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Abstract. Two methods for mesh modification are considered to improve hybrid
meshes for CFD calculations. The first method is an adaptation with new sensors.
The new sensors are based on an adjoint approach to calculate the sensitivity with
respect to a goal function. Here the sensitivity of lift, drag and pitching moment was
calculated with respect to the numerical dissipation terms. The second method is
a local mesh modification of the unstructured part of the hybrid mesh based on an
algebraic quality measure. For an a posteriori improvement the flow properties can
be included to build a new anisotropic metric. Both new methods were applied to
industrial relevant test cases.

1 Introduction

One problem of today computational fluid dynamics (CFD) is the discretization of
the computational domain. Due to the limits of computational resources the discret-
ization of the domain is not fine enough. Therefore the discretization can have a
significant effect to the results.

A common approach to reduce this uncertainty is the adaptive refinement of the
grid where errors occur. In the past several sensors (e.g. gradient based, reconstruc-
tion based) were developed to detect these underresolved regions. A sensor which
computes the sensitivity of a discretization with respect to a specified goal function
was introduced by [13]. The sensor was computed by solving an adjoint problem.
One bottleneck of the method was that the final sensor was computed on the iso-
tropic refined mesh instead of the original mesh. For complex configurations with
a high number of grid points the demands to the computational resources are very
high. In this investigation the sensors of [2] were used. This method computes the
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sensitivity with respect to numerical dissipation terms. By this ansatz the error es-
timation can be done without any mesh refinement step.

Another approach is the improvement of a given mesh by local modifications.
This improvement can be related to improve badly shaped elements and to orientate
elements in the direction of the flow.

The uncertainty due to influences of the mesh generation drives the limitation
that small influences can only be computed on the same or slightly modified mesh.
One example is the deformation of the geometry due to aerodynamic loads. To re-
duce the uncertainty the whole mesh will be deformed to avoid a new meshing.
Unfortunately this deformation can cause inverted elements which foreclose a new
CFD computation. These cells have to be repaired which can also be done by the
introduced local mesh modification.

In the next section the investigated methods are described. In section 3 the meth-
ods were applied to industrially relevant test cases. Finally a conclusion and an
outlook are given.

2 Methods

For this study two different methods were used. The first approach solves an ad-
joint problem to get an error estimate of a functional. This error estimate is used as
sensor for adaptation. The second method is based on the local modification of the
unstructured part of the mesh to increase the quality of the mesh. All computations
were performed with the TAU solver from the DLR (Deutsches Zentrum für Luft-
und Raumfahrt).

2.1 Adjoint Error Estimation Method

The adjoint error estimation method uses a solution of an adjoint problem as sensor
for an adaptation. The sensor is goal-oriented which means that for a specific goal
function (e.g. CL, CD or CMy) the sensitivity on the error of this goal-function is
locally computed. Based on this error estimate the mesh is refined to improve the
results with respect to the specified goal function.

The original sensor of [13] is based on an estimate for the goal function I on a
globally refined mesh
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by the adjoint ψ times the residuum R of the flow U , where the subscript h means
results on the isotropically refined mesh, the superscript H denotes an extrapolation
from the coarse to the fine mesh. So on the right hand side of (1) the adjoint ψ is
computed on the original mesh and extrapolated to the fine mesh. The flow quantity
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U is extrapolated to the fine mesh. After that the residuum is calculated on the fine
mesh from this extrapolated vector.

To avoid the extrapolotion and the calculation of the residuum on the fine mesh a
new sensor was developed by [2]. The idea of [2] is to assume that the major part of
the discretization error comes from the dissipation error. The error estimate is then
given by

I (Uh)− I (U)≈ ψT
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The corrected value of the goal function is
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The related sensor for the adaptation is the absolute value of the local product
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2.2 Mesh Manipulation

For optimizing a mesh, a quality measure for its elements has to be defined. Here
the used quality measure based on the so-called mean ratio
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where Ai is the area, Vi the volume and li j the edge lengths of the element i (see
figure 1a). Basically the measure is a ratio between the volume (3D) or area (2D)
and the edge lengths.

