tools [51].

2.2.2 Quality Prediction for Individual Services
This second class of prediction techniques aims at forecasting the quality of
individual services.

– Time Series Prediction [2,14,39]: Time series prediction models employ mon-
itoring data (i.e., past observations of service behavior) to extrapolate the
future quality of a service. So far these models have mainly been proposed
for response time predictions of service-oriented systems. Typically, time se-
ries predictors include models such as windowed means (moving average) or
exponential smoothing [49].

– Predictive Event-Processing [60,19,44]: Complex event processing (CEP)
aims to detect complex events in streams of incoming raw events. CEP en-
ables immediate and automatic response to a set of predefined situations,
each characterized up-front during system design and deployment. Predictive
event-processing has been proposed as part of proactive event-driven com-
puting, a paradigm that combines event prediction capabilities with decision
making capabilities, targeted at mitigating the effect of predicting undesired
events.

– Online Testing [8,22,50,17]: The previous online failure prediction techniques
all rely on monitoring mechanisms to collect QoS data. In contrast, quality
prediction techniques based on online testing complement monitoring data



246 A. Metzger, O. Sammodi, and K. Pohl

with data actively collected by testing. Online testing means that the service-
oriented system is tested (i.e, fed with dedicated test input) in parallel to its
normal use and operation [9,11].

To keep the remainder of this paper focused, we will limit our discussions to
service quality prediction approaches, as discussed in this sub-section. Ensuring
the accuracy of those predictions will have strong leverage effects on achieving
accurate predictions of system quality. Ultimately, online service quality pre-
diction will enable earlier response to imminent issues and thus leaves more
opportunities for addressing those issues.

2.3 Need for Accurate Online Quality Prediction

We have seen above that, in order to trigger the proactive adaptation of a service-
oriented system, the system needs to be able to predict pending failures. As
motivated in the introduction to this chapter, a key goal of quality prediction is
to forecast future quality accurately, meaning that as many failures as possible
should be forecasted, while generating as few false “alarms” as possible [49].

Below we will elaborate on the relevance of accurate predictions for proactive
adaptation. To this end, Figure 2 illustrates the four situations that may occur
when performing online service quality prediction.
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Fig. 2. Four different situations during quality prediction for service s2

It should be noted that, assuming that respective monitoring mechanisms
are in place, any time a service is executed within the running service-oriented
system, its QoS response is observed. These observations in turn provide the
input for quality prediction. The diagram illustrates this on the left hand side
by sketching the sequence of service along the execution of the service-oriented
system. Those service invocations represent the points in time when monitoring
is performed and thus QoS can be observed.
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As the diagram illustrates, there are two “critical” situations that may occur:

– Unnecessary adaptations: False positive predictions may trigger the adap-
tation of the service-oriented system although the service would have actually
worked as expected. Such unnecessary (or unrequired [2]) adaptations can
have the following severe shortcomings: Firstly, unnecessary adaptations can
be costly. For instance, additional activities such as Service Level Agreement
(SLA) negotiation for the alternative services might have to be performed,
or the adaptation can lead to a more costly operation of the service-oriented
system, e.g., if a seemingly unreliable but cheap service is replaced by a more
costly one. Secondly, unnecessary adaptations could be faulty (e.g., if the new
service has bugs), leading to severe problems as a consequence. Thirdly, as
executing the adaptation takes time, this means that in the worst case, an
unnecessary adaptation will leave less time to address actual failures.

– Missed adaptations: False negative predictions will not trigger an adapta-
tion, although the service will actually fail and this failure could have been
proactively compensated. In case an adaptation opportunity is missed due
to inaccurate failure predictions this obviously can lead to the same short-
comings as faced in the setting of reactive adaptations, i.e., it can require
compensation or costly repair activities. This means, inaccurate predictions
would diminish the overall efficiency of proactive adaptation.

As we will see in the remainder of this chapter, providing accurate failure pre-
dictions can become very challenging in the setting of service-oriented systems if
third-party services are present. The observed quality and functionality of those
third-party services can significantly vary between different service invocations.
For instance, the performance of a third-party service might depend on the load
of the infrastructure at the provider’s side or the network latency if services are
offered over the Internet. As an example, a failure observed at one point in time
(e.g., unavailability of a service because of an overload of the service provider’s
infrastructure) can disappear at a later point in time (e.g., the same service now
responds because of a lower load of the infrastructure).

2.4 Experimental Setup

In the remainder of this chapter, we will refer to experimental data to support
our discussions. We briefly recall the setup of our experiments that we performed
to gather that data (details are available online2).

The experiments are based on: (1) the simulation of an example service-
oriented system and its associated third-party services, together with (2) a pro-
totypical implementation of the various quality prediction techniques (including
time series prediction models and online testing, see Section 2.2.2). We focus on
response time as the QoS property to predict.

The service composition has been constructed and is being simulated such as
to cover usage rates in the range from 0.01–0.20, online test rates from 0.15–0.60,

2 at http://www.s-cube-network.eu/asas/asas.pdf

http://www.s-cube-network.eu/asas/asas.pdf
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as well as service failure rates from 0.15–0.25. Although the service composition
is artificial, it involves data from real services. More precisely, we employ a
pre-recorded raw data set that has been produced by Cavallo et al. [14]. Dur-
ing simulation, we thus can retrieve response times for actual services for the
respective point in (simulation) time.

The service response time data set we used contains up to 2000 data points per
service and serves the following two purposes in our experiment: (1) it is exploited
as input for the quality prediction techniques (e.g., considered as monitoring
data and testing results based on which a prediction is based); (2) it is used to
compute the accuracy of predictions (i.e., serves as source for actual values to
check predictions against).

To simulate the actual invocation of services, we randomly determine the
points in simulation time (i.e., in the range of [1, 2000]) at which the next service
invocation will take place by considering the different usage rates. Similarly, to
simulate online testing of a service, we use the online testing rates to determine
the next point in simulation time when to gather the “test results”.

Concerning the way we have simulated the execution of service invocations
and online tests, we strove to be as realistic as possible. Yet, we used the QoS
data of the services provided by Cavallo et al. to represent both monitoring
data and online test execution results, which may pose a threat to validity.
Concerning the generalization of the results, so far, we have considered only
response time as the QoS property to predict. As part of our ongoing work,
we are performing online testing in a live setting based on a prototype imple-
mentation of our solutions, as well as considering other QoS properties (e.g.,
availability and reliability) and more complex prediction models (e.g., ARIMA,
Markov Chains). Concerning the repeatability of our experiments, the detailed
experimental setup as well as all experimental data and results are available on-
line at: http://www.s-cube-network.eu/asas/asas.pdf. The data set used is
published in [14].

3 Measuring Prediction Accuracy

In the literature, various metrics have been proposed and used to evaluate the
accuracy of prediction techniques. In this section, we review widely used accuracy
metrics and discuss their applicability in the setting of service-oriented systems.
Specifically, we scrutinize metrics for assessing numeric predictions (such as QoS
values) in Sections 3.1 and 3.2, as well as binary predictions (failure / non-failure)
in Sections 3.3 and 3.4.

3.1 Assessing Numeric Predictions

Metrics used for assessing numeric predictions quantify the size of the error
when predicting numerical values, such as response time or availability. Table 1
summarizes typical metrics from the literature that are used for this purpose.

Mean Squared Error (MSE) is the basic and most-commonly used metric [57].
Root Mean Squared Error (RMSE) is useful in that it allows the error to be

http://www.s-cube-network.eu/asas/asas.pdf
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Table 1. Metrics for measuring numeric predictions based on [57]. m̂i predicted, ai

actual, a = 1
n

∑
i ai.

Metric Formula

Mean Squared Error (MSE)
(m̂1 − a1)

2 + . . .+ (m̂n − an)
2

n

Root Mean Squared Error (RMSE) √
(m̂1 − a1)2 + . . .+ (m̂n − an)2

n

Mean Absolute Error (MAE) |m̂1 − a1|+ . . .+ |m̂n − an|
n

Relative Squared Error (RSE)
(m̂1 − a1)

2 + . . .+ (m̂n − an)
2

(a1 − a)2 + . . .+ (an − a)2

Root Relative Squared Error (RRSE) √
(m̂1 − a1)2 + . . .+ (m̂n − an)2

(a1 − a)2 + . . .+ (an − a)2

Relative Absolute Error (RAE) |m̂1 − a1|+ . . .+ |m̂n − an|
|a1 − a|+ . . .+ |an − a|

measured in the same dimension as the QoS value being predicted [24]. Mean
Absolute Error (MAE) takes the average of the absolute values of the errors
m̂i − ai (i.e., |m̂i − ai|). In contrast to MSE, MAE is more robust against
outliers.

To ease comparison, relative errors are computed. To this end, errors com-
puted following one of the above metrics are normalized by the error of a very
simple predictor (such as a simple average of past values). Relative error met-
rics include Relative Squared Error (RSE) and Relative Absolute Error (RAE).
Again, the root squared relative error leads to a relative error that is of the same
dimension as the predicted value.

Obviously, for the above metrics, smaller values indicate better prediction
accuracy.

3.2 Limitations of Prediction Error Metrics

The prediction error, as expressed by metrics such as MAE and RMSE, has
been used for SLA violation prediction [14,33]. Yet, using the prediction error has
the limitation that it does not reveal the prediction accuracy in terms of whether
failures (such as SLA violations or deviations from expected QoS values) are
accurately predicted. However, such a prediction of failures is required in order
to determine whether to adapt or not (see Section 2.3).

To illustrate the limitations of using the prediction error, let us discuss two
“critical” cases: (1) Although the difference between the predicted and the actual
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Fig. 3. Limitations of prediction error metrics (using response time prediction as ex-
ample)

value may be relatively small, it may still imply an incorrect prediction of a
failure; e.g., if the actual value is just below the QoS threshold and the predicted
value is just above. (2) The difference between predicted and actual values may
be relatively large, but may still lead to a correct prediction of a failure; e.g., if
both the predicted value and actual value are above or below the threshold.

The diagram in Figure 3 shows these two “critical” cases for results from our
experiments as described in Section 2.4. The large difference (on the left hand
side of the diagram) is equal to 2802 ms but it still implies a correct prediction
of a failure. The small difference (on the right hand side) is equal to 454 ms (i.e.,
only 16% of the large difference) but leads to an incorrect prediction of a failure.

This shortcoming can be addressed by accuracy metrics that consider failures
and not numeric QoS values. They are introduced in the following section.

3.3 Assessing Binary Predictions

To know whether or not to trigger adaptations, not only the predicted QoS value
is of interest but also whether or not it actually means a failure. Thus, in order
to assess how accurately we can predict the need for adaptation, we need to take
into account how accurately those failures can be predicted.

To this end, this section discusses metrics that can be used for assessing the
accuracy of such “binary” predictions, i.e., predictions of failures and/or non-
failures. These metrics are derived from the so called contingency table, which
characterizes the four cases that can result from a binary prediction of failures
(see Table 2).

Several metrics derived from the contingency table have been proposed in the
literature. Table 3 provides a selection of these to highlight some of the more
commonly used.

Precision (p) is defined as the ratio of correctly predicted failures to all pre-
dicted failures. Recall (r) is the ratio of correctly predicted failures to all ac-
tual failures. For the adaptation in service-oriented systems (see Section 2.3),
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Table 2. Contingency Table

Prediction
Failure Non-failure

Actual
Failure True Positive (TP) False Negative (FN)

Non-Failure False Positive (FP) True Negative (TN)

Table 3. Contingency table metrics based on [49]

Metric Formula Meaning

Precision (p)
TP

(TP + FP )

How many predicted failures
were actual failures?

Recall(r)
TP

(TP + FN)

How many actual failures
were correctly predicted as
failures?

Specificity (s)
TN

(TN + FP )

How many actual non-failures
were correctly predicted as
non-failures?

False Positive Rate (fpr)
FP

(FP + TN)

How many predicted failures
were actual non-failures?

Neg. Pred. Value (npv)
TN

(TN + TP )

How many predicted non-
failures were actual non-
failures?

Accuracy (a)
(TP + TN)

(TP + TN + FP + FN)

How many predictions were
correct?

F-measure (Fβ)
(1 + β2) · p · r

β2 · p+ r

Harmonic mean of p and r.

precision p can be used to assess incorrectly predicted adaptation needs, i.e.,
unnecessary adaptations. Higher precision implies less “false” alarms and thus
less unnecessary adaptations. Similarly, recall r can be related to missed adap-
tations. Higher recall implies more actual failures being predicted and thus less
missed adaptations.

In general, to perform well, a prediction technique must achieve both high
precision and high recall. However, a trade-off exists between precision and recall.
Improving precision, i.e., reducing the number of false positives, at the same time
may result in worse recall, i.e., increase the number of false negatives [37,49].
Additionally, if a model always predicts failures, its recall will be 1 but the
precision will be low. In this case, we cannot say that the model performs well.
On the other hand, if a model predicts only one failure and the prediction turns
out to be correct, the model’s precision will be 1. Furthermore, a predictor that
predicts non-failure for every instance will have precision 1, but recall evaluates
to 0. Thus, here we cannot consider this model to have good accuracy either.
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To reflect the trade-off between precision and recall in one single metric, the F-
measure (F ) has been proposed and used in the literature [37,49,36,59,27]. The
F-measure is defined as the weighted harmonic mean of precision and recall,
where precision is weighted by β ≥ 0.

The F-measure is evenly balanced when β = 1. It favors precision when β < 1,
and recall when β > 1. The higher the value of the F-measure, the better the
accuracy of the prediction. Compared to the arithmetic mean, both precision and
recall need to be high in order for the harmonic mean to be high. If precision
and recall both equal zero, the F-measure is not defined, but the discontinuity
can be removed and the F-measure to be defined as 0 in this case [49].

The shortcoming of the F-measure is that it does not take the true nega-
tive rate (tnr) into account, and metrics that consider this (see below) may be
preferable to assess the accuracy of a binary prediction.

The false positive rate (fpr) is defined as the ratio of incorrectly predicted
failures to the number of all non-failures. The smaller the false positive rate,
the better, provided that the other metrics are not changed for the worse. False
positive rate and true positive rate (i.e., recall) are often used in combination.

The negative predictive value (npv) is defined as the ratio of correctly pre-
dicted non-failures to all predicted non-failures. The higher the negative predic-
tive value, the better the accuracy of the prediction. Following the same reason-
ing as for recall r, the negative predictive value npv can be related to missed
adaptations. A higher negative predictive value implies more actual failures be-
ing predicted and thus less missed adaptations.

Specificity (s) is defined as the ratio of correctly predicted non-failures to all
actual non-failures. Increasing specificity often worsens the negative predictive
value, and thus, one can – again – use the harmonic mean to reflect the trade-off
between them. Similar to precision p, specificity can be used to assess incorrectly
predicted adaptation needs, i.e., unnecessary adaptations. Higher specificity im-
plies less “false” alarms and thus less unnecessary adaptations.

Accuracy (a) is the ratio of correct predictions in comparison to all predictions
performed3. However, Salfner et al. recommended not to use accuracy as the sole
indicator of how well a prediction technique performs, as “due to the fact that
failures usually are rare events [...] a strategy that always classifies the system
to be nonfaulty can achieve excellent accuracy since it is right in most of the
cases, although it does not catch any failure (recall is zero)” [49].

To conclude, in general, metrics that cover all of the four cases of the con-
tingency table should be considered in order to gain a comprehensive picture
of prediction accuracy. As a consequence we use the F and s metrics when we
present our experimental results in the remainder of the chapter, as these cover
all those four cases.

As a side note, when building a service-oriented system, service integrators will
strive to choose third-party services with relatively low failure rates (informally,

3 As a note on terminology, despite the concise definition of accuracy as a, we will use
“accuracy” as a generic term (as already used in the beginning) in the remainder of
the chapter, as we will not employ a during our further discussions.
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Fig. 4. Sensitivity of the contingency table to the threshold value for determining a
failure

they will seek to employ reliable service providers). Thus, in service-oriented
systems, the majority of observations will indicate non-failures, and, as a result,
the negative predictive value, specificity and accuracy will always be high (as
long as the prediction technique is not overly “anxious” to predict positives).
For this reason, precision p and recall r (or the F-measure of p and r) may still
be sufficient to evaluate predictors on these data sets.

3.4 Limitations of Contingency Table Metrics

Although binary metrics allow us to assess the accuracy of the need for proactive
adaptations, they are sensitive to the threshold values used by the prediction
models for determining failures during prediction.

Figure 4 shows the response times of a real service and its predicted QoS values
using a time series prediction model (see Sections 2.2.2 and 4.1). Furthermore, it
shows different values of thresholds. We can see that a slight increase in threshold
value means that many false positives now become true negatives and vice versa.
Using the data behind this figure, we can compute that Threshold 1 leads to
p = 0.17 and r = 0.33, whereas Threshold 2 leads to p = 0.43 and r = 0.86.
Although the difference in threshold values was just 500 ms, the differences in
precision and recall values for the two thresholds are large.

To better assess the accuracy of a prediction model while reducing the impact
of the threshold value used, we suggest (following the research literature [49])
assessing the accuracy using different threshold values. In addition, prediction
error metrics should be employed and used along with the binary metrics to bet-
ter understand how reliable the accuracy is reflected in the measurements. This
should lead to more informed decisions such as to avoid missed or unnecessary
adaptation triggers.

Figure 5 presents empirical data that show the accuracy of response time
predictions4 for the two services s1 and s2. The box plots on the left-hand side

4 We used the prediction model Last (see Section 4.1).
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Fig. 5. Comparison of prediction error metrics with metrics that use threshold for
determining accuracy

show the measured accuracy in terms of MAE and RMSE (prediction error
metrics from Section 3.2). Those are contrasted with the binary metrics F and
s presented in Section 3.3.

The figure shows that although the prediction error for s1 (in terms of MAE
and RMSE) is smaller than that of s2, accuracy in terms of F and s is almost
equal for both s1 and s2. This means that these prediction error metrics did not
reliably reflect the accuracy of predicting failures.

4 Ensuring Accurate Predictions

As introduced in Section 2.2.2, one important class of online quality prediction
techniques for services are time series prediction models. In this section, we first
review those prediction models in the light of ensuring accurate service quality
predictions (Section 4.1). We identify their shortcomings when applied to service-
oriented systems (Section 4.2) and propose and critically reflect on online testing
as an alternative approach to achieve accuracy (Sections 4.3 and 4.4).
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4.1 Time Series Prediction

Time series prediction models work on a series of past observations:

m1,m2, ...,mi, ...,mn−1,mn,

with mi being the observed QoS value at time point i. They predict the QoS
value for time point n+ 1, i.e., m̂n+1.

Some typical examples for such prediction models include:

– Last: This model uses the last observed value as the prediction value:

m̂n+1 = mn

– Windowed Mean, BM(k): In this model, the arithmetic mean of the past
k values (1 ≤ k ≤ n) is used as the prediction value, where k is chosen to
minimize prediction error:

m̂n+1 =
1

k

k−1∑
i=0

mn−i

– SimpleExponential Smoothing,SEM(α): BMtreats past observations equally.
Conversely, SEM places more weight on more recent observations (α ∈ [0, 1]):

m̂n+1 = α ·mn + (1− α) · m̂n

4.2 Limitations of Time Series Prediction

Time series predictors in general imply certain limitations when used for short-
term prediction of service quality. As observed by Casolari et al. [12], there is
a conflict between being responsive enough to changes in past observations and
being too responsive and thus being perturbed by noise and fluctuations. On
the one hand, if the smoothing of the past observations is too strong, this may
lead to a delay in the predictions that is too excessive. Thus, a prediction model
such as Last (only taking into account one previous observation) may be more
responsive to abrupt changes in QoS. On the other hand, too little smoothing
may lead to limited precision in highly variable scenarios, thus favoring models,
such as BM or SEM.

Figure 6 shows a comparison of using the prediction models Last, BM, and
SEM to predict QoS of third-party services for two differing usage settings. The
experimental data has been collected using the experimental setup as described
in Section 2.4.

Comparing the four prediction models used, there is no clear candidate which
would outperform the others in terms of both the F and smetrics (see Section 3.3).
In the first setting, all prediction models perform almost identical in terms of F
(the boxplots significantly overlap), but Last outperforms the others in terms of
s. In the second setting, SEM and BM(5) outperform Last in terms of F , but are
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Fig. 6. Comparison of Time Series Prediction Models (using α = 0.3 for SEM)

weaker than Last in terms of s. This may be an indicator of the aforementioned
conflicts between prediction models, thus deserving further investigation.

When analyzing the accuracy of the prediction models in more detail, we can
make a further observation. Figure 7 shows the prediction accuracy when clus-
tering the results for the Last prediction model with respect to how frequently
a service has been used (and thus monitored)5.

