
Pretty Good Democracy

(Transcript of Discussion)

Peter Y.A. Ryan

University of Luxembourg

Thanks for showing up first thing on the second day. This talk was going to
be entitled Pretty Good Democracy, but out of courtesy to Phil Zimmerman I
thought I should email him and ask him if he was happy with me using this title;
and initially he seemed to be quite positive about it, but he’s handed the rights
of the name over to a company and they’re not happy about me using the brand
name, so strictly speaking the scheme won’t henceforth be called Pretty Good
Democracy, but for the purpose of the talk I’ll refer to it as PGD.

So I’ll talk a little bit about the challenge, but I don’t think I need to stress
that particularly as Matt1 gave a nice talk about the challenges faced in trying
to get secure voting to work properly. Then I’ll talk very briefly about the key
ideas of this PGD scheme. I should say immediately that I’ve been working on
voting systems for a while, and particularly the Prêt à Voter system.

Prêt à Voter is a supervised polling station type scheme, PGD is a venture
into the realm of Internet remote voting, a rather tentative and nervous venture
into that area, but we’ll come back to that later. I’ll give you an outline of the
scheme, then I’ll talk about some of the threats that we’re already aware of, and
some of the ideas to try and counter those threats and improve the scheme. I
should stress this is very much work in progress, and that it’s joint work with
Vanessa Teague in Melbourne.

The technical requirements for a voting scheme are that first and foremost we
want it to be accurate, the outcome to be guaranteed, and not only accurate but
seen to be accurate, and this is often usefully broken down into three phases: the
requirement that votes are cast as intended by legitimate voters, are recorded as
cast, and then counted as recorded. And of course we also want to ensure ballot
secrecy at the same time, and this is what makes the whole problem so intriguing,
that we’ve got these conflicting requirements of auditability and transparency
on the one hand, and the secrecy and confidentiality on the other. A lot of these
schemes provide notions of voter verifiability, and our scheme for example, does.
This provides a kind of voter verifiability, but is subtly different because actually
the voter doesn’t get a receipt as such.

And of course throughout this we would like to try and reduce the assumptions
we need to make (about the technology, the officials, and so on and so forth), to
an absolute minimum, and there are discussions about whether it’s possible to
drive that down to zero, but we do our best to minimise it.

Another requirement that’s important, is that, if we’re talking about a gen-
eral voting system, it really has to be extremely easy to use, hopefully just a

1 Blaze, these proceedings

B. Christianson et al. (Eds.): Security Protocols 2009, LNCS 7028, pp. 131–142, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



132 P.Y.A. Ryan

very simple linear sequence for the voters, and also easy for the voting officials
to understand, and to understand recovery mechanisms, and so on and so forth.
Because there are a lot of schemes out there which are very ingenious and involve
rather fancy challenge response, cut and choose protocols run between the voter
and the device, and these are technically beautiful things and give very high
degrees of assurance, but in fact thereby become very vulnerable to social engi-
neering attacks similar to the one that Matt mentioned yesterday where in effect
the system deceives the voter as to what the proper sequence of the protocol is.

PGD is an enhancement of code voting, which is a very simple idea, and
again I think it’s due to David Chaum2 originally, so it stems if you like from
the observation that Internet voting and voter client devices are fundamentally
insecure. So the idea is that you distribute by some supposedly secure channel
like Snailmail, you distribute so-called code sheets to the voters, an individual
code sheet to each voter, and the idea is very simple, in effect they are individual
sort of code books for the voter to communicate with the voting system. There
are random codes against each candidate, and of course they’re distinct for each
code sheet.

A typical code sheet then might have the list of candidates, a separate random
vote code against each, and an acknowledgement code, a separate one against
each, and typically a unique serial number for each code sheet. So the voting
process is now very simple, the voter logs on to a vote server, possibly with
some additional form of authentication, but maybe not, and simply provides the
serial number of the code sheet, and then the code for their candidate of choice.
And the vote server is supposed to respond with the correct ack code, it has
a database, all the appropriate information, it sends that back, and so the ack
code has a sort of dual role, first of all of reassuring the voter that the correct
vote code reached the server, and also some degree of authentication I guess of
the vote server that they’re actually talking to the right device, and not some
fake device.