For three-dimensional cases this quality measure was extended to pyramids by
splitting the pyramid into four tetrahedra by introducing a mid point on the basis of
the pyramid (see figure 1b).

The implementation of the mean measure allows to use local anisotropic metrics.
The modified metric can be helpful if more information about the flow e. g. a pre-
liminary solution is available. In this case the orientation of the elements to the local
flow is considered. Due to this new metric the edge lengths, area and volume are
measured in the space of the new metric M . The size functions in the new metric
are then given by
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(a) (b)

Fig. 1 (a) Nomenclature of variables on a tetrahedral element i. (b) Splitting of a pyramid
into four tetrahedrons.

lMi j =
√
(xi − x j)T ·M · (xi − x j), (6)

AM
i =

√
det(M ) ·Ai (for 2D meshes), (7)

VM
i =

√
det(M ) ·Vi (for 3D meshes). (8)

For this study the metric was derived from the Hessian of the local Mach number
Malocal

H =
∂

∂xi∂x j
Malocal . (9)

To get a positive definite metric the Hessian was decomposed to its eigenvalues.

H = R ·
⎛
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⎞
⎠ ·RT . (10)

The new local metric is then defined by the absolute values of the eigenvalues
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⎛
⎝ |λ1| 0 0

0 |λ2| 0
0 0 |λ3|

⎞
⎠ ·RT (11)

To improve the quality of a three-dimensional mesh, four different methods are
implemented to modify the unstructured:

• edge swapping for up to 8 surrounding tetrahedrons [6, 10]
• face swapping [face to edge swap in 10]
• edge collapsing [9]
• combined smoothing [11, 1, 4] with an optimizer for not continuously differen-

tiable goal functions [5, 6, 3]
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(a) (b)

(c) (d)

Fig. 2 Examples for (a) edge swapping, (b) face swapping, (c) edge collapsing and (d) com-
bined smoothing

Each method modifies the mesh locally and acts on tetrahedrons. The combined
smoothing and the edge collapsing were extended to allow modifications on points
connected with pyramids. An example for each method is sketched in figure 2(a)–
(d). For two-dimensional grids only edge swapping and the movement of nodes are
implemented.

For pointwise optimization due to movement of a node, a goal function has to be
defined which combines the quality of surrounding elements Si of a node i. Here the
minimal quality

ḡ(Si) = min
j∈Si

q j (12)

was used as goal function for the optimizer.
A modification of the grid is tried if the geometrical constraints allow a modi-

fication. Additionally the following demands have to be always fulfilled to accept a
modification step:

• the minimal quality is larger than zero (to avoid inverted elements)
• the minimal quality is larger than the global minimal quality
• the goal function has to be improved (in the case of node movement)
• improve the mean quality (and therefore the global quality of the mesh)

3 Results

3.1 Adaptation by an Adjoint Error Estimate

The adjoint error estimate as sensor for adaptation is tested on two configurations.
The first configuration is a clean wing/body configuration of the DLR-F6 geometry
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[8, 12]. The second configuration is the high-lift wing/body configuration TC 217
with deployed flaps and slats. For both configurations the numerical results are com-
pared to wind tunnel measurements.

3.1.1 DLR-F6

This test case was defined for the Third AIAA CFD Drag Prediction Workshop [see
12]. The flow parameters for the DLR-F6 wing/body configuration are Ma ≈ 0.75,
Re ≈ 5 ·106 and Tre f = 322.22. The meshes were taken from the workshop1.

