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Abstract. An improved, robust, error reducing CFD-mesh deformation module for
the parallel simulation environment FlowSimulator is presented. The mesh deform-
ation method is based on radial basis function interpolation for the surface- and
volume- mesh nodes combined with a group-weighting and displacement-blending
approach. Since the latter weighting and blending approaches are based on given
wall distances to the group surfaces, another module for the wall distance compu-
tation is introduced. Due to performance reasons, the number of input data loca-
tions (base points) used for the radial basis function interpolation must be limited.
Therefore, methods have been developed to reduce the number of base points while
keeping the interpolation error as low as possible. Furthermore, the modules have
been parallelized for usage in multi-node high performance computing clusters. Fi-
nally, the capability of a multidisciplinary, parallel application is demonstrated in
FlowSimulator with reduced errors and uncertainties.

1 Introduction

Airbus strategy to essentially move much more towards simulation makes it indis-
pensable to know about any uncertainties and deficiencies in the predictive capabil-
ities used for aerodynamic development. Knowing about error bands, their quantity
and having in hand some means to manage and minimize their influence on the
predicted results could tremendously help in the development process, reliable op-
timization of the product, shortening of development time and cost.
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The MUNA project is an essential brick within the Airbus strategy of flight phy-
sics/aerodynamics focusing on providing adequate tools for numerical qualification
of aerodynamic design during concept phase. Respectively qualified CFD is expec-
ted to form the single basis for judgement of aerodynamic status before entering
concentrated high level wind tunnel testing – to be ready for next new aircraft de-
velopment. In addition, MUNA is contributing to support aerodynamic data process
change towards "more simulation, less testing".

The contribution described in the following sections focuses on CFD mesh de-
formation used in the context of numerical aerodynamic shape optimization and
shape design including static wing deformation. Major topics are:

• New mesh deformation module "FSDeformation" with advanced methods and
integration into FlowSimulator [1]

• Geometry parametrization with a link between CAD (CATIA V5) and mesh
deformation

• Use of mesh deformation for aerodynamic shape optimization
• Application of mesh deformation in a CFD/CSM coupled iterative process
• Combining shape design and CFD/CSM coupling in a multi-disciplinary optim-

ization

A typical multi-disciplinary optimization (MDO) process chain for shape optimiza-
tion of a wing including the static deformation is shown in Fig. 1. An essential brick
is the mesh deformation tool which is applied to:

1. reflect the changed shape design generated by a parametric CAD model,
2. deform the wing according to aerodynamic (and other) forces.

Fig. 1 Multi-disciplinary optimization chain for wing shape and structure weight
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The advantage of using mesh deformation for unstructured grids is manifold:

• It avoids the problem of numerical noise for the calculated aerodynamic coeffi-
cients which might occur if new meshes are created for slightly changed geomet-
ries. This "noise" is caused by the change of mesh topology. Mesh deformation
conserves the topology and small geometry variations produce small mesh de-
formations in a continuous way.

• A so-called restart capability of the flow solver allows to start from a flow solu-
tion calculated beforehand to save computing time.

• Usually, deformation of an unstructured CFD mesh is faster than re-generating a
new mesh, and thus also saves computing time.

Mesh deformation plays a key role in aerodynamic shape optimization, since any
adjustment of the model geometry has an impact on the 3D CFD-mesh. Because
CFD-simulations usually rely on spatial discretization based on volume-meshes,
these have to be updated if a CAD surface changes its location or its shape. The
costs for the generation of new meshes should be as low as possible but should
also produce usable grids even for large local changes in the model geometry. There
are several possible ways to update the mesh, e.g. the complete re-meshing of the
complete grid or the deformation of an existing grid.

For unstructured meshes, re-meshing would certainly change the topology of the
mesh. Since the discretization in 3D space is generally not dense enough to pro-
duce a mesh-independent flow solution, the newly generated mesh would produce
a slightly different flow field not caused by the geometry change. This leads, espe-
cially in the case of shape optimization, to noise in the aerodynamic coefficients,
which often significantly disturbs the shape optimizer. Furthermore, the computa-
tional cost for re-meshing of unstructured grids is very high. Hence, mesh deforma-
tion is an essential tool in this area of computational fluid dynamics:

• the topology of the mesh remains unchanged and
• small geometry variations correspond to small changes of the numerically de-

termined aerodynamic flow field.

2 CFD Mesh Deformation Module

The deformation module "FSDeformation" has been developed for the simulation
environment FlowSimulator [1]. It is based on an implementation of the mesh-
deformation module presented in [6] using the radial basis function (RBF) inter-
polation approach. This approach is extended by the feature of specifying groups
of different boundaries with separate interpolation functions and a blending func-
tion, which restricts the deformation to a specified zone around these boundaries.
Both features are controlled by the distances ddd of the mesh nodes to the group target
boundaries. The distances are calculated by the wall distance module (section 3).

