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Abstract. In this article we apply the procedure of the iterated defect correc-
tion method to the Euler equations as well as to the Navier-Stokes equations. One
building block in the defect correction approach is the lower order basic method,
usually first or second order accurate. This scheme gives a steady solution of low
accuracy as the starting point. The second building block is the WENO reconstruc-
tion step to estimate the local defect. The local defect is put into the original equation
as source on the right hand side with a minus sign. The resulting modified equation
is then again solved with the low order scheme. Due to the source term with the local
defect the order of accuracy is iteratively shifted to the order of the reconstruction.
We show numerical results for several validation test cases and applications.

1 Introduction

Numerical simulations of the equations of fluid mechanics contain unavoidable er-
rors due to several necessary approximations. To analyze these errors is crucial for
the evaluation of the reliability of the numerical results. In the following we fo-
cus ourselves to the discretization errors. This means, that the modeling errors are
excluded and the exact solution of the governing equations is supposed to be the
reference solution of the described physical phenomenon.

The discretization errors can be separated into local and global discretization
errors. By inserting the exact solution into the discretized equations, the local dis-
cretization error, also known as the local defect of a numerical approximation, can
be determined. The more significant global discretization error gives the difference
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between the numerical and the exact solution. In both cases the exact solution is
needed, which makes the error approximation for real applications cumbersome.
A common approach is to run the same problem on several meshes with differ-
ent step size h. A mesh convergence study allow then to compute the so called
experimental convergence rate. Finally, a Richardson extrapolation can be used to
determine the best approximate solution together with an estimation of the global
discretization error. In practical 3D applications with complex geometries, this ap-
proach becomes cumbersome and sometimes even unfeasible because of the high
computational costs. Our approach allows an error approximation for steady prob-
lems on the original mesh by using a polynomial reconstruction within the defect
correction method.

Starting with a steady solution of a first or second order accurate finite volume
scheme, we employ the modified weighted essentially non oscillatory (WENO) re-
construction scheme of Dumbser and Käser [4] for unstructured meshes. The res-
ulting polynomial distribution allows an improved flux computation which can be
applied to estimate the local discretization error. The method of the iterated defect
correction (IDeC) consists of subtracting this local defect as a source term on the
right hand side of the original equations [23, 19]. The now modified equations are
solved with the original method of first or second order accuracy, in the following
also called the basic method or the basic scheme, resulting into a new corrected
steady solution. A further reconstruction of the corrected solution yields a better
estimation of the local defect which is now used in the modified equations. Iterat-
ively applied, the method of the defect correction shifts the order of accuracy of
the basic scheme to the higher order of the used reconstruction. By this approach,
an approximation of the global discretization error up to an accuracy of the higher
order reconstruction is available.

2 The Method of Iterated Defect Correction

The defect correction approach was originally proposed by Zadunaisky ([22], [23])
for the estimation of the global discretization error in ordinary differential equa-
tions. The method was then generalized by Stetter [18] who introduced the iterative
procedure which is applied in this work to partial differential equations. A number
of theoretical investigations were done for ordinary differential equations by Frank
([5], [6]). Further papers of Pereyra ([15], [14]) show a different way of applying
the defect correction method and gives additional analysis of the method. A nice
overview on the defect correction approach can be found in Stetter [19] where he
gives an overview of the different procedures. The proposed iterative defect correc-
tion method in this work is based on the procedure introduced by Stetter in [18] for
ordinary differential equations. As was shown by Frank and Ueberhuber in [7] the
iterated defect correction can also be applied on partial differential equations.
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For the sake of simplicity we describe in the following the employed iterated
defect correction on the example of a scalar one dimensional evolution equation

ut + f (u)x = 0, (1)

keeping in mind that the whole procedure can be extended to multi dimensions
and to diffusion fluxes which additionally depend on ∇u, as it is the case for the
Navier-Stokes equations. As mentioned before, we focus on steady solutions, i.e.,
ut = 0. The time dependence in (1) is used only for the iteration of the approximate
solution to a steady state. Conform with the convention in the cited papers we write
the equation (1) in the abstract form

Lhuh = rh with Lu ≡ ∂ f
∂x

, (2)

where the operator L is the exact linear or nonlinear differential operator and Lh

is the discretized operator with the mesh width parameter h. For Lh we impose a
stable, consistent and fast invertible operator, which is easily achieved by an oper-
ator with a low consistency order of one or two. For the theory of the iterated defect
correction the operator Lh can also be of higher order. For practical calculations it
is more interesting to correct a first or second order accurate method which is often
applied in practice. Equation (2) will be called the basis method with the solution
uh computed by inversion of the operator Lh:

uh = L−1
h rh. (3)

Additionally we need another numerical method for the original problem (1) on the
same mesh, but with a higher consistency order

Shwh = rh. (4)

(4). This higher order discretization will only be used to estimate the local defect
and is applied once per defect iteration in that form. Instead of solving directly the
higher order discrete problem which may need a lot of time and development of the
solution procedure, the modified problem

Lhuh = rh − dh (5)

is solved using the basic method (2). With dh = Shwh − Lhuh the local defect we
apply equation (5) iteratively

Lhu[k+1]
h = rh − d[k+1]

h k = 1,2,3, . . . ,NIDeC (6)

with the defect iteration index k and NIDeC the maximum defect correction iterations,
converging towards the solution wh, the reconstruction polyomial higher order. The
whole defect correction procedure can be formulated in the following step by step
description.
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1. We start with a steady solution

u[0]h = L−1
h r[0]h with r[0]h = rh (7)

of our basic method (2). The approximated solution uh is then reconstructed with
the weighted essentially non oscillatory scheme, which will be described in sec-

tion 3. The reconstruction produces a polynomial distribution w[k]
h of the integral

average in each grid cell.
2. Applying now the operator of higher order consistency Sh to the reconstructed

solution w[k]
h we compute the local defect d[k+1]

h for the next defect correction
iteration k+ 1:

d[k+1]
h = Shw[k]

h − r[k]h = Shw[k]
h −Lhu[k]h , (8)

r[k]h = rh − d[k]
h .

3. This defect is then subtracted as a source term on the right hand side of equation
(2) and the modified equation

Lhu[k+1]
h = rh − d[k+1]

h (9)

= rh −
(

Shw[k]
h −Lhu[k]h

)

is solved with the basic method, applying the inverse operator L−1
h . One gets then

the corrected solution u[k+1]
h after the k-th defect iteration, converging for

Lhu[k+1]
h ≈ Lhu[k]h . (10)

With this convergence criteria, equation (9) reduces to the method higher order
(4), with wh the reconstruction polynomial.