The first test on this configuration is a comparison of a mesh refinement study and
an adaptation series with the new sensors. For the refinement study a computation
on a coarse (NP = 2464385), a medium (NP = 5102446) and a fine (NP = 8535263)
mesh was performed. For all computations the lift is targeted to CL = 0.5 and
the Spalart–Allmaras turbulence model was used. Outgoing from the coarse mesh
the adaptation was repeated five times with the new sensor given in equation (4).
The number of points increases within each adaptation step by 30%. Additional
to the flow computation in each adaptation step the adjoint error estimation was
computed.

The values of the angle of attack α , the drag CD and the pitching moment CMy of

the refinement study are plotted in figure 3(a)–(c) as function of N−2/3
P . The crosses

show the results of the coarse, medium and fine mesh. The circles and squares con-
nected by solid lines are showing the results of the adaptation with the new sensors
for lift and drag, respectively. Signs connected by dotted lines denote values which
are corrected by the adjoint error estimate (3). The results from the refined meshes
show an ambiguous behaviour regarding the convergence for all plotted coefficients.
In contrast the results from the adaptation series converge approximately to distinct
values. The corrections by the adjoint error estimate decrease continuously so that
finally the corrected values converge to the uncorrected values. The values of the
finest meshes of the adaptation series are higher than the values from the finest
mesh, e. g. ΔCD ≈ 10DC.

A comparison with the results given in [12] shows that the results of the refined
and of the adapted meshes are lying in the range of other codes. Additionally [12]
make a statistical analysis of the values for drag. Their estimate for the mean of the
drag is CD = 0.0269, the standard deviation is σ = 0.0006. Here the values of the
adaptation are significantly out of this range.

The experimental results are taken from [7]. The measured values are shown in
figure 3(a)–(c) by a dashed line. For the angle of attack and the pitching moment
the adapted grids are lying closer to these experimental results than the results of
the refined meshes. For the drag the values on the refined meshes are closer to the
experiment.

In the second test a polar is computed. Again the flow conditions are Ma ≈ 0.75,
Re ≈ 5 · 106 and Tre f = 322.22◦K. Instead of a fixed target lift coefficient here the
angle of attack was varied in the range of α = [−5◦,2◦]. The polar is computed on

1 See http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw
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Fig. 3 Angle of attack α (a), drag CD (b) and the pitching moment CMy (c) as function of the
grid points NP for the DLR-F6 model. The lift is kept constant to CL = 0.5. × denotes the
result on the base meshes. ◦ and � connected by a dash-dotted line marks the results of the
adaptation with an adjoint sensor with a sensitivity to lift and drag, respectively. The results
connected with the dotted lines are corrected by the adjoint error estimate. The dashed line
denotes the experimental results taken from [7].

the coarse, medium and fine mesh. To avoid the computation of an adjoint solution
for each angle of attack, four adapted meshes from the previous adaptation series
for lift and drag are used. Here the mesh from the first (ad1) and the third adaptation
(ad3) step with NP ≈ 3.2 ·106 and NP ≈ 5.5 ·106 are chosen, respectively.

In figure 4(a) the lift is plotted as function of the angle of attack α . The results
on the coarse, medium and fine mesh are denoted by ◦, + and ∗. On the coarse and
medium mesh the results are similar. On the fine mesh the slope is lower than on
the coarser meshes. The computed lift on the adapted meshes ad1 for lift and drag
are nearly identical within the line thickness. In comparison to the fine mesh the
lift is shifted by δCL ≈ 1LC. The computed lift on the meshes ad3 show the same
behaviour. Only the shift to the fine mesh is δCL ≈ 2LC.

The lift as function of the drag is plotted in figure 4(b). On the refined mesh
series the drag reduces by the mesh refinement. The strongest variation of the lift
as function of the drag is observable in the region of minimal drag where the curve
of the fine mesh is shifted to the left by δCD ≈ 10DC in comparison to the drag
computed on the coarse mesh. For large angles of attack the reduced drag is nearly
completely compensated by the reduced values of the lift so that the curves of the
refinement series are close together. For the adapted meshes the shift at the minimal
drag is only δCD ≈ 3− 5DC with respect to the results on the coarse mesh. In
contrast to the refined meshes the deviation for large angles of attack are getting
higher by the number of points.