More details about the deformation module, for example concerning parallel per-
formance and interpolation quality, can be found in [10].
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2.1 Radial Basis Functions in Mesh Deformation

Deformation methods based on RBF-interpolation are independent of the volume
mesh and flow solver type, because the algorithm is working on completely arbit-
rary clouds of points without using any connectivity information. Additionally, for
the mesh updates of consecutive optimization steps or an unsteady aeroelastic sim-
ulation, only a matrix-vector multiplication is necessary for each mesh node. The
computationally most expensive part is to compute the interpolation matrix for this
multiplication. It can be calculated once in the beginning of the entire simulation and
remains unchanged, since it only depends on the base points, but not on the deform-
ation vectors. Consequently, the method can be perfectly parallelized (using MPI
and partitioned grids), because each process has to apply the interpolation matrix
only to its own grid nodes. But it is also clear that the dimension of the interpolation
matrix highly influences the overall speed of the algorithm.

2.1.1 Multivariate Interpolation Using Radial Basis Functions

The radial basis functions approach is a well-established interpolation method for
gridded and scattered data, whereas the most natural context for function approxim-
ation is given for scattered data [5, p. 99], [4, p. 4]. In the field of computational fluid
dynamics (CFD) it is often used for coupling CFD-grids to finite element structure
grids.

The input data in d dimensions consist of data locations xxxi, merged into the data-
set

X = {xxx1,xxx2, ...,xxxn} ∈R
d , (1)

and the corresponding function values

fi = f (xxxi) ∈ R, i = 1, ...,n. (2)

The data locations xxxi are called centers or "base points".
The goal is to interpolate the function values between the base points by an ap-

proximant s : Rd →R to satisfy the condition

s|X = f |X . (3)

In this specific case s is a linear combination of shifted radially symmetric basis
functions φ . Radially symmetric means that the value of φ (·) depends only on the
distance of the argument to the origin, hence it is often written φ (‖ · ‖). The distance
norm is usually the Euclidean norm (with d = 3)

‖xxx‖2 =

√√√√ d

∑
i=1

x2
i . (4)
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s(xxx) has the general form

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖) . (5)

Setting s(xxxi) equal to fi for all i ∈ {1, ..,n} leads to the linear system

Ayyy = bbb (6)

with

A = (φ (‖xxx j − xxxk‖))( j,k)=1,..,n , yyy = (αi)i=1,..,n , bbb = ( fi)i=1,..,n . (7)

A unique interpolant is usually (for most φ ) guaranteed, if the base points are all
distinct and there are at least two of them [3, p. 6]. An example for a radial basis
function could be φ (‖xxx‖) = ‖xxx‖2 log‖xxx‖, which is called "thin plate spline".

An important attribute of this interpolation method is the possibility to expand
the approach of equation (5) by adding a polynomial to the definition without losing
the uniqueness of the coefficients. For function values fi, which show a polynomial
character, the appended polynomial improves the interpolation quality. The only
restriction is that the polynomial must have a degree m ≥ 1 and is non-zero at all
base points. This leads to:

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖)+ p(xxx). (8)

The coefficients can be computed by solving

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖)+ p(xxx) = fi (9a)

0 =
n

∑
i=1

αiq(xxxi) ∀ q : deg(q)≤ deg(p) (9b)

The extra equation (9b) takes up the extra degrees of freedom given by the poly-
nomial coefficients, to allow a unique interpolant. The uniqueness can be guaran-
teed, if φ is "conditionally positive definite". It is referred to [5, p. 101] for more
details to the theory of this topic.

Again, the requirements on X are not very strong. For a linear polynomial, X
must only contain four base points, which do not lie on a plane. Furthermore, if the
function values fi at the base points were generated by a linear function, they would
be reproduced exactly by the linear polynomial. [4, p. 5]

In the following the dimension is set to d = 3 in this document. Since xxx =
(xx,xy,xz), the polynomial is linear and can be written as

p(xxx) = β0 +β1xx +β2xy +β3xz = βββT
(

1
xxx

)
. (10)



224 H. Barnewitz and B. Stickan

So equations (9) can be abstracted to matrix notations

Hyyy = bbb, (11)

with

A = (φ (‖xxx j − xxxi‖))( j,i)=1,..,n ∈ R
n×n, (12)

P =

((
1
xxxk

)
k=1,..,n

)
∈ R

4×n, (13)

H =

(
0 P

PT A

)
∈R

(n+4)×(n+4), (14)

yyy =

(
βββ
ααα

)
=

(
(βi)i=1,..,4
(αi)i=1,..,n

)
∈ R

n+4 and (15)

bbb =

(
0
fff

)
=

(
0

( fi)i=1,..,n

)
∈R

n+4. (16)

Solving (11) provides in bbb the coefficients to use (8) for the interpolation of arbitrary
points. The matrix H will be called "interpolation matrix" below, although it is only
used to calculate the interpolation coefficients.

The module presented is not independent of cell connectivity, since wall dis-
tances of the nodes to certain boundary groups are used. The algorithm to com-
pute the wall distances relies on connectivity information to determine neighboring
nodes. But, it is important to note that the base points xxxs,i, i = 1, ..,ns do not need
any connectivity information.