Equation (5) is also called the "neighboring problem" with respect to the original
formulation of the defect correction by Zadunaisky. For the process of iterated defect
correction one must assume that (6) and (2) are neighboring mathematical problems.
Since wh represents a polynomial reconstruction of the basic solution uh on the same
mesh, the defect dh as defined in equation (8) is "small" and so the assumption of
the "neighboring problem" is plausible.

As we use a finite volume scheme for the basic method we can write the modified
equation (5) in a semi discrete form defined on the interval [xi− 1

2
,xi+ 1

2
]x[tn, tn +Δ t]

with ui = uh, being the discrete state in the cell i, as

Δu[k+1]
i =− 1

Δx
R(u[k+1]

i )− 1
Δx

(
R(w[k]

i )−R(u[k]i )
)

︸ ︷︷ ︸
d
[k+1]
h

(11)
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with

R(Qi) =

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

f (Qi)xdxdt, (12)

whereas Qi is considered as a placeholder for u[k]i ,u[k+1]
i and w[k]

i . As common for
a finite volume approach the unknown physical flux f (Qi) is replaced by an appro-
priate numerical flux approximation gi+ 1

2
on the cell border of two adjacent cells.

The numerical flux depends only on the states left and right of the cell interface:
gi+ 1

2
= g(Q−

i+ 1
2
,Q+

i+ 1
2
), with Q− defining the state on the interface in the cell itself

and Q+ being the state on the interface in the neighboring cell. If we choose as a
simple example a basic method of first order in time and space, equation (11) yields

Δu[k+1]
i =−Δ t

Δx

(
g(u[k+1],−

i+ 1
2

,u[k+1],+

i+ 1
2

)− g(u[k+1],−
i− 1

2
,u[k+1],+

i− 1
2

)

)
− d[k+1]

h (13)

with

d[k+1]
h =

Δ t
Δx

(
g(w[k],−

i+ 1
2
,w[k],+

i+ 1
2
)− g(w[k],−

i− 1
2
,w[k],+

i− 1
2
)

)
(14)

−Δ t
Δx

(
g(u[k],−

i+ 1
2
,u[k],+

i+ 1
2
)− g(u[k],−

i− 1
2
,u[k],+

i− 1
2
)

)

an approximation of the corrected state u[k+1]
h in the cell i. We point out that the

integral of the higher order fluxes f (w[k]
h ) have to be computed with an appropriate

numerical integration of accuracy higher than the one of the basic method. In the
case of 1D there is no need of such an integration, the interface being the only
integration point. For 2D or 3D discretizations an efficient integration scheme is
necessary. In our case we use Gauss quadrature. This leads to an approximation of
the flux integral in cell i as

∫

∂Ci

g
(

w[k],−
i ,w[k],+

i

)
ndS ≈ ∑

K∈∂Ci

nGP

∑
j=1

ωK
j g

(
w[k],+

i, j ,w[k],−
i, j

)
nKSK , (15)

where nGP and ωK
j denote the number and the weights of the Gauss integration

points j on the interface K, respectively, SK is the length or the surface and nK is the
outward pointing unit normal vector. If the polynomial degree of the reconstruction
is chosen to be p′ > p, with p, being the polynomial degree of the basic method, we
take nGP = p′+1

2 for the 2D case, which is accurate up to a polynomial degree of p′.
In the 3D case we use a rather sub-optimal number nGP = ( p′+1

2 )2 of Gauss points
which is nevertheless accurate up to a polynomial degree p′.
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2.1 IDeC for Inhomogeneous Problems

For inhomogeneous equations the method of iterated defect correction can be ap-
plied in two different ways, which leads both to the same corrected solution but with
different time efficiencies. The difference is even bigger for source terms depending
on the solution itself. In the following work we will present both inhomogeneous
equations with source terms depending only on space and source terms including
the solution itself. To describe the different formulations we take the scalar evolu-
tion equation

ut + f (u)x = s(u). (16)

again in 1D as example with the source term s depending on the solution u. If we
apply the iterated defect correction on this problem as done before, computing the
local defect only in the flux terms, we can write the modified equation (5) as

u[k+1]
t + f (u[k+1])x = s(w)−

(
f (w[k])x − f (u[k])x

)
︸ ︷︷ ︸

d[k+1]

. (17)

The integration of each term is done as shown above what leads to a similar semi
discrete representation of the modified equation (5) with the additional integral

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

s(wi)dxdt,

of the source term s in the cell i. To achieve the consistency order of the reconstruc-
tion in the iterated defect correction procedure with the above formulation (17), it
is important to compute the source term with the high order accuracy. This implies a
reconstruction in each iteration of the basic method and in 2D and 3D an integration
with much more Gauss points than used for the basic scheme of lower order is ne-
cessary. The high computational cost can be reduced by reformulating the problem
in equation (17). Instead of taking only the fluxes into account for the local defect,
we propose to include the source term as well in the definition of the local defect.
This yields

u[k+1]
t + f (u[k+1])x = s(u[k+1])−

[
f (w[k])x − s(w[k])−

(
f (u[k]h )x − s(u[k])

)]
︸ ︷︷ ︸

d[k+1]

, (18)

a new modified equation where the source term in the iteration of the basic scheme
is now integrated with the lower order accuracy whereas the reconstruction of the
source term is only done once per defect iteration to compute the local defect.
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3 WENO Reconstruction on Unstructured Grids

In order to compute the higher order operator for the grid cell C(i) a reconstruction
of the cell averages defined

ū(i) =
1∣∣C(i)

∣∣
∫

C(i)

udV (19)

is done, where
∣∣C(i)

∣∣ is the length, the surface or the volume of the gird cell depend-
ing on the space dimension. To ensure a stable reconstruction even at discontinuit-
ies, a high order Weighted Essentially Non Oscillatory (WENO) reconstruction was
chosen. This method was first introduced by Shu et al. [11, 10] and Osher et al. [13].
For the proposed defect correction method, the modified reconstruction algorithm
by Dumbser et al. [4] is used which ensures a robust method on 2D and 3D unstruc-
tured meshes even with distorted cells [4] eliminating scaling and bad conditioning
problems common to WENO reconstruction technique.