As the data in Figure 7 indicates, the accuracy increases as the services
are more frequently used and thus more frequent monitoring data (past ob-
servation) becomes available. This actually points to an important difference to
more traditional computer-based systems. In contrast to those systems, moni-
toring data (and thus observations) in a service-oriented system might not arrive

5 The other usage models show the very same behavior and we therefore do not repeat
their diagrams here.



Accurate Proactive Adaptation of Service-Oriented Systems 257

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Accuracy for Last prediction model depending on service usage frequency

periodically. This is due to the fact that only when a third-party service is actu-
ally being used, the monitoring mechanisms will observe how this service behaves
(see Section 2.3) and whether there was a deviation in QoS. As a consequence,
it may well happen that some predictions base their results on observations
which are way outdated. Figure 3 in Section 3.2 shows a sample of how those
observations and predictions are distributed along the time dimension.

To understand this further, we analyze the properties of the raw data set (from
Cavallo et al. [14]) we used in our experiments. For a raw data set, predictions
within a time window j (i.e., j steps ahead) in general can be performed with
adequate accuracy if the auto-correlation function (ACF (j)) applied to the data
set results in |ACF (j)| ≥ 0.3 (see [10]). Figure 8 shows the the results of an auto-
correlation analysis for two of the services from the Cavallo et al. data set.
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Fig. 8. Auto-correlation functions for two services used in experiments

As can be seen from these diagrams, the prediction window for which to
achieve accurate predictions may diminish relatively quickly. In the case of
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service s3, this is already the case for j = 3. This means that if monitoring
observations occur only very infrequently, the predictors in fact need to predict
for long lags. Thus, the accuracy of any QoS prediction model may be severely
limited in the setting of service-oriented systems.

Based on the above observations, we discuss an approach that aims to collect
additional (i.e., more frequent) data points in order to improve prediction accu-
racy. Specifically, we will show that online testing for service-oriented systems
allows systematically collecting such additional observations.

4.3 Online Testing

Most online quality prediction techniques for third-party services that have been
presented in the literature (see Section 2.2.2) rely on monitoring to observe QoS
values. However, monitoring is only able to retrieve QoS data when a service is
actually being used during run-time. This means that monitoring is passive [47].
As we have seen in the previous section, the amount and timeliness of data may
be limited as a result, restricting the accuracy of predictions.

Online testing, i.e., actively invoking services in parallel to their actual use,
has been proposed as a quality assurance technique to complement passive mon-
itoring [9,22,11].

In our previous work [50,45,40] we proposed augmenting monitoring data with
online testing results. We provided results of initial, exploratory experiments that
indicated that, in fact, accuracy of online quality predictions may be improved.

Figure 9 below shows the results of more comprehensive experiments (the
setup of which has been summarized in Section 2.4). The white boxplots show
the accuracy when augmenting monitoring with online testing data, the grey
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Fig. 9. Accuracy gains through online testing (M&T = monitoring data complemented
by data from online testing; M = monitoring data only)
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boxplots show the results when only using monitoring data. As can be seen,
there is a clear improvement in prediction accuracy when employing additional
data from online testing across all time series prediction models we used.

4.4 Limitations and Challenges of Online Testing

Although the accuracy gains that may be achieved by online testing are promis-
ing, the approach faces some limitations and challenges that are worth discussing.

Different factors may impact on the accuracy gains achieved by online test-
ing. Figure 10 uses a sample of our experimental results to illustrate one such
impact. The diagram compares the prediction accuracy using only monitoring
data with the prediction accuracy when augmenting monitoring data with data
from online testing. As can be observed, gains in prediction accuracy decrease as
more frequent monitoring data is available, i.e., the more frequently the service
is actually being used.
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Fig. 10. Accuracy gains for different usage rates (M&T = monitoring data comple-
mented by data from online testing; M = monitoring data only)
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Moreover, online testing may imply additional costs for service integrators.
For example, when testing a pay-per-use service, each invocation of the service
is charged [16]. This means that there may be situations in which the benefits
of achieving higher prediction accuracy may not pay off with respect to the
additional costs imposed by online testing. As an example, if it takes 1,000 tests
to avoid one more QoS violation (when compared to monitoring), online testing
most probably will not pay off.

In addition to the limitations mentioned above, online testing faces some
well-known technical challenges. For instance, online testing can be problematic
for services that – when tested – produce side effects such as shipping items
or charging credit cards. Additionally, online testing could be problematic for
services with limited resources. Online testing means additional load, which may
interfere with normal operations, thereby degrading the QoS performance of the
service provider. There are several proposals to address these issues [11,21,17]. In
general, it is proposed to offer test interfaces or sandboxes allowing a service to be
executed in a special testing environment or configuration mode. Yet, although
this allows the functionality of a service to be fully exercised in isolation from
the real production environment and databases, it remains questionable how
representative the testing results will be for the actual service in operation.

5 Conclusions and Perspectives

Proactive adaptation of service-oriented systems relies on the ability to perform
short-term predictions of service quality. Only if these predictions are accurate,
proactive adaptation will be of use in practice. However, as we have seen in this
chapter, achieving accurate online quality predictions is a challenging endeavor.

In this chapter we have barely scratched the surface of what remains ahead
of us in this field of research. Looking ahead, current trends such as the “Future
Internet” [56,1] and “Cloud Computing” [5] are worth noting. On the one hand,
the “Future Internet”, through the convergence between the Internet of Services
(IoS) and the Internet of Things (IoT), will foster and ease cross-organizational
data exchange and integration of IT systems with real-world processes. As an
example, the information associated with IoT-sensors will be accessible using
service technology, such that their functionalities can be discovered and accessed
over the Internet (in fact, proposals in this direction have already been made
[54,23,53]). On the other hand, “Cloud Computing” will make computing and
networking resources accessible in a much more flexible and comprehensive way.
Ultimately, these trends will lead to even higher levels of dynamicity than those
we face today in service-oriented systems. Future software systems thus will
require even stronger adaptation and prediction capabilities in order to become
resilient to changes in such highly dynamic environments. The interested reader
can find a more in-depth discussion of those challenges and related research
issues in [7,42].
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Abstract. Despite the best efforts of software engineers, faults still es-
cape into deployed software. Developers need time to prepare and dis-
tribute fixes, and in the interim, deployments must either avoid failures
or endure their consequences. Self-adaptive systems—systems that adapt
to changes internally, in requirements, and in a dynamic environment—
can often handle these challenges automatically, depending on the nature
of the failures.

Those self-adaptive systems where functional features can be added
or removed also constitute configurable systems. Configurable software
is known to suffer from failures that appear only under certain feature
combinations, and these failures are particularly challenging for testers,
who must find suitable configurations as well as inputs to detect them.
However, these elusive failures seem well suited for avoidance by self-
adaptation. We need only find an alternative configuration that precludes
the failure without derailing the current use case.

This work investigates that possibility, along with some further con-
jectures: that the failures that are sensitive to a system’s configuration
depend on similar feature combinations—a phenomenon we call feature-
locality—that this locality can be combined with historical data to pre-
dict failure-prone configurations and reconfiguration workarounds, and
that these workarounds rarely lead the system out of one failure and into
another. In a case study on 128 failures reported against released ver-
sions of an open source configurable system, and 16 failures discovered
through a state-of-the-art testing tool, plus several thousand tests cases,
we find evidence to support all of these hypotheses.

Keywords: self-adaptive software, highly configurable systems, failure
avoidance, fault tolerance, reconfiguration, workarounds, software
testing.

1 Introduction

Self-adaptive systems are growing in interest as an alternative architectural
model when the goal is to ensure continuous operation under a variety of envi-
ronments [1–6]. Adaptations force the system to reconfigure in order to increase
reliability or performance and are triggered whenever environmental conditions
necessitate change. The traditional adaptive feedback loop involves collecting
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and analyzing data, deciding what adaptation to use, and then acting on this
decision by reconfiguring the system.

Recent research on self-adaptation and fault tolerance has developed tech-
niques for preserving functionality in the face of deployed faults [3, 7–11]. Work
in these two areas has produced a variety of approaches: exploiting redun-
dancy in the architecture or implementation [1,6], directly modifying the source
code [12,13], changing the architectural components or connectors [2,4,14], con-
structing adapters or wrappers to fix interoperability issues between compo-
nents [3, 15], and transitioning to a set of precomputed “good” states when an
error state is detected [7, 16].

While reliability, a concern of self-adaptive systems and the focus of most
of these techniques, reflects the collection of all possible failures, we might also
focus on individual, discrete failures. A model for single failures is easier to build,
because we need only replay failing test cases under various configurations. If
different failures occur under similar configurations, then the combined model
for a small number of failures will be a good approximation of the more general
reliability model, and can be learned relatively quickly. The system can then
consult the model to forbid troublesome configurations. This is a particular kind
of fault treatment or fault handling, as it avoids error states rather than correcting
them [17, 18], but, unlike most fault treatment schemes, it does not alter code.
Therefore, throughout the rest of the paper we will use the term failure avoidance
to reinforce the idea that the faults remain, and can still manifest as failures; it
is only that we avoid paths that have been involved in prior failures.

To explore the viability of this idea, we examine a closely related area of re-
search, validating highly-configurable systems—systems with features that can
be added and removed [19]. Such systems may contain faults that cannot be
exposed under every choice of features, and the prohibitive cost of testing all
choices means that these faults stand a higher chance of eluding testers [20,21].
These types of systems, while not necessarily adaptive, have similar character-
istics in that reconfigurations change the way executions occur while preserv-
ing a core set of functionality. For instance, FeatUre-oriented Self-adaptatION,
(FUSION) [22], models adaptive systems in the same way we model highly-
configurable systems, and it uses the notation of feature models [19] to represent
adaptations. Moreover, in the FUSION case study, online learning is successful
even though it identifies only a portion of features as relevant to the utility func-
tion. Correspondingly, there is some evidence in the software testing community
that failures are dependent on only small combinations of features [5, 23, 24].

In this work, we build on the ideas of Hassan et al. [25] and Kim et al. [26],
and hypothesize that failures have what we term feature locality, a tendency to
depend on similar combinations of features. Under that hypothesis, configuration
choices that avoid one failure are likely to avoid others, and maintaining a history
of failures will allow us both to avoid them as we reconfigure and to select
potential reconfiguration workarounds. In a preliminary study [27], we found
feature locality across three releases of a well studied compiler collection, GCC.
This paper expands our case study by using a state-of-the-art automated test
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generator [28], examining a new set of failures, and evaluating the robustness
of reconfigurations, thereby reducing the threats to validity that arose from
that study’s limited test suite. We simulate online adaptations by reconstructing
the failure timeline, and find that (1) very few features impact the visibility of
any one failure, (2) within five reconfigurations a knowledge of failure history
increases our effectiveness more than eight times over an uninformed strategy,
(3) as failure history accumulates we need fewer reconfiguration attempts to
avoid new failures, and (4) excepting one anomaly, reconfiguration workarounds
hardly ever cause additional failures. These results suggest that feature locality
exists and may be useful for self-adaptive software.

The contributions of this work are:

– A presentation of feature locality and its potential impact on ensuring de-
pendability during reconfiguration.

– Algorithms for history-based reconfiguration to avoid and recover from fail-
ures.

– A case study to evaluate the existence of feature locality and our ability to
exploit it on a set of failures detected in the field.

The rest of this paper is laid out as follows: In the next section we introduce
background through a motivating example and discuss related work. We present
our hypothesis in Section 3, Section 4 details our case study, and Section 5
concludes and highlights opportunities for future work.

2 Background and Related Work

Our hypotheses and technique draw from two areas of software engineering: the
research on dynamically reconfigurable systems, autonomic systems, adaptation
for correctness, and fault tolerance, and the work on prediction schemes for
fault proneness. In this section, with the help of an example from NASA’s Mars
Exploration Program, we introduce the relevant terminology and illustrate the
connections between this prior work and failure avoidance.

2.1 The Spirit Sol 18 Anomaly

Only 18 Mars solar days (sols, each approximately one Earth day) after land-
ing, NASA’s Mars rover, Spirit [29], encountered a nearly mission-ending soft-
ware failure. The symptoms began with failed communications on the rover’s
two independent channels and eventually developed into intermittent, babbled
transmissions along with an inability to obey basic commands. Not until sol 20
could NASA obtain crucial diagnostic information, including a health update
packet, which showed signs of multiple reboots, a low battery, and a high inter-
nal temperature. Spirit was stuck in an endless reboot cycle and therefore failing
to sleep; it risked running out of power or overheating.

The situation persisted through sol 21. Then the team at NASA managed a
reboot with most of the flash file system disabled, and the rover started accepting
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commands consistently. Recovery became a possibility, though Spirit had to be
put back in “crippled” mode every Martian morning.

In the meantime, NASA engineers strove to isolate the responsible software
fault; although they were now able to avoid the failures, the root cause remained.
On sol 71 the fault was found: a NASA-built component had expected the third-
party file system to deallocate space as files were deleted, but deallocation only
occurred when the enclosing directories were removed. As such, the file system
had been bloated beyond a mountable size, and during boot, the failed mount
from flash memory would trigger the default recovery action: a reboot. By sol
98 a fix was finished and installed.

In summary, the reconfiguration, which was found in three days through trial
and error, meant that Spirit survived with limited functionality until the fix was
delivered two and a half months later.

2.2 Terminology

Spirit was deployed as a single system, but its functionality was divided among
features : the software and hardware components governing power, tempera-
ture, radios, sensors, motors, actuators, autonomous navigation, etc. Because
most of these features could be enabled or disabled, Spirit constituted a highly-
configurable system. However, like many highly-configurable systems, some fea-
tures depended on or conflicted with others, so not every configuration—that
is, not every choice of features—was valid. Under NASA’s workaround for the
anomaly, feature constraints, dependencies between features, disallowed most
of Spirit’s functionality because flash memory was disabled. (Even more func-
tionality would have been lost without the workaround: Spirit would have been
inoperable and eventually unrecoverable.)

A configurable system’s features and feature constraints are usually repre-
sented compactly in a feature model. There are several languages for expressing
a feature model in a form that mirrors the organization of functionality [30–32],
but for our purposes we translate from these languages to a more uniform, re-
lational form by following the process in [33]. The result is a sequence of con-
figuration choices, each of which has a set of mutually exclusive options. For
example, Spirit’s solar panels and batteries, along with their associated soft-
ware, can be toggled independently. Thus, the transformation creates one choice
between active solar panels and a newly-introduced “null” feature, and it pro-
duces a similar choice for the batteries. Here we say that there are two feature
groups, each containing two alternative features.

A sequence of independent feature choices makes for a structured model, but
not one that is expressive enough to encode most feature constraints. Hence, as
detailed in [34], we define one boolean variable for every feature and treat each
configuration as an assignment to these variables; a variable is assigned true
if and only if the configuration includes the corresponding feature. Then the
restrictions on legal configurations can be expressed as a propositional formula.
For instance, suppose we define P to mean that Spirit’s solar panels are active
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and Q to mean that Spirit’s batteries are providing energy. For Spirit to be in
operation, P ∨Q must hold, or else there will be no power supply.

Like other systems, when a highly-configurable system observably deviates
from its requirements, we say that it has encountered a failure [35]. Spirit re-
booting, nearly overheating, ignoring commands, and returning garbled data, for
instance, constitutes a failure. We will reserve the term fault and its synonym
bug for flaws in the system that make failures possible [35].

If the system would have met its requirements had it been configured dif-
ferently, we say that the failure it encountered was reconfiguration-avoidable.
Importantly, whether a failure is reconfiguration-avoidable depends on which
requirements we are talking about; reconfiguration workarounds must sacrifice
functionality to attain correctness. In NASA’s race to save Spirit, for instance,
the rover met its survival requirement once engineers eliminated the flash mem-
ory mount. But if NASA had needed the rover’s more advanced scientific abilities
to stay active, it is unlikely that the failure could have been avoided.

2.3 Adaptation for Correctness

For Spirit’s development team, it was worthwhile to give special attention to a
single deployment. That’s not the case for most highly-configurable systems; we
expect many deployments, perhaps in a variety of configurations. If we are to
apply the lessons from the rover scenario elsewhere, recovery and failure avoid-
ance must be at least partially automated and, if possible, leverage information
from other deployments.

Systems that employ such automation—those that have the capacity to mon-
itor their environment and behavior and then react—are called autonomic or
self-adaptive [8,11]. There is a large body of work describing such adaptation in
both the hardware and the software domain. Researchers have considered sys-
tems designed to respond to poor performance [2], security vulnerabilities [13],
architectural mismatches [2], misconfiguration [3,4], interoperability issues [3,15],
and functional failures [4, 16, 36], all without human intervention. Additional
studies have produced methods for validating these designs in safety-critical sys-
tems [37] and dynamic software product lines (SPLs) [5, 24].

Throughout all of this work the adaptation process can be divided into four
activities: monitoring, detecting, deciding, and acting [8]. Monitoring is responsi-
ble for sensing the program’s environment and tracking its behaviors. The data
it gathers feeds into detection code, which determines whether the observations
should force a change in the system’s state. If a modification is warranted, the
decision routines are invoked to choose a response, in this case a reconfiguration.
The action phase carries out the decision code’s choice.

We are primarily interested in the decision phase of systems that combat
functional failures, self-healing systems [1–6]. Once self-healing software has de-
termined that a failure has occurred, it must decide how to restore the system to
a known good state, retry the failed task, and avoid the failure on future tasks.
We concentrate on the last two choices.
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Our approach can be viewed as an application of fault tolerance [9, 10] or
more specifically, of fault treatment [17, 18, 38]. Fault tolerant systems detect
error states caused by faults, and then return the system to an error-free state,
or patch the system, or contain the error state, thereby avoiding the propagation
of the fault as a failure. They often use replication (through techniques such as
N-versioning) and online voting to aid recovery.

If we consider different system configurations that support the same func-
tionality as different versions of a system, then our technique is also selecting a
version that is correct. We do not, however, explicitly change the state of the
system while running, and do not prevent error propagation dynamically. In-
stead, in this work, we analyze and reconfigure after a particular failure is seen.
Our analysis associates the failures with particular sets of features, and then
removes those feature combinations from the system. The result is the removal
of potential paths to failures in subsequent executions of the system.

Fault treatment is concerned with avoiding future faults and is often achieved
through code modification. For example, the work of de Lemos and Fiadeiro
[38], like ours does not modify code, but instead suggests a fault treatment
architecture with a flexible component connector structure to allow components
to be easily replaced. They do not, however, provide algorithms to learn specific
feature combinations that lead to failures, as we do.

Our approach extends the intuition pioneered by Hassan et al. [25] and refined
by Kim et al. [26]: just as memory accesses exhibit spatial and temporal locality
patterns that can be exploited by a cache, fault-introducing changes to a system’s
source code also demonstrate locality. The latter work points out four forms of
locality exhibited by faults, two that refer to the time of changes and two that
refer to their locations in the source code. We hypothesize a related locality,
where a small set of feature combinations in a system’s configuration space
(rather than its change history or source code) are associated with failures (rather
than faults), i.e. we see a locality of failures in the configuration space.

3 Technique for Avoidance

Our follow-on conjecture to this hypothesis is that we can learn from failures
to guard against and recover from later ones. We view this process as a special
case of fault tolerance, to be implemented in an auxiliary function on top of
the decision phase in the normal self-adaptive loop. In a situation like Spirit’s,
with, at the time, only one active deployment, such learning would often come
too late to be very useful. But other systems, like desktop applications, web
servers, and embedded software, which have many concurrent deployments in
similar circumstances, provide an opportunity to confine problems to the few
deployments where they were first uncovered.

To evaluate the hypothesis, we make several simplifying assumptions. First,
we assume that an explicit feature model is available to the software at runtime.
We take as given the mechanisms to detect failures and to maintain state upon
reconfiguration. Then, for the purposes of the study, we take avoidance of the
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discrete failure events to outweigh all other concerns measured by the utility
function that guides adaptations. However, we do capture some of the tradeoff
between functionality and correctness by dividing feature groups into those that
can be modified and those that must not change. Finally, we assume that the
input stream can be broken up into segments, which correspond to the test
cases that we use in the remaining sections, and that segments provoke failures
deterministically.

D1 D3

CS

1.

2.

3.

4. 5.

1. Report
2. Analyze (Alg. 1)
3. Update
4. Guard (Alg. 2)
5. Reconfigure (Alg. 3)

D2

Fig. 1. Exploiting History

Figure 1 illustrates our approach at a high level. Because it is black-box, our
technique must learn about the system by encountering failures in the field.
But it would be wasteful if every deployment of the system had to see each
failure, so instead we establish a central store to relay failure information between
deployments. In the figure, the store is labeled CS, and each deployment is
designated by a subscripted D. Reporting of failures in deployments may be
automatic or there may be some manual intervention. For instance, the reporting
of a specific test case and configuration (below) may require a developer to
provide additional information.