Solutions for the indicated performance factor "interpolation matrix size", which
directly depends on the number of used input deformation vectors, will be shown
in section 4. That section contains different methods to reduce the number of base
points and deformation vectors.

The basic interpolation functions of the module are taken from DLR’s flow solver
TAU. They have been applied successfully at DLR and Airbus to many test cases.

2.2 Algorithm

The interpolation algorithm is based on a group-weighting and a deformation-
blending approach.

A group-weighting approach is used to allow the independent movement of dif-
ferent model parts/boundaries in the grid. Otherwise the deformations of different
boundaries could influence each other and unintentional surface deformation would
be the result. Separating the interpolation by group protects the shape of the different
bodies. Therefore, the interpolation matrix Hg of each group g has to be computed
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and applied to the grid nodes separately. Finally, the deformation result for each grid
point is calculated by a weighted average of each group-deformation result.

The deformation-blending approach supports the protection of boundary layer
cells and the usage of radial basis functions φ(‖x‖) with limits φ(‖x‖) → ∞ for
‖x‖ → ∞. These radial basis functions, which increase with increasing distance to
the base point of a deforming body, need to be restricted farther away from the sur-
face of this body. Otherwise local deformations would influence the whole mesh.
Additionally, the added polynomial of the interpolation approach (8) would deform
the whole volume mesh as well. Consequently, this approach that is implemented to
recover linear deformations exactly, cannot be used without the blending of deform-
ation values.

Hence, the notations are expanded by an elevated group index g for ng groups.
As input data there are ng

s base points xxxg
s,i ∈ R

3 for each group g merged into the
datasets

Xg
s =

{
xxxg

s,1,xxx
g
s,2, ...,xxx

g
s,ng

s

}
for g = 1, ..,ng. (17)

The function values that are going to be interpolated, are the deformation vectors

Δxxxg
s,i = Δxxx

(
xxxg

s,i

)
=

⎛
⎝Δxg,x

s,i
Δxg,y

s,i
Δxg,z

s,i

⎞
⎠ ∈R

3 for i = 1, ...,ng
s , g = 1, ..,ng, (18)

which could be used to compute the displaced coordinates xxxg
new,i of the base points:

xxxg
new,i = xxxg

s,i +Δxxxg
s,i for i = 1, ...,ng

s , g = 1, ..,ng. (19)

But the aim of the deformation module is to update the mesh nodes and not the base
points.

A difference to the function values fi in equation (2) to the function values Δxxxg
s,i

is their dimension. Section 2.1.1 only deals with one-dimensional function values
while in this case the function values are three-dimensional. Therefore each coordin-
ate of the mesh nodes has to be interpolated separately. It is advantageous that the
interpolation matrix Hg in (11) has to be computed only once for each boundary
group instead of computing it for each dimension separately, since the matrix de-
pends only on the base points xxxs,i and the chosen radial basis function φ . So the
interpolation matrices Hg for each group can be stated as:

Hg = H (Xg
s ,φ) . (20)

For each dimension k ∈ {x,y,z} the interpolation coefficients αααg,k =
(
αg,k

i

)
i=1,..,ng

s

and βββ g,k =
(
β g,k

i

)
i=1,..,4

can be calculated by inverting equation (11):

(
βββ g,k

αααg,k

)
= (Hg)−1

(
000(

Δxxxg,k
s,i

)
i=1,..,ng

s

)
. (21)
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The actual interpolation algorithm calculates the deformations of the grid nodes

dddxxxv,i =
(

dxx
v,i dxy

v,i dxz
v,i

)T
(22)

for the volume mesh grid nodes xxxv,i by using the distance dg
i to the nearest surface

of group g. For every coordinate k ∈ {x,y,z} the governing equations are:

dxg,k
v,i =

ng
s

∑
j=1

αg,k
j φ (‖xxxv,i − xxxs, j‖)+

(
βββ g,k

)T
(

1
xxxv,i

)
, g = 1, ..,ng (23)

blend(dg
i ,g) =

⎧⎪⎨
⎪⎩

0 : dg
i > RZWg

1 : dg
i < RFWg

RZWg−dg
i

RZWg−RFWg : else
(24)

weight(dg
i ) =

1√
max{dg

i ,ε}
(25)

dxk
v,i =

∑ng
g=1 blend(dg

i ,g) ·weight(dg
i ) ·dxg,k

v,i

∑ng
g=1 weight(dg

i )
(26)

Two new functions have been introduced: the blending function blend(·) and the
weighting function weight(·). The weighting function averages the individual group
deformations. Because its limit for di → 0 is infinity, it needs a cut-off value 1/

√
ε

for numerical reasons.
The blending function is sketched in figure 2. With its group-parameters RZWg

(Radius Zero Weight) and RFWg (Radius Full Weight) it is controlling the deform-
ation of the grid nodes. If a grid node is close to a boundary of group g with a
distance less than RFWg, it will move approximately like the boundary. This func-
tionality can be used to conserve the sensitive boundary layer part of a grid. Farther
away from the boundary with a distance dg

i > RZWg the deformation is zero.