In this approach, the reconstructed polynomial is built by a linear combination
of orthogonal basis functions as given in [3] for triangles in 2D and tetrahedrons in
3D. We write the reconstruction polynomial for the element C(i) as

w(i) (ξ ,η ,ζ ) =
L

∑
l=1

ŵ(i)l
Ψl (ξ ,η ,ζ ) , (20)

with ξ ,η and ζ the coordinates in the reference coordinate system. Unlike the
common WENO reconstructions at discrete cell points, the basis polynomials
are continuously extended over the whole stencil and are then restricted to the
considered element C(i) after having obtained a reconstruction polynomial. The
number of degrees of freedom L being L = 1

2 (M+ 1)(M+ 2) in 2D and L =
1
6 (M+ 1)(M+ 2)(M+ 3) in 3D depends on the polynomial degree M of the basis
functions Ψl . Whereas the basis functions are space dependent, the reconstructed
degrees of freedom ŵ(i)l

depend only on time.
Similar to the finite element framework, the reference space is the unit element

CU . This is a triangle with the canonical coordinates (0,0),(0,1) and (1,0) in 2D and
a tetrahedron with the canonical coordinates (0,0,0),(0,0,1),(0,1,0) and (1,0,0)
in 3D. The transformation from the physical space x−y− z into the reference space
ξ −η − ζ can be done by a linear transformation matrix (see [4]). To perform the
reconstruction, several stencils have to be chosen which is done in the reference
space. There are three groups which are defined as follows:

1. First the central stencil is built by adding successively Neumann neighbors, i.e.
immediate side neighbors of the considered cell C(i), to the stencil until the de-
sired number of cells ne in one stencil is reached. The size of ne will be discussed
later on in this chapter.
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2. The following stencils, three of them in 2D and four in 3D, are chosen out of the
primary sectors. As mentioned before this is done in the reference space ξ ,η ,ζ .
So the primary sectors are spanned by the vectors starting from each vertex of the
unit element CU along the edges intersecting this vertex. Transformed elements
are then successively added to the stencils.

3. As shown by Käser and Iske [12] it is favorable to take one more family of
stencils into account than the two mentioned above. Although this increases the
computational effort it ensures a stable and robust reconstruction in 2D and 3D
configurations for special locations of the discontinuities. Additionally it im-
proves the one sided reconstruction, e.g. at walls. The so-called reverse sectors
are spanned by the negative vectors of each primary sector defined above.

This sums up to ns = 7 and ns = 9 stencils in 2D and 3D which are used for the
reconstruction. At the domain boundaries or for the case that not all stencils could
be filled up due to geometrical reasons, the total number of stencils ns can decrease.

For a conservative reconstruction one must assure that the polynomial distribu-
tion wi in each cell C(i) of the stencil m conserves the integral mean value of the cell
at hand C(is).

1∣∣C(is)

∣∣
∫

C(is)

w(i)(ξ )dV = ū(is) (21)

The evaluation of the conservation condition is carried out in the reference space.
This is done by applying linear transformation matrix with respect to the element
C(i) to each cell in the stencil, where the transformed elements are in the following
denoted by C̃(i). Taking into account that the degrees of freedom ŵ(i) are not space
dependent, the above equation results in

|J|
L

∑
l=1

⎛
⎜⎝

∫

C̃(is)

Ψl(ξ )dξdηdζ

⎞
⎟⎠ ŵ(i)l

= |J| ∣∣C(is)

∣∣ ū(is). (22)

The Jacobian determinant which is introduced due to the transformation appears on
both sides of equation (22), so it cancels out and with it scaling effects are elimin-
ated as well. Furthermore, Abgrall reports in [1] that ill-conditioned reconstruction
matrices are also avoided through this effect.

As the transformation to canonical coordinates is only done for the reconstructed
cell, the integration in equation (22) turns out to be non-trivial. This is not the case if
a second transformation with respect to the reconstructed cell is done additionally.
For more details see [4]. With it, the left hand side of equation (22) can again be
easily integrated using the Gaussian quadrature with an appropriate accuracy. This
yields the following linear system which have to be solved for the reconstructed
degrees of freedom.

A ŵ = ū (23)

For a number ne = L of elements per stencil the matrix A becomes square and easy
invertible, but for realistic meshes this leads to an unstable scheme. So, to ensure the
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robustness of the reconstruction we enlarge the stencils, see also [12]. The number
of the elements per stencil is chosen as ne = 1.5L in 2D and ne = 2L in 3D. In
addition the matrix can contain linear dependent rows due to geometrical reasons.
This means that the reconstruction matrix A may not be invertible. This is avoided
by adding successively new elements to the stencil if one of the singular values
of the matrix becomes zero. The overdetermined system (23) can be solved by an
algorithm of singular value decomposition or, as it is done in our framework, by a
least-squares method with the constraint (21).

The degrees of freedom ŵ(i) are now known, so the polynomials w(i)(ξ ,η ,ζ ) on
each stencil are known and the final nonlinear reconstruction polynomial wW ENO

(i) in
the cell C(i) of degree M is defined by

wWENO
(i) (ξ ,η ,ζ ) =

ns

∑
s=1

ωsw(i)s(ξ ,η ,ζ ) =
ns

∑
s=1

L

∑
l=1

ωsŵ(i)s,l
Ψl(ξ ,η ,ζ ). (24)

Unlike the common ENO (Essentially Non Oscillatory) schemes, where only the
less oscillating polynomial is chosen, all reconstruction polynomials on each stencil
are taken into account by a linear combination as done in eq. (24) with the normal-
ized nonlinear weights ωs

ωs =
ω̃s

ns

∑
r=1

ω̃r

with ω̃s =
λs

(ε+σs)r (25)

according to [11, 17, 4], whereas the non-normalized nonlinear weights ω̃s depend
on the linear weights λs and the oscillation indicators σs.

The parameters ε and r are set in the common range given in the literature [17, 4],
i.e. ε = 10−5 − 10−14 and r = 2− 8. Thereby ε is regarded as a threshold for a
division by zero which does not influence much the stability of the reconstruction
scheme. The parameter r states the sensitivity of the nonlinear weights relative to
the oscillation indicators σs. For bigger r the reconstruction procedure tends to an
ENO behavior, whereas for smaller values the scheme becomes more oscillatory.