In figure 5 the pitching moment is plotted as function of the lift. The results
for the refined mesh series are ambiguous and no trend is observable. The pitching
moment on the adapted meshes ad1 and ad3 increases by each refinement.
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Fig. 4 (a) Lift CL as function of the angle of attack α and (b) polar of CL as function of CD for
the DLR-F6 model. ◦, + and ∗ denotes the results on the coarse, medium and fine mesh. �
and ♦ marks the results on the first adapted mesh at CL = 0.5 with respect to the lift and drag,
respectively. � and � denotes the results computed on the meshes of the third adaptation step
of figure 3. The solid line denotes the experimental results taken from [7].
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Fig. 5 Pitching moment CMy as function of the lift CL for the DLR-F6 model. The labels are
identical to the labels of figure 4.

The measurements of [7] are plotted in the figures 4 and 5 as a solid line. Like in
the convergence study by trend the lift (angle of attack) and pitching moment of the
adapted meshes fits more to the experimental results than the coefficients computed
on the refined meshes. The measured lift as function of the drag fits more to the
refined meshes.

3.1.2 TC 217

The adaptation sensor based on an adjoint error estimate is also applied to the second
test case of the TC 217 high-lift configuration. The model was a wing/body configur-
ation with deployed slat and flaps. The geometry was previously used in the EURO-
LIFT project. The flow parameters are Ma ≈ 0.18, Re ≈ 1.5 ·107 and Tre f ≈ 114◦K.
All computations are performed with the Spalart–Allmaras turbulence model.

For this configuration the polar was computed on a mesh with NP = 10733766
grid points. Outgoing from this mesh for several angles of attack an adaptation with
the new sensor (4) was performed. Like for the DLR-F6 model the adaptation was
repeated several times. The number of points increases within each adaptation step
by 30%. In contrast to the DLR-F6 test case convergence problems occur on this
configuration, e.g. the convergence was too slow and the computational effort too
high or the adjoint computation diverges. However, for most of the angles of attack
one adaptation iteration was successfully performed. In figure 6 the results of this
first test were plotted. The + shows the result of the computation on the base mesh.
The corresponding experimental values were plotted as solid line. The major differ-
ences are observable in the linear region and near the maximal value of lift CL,max.
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ad1 CL
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Fig. 6 Lift CL as function of the angle of attack α for the TC-217 model. + and ◦ denote the
results on the base mesh and the corrected values by the adjoint error estimation, respectively.
× and ∗ mark the results of the first adaptation step with a sensor based on lift and drag,
respectively. The � and ♦ are the corrected values. The solid line denotes the experimental
results.

For lower angles of attack the computational results have a step-like shape. On the
other side of the curve the angle of attack and the corresponding lift is too high. The
values of the lift corrected by the adjoint error estimate (� in figure 6) are higher
then the original ones.

Outgoing from these results the mesh was adapted for several angles of attack
α with the adjoint error estimate for lift (× in figure 6) and drag (∗ in figure 6),
respectively. For both sensors an improvement of the linear region is observable. The
step like behaviour vanishes. In the nonlinear region the results (if they are available)
are similar to the results on the base mesh. The corrected values for the adapted grids
are higher than the original values. Unfortunately most of the adjoint computations
fail. Due to this experiment and the high computational effort four adapted meshes
are selected from the linear and the nonlinear region. The four selected meshes are
the meshes adapted by the lift or drag sensor for α = α1 and α = α2 (see figure 6),
respectively. The results are plotted in figure 7. The results on the base mesh are
marked by +. The results of the lift adapted mesh at α1 and α2 are denoted by ◦ and
�, respectively. The results of the drag adapted meshes are denoted by � and ×.