Fig. 2 Blending function for grid node deformation computation, including the parameter
radius full weight (RFW) and radius zero weight (RZW)
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(a) Overall view (b) Zoom view

Fig. 3 2d test case, wing including flap and slat. Each of the 3 parts is an independent deform-
ation group and only the flap has input values unequal to zero (undeformed: black, deformed:
grey)

An example for independently deforming groups can be seen in figure 3. It shows
that the surface mesh of the rigid main wing body is not affected by the deformation
of the nearby moving flap. The radius zero weight can be recognized in figure 3(a),
too.

The algorithm is also described shortly in [6]. This paper also provides test cases
showing the usefulness of the presented group-weighting approach and the quality
conserving capability of the methodology.

Several different boundary type dependent algorithms have been developed to
simplify the usage of standard cases often applied to CFD meshes for aircrafts:

• Standard Boundary Type. This is handled as described above. Deformation vec-
tors have to be provided for this surface type.

• No-Normal-Movement Boundary Type. All surface points on this boundary are
allowed to slide on the surface. The movement in surface normal direction is
suppressed. It’s used for example for symmetry planes.

• Far-field Boundary Type. Here the deformation is set to zero.
• Attached Group Boundary Type. This treatment conserves the shape of an at-

tached device, e.g. an engine mounted on a deforming wing.

3 Wall Distance Module

The mesh deformation module presented in section 2 uses the distance of the grid
points to the closest group boundary for the weighting of groups and for the blend-
ing of deformations. The wall distances control the influence of different boundary
groups on the deformation of a specific volume grid node.
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There are different approaches for the computation of wall distances, for example
based on partial differential equations, as seen in [11], based on a clever merging
of the boundary points [13], or just a naive brute force algorithm, which compares
each boundary node with every volume mesh node. The presented method, which
was adopted from DLR’s TAU preprocessor, uses another algorithm. In TAU the
wall distance is used for the application of certain turbulence models. The method
is, like the mesh deformation module, embedded into an independent module for
the simulation environment FlowSimulator.

The algorithm uses an advancing frontier approach. Every grid node n gets an
additional parameter xxxnear[n], which saves the coordinates of the currently nearest
boundary node. Then in every iteration step, each node compares the distance to its
xxxnear-entry with the xxxnear values of its neighboring nodes and where required updates
the xxxnear-value with a better value from a neighbor. Since the boundary nodes have
the correct solution directly at the beginning, the solution for xxxnear for each node
moves into the field node by node.

This so-called advancing front algorithm makes it possible that for certain (struc-
tured) grids it would take only a few iteration steps to advance the correct solution
for xxxnear into the interior of the grid.

4 Base Point Reduction Methods

The number of base points ns has a major influence on the performance of the radial
basis function interpolation algorithm. The needed (direct) matrix inversion depends
on the third power of ns and the interpolation of the grid points depends linearly
on the base point number. If the tool is used for the coupling of a structural finite
elements (FEM) grid to a computational fluid dynamics grid, the number of input
base points will be equal to the number of surface grid nodes of the FEM-grid. The
common number of surface nodes of these grids is way too large to use them all
for the RBF grid deformation and still having satisfactory runtime results. So the
reduction of the base points is indispensable for the mesh deformation module.

The reduction of the base points is not the only way to increase the efficiency
of radial basis function interpolation methods. Other possibilities are, for example,
multilevel approaches combined with base point reduction [9] or partition of unity
approaches like in [12]. The multilevel approach uses a base point set hierarchy
to start the interpolation at a coarse level and then refining it progressively. The
partition of unity approach breaks the large problem down to several small ones by
partitioning the base points into neighbor sets.

A useful attribute of the radial basis function interpolation approach is that no
connectivity information of the input base points is needed. To conserve this char-
acteristic the reduction algorithms do not use connectivity information as well.
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Fig. 4 Equidistant reduction snapshot during iteration step

4.1 Equidistant Reduction Method

The TAU deformation module also contains this method to reduce the number of
base points. It tries to select the base points Xs spatial-evenly distributed from the
point set Xinp. This is managed by iteratively finding the right minimal distance
dmin to possible neighboring base points, to get as close as possible to the maximal
number of desired base points ns,max. Neighbors with a distances less than dmin are
rejected during this process. Due to performance issues, it is using an octree data
structure to find the neighbors closer than dmin to a specified base point. Figure 4
sketches one iteration step of the algorithm.

The result is having evenly distributed base points. But choosing the base points
like this does not take into account the deformation vectors Δxinp,i or interpolation
errors.

4.2 Weighted Distances

This approach is similar to the equidistant reduction approach of section 4.1. The
idea is to modify the distances between two input sites xinp,i and xinp,j by a weighting
factor wi, j. The consequence would be an increased point density in areas of higher
weights.