So that’s quite nice, you can see how it sidesteps a lot of the vulnerabilities
of the Internet, leaving aside denial-of-service attacks. But of course crucially it
doesn’t provide any end-to-end verifiability. Again, this is a term some of you
have come across, a lot of these schemes try to provide the so-called end-to-end
verifiability, which is a guarantee that the vote gets traced all the way from
being cast to ending up in the final tabulation. You can see from this there’s
no guarantee of what happens to the vote. There’s a degree of guarantee that
it’s reached the voter server correctly, but after that, whether it actually fetches
up in the final count, there’s nothing here to guarantee that. So what PGD
is attempting to do is enhance this a little bit and strengthen the end-to-end
verifiability.

Let’s plunge straight into two very simple ideas to enhance this. The first idea
is that rather than just having the vote server having access to this database and
all the ack codes in a straightforward way, we actually set it up in such a way that
the knowledge of the ack codes is shared amongst a set of trustees in some sort of

2 http://www.surevote.com/



Pretty Good Democracy 133

threshold fashion, which I’ll describe in more detail shortly. The effect of that is
that the vote server can’t simply return an ack code when it gets a voting code,
it has to consult a threshold set of trustees to acquire knowledge of the ack code
and thereby return it to the voter. And the idea is that in the process of having to
consult the trustees, the trustees all cooperate in registering the vote code.

And the other trick is to actually do away with the separate ack codes against
each candidate, we actually just use a single ack code per code sheet. Hopefully
why we do that will become clearer in a moment. The point of that is to try and
make the thing more receipt free than it would be otherwise.

If the voter gets the correct ack code back, that should provide them a greater
degree of guarantee that their vote code will be accurately recorded on a web
bulletin board. Again we have this notion of a secure web bulletin board which
underlies a lot of these systems, which I don’t really have time to go into, but
hopefully you’ve come across before.

Frank Stajano: If the paper contains a series of numbers and some entity has
printed it, how do we know that this entity doesn’t know how I voted?

Reply: Well I come onto the issue of how these codes might get leaked, which
is one of the threats to the scheme.

So if the voter gets the correct ack code back that should give them a fairly
strong guarantee — I’ll describe how strong a guarantee later — that their vote
code has been correctly registered on the web bulletin board, and then basically
we can sort of fit a Prêt à Voter backend to the tabulation, which I won’t go into
the details of, but hopefully you can see roughly, particularly if you’re familiar
with Prêt à Voter, you can see how the tabulation goes ahead in a verifiable
fashion in the backend.

Our code sheets will look slightly different, we don’t now have the ack code
column, just a single ack code per code sheet, otherwise it looks rather similar.

Frank Stajano: So how does the voter know that the voting server had the
code of the correct candidate? The acknowledgement code does not depend on
for that.

Reply: No, it’s independent of which candidate, but hopefully it will become
clear as I get into some of the cryptographic details, why there is a certain
guarantee of the correct code.

So the cryptographic set-up, just to give you the high level overview, the idea
is, on the web bulletin board we set up a table, each row will correspond to a
code sheet, and has in it the voting codes encrypted under the threshold public
key of the trustees, and we’ll see later that in each row they’re in randomised
order, and there’s a sort of Prêt à Voter style onion in each row which describes
how the codes have been permuted in each row.

I’ll describe the construction of that in a bit more detail in a few slides, but
let’s just talk about the voting protocol itself first. It’s very simple, again it’s very
similar to code voting. The voter provides the serial number of their ballot form
and the appropriate vote code to the server, and then the server encrypts the vote
code under the public key of the trustees along with some sort of zero-knowledge



134 P.Y.A. Ryan

proof of knowledge of plaintext, so some kind of plaintext-aware encryption,
Cramer-Shoup3 or something (I’ll say in a moment why that’s important), and
posts that to the appropriate row of the web bulletin board. OK, now the trustees
step in. First of all they check the validity of the ZK proof, if that’s OK then
they go ahead and do a plaintext equivalence test of this encrypted term against
the terms in the row, and if they find an equivalent they flag that, effectively it’s
flagged by the plaintext equivalence test. And if they find such a match, then
they can do a threshold decryption of the acknowledgement code which is also
in that row, and at that point it’s revealed to the vote server and it can be sent
back to the voiter

Ben Laurie: Does that mean the trustees know how he voted?