For the weights ωs in (24) suitable oscillation indicators are necessary to ensure
a robust reconstruction. In literature ([10, 12]) this is usually achieved by a scal-
ing with the cell volume. As the reconstruction procedure is done in the reference
coordinate system this is not necessary any more. Due to the definition of the poly-
nomials (20) σs can furthermore be computed in a mesh independent way

σs = (ŵs)
T Σ ŵs (26)

with ŵs, the vector of the degrees of freedom of the polynom on the stencil m and
Σ the universal oscillation matrix defined by
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Σlk =
M

∑
r=1

r

∑
α=0

r−α
∑
β=0

∫
CU

∂ r

∂ξα∂ηβ ∂ζ γ
Ψl(ξ ,η ,ζ ) · ∂ r

∂ξα∂ηβ ∂ζ γ
Ψk(ξ ,η ,ζ )dξdηdζ ,

(27)
whereas γ = r−α−β . As the reconstruction basis functionsΨ are generally given,
the oscillation matrix is neither dependent on the mesh, nor on the problem, i.e. it
can be computed and stored in advance of a computation, considerably increasing
the efficiency of this reconstruction method.

In contrast to the common WENO schemes the linear weights are not used for
the improvement of the accuracy as was shown by Liu, Osher and Chan [13] but
simply defined by

λs =

{
λc

1
if s = 1, i.e. c is the index of the central stencil,
else

(28)

according to Dumbser et al. [4], with λc � 1, which puts a high emphasis on the
central stencil. It was shown in [4] that a choice of λc = 102 − 105 does not show
sensitivities in the results. Nevertheless, lower λc yield better results at discontinu-
ities and larger weights are favorable for smooth solutions.

4 Numerical Results

For the validation of the implemented iterated defect correction method exhaust-
ive studies have been made for 1D, 2D and 3D Euler and Navier-Stokes problems.
All simulations have been carried out with a standard finite volume scheme using
ghost cells to impose boundary conditions. Depending on the test case a first or a
second order basic scheme was used, whereas for the defect correction a polynomial
WENO reconstruction up to 6th order was applied with the standard choice for the
reconstruction parameters shown in section 3. In this section we first show some of
the convergence studies of those validation cases and we end up with application
test cases.

4.1 Convergence Studies

To validate our proposed iterated defect correction method for inhomogeneous prob-
lems we took as a first example in 1D the nonlinear Euler equations where a source
term s(u,A), depending on the solution u and a given geometry A, was added. The
equations in (29) are derived from the homogeneous Euler equations in three di-
mensions with the assumption of a continuous area variation (see also [20]).
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ut +F(u)x = s(u) with s =− 1
A

⎛
⎝ ρuAx

ρu2Ax

u(e+ p)Ax

⎞
⎠ (29)

This gives an approximation of a 2D axi-symmetric nozzle flow with the x-axis as
nozzle symmetry and A(x) as cross-sectional area along the nozzle. In our case we
took a smooth sinus function

A(x) =

⎧⎨
⎩

2,
2− sin4

(
π(x+ 1

2 )
)
,

2,

−1 ≤ x ≤− 1
2

− 1
2 < x < 1

2
1
2 ≤ x ≤ 1

(30)

for the cross-sectional area which is illustrated in the upper left corner of Fig. 1. We
took a subsonic expansion with inflow and outflow pressure p = 1 and an inflow
velocity u = 0.2 with an inflow mass flow ρu = 0.28. We obtain then an inflow
Mach number of Ma = 0.2 which can be introduced into the 1D nozzle theory to
evaluate the exact state at the inflow and outflow section. This is imposed during the
simulations which result into a symmetrical distribution of the state variables (see
Fig. 1). We can clearly see the difference between the first order basic method and
the corrected solution in both amplitude and location of the peak which is expected
to be in the nozzle throat at x = 0. In this case a cubic polynomial reconstruction
was chosen to compute the local defect.

To measure the exact error between the approximated solution uh and the exact
solution ue we use continuous Lp norms

x

M
a(

x,
t-

>
∞

)
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Fig. 1 Mach number distribution of a axi-symmetric nozzle flow simulated with a first or-
der basic method and corrected by a fourth order polynomial reconstruction for the local
defect
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‖ uh −ue ‖Lp(Ω)=

⎛
⎝∫
Ω

|uh −ue|pdV

⎞
⎠

1/p

, (31)

whereas the L∞-norm gives the maximum absolute error arising in the whole do-
main. We compute the integral with the Gaussian quadrature algorithm with twice
the number of Gauss points compared to the numerical scheme. For the defect cor-
rection it is important to make this analysis with the high order polynomials and,
respectively, with the high order integration and not with the accuracy of the ba-
sic method. Table 1 shows the convergence tables of the nozzle test case for five
successively refined grids. In addition to the fourth order defect reconstruction we
show a convergence table for a first order basic method corrected with a 6th order
reconstruction to determine the local defect.

The validation of the 2D and 3D implementation has been carried out by using
the method of manufactured solutions, i.e. we insert an analytical function

ρe(x) = sin(πx) · sin(πy)+ 2

for the exact density distribution in 2D and respectively

ρe(x) = sin(πx) · sin(πy) · sin(πz)+ 1

in 3D into the Euler equations and solve the inhomogeneous two-, respectively
three-dimensional Euler equations

ut +∇ ·F(u) = s(x). (32)

Table 1 Iterated defect correction based on a first order steady solution with a 4th (up) and
6th (down) order reconstruction, 1D homogeneous grid, convergence rates of the mass flow
variable

h L∞ L1 L2 OL∞ OL1 OL2

Basic method O1 → IDeC with O4 reconstruction
0.080 7.69E-03 2.17E-03 2.64E-03 - - -
0.040 6.34E-04 1.26E-04 1.78E-04 3.6 4.1 3.9
0.020 3.46E-05 6.08E-05 9.69E-05 4.2 4.4 4.2
0.010 2.14E-06 3.19E-06 5.63E-06 4.0 4.3 4.1
0.005 1.35E-07 1.83E-07 3.44E-07 4.0 4.1 4.0