The distance di, j between two points xi and x j with associated weights wi and wj

is calculated by

di, j =
wi +wj

2
‖xi − x j‖2. (27)

The disadvantage of this approach is that the octree data structure of section 4.1 can-
not be used any more. Instead a simple list data structure has to be used. Searching
for neighbors of one node will therefore include to check the distance to all input
sites Xinp.
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4.2.1 Weighting by the Difference to the Local Average Deformation

This weighting approach takes the deformation vectors Δxinp,i into account directly.
It uses a function FindNeighbours(xxx,X ,ΔX ,d), which returns subsets of

Xnb =
{

xnb,1,xnb,2, ...,xnb,nnb

}
(28)

and
ΔXnb =

{
Δxnb,1,Δxnb,2, ...,Δxnb,nnb

}
(29)

of cardinality nnb with points of distance less than d to xxx. In this case the distances
are not weighted yet. The weights for the input point xinp,i are then calculated by

(Xnb,ΔXnb) = FindNeighbours
(
xinp,i,Xinp,ΔXinp,d

)
(30)

Δxnb =
∑nnb

i=1 ‖Δxnb,i‖2

nnb
(31)

wi =

∣∣Δxnb −‖Δxinp,i‖2
∣∣

∑
ninp
i=1

∣∣Δxnb −‖Δxinp,i‖2
∣∣ (32)

The idea is to develop an expression that favors the base points, the absolute de-
formation value of which is different to the average deformation value Δxnb of its
neighbors. Another thought is that the nodes at the outer tips of a deforming body
will get a higher weight, since at the tip the deformations reach usually their max-
imum and consequently differ strongly from the neighborhood mean. An approach
which only takes the gradient into account would not result in a higher weight for
the outer base points, because the deformation gradient would not have a peak at
an outer base point. An example to illustrate this idea can be seen in figure 5. This
simplified example shows why the approach leads to higher weights for the base
points on the tip, the deformation vectors of which should not be neglected in the
final base point set. It shows a tip body with a slight rotational deformation. The
deformation vector with the largest value is on the tip of the body. The equidistant
reduction algorithm from section 4.1 could easily fail to select the maximum de-
formation vectors. Because of the higher weight values at the tip this would happen
less likely with the new algorithm.

This example shows a disadvantage of the algorithm as well. If the gradient of the
deformation vectors is constant in a certain area, the weights will tend to zero. This
will lead to a very low base point density in the next step. To get a lower border for
the density, the final reduction method is combined with the equidistant reduction
method. First a fraction fracequi of the desired ns,max base points is chosen by the
equidistant algorithm, then the remaining base points and deformation vectors are
selected with the weighted distance approach.
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Fig. 5 Schematic example for weights wi of the upper base points with their deformation
vectors

4.2.2 Weighting by Interpolation Error

The algorithm presented in this section is combining the approach of the weighted
distance reduction with the interpolation error calculated for the input data locations.
In this case, the distance weights

W =
{

w1,w2, ...,winp
}

(33)

are equal to the error of interpolated deformation vectors Δ X̃inp.
The basic scheme of the algorithm looks like:

• Select start base point set Xs with corresponding deformation vectors ΔXs by
equidistant reduction

• Do nEWSteps times:

– Interpolate deformations at input points Xinp, by using the sets Xs and ΔXs, to
get the deformation vectors Δ X̃inp

– Calculate weights wi by comparing ΔXinp to Δ X̃inp

– Add further base points and deformation vectors by weighted distance reduc-
tion to Xs and ΔXs, respectively.

The type of greedy algorithm, which recalculates the exact interpolation error in
each step, is also proposed in [2, p.9].

To interpolate the input points Xinp in each step, a new interpolation matrix Hk has
to be created from the already chosen base points Xs and inverted in every iteration
step. Then the error can be calculated by interpolating the deformation vectors ΔXs

of these base points to the input set Xinp to get the interpolated data set

Δ X̃inp =
{
Δ x̃xxinp,1,Δ x̃xxinp,2, ...,Δ x̃xxinp,ninp

}
(34)
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and taking the pairwise difference to the input deformation vector set ΔXinp to com-
pute the weights

wi = ‖Δ x̃xxinp,i −Δxinp,i‖2, i = 1,2, ...,ninp. (35)

4.3 Error Correction

The error correction algorithm was originally presented in [2, p. 7]. The algorithm
tries to correct the ααα-interpolation coefficient vector locally. Therefore, unlike the
previous methods, it is not using the interpolation approach including a polynomial
(9), but instead the basic approach without an added polynomial (5):

s(xxx) =
n

∑
i=1

αiφ (‖xxx− xxxi‖) . (36)

Furthermore, the coefficients αi are not calculated by inverting the interpolation
matrix A, but instead by correcting them during the iterations continuously. In each
step the interpolation error ei, i = 1, ..,ninp of all deformation vectors