Reply: No it won’t. The fact that there’s this secret randomisation of the vote
codes in the row means that the trustees don’t know what that signifies in terms
of the vote cast.

Michael Roe: What is zero-knowledge proving here, that they know the vote?

Reply: Well let me jump straight into the reason for that: the threat we were
concerned about here is that the server might simply look at the web bulletin
board, look at the encrypted terms in that row, just pick one at random and
re-encrypt it, and submit that at this term.

Ben Laurie: So that may be re-encrypted in the encryption scheme?

Reply: Which we have to do, and you’ll see that later.

Matt Blaze: That’s a design decision, right?

Reply: Well, yes, we do it for a reason, it helps us with the distributed construc-
tion, which you’ll see. So as I mentioned, the zero-knowledge proofs and PETs
are posted, this is actually quite nice because it makes it harder to corrupt votes,
or stuff ballots onto the web bulletin board.

So let me get into the distributed construction, which is what leads us to want
to use randomising homomorphic algorithms. There is a question whether this
is the right way to go, and we are considering other schemes which don’t use
that kind of primitive. But as it turns out actually that seems to be a very neat,
simple construction which works rather well here. So let’s suppose we’ve got N
voters, we’ve got C candidates, so some voting authority entity generates a set
of some multiple λ of N × C + 1, where λ is 2 or 3 or something, depending
how many you want to randomly audit subsequently, and they’re all encrypted
under the trustee public key. And then some further entities, voting clerks, put
this whole batch through a set of re-encryption mixes, so they’re repeatedly re-
encrypted and shuffled. Once we’ve done this as many times as we want, we just
assemble this into a table, λN rows and C + 1 columns. And just to remark in

3 Ronald Cramer and Victor Shoup, “A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack”, Crypto 1998, LNCS 1462, pp
13–25.



Pretty Good Democracy 135

general, this seems to be potentially quite a nice, generic construction, because
quite often in voting schemes, and I guess other applications, when we want
to produce encryptions of plaintext which are constrained in some way, and we
want to prove that the plaintext satisfies some sort of constraint as in some
interval or something, but without of course revealing exactly what the value
is, and for that we typically have to come up with fairly fancy zero-knowledge
proofs of that. Here we’ve actually managed to avoid this by doing a sort of
batch processing which seems to be quite a sort of nice trick, which might be
more generic, more generally usable.

So the result is we have a table which has rows of this form, each with C + 1
terms in it, for the first C terms will effectively serve as the voting codes for that
code sheet, and the final column will be the acknowledgement code for that. I
guess I’m assuming here that all the codes have the same form, five or six digit
codes or something.

Now we come to the rather critical point, because at some point we’ve obvi-
ously got to print these code sheets and distribute them, and this is the pinch
point in the whole scheme. There are various ways we could do this, but the
most obvious way is to have a threshold set of trustees decrypt a row and print
those values appropriately to the code sheet, and we might use some sort of
fancy technology — pressure printing and things like this — to try and preserve
the secrecy and so forth. This is the rather tricky stage in the scheme, and for
that matter, in code voting. And then they’re all handed over to some sort of
registrar who distributes them to eligible voters, to their addresses. This is very
much the weak underbelly of this scheme.

Jonathan Anderson: Is it very different from systems where you have a great
big machine and some encrypted data goes in along with sheets of paper, and
ballot papers just come out?