Basic method O1 → IDeC with O6 reconstruction
0.100 8.80E-03 2.22E-03 2.49E-03 - - -
0.067 1.92E-03 2.95E-04 4.19E-04 3.8 5.0 4.4
0.033 6.66E-05 8.94E-06 1.54E-05 4.9 5.0 4.8
0.017 1.54E-06 1.80E-07 3.28E-07 5.4 5.6 5.6
0.008 2.63E-08 3.02E-09 5.58E-09 5.9 5.9 5.9
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The remaining state variables like the velocity and the pressure were set to a constant
value greater zero. For our choice we obtain source terms which in contrast to the
one dimensional analysis depend only on the space

si = π · sin(πx) · cos(πy)+π · cos(πx) · sin(πy) for i = 1...4 (33)

in two dimensions and respectively

si = π · sin(πx) · sin(πy) · cos(πz)+π · sin(πx) · cos(πy) · sin(πz)

+ π · cos(πx) · sin(πy) · sin(πz) for i = 1...4

s5 =
3π
2

· sin(πx) · sin(πy) · cos(πz)+
3π
2

· sin(πx) · cos(πy) · sin(πz)

+
3π
2

· cos(πx) · sin(πy) · sin(πz) (34)

in three dimensions. For the simulations we initialized the domainΩ2D = [0;1]x[0;1]
in 2D and respectively Ω3D = [0;1]3 in 3D with the exact solution and iterated the
basic scheme to a steady state with the exact solution imposed on the boundaries.
The same convergence study as in one dimension based on the Lp-norms was car-
ried out on four successively adapted grids. In all our computations we used fully
unstructured grids with irregular triangles in two dimensions and tetrahedrons in
three dimensions. Each adaptation is performed globally, i.e. we applied the so-
called red-refinement in each cell of the domain per adaptation step. An example of
two adaptation steps is shown for the three dimensional case in Fig. 2.

Again we can see the difference between the solution of the basic method and
the corrected one. This is demonstrated for the two dimensional case for the density
distribution in Fig. 3. We have to mention that for the visualization of the higher
order solutions we subdivide the numerical grid and write out the value of the poly-
nomial distribution at each barycenter center of the subdivided grid. In this way
we can see the Godunov approach of constant values in the cell for the first order
solution (Fig. 3, left) and the continuous fourth order solution with vanishing jumps
between the cells (Fig. 3, right). A quantitative analysis can be done by determining
the convergence rates for the corrected solutions as it was done in the one dimen-
sional case. In Tab. 2 we show the experimental convergence order for the two- and
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Fig. 2 Grid topologies used for the convergence studies in three dimensions
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Fig. 3 Solution of the first order basic scheme (left) and the corrected solution of an IDeC
with a 4th order polynomial reconstruction for the local defect (right)

three dimensional simulations where we used a first order basic scheme with a cu-
bic polynomial reconstruction for the defect correction. In both cases we reach the
optimal theoretical convergence order of M + 1 when iterated defect correctionis
applied. The convergence rates can approve that with the mesh step size h → 0 the
error tends towards zero with the potential power of M + 1, M being the polyno-
mial degree of the reconstruction basis polynomials Ψ (see chapter 3). However,
nothing can be said about the real simulation time needed by the employed nu-
merical scheme and with it the real gain of using a higher order reconstruction.
Therefore we show in Fig. 4 the L1-norm of the errors for the one and two dimen-
sional computations described above over the total CPU-time in seconds needed

Table 2 Density convergence rates for IDeC with a first order basic scheme and a cubic
polynomial reconstruction on 2D (up) and 3D (down) irregular unstructured grids)

h L∞ L1 L2 OL∞ OL1 OL2

2D Basic scheme O1 → IDeC with O4 reconstruction
0.191 7.55E-02 1.06E-02 1.45E-02 - - -
0.096 5.78E-03 4.68E-04 7.12E-04 3.7 4.5 4.4
0.048 7.07E-04 2.95E-05 4.91E-05 3.0 4.0 3.9
0.024 4.97E-05 1.69E-06 3.17E-06 3.8 4.1 3.9

3D Basic scheme O1 → IDeC with O4 reconstruction
0.182 5.67E-02 9.49E-03 1.22E-02 - - -
0.127 9.69E-03 1.87E-03 2.39E-03 5.0 4.6 4.6
0.068 8.71E-04 1.01E-04 1.32E-04 3.8 4.6 4.6
0.035 8.38E-05 7.09E-06 9.54E-06 3.6 4.1 4.0
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Fig. 4 Convergence rates over total CPU time for first and second order methods compared
to iterated defect correction with higher order reconstruction in 1D (left) and 2D (right)

for a converged iterated defect correction and the basic schemes of first and second
order. The simulations were all performed on one single AMD Athlon 5200+ pro-
cessor with 3GB of RAM. So we can compare directly the computational effort
to reach the same given accuracy of the L1-norm. To give an example, if we want
to reach an error norm of L1 = 10−4 in the one dimensional case (Fig.4, left), we
obtain a speed up of factor 4 comparing a second order scheme with a third order
corrected solution based on a first order basic scheme. The same comparison for the
two dimensional case leads even to a speed up of factor 20 which is due to higher
computational cost for the 2D simulations concerning for example the integration
(Fig.4, right). This results for the speed up are surely dependent on the test case,
nevertheless they give an idea of the potential of higher order schemes. However, in
the one dimensional test case we can see, that the speed up of a higher order scheme
starts to be significant for very low accuracy levels.

A more demanding test case for the stability and the convergence of the iterated
defect correction for the steady nonlinear Euler equations is the Ringleb’s flow [2]. It
is one of the few continuous transonic flows of a blunt obstacle which can be solved
analytically with the Hodograph method in a transformed (V −θ ) plane, with V as
the velocity magnitude and θ the angle of the velocity with respect to x-axis. More
details on the Hodograph method and the analytical solution can be found in [2]. In
our case the flow direction is upwards with the wall boundaries left and right. Their
topology is derived from the analytical solution where the chosen boundaries of our
test case represent two stream lines. The inflow and outflow boundaries are circles
also given by the exact solution. The chosen geometry leans on th article [21].