Δ X̃ =
{
Δ x̃xx1,Δ x̃xx2, ...,Δ x̃xxninp

}
(37)

at the data sites
Xinp =

{
xxxinp,1,xxxinp,2, ...,xxxinp,ninp

}
(38)

is recalculated. The coefficients

ααα = (αi)i=1,..,ninp
(39)

and the deformation vectors Δ x̃xxi are adjusted locally by the radial basis function
belonging to the base point with the largest interpolation error eiworst = ‖dΔxxxiworst‖2.
The correction of αiworst is performed by

Δαiworst =
1

φ(0)
dΔx̃xxiworst , (40)

which is used to update the interpolation values of all base points by

Δ x̃xxi = Δ x̃xxi +Δαiworstφ (‖xxxi − xxxiworst‖2) (41)

In every step in equation (41) the error eiworst at of the deformation Δ x̃xxiworst is
changed to zero, since
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Δ x̃xxiworst = Δ x̃xxiworst +
φ(‖xxxiworst − xxxiworst‖2)

φ(0)
dΔx̃xxiworst

= Δ x̃xxiworst +Δxxxiworst −Δ x̃xxiworst = Δxxxiworst . (42)

But the corrections for the deformation vectors Δ x̃xxi, which are located inside the
impact area of the base point xxxiworst , are not necessarily decreasing the interpola-
tion error. Hence, if ns,max > ninp base points should be selected, the algorithm will
run infinitely without reducing the interpolation error to zero. Additionally, the al-
gorithm "tends to show a degree of self limiting behavior in terms of how many
points it uses ([...]), often returning to correct a previously identified point rather
than introducing a new one" [2, p. 8].

The paper [2] uses the algorithm above to approximate the coefficients αi of
equation (36), but also recommends not to use these coefficients. Instead the selected
base points in Xs should be used for exact interpolation, which uses the inversion
of the interpolation matrix as seen in section 2.1.1. The algorithm implemented
into the deformation module presented in this document uses this recommendation
and, secondly, instead of the interpolation approach (36) the approach including a
polynomial as seen in equation (8) for the interpolation matrix creation.

Because the results were still not satisfactory, this approach has been combined
with an initial equidistant reduction step to choose fracequi ·ns,max base points by the
algorithm presented in section 4.1.

A big disadvantage of the algorithm is that it only works with radial basis func-
tions φ (r) with the maximal value for r = 0, so radial basis functions with local
influence range.

Fig. 6 Half model test case
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5 Interpolation Quality Comparison

The different reduction algorithms in section 4.1 to 4.3 select different base point
sets Xs from the input data site set Xiiinnnppp. This section is comparing the resulting
interpolation errors in a test case.

Therefore the extremely deformed half model airplane, as seen in figure 6 is
used. The input base points Xinp and their deformation vectorsΔXinp were calculated
with a structural loads program. The tool generates for each surface grid node a
deformation vector, so the cardinality of Xinp and ΔXinp is quite large with a value
of ninp = 137,136 for the wing without engine only.

Figure 7 shows the interpolation error ei for the bottom surface of the wing,
because it used to show higher interpolation errors. The settings for the interpolation
and base point reduction can be seen in table 1.

Because the structural loads tool gives an deformation output for every surface
grid node, the interpolation error for the surface nodes eee = (ei)i=1,..,ninp

can be cal-

culated by taking the differences between the calculated interpolations Δ x̃xxi and the
input deformations Δxxxi:

ei = ‖Δ x̃xxi −Δxxxi‖2. (43)

The picture 7(a) clearly shows that the base points, chosen by the equidistant
reduction method, are not satisfactory in the outer wing part. The outer 30 percent of
the wing show strongly increased error values. This result has motivated to improve
the base point selection process. The other reduction algorithms show a strongly
improved interpolation error in this part of the wing, too. The mean absolute error eee
of each test case for the actual 2000 base point setting, and additionally for another
test series with only 1000 base points is given in table 2. Furthermore, this table
contains the variance Var (eee) and the maximal error max

i
(ei).

The table confirms the impression of the given plots: All new methods choose
base points resulting in a significantly lower interpolation error. Furthermore, the
variance Var(·) indicates that less fluctuations in the error can be expected. The
maximum error is lowered by up to 92 percent.

Figure 8 shows how the base points are chosen by the different algorithms. The
equidistant reduction algorithm (7(a)) distributes the base points nicely over the
whole domain. Taking a closer look, the decreased density of points in the thin parts
of the wing, like the trailing edge and the tip, can be recognized.