Reply: Well that’s the kind of process that I have in mind, yes, how trustworthy
that is really not to leak anything, you do need certain assumptions and so on
in the process, which is a little bit worrying, but time permitting I’ll come
back to alternatives we might try to sidestep those issues. So that’s given us
what we call the P table from which we derived the code sheets. Now we want
to produce what we refer to as the Q table (which is actually an analogy to
the scantegrity scheme4), which is the table that we post to the web bulletin
board. This differs from the P table in the sense that each of the rows has
this permutation with respect to the P table that I mentioned earlier. So again,
we can use a re-encryption shuffle mix to produce this: we can have a series
of clerks, so the first clerk takes the P table, and on each row it does a re-
encryption of the vote, the first C terms, and permutes them according to some
randomly generated permutation, and it stores the information defining that
permutation in an onion which it adds at the end of the row. And we can do this
repeatedly, as many times as want. The net result is this table I’m calling the Q
table, which has these vote codes, the vote codes have all been re-encrypted and

4 http://www.scantegrity.org



136 P.Y.A. Ryan

multiply shuffled according to some secret shuffle, and the information defining
that shuffle, that permutation, is fetched up in this onion at the end, and the ack
code we just leave unchanged, and leave it in the same column. OK, so that’s
the table that we post to the web bulletin board, and is used for recording the
votes and tabulating them subsequently. And you can see this has a flavour of
Prêt à Voter if you’ve seen Prêt à Voter before.

Now we’ve basically set up all the mechanism we need to go ahead, but before
we go any further we will want to do random audits of these things, so we pick
out a random subset of the code sheets, and for those we require appropriate
decryptions of the corresponding rows on the web bulletin board.

Matt Blaze: At this point the code sheets are not yet associated with a par-
ticular voter?

Reply: I guess at this point they wouldn’t be associated, in fact in some sense
ideally they won’t be associated with voters at all.

Matt Blaze: At some point, they’re going to put the mailing label on each vote.

Reply: Well you’ll have to drop them in an envelope and send them off, but
hopefully you can actually do that in a way which you don’t even record the
association.

James Malcolm: So this is down to a subset of the sheets before, and then the
remaining ones are sent out?

Reply: Precisely, yes.

Joseph Bonneau: So if you don’t know which code sheets go to which voter
what’s to stop somebody from breaking into the post office and stealing every-
body in town’s code sheet, and then voting for everybody in town, it won’t be
able to tell if that’s happened?

Reply: Because the mail system is a secure channel, I mean, this kind of problem
happens with absentee voting as well.

Joseph Bonneau: So in this scheme as soon as you have any code sheet that
enables you to cast a vote?

Reply: Effectively it does, at least in the absence of other authentication mech-
anisms when you vote in, and that is an issue, and that means of course that
vote selling and coercion is a problem. I’ll come onto that as well, in a moment.
So hopefully you get the gist of the construction and how we audit it.

I’ve already hinted at some of the threats, and I probably don’t have time to
go into much detail. I think it’s clear that the really weak part of this scheme
is the threat of leaking code information, and particularly if we have to at some
point print them all to code sheets, that’s clearly going to be very difficult to
ensure that there isn’t some leakage. This is really quite fundamental, because
the leakage of the codes isn’t just a confidentiality threat, in the scheme, perhaps
I should have made it clearer, the key point is that the vote server shouldn’t know
information of alternate codes, and the point of that is to prevent it when it gets



Pretty Good Democracy 137

a vote coming in from trying to guess alternate codes for that code sheet, it
doesn’t really have an option other than to pass the correct code, the vote code,
onto the trustees, OK, in the absence of knowledge of alternate codes for that
code sheet, it would just have to guess, and hopefully we’ve got mechanisms to
detect multiple guesses and so forth. Right, so that’s the key point. But of course
if codes start leaking then we undermine the integrity guarantees as well as the
confidentiality, and that’s the fundamental worry about this style of scheme,
which might be enough to sink it. I hinted that one of the countermeasures is
to use these plaintext-aware crypto, there are other possible countermeasures
which I’ll maybe come to.

Another thing we need to worry about is recoverymechanisms, I think this came
out in discussion in Matt’s talk. A lot of these schemes talk a lot about how you
detect errors, corruption, and so on, but tend to talk very little about well what
the recovery mechanisms are when you do start detecting. If you detect certain
patterns, what do you do? Clearly we’ve got to think quite hard about this, one of
the issues is if a voter gets an incorrect ack code back, or no ack code, what action
should they take? So we have to have clearly defined procedures, and people that
they report to, and probably alternative vote servers perhaps they can go to to
try again, and so on. Some code voting schemes suggest the use of a finalisation
code, a third column in the scheme, so only if the voter gets the correct ack code
back do they actually submit the corresponding finalisation code. I’m personally
not convinced this is a very effective mechanism, but some people seem to like it.