In spite of being a transonic flow, it is smooth in the whole domain and since
we can compute an exact solution at each grid point there is also a quantitative
analysis possible. In addition the flow is supposed to be irrotational and isentropic.
We performed the simulations on three successively adapted regular triangular grids
imposing the exact solution on every boundary. Starting from the exact solution as
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Fig. 5 One of the used triangular grids, steady solution of the first order basic method
(middle) and defect correction solution with 4th order reconstruction (right)

the initial condition we use a first order scheme as the basic method for the iteration
to a steady solution. In Fig. 5 the middle fine grid is depicted together with the
steady solution of the basic method and the solution corrected with IDeC. We expect
a complete symmetrical solution with a defined circular sonic line. The first order
basic method clearly failures in these flow topologies. There are small instabilities,
nevertheless the method is stable and converges perfectly, which is important for
the method of iterated defect correction. For the defect correction we applied a 4th
order accurate WENO reconstruction with the parameters ne = 2L, r = 6, ε = 10−14

and λc = 105.
With the IDeC we get a good solution which is near to the exact one in spite

of the unsymmetrical solution of the basic method. With this setup we reach the
theoretical convergence order of the reconstruction, proving the possibilities of the
iterated defect correction method. If we compare the absolute error Lp-norms (Tab.
3) of both solutions this means a correction of the basic scheme from one up to four
orders of magnitude for the finest grid.

Beside the nonlinear Euler equations we applied the method of iterated defect
correction on the Navier-Stokes equations as well. Similar to the convergence stud-
ies shown before, we used the method of manufactured solution and solved

ut +∇ ·F(u,∇u) = s(x) (35)

with F(u,∇u) = Fc(u)−Fd(u,∇u), where Fc and Fd denote the convective respect-
ively the diffusive flux. The defect correction formulation in (11) does not change in
the case of solving the Navier-Stokes equation, but is just extended by the diffusive
flux what results in
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Table 3 Convergence rates for the first order basic method (up) and the corrected solution
with 4th order reconstruction (down)

N L∞ L1 L2 OL∞ OL1 OL2

Basic method O1
32 5.55E-02 5.89E-02 3.68E-02 - - -
64 3.56E-02 3.14E-02 2.01E-02 0.9 0.9 0.6
128 2.20E-02 1.64E-02 1.06E-02 0.9 0.9 0.7

Basic method O1 → IDeC with O4 reconstruction
32 4.17E-03 9.55E-04 8.10E-04 - - -
64 3.23E-04 4.10E-05 4.04E-05 3.7 4.5 4.3
128 1.90E-05 2.07E-06 2.04E-06 4.1 4.3 4.3

R(Qi) =

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

f c(Qi)xdxdt +

tn+Δ t∫
tn

xi+1/2∫
xi−1/2

f d(Qi,(Qi)x)xdxdt (36)

with Qi still acting as a placeholder for u[k]i ,u[k+1]
i and w[k]

i . Similar to the Euler
equations the local defect is now computed for both fluxes, the convective and the
diffusive flux. A high order formulation for the diffusive flux is therefore necessary.
We have chosen the approximation suggested by Gassner et al. in [8]. It enables
a one-step numerical method of high order accuracy in space and time using the
same data as for the convection flux. Based on the idea of Godunov for advection
problems not with constant initial data but with a linear initial distribution, it res-
ults in the so-called diffusive generalized Riemann problem (dGRP). Solving this
Riemann problem yields two parts, the one containing the arithmetic mean value
of the first derivative, whereas the second contains a physically motivated limiting
term composed of the jump in the state of two adjacent cells. In 2D and 3D this
leads to

∫

∂Ci

g
(

w[k]
i ,∇w[k]

i

)
ndS ≈ ∑

K∈∂Ci

nGP

∑
j=1

ωK
j gnK

(
w[k]

i, j ,
(

w[k]
i, j

)
nK

)
SK (37)

with (
w[k]

i, j

)
nK

=
1
2

(
∂
∂n

w[k],+
i, j +

∂
∂n

w[k],−
i, j

)
+η

(
w[k],+

i, j −w[k],−
i, j

)
(38)

a numerical approximation for the diffusion flux, ∂/∂n denoting the derivative in
normal direction. The characteristic length h is taken as twice the distance from
the barycenter of the cell Ci to the barycenter of the edge K of the computed flux.
The integration is again done by Gaussian quadrature with ωK

j the weights on the
edge K using a total number nGP of integration points. The jump in the state of two
neighboring cells is multiplied by the parameter η
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η =
1

h
√

1
2π

(39)

which can also be interpreted as a penalty term for the jump. With the chosen WENO
reconstruction we obtain the derivative directly from the reconstructed polynomial
distribution. However, the theoretical convergence order for this flux is limited to M,
the degree of the reconstruction polynomials, in the case of a finite volume method.
This is due to the fact that we use the first derivation of our polynomials losing hence
one order of accuracy (see also [8]).

As an exact solution for the iterated defect correction applied on the Navier-
Stokes equations simulated in two dimensions we took

ue =

⎛
⎜⎜⎝

sin(πx)sin(πy)+ 4
sin(πx)sin(πy)+ 4
sin(πx)sin(πy)+ 4
(sin(πx)sin(πy)+ 4)2

⎞
⎟⎟⎠ (40)

with u = (ρ ,ρu,ρv,ρe)T denoting the vector of the conservative state. By inserting
(40) into (35) we can again compute the source term s, which is only a function of
the space x. To test the method of iterated defect correction for rather viscous flows
we chose a viscosity μ = 10−1, which results in a very low Reynolds number of
Re = 80. As the temperatures are very low and do not take effect on the viscosity,
we performed these computations with the assumption of a constant μ . The simula-
tions were all carried out on a fully periodic domain Ω = [0;2]x[0;2] with periodic
boundaries on successively adapted regular triangular grids.

As we use the derivative of the polynomial distribution for the flux approxima-
tion we have to take a basis scheme with at least second order of accuracy for the
defect correction. In Tab. 4 we show the convergence rates of the test case above
computed with a second order basis method and corrected by a local defect using
a 4th order reconstruction. Motivated by several assumptions found in the literature
on the numerical error which is supposed to be dominated by the convection part we
could think of dividing the local defect into an convective and a diffusive part. As
both can be computed independent from another we performed the same simulation

Table 4 Convergence rates computed for the pressure for a second order basic method and a
defect correction with 4th order reconstruction

h L∞ L1 L2 OL∞ OL1 OL2

Basic method O2 → IDeC with O4 reconstruction
0.200 2.05E-01 1.95E-01 1.23E-01 - - -
0.100 1.40E-02 1.36E-02 8.63E-03 3.9 3.8 3.8
0.050 8.87E-04 8.84E-04 5.54E-04 4.0 3.9 4.0
0.025 5.81E-05 5.49E-05 3.46E-05 3.9 4.0 4.0
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Table 5 Convergence rates for the second order basic method (up) and the corrected solution
with 4th order reconstruction (down) and a local defect computed only from the convection
flux

h L∞ L1 L2 OL∞ OL1 OL2

Basic method O2
0.200 6.69E-01 6.27E-01 3.99E-01 - - -
0.100 1.78E-01 9.66E-02 1.51E-01 1.9 2.0 2.0
0.050 4.66E-02 3.85E-02 2.44E-02 1.9 2.0 2.0
0.250 1.42E-02 1.04E-02 6.50E-03 1.9 1.9 1.9