In figure 7(a) the lift is plotted as function of the angle of attack. In the linear
region the values on the adapted meshes are close together. The deviation between
the meshes ad1 CL,α1 and ad1 CD,α1 is δCL ≈ 1LC. The offset between the meshes
ad1 CL,α2 and ad1 CD,α2 is of the same order. The offset between the adapted meshes
and the base mesh is about δCL ≈ 10LC for α � α1. The step like behaviour in
the lift curve at α ≈ α1 vanishes due to the adaptation. In the nonlinear region
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close to maximal lift the results of the adapted meshes diverge from each other. The
results on the meshes which are adapted at α2 show a higher maximal lift coefficient
(δCL ≈ 3LC with respect to the base mesh) and also the angle of attack of maximal
lift is shifted by δα ≈ 1◦ relative to the results on the base mesh. The maximal lift
value on the meshes adapted in the linear region at α1 have a lower value than the
lift on the base mesh. The offset in the position of the maximal lift is δα ≈ 0.5◦.

In figure 7(b) the lift is plotted as function of the drag. Again the results on the
adapted meshes are close together in the linear region. At maximum lift the results
on the meshes adapted at α1 diverge from the values of the meshes adapted at α2.

All computations differ from the experimental results. The slope of CL(α) is
lower for the computational results than in the experiment. The values of maximal
lift are higher than in the experiment. The same holds for CL (CD) in figure 7(b).
However, in the linear range an improvement by the new method is observable due
to the vanishing of the step like behaviour in the linear region. The improvements
for the maximal lift are ambiguous.

3.2 Mesh Manipulation

3.2.1 Repairing of Meshes

Negative elements occur many times by applying a deformation on the mesh, e. g.
for CFD/CSM coupling. The appearance of negative cells permits a CFD compu-
tation on those grids. To avoid a new meshing of the deformed geometry and to
measure effects below the uncertainties of mesh effects the negative cells have to be
repaired. Here the repairing of negative elements was successfully demonstrated on
two configurations. An isotropic metric was chosen to calculate the quality measure.

The first test case was a clean wing/body configuration with horizontal tail
planes. To trim the configuration the horizontal tail plane was deformed. Due to
deformation of the tail plane 83 elements with a negative volume occur (figure 8).
These inverted elements are tetrahedrons and pyramids. By applying the mesh modi-
fication all negative elements vanish.

The second test case was a commercial aircraft including wing, body, nacelle,
pylon, vertical tail plane and flap track fairings in a high-lift configuration (fig-
ure 9a). Due to the applied deformation, 26 tetrahedrons have a negative volume.
These elements are located in the slot between the flap inboards and the wing (fig-
ure 9b). Again, by applying the implemented mesh modification all negative tetra-
hedrons are inverted to valid elements with a positive volume.

In many cases the generation of negative elements can also be prevented by ap-
plying the mesh modification on elements with a low quality before the mesh is
deformed. For example in the previous case of trimming the horizontal tail plane,
negative elements were prevented if the mesh was improved before the deformation
step is performed.
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Fig. 7 (a) Lift CL as function of the angle of attack α for the TC-217 model. (b) Polar for
CL and CD of the TC-217 model. + marks the results computed on the base mesh. ◦ and �
denote the results of the meshes adapted with the adjoint lift sensor for α1 and α2. � and
× show the results for the adapted grids with respect to the drag. The solid line shows the
experimental results.
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(a) (b)

Fig. 8 (a) Negative pyramids and tetrahedrons near by a deformed tail plane. (b) Detail
of (a).

(a) (b)

Fig. 9 (a) Deformed wing in a high-lift configuration. Shown is the original wing and the de-
formed wing. Darker regions have a higher deformation. (b) Detail of (a) with shown negative
elements marked by crosses.