Jonathan Anderson: Well then the voter would want an ack to their finalisa-
tion, so you would need to send another of these?

Reply: Well exactly, this is why it doesn’t really seem to buy you that much.
I think that it’s the threat of confidentiality, of leakage of vote codes, which is

the key weakness here. So we’ve been toying with various ideas to try and counter
that, strengthen that. One obvious thing is perhaps to have dual channels of
distribution, so not just send out these codes, print them and send them out
over Snailmail.

There are various tricks.
One might be to go back to using visual crypto, there was a scheme long back

by Naor and Pinkas5 to do authentication using visual crypto, you’d send out
a transparent sheet with a pattern of pixels on it, and then online you’d send
another in effect sheet with pixels, and you’d overlay that on the screen and
you’d see the password.

Paul Syverson: Are those schemes based on the one Adi Shamir came up with,
and David Chaum’s original design?

Reply: Well Adi Shamir did the original visual crypto, David Chaum came up
with the use of it in a voting scheme, but there’s another scheme which was to
do online authentication, which is the one I was alluding to.

5 Moni Naor and Benny Pinkas, Visual Authentication and Identification, Crypto ’97,
LNCS 1294, Springer-Verlag, pp 322–336.



138 P.Y.A. Ryan

Paul Syverson: Do you verify the screen and hold it up, I thought that was
part of this?

Reply: No, in David’s scheme you print two sheets, but you don’t recombine
it in the same way. So that might be one possible approach, but it strikes me
that’s going to be impractical, you know, getting things to the right size so they
overlay is not going to be practical.

Another possibility is to have some sort of long term secret the voters hold
which they can add to the codes, and then you can use this homomorphism to
add them on a web bulletin in some sense, you have to be careful obviously that
the algebra meshes. Another possibility, for which I haven’t quite got the crypto
to work, is to have some kind of scheme where you use a distributed construction
and you send out these codes, keep them in their encrypted form, send them out
online, but you arrange for voters to effectively get individual decryption keys
for each of these codes, so the voter just provides to their device the appropriate
decryption key, and so on. But if you can see how to make the crypto work,
please let me know.

Ben Laurie: All of this sounds fantastically unusable to me, and the scheme
itself sounds pretty unusable. Are you planning to test it?

Reply: Well it depends what you mean by test.

Ben Laurie: I observed the London elections, and if people can’t even tick
boxes correctly, the chance of them operating this kind of scheme is zero.

Reply:Well OK, when I said it seems simpler than other schemes, I was thinking
of other cryptographic verifiable schemes.

Matt Blaze: I’m a little confused. Going back to some of your design con-
straints, you’re assuming the postal system is usable as a secure channel to the
voter. So why not simply use the postal system as the secure channel from the
voters? If you have to mail something to someone and you assume the mail can’t
be tampered with, why not just have them mail their ballot back?

Reply: Well that would just be postal voting.

Matt Blaze: But this is still a postal system, so this seems to combine any trust
issues you have with the postal system with any trust issues you have with the
cryptography in this system. This means the system can be made strictly more
secure by simply having them mail the ballot back without any actual usability
issues, and their internet connection doesn’t have to work.

Michael Roe: It’s different from what a postal voting system is relying on, the
difference is between saying that when you mail something through the post it
goes to the person that the address is to, and the authentication that when you
get the ballot coming in, you know who sent it.

Paul Syverson: Sure, you don’t get that from a postal system.



Pretty Good Democracy 139

Matt Blaze: But you will have a serial numbered ballot, on some piece of paper
that I can tell is the one I sent you, and that’s randomised in some way. What
problem does what you are doing solve?

Reply:Well that’s a good question, and one of the things we’re hoping to get here
is some degree of end-to-end verifiability, which I don’t think postal voting gives.