If we view a long-running self-adaptive system as executing a sequence of
phases, where in each phase a specific configuration is used, then our method
is triggered when a failure is detected, advises the reconfiguration process, and
then allows the system to run under a new configuration. This process repeats
when subsequent failures are detected.

Since we test our hypothesis on a system that is not self-adaptive, we simulate
this type of behavior by having a single run of a program’s configuration act like a
phase in the execution of the long running system. For instance, when compiling
a program, one must choose a set of configuration options. If a compilation
error, hard crash, or other failure is observed, one might then recompile the
same program with a slightly different set of options until the failure is avoided.

Together, the central store and the deployment execute five steps. Step 1
begins the process: whenever a deployment detects a failure, it reports a test case
and a configuration to the store. In step 2, an off-line analysis occurs to estimate
whether the failure is configuration-dependent, and if so, which configurations it
affects. For failures that have reconfiguration workarounds, the analysis results
are broadcast in step 3. Step 4 uses this data to forbid configurations believed to
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1 let t ← the reported test case;
2 let c ← the reported configuration;
3 let d ← the maximum number of feature groups to change at a time (a

parameter to the technique);
4 let R ← the set of reconfigurations that affect between one and d feature

groups;
5 foreach r ∈ R do
6 let c′ ← c after applying reconfiguration r;
7 if t can be run under configuration c′ then
8 if t passes under configuration c′ then
9 note r as a known workaround ;

10 note c′ as a passing configuration;

11 end

12 else
13 note r as a possible workaround ;
14 end

15 end
16 foreach r ∈ R do
17 if r is a possible or known workaround whose supersets in R are all either

possible or known workarounds then
18 note r as a basis for generalization;
19 end

20 end
21 foreach r ∈ R do
22 if r is a strict superset of a basis for generalization then
23 forget that r is a possible or known workaround ;
24 forget that r is a basis for generalization;

25 end

26 end

Algorithm 1: Analysis of Failures

be dangerous, both at the time the update is received and when a deployment
is reconfigured for other reasons. Lastly, step 5 draws on the historical failure
information to suggest workarounds when a new failure appears.

Steps 1 and 3 are simply data transfers. The algorithmic steps 2, 4, and 5
warrant more detail, which we provide in the following subsections.

3.1 Failure Analysis

Step 2, the analysis of reported failures, is listed as Algorithm 1. The main idea
is to try, by brute force, configurations that are similar to the one reported (that
is, configurations that have many of their features in common) and see which
ones pass. Although there are techniques to sample the configuration space more
evenly [20], here we want the sampling to concentrate on configurations that will
see comparable inputs, presumably those that differ by only a few features.

Lines 1 and 2 begin by establishing the circumstances that led to the orig-
inal failure, and lines 3 and 4 construct a set of reconfigurations to explore
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1 let c ← the current configuration;
2 let T ← the set of test cases with known workarounds;
3 foreach t ∈ T do
4 if c is a passing configuration for t then
5 continue with the next iteration of the loop on line 3 ;
6 end
7 foreach basis for generalization r from t do
8 let c′ ← c after applying reconfiguration r;
9 if c = c′ then

10 continue with the next iteration of the loop on line 3 ;
11 end

12 end
13 reject c;

14 end
15 accept c;

Algorithm 2: Guard on Configurations

the vicinity. Throughout these algorithms we treat reconfigurations as sets of
operations, each of which overwrite a configuration in one feature group. For
example, Spirit would have a reconfiguration that writes “active” to the solar
panels’ feature group, even if the solar panels are already in that state. Another
reconfiguration might enable both solar panels and the batteries, which, because
we think of reconfigurations as sets, would make it a superset.

Each reconfiguration is handled by an iteration of the loop on line 5. If, on
line 7, the new configuration that results is both valid and suitable for the test
case, the test is run by line 8, and the results are recorded on lines 9 and 10.
Otherwise, the algorithm notes that it could not evaluate the reconfiguration, at
line 13.

Because the first loop only investigates within a small radius, the technique
must make some generalizations to classify the rest of the configuration space.
Our experience suggests that while failures may depend on several feature choices,
the elimination of any one will usually constitute avoidance. Furthermore, if we
are to preserve as much of the intended functionality as possible, we should favor
small changes to the system configuration. Therefore, in the absence of contrary
evidence, we generalize a workaround reconfiguration by assuming it to always
mask the fault, even when other parts of the configuration are radically different.

The second loop, which begins at line 16, is responsible for determining which
workarounds can be generalized without contradicting the algorithm’s observa-
tions. Per line 17, an effective reconfiguration that is a subset of an ineffective
one is not generalized.

Finally, the loop at line 21 discards information that is redundant in light of
the generalizations. Specifically, if one reconfiguration is consistently effective,
another reconfiguration that makes the same changes plus some extras is not
useful; the conditional on lines 22–25 forgets it.
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As an example, suppose that Algorithm 1 is applied to a failure that resem-
bles the one Spirit encountered: the system misbehaves when all of four fea-
tures, f1–f4 are present, and, moreover, f4 is mandated by the test case. First,
line 4 will calculate the set R, including a reconfiguration to disable just f1,
a reconfiguration to disable just f2, etc. For each of f1–f3, the corresponding
single-feature reconfiguration will cause the test case to pass, so all three will be
known workarounds. The reconfiguration eliminating f4 can’t be attempted, so
it will be labeled a possible workaround. Any supersets of these reconfigurations
must either be impossible to test or also workarounds, so, regardless of d, these
four are marked as bases for generalization on line 18. Their strict supersets are
subsequently pruned by the loop at line 21, leaving the final diagnosis: any re-
configuration that disables one of f1–f3 should avoid the failure; reconfigurations
that do not, but do disable f4, might be effective.

3.2 Configuration Guard

Once the analysis results are available and distributed, Algorithm 2 guards
deployments against dangerous configurations. For each test case where Algo-
rithm 1 found feature selection to be significant, the guard checks that the cur-
rent configuration is either known to be passing, on lines 4–6, or that a general
workaround has been applied, on lines 7–12.

Continuing the example from Section 3.1, suppose that a deployment receives
notification of the failure caused by f1–f4 while in a configuration that enables
everything but f2. Because Algorithm 1 identified the f2-disabling reconfigu-
ration as effective, and that reconfiguration has no effect on the deployment’s
current feature choices, it will assume that it does not need to take action. Sim-
ilarly, if its configuration just disabled f4, it could also continue, because there
is a possibility that a workaround has been applied.

3.3 Choosing New Configurations

The last algorithm, for handling failures that the guard does not avoid, appears
as Algorithm 3. Because reconfiguration is potentially expensive, Line 3 estab-
lishes a bound on the number of avoidance attempts. The attempts themselves
are draw from a pool built on lines 4 and 5, mimicking Algorithm 1, except that
reconfigurations are prioritized by their historical effectiveness. The loop on line 7
considers them in order, checking that they are new (on line 9), valid (line 10),
and approved by Algorithm 2 (line 11) before making an actual workaround at-
tempt (line 12). The algorithm halts in success if it finds a passing attempt, but
in failure if the pool or attempt counter runs out first.

To complete the running example, consider the same deployment encountering
a new failure, this time caused by the combination of f1 and f5. The pool of
historically effective workarounds has reconfigurations to individually disable
each of f1 through f3, and one of these—the one eliminating f1—will succeed.
In the best case it will come first in the order on line 5 and be tried immediately,
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1 let c ← the current configuration;
2 let t ← the current test case;
3 let m ← the maximum number of reconfigurations to try (a parameter to the

technique);
4 let d ← the maximum number of feature groups to change at a time (a

parameter to the technique);
5 let R ← the set of reconfigurations that affect between one and d feature

groups, with elements sorted in decreasing order by the number of test cases
they are workarounds for ;

6 let n ← m;
7 foreach r ∈ R do
8 let c′ ← c after applying reconfiguration r;
9 if t has not yet been tried under configuration c′ then

10 if t can be run under configuration c′ then
11 if Algorithm 2 accepts c′ then
12 if t passes under configuration c′ then
13 accept c′;
14 end
15 let n ← n− 1;
16 if n = 0 then
17 fail;
18 end

19 end

20 end

21 end

22 end
23 fail;

Algorithm 3: Reconfiguration Strategy for Recovery

but in the worst case the failure won’t be avoided until the second try. (Not the
third try; f2 is already disabled.)

3.4 Handling Multiple Versions

Complications arise when a new version of the system is released. The updated
system may not have the same set of faults as the old one, and faults that do
survive may have different reconfiguration workarounds, especially if the release
contains new features.

In our experiments, we track workaround data independently for each version.
At release, the central store checks for all of the known failures and collects
suitable reconfigurations for those that are found. Furthermore, when a failure
is detected in one version, the other active versions are checked, if possible, under
the same test case.

Under this policy, forbidden feature combinations become available again as
soon as the known faults are fixed. However, research also shows that new faults
tend to appear in places where old ones were found [26]. It might be worthwhile
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to continue using data from old failures, especially if faults are fixed quickly, and
so reduce the risk of failure at the expense of functionality. We plan to investigate
this tradeoff in future work.

4 Case Study

As an initial evaluation of how well reconfiguration can be used to avoid failures,
we conducted a case study with 128 failures reported in the field for at least one
of three versions of a highly-configurable software system. We repeated this study
on the same software system using test cases randomly generated by a state of
the art testing tool, Csmith; these invoked a different set of failures.

The study’s research questions are presented in Section 4.1, and the systems,
GCC is covered by Section 4.2. We describe our experimental methodology in
Section 4.3, our threats to validity in Section 4.4, and we discuss the results in
Section 4.5. Experimental results can be found at http://www.cse.unl.edu/

~myra/artifacts/locality .

4.1 Research Questions

For our technique to be useful, there must be failures that it can work around.
Hence, we first asked,

RQ1: Can failures be avoided by reasonable reconfigurations?
Provided that such failures exist, we must determine whether they exhibit

feature locality:
RQ2: To what extent do failures depend on similar combinations of

features?
If the failures are present and localized, then we can ask about the effectiveness

of our technique:
RQ3: Can feature locality be exploited to avoid failures?
And finally, if we can avoid failures, we should ask whether we are only doing so

temporarily, for the use case at hand, or more generally, for that and subsequent
use cases:

RQ4: How robust are reconfiguration workarounds against use case
changes?

4.2 Objects of Study

We evaluated our proposed technique on several versions of one highly-
configurable software system, GCC1. Although there are characteristics of

1 We used GCC (and another application) and a nearly identical initial failure pool
in separate publication [39]. The only overlap with this work is that [39] employed
Algorithm 1 to determine whether failure were configuration dependent. Beyond
that, we performed a manual study of the faults at the code level for a different
purpose.

http://www.cse.unl.edu/~myra/artifacts/locality
http://www.cse.unl.edu/~myra/artifacts/locality
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self-adaptive systems that it cannot capture, it is very representative of highly-
configurable software and has some characteristics (described below) that we
believe allow us to simulate such a system. Also, GCC has an active user com-
munity and a public bug database, which we can mine for failures [40].

As in a distributed self-adaptive system, GCC deployments process separate
streams of inputs (test cases), namely sequences of compilation tasks including
those in the bug reports, and operate under changing configurations (command-
line options) for which we can extract a timeline from the bug database. Likewise,
they are free to exchange failure information, here via human-generated reports
for the GCC bug database (our central store). Because instances of the compiler
are usually isolated from each other, we do not consider effects due to node
interactions. Moreover, GCC reconfigurations can only happen between runs, so
our evaluation does not capture behavioral changes during reconfiguration.

The following subsections describes this system in more detail, with an em-
phasis on how we obtained the feature model, failures, initial configurations, and
so on.

GCC Versions. GCC [41], the cornerstone of the GNU toolchain, is a compi-
lation framework with front-ends for a variety of languages and back-ends for a
variety of platforms. The case study covers versions 4.4.0–4.4.2, all released in
2009, which each exceed 23 million lines of code.

In constructing GCC’s feature model, we restricted ourselves to the com-
piler’s command-line options, grouping features according the manual. We only
included features that can be toggled without changing the input or the seman-
tics of the output. One case deserves special explanation: GCC has some features
that cannot be controlled completely from the command line. For example, the
standard optimization packages (-O1, -O2, -Os, and -O3) enable some optimiza-
tions that have no corresponding flag. To handle these otherwise inaccessible
behaviors we treated the use of each package as a feature, and put these pseudo-
features in one group. If a failure depends on a hidden optimization from -O2,
the technique will suggest workarounds like switching to -O1 and listing the lost
optimization flags explicitly.

We also assumed that several options are dictated by the test case being run:
the stages of compilation to execute, the input language and its extensions (even
when those extensions were not used), the platform or platforms being compiled
for, the application binary interface, and the debug information that is emitted.
This information is used by line 7 of Algorithm 1 and when selecting the new
configuration to ensure that workarounds preserve the user’s intended behavior.

The complete model, including pseudo-features, totals 321 features in 159
groups, which means 162 single-feature reconfigurations are possible from any
one starting point. All but one of the groups is binary (they each have two
alternatives), while one has five possible choices. We also enumerated the de-
pendencies among our features. In total we have 132 clauses to represent these
constraints on the combinations of features in GCC. For example, if we turn on
the feature -fsched-spec-load, speculative motion of load instructions, then
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according to the GCC documentation we should also run instruction reschedul-
ing before register allocation by enabling -fschedule-insns, O2, or O3.

User-Reported Failures. For one set of failures, we collected 360 reports
from GCC’s public bug database [40] that affect compilation or debugging for
C, C++, and Fortran programs and are also tagged with “known to fail” on at
least one of the versions in the 4.4.0–4.4.2 range. We chose an appropriate subset
for the experiments:

First, we removed seven of these reports because they were still incomplete.
Then we discarded another 92 that depend on the platform where GCC is

built, the platform where it runs, or the platform that it compiles for. Al-
though we could have easily included failures that affect our platform—a 64-bit
X86 system running openSuSE 11.0, which the auto-configuration detected as
x86 64-unknown-linux-gnu—and we also could have used simulators to repro-
duce failures that call for other platforms, we were aiming to make our case
study portably reproducible.

Next, because the bootstrap process that builds GCC is itself configurable,
we further excluded three failures that required a non-default bootstrap
configuration.

Finally, we omitted two other classes of failures: those where the problem is a
violation of a nonfunctional requirement so we could not obtain an indisputable
oracle (13 failures), and those that showed nondeterministic behavior (8 failures).

In summary, of the original 360 failures we kept nearly two thirds, 237. A
synopsis of the failures excluded for various reasons is given in Table 1.

Table 1. User-Reported Failures

GCC
Reported 360 (100.0%)

Incomplete 7 (1.9%)
Platform-Dependent 92 (25.6%)
Require Alternate

3 (0.8%)
Bootstrap Options

Nonfunctional 13 (3.6%)
Nondeterministic 8 (2.2%)

Remaining 237 (65.8%)

Reproducible
128 (35.6%)

on Releases

We then checked for each failure under every GCC version in our study. Almost
half of the remaining failures were only visible in pre- or post-release revisions,
so we could not reproduce them with the released code. On the other hand, of
the failures we could reproduce, most affected all three versions despite being
tagged with only one of the three as known-to-fail. The release of 4.4.1 showed
only three failures that were not in 4.4.0; only two more were added from 4.4.1
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to 4.4.2. The total line of Figure 2 shows the numbers for each version; the
remainder of this table will be discussed in Section 4.5.

Finally, we used time stamps on the bug reports and the history of releases in
the GCC SVN repository to build an overall picture of the sequence of events.

Csmith-Detected Failures. For our second failure set, we used the Csmith
random test generator [28] in its default configuration. Csmith creates programs
subject to the constraint that they be legal and have only one interpretation
under the C99 standard [42]. This was essential for our study—it would be
far too easy to provoke false failures otherwise. At the end of their execution,
these programs hash their state and print the result. Rather than manually
develop oracles for these test cases, we compared against a recent version of
GCC. If a program compiled (meaning that the compiler did not crash), ran to
completion (meaning that the emitted binary did not crash), and output a hash
that matched the program compiled under GCC 4.6.2, we declared the test case
to pass; otherwise we considered it to fail. After creating 1024 test cases, we ran
them under the same versions of GCC for which we had collected user-reported
failures from the field: 4.4.0–4.4.2. As for starting configurations, we used the
flag sets that the GCC torture tests apply (see below), which, apart from the
empty set, all led to the same 16 of the 1024 test cases failing. There were no
failures when no command-line options were given.

Torture Test Suites. The GCC test suites contains a set of tests, called torture
tests, that are designed to run under various configurations. These configurations
are specified in the test harness, and we used them for the Csmith tests, as
explained above. But we also employed the test cases in other configurations
for our fourth research question; like the Csmith test cases, we could depend on
these tests’ oracles to hold in the face of reconfiguration.

When counting torture tests, we used the pass/fail totals reported by the
DejaGNU harness. In particular, the counts do not include expected failures,
unexpected passes, or test cases included with GCC but not run by the harness.

4.3 Methodology

For each failure, we are interested in the number of reconfigurations that avoid
it and how many tries Algorithm 3 needs to choose such a reconfiguration, in the
best case and in the worst case. For each reconfiguration, we want to determine
the number of failures it avoids. Because the association between failures and
reconfigurations is already determined in Algorithm 1, we collect all of this data
by simulating our technique.

The simulation must consider two types of events: the release of a new version
and the discovery of a failure. It accounts for a release by running Algorithm 1
on every failing test case that is marked as seen before. To process a failure the
simulation must follow a more complicated procedure.
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First it loops through the versions that are deployed and applies Algorithm 1.
Whenever the failure can only be achieved in configurations that Algorithm 2
would reject, the simulation notes that our technique would avoid the failure
with zero reconfiguration attempts. Otherwise the failure is marked as seen.

For efficiency’s sake the study only considers reconfiguration workarounds
that change a single feature group; we set d in Algorithms 1 and 3 to one. As
a consequence, the simulation may wrongly classify failures as unavoidable and
bias the data against our technique. We also reran the experiment with d set
to two, but the data remained identical. However, we cannot make conclusions
beyond d = 2.

Next, for those versions where our technique cannot avoid the failure outright,
the simulation determines the number of tries that the Algorithm 3 would need to
suggest a failure-avoiding reconfiguration. Ties in the sorting of reconfiguration
attempts are broken to favor ineffective alternatives when we compute the worst
case and effective choices in the best case.

Finally, if the failure was seen in any version, the results of Algorithm 1 are
saved. But if no version saw the failure, no data is kept for future use. There
are two key assumptions here: First, we expect that the feature isolation process
can be completed before the next failure is discovered. For GCC this requires
only a few minutes—much less than the typical interval between bug reports.
Second, we pessimistically permit multiple versions to encounter the same failure
simultaneously.

Biased Random Reconfiguration. For comparison, we also simulated a tech-
nique that does not exploit the information gathered by the central store, but
that uses other knowledge of the system which our technique does not have. It
is meant to represent the approach to failure avoidance by reconfiguration that
has an experienced user intervene when a failure occurs. First, the configura-
tion space is not pruned, so every failure will be seen. Second, the attempted
reconfigurations are chosen randomly, but with a bias towards workarounds that
will succeed. The bias encodes the advantages of considering the type of failure,
the input that triggered it, white-box knowledge, etc. We simplify the model by
assuming that all ineffective reconfigurations have the same probability p, and
that all effective choices have some probability q.

Because there is an element of randomness in this alternative technique, its
worst case is to try the viable workarounds last and its best case to try them
first. For the sake of a meaningful comparison, we consider its average case.

Let R be the set of candidate reconfigurations, R+ ⊆ R be the set of recon-
figurations that will prevent a failure, and R− be R \R+. If we assume—to the
disadvantage of our approach—that the competing technique is not hampered
by some configurations being illegal, the probability of it avoiding that failure
within r reconfigurations is:

1−
(
|R−|
r

)
/

(
|R−|+ q

p |R+|
r

)
. (1)
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The calculation applies to exactly one failure, so the number of failures avoided
in the average case is equal to this probability. Hence, for each test case we add
the result of (1) to the avoidance count for the competing approach.

Robustness Analysis. To assess the workarounds’ robustness against changing
use cases, we ran several thousand test cases—those from user-reported faults,
those generated by Csmith, and those in the GCC torture test suite of the same
version—under the configurations suggested by each successful workaround. We
also counted the number of failures that could be seen after applying the work-
around to some other initial configuration, under the assumption that the fea-
tures governing a fault are exactly those observed by Algorithm 1.

4.4 Threats to Validity

The major threat to the external validity of our study is the fact that we con-
sider a single system, which clearly differs from a real self-adaptive system in
certain aspects—whether those aspects are critical to its reconfigurability is not
known. Although this system had a significant share of reconfiguration-avoidable
failures, and these failures exhibited feature locality, further work is necessary
to understand if these properties hold for self-adaptive software in general.

