
Design and Verification

of Anonymous Trust Protocols�

Michael Backes1,2 and Matteo Maffei1

1 Saarland University, Saarbrücken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Over the last years, the Web has evolved into the premium
forum for freely and anonymously disseminating and collecting informa-
tion and opinions. However, the ability to anonymously exchange in-
formation, and hence the inability of users to identify the information
providers and to determine their credibility, raises serious concerns about
the reliability of exchanged information.

In this paper we propose a methodology for designing security pro-
tocols that enforce fine-grained trust policies while still ensuring the
anonymity of the users. The fundamental idea of this methodology is
to incorporate non-interactive zero-knowledge proofs: the trust level of
users are certified using digital signatures, and users assert their trust
level by proving in zero-knowledge the possession of such certificates.
Since the proofs are zero-knowledge, they provably do not reveal any
information about the users except for their trust levels; in particular,
the proofs hide their identities.

We additionally propose a technique for verifying the security proper-
ties of these protocols in a fully automated manner. We specify protocols
in the applied pi-calculus, formalize trust policies as authorization poli-
cies, and define anonymity properties in terms of observational equiv-
alence relations. The verification of these properties is then conducted
using an extension of recently proposed static analysis techniques for
reasoning about symbolic abstractions of zero-knowledge proofs.

1 Introduction

Over the last years, the Web has evolved into the premium forum for freely
disseminating and collecting information and opinions. In particular, social net-
works and peer-to-peer (P2P) applications have proven to be particularly salient
approaches for this task. However, not all information providers are willing to
reveal their true identity: for instance, some may want to present their opinions
anonymously to avoid associations with their race, ethnic background or other
sensitive characteristics. Furthermore, people seeking sensitive information may
want to remain anonymous to avoid being stigmatized or other negative reper-
cussions.

� Work partially supported by the initiative for excellence of the German federal gov-
ernment, by DFG Emmy Noether program, and by MIUR project “SOFT”.

B. Christianson et al. (Eds.): Security Protocols 2009, LNCS 7028, pp. 143–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



144 M. Backes and M. Maffei

The ability to anonymously exchange information, and hence the inability
of users to identify the information providers and to determine their credibility,
raises serious concerns about the reliability of exchanged information. Trust man-
agement systems have become the most popular technique to determine which
resources should be trusted, and to which extent. Except for some notable excep-
tions [1], trust management systems inherently rely on revealing the identities of
the involved parties, and they hence do not live up to nowadays’ anonymity de-
mands. Indeed, devising security protocols that simultaneously satisfy conflicting
security properties such as trust and anonymity requires significant extensions
to the state-of-the-art. In particular, it is crucial to incorporate the most in-
novative modern cryptographic primitive in the design and the verification of
security protocols: zero-knowledge proofs1 [2]. This primitive goes beyond the
traditional understanding of cryptography that only ensures secrecy and au-
thenticity of a communication. The unique security features of zero-knowledge
proofs, combined with the recent advent of efficient cryptographic implementa-
tions of this primitive for special classes of problems, have paved the way for
their deployment in modern applications, such as anonymity protocols [3,1] and
electronic voting protocols [4,5].

In this paper we propose a methodology based on zero-knowledge proofs for
designing security protocols that enforce fine-grained trust policies while still
ensuring the anonymity of the user. The fundamental idea of this methodology
is to exploit digital signatures for certifying the trust level of users, and to let
users prove the possession of such certificates in order to prove their trust level.
Since the proof is zero-knowledge, it provably does not reveal any information
about the users except for their trust levels; in particular, the proof hides their
identities.

We additionally propose a technique for verifying the security properties of
these protocols in a fully automated manner. We specify protocols in the ap-
plied pi-calculus [6], formalize trust policies as authorization policies, and define
anonymity properties in terms of observational equivalence relations. The ver-
ification of these properties is then conducted using an extension of recently
proposed static analysis techniques for reasoning about symbolic abstractions of
zero-knowledge proofs [7,8].

2 Anonymous Proofs of Trust

We assume a public-key infrastructure and that users know each other’s public
key. Whenever user A wants to certify that she trusts user B, A signs B’s
verification key, thus obtaining the digital signature sign(vk(kB), kA). Suppose
now that B wants to send a message m to A in an authenticated manner, but

1 A zero-knowledge proof combines two seemingly contradictory properties. First, it
is a proof of a statement that cannot be forged, i.e., it is impossible, or at least
computationally infeasible, to produce a zero-knowledge proof of a wrong statement.
Second, a zero-knowledge proof does not reveal any information besides the bare fact
that the statement is valid.