Table 1 Test settings

Reduction method Parameter RBF φ
Equidistant reduction -

Local average weighting fracequi = 0.5, dmin = dmax/10 Wendland’s C0,
Error weighting fracequi = 0.5, nEWSteps = 3 impact radius r = 20.0
Error correction fracequi = 0.5
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(a) Equidistant Reduction (b) Local Average Weighting

(c) Error Weighting (d) Error Correction

Fig. 7 Interpolation error of wing, lower surface view, 2000 base points, color table: absolute
interpolation error in m

Table 2 Test results interpolation error eee = (ei)i=1,..,ninp

(a) 1000 base points

Reduction method eee [m] Var (eee) [m2] max
i
(ei) [m]

Equidistant reduction 5.30E-03 8.52E-02 1.24E-04
Local average weighting 1.56E-03 3.87E-02 3.83E-06

Error weighting 1.52E-03 1.10E-02 3.00E-06
Error correction 1.40E-03 8.99E-03 1.19E-06

(b) 2000 base points

Reduction method eee [m] Var (eee) [m2] max
i
(ei) [m]

Equidistant reduction 2.33E-03 2.52E-05 4.99E-02
Local average weighting 8.60E-04 1.92E-06 1.91E-02

Error weighting 6.86E-04 6.20E-07 7.92E-03
Error correction 7.38E-04 4.55E-07 3.83E-03
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(a) Equidistant Reduction (b) Local Average Weighting

(c) Error Weighting (d) Error Correction

Fig. 8 2000 base points selected by different reduction algorithms

The new methods have all used the equidistant reduction algorithm in the first
step for half of their base points. The remaining half has been selected differently,
besides all algorithms concentrate the selected points in the outer wing part.

The local average method (8(b)) is the most extreme example for this behavior.
Because the deformations are increasing with a parabolic character, the weights used
to be more significant in the outer part. Supplementary, the more narrow getting
wing supports this behavior, because the neighborhood of a certain point would
contain more points of the side closer to the fuselage then from the outer side, which
influences the local mean deformation.

The two remaining approaches based on the interpolation error are choosing their
base points similarly. A difference between the error based greedy algorithms is that
the error weighting algorithm is distributing the points more numerous in areas far
away from the outer wing. The error correction algorithm has selected most points
in the tip area.
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The results show the best point selection for the error weighting and error cor-
rection method. But one has to keep in mind that error correction is only working
with radial basis functions with limited influence range, while error weighting has
the larger computational costs (7 times larger than error correction).

6 Applications

6.1 Wing Shape Design

To accurately compare the aerodynamic coefficients (e.g. drag) between small
changes of the aerodynamic shape of a wing, it is necessary to be as independent
from the CFD mesh as possible. Otherwise, difficulties arise to distinguish between
grid discretization effects ("numerical noise" due to change of grid topology) and
geometric effects. Nowadays in industrial context a 3D unstructured CFD mesh is
not made in a way to obtain a mesh independent CFD solution.

However, mesh deformation conserves the grid topology and small geometry
variations produce small mesh deformations in a continuous way. Utilizing this,
comparisons of aerodynamic coefficients are better possible and thus uncertainties
otherwise introduced by changes of grid topology are minimized. Mesh deformation
with FSDeformation was here successfully applied to a shape design change for a
wing-tip (figure 9).

The discrete deformation field was obtained from the parametric CAD model
(CATIA V5) using a two-stage process (first the treatment of curves and then sur-
faces). In a predictor step, the deformation field is determined by subtracting points
on discretized corresponding CAD curves. This gives an initial surface deforma-
tion which may not be accurate on the inner region of surface panels apart from the
bounding curves.

Fig. 9 Wing tip shape design example
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(a) Parametric CAD geometry (b) Discrete deformation field calculated
from parametric CAD

Fig. 10 Wing tip design with deformation obtained from a parametric CAD geometry

In the corrector step surface points are projected to the new CAD geometry. The
projection vectors together with the displacement vectors of the discretized curves
then builds the final discrete deformation field (figure 10(b)). It serves as input for
the new tool FSDeformation to accurately move all points of the CFD grid corres-
ponding to the parametric change of the CAD geometry.

6.2 Multi-disciplinary Wing Optimization–SFB-401-Wing

The task given was to optimize a wing with respect to aerodynamics, structures, and
performance under considerations of static aeroelastic effects. The study involves
the sizing of the wing box skins and spars to obtain minimum weight fulfilling static
aero-elastic requirements (details in [7, p. 287]).

The considered MDO process chain for shape optimization of a wing including
the static deformation is shown schematically in Fig. 1. The objective function is:

Obj =WA/C ×CD/CL, (44)

where WA/C is the total weight of the aircraft, CD is the overall aerodynamic drag
coefficient, and CL is the aerodynamic lift coefficient. The objective, thrust, is equi-
valent to the total aerodynamic drag force in stationary horizontal flight, which
should be minimized.

A CATIA V5 parametric model of the wing is controlled by the optimizer using
an external CATIA-DesignTable, where all relevant shape parameters for the wing
are listed. The shape of airfoils at four predefined wing sections (root, kink1, kink2,
and tip section) can be changed parametrically to control the thickness, camber, and
twist distribution of the wing. The wing planform is fixed.

Two structure design parameters control the relative thickness change of the wing
front and rear spars in combination with the upper and lower sheet thicknesses of the



Improved Mesh Deformation 239

(a) Step 1, no deformation (b) Step 10, aeroelastic equilibrium

Fig. 11 Undeformed and deformed wing with pressure coefficient distribution and CFD mesh
for the CFD/CSM coupled iterative process.

wing box. The stiffness and the weight of the wing are depending on these structure
parameters.