However, we have several reasons to believe that the results will generalize.
Prior work in combinatorial testing [23, 39] suggests that the dependencies we
observed between failures and features are typical of many systems, not just
compilers. Similarly, almost all of the reconfiguration-avoidable failures that we
can trace are caused by faults in specifically feature-dependent code [39]. As we
can expect such code to appear in a variety of configurable systems [32], and
we know that spacial locality of faults occurs in a diversity of systems [25, 26],
we can expect at least one likely cause for feature locality of failures to persist
in other settings.

Another threat is the possibility that we only observed locality patterns due
to the way the failures were uncovered. For user-reported failures, it might be
that users who report bugs tend to use the compiler in similar ways. In the case
of Csmith, although the tool draws test cases from a random distribution, this
distribution is far narrower than the set of all inputs that GCC might reasonably
encounter. Moreover, we do not know whether the 16 failures from Csmith tests
are actually due to 16 distinct faults. If not, the shared faults might make locality
appear stronger than it is. To partially mitigate this threat, we included both
kinds of failures in our study and note that they exhibited similar trends.

In our evaluation of robustness, we again have to approximate a reasonable
range of GCC inputs. Therefore, besides the test cases from user-reported failures
and Csmith, we also included the GCC torture tests. However, the input space
for GCC is large enough that our test suite might not be representative.

Within our analysis of field failures broken down by priority, we have a small
number of faults in the highest priority category. This may limit our ability to
make general conclusions.
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Last, we used a recent version of GCC as the oracle for the Csmith test cases
when neither the compiler nor the emitted binary crashed. It is possible that
these tests also failed under the recent version, although the fact that we could
match its behavior by omitting optimization flags suggests otherwise.

For internal validity, we must acknowledge the risks in the manual categoriza-
tion and encoding of bug reports, the limitations of having only one test case to
provoke each failure, and the ever-present risk of faults in our evaluation code.

Regarding construct validity, there is a chance that the reconfiguration work-
arounds we propose may cause systems to encounter failures that are not in the
bug database; in that case, our reported rate of success will not be achieved.

4.5 Results

In the following subsections we discuss the results of our simulation in the context
of each research question.

RQ1: Can Failures be Avoided by Reconfiguration? For our first research
question, we only considered user-reported failures, because our aim was to un-
derstand how often reconfiguration can be used for workarounds in the field. The
ability to avoid other failures is only relevant if the other failures are represen-
tative of those that deployments will encounter, which we do have enough data
to assess.

Table 2 presents the reconfiguration workarounds we discovered for user-
reported failures, organized by failure and version. Each row presents the number
of one-step reconfigurations that are possible. The first row shows the number
of failures that had no workarounds at all, while failures with suitable config-
uration dependence are counted in subsequent rows. At the bottom we total
the failures in each version and give the portion that have at least one known
workaround, both as a count and as a percent of the total. For instance, in GCC
4.4.0 there are 99 failures with no workarounds and 27 that have at least one.
If we examine the sixth row, we see that there are three failures that have five
one-step workarounds. This means that for each failure we can toggle any one
of five features and the failure will no longer occur.

Roughly one fifth of the failures in each version are sensitive to reasonable
reconfigurations, so the choice of features does play a significant role in a system’s
reliability. We also observe that, as in the study of Kuhn et al. [23], most of these
failures are affected by only a few features—usually no more than six or seven
out of 321 (roughly 2%). But we do see a handful of exceptions that can be
avoided by changing any one of 8–13 different features. In these cases, there
happens be a long data flow chain that invokes that failure, and breaking it at
any point prevents the failure’s occurrence.

We next performed an analysis to see if high-priority failures have different
characteristics than those with lower priorities. We used the rankings given by
GCC developers to focus their fault-fixing efforts: from P1 (the most urgent) to
P5 (unimportant).
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Table 2. User-Reported Failures with One-Step Workarounds

# of One-Step Counts
Workarounds GCC 4.4.0 GCC 4.4.1 GCC 4.4.2

0 99 91 85

1 5 5 4
2 5 4 3
3 4 4 3
4 4 3 3
5 3 3 3
6 2 2 1
7 2 2 2
8 1 1
9 1

10 1
11 1
12
13 1

Total 126 117 105

Nonzero 27 26 20

Percent Nonzero 21% 22% 19%

Table 3. User-Reported Failures in GCC with Reconfiguration Workarounds, by
Priority

4.4.0 4.4.1 4.4.2

P1 3 of 5 (60%) 3 of 4 (75%) 2 of 3 (67%)
P2 6 of 23 (26%) 6 of 19 (32%) 4 of 17 (24%)
P3 18 of 84 (21%) 17 of 80 (21%) 14 of 75 (19%)
P4 0 of 11 (0%) 0 of 11 (0%) 0 of 8 (0%)
P5 0 of 3 (0%) 0 of 3 (0%) 0 of 2 (0%)

Total 27 of 126 (21%) 26 of 117 (22%) 20 of 105 (20%)

Table 3 shows the breakdown.We see that none of the low-priority (P4 and P5)
failures have reconfiguration workarounds, but a majority of P1 failures do, which
is encouraging. Percentage-wise we see a trend where failures with workarounds
are more likely to be promoted from the default P3 status, meaning that the
failures that matter most to developers are also avoidable by reconfiguration.

Summary of RQ1. In summary, approximately one fifth of the failures can be
avoided by reconfigurations, with the fraction being larger for high-priority bugs
(60–75% for GCC P1 reports).

RQ2: To what Extent do Failures Depend on Similar Combinations of
Features? Next, we view the same data from the perspective of reconfigura-
tions to determine whether failures share workarounds. For each single-feature
reconfiguration, we counted the number of bug reports where the reconfigura-
tion avoided that failure. After sorting counts from highest to lowest, we plotted
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Fig. 2. Feature Locality of User-Reported Failures

0

2

4

6

8

10

0 5 321
Single-Feature Reconfigurations in GCC

N
um

be
r

of
C

sm
it

h-
D

et
ec

te
d

Fa
ilu

re
s

A
vo

id
ed

Fig. 3. Feature Locality of Csmith-Detected Failures

them in Figures 2 (user-reported) and 3 (Csmith-detected). Note the broken
scales on the x-axes, which elides 266 bars of height zero in Figure 2 and 316 in
Figure 3. This indicates that 260 features had no impact on avoiding any failure.
The spike on the far left of Figure 2 corresponds to disabling undocumented
optimizations by lowering the optimization level and then re-enabling the docu-
mented optimizations associated with the old level. This single reconfiguration
avoids 24 failures on its own, but at the cost of the undocumented functionality.

We do see feature locality in the graphs: less than 20% of the reconfigurations
appear to affect correctness in the user-reported failures, and the percentage
drops to 2% for the Csmith-detected failures. In an autonomic setting, most of
the feature choices would be free to vary in response to other concerns. Fur-
thermore, the height of the bars shows that failures tend to have overlapping
workarounds, and avoiding one failure often means avoiding others.

The same data is shown in expanded form in Tables 4 and 5. The rows
list failing bug report and version pairs, grouped by report number, while the
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Table 4. Workarounds Effective Against User-Reported Failures

Bug GCC -
W
-
W
e
x
t
r
a

-
f
b
r
a
n
c
h
-
p
r
o
b
a
b
i
l
i
t
i
e
s

-
f
n
o
-
c
a
l
l
e
r
-
s
a
v
e
s

-
f
n
o
-
d
s
e

-
f
n
o
-
e
a
r
l
y
-
i
n
l
i
n
i
n
g

-
f
f
l
o
a
t
-
s
t
o
r
e

-
f
n
o
-
g
c
s
e
*

-
f
g
c
s
e
*

-
f
i
n
l
i
n
e
-
f
u
n
c
t
i
o
n
s

-
f
n
o
-
i
n
l
i
n
e
-
f
u
n
c
t
i
o
n
s
-
c
a
l
l
e
d
-
o
n
c
e

-
f
n
o
-
i
n
l
i
n
e
-
s
m
a
l
l
-
f
u
n
c
t
i
o
n
s

-
f
n
o
-
i
p
a
-
c
p

-
f
n
o
-
i
p
a
-
c
p
-
c
l
o
n
e
*

-
f
i
p
a
-
c
p
-
c
l
o
n
e
*

-
f
n
o
-
i
v
o
p
t
s

-
f
n
o
-
m
o
v
e
-
l
o
o
p
-
i
n
v
a
r
i
a
n
t
s

-
f
n
o
n
-
c
a
l
l
-
e
x
c
e
p
t
i
o
n
s

-
f
n
o
-
o
p
t
i
m
i
z
e
-
r
e
g
i
s
t
e
r
-
m
o
v
e

-
f
n
o
-
o
p
t
i
m
i
z
e
-
s
i
b
l
i
n
g
-
c
a
l
l
s

-
f
p
a
c
k
-
s
t
r
u
c
t

-
f
p
e
e
l
-
l
o
o
p
s

-
f
p
r
e
d
i
c
t
i
v
e
-
c
o
m
m
o
n
i
n
g

-
f
r
e
g
-
s
t
r
u
c
t
-
r
e
t
u
r
n

-
f
n
o
-
r
e
g
m
o
v
e

-
f
r
e
r
u
n
-
c
s
e
-
a
f
t
e
r
-
l
o
o
p

-
f
s
c
h
e
d
u
l
e
-
i
n
s
n
s

-
f
n
o
-
s
t
r
i
c
t
-
a
l
i
a
s
i
n
g

-
f
n
o
-
t
o
p
l
e
v
e
l
-
r
e
o
r
d
e
r

-
f
t
r
a
p
v

-
f
n
o
-
t
r
e
e
-
c
c
p

-
f
n
o
-
t
r
e
e
-
c
h

-
f
n
o
-
t
r
e
e
-
c
o
p
y
-
p
r
o
p

-
f
t
r
e
e
-
d
c
e

-
f
n
o
-
t
r
e
e
-
d
o
m
i
n
a
t
o
r
-
o
p
t
s

-
f
n
o
-
t
r
e
e
-
f
r
e

-
f
n
o
-
t
r
e
e
-
l
o
o
p
-
i
v
c
a
n
o
n

-
f
n
o
-
t
r
e
e
-
l
o
o
p
-
o
p
t
i
m
i
z
e

-
f
n
o
-
t
r
e
e
-
p
r
e

-
f
n
o
-
t
r
e
e
-
s
r
a

-
f
n
o
-
t
r
e
e
-
t
e
r

-
f
n
o
-
t
r
e
e
-
v
e
c
t
o
r
i
z
e

-
f
n
o
-
t
r
e
e
-
v
r
p

-
f
n
o
-
u
n
i
t
-
a
t
-
a
-
t
i
m
e

-
f
u
n
r
o
l
l
-
a
l
l
-
l
o
o
p
s

-
f
n
o
-
u
n
r
o
l
l
-
l
o
o
p
s
*

-
f
u
n
r
o
l
l
-
l
o
o
p
s
*

-
f
n
o
-
u
n
s
a
f
e
-
m
a
t
h
-
o
p
t
i
m
i
z
a
t
i
o
n
s

-
f
w
r
a
p
v

<
o
m
i
t

-
f
n
o
-
i
r
a
-
s
h
a
r
e
-
s
a
v
e
-
s
l
o
t
s
>

<
c
h
o
o
s
e

u
n
d
o
c
u
m
e
n
t
e
d
-
O
0

f
e
a
t
u
r
e
s
>
*

<
c
h
o
o
s
e
u
n
d
o
c
u
m
e
n
t
e
d

-
O
s
f
e
a
t
u
r
e
s
>
*

<
c
h
o
o
s
e

u
n
d
o
c
u
m
e
n
t
e
d
-
0
1

f
e
a
t
u
r
e
s
>
*

<
c
h
o
o
s
e
u
n
d
o
c
u
m
e
n
t
e
d

-
O
2
f
e
a
t
u
r
e
s
>
*

<
c
h
o
o
s
e
u
n
d
o
c
u
m
e
n
t
e
d

-
O
3
f
e
a
t
u
r
e
s
>
*

25689 4.4.0 • •
25689 4.4.1 • •
25689 4.4.2 • •
31029 4.4.0 • •
31029 4.4.1 • •
31029 4.4.2 • •
36902 4.4.0 • • •
36902 4.4.1 • • •
36902 4.4.2 • • •
38540 4.4.0 •
38540 4.4.1 •
38540 4.4.2 •
38541 4.4.0 •
38541 4.4.1 •
38541 4.4.2 •
38808 4.4.0 • • • • • • •
38808 4.4.1 • • • • • • •
38808 4.4.2 • • • • • • •
39794 4.4.0 • • • • • • • • • • • •
40321 4.4.0 • • • • •
40321 4.4.1 • • • • •
40389 4.4.0 • •
40579 4.4.0 • • • • • • • • • • •
40924 4.4.1 • • • • • • • • •
41016 4.4.0 •
41016 4.4.1 •
41094 4.4.0 •
41094 4.4.1 •
41153 4.4.0 • •
41153 4.4.1 • •
41153 4.4.2 • •
41183 4.4.0 • • • • •
41183 4.4.1 • • • • •
41183 4.4.2 • • • • •
41287 4.4.1 • • • • • • • • • •
41403 4.4.0 •
41403 4.4.1 •
41403 4.4.2 •
41619 4.4.1 • • • • • • • •
41619 4.4.2 • • • • • • • •
41623 4.4.0 • • • •
41630 4.4.0 • • •
41630 4.4.1 • • •
41630 4.4.2 • • •
41643 4.4.0 • • • •
41643 4.4.1 • • • •
41643 4.4.2 • • • •
41646 4.4.0 • • •
41646 4.4.1 • • •
41917 4.4.0 •
41917 4.4.1 •
41917 4.4.2 •
42049 4.4.0 • • • • • •
42049 4.4.1 • • • • • •
42049 4.4.2 • • • • • •
42231 4.4.0 • • • • •
42231 4.4.1 • • • • •
42231 4.4.2 • • • • •
42488 4.4.0 • • • • •
42488 4.4.1 • • • • •
42488 4.4.2 • • • • •
42542 4.4.0 • • •
42542 4.4.1 • • •
42542 4.4.2 • • •
42614 4.4.0 • • •
42614 4.4.1 • • •
42614 4.4.2 • • •
42667 4.4.0 • •
42667 4.4.1 • •
42667 4.4.2 • •
43024 4.4.0 • • • •
43024 4.4.1 • • • •
43024 4.4.2 • • • •
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columns are labeled with single-feature workarounds, usually a flag to pass like
-fno-caller-saves, or, when written in angle brackets, as in <omit -fno-ira-

share-save-slots>, a short description of how the command-line flags should
be altered. They are grouped in blocks of five in Figure 4 to allow one to read the
table more easily; the groupings have no other meaning. At the intersection of
a row and column, a dot appears if the workaround was found effective against
that particular failure. As in the previous figures, we do not show those features
that do not provide workarounds.

Examining Figure 4, we first see the column of dots for -00 that corresponds
to the spike in Figure 2. The table also identifies the other features that cross
multiple reports (e.g., -fno-tree-sra), and those that workaround only a single
report’s failures (such as -W). Most of the reports are pairwise dissimilar; it is
only in aggregate that trends start to emerge.

Also noteworthy are some conflicts in the reconfigurations that failures might
suggest. In particular, bug 41623 contradicts the common trend that failures
can be avoided by specifying -O0 and writing the lost optimization options
explicitly. Other conflicts occur in global common subexpression elimination
(gcse), function cloning to strengthen interprocedural constant propagation
(ipa-cp-clone), and loop unrolling (unroll-loops), whose columns are marked
with asterisks. None of these would pose a serious challenge to our failure avoid-
ance technique, because all of the affected bugs have alternative reconfiguration
workarounds. However, the disagreements do matter when we evaluate robust-
ness for RQ4.

Turning to the Csmith detected failures, (Figure 5), two facts immediately
stand out: there are far fewer columns, and all but one of the workarounds
is effective against multiple failures. Thus, we see much stronger locality, even
though Csmith is an input-based, not a feature-based testing tool. That further
suggests a connection between inputs and the reconfigurations that are likely to
be effective. We leave this analysis for future work.

The Csmith data does conflict with the user-reported failures on one point:
dead code elimination (tree-dce) masks bug 41643, but Csmith bug 528 disap-
pears when it is disabled. This conflict resurfaces in RQ4.

Summary of RQ2. Our data shows strong feature locality: a few reconfigurations
have a significant impact on failure visibility, while we detected no effect for the
remainder. Accordingly, in an autonomic setting, we need only consider a small
number of features when predicting and reconfiguring for functional correctness.

RQ3: Can Feature Locality be Exploited to Avoid Failures? To answer
RQ3, we compiled the simulation results to see if our technique was in fact ef-
fective. Figure 4 shows the data for the three versions of GCC on the left for
user reported failures. The limit on the number of reconfiguration tries, up to
a limit of 25, is on the x-axis of each plot, and the number of faults avoided
is on the y-axis. We shade the region between our technique’s best and worst
cases; its performance must fall in this region. For comparison, we also show the
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Table 5. Workarounds Effective Against Csmith-Detected Failures
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045 4.4.0 • •
045 4.4.1 • •
045 4.4.2 • •
110 4.4.0 • • •
110 4.4.1 • • •
110 4.4.2 • • •
112 4.4.0 • • • •
112 4.4.1 • • • •
112 4.4.2 • • • •
158 4.4.0 • • •
158 4.4.1 • • •
158 4.4.2 • • •
201 4.4.0 • • •
201 4.4.1 • • •
201 4.4.2 • • •
203 4.4.0 • •
203 4.4.1 • •
203 4.4.2 • •
299 4.4.0 • • •
299 4.4.1 • • •
299 4.4.2 • • •
514 4.4.0 • • •
514 4.4.1 • • •
514 4.4.2 • • •
528 4.4.0 • • • •
528 4.4.1 • • • •
528 4.4.2 • • • •
888 4.4.0 • • •
888 4.4.1 • • •
888 4.4.2 • • •
983 4.4.0 • • •
983 4.4.1 • • •
983 4.4.2 • • •
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average case for random reconfiguration with various degrees of bias. The lower-
most line is the expected behavior when effective and ineffective reconfigurations
are equally probable, the next line makes workarounds twice as likely, and
so on, until the topmost line, where failure-avoiding choices are preferred 64
to one.

For instance, on GCC 4.4.1, our technique avoids either 19 or 20 failures
within three reconfigurations, slightly better than we would expect from biased
randomly chosen reconfigurations when the effective choices are 64 times more
likely to be picked. In every case, the technique prevents more than half of the
reconfiguration-avoidable GCC failures from ever being seen, and the proportion
increases in later versions because we retain information about surviving failures
between versions. Using biased random reconfiguration as a ruler, our technique
is more than four times as likely to choose correctly after even 25 reconfigu-
rations, and its performance matches much higher levels of bias earlier on. In
short, GCC’s feature locality makes historical workarounds good candidates for
newly encountered failures.

We show another view of this data on the right-hand side of Figure 4. The
x-axis lists each of the 35 bug reports corresponding to reconfiguration-avoidable
failures in chronological order. The intervals plotted against the y-axis give the
best- and worst-case number of reconfiguration attempts needed to avoid each
failure, with an interval omitted when the corresponding failure does not affect
that GCC version. Note the break in the y-axis. We had no prior information for
some reconfiguration-avoidable failures, and in these cases our technique could
do no better than guess, which means at worst that it will try all 162 possible
changes.

The main trend is captured in the plot for GCC 4.4.0: after an initial burst
of learning from four failures that the technique is unable to avoid, the accumu-
lated knowledge prevents nearly three out of every four failures outright, with
all others avoidable in a handful of attempts. Meanwhile, in version 4.4.1, the
patterns gleaned from 4.4.0 speed up the avoidance process, and in 4.4.2 every-
thing is prevented. Across all versions, 78% of failures are sidestepped without
the technique resorting to guessing reconfigurations.

Figure 5 shows a plot for the Csmith data. Because these failures are un-
ordered, we chose the order under which our technique performs most poorly.
Also, because neither releases nor fixes are interleaved with these failures, we
pessimistically assume that no information is retained from version to version.
Therefore, the plot is the same for all three, and we only display it once.

Like Figure 4, Figure 5 shows most failures being completely avoided, and
others circumvented within a few reconfigurations, despite the antagonistic fail-
ure ordering. So the same conclusions apply to these failures as to those reported
by users.

Summary of RQ3. Our simulation suggests that, because of the feature locality
of failures, a system’s failure history provides guidance for reconfiguration that
effectively avoids new problems.
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RQ4: How robust are reconfiguration workarounds against use case
changes? For our fourth question, we considered pairings of reconfiguration-
avoidable failures with test cases, asking whether it would be possible for each
test case to fail in a configuration suggested by each failure. If it often happens
that reconfiguring to avoid one failure puts the system in a situation where others
can appear, then the workarounds lack generality, and mostly serve to tradeoff
different kinds of broken behavior. But, if not, as we would expect from feature
locality, then they are useful reconfigurations to carry forward.