Matt Blaze: Right, I think that’s a good answer. Because you get the ack back,
there’s a two step protocol with standard absentee ballots, this is in fact a three
step protocol, because of the acknowledgement code.

So you get a confirmation that it’s been received, right.

Reply: Yes, and hopefully even slightly stronger than that: subject to certain
assumptions there’s a degree of end-to-end verification here. If you get the ack
code that should imply that your vote gets accurately counted in the final tab-
ulation. That’s really what we’re trying to achieve here. The starting premise
was, well people have proposed code voting, it’s not end-to-end, can we make it
a bit more end-to-end, that was the starting intellectual challenge. Whether the
final thing is really viable for anything practical is still I think open to question.

Virgil Gligor: Democracy is probably the most important multi-party com-
putation. Now the part of that multi-party computation that security research
is focusing on is integrity of the input. But in computation in general, input is
probably not the most interesting part, and in all these stolen elections in recent
years, very few of them have been stolen by people really cracking the crypto of
submitting the vote. So there is the interaction between how we submit these
inputs, and what is done in computation with these inputs, and whether people
are turned away from inputting anything at all.

I’m wondering whether the techniques developed would justify maybe extend-
ing or zooming out from just input operations, and looking at broader security
properties that one might require from democracy rather than just the integrity
of the vote. So how the votes are counted, in a different kind of research about
democracy they say, you give me who you want to win and you give me a set of
preferences, and then I am going to design the counting system which will give
you the desired winner. Is there any chance of interaction between these two
threads of research?

Reply: Well I think it’s starting to happen in the community, there is a bit of
a community looking at the science of voting, in fact I think they’re thinking of
trying to start a journal precisely on that topic, which would go as far as looking
at decision theory, and census theory, as well as things like securing the voting
process and so on, so I think that is emerging.

Virgil Gligor: Can you say how you think cryptographic techniques and social
choice techniques interleave?

Reply: Well to a large extent I think they’re orthogonal. If you want to come
up with one of these cryptographic schemes and you want something fancy, say
single transferable vote, then you’re going to have to make sure that you can



140 P.Y.A. Ryan

carry the data items, the encoding of the right vector or something. One of the
nice things about Prêt à Voter is that it seems to be rather good at doing that
kind of thing in contrast to some of the other cryptographic schemes.

Matt Blaze: I think I can achieve what you’re doing with a postal system. I
think I can improve all your properties with a postal system simply by sending
out a serial numbered ballot to everyone, they return the ballot, and then the
ballots are available for inspection, all ballots are available for public inspection.
So, if I want I can go after the count and I can confirm that my ballot was
received, and I can count them myself if I want.

Reply: OK, but isn’t that running into receipt-freeness type issues?

Matt Blaze: Well in any postal system we’re not coercion free. If I’m mailing
you something I’m still subject to coercion by somebody who supervises when I
open the envelope and cast my vote, so we still have that problem.

Reply: I was going to come on to coercion.

Matt Blaze: If we’re willing to sacrifice that property, which the PGD system
seems to do, then I think we can achieve this without any crypto at all.

Reply: You’re just posting anonymised ballots, and then you can go and look
at the list of all the ballots and check that mine is there.

Matt Blaze: Oh yes, I can see that mine is there, and I can see that this other
one who I don’t know who’s it was is also there.

Reply: Yes, and then you anonymise at the level of your voting precinct or
whatever.

Matt Blaze: Right.

Reply: Well arguably yes, and subsequently I’m not making great claims for
this scheme.

Matt Blaze:Oh no, I’m just trying to get at understanding what problems we’re
solving here, given that we’re assuming the postal service is a secure channel6.
If we’re willing to do that it seems that we can achieve many properties.