Basic method O2 → IDeC with O4 reconstruction
0.200 2.01E-01 1.94E-01 1.22E-01 - - -
0.100 2.15E-02 2.33E-02 1.41E-02 3.2 3.1 3.1
0.050 7.08E-03 8.00E-03 4.77E-03 1.6 1.5 1.6
0.250 2.91E-03 3.70E-03 2.18E-03 1.3 1.1 1.1

as before, with a local defect defined only in the convection flux setting the local
defect of the diffusion to zero.

From the convergence rates in Tab. 5 one can see that for low Reynolds numbers,
i.e. for flows dominated by the viscosity, it is indispensable to compute the local
defect also for the diffusive fluxes to reach the optimal order of convergence. How-
ever, the absolute error norms of the corrected solution are lower than the ones of
the basic method computed with second order accuracy. That means, by taking into
account only the local defect of the convective flux we can not reach the full optimal
convergence order but we obtain a slightly better solution than that computed with
the basic method.

4.2 Application Test Cases

4.2.1 The RAE 2822 Profile

As a first application test case for the method of iterated defect correction we sim-
ulated the flow around the RAE 2822 profile in two dimensions. It is one of the
official test cases of the project MUNA. We solve only the nonlinear Euler equa-
tions for this test case, so the grid we used is fully unstructured and contains about
18.000 elements with a relatively high discretized profile of 180 points per each half
of the profile. The farfield is situated at 40 cord lengths and the profile is simulated
as slip wall with the velocity normal to the wall set to zero. The flow was defined by
the flow conditions of the so-called test case 9 with Ma = 0.73 and an incident angle
α = 2.78

◦
. This yields a transonic flow with a shock on the upper side of the pro-

file (see Fig. 6, right). To compare the solution of the iterated defect correction we
performed the simulation on the same grid with the numerical code of the DLR
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Fig. 6 Fully unstructured grid for the RAE 2822 profile (left) and Mach number distribution
of the corrected solution and a direct solution with the TAU code using a second order TVD
upwind scheme (right)

("Deutsches Zentrum für Luft- und Raumfahrt"), the TAU code, used as standard
code for the project MUNA. The parameters for the TAU code were set to a second
order TVD scheme with a least squares reconstruction and the Roe approximation
for the convective flux.

In the case of iterated defect correction we used a first order basic method and
corrected the steady solution by a local defect reconstructed with the WENO method
described in section 3 using polynomials of degree two. The difference between the
basic method and the corrected solution can be seen for the aerodynamic coeffi-
cients. In Fig. 7 we show the lift and drag coefficients over the number of iterations.
Our iterative method is a rather suboptimal explicit method and so the number of
iterations needed for a steady solution is quite high but does not influence the defect
correction and is not of interest here. When the solution does not change any more
we compute the local defect and solve afterwards the modified equations (5) to ob-
tain a corrected solution which is denoted by the small arrows in Fig. 7. So each
small arrow stands for a defect correction iteration.

We can see that the lift coefficient could already be corrected to the end solution
after just one defect correction, whereas the drag coefficient needs some more defect
correction iterations to converge. In the case of the lift coefficient a correction of
about 11% was obtained and the drag coefficient could be corrected with even 28%
of the first order solution, what corresponds to a total reduction of around 80 drag
counts. The results of the TAU code serve here not only for validation but as a
comparison as well, not having an exact solution for this test case.

In addition to the aerodynamic coefficients we can clearly see that by the iterated
defect correction method with a 3rd order WENO reconstruction the shock is better
resolved than it is with the second order least squares in the TAU code (see Fig. 6,
right). Only if we once adapt the grid globally we are able to reach approximately
the same shock resolution with the second order scheme.
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4.2.2 Laminar Boundary Layer at High Reynolds Number

For the second application we solve the compressible Navier-Stokes equations at a
low Mach number for a classical test case, the flow over a flat plate. We are simu-
lating a laminar boundary layer but for a very high high Reynold number. Ludwig
Prandtl and Blasius, one of his students, made pioneering achievements with their
work on the boundary layer. This ended up in the solution of Prandtl’s boundary
layer approximation equations by Blasius, reducing them to a nonlinear ordinary
differential equation (ODE) of third order for the case of a laminar steady flow.
This ODE can be solved nowadays numerically by a math algebra program with
an arbitrary accuracy. We employed the software Matlab where we solved Blasius’
boundary layer equations (see e.g. [16]) with a four step Runge-Kutta scheme and a
Newton-Raphson iteration method. This serves us as the reference solution for the
iterated defect correction applied on the Navier-Stokes equations.

To point out the abilities of the WENO reconstruction in a reference space used
in our work and the approach of the iterated defect correction we still used a fully
unstructured triangular grid even in the boundary layer. For a finite volume scheme,
this is a quite demanding task where surely some extra fine tuning is necessary to
obtain satisfying results. One of them turned out to be the numerical flux approxim-
ation for which we took the HLLC flux as described in [20]. Our computational do-
main is Ω = [−0.5,2]x[0,0.05] discretized by a total of 5250 triangular elements. In
the interval −0.5 < x < 0 we use a slip wall boundary condition where the velocity
normal to the wall is zero. At x = 0 we impose than a non-slip wall adiabatic bound-
ary condition in the interval 0 < x < 2. The free stream Mach number is Ma∞ = 0.3,
resulting from the free stream flow parallel to the wall with u∞ = 0.3, ρ∞ = 1 and
p∞ = 1/γ . As we use the equation of state for ideal gas the ratio of the specific heats
is γ = 1.4, whereas the Prandtl number is Pr = 1.
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Fig. 7 Lift (left) and drag (right) coefficient computed with a first order basic method and
a 3rd order defect reconstruction, compared with a second order TAU code solution on the
same grid
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For the chosen high Reynolds number of Re = 106[1/m] we set our viscosity
to μ = 3 · 10−7 making again the assumption of a constant viscosity in the whole
domain. To resolve the flow at high Reynolds numbers, which implies a very thin
boundary layer of δx=1 = 5 ·10−3 in our case, a highly stretched grid in the boundary
layer is necessary. At x = 1 we therefore have cells with an aspect ratio of 1 : 205.
However the chosen spacing at the first cell of y1 = 4 ·10−4 is still quite high com-
pared to setups in the literature which are meant to be solved with a finite volume
method 2nd order TVD method (see e.g. [9]). In addition we use only 8-9 cells to
discretize the boundary layer at x = 1.