We found that the 1258 torture tests did not detect any failures after any of
our reconfigurations, nor did the 1024 Csmith test cases after reconfigurations
for Csmith-detected failures. However, there was one user-reported failure that
could lead to a Csmith test case failing and another where 11 Csmith tests could
detect post-reconfiguration trouble—these were due to the conflicts over dead
code elimination and the undocumented -O0 features mentioned earlier. The 128
test cases from the user-reported failures also turned up a number of failures after
reconfiguration: 12 total after working around 11 Csmith-detected failures, and
48 after avoiding 21 user-reported problems. Again, these all traced back to the
conflicts mentioned under RQ2.

The summary of our findings is given by Figure 6, which includes both user-
reported and Csmith-detected failures. Along the x-axis we plot failures with
reconfiguration workarounds sorted from most able to reconfigure into a failure
to least able. The y-axis shows the number of possible failures, with an upper
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bound at 2410 for the total number of test cases. The leftmost bar, for instance,
which reaches 1.3% of the total test cases, represents GCC bug 41623, whose
workarounds increase the optimization level and potentially provoke any one of
the bugs that disappear under -O0. It also accounts for one unit of height in the
33 non-zero columns—it turns out that every failure it could reconfigure into
could also reconfigure into it.

However, if we ignore that atypical bug, the results look quite promising.
There are only six other bugs where we risk a post-reconfiguration failure un-
der the three test suites. They can be seen more clearly if we view the data
graphically, as in Figure 7.
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In that figure, open dots (including the one in the center) represent user-
reported failures, while closed dots are for those that Csmith detected. Edges
show pairs where avoiding one failure could cause the other’s test case to fail
and vice-versa. The relation is symmetric, so we do not show directions on the
edges, and it did not involve any torture tests, so no vertices are included for
them.

Bug 41623 appears at the center of the pinwheel, and, as we remarked earlier,
without it, most failure’s vertices would be completely disconnected. The six
exceptions are the dots on the upper-right of the wheel, mostly user-reported.
Each of these might reconfigure to one of their peers, depending on the reconfig-
uration that we choose. The longest possible walk through these failures is four
reconfigurations long.

We should keep in mind, however, that the average case is much better than
this worst case. First, Algorithm 2 would prevent many of these failures from
ever occurring. Second, the failures that could manifest after a reconfiguration
all depend on several features—all of them but the one changed by the recon-
figuration would have to be appropriately set beforehand. Third, many of these
failures are highly sensitive to the compiler’s input and would be hard to provoke
even after a reconfiguration introduces a suitable configuration.

Summary of RQ4. The reconfigurations suggested by the technique are highly
robust, except in cases where bug 41623 is involved. Avoiding this bug’s failures
might well lead to worse problems, and it may occasionally appear when we avoid
others. But apart from 41623, we could only detect potential failures after six of
the reconfigurations (13%). Even when possible, these failures affected few test
cases; even the bar on the left of Figure 6 represents only 1.3% of the combined
suite.

5 Conclusions

Building on prior work towards self-adaptation for correctness, we proposed a
framework for failure avoidance by reconfiguration. Rather than modeling fail-
ures in aggregate, our framework models individual failures’ dependence on the
system configuration, as these models can be learned more quickly and with
less effort. It then exploits feature locality, a tendency for failures to depend on
similar combinations of features, to predict future failures’ behavior according
to historic failure models.

In our case study, we find that the technique performs quite well preventing
and reconfiguring away from those failures that it targets. Based on data from
a widely-used highly configurable system, about one in five failures from the
field are reconfiguration-avoidable, so there is plenty of ground on which to
apply our approach. Among these failures we detect some evidence of feature
locality, especially if we concentrate on failures on similar inputs. Therefore,
our algorithms avoid almost all avoidable failures in a handful of reconfiguration
attempts, and, by the system’s third version, prevent all such failures completely.
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The reconfigurations also prove fairly robust: apart from one anomaly, they
almost never lead to additional failures.

The work suggests several lines of future work. We plan to locate suitable self-
adaptive systems, extend the study to their failure histories, and incorporate
our algorithms while accounting for tradeoffs between correctness and other
concerns. It would also be worthwhile to consider failure-clustering techniques, as
suggested by the Csmith data, investigate why reconfiguration-avoidable failures
are more likely to trace to high-priority faults, and evaluate various strategies
for remembering workarounds even after the associated failures have been fixed.
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Abstract. The demand for cost effectiveness and increased flexibility
has driven the fast-paced adoption of software systems in areas where
requirement violations may lead to financial loss or loss of life. Many of
these software systems need to deliver not only high integrity but also self
adaptation to the continual changes that characterise such application
areas. A challenge long solved by control theory for continuous-behaviour
systems was thus reopened in the realm of software systems. Software
engineering needs to embark on a quest for self-adaptive high-integrity
software. This paper explains the growing need for software capable of
both self-adaptation and high integrity, and explores the starting point
for the quest to make it a reality. We overview emerging techniques for
the engineering of self-adaptive high-integrity software, propose a service-
based architecture that aims to integrate these techniques, and discuss
opportunities for future research.

1 Introduction

A growing number of software and software-controlled systems are built to adapt
to changes in their environment, requirements and internal state. These self-
adaptive software systems [19,56] can successfully reconfigure themselves in re-
sponse to sensor-detected changes, typically through using a combination of
heuristics, simulation and artificial intelligence techniques.

The development of successful self-adaptive software within hardly a decade
since the advent of autonomic computing [35,38] is a remarkable achievement.
Nevertheless, this achievement alone is insufficient for an important class of
applications in which self-adaptive software plays an increasingly significant role.
These are applications for which requirement violations may lead to loss of life
or financial loss. Healthcare, transportation and finance are among the domains
that rely on such safety-critical or business-critical applications.

Clearly, self-adaptive software used in safety-critical and business-critical ap-
plications must be characterised by high integrity—in the sense specified by the
NIST definition [52]:

J. Cámara et al. (Eds.): Assurances for Self-Adaptive Systems, LNCS 7740, pp. 297–310, 2013.
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“High integrity software is software that must be trusted to work de-
pendably in some critical function, and whose failure to do so may have
catastrophic results, such as serious injury, loss of life or property, busi-
ness failure or breach of security.”

This definition requires high-integrity software to “work dependably”, which
Meyer [48] equates with a combination of three properties:

1. correctness—compliance with the specification;
2. robustness—ability to withstand erroneous use outside the specification;
3. security—ability to withstand malicious use outside the specification.

As emphasised in a position paper [11] that motivated the work described here,
software engineering tools for building software that is both correct and robust do
exist. They include formal verification and validation (V&V), design by contract,
and quality assurance [9,48,52].

However, for self-adaptive software, the three properties listed above must
continue to hold as the software evolves to adapt to change. This additional
requirement changes everything, because traditional software engineering ap-
proaches to developing high-integrity software were devised for off-line use dur-
ing the design or V&V stages of the software lifecycle. As described in [11],
“they operate with models, properties, assumptions and conjectures that in
the case of self-adaptive software are unknown until the application is deployed
and running—and which change over time.” The range of changes that can
affect self-adaptive software systems is extremely large or, in the case of
large-scale complex systems like those discussed in [57], unbounded. Therefore,
analysing the adaptation state space off-line is impractical in the first case, and
unfeasible in the latter. Analogous techniques that can be applied automati-
cally, while the system is running, are required for self-adaptive high-integrity
software.

This challenge of simultaneous adaptation and high integrity has long been
addressed by control theory, albeit primarily for continuous-behaviour systems
(e.g., [26]). As cost savings and the need for increased flexibility have led to the
replacement of these systems with software-based ones, the challenge is again
open—for both software-only and embedded (or cyber-physical) systems.

The rest of the paper explores several aspects of self-adaptive high-integrity
software, and discusses a service-based architecture for building software systems
with these characteristics. Section 2 describes several archetypal applications
that require self-adaptive high-integrity software. Section 3 overviews emerging
software engineering techniques that support the development of self-adaptive
high-integrity software, and discusses the current trend to implement critical
software applications through the dynamic integration of heterogeneous services.
Section 4 introduces a generic service-based software architecture that employs a
combination of these techniques to produce self-adaptive high-integrity software.
Finally, a preliminary research agenda is discussed in Section 5.
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2 Critical Applications Requiring Self-Adaptive
High-Integrity Software

This section overviews a selection of critical applications from three applica-
tion domains, explaining why they each need software that supports both self
adaptation and high integrity.

Healthcare. The fast ageing of the world’s population is accommodated by many
developed countries through healthcare budget increases that exceed the overall
rate of economic growth. As this approach is unsustainable in the long term, IT-
enabled ambient assisted living is perceived as an effective long-term solution for
the monitoring of patients with chronic diseases and mobility-related conditions.

Ambient assisted living applications that employ wearable systems for health
monitoring and use remote services for vital parameter analysis, medical record
access, etc. could extend the time that elderly people manage independently at
home, thus reducing healthcare costs and also improving their quality of life.
Software-controlled systems integrating this 24-hour patient monitoring equip-
ment with adaptive infusion pumps are envisaged as a potential extension of this
solution [39,40]. (Infusion pumps are medical devices for the controlled delivery
of medication and nutrients into a patient’s body.) Medical conditions that could
benefit from this approach include chronic cardiac and respiratory problems, di-
abetes, and high-risk pregnancies [33]. Nevertheless, software-controlled infusion
pumps have a poor safety record even when used in a non-adaptive operating
mode [58], so their integration into adaptive, closed-loop control solutions raises
major concerns.

Transportation. In Europe alone, the transport sector is required to achieve
“a reduction of at least 60% of greenhouse gas emissions by 2050 with respect
to 1990” [22] as a contribution towards limiting climate change below 2◦C. To
achieve this objective, the manufaturers of next-generation vehicles and the plan-
ners of future road infrastructure will use safety–critical self-adaptive software to
inform and help drivers respond to changes in traffic conditions, reducing travel
time and fuel consumption, and improving road safety [30,34]. Despite signif-
icant advances in the underlying technology, security and reliability concerns
have been raised about these applications [1,44].

Finance. In the finance industry, stock exchange transactions are increasingly
carried out by automated trading systems that can react faster than their human
counterparts. Furthermore, the adoption of adaptive, business-critical software
trading agents in recent years has led to highly flexible applications whose effec-
tiveness often matches that of human experts [21,37].

Nevertheless, self-adaptation in automated trading agents is a double-edged
sword. Unsuitable adaptation might have been one of the causes of the still not
fully explained 6th May 2010 Flash Crash that wiped $1 trillion in market value
for a 20-minute period [24] and of the lower-impact but equally worrying 8.1%
plunge in the natural gas price for 15 seconds on 8th June 2011 [49].
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Table 1. Techniques that can help support the development and operation of self-
adaptive high-integrity software

Technique/Research
area

Description Examples

models @ runtime

Models of the functional and/or non-functional
software behaviour are analysed at runtime, in or-
der to select system configurations that satisfy the
requirements.

[8,29,31,50]

on-line learning

The parameters and/or structure of the models
used to establish reliability, performance or func-
tional properties of self-adaptive software are es-
timated at runtime, based on observations of the
software behaviour.

[7,14,25,59]

quantitative model
checking @ runtime

Non-functional software requirements are ex-
pressed as probabilistic temporal-logic properties,
and are analysed at runtime, to predict or detect
requirement violations and to guide adaptation.

[16,17,25,27,42]

runtime verification

Finite, partial execution traces are analysed for-
mally to detect requirements violations, and the
analysis may trigger runtime software adapta-
tions.

[6,43,45,54]

runtime certification
The dependability of self-adaptive software is
(re)certified after each runtime reconfiguration
step.

[23,55]

model-driven
development @

runtime

Runtime architectural changes are achieved
through the on-line synthesis of the connectors
required to include new software components into
the adaptive system.

[7,10,20,36]

3 Background

3.1 Techniques for Self-Adaptive High-Integrity Software

This section (adapted from our previous work in [11]) describes the main re-
search areas in which effort has been dedicated to the development of techniques
that have the potential to support the realisation of self-adaptive high-integrity
software. Table 1 summarises these results.

Models @ runtime. A growing number of research projects are investigating the
use of models to steer the runtime adaptation of software systems. The types of
models used by these projects range from architectural models [29,31] to paramet-
ric models of the valid system configurations [50] and data-flow automata [8].

The approach proposed in [29,31] employs formal analysis of architectural
models in order to achieve software adaptation. In contrast, the “dynamic soft-
ware product line” approach described in [50] achieves this runtime adaptation
by starting with a collection of system configurations whose non-functional prop-
erties are analysed and quantified off-line. A technique called “aspect-oriented
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model reasoning’ is then used at runtime, to select and adopt the optimal config-
uration according to a set of well-defined requirements. Finally, the approach in
[8] uses synthesised data-flow automata to model the behaviour of web services
and to support their automatic composition into software applications.

On-line learning. The effectiveness of model-based reasoning about the proper-
ties of a software system depends on the accuracy of the models used in the anal-
ysis. This dependency is particularly relevant for self-adaptive software, where
the system evolution in response to changes can easily render obsolete the very
models used to guide this evolution. This serious limitation is addressed by
on-line learning techniques that use observations of the software behaviour to
maintain the analysed models up to date.

The project presented in [7], for instance, is actively working on the devel-
opment of a suite of statistical and automata learning techniques for inferring
the functional semantics and the behavioural semantics of networked systems,
respectively.

In the related approaches proposed in [14,25], the self-adaptation of service-
based systems with strict reliability requirements is achieved through the analysis
of discrete-time Markovian models whose transition probabilities are learnt on-
line by using Bayesian learning techniques. An analogous method for predicting
the response time of software components by using Kalman filter estimators is
described in [59]. This method enables the use of accurate queueing models in
the runtime analysis of the performance-related properties of certain types of
self-adaptive software.

Quantitative model checking @ runtime. Recent research aimed at improving the
dependability of self-adaptive software systems has proposed the use of quanti-
tative model checking in the runtime adaptation process [12,13,16,17,25]. Quan-
titative model checking [41] is a mathematically-based technique for establishing
the correctness, performance and reliability of systems characterised by stochas-
tic behaviour.

Quantitative model checking is traditionally used for the off-line analysis
of system properties expressed in temporal-logics extended with probabilities,
costs and rewards. In the ’@runtime’ variant of the technique advocated in
[13,16,17,25], this analysis is performed on-line, on continually updated ver-
sions of the software model and of its non-functional properties. The results
of the analysis are used to guide adaptation in ways that guarantee that the
software continues to satisfy its requirements despite changes in environment,
workload and internal state. Maintaining the model up to date involves the ap-
plication of the learning techniques described earlier in the paper [14,25,59], to
ensure that model parameters (e.g., the transition probabilities of discrete-time
Markov chains or the transition rates of continuous-time Markov chains) reflect
the evolution of the software behaviour. In contrast, the updates in the anal-
ysed properties correspond to user-initiated modifications in the non-functional
requirements of the software.



302 R. Calinescu

Given the potentially high overheads of quantitative model checking, using
the technique successfully in a runtime setting requires the exploitation of re-
cent research into improving its scalability [27,42]. The results presented in [27]
achieve significant scalability improvements by precomputing the quantitative
properties of the self-adaptive software off-line, as symbolic expressions whose
parameters are the variable success and failure probabilities of the software com-
ponents. The complementary approach in [42] works by restricting the runtime
analysis to those parts of the model that are affected by change, and reusing the
results from the previous analysis of all other parts.

Runtime verification. Runtime verification [45,47,54] is a technique that com-
plements off-line testing with the runtime monitoring and extraction of finite
software execution traces, followed by the analysis of these traces against a for-
mal specification of the correct software behaviour. This specification is described
using formalisms that range from temporal logics [45,54] and regular expressions
[2] to state machines [4] and rule systems [5]. In extended variants of the tech-
nique, the runtime detection of violations in the software requirements is used
to trigger adaptions that have a remedial effect [6,43].

Runtime verification is particularly suitable for self-adaptive software, where
the ability to use off-line testing to identify requirement violations is even more
limited than in the case of traditional, non-adaptive software.

Runtime certification. Runtime certification [55] refers to the on-line certification
of the dependability of self-adaptive software. The technique aims to augment
the fault detection, identification and reconfiguration approach from [23] with
guarantees that the chosen software reconfigurations do not have a negative
impact on dependability. The certification is achieved by means of model-based
runtime verification.

Model-driven development @ runtime. Model-driven development @ runtime
techniques were recently proposed [7,10,20,36] for the on-line synthesis of inter-
faces (or connectors) between the dynamically selected components of
self-adaptive software systems. The approach is currently applicable to service-
oriented software architectures, whose web service components expose standards-
based WSDL “models” [7,10,20]. These models are used to synthesise the
connectors required to integrate new components into an existing software ar-
chitecture as part of the adaptation process, while the framework proposed in
[36] enables the formal characterisation and verification of these connectors.

3.2 Critical Application Development through Service Integration

National and international strategic research agendas envisage that the types
of safety-critical and business-critical applications described in Sections 1–2 will
be increasingly developed through the dynamic integration of software services
[28,51,53]. These services are expected to be flexible and shareable, to belong to
multiple applications at the same time, and to self-adapt in response to change.
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The research-funding programmes set up to support fundamental and applied
research leading to the development of such services specify that they will need to
interoperate across a range of platforms that includes private and public clouds,
Internet of Things (IoT) and Internet of Contents (IoC). In other words, they
need to be self-adaptive high-integrity services capable of on-the-fly integration
into critical software applications that inherit the capabilities of their component
services.

4 Towards a Service-Based Architecture Integrating
“@ Runtime” Techniques for Self Adaptation
and High Integrity

The vision of service-based future critical applications described above is il-
lustrated in Figure 1, which depicts the high-level architecture of two of the
applications mentioned in Section 2. The first application is an ambient assisted
living system assembled from:

– wearable vital parameter monitoring (e.g., [3]) and infusion pump (e.g., [46])
IoT devices;

– medical record (MR) and vital parameter analysis (VPA) services running
on a private cloud;

– public-cloud services such as emergency (Emerg), pharmacy (Pharm), ac-
cident and emergency (A&E), weather forecast (WF) and roadmap (Rmap).

The last two of these services are also part of a road traffic information system,
which also comprises:

– smart-vehicle and traffic-sensor IoT components;
– private-cloud traffic analysis (TA) services.

Each legacy or newly developed component of the service-based software archi-
tecture from Figure 1 is wrapped into an appropriately configured instance of
a reusable self-adaptive high-integrity service. This should be a standards-based
service that augments traditional service-oriented architecture (SOA) function-
ality with enhanced versions of the techniques described in Section 3.1, therefore
enabling the transparent integration of these “@runtime” techniques into critical
software applications.

Figure 2 shows a possible prototype architecture for such a self-adaptive
high-integrity service. The elements of this architecture employ the “@runtime”
techniques from Section 3.1 as described below.

Self-adaptive high-integrity middleware. The application-independent, reconfig-
urable self-adaptive high-integrity middleware at the core of the architecture
continually learns, maintains and exploits detailed, accurate and up-to-date be-
havioural models of peer services and of the system components it provides a
wrapper for. To achieve this, the middleware uses a combination of:
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Fig. 1. Critical applications assembled through the cross-platform integration of inter-
operable services

(a) “models @ runtime” (to maintain a set of models that reflect the evolution
of its own behaviour and of the behaviour of its peer services);

(b) on-line learning techniques (to update its models);
(c) quantitative model checking @ runtime, and runtime verification techniques

(to guide its dependable adaptation); and
(d) runtime certification (to certify itself for the benefit of peer services and of

the applications it belongs to).

Configurator. The domain-specific configurator is used to repurpose the self-
adaptive high-integrity middleware for the application domain (or domains) that
it is meant to operate in. Configured middleware will be able to “speak” the rel-
evant domain-specific language(s) with similarly configured peer services, and
with the administrators and users of applications from these domains. This will
enable, for instance, the exchange and automated translation of domain-specific
requirements into an internal representation that can be analysed automatically
against up-to-date, on-line learnt models. The use of model-driven development
@ runtime techniques will be required to synthesise the software modules sup-
porting this functionality.

Intelligent proxies. The intelligent proxies linking the services belonging to
the same critical application(s) represent significantly enhanced versions of the
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Fig. 2. Prototype architecture of a self-adaptive high-integrity service that uses the
“@runtime” techniques from Section 3.1

traditional web service proxies used in today’s SOA applications. Thus, in addi-
tion to ensuring service interoperability, the intelligent proxies will continually
monitor the performance and dependability properties (e.g., response time and
success rate) of peer services. They will use the data obtained from this moni-
toring and fast on-line learning algorithms to devise partial peer-service models
that will be assembled into fully-fledged behavioural models by the self-adaptive,
high-integrity middleware.