Design and Verification of Anonymous Trust Protocols 145

without revealing his identity, i.e., A should solely learn that this message was
generated by a trusted user. This requirement clearly prevents B from simply
sending a signature on m to A, since this would reveal his identity. In order to
guarantee both trust (authentication) and anonymity, B instead runs a zero-
knowledge proof showing that B knows a verification key signed by A as well as
the corresponding (private) signing key, thus preventing impersonation attacks.
Following [8], we represent this zero-knowledge proof as the following term:

zkver(α1,α2,β1)∧α2=vk(α3)(

α1
︷ ︸︸ ︷

sign(vk(kB), kA),

α2
︷ ︸︸ ︷

vk(kB),

α3
︷︸︸︷

kB ;

β1
︷ ︸︸ ︷

vk(kA),m) (1)

We briefly describe the individual parts of this zero-knowledge proof:

– Involved message components : The messages sign(vk(kB), kA), vk(kB), and
kB constitute the private component of the proof; the semantics of [8] en-
sures that they are not revealed to the verifier. The messages vk(kA) and
m constitute the public component ; they are revealed to the verifier. This
proof hence does not reveal any information except for A’s verification key
and the message m to be authenticated; in particular, A does not learn the
identity of B since B’s verification key vk(kB) is kept secret.

– Proven Statement : The statement to be proven is expressed as a Boolean
formula ver(α1, α2, β1)∧α2 = vk(α3) over cryptographic operations. Here αi

and βj constitute placeholders for the i-th element in the private component
and the j-th element in the public component, respectively. We moreover
write ver(α1, α2, β1) as an abbreviation of ∃k : (α1 = sign(α2, k)∧β1 = vk(k)),
i.e., to denote that the A’s signature on B’s verification key is valid. In words,
the statement hence says “B knows a signature α1 of a message α2 that
can be checked using A’s verification key vk(kA), as well as the private key
α3 corresponding to the verification key α2”. Proving the knowledge of a
certificate for B’s verification key (without revealing the key and hence the
identity of B) and the knowledge of the corresponding private signing key,
however, ensures A that the message m in the public component comes from
a trusted user2.

Using zero-knowledge proofs in this manner constitutes a general approach for
asserting trust, and it in particular allows us to implement fine-grained trust
policies. For instance, B might be interested in proving that he is considered
trusted by C1 or C2, without revealing which user Ci it is trusted by. Assume
further that both C1 and C2 are trusted by A. Such disjunctive proofs aree
viable tools for enhancing anonymity, e.g., to deal with the case that A asks C1

and C2 for a list of trusted users. This proof can be realized by the following
zero-knowledge proof, assuming that A has been certified by C1:

2 Technically, we consider (an abstraction of) non-malleable zero-knowledge proofs,
i.e., proofs that the adversary cannot modify without knowing the secret witnesses.



146 M. Backes and M. Maffei

zkver(α1,α2,α4)∧α2=vk(α3)∧α4∈{β1,β2}

⎛
⎜⎜⎝

α1
︷ ︸︸ ︷

sign(vk(kB), kC1),

α2
︷ ︸︸ ︷

vk(kB),

α3
︷︸︸︷

kB ,

α4
︷ ︸︸ ︷

vk(kC1);
β1

︷ ︸︸ ︷

vk(kC1),

β2
︷ ︸︸ ︷

vk(kC2),

β3
︷︸︸︷

m

⎞
⎟⎟⎠

Another interesting case is when B wants to prove that he has been certified by
both C1 and C2. Such conjunctive proofs are useful when trust policies take into
account multiple trust certifications to upgrade the trust level of a user. This
can be realized by the following zero-knowledge proof, which guarantees that the
same (secret) verification key α2 is used in the two (secret) certificates α1 and
α4:

zk ver(α1, α2, β1) ∧ α2 = vk(α3)
∧ ver(α4, α2, β2)

⎛
⎜⎜⎝

α1
︷ ︸︸ ︷

sign(vk(kB), kC1),

α2
︷ ︸︸ ︷

vk(kB),

α3
︷︸︸︷

kB ,

α4
︷ ︸︸ ︷

sign(vk(kB), kC2);
β1

︷ ︸︸ ︷

vk(kC1),

β2
︷ ︸︸ ︷

vk(kC2),

β3
︷︸︸︷

m )

⎞
⎟⎟⎠

3 Automated Verification of Proofs of Trust

Trust policies can be naturally formalized as authorization policies. For instance,
consider the protocol described before, where A sends to B a certificate and B
authenticates the message m with the zero-knowledge proof (1):

A B

assume Trust(A,B)

sign(vk(kB),kA) ��

assume Send(B,A,m)

�� ZK

assert Authenticate(A,m)

where ZK = zkver(α1,α2,β1)∧α2=vk(α3)

⎛
⎜⎜⎝

α1︷ ︸︸ ︷
sign(vk(kB), kA),

α2︷ ︸︸ ︷
vk(kB),

α3︷︸︸︷
kB ;

β1︷ ︸︸ ︷
vk(kA),m

⎞
⎟⎟⎠

We decorate security-related protocol events with assumptions and assertions. In
the example, A assumes Trust(A,B) before certifying B. Moreover, B assumes
Send(B,A,m) before sending the zero-knowledge proof to A. After verifying
the zero-knowledge proof, A finally asserts Authenticate(A,m). We say that a
protocol is safe if and only if in all protocol executions, even in the presence of an
active attacker, every assertion is entailed by the previous assumptions and by



Design and Verification of Anonymous Trust Protocols 147

the authorization policy. Formally, this is captured by the following authorization
policy:

∀A,B,m.Trust(A,B) ∧ Send(B,A,m) ⇒ Authenticate(A,m).