6 Editors’ Note: The paradox here is similar to that which occurs with classical one-time
pad. If a leak-proof channel, authenticated at both ends, exists to distribute the key
from Alice to Bob, why not use that channel to send the message, which is of the same
length? There are two obvious answers. The first is that Bob may be in a hurry at the
point when hewishes to send themessage, but ample timemay be available beforehand
for Alice to distribute the key. Quick voting outcome online may be a goal. The second,
usually more important reason is that the slow key distribution channel need only be
leak-evident, rather than leak-proof. Unsuccessful key distribution can be corrected.
The final point to note is that if the message to be sent from Bob to Alice is short
(relative to the key), then a uni-directional leak-evident channel going the ”wrong”
way between authenticated endpoints (i.e. conveying information only from Alice to
Bob) suffices to provide confidentiality, authentication, and integrity for amessage sent
from Bob to Alice over an open, untrusted channel. A particular bit pattern can be
reserved to mean “the key was compromised”.



Pretty Good Democracy 141

Reply: Well maybe, we should talk a bit more about this. I’ve wondered about
how much you can do with pure voting and degrees of traceability subsequently
in the tabulation process. We should come back to that.

George Danezis: I think the problem you describe, is a problem with your ab-
straction of elections. Effectively, as someone else said before, the process starts
when people start submitting votes. You assume that there is already a secure
registration process and a secured interaction process between the citizens and
the State, to actually start. Getting a list of voters, let’s say, already requires you
to have some kind of secure channels and all that stuff, so probably integrating
this phase into the voting scheme will help you solve this problem, rather than
making the problem more complicated.

Reply: I take your point, it’s certainly true of all these schemes, that it’s all
part of a much larger system which is the setting up of the electoral roll.

George Danezis: So far we’ve been shying away from looking at the registration
processes which are key, because a lot of the fraud happens there. We fear they
would make these systems more complicated, but I think they would actually
simplify a lot of the things by making the assumptions concrete.

Reply: Yes, I think that’s probably true, I agree.

Joseph Bonneau: Vote selling in this system is basically equivalent to mail
absentee voting. Is that correct?

Reply: Well let’s go with it for the moment.

Joseph Bonneau: It seems like vote selling is actually a lot worse now though
because you can create a website and say, give me your vote code for Candidate
A, and then the website will cast your vote and when it sees your ack code,
and then it will send you a dollar on PayPal or whatever, and that seems much
more likely to happen than somebody actually going and finding somebody to
sell their absentee ballot in person.

Jonathan Anderson: But there’s no way to confirm that it is the code for that
candidate.

Bruce Christianson: You can give it any vote and still get your dollar, because
the ack code is the same for all candidates.

Reply: Right. I’d better try and wind things up because we’re overrunning. I
was going to touch on coercion resistance and just say that as it stands it clearly
isn’t coercion resistant or resistant to vote buying. Potentially we could add
extra mechanisms like the Juels Catalano Jakobsson type tokens, although it’s
actually not so easy to see how to integrate it with this scheme because with
the posting of material to the web bulletin board, if we’re going to have to do a
sort of re-voting process it’s not quite clear how we overwrite or append further
information to the web bulletin board, so that’s kind of tricky.

So let me just wind up on the discussion. All I would say for this scheme is that
it perhaps does buy you something in degrees of convenience. I claim it’s slightly



142 P.Y.A. Ryan

easier for the voter than some other schemes because for example with Prêt à
Voter you cast your vote, you get some kind of receipt, and then subsequently
you go to the web bulletin board and check that it’s correctly posted there.

That’s a bit more of a palaver, and there is some question whether people
would bother to do that checking process. At least here everything happens in a
single session, in theory you get your ack code back during the same session, you
can check it immediately, so in that sense compared to some verifiable schemes
it does seem to be a bit easier and simpler, more immediate for the voter.

I certainly wouldn’t claim that a scheme like this is suitable for general po-
litical elections, but it maybe OK for student elections and things like this. The
International Association of Cryptologic Research have been thinking recently
about moving to Internet voting.

Matt Blaze: Perhaps not the most hotly contested elections in the world.

Paul Syverson: But one of the few where you will have people who will actually
try to hack it themselves.

Reply: Yes, exactly.
There’s been a long and rather fascinating debate about whether this is a good

idea for all kinds of reasons you can imagine, not least that if it’s successful, it
might be seen as showing a precedent which politicians will then go along and
say, if it’s good enough for the International Association of Cryptologic Research,
it’s good for . . .


	Pretty Good Democracy