Adaptor interfaces. The application-specific adaptor interfaces connect hetero-
geneous system components (e.g., the IoT virtual objects and cloud-deployed
services from the applications in Figure 1) to the middleware modules. As a
result, such components:

(a) can benefit from the capabilities provided by the middleware; and
(b) can be organised into interoperable self-adaptive, high-integrity services for

integration into multi-platform critical applications.

5 Conclusion

We argued that software engineering is unprepared for today’s fast-paced adop-
tion of self-adaptive software in safety-critical and business-critical applications.
The existing approaches to engineering the high-integrity software required in such
applications rely on models and properties that do not change over time, and are
underpinned by high-overhead analysis techniques suited for off-line use. Neither
of these prerequisites holds for self-adaptive software, which is typically developed
using “best-effort” techniques that cannot guarantee requirements compliance.
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Software engineering needs to embark on a quest for techniques capable of
delivering high integrity and self adaptation at the same time. The outcome of
this quest should include low-overhead software engineering techniques capable
of fully automated, on-line operation, and novel architectures that integrate these
techniques into high-integrity self-adaptive software systems.

We explored a number of emerging software engineering paradigms that col-
lectively represent the starting point for this quest. The core principle underlying
all these paradigms is that software engineering techniques traditionally used in
the off-line stages of the software life cycle should be complemented by anal-
ogous techniques that are suitable for use at run time. A growing number of
research projects work on new software engineering techniques that match this
description. They include projects that use models at runtime to support the de-
pendable evolution, formal analysis, and certification of self-adaptive software;
and projects concerned with learning and updating the parameters and structure
of these models continually.

Many challenges need to be overcome before we can achieve effective assur-
ances for critical applications that use self-adaptive software. Key among these
challenges is the need for runtime model analysis and verification techniques that
are lightweight, incremental and compositional [15,18,32]. The ability to take full
advantage of such techniques will depend on the successful development of ef-
fective approaches for the on-line learning of the analysed models.

Future software systems will comprise components that join and leave dy-
namically [7,57], so suitable software components will need to be discovered and
their behaviour will need to be learnt “on the fly”. Assembling these software
systems for use in critical applications will require software architectures based
on reconfigurable middleware that integrates state-of-the-art runtime learning
and analysis techniques into an easy-to-use framework. We suggested a possi-
ble service-based architecture for this role and indicated how it could be built
through integrating a number of emerging software engineering techniques, but
significant additional work is required in this area.

Another important challenge is the development of novel approaches for
achieving the levels of component interoperability required by high-integrity self-
adaptive software. These approaches will have to be based on new standards for
expressing a broad range of functional and non-functional properties of software
components, and on scalable techniques for inferring the system-level properties
from the component properties.

Future safety-critical and business-critical applications will comprise large
numbers of embedded (or cyber-physical) systems. Ensuring that these applica-
tions achieve both high integrity and self adaptation will require the integration
of the software engineering advances mentioned above with established control
theory techniques.

Last but not least, there is the problem of “who watches the watchmen”:
the intelligent future middleware underpinning the high-integrity self-adaptive
software systems of the future will itself need to be certified or self-certifiable.
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Abstract. In this paper we discuss the assurance of self-adaptive con-
trollers for the Cloud, and we propose a taxonomy of controllers based
on the supported assurance level. Self-adaptive systems for the Cloud
are commonly built by means of controllers that aim to guarantee the
required quality of service while containing costs, through a careful allo-
cation of resources. Controllers determine the allocation of resources at
runtime, based on the inputs and the status of the system, and referring
to some knowledge, usually represented as adaptation rules or models.
Assuring the reliability of self-adaptive controllers account to assuring
that the adaptation rules or models represent well the system evolution.
In this paper, we identify different categories of control models based on
the assurance approaches. We introduce two main dimensions that char-
acterize control models. The dimensions refer to the flexibility and scope
of the system adaptability, and to the accuracy of the assurance results.
We group control models in three main classes that depend on the kind
of supported assurance that may be checked either at design or runtime.
Controllers that support assurance of the control models at design time
privilege reliability over adaptability. They usually represent the system
at a high granularity level and come with high costs. Controllers that
support assurance of the control models at runtime privilege adaptabil-
ity over reliability. They represent the system at a finer granularity level
and come with reduced costs. Controllers that combine different models
may balance verification at design and runtime and find a good trade off
between reliability, adaptability, granularity and costs.

1 Introduction

The Cloud paradigm allows for a more efficient use of computing resources, by
decoupling software applications from their execution environment. The Cloud
infrastructure disconnects applications from the execution environments by in-
troducing a stack of abstraction layers that isolate the execution infrastructure
–Infrastructure as a Service (IaaS)– the overall platform –Platform as a Service
(PaaS)– and the provided services –Software as a Service (SaaS)–[1].

In this chapter, we focus on the IaaS layer that takes care of allocating re-
sources to applications. Applications shall guarantee the qualities specified by
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their service level agreements (SLA), which usually associate penalties to SLA
violations. At the same time resources come with costs, and providers aim to
minimize costs, in order to increase competitiveness and profit [19]. To cope
with an unpredictable set of combinations of application requests, service level
agreements and usage patterns, the IaaS layers implement self-adaptive con-
trollers, that is, controllers that adapt to different scenarios of applications to
be executed, service requirements and traffic conditions.

1.1 An Example of Dynamic Resource Provisioning in the Cloud

To decide how to efficiently allocate resources, self-adaptive controllers refer to
some knowledge that is provided in the form of either rules or models. Self-
adaptive controllers use rules or models to evaluate different strategies, and
chose the best possible tactic to cope with a degrading quality of service in the
presence of varying traffic conditions, while avoiding indirect interferences be-
tween applications. Dually, self-adaptive controllers use rules or models to chose
the right strategy to cope with increasing costs due to overallocated resources
when traffic and application conditions change.

We exemplify the problem of devising controllers for dynamic resource al-
location in the Cloud, by reporting a brief experience in managing an elastic
application based on the Sun Grid Engine (SGE) middleware. SGE follows a
standard Grid computing architecture with a singleton master node and a set of
executor nodes: The master receives jobs that are dispatched to the executors
that run them. The middleware has been deployed in a Cloud infrastructure,
where virtual execution nodes can be allocated dynamically.

In Figure 1, we report the results of different runs of the system subject to an
identical workload but different controllers. The workload lasts thirty minutes
and fluctuates in time. It consists of video conversion jobs that execute in six
seconds on average. The SLA of the application consists of a single SLO over
the response time, and specifies that the system must complete the jobs in less
than two minutes in average. The goal of the controller is to dynamically adjust
the number of executor VMs to respect the SLO while minimizing costs that
depend on the number of used VMs.

The plot depicts the workload in terms of requests per period, number of
active executors, number of jobs in the system, and measured response time for
two different runs. The continuous red line represents the system when controlled
by a self-adaptive Kriging-based controller as described in [27]. We can see that
the number of executors changes over time and the response time is always below
the 2-minute threshold, marked with the dotted blue line in the figure.

The dashed green line represents the behaviour of a state-of-the-art static rule-
based controller as presented by Rodero-Merino et al. in [22]. In the experiment,
we set the scaling up rule threshold for the queue length to 15 jobs per executor:
each time the ratio between the number of jobs in the queue divided by the
number of active executors exceeds this threshold, the system spawns a new
executor VM instance. We set the scaling down threshold to 5 jobs per executor.
We can see that SLA is violated in correspondence of the second peak in the



Assurance of Self-adaptive Controllers for the Cloud 313

 0

 5

 10

 15

 20

 25

 0  500  1000  1500  2000

re
qu

es
ts

 / 
pe

rio
d requestCount

 0

 5

 10

 15

 20

 0  500  1000  1500  2000

# 
of

 e
xe

cu
to

rs

Kriging
Rule-based

 0

 50

 100

 150

 200

 250

 300

 0  500  1000  1500  2000

# 
of

 jo
bs

 in
 q

ue
ue

Kriging
Rule-based

 0

 20

 40

 60

 80

 100

 120

 140

 0  500  1000  1500  2000

re
sp

on
se

 ti
m

e 
(s

ec
)

Experiment Time (sec)

Kriging
Rule-based

SLO Threshold

Fig. 1. Configuration, queue, and response time evolution for the SGE using Kriging-
based and rule-based control

workload. This suggests that, albeit the rule-based system seems to scale up
quickly enough in correspondence of the first workload peak, although using
more resources in comparison to the Kriging-based controller, it does not cope
well wit the second peak.

The example gives an intuitive idea of the type of actions and decisions that
a cloud controller is required to take. The example is deliberately simple, since
it has only one controlled variable, i.e., the number of executor nodes, and con-
siders a single type of request. Typical Cloud-based applications are much more
complex, since they combine different types of components and services, and
hence have a large configuration space. Moreover, the range of served requests
typically involves different sets of components causing possible software or hard-
ware contentions that eventually impact on the performance of the applica-
tions. To this end, the application workload mix, that is the number and type of
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incoming requests, typically has a considerable effect on the application response
time.

The assurance of self-adaptive controllers requires examining a potentially un-
limited set of unpredictable configurations that arise when the system adapts to
different execution conditions. While designing self-adaptive controllers is a hard
and challenging job, the assurance of self-adaptive controllers is an even harder
task, since assurance techniques must cope with infinitely many unpredictable
configurations.

In this chapter, we identify two main dimensions of this problem, the tar-
get levels of assurance and adaptability, and we propose a classification of self
adaptive controllers induced by these two dimensions. We argue that rules and
models defined at design time privilege assurance over adaptability, being stat-
ically verifiable, but incapable of dealing with situations not foreseen at design
time. On the other hand, rules and models that can change at runtime privilege
adaptability over assurance, being able to deal with unpredictable situations,
but verifiable only under certain conditions. We identify combinations of design
and runtime elements that reach a good compromise between assurance and
adaptability, and we distinguish some outliers that come from particular choices
or uses.

This chapter is organized as follows. Section 2 discusses the many dimensions
of the problem and introduces an assurance-base taxonomy for self-adaptive
controllers. Section 3 overviews the main approaches based on rules or models
defined at design time. Section 4 presents the main approaches where models
and rules are adapted at runtime. Section 5 discusses combinations of different
kinds of approaches. Section 6 indicates the main research directions in the field.

2 Assurance and Adaptability

When assigning resources to applications, the Cloud shall solve the dilemma
of allocating as many resources as possible, to reduce the violations of the ser-
vice level agreement, while allocating as few resources as possible, to increase
the profit and optimize the resource usage. The variety of available resources
with different characteristics and costs, the variability and unpredictability of
workload conditions, and the different effects of various configurations of re-
source allocations make the problem extremely hard if not impossible to solve
algorithmically at design time. Self-adaptive controllers aim to identify suitable
allocations of resources at runtime, based on some knowledge encapsulated in
the controllers in the form of rules or models.

The problem of building efficient self-adaptive controllers has been the tar-
get of several research projects, which resulted in many approaches that differ
for the models used to capture the knowledge of the system and for the strate-
gies to identify a suitable configuration while reacting to changes of workload
conditions. The models of system behavior that are used in self-adaptive con-
trollers span from simple rules to complex analytic or surrogate models. Some
approaches require models to be defined and tuned at design time, others define
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and tune models at runtime, depending on the nature of the models, the com-
plexity of the system and the reliability requirements of the controllers. Rules
and analytic models, like queuing networks, must be defined and tuned at design
time and hardly adapt to unpredictable configurations, while surrogate models,
like Kriging models, may be defined and tuned at runtime and can adapt to
emerging scenarios. Defining proper analytic models for complex systems may
require a considerable effort, but their reliability can be assured analytically or
experimentally before deployment. Surrogate models can be tuned dynamically
according to the system behavior either at testing or runtime independently from
the complexity of the modeled system, but their reliability can be assured only
on the basis of some hypothesis on the behavior of the system that may not be
statically verifiable.

In this paper we argue that there is no best model for self-adaptive con-
trollers, rather different models can be used for different purposes and under
different conditions. We followed a systematic process to identify a set of repre-
sentative approaches in literature that we use here as a reference. The first step
of the process consisted of surveying the papers published in the main journals
(ACM and IEEE Transactions) and conferences (ICAC, ICSE, Cloud, HotCloud,
ACDC, GRID, ICDCS, ASPLOS) relevant for Cloud-computing and distributed
or adaptive systems, and identifying the main proposals to deal with scaling or
resource-provisioning controllers. Among these approaches, we identified a set of
common dimensions (for example, the type of models used, the control logic, the
artificial intelligence technique) that we used for clustering the different work.
For each cluster we identified a representative by choosing the approach that is
more directly applicable to cloud-computing controllers and that is supported
by experimental results, and we use the representative to indicate the set of
proposals.

We propose a taxonomy of controllers built along two main axes: assurance
and adaptability. Assurance refers to the possibility of measuring the predictabil-
ity of the runtime behavior, and thus to the level of reliability of the system.
Adaptability refers to the capability of the model to cope with changing and
evolving configurations, and thus to the level of flexibility and learning capa-
bilities of the system. We chose these two criteria since they provide a clear
representation of the main trade-off one has to face when choosing a controller
approach. On one hand it is desirable for a controller to be adaptable, to com-
plement the information available at design time with monitoring data from the
running system, to adapt to the newly gathered information, and to continuously
learn the most appropriate control behavior. On the other hand, a continuously
adapted control behavior might practically diverge from the control desired at
design time violating some important assumptions or requirements and providing
no formal guarantees on its properties.

Assurance. We estimated the assurance level of the different approaches by
considering the formality of the control model, the hypothesis on the system
behavior and the correspondence between the system and the model:
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Fig. 2. A taxonomy of approaches for self-adaptive controllers

Formality of the Control Model. This accounts for the amount of formal
guarantees that the approach gives on the model or control. For instance, in
traditional control theory, under proper assumptions, the controlled system
can be guaranteed to converge to an equilibrium point within a given range
of oscillations.

Hypothesis on the System Behavior. This accounts for the set of assump-
tions on the system behavior that need to be valid for the approach to
correctly model the system. For instance, control theory assumes system lin-
earity, while Kriging models assume a certain degree of smoothness of the
modeled system.

Correspondence between the System and the Model. This accounts for
the (timely) coherence between the current state of the system and its run-
time models.

Adaptability. We estimated the adaptability of the different approaches by
considering three main aspects:
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Support for Adaptation. This accounts for the amount of details of the model
that are fixed at design-time, the amount of details that can be partially
adapted or extended by combining additional models (hybrid), and the
amount of detailed that the controller can learn from system monitoring
data collected at runtime.

Degree of Adaptation. This accounts for the number of parameters and the
degrees of freedom that can be changed in a model, spanning from fixed mod-
els, to linear-, polynomial-, regression models all the way to non-parametric
models (for example, splines).

Frequency of Adaptation. This accounts for the costs of retraining in terms
of speed and frequency, and measures how well a controller can use new
monitoring information.

Figure 2 illustrates the two-dimensional space induced by the metrics we chose
for classification. The adaptability axis is partitioned in three sections that corre-
spond to approaches that are implemented at design time and have no provision
for being updated, hybrid approaches that typically combine several models with
limited adaptation capability, and solutions supporting runtime update of the
control logic / models, respectively. Among these partitions, controllers with
higher degrees of adaptation, or higher frequency of adaptation are moved to
the right. The assurance axis is partitioned in two sections corresponding to the
approaches that provide formal guarantees on the controller behavior, and the
one that do not come with formal proof mechanisms.

Figure 2 presents a dispersion graph of the approaches organized along the
two dimensions. In the figure, the approaches are indicated by means of the first
author of the paper that bet represents the approach, the publication venue,
and the reference number. We specify the nature of the proposed approaches by
means of symbols that are explained in the labels.

The regions roughly identified in the figure emphasize easily identifiable sim-
ilarities in the considered approaches which can be coarsely classified as being
either analytic, black box, rule based, or hybrid.

Analytic. Analytic approaches tend to privilege reliability over adaptability.
They rely on models that can be statically analyzed to formally prove stability
and other important properties of the controllers, and thus they usually provide
a high assurance level. However, they must be defined at design time, typically
come with high costs in terms of modeling and system knowledge, and are only
applicable under strong assumptions (for example, at least ‘local’ system linear-
ity in control theory), and thus come with reduced adaptability. These models
tend to accumulate in the top left corner of the figure.

Black Box. Approaches that use black box models tend to privilege adaptabil-
ity over reliability. They rely on surrogate models built from monitoring data
that can be automatically updated at runtime, while the system is running.
Thus, they can adapt to situations that arise only at runtime resulting in high
adaptability. However, they provide little support for analysis and formal assur-
ance, and rely mostly on assumptions about the system behavior that may not
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be always easy to check statically and enforce dynamically. Thus they provide a
lower assurance level than analytic approaches. In the figure these models occupy
two distinct regions, the bottom right and the bottom left areas. The bottom
right region corresponds to approaches based on black box models initialized
and updated at runtime that can achieve high adaptability albeit at the price of
a lesser assurance level. The bottom left region corresponds to approaches based
on black box models that are used in a framework where they are initialized
and updated at design time and not at runtime, thus giving up the adaptability
that derive from the possibility of adapting to emerging scenarios at runtime,
without gaining much in terms of assurance level.

Rule Based. Approaches based on rules appear in different flavors and span all
over the taxonomy space depending on whether rules are fixed at design time and
do not change, or new rules are discovered and possibly applied after approval,
or the rule set is updated at runtime.

Hybrid. Approaches that combine design time and runtime techniques aim to
conjugate the adaptability of models used at runtime with the assurance gained
with models used at design time. In the figure, they occupy the middle region.

In the following sections, we illustrate the different classes of the approaches con-
sidering the adaptability axis. Section 3 discusses static (design-time) approaches,
Section 4 presents approaches that support runtime updates, and Section 5
overviews hybrid approaches that combine both solutions. Each section is orga-
nized by clustering approaches that have some commonality (for example, in the
type of control logic, in the nature of the models). For each cluster we outline a
relevant set of sample approaches, and discuss in detail few representative ones,
stressing the relations and trade-offs between assurance level and adaptability.

3 Static Approaches and Design Time Assurance

We use the term static approaches to indicate approaches based on models of the
controlled system that are defined and verified at design time and not modified,
updated, or tuned in production, after system deployment.We refer to these mod-
els as static models to stress the design nature of their construction and analy-
sis. These models privilege design time assurance over runtime adaptability: The
models of the system identified at design time are not changed during runtime
activities to preserve the validity of the design time proofs used to identify sys-
tem viability zones that are defined as states in which the system operation is not
compromised [25], along with the main properties of the system behavior.

The most popular static approaches are based on either analytical models
or rules and thresholds, while only some static approaches are based based on
black-box and surrogate models defined and tuned before deployment. Analyti-
cal models can be divided in (1) time invariant models that describe the system
steady state behavior, and (2) time varying models that describe the evolu-
tion and the transitory phases of the system behavior. Time invariant models
are mathematical relations derived by analyzing queuing networks, Petri nets
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and Markov chains, time varying models are typically dynamic state-equations
commonly used in classic control theory.

Rules and threshold are constructs building upon logical expressions that are
used to trigger control actions. Controllers implemented by means of rules and
thresholds are amenable to being transformed into formal representations and
proven to satisfy, at least to some extent, predictable behavioral properties. For
example, one can prove the absence of conflicts and contradictions in sets of
rules, and the termination of the rule triggering process.

Black-box and surrogate models are derived from empirical data obtained
by executing the systems. They capture the relationships between input and
output variables and are commonly used by controllers as oracles, that is, to
predict possible system behaviors in terms of the same input/output variables.
Although black-box and surrogate models are amenable to runtime adaptation,
in some cases they are used as the core of static approaches. These approaches do
not consider the additional adaptability that derive from these models, rather,
they focus on the cost of deriving accurate analytical models that decreases
dramatically when referring to black-box and analytic models.

Being defined at design time and not updated at runtime, static approaches
rely heavily on the correctness and completeness of the knowledge encoded in
their models. This implies an extensive degree of experience and understanding
of the system behavior, and generally high costs in terms of model identifica-
tion and/or synthesis. Moreover, formal approaches, in particular classic control
theory, are generally applicable under strong assumptions in terms of linearity,
monotonicity, and reliability of the controlled system, thus significantly reducing
the system viability zones. Under these assumptions, feedback-loop approaches
can be proven robust to a certain degree of error in the estimation of the model
parameters, hence they can provide effective control actions (for example, main-
taining a performance metric within a certain range) even without self-tuning
at runtime. However, both errors in parameter estimation and wrong assump-
tions on system behavior properties can consistently reduce the efficiency of the
control in terms of possible SLO violations or resource assignment.

In the rest of this section, we provide representative examples for each class
of static approaches that are and can be used inside Cloud IaaS controllers.