The initial condition is given by the free steam conditions and we take a homo-
geneous block profile with the free stream conditions at the inflow. It is important
that mass can escape at the farfield, since due to the boundary layer growth we get
a non-zero velocity outwards. At the outflow we can use simple extrapolation of the
inner state values and impose only the free stream pressure. For the computation we
used a second order basic scheme to obtain a steady solution which we reach after
t = 20 seconds of simulation time. After each steady solution we apply the defect
correction with a 4th order accurate WENO reconstruction again with the paramet-
ers ne = 2L, r = 6, ε = 10−14 and λc = 105. Left in Fig. 8 we see the distribution
of the dimensionless x-velocity u/u∞ in the whole domain for the basic method. In
addition we compare the Blasius solution with the velocity profiles of both u and
v components of the velocity at the position x = 0.7 (see Fig. 9) and with the skin
friction coefficient over the entire plate (see Fig. 8, right). For all comparisons the
corrected numerical solution, here shown after four defect correction iterations, is in
good agreement with the Blasius reference solution. At this point, we have to men-
tion, that using a scheme of higher order with WENO reconstruction is unstable and
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Fig. 8 Flat plate at high Reynolds number Re = 106[1/m] with α = 0
◦

and Ma = 0.3 com-
puted with a 2nd order basic method and corrected using a 4th order WENO reconstruction.
Left we show the distribution of the dimensionless x-velocity u/u∞ in the whole computa-
tional domain and right the skin friction coefficient is depicted over the plate length after four
defect correction iterations.
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Fig. 9 Flat plate at high Reynolds number Re = 106[1/m] with α = 0
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and Ma = 0.3 com-
puted with a 2nd order basic method and corrected using a 4th order WENO reconstruction.
Distribution of the dimensionless x-velocity u/u∞ (left) and of the dimensionless y-velocity
v/u∞

√
Rex (right).

no steady solution can be obtained. The method of iterated defect correction seems
to be stable, as it is based only on a second order scheme, and is nevertheless able
to correct the basic method with the high order accurate defect.

For the u component we can see in the zoom made in the section of the

dimensionless variable 2.5 < η < 7 with η = y/
√

νx
u∞

and the kinematic viscosity

ν = μ/ρ , that we get a smoother distribution by applying the defect
correction. In the case of the dimensionless v component of the velocity v/u∞

√
Rex

with Rex =
√ u∞x

ν the improvement of the solution is considerable. The completely
wrong distribution of the basic method could be corrected to fit quite well with the
reference Blasius solution. Near the wall we nevertheless reach the limits of the re-
construction, which has shown so far that the reconstruction in the reference space
can cope even with these highly stretched elements. The corrected skin friction coef-
ficient (Fig. 8, right) shows also better agreement with the reference solution espe-
cially at the beginning and the end of the plate. The remaining difference is due to
the stagnation point at x = 0 where high gradients occur, causing oscillations. As
can be read in literature the prediction of skin friction coefficients still remain a
difficult issue in the numerical simulation. Similar to [9] we compare therefore the
friction coefficients at the end of the plate at x = 2. The analytical solution can again
be computed by solving the Blasius equations and we get

c f =
0.664√

Rex
with Rex =

ρu∞x
μ

. (41)

With c f (x = 2) = 4.983 · 10−3 the error of the skin friction of the basic method is
of 6.1% and with the iterated defect correction approach it could be corrected to
c f (x = 2) = 4.653 ·10−3 resulting in a remaining error of 0.9% for this case.
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4.3 Conclusion

In this work we applied the method of iterated defect correction to a finite volume
scheme and solved both, the Euler and the Navier-Stokes equations. A steady
solution of lower accuracy, mostly of first or second order, is the starting point for
the method of iterated defect correction. The next step consists of a WENO recon-
struction which is used to evaluate the local defect of the steady solution. If we
modify our equations by putting the local defect on the right hand side as a negative
source term, the low order solution can be iteratively shifted to the accuracy of the
reconstruction. The main advantage of this approach is that the high order scheme
has not to be solved - the high order scheme is only used to calculate an estimation
of the local discretization error. Hence, this approach can be used to increase the
accuracy of an existing code in a straightforward way. It seems that the high order
approximation also inherits some additional stability from the low order solver. Our
results show that the iterated defect correctionin combination with the WENO re-
construction in [4] for unstructured meshes works very well. We did not succeed to
define robust boundary conditions in any case. This seems to be even more subtle
than the definition of high order boundary conditions in general.

We have shown numerical convergence results up to sixth order of accuracy, ap-
plying the method of iterated defect correction starting with a first order steady
solution. By modifying the original approach, a relevant speed up could addition-
ally be achieved for equations with source terms depending on the solution itself.
The scheme remained stable even for the more challenging test case of the transi-
ent Ringleb’s flow. A fourth order accurate solution could be achieved here from
a first order numerical scheme. Convergence studies using the manufactured solu-
tions method have shown that in the case of the Navier-Stokes equations, where a
local defect can be computed separately for the convective and the diffusive fluxes,
it is crucial for flows with low Reynolds numbers to evaluate the local defect for
all fluxes. Neglecting the defect in the convective fluxes still gave better absolute
error norms compared to the low order solution, but the expected high order of the
reconstruction was not reached for our test cases.

A RAE 2822 profile have been computed as an application test case, solving the
Euler equations with a first order basic scheme applying a third order accurate re-
construction to determine the local defect. Compared to the first order solution the
aerodynamic coefficients like lift and drag could be corrected by 11%, respectively
28%. As a second application test case a laminar boundary layer at a high Reynolds
number of Re = 106 was numerically solved using the iterated defect correction.
Better results compared with the second order starting solution could be achieved
applying the defect correction combined with a fourth order reconstruction. For ex-
ample a reduction of the skin friction error at the end of the plate from 6.1% with
the basic scheme to 0.9% was reached in this case.
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