This policy asserts that A can authenticate message m (assertion
Authenticate(A,m)) provided that this message has been sent by a user B (as-
sumption Send(B,A,m)) that is trusted by A (assumption Trust(A,B)). We
have specified this protocol as a process in the applied pi-calculus [9] and checked
with our type system [7] that this protocol is safe with respect to the given au-
thorization policy.

In order to define the anonymity property of the protocol, we consider a
system with two users B1 and B2 trusted by A. Both of them receive a certificate
from A and afterwards one of them authenticates a message with A. Intuitively,
this protocol guarantees the anonymity of the sender if A cannot distinguish
the process S[B1, B2], in which the message is sent by B1, from the process
S[B2, B1], in which the message is sent by B2. This is formalized by requiring

S[B1, B2] ≈ S[B2, B1],

where≈ denotes the observational equivalence relation in the applied pi-calculus.
We automatically checked this equivalence using ProVerif [10].

4 Open Challenges

In this short paper, we conclude by outlining a series of important challenges that
have to be tackled for applying the proposed methodology to realistic scenarios.

First, the methodology for asserting trust using zero-knowledge proofs should
be comprehensive enough to model popular trust models such as [11,12,13].

Second, currently used zero-knowledge protocols are still notoriously ineffi-
cient for many important classes of statements. However, recent results [14]
show that it is possible to automatically devise efficient implementations of zero-
knowledge proofs such as the one depicted in Equation (1). Enforcing anonymity
in complex trust models, however, calls for efficient implementations of even
wider ranges of zero-knowledge proofs.

Third, the advent of social network applications resulted in the demand for
novel, more comprehensive requirements on both trust and anonymity. So far,
many of these requirements lack a formalization and hence corresponding anal-
ysis techniques.

References

1. Lu, L., Han, J., Hu, L., Huai, J., Liu, Y., Ni, L.M.: Pseudo trust: Zero-knowledge
based authentication in anonymous peer-to-peer protocols. In: Proc. 2007 IEEE
International Parallel and Distributed Processing Symposium, p. 94. IEEE Com-
puter Society Press (2007)



148 M. Backes and M. Maffei

2. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM 38(3), 690–728 (1991),
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

3. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc. 11th
ACM Conference on Computer and Communications Security, pp. 132–145. ACM
Press (2004)

4. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proc. 4th ACM Workshop on Privacy in the Electronic Society, WPES, pp. 61–70.
ACM Press (2005)

5. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: A secure voting system. In: Proc.
29th IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer
Society Press (2008)

6. Abadi, M., Blanchet, B.: Secrecy Types for Asymmetric Communication. In: Hon-
sell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 25–41. Springer,
Heidelberg (2001)

7. Backes, M., Hriţcu, C., Maffei, M.: Type-checking zero-knowledge. In: 15th ACM
Conference on Computer and Communications Security, CCS 2008, pp. 357–370.
ACM Press (2008), Implementation available at
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker/

8. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: Proc. 29th
IEEE Symposium on Security and Privacy, pp. 202–215. IEEE Computer Society
Press (2008)

9. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th Symposium on Principles of Programming Languages, POPL, pp.
104–115. ACM Press (2001)

10. Abadi, M., Blanchet, B., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: Proc. 20th Annual IEEE Symposium on Logic in
Computer Science, LICS, pp. 331–340. IEEE Computer Society Press (2005)

11. Jøsang, A.: An algebra for assessing trust in certification chains. In: Proceedings
of the Network and Distributed Systems Security Symposium, NDSS 1999. The
Internet Society (1999)

12. Xiong, L., Ling, L.: A reputation-based trust model for peer-to-peer ecommerce
communities (extended abstract). In: Proceedings of the 4th ACM Conference on
Electronic Commerce, EC 2003, pp. 228–229. ACM Press (2003)

13. Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic net-
works. In: International Conference on Software Engineering and Formal Methods,
SEFM 2003, pp. 54–64 (2003)

14. Bangerter, E., Camenisch, J., Krenn, S., Sadeghi, A., Schneider, T.: Automatic
generation of sound zero-knowledge protocols. IACR Cryptology ePrint Archive:
Report 2008/471 (2008), http://eprint.iacr.org/

http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker/
http://eprint.iacr.org/

	Design and Verification of Anonymous Trust Protocols
	Introduction
	Anonymous Proofs of Trust
	Automated Verification of Proofs of Trust
	Open Challenges
	References