3.1 Approaches Based on Control Theory

Cloud controllers based on control theory adapt classic control theory techniques
in the context of computing systems aiming to design adaptive, robust, and stable
systems [17]. Here we provide only basic information about classic control theory.
Interested readers can refer to the classic book by Hellerstein et al. for additional
details on control theory approaches to managing computing systems [9].

Some approaches adapt standard control techniques, such as proportional, in-
tegral and derivative techniques, to synthesize self-adaptive controllers for the
Cloud. These controllers rely on simple models and provide formal guarantees
on the behavior of the system, but rely on very strong assumptions that are
not verified in highly varying environments. Other approaches try to extend the



320 A. Gambi, G. Toffetti, and M. Pezzè

scope of applicability of controllers based on classic control theory, by proposing
complex parametric models where part of the parameters are unknown at de-
sign time. These approaches can still provide a limited set of formal guarantees
depending on the assumption of proper on-line estimation methods.

An interesting example of approaches that apply classic control theory for
designing Cloud controllers is the control theoretic solution that Maggio et al.
propose to deal with self-optimization problems [16]. This solution is developed
in the context of a common framework for monitoring system performances
and adjust the allocation of resources to applications in order to guarantee a
predefined service level.

Classic Control. Maggio et al. start with a simple (stateless and linear) model
of the system that assumes a monotonic relation between allocated resources and
application target performance. Then, they synthesize a Deadbeat controller,
which is a common choice in the context of standard control theory, to track the
target performance signal. They study the transient behavior of this controller by
setting different parameters to estimate the approximation of the input signal,
and to decide if the controller can effectively regulate the system despite its
variations. When they cannot determine the suitability of the current model,
they further refine the model by introducing more complex techniques and see
if the new models are conclusive.

Advanced Control. Maggio et al. improve the basic deadbeat controller by
adding an identification block that supports the online estimations of the un-
known system parameters. They extend the controller by means of a Kalman
filter and a Recursive Least Square algorithm. They observe that adopting more
complex solutions, i.e., solutions that use more parameters to describe the re-
lationship between the controlled and target variable, increases the difficulty to
prove suitable control properties.

Multi Model Adaptive Control. A good example of multi model controllers
is the approach of Patikirikorala et al. who use a particular instantiation of Multi-
Model Switching and Tuning (MMST) adaptive control [20]. In a nutshell, they
define several (fixed) linear models that describe the system behavior in different
working conditions, and synthesize different single-model controllers following
the classic control theory. The overall controller monitors the system variables,
computes an error metric for each of the models, and enable only the single-
model controller that correspond to the minimum predicted error.

Approaches based on control theory provide high guarantees in terms of as-
surance: stability and dynamic properties of the controller and controlled system
can be proved in rigorous mathematical terms. Accurate system identification
further increases the control reliability.

Classic single-model approaches require simpler proofs and provide a clear
separation between system regions where the control offers formal guarantees
(viability regions) and where not. Multi-model approaches are more flexible and
are meant to cover wider viability regions. In these approaches, each controller
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behaves as in single-model approaches, but no formal guarantees are offered
when the overall control logic switches them on and off.

The high assurance level of classic controllers is based on strict assumptions
of the behavior of the controlled system that may not be always demonstrated
in practice.

3.2 Threshold and Rule Based Approaches

Threshold Based. Threshold-based policies are popular in current industrial
applications, as they are simple and intuitive to understand. They are applied
by defining lower and upper limits on target metrics that, when crossed, trigger
reconfiguration actions. Threshold-based controllers are used in many companies
such as Amazon1, RightScale2 and Scalr3. In many controllers currently used in
industrial applications, upper and lower bounds are defined by the customers
referring to low level metrics, such as CPU usage. Customers define also the
corresponding reconfiguration actions. Dutreilh et al. [7] experiment with static
threshold-based policies that rely on high level SLA metrics, such as response
time. They define control policies based on upper and lower thresholds, fixed
amounts of virtual machines to be either allocated or deallocated, and pairs
of “inertia” durations that support scaling up and scaling down periods. For
instance, if the response time exceeds the upper bound, the controller allocates
virtual machines, and inhibits itself for the corresponding inertia interval. If the
response time drops below the lower bound, the controller deallocates virtual
machines, and again inhibits itself for an inertia interval.

Rule Based. Rule based approaches extend threshold solutions by considering
different types of events, and allowing rules to trigger other rules following the
common ECA (event, condition, action) paradigm. An interesting rule based
approach is Claudia, a rule-based controller for virtualized services proposed by
Rodero-Merino et al. [22]. Claudia is more general than most rule based ap-
proaches, since it considers service life-cycle events and user defined variables,
called Key performance indicators (KPIs), as well as business level metrics that
holistically describe the status of a complete virtualized service and eventu-
ally triggers rules that reconfigure the system. Claudia combines three different
types of rules, all defined by Cloud users: scaling rules that resemble traditional
threshold based approaches and change the number of allocated virtual ma-
chines, reconfiguration rules that act at deployment time and choose the size
and type of virtual machine to be deployed, and business rules that constrain
the automatic scaling behavior with respect to running costs by limiting for
instance the total number of running virtual machines. Business rules consider
also Cloud federation concerns, for instance by migrating virtual machines from
one Cloud provider to another. Claudia monitors the virtual service execution

1 http://aws.amazon.com/autoscaling/
2 http://www.rightscale.com/
3 http://scalr.net/

http://aws.amazon.com/autoscaling/
http://www.rightscale.com/
http://scalr.net/
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and periodically tries to fire user defined rules that eventually trigger suitable
control actions.

Rule and threshold based approaches can be verified, at least to some extent,
formally. Verifying threshold based controllers is generally simpler than verifying
rule based controllers, because threshold based controllers presents a less com-
plex set of constraints, while full-fledged rule-based systems may have several
conflicting and interdependent rules. Rules are commonly set manually under the
assumption that they are able to capture main phenomena and characteristics of
the system. They remain stable during the runtime and rely on the assumption
that the system evolves only as predicted. Their event and condition clauses
clearly identify the system viability zones that, however, remain fixed and may
not are able to capture unplanned systems evolution.

3.3 Approaches Based on Analytic Models

Controllers based on analytic models use utility functions that combine system
performance metrics and business considerations, like revenue and resource usage
cost, to find desirable system configurations. They compute system performance
metrics (typically the response time) through either different queuing models or
analytical representation of queuing models. Analytical approaches differ each
other mainly in terms of the chosen queuing formalism, the complexity and ac-
curacy of the models, and the policy adopted to solve the optimization problem.

Single QN. Benanni and Menascé [3] combine queueing models and combinato-
rial search to dynamically allocate resources to application environments. They
associate a local controller to each application environment and use queueing
network models (open models for transactional systems, closed model for batch
processing system) to predict the performance metrics of the application envi-
ronment. Each local controller computes a utility measure by combining perfor-
mance metrics, service level agreements and penalty functions, and sends the
computed utility to a global controller that uses a combinatorial search algo-
rithm to identify the final resources allocation of the entire data center, i.e.,
of all the application environments. While exploring the configuration space,
the global controller interacts with the local controllers by suggesting potential
new resource allocations, and the local controllers respond with updated values
of local utilities. The queueing networks and their parameters are defined at
design time.

Architecture Level Performance Model. Huber et al. [10] introduce an ar-
chitecture level descriptive model, from which they derive performance models
that are used by self-adaptive controllers to predict the system behavior. When
the input workload changes, the control algorithm adds resources (virtual ma-
chines) to the system in order to eliminate all actual and predicted service level
agreement violations, then the controller removes the resources that are under-
utilized. Huber et al. assume the availability of the architecture level models
and estimate the parameters of the model at design time, for example, resource
usages, routing/calling probabilities, service times, and possible usage scenarios
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and user classes. Once the model is in place, an automatic procedure transforms
it into a predictive performance model, i.e., a queuing network, that is used
on-demand by the control algorithm.

Mixed Queueing Networks. Bi et al. [4] use an mixed queueing model to
simulate multi-tier applications and define a non-linear optimization problem
over it to dynamically decide on the system at per-tier. The mixed model com-
bines an M/M/c queuing model, for the front-end, with several M/M/1 queueing
models for the per-layer virtual machines. The optimizer uses the model to cal-
culate the number of resources to provision at the each tier according to the
target end-to-end response time for the tier that is assumed to be agreed with
customers.

Multiple QNs. Dejun et al. [6] address Web applications modeled as acyclic
compositions of services using a what-if-analysis and negotiation among the com-
posed services. Each service estimates its own performance variation in the case
of changes of the allocated resource or workload, and pass the estimate up
through the invocation tree to produce local decisions that are incrementally
aggregated all the way up to a root controller. Dejun et al. model the perfor-
mance of each single service as a M/M/n/PS queue, and consider performance
variations for configuration changes of a single VM (+1 or -1 machine per ser-
vice). The controller adjust the predictions by estimating the service time for
the queuing networks at runtime using a feedback control loop: A threshold on
the prediction error of the system performance triggers a new estimation of the
service time by using the latest measured response time. Dejun et al. show the
effectiveness of the proposed controller for different types of compositions, and
claim that a service level agreement for the front-end service allows for finer
control of the composed services than service level agreement thresholds on each
component.

The approaches based on different queuing networks that we review above are
based on the assumption that the chosen queuing model provides a sufficiently
accurate representation of the considered system (plus its workload, processors,
architecture, and bottlenecks) and that the system is inherently stable, that is,
it does not present emerging or unpredicted behaviors. They also make several
assumptions on the system behavior, its relevant components, and the statistical
properties of the workload. Finally, all queuing models require a set of parameters
that are estimated at design time with no provision for adjustment at runtime.

Simple models require to estimate few parameters, hence they are easier to
configure, but may not be very accurate. Complex models can be more accurate
with respect to the system structure, but require to estimate more parameters,
and thus demand extra time, and effort. More complex models do not always
result in higher accuracy, because of the simplifying assumptions that enable
analytically solutions. Richer models (for instance, layered versus plain queuing
networks, or mix-aware versus mixed oblivious solutions) typically offer more
adaptability, that is more possibilities of closer adaptation to the system, albeit
at the cost of higher complexity. In principle, they should be able to provide
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better assurance (at least in terms of a closer resembling representation of the
modeled system); in practice the high number of parameters that need to be
correctly estimated might attenuate the expected improvement.

3.4 Approaches Based on Black Box and Surrogate Models

The use of analytic modes is limited by the need of accurately defining a model
structure and computing many parameters. Black box and surrogate models ad-
dress this problem by generating the models from data gathered during system
executions, and thus obtaining models that correspond to the system by con-
struction. We will see in the next section that black box and surrogate models
can be derived and adjusted at runtime, thus increasing the flexibility and adapt-
ability of the controllers. Here we survey the main models that are proposed to
be tuned before the systems deployment, typically at testing time and during
model training.

Case Based and Clustering. Vasic et al. [30] use a workload signature based
on Hardware Performance Counters (HPC) to cluster workloads, and associate
the identified clusters to previously measured appropriate resource allocations. A
proxy collects and computes workload signatures both in the training and control
phase, by replicating a fraction of the entire application workload that is directed
to a profiler for sampling and measurement. At runtime, a profiler computes
the incoming workload signature, a classifier associates it to a class, and the
controller applies the recorded resource allocation in a single control action. The
controller uses a metric of the certainty of the association of the workload to a
cluster as an indication of the need to trigger a new training of the classifier.
The approach also measures the interference of other applications running in the
same infrastructure, where interference is defined as the ratio of the performance
achieved in production w.r.t. the performance for the same workload signature
and resource assignment measured at training time. Substantially, the system
works as a cache for previously observed combinations of workload signatures and
resource allocations. In case of a cache miss, the default policy is to bring the
controlled system to its maximum resource allocation to prevent service level
objective breaches. Threats to the validity and assurance of the control come
mainly from the choice and appropriateness of the metrics used to compute the
signature and cluster the workloads. In their experiments, the authors report that
the clustering typically results in only few workload classes while applications
can normally have very large workload and configuration spaces.

Multiple Surrogates. Trushkowsky at al. [28] address the on-line reconfigu-
ration of storage systems in response to workload changes under stringent per-
formance requirements. The controller manages SCADS [2], a key-value store
that offers eventual consistency and an easy partitioning of the key-value stores,
hence natively supports replication and elasticity. Two specific issues make the
problem hard: 1) to scale a data-intensive system, data items must be moved
or copied across instances, impacting negatively on service performance, and 2)
high percentiles of response time have much higher variance (and therefore are
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much harder to control) than the center of the distribution (average response
time). The latter issue can cause oscillations in classical closed-loop control.
Trushkowsky at al. tackle these issues by introducing a model predictive control:
The controller refers to a model of the system and its current state to compute
the optimal sequence of control actions, executes the first action of the sequence,
and then recomputes the optimal sequence of control actions to chose the next
actions. The system performance model coupled with workload statistics can
predict whether a server is likely to meet its service level objectives. In the
case of predicted violations, the controller either spawns new server instances
or activates “hot” standby ones, and copies or migrates data bins using a copy-
duration model for planning. Trushkowsky at al. builds the server performance
models using statistical machine learning (SML) on data obtained through off-
line controlled experimental runs with steady state workloads. They claim that
simple changes in workload will not affect the accuracy of these models, that
however can degrade over time if the application or the underlying data change
consistently, for instance when an individual request returns more data than
during training. In this case, the off-line models would have to be rebuilt in pro-
duction. The approach uses a linear classification model with logistic regression
to predict whether a given workload mix (get and put operations) and intensity
are likely to cause service level objective violations. The copy-duration model is
obtained off-line through the linear regression of samples gathered by running
copy operations on servers under different workload rates.

Multiple Surrogate Models. Sharma et al. [23] present Kingfisher, a cost-
aware system to scale elastic applications. Kingfisher relies on several models
that capture capacity, costs and reaction time concerns, and a linear optimiza-
tion to solve the cost- transition-time- aware control problems. Pricing models,
elasticity mechanism models (migration, replication, etc. on the different plat-
forms) and server capacity (for different resource allocations) are all obtained
empirically at design time. The controller uses the models at runtime to solve the
integer linear program that accounts for both infrastructure and transition costs
and derives appropriate control actions. Kingfisher assumes that applications
have a multi-tier software architecture where each tier has its own quality of
service requirements that must be met by provisioning sufficient capacity. More-
over, Kingfisher assumes the availability of a perfect forecaster that is defined as
forecaster that knows the workload in advance, as well as the perfect estimation
of the per-tier peak-workloads. To solve the integer linear program in reasonable
time and for not trivial applications, Kingfisher employs a greedy heuristic with
a bounded worst case.

Black-box surrogate models provide an assurance level lower than analytic
models, because the quality of these approaches depends on properties that are
difficult to formalize and measure at design time. For example, the quality of such
models depends largely on the amount and quality of the data collected from
the system runs, their distribution in the input/output features space, the train-
ing/fitting procedures adopted. Being dependent only on data collected at design
time, these models may not reflect accurately the real production environment.
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Designers must assume that the drift between testing and staging environment
is negligible. Moreover, they assume that the system behavior remains stable
at runtime. In a sense, these approaches leverages black-box surrogate model
because of they capability to learn relations between system variables that are
unknown or too complex to estimate precisely; however, they do not leverage this
inner capability outside the design time activity, thus limiting the adaptability
of the controllers.

3.5 Approaches Based on Heterogenous Models

Some approaches address the limitations of the different techniques by suitably
combining heterogeneous static techniques.

Regression. Lim et al. [15] combine a cloud controller that manages the com-
pute infrastructure with an application controller that manages the resource
assignments for each application to satisfy some a given performance goal. For
the application controller, they propose to use a classical integral control to add
and remove virtual machines based on average virtual machine CPU utilization.
Integral control can be proved stable for a continuous control signal. Unfortu-
nately the interface between the cloud and application controller consists of a
coarse grained actuator, since one cannot add a fraction of a virtual machine,
thus causing possible oscillations of the controlled system. To mitigate this ef-
fect, Lim et al. use a proportional thresholding technique, where higher and
lower thresholds become smaller as system size increases, rather than a fixed
target value for CPU utilization. They also use linear regression to model the
relationship between the CPU utilization and the cluster size.

Surrogate Model Analytic and Heuristics. Jung et al. [12] focus on con-
trollers that take into account the costs of system adaptation actions considering
both the applications (for example the horizontal scaling) and the infrastructure
(for example the live migration of virtual machines and virtual machine CPU al-
location) concerns. Thus, they differ from most cloud providers that maintain a
separation of concerns, hiding infrastructural control decisions from cloud clients.

The controller relies on an estimator that uses 1) automatic off-line exper-
imentation to build a cost table quantifying performance degradation for each
type of control action and workload, 2) layered queue networks (LQN) to predict
the performance of each system configuration given a workload (LQN parame-
ters are estimated offline), and 3) an ARMA filter to estimate the duration for
which the current workload will remain stable (i.e., within a band B). The esti-
mate of the duration of the stability of the workload is used to decide whether
expensive (long term) control actions are worth or not. The controller searches
through the graph of all possible control actions to find the sequence of control
actions that maximizes a utility function that takes into account benefits and
penalties expressed in terms of the application service level objectives, as well
as the relative impact of all the control actions.
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Approaches that combine heterogeneous models increase the adaptability with
respect to the single static approaches, at the price of reducing the provided
assurance level.

4 Dynamic Approaches and Runtime Assurance

We use the term dynamic approaches to indicate approaches based on models of
the controlled system that are tuned at runtime, after system deployment. We
refer to these models as dynamic models to stress the runtime nature of their con-
struction. These approaches privilege runtime adaptability over assurance. They
produce an accurate representation of the modeled system by characterizing the
system behavior through metrics collected from the actual system execution.
Typically, they build an initial version of the model at staging-time from a set of
training samples, and then update the model continuously at runtime while the
system is running. Thus, they can adapt to unforeseen changes and behaviors.

Different classes of dynamic approaches are characterized by the type of sur-
rogate model they adopt, ranging from several forms of regression (for example,
linear, quadratic, LOESS and Kriging) to machine learning techniques (for ex-
ample, neural networks and reinforcement learning). Different model types imply
different query and update strategies, to account for instance for the possibility
of incrementally updating a model or the time and computational complexity of
a complete re-training.

Dynamic approaches typically model either a single or a combination of sys-
tem performance metrics as a function of some endogenous system properties
that represent the system configuration in terms of both system characteristics,
for example, number of allocated VM instances, CPU cores or threads, and ex-
ogenous factors, such as for instance the workload applied to the system or the
influence of other services co-located in the same infrastructure. The approaches
surveyed in this section often differ in terms of the considered metrics and the
characterization of the workload features (for instance, workload intensity or ser-
vice mix), but share some important features. They are highly flexible, and adapt
easily to the measured system behavior, because of the ability to learn from and
adapt to emerging behaviors, and this is extremely important for instance when
the configuration or workload space is too vast for extensive exploration at stag-
ing time. They impose few requirements on the experience and knowledge of
the modeled system functioning and behavior, because the samples required for
training the models come from externally measurable system features.

The adaptive nature of dynamic approaches is both their main feature and
their Achille’s heal: The ability of constantly change and adapt makes them
particularly well suited to highly dynamic systems and, at the same time, makes
it hard to assure the quality of the resulting system, and to estimate the correct
partition of model training effort between staging time (bootstraping) and on-line
learning.

In the following, we survey the main approaches of this category distinguishing
between approaches based on surrogate models and approaches based on machine
learning.
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4.1 Approaches Based on Surrogate Models

Surrogate models are build from sample executions of the modeled system, and
describe the behavior of a system in terms of relations between input and out-
put features that can be continuously updated with monitoring data. They are
commonly used to describe either the steady-state behavior or the mid-to-long
time horizon behavior projections. Self-adaptive controllers use surrogate mod-
els to predict the close future, given both the current and the estimated values
of the input features. Some controllers use surrogate models also to support op-
timization procedures that explore the system configuration space to find the
most suitable system configurations. Less commonly, surrogate models are used
to provide model predictive control, where models are used to simulate and track
the evolution of the system state under possible control actions, in order to plan
for the most suitable ones. Such control strategy aims to maximize the control
utility over a receding time horizon.

Splines and LOESS Regression. Bodik et al. [5] use statistical machine learn-
ing, and in particular smoothing splines and local regression (LOESS), to build
performance models of the controlled system. Bodik et al.’s models represent
response time as a function of workload intensity and system configuration. The
controllers increase the robustness and the adaptivity to changes, by means of
model management techniques (i.e., online training and change point detection)
that update the model, track its quality and eventually rebuild it from scratch.
The models are trained with data obtained online from the production environ-
ment. The controllers are conservative: They start from the maximum allowed
allocation of resources, and decrease the allocation, while incrementally learn-
ing optimal configurations, to minimize service disruptions in exploration mode.
Building models entirely from online samples simplifies the training phase, but
may result in slow convergence of the models to new and possibly temporary
system behaviors.