Mesh deformation is a crucial component here. On the one hand, the change in
geometry shape design through the parametric CAD model (CATIA V5) is treated
by mesh deformation, on the other hand, the deformation of the wing structure de-
pending on the aerodynamic forces (in addition to other forces such as fuel weight,
engines, etc.) is also covered by applying mesh deformation. The CFD/CSM coup-
ling is displayed in figure 11.

The individual components of the process chain were used in the parallel, in-
memory FlowSimulator environment [1], so that a time-consuming and data intens-
ive exchange of files was not required. Compared to the former methods, which
used file exchange, significant time savings of around 50 percent have been ob-
tained. This a major step forward in an industrial context together with the accuracy
improvements and reductions of uncertainties.

In figure 12(a) and 12(b) the results of the optimization are presented. Shown
is the original geometry in the aeroelastic equilibrium and the optimized geometry
with a significantly different twist distribution and bending.

Figure 13 shows the convergence of the required thrust during the optimiza-
tion process using a gradient free Downhill Simplex optimizer [8]. After around
80 design changes the optimum has been reached nearly.

6.3 Application to Complex Configuration

It was found that FSDeformation in the parallel FlowSimulator environment could
be applied successfully to very complex, industrially relevant problems. An example
for a coupled CFD/CSM application for an complete aircraft in high-lift configura-
tion with deflected flaps and slats is shown in Fig. 14.
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(a) Side view to check change of bend and
twist. Lower wing: optimized, Upper wing:
initial

(b) Top view to check change of pres-
sure coefficient distribution. Left: optimized,
Right: initial

Fig. 12 Clean wing CFD-CSM optimization

Fig. 13 Clean wing CFD-CSM optimization. Convergence of the required thrust in horizontal
stationary flight during the optimization process.

7 Summary

This work has presented a mesh deformation module for the parallel simulation
environment FlowSimulator. The module is based on the radial basis function inter-
polation approach.
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Fig. 14 Complex high-lift configuration for a CFD/CSM coupled simulation applying the
new tool FSDeformation. Shown is the deformed and non-deformed geometry (see wing tip)
due to a different aerodynamic load case.

The application fields of mesh deformation is manifold (unsteady simulations,
shape optimization and aeroelasticity). In a next step, radial basis function inter-
polation and the mesh deformation module and its algorithm have been introduced.
The module combines the radial basis function interpolation approach with a group-
weighting and deformation-blending feature. This allows to move different surface
groups/bodies independently from each other. Furthermore, the deformation blend-
ing provides an improved protection of boundary layer cells and allows the usage
of unbounded radial basis functions and the extension of the radial basis function
interpolation approach by a polynomial.

The group-weighting and deformation-blending uses the wall distance of the
volume mesh nodes to the group boundaries. Hence a wall distance computation
module has been implemented. It uses an advancing-front algorithm for the distance
computation.

Additionally, the deformation module was extended with new deformation group
features. These features allow to define deformation groups without creating base
points and deformation vectors for this group. The features support far-field bound-
aries, symmetry planes or the rigid attachment of a boundary group to another
boundary group.

Because the computational cost of the interpolation algorithm depends on the
number of interpolation base points, the module offers four different methods for
the reduction of the input base points. The first method uses an octree data-structure
to select equidistant base points. The remaining three methods use in the first step
this method as well. But in the second step they either use weighted distances for
a modified equidistant reduction function, or they correct the interpolation error
locally by selecting base points individually. The two weighted distance reduction
methods use the difference to the mean deformation of the neighboring nodes or



242 H. Barnewitz and B. Stickan

the interpolation error of the base points not selected for the weight computation.
All the different methods have been compared in terms of performance and inter-
polation error. Here the locally operating error correction method has shown very
good results in performance/interpolation error efficiency. But the method is limited
to locally supported radial basis functions. Because the radial basis function Euc-
lid’s Hat, which tends to infinity for an increasing input argument, has produced
the lowest interpolation error, the interpolation error weighting method is the best
advice.

The wall distance module and the deformation module have been parallelized
with MPI. The theoretically perfect speedup of the interpolation method may only
be affected by unbalanced node distributions over the parallel MPI processes.

The creation of the module FSDeformation by Airbus and its integration into the
parallel FlowSimulator software environment has helped to reduce the uncertainties
that occur in small geometry changes, which typically occur at aerodynamic shape
design. Numerical shape optimization of components by using the improved grid
deformation technique for unstructured grids has improved, reducing uncertainties
related to mesh dependencies of the numerically obtained flow solutions.

Finally, applications for the deformation module in cooperation with the flow
solver TAU and a structure module has been demonstrated. It has shown that the
deformation module can play a key position in future computation chains using the
simulation environment FlowSimulator with a perfect speedup for the mesh deform-
ation method. Additionally, the example has illustrated that the coupling of different
programs by using FlowSimulator can minimize intensive and time-consuming file
input/output operations, due to the fact that both tools use the same main memory
address space. The computational time and hence the cost of an optimization has
been reduced considerably.
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