Kriging Models. In a recent work, we proposed an autonomic controller for
horizontal scalability based on performance models of the controlled system. For
each service level objective, the controller builds a different Kriging model that
represents the objective metric (for instance the response time or the through-
put) as a function of the number and types of virtual machine instances (system
configuration) and a representation of the workload intensity and mix. Kriging
models, also called Gaussian Process Regressions (GPRs), approximate target
functions by means of a spatial correlation of samples. They extend traditional
linear regression with a statistical framework that allows them to predict the
value of the target function in un-sampled locations together with a confidence
measure. In the Kriging based approach, training samples are collected by mea-
suring the system behavior first at staging time to build an initial version of the
models, and then in production to continuously updated them. As more samples
are used, the accuracy of the model improves, while the uncertainty decreases,
and the time to build the model increases. To avoid the collection of unman-
ageable sets of samples, many of which do not provide additional information
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to the model, the controller filters out old samples belonging to the same con-
figuration. Kriging based approaches pair predictions with confidence measures
that support the implementation of robust control policies (by tuning the de-
sired risk of violations, impacting on assurance), and drive the exploration and
exploitation decisions when learning the system behavior, thus improving over
other regression mechanisms.

The assurance of surrogate-based self-adaptive controllers relates to (1) the
ability of the models to accurately represent system behavior also in the presence
of noisy and missing data, that is, when the quality of data interpolation and
regression decreases, (2) the speed of convergence of the learning process, and (3)
the accuracy of the quantification of the uncertainty of the model predictions. For
example, models that are updated online and frequently, that do not need a large
training set, and that can provide an accurate measure of confidence for their
predictions, provide higher assurance than models that are updated infrequently
and cannot provide any confidence interval for their predictions. Controllers that
continuously monitor the quality (accuracy, prediction error, etc.) of the models,
and account for completely rebuilding of the models whenever necessary can
adapt faster to emerging system behaviors than controllers that merely update
the models with new data.

4.2 Approaches Based on Machine Learning

Machine learning techniques are commonly divided in model-based and model-
free techniques, depending on the use of models. Both classes of techniques are
exploited to build self adaptive controllers. The most popular control solutions
that refer to model based techniques use artificial neural networks (ANN), while
popular model-free techniques use reinforcement learning (RL) and clustering
applied to the discovery of control rules. In model based solutions, the accuracy of
the results depend on crucial choices such as the model structure and the training
data, thus no a priori guarantees can be enforced. In model-free solutions, the
level of assurance depends on the learning rate, the instability/evolution pace
of the controlled system and the size of the action-configuration space, which is
proportional to the amount of possible control actions.

Artificial Neural Networks. Artificial neural networks use training samples
to build a model of system dynamics that can predict the system reaction to
different inputs. The structure of the network and the quality of the training
data are critical to the performance [17] and must decided by the designers off-
line. After the initial supervised training that sets all the internal parameters,
artificial neural networks can be updated on-line by a back-propagation pro-
cedure based on punishment-reward concepts. Maggio et al. [16] implement a
neural network to control the amount of resources allocated to process at the
OS level that guarantees a given service level. Although the context is different
from Cloud computing (where artificial neural network based controllers have
not been used yet) the basic concepts of modeling and dynamically allocate
resources are similar.
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Reinforcement Learning. Controllers based on reinforcement learning learn
directly optimal control policies, that is, the best set of actions to apply when-
ever the system enter a state, and thus do not require a model of the system. At
runtime, reinforcement learning-based controllers adopt a trial-and-error learn-
ing strategy and apply (at least at the beginning) random actions. Effects on
the system, and controllers utility function, resort either in action reward (if the
actions increased the utility) or punishment (if the actions damages the system,
thus lowering the utility). Reinforcement learning solutions suffer from poor scal-
ability in the action-state space and from long convergence rates. To alleviate
these limitations, Li and Venugopal [13] propose a distributed implementation
of reinforcement learning based self-adaptive controllers. In this solution, each
processing node, i.e, a virtual machine, is an independent entity and incorporates
a local controller that runs a Q-Learning algorithm. Local updates to the model
are pushed to the other controllers via a distributed hash table, so that collabo-
rating controllers can learn the state-action-reward model quickly. At run time,
each controller takes scaling decisions based on the shared model and aims to
maximize the reward function while model updates are continuously published.

Clustering for Fuzzy Rules. Xu et al. [32] propose a dynamic approach based
on fuzzy rules. The controller applies fuzzy modeling to learn the relationship
between workload and resource demand, and uses clustering to update the rules
at runtime. The controller is organized in two levels: at the lower level, local
controllers are associated to physical resources and decide about the resource
needs of the virtual applications deployed on the node; at the higher level, a
global controller receives all the resource needs from the local controllers, and
solves the resulting global optimization problem to decide the final resource al-
location. Local controllers estimate the needs of resources at regular intervals
for each virtualized application by means of fuzzy inferences: Each controller
receives workload data, fuzzifies them, triggers the fuzzy rules, and finally pro-
duces the output crispy. At the same time, controllers analyze the monitoring
data to derive new fuzzy rules, adapt existing ones, and remove not optimal rules
from the knowledge base. Fuzzy rules are obtained by filtering and clustering raw
monitoring data as they reach the controller: Data are filtered if they refer to
mappings that lead to service level agreement violations, and then are clustered
based on the density of surrounding data points. Eventually, a single rule is as-
sociated with each cluster. The controller defines an initial set of clusters, thus a
set of fuzzy rules, offline using data from staging experiments, and updates the
fuzzy rules at runtime, by adapting the size and number of clusters.

Control solutions based on machine learning techniques are in principle the
most flexible solutions, since they can learn any kind of relations either directly
modeling the system or capturing the optimal control policy. However, this ex-
treme adaptability come at the cost of the impossibility of proving stability,
convergence or any other properties important for control purposes. In particu-
lar, artificial neural network and reinforcement learning solutions do not provide
any automatic means to evaluate the goodness of their fit nor their predictions,
and designers have to either believe in them or not, and employ some external
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mechanism to track their error and retrain (whenever it is possible) the model.
Machine learning solutions can be useful where the complexity of the controlled
system makes it infeasible the construction of any satisfactory analytical solu-
tion or white box model, or when designers have no a-priori information about
the behavior of the controlled system.

5 Hybrid Approaches and Combined Design and
Runtime Assurance

We use the term hybrid approaches to indicate approaches that combine static
and dynamic techniques to benefit from high adaptability while guaranteeing
high assurance level. Static and dynamic approaches can be combined in many
different ways, resulting in different blends of assurance and adaptability.

We distinguish two classes of hybrid approaches depending on the adopted
merging strategy: (1) approaches that augment static solutions with learning
and (self-)adapting capabilities, and (2) approaches that complement dynamic
solutions with static models to modulate the effects of learning on the control
behavior. Approaches that augment static technique with learning capabilities
aim to increase the level of adaptability while maintaining a high assurance level.
Approaches that combine dynamic solution with static model aim to improve
assurance while limiting the loss along the adaptability dimension.

5.1 Static Approaches Augmented with Learning Capabilities

Static approaches augmented with learning and self-adapting capabilities in-
crease the adaptability of the underlying static technique while maintaining high
assurance level. They try to augment the size of viability zones by allowing the
control solutions to deal with unseen and emerging behaviors that may differ
from the design time assumptions. Augmented static solutions either relying on
static models with online parameters tuning, or on static models that are rebuilt
while the system is running.

Static Model with Online Parameter Tuning Approaches that augment
static models with online parameter tuning are based on a core static model
whose parameters are updated at runtime using monitoring data. The update
and learning processes proceed in parallel with the controller activities.

LQN and Kalman Filter. Woodside, Zheng and Litoiu [31] propose a model-
based feed-forward solution centered around a layered queueing network model
of the system whose parameters are recomputed online. The controller uses the
model to predict the system performance depending on the monitored workload,
and to optimize the system configuration, in terms of server configurations and
resources allocation. The controller adapts the parameters at runtime by means
of an Extended Kalman Filter: The filter keeps updating the parameters until
the residual error is below a threshold, and in this way the controller relies al-
ways on an accurate model of the system. The tracking filter greatly improves
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the robustness of the control algorithm in the presence of parameter drift. More-
over, extended Kalman filters have proven optimal properties when the relations
between variables are linear, and are expected to have near-optimal properties
if non-linearities are involved depending on the local properties around the op-
erating point.

QN and Regression. Urgaonkar et al. [29] propose a dynamic capacity pro-
visioning model for multi-tier Internet applications that uses queuing networks
to determine the provisioning of resources for each tier of the application. Dif-
ferently from the previous work, Urgaonkar et al. use online monitoring data
to estimate the session arrival rate, the session duration and other parameters
that are fed to the queuing network for the predictions. The proposed controller
combines predictive and reactive methods to determine when to provision re-
sources, to cater for respectively long-term / cyclic and short-term / unpredicted
variations in the application workload. The controller computes long-term pro-
visioning with the queuing network model where each tier is modeled as G/G/1
queue, and tiers are linked with replication factors to describe how the work-
load demand is distributed inside the controlled system. The controller deals
with short-term variations of the load by means of a sentry component that
implements admission control policies.

QN and Clustering. Singh et al. [24] use a queueing network to model the
system as well, but they rely on mix-aware provisioning techniques to handle non-
stationarity in workload mix and volumes. The controller employes k-means clus-
tering to automatically classify the workload mix and uses the queuing model to
predict the server capacity and support configuration optimization. The “work-
load class” is the parameter estimated online by the controller that keeps the
model up to date. The initial clustering is computed off-line following an iterative
and empirical process. On-line clusters are adjusted (split/merge) whenever the
error of the estimated cluster predicted mean service time is greater than a given
threshold with respect to the mean service time monitored by the mix-determiner.
Maximum number and size of clusters are specified beforehand. Similar to the
other approaches in this group, Singh et al. assume that the system can be mod-
eled as a pipeline of independent tiers, for which per-tier service level agreement
can be defined, and per-tier demands can be derived from the incoming one. The
clustering allows to determine precisely the different types of requests in the work-
load improving the accuracy of results form the queuing model.

These approaches share the adoption of an analytic system representation
(either queuing networks or layered queuing networks) whose structure remains
unchanged. They achieve a limited degree of adaptability by estimating one or
more parameters online. This caters for situations in which there is a need for
minor adjustments with respect to design time expectations on system behavior,
but the limits imposed by the initial queuing network model prevent the control
from adapting to any possible emergent behavior related for instance to non-
modeled system bottlenecks.
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Model Update. Approaches that rebuild the model at runtime use a control
model that is modified or completely rebuilt at system runtime, either periodi-
cally at a fixed time interval or whenever some indicative metric (for instance,
a prediction error) crosses an acceptable threshold value.

Rule Base with Bayesian Classification. Jung et al. [11] propose a rule
based approach, where rules are automatically generated by means of a machine
learning process. The controller uses the rules as in static approaches: It monitors
system variables, for instance, the workload, and triggers the control rules when
necessary, e.g. when there is a match with the workload intensity, to change the
system configuration. The controlled systems are modeled by means of layered
queuing network models whose parameters are estimated offline, at design time.
The controller then uses the layered queuing network models in a two step dis-
covery process that is carried out at runtime in parallel with the control loop: (i)
The controller randomly chooses a set of input workloads, searches for the cor-
responding optimal system configurations, and encodes the results as rules; (ii)
It interpolates all the data via a Bayesian classification algorithm that derives
a decision tree saved as policy. The decision tree covers the whole configuration
space – thus not only the rules obtained in step (i) – and the learning algorithm
can be configured to prune or merge, similar subtrees and configurations to sim-
plify the rule set. The process produces a new decision tree with a finite number
of leaves, i.e., system configurations, with a high degree of predictability and
verifiability because the new tree encodes all the possible system configurations
a priori enabling further decision to be taken at business level. The optimiza-
tion procedure is based on a heuristic gradient search and considers both the
system configuration, i.e. the number of replicas for each virtual machine, and
their placement on a set of physical nodes. It assumes that the system utility
monotonically decreases as resources are deallocated. The quality of the con-
trol, measured in terms of utility, depends on three critical factors: the model
accuracy, the number of workloads considered during the optimization, and the
“compactness” of the decision-tree, as more compact trees are less accurate.

QRS Model and Clustering. Quiroz et al. [21] propose a decentralized online
clustering approach to detect patterns and trends in resource demands for jobs
in Grid systems, and use this information to optimize the provisioning of virtual
resources. The control is fully decentralized: In each control window, the clus-
tering algorithm analyzes the incoming jobs and produces a number of target
virtual machine classes. The number of virtual machines that must be provi-
sioned is proportional to the volume of the incoming job for each class. Jobs
are either assigned to the available virtual machines as they arrive or wait for
the right virtual machine to start. Eventually, each local controller triggers the
creation of new virtual machines to process the waiting jobs. Controllers rely
on a model to estimate application service time based on Quadratic Response
Surface Model (QRSM). The QRSM is fitted using long-term application perfor-
mance monitoring data, and it is used at runtime to provide feedback about the
quality of the clustering, i.e., the appropriateness of requested resources for the
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incoming jobs and their ability to meet QoS constraints. Given the actual re-
sources, the QRS model is used to predict the response time for the estimated
workload. This prediction is compared against the quality of service require-
ment and the controller uses the model to adjust the class attributes computed
by the clustering. The controller then uses the quality measures obtained from
the QRSM as an oracle to re-trigger the evaluation of the clusters with the
decentralized online clustering algorithm.

Approaches that rebuild the model at runtime combine some static model,
either a linear queuing network or a response surface model, with a learn-
ing/discovery mechanism that changes the control logic, rule- or clustering-
based, respectively. The static model is derived from design time knowledge
or long-term application historical data, and provides the fixed reference for the
derivation/optimization and evaluation of the runtime-generated control logic. In
a sense, the static model defines fixed boundaries for the controller behavior that
make it predictable (i.e., within the boundaries), while the runtime adaptation
aims at optimizing the control with respect to the measured system behavior.

5.2 Dynamic Approaches with Static Fall-Back

The lack of assurance of purely dynamic models derives from the dynamic nature
of the data used to build and tune the models, that cannot be statically verified
by definition. It is difficult to provide assurance proofs of controller behavior for
approaches based mainly on runtime measurements, that heavily depend on the
availability and quality of the data collected at runtime.

Dynamic approaches with static fall-back aim to improve the accuracy of
these models by complementing the dynamic model with analytic approaches
that might provide a reasonable alternative in the presence of low quality of the
prediction based on the runtime model.

Case Based and Analytic. Malkowski et al. [18] propose a multi-model con-
troller that combines the horizontal scale controller originally developed by Lim
et al. [14] as the static approach with an empirical model obtained from runtime
monitoring data. The empirical model uses a throughput vector space (i.e., a list
of throughput values, one for each application interaction-type) to represent the
combination of configuration, workload, and performances achieved by the sys-
tem in a 30-seconds time frame. The empirical model is used to find the smallest
(cheapest) system configuration that satisfies the service level objectives, and is
located within a threshold value in terms of Euclidean distance in the throughput
vector space with respect to the predicted workload. In other terms, it selects
the smallest configuration among the set of visited configurations that were able
to withstand a predicted workload intensity (or a comparably “close” intensity)
without violating service level objectives. The controller switches to the static
approach when the empirical model cannot find a visited configuration within
the distance threshold.

Kriging and Analytic. In our recent work, we proposed a similar approach
where the controller uses an analytical formulation, derived from a queue network
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model, as the static approach, and a Kriging model that interpolates monitoring
data in [8]. Differently from the previous approach, we use an interpolation of
data, i.e., the Kriging model, instead of raw monitoring data, to drive the control
decisions, and use the same model to switch to the queuing network. In fact, the
controller leverages the unique ability of Kriging models to provide a confidence
measure along with performance prediction: If the confidence of the prediction
is too low then the value is discarded and the controller resorts to the queuing
network.

Reinforcement Learning with ANN and Queuing Networks. Tesauro et
al. [26] employ both static and dynamic techniques in an approach that combines
the strengths of reinforcement learning, artificial neural networks and queuing
networks. A static technique is used when the reinforcement learning is in learn-
ing mode; in this period, the controller resorts to the queuing networks to control
the system and collect training data at runtime. To speed up the learning, the
data are used to train a non-linear function approximation, in this case an ar-
tificial neural network, of the Q-function that is used to obtain the learning
rewards. Tesauro and co-authors represent the Q-function using neural networks
instead of traditional look up tables to encode the state-action rewards. Arti-
ficial neural networks interpolate the collected samples and reduce the need of
large training set, improving the controller scalability. By combining reinforce-
ment learning and queuing networks, controllers can avoid poor performance
during the training activities, because all the data are collected using the queu-
ing network policy that provides an acceptable quality level of the control with
respect to the random control actions of the reinforcement learning exploration.
At the same time, controllers can improve their accuracy because steady-state
queuing models are unable to take dynamical effects into account while the re-
inforcement learning can take into account dynamic effects such as transients
and switching delays. Once the reinforcement learning is ready, the controller
releases the queuing network and adopts it. In this period, parameters of the
queue network are continuously updated based on measurements of system be-
havior, and when necessary, the controller can switch back to it and start the
learning process again.

Hybrid approaches achieve high adaptability by using empirically obtained
data to model emerging (and possibly unexpected) behavior such as for in-
stance I/O bottlenecks (typically not modeled in analytic approaches / lay-
ered queuing networks for cloud controllers) or cross-layer interdependencies.
High adaptability aims at a more precise representation of the system behavior
geared towards the realization of more efficient (i.e., in terms of resource usage,
service level objective violations) controllers. To compensate for the dynamic
nature of black box models, and their dependency on possibly high varying
runtime monitoring data, analytic approaches (typically queuing networks) are
used as a safety net to constrain the controller actions. In a sense, analytic
models provide the base controller behavior upon which dynamic solutions can
improve.
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6 Conclusions

In this chapter we presented the current state of the art of self-adaptive con-
trollers for the Cloud Infrastructure as a Service. IaaS self-adaptive controllers
dynamically assign resources to services aiming to strike the balance between
under-provisioning (by minimizing service level agreement violations) and over-
provisioning (by reducing resource assignments) in response to service workload
variations. To efficiently allocate resources, self-adaptive controllers refer to some
knowledge about the system characteristics and behavior that is typically en-
coded in terms of models or rules.

While designing self-adaptive controllers is a challenging task in itself, pro-
viding assurance guarantees on self-adaptive controllers behavior is even harder,
because IaaS controllers typically face unpredictable environmental conditions
(for instance, workloads and co-located services interference) and a very large
space of configurations.

The different models used by the controllers come with different levels of as-
surance and adaptability. The inherent problem with adaptability is that it may
give rise to undesirable emergent properties, impede the ability of administra-
tors to understand system behaviors, and possibly reduce the predictability of
the controlled system. However, controller adaptability may be required for in-
stance in the case of systems too complex to be modeled analytically or whose
environmental conditions and configuration spaces are too vast to be effectively
explored before application deployment.

As it often happens, there is no “best” solution for IaaS controllers, the choice
of the most suitable approach depends very much on the requirements posed
on the control. We considered the trade-off between assurance and adaptabil-
ity by classifying state-of-the-art approaches as belonging to either static (non-
adaptable), dynamic (fully adaptable), or hybrid classes (partially adaptable).
Static approaches privilege assurance over adaptability, being statically verifi-
able, but are less effective in dealing with situations not foreseen at design time.
Dynamic approaches keep learning and adapting to the measured system behav-
ior, hence offer models closer to the actual system behavior, typically resulting
in a more precise (and efficient) control. However, this may come at the cost
of reduced predictability. Hybrid approaches try to compensate the weakness
of each of the previous classes by complementing static approaches with some
degree of adaptability, and dynamic approaches with a fall-back static control.

We expect future research in this area to concentrate even more on hybrid
approaches. The challenge is to be able to closely match system behavior, by
continuously gathering performance measurements and adapting system mod-
els, while not completely giving up on formal proofs and guarantees on controller
actions. To this end, some dynamic approaches, in particular the ones based only
on the latest measured system behavior, might incur in the risk of learning the
behavior of the system while in unperceived abnormal working conditions (for
instance, false positives in monitoring VMs running and working state), thus
building invalid models and consequently implementing the wrong control de-
cisions. Hybrid approaches take advantage of the fall-back to less precise but
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typically more stable design-time models, and offer a safety net for situations
in which the monitoring infrastructure cannot reveal malfunctions. Moreover,
multi-model controllers can utilize possible discrepancies in the predictions from
their different models to implement simple warning mechanisms (for example,
requiring human intervention or interpretation of possible malfunctions) or var-
ious model-update policies, for instance with change-point detection. It is there-
fore our opinion that, independently of the levels of assurance or adaptability
required by an application, multi-model solutions can typically offer a deeper
insight on the controlled system behavior.
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