Another application of the mesh modification is the improvement of the quality
of the unstructured part of the mesh when the computation on the mesh diverges.
In figure 10(a) an example is shown where many tetrahedrons have a bad shape. By
applying the mesh modifications the number of badly shaped elements decreases
significantly (figure 10b). The number of tetraherons with a dihedral angle less than
one degree decreases from Nξ<1◦ = 6840 to Nξ<1◦ = 29. The number of tetraherons
with a dihedral angle less than five degree decreases from Nξ<1◦ = 34598 to Nξ<1◦ =
252. Note that after the improvement of the mesh a converged CFD solution could
be achieved.
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(a) (b)

Fig. 10 Mesh with many badly shaped tetrahedral elements before (a) and after (b) the mesh
modification. In both figures elements with a dihedral angle less than one degree are shown.

3.2.2 Mesh Modification with Anisotropic Quality Measures

The mesh modification was applied to the DLR-F6 test case described in sec-
tion 3.1.1 to see the influences on the aerodynamic coefficients. Again a target lift
computation for CL = 0.5 was performed. After the flow computation the coarse,
medium and fine mesh was modified by using a quality measure which uses an an-
isotropic metric. The metric was derived from the Hessian of the local Mach number.
The flow was recomputed on the anisotropic mesh. This procedure was performed
twice.

In figures 11(a)–(c) the angle of attack, the drag and the pitching moment are
plotted as function of the grid points NP. The results computed on the base meshes
are denoted by ×. The results of the first and second mesh modification step is
marked by ◦ and �. The major improvements are observable for the drag on
the coarse mesh, but the differences to the original mesh are relatively small in
comparison to the changes caused by an adaptation with the new sensors. The major
changes are observable in the resolution of the wake. In figure 12 the eddy viscosity
is shown on four different meshes. The eddy viscosity on the coarse and fine base
meshes (figure 12a,c) dissipates in the unstructured part very quickly, where on the
anisotropically modified meshes (figure 12b,d) the wake is more resolved behind
the wing, even on the coarse mesh. The improved wake resolution is observerable
on the whole configuration.

In a second test the mesh modification with an anisotropic quality measure was
applied to the TC-217 configuration (see section 3.1.2). For the test the mesh modi-
fication with the anisotropic quality measure was applied twice to the base mesh for
α = α1. Again the metric was derived from the Hessian of the local Mach number.
The results are presented in figure 13. The + and � denote the results on the original
and the modified mesh, respectively. Due to the mesh modification the lift decreases
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Fig. 11 Angle of attack α (a), drag CD (b) and pitching moment CMy (c) as function of the
grid points NP for the DLR-F6 model. The lift is kept constant to CL = 0.5. × denotes the
result on the base meshes. ◦ and � mark the results on the meshes modified once and twice by
the modification with an anisotropic quality measure, respectively. The dashed line denotes
the experimental results taken from [7].

by δCL ≈ 8LC. The drag increases by δCD ≈ 100DC. The result on the modified
mesh increases the differences to the experimental results.

4 Conclusion

The methods of adjoint error estimates and local mesh modification are applied to
several test cases. The main focus was set on the global aerodynamic coefficients.
Only for the mesh repairing the focus was set on the validity and the computablility
of meshes.

For the adaptation series of the DLR-F6 with the adjoint error estimates no final
conclusion can be given. The numerical values given by [12] are widely spread. The
corresponding experimental data show for some coefficients improvements and for
some not. At least one should note that a comparison of the experimental results for
Re = 3 ·106 measured in the NASA NTF and in the ONERA S2MA facility shows
as well differences especially in the drag [7]. If one projected these differences to
the measurements at Re = 5 ·106 the adapted meshes would show an improvement
for all coefficients.

However, the results of the adaptation series converge for both used sensors to
similar values which are different from the values of the finest mesh. The results
on the meshes which are locally modified to satisfy a quality measure based on an
anisotropic metric are close to the results computed on the original meshes.

For the high-lift configuration the adjoint approach improves the results in the
linear region of the polar. The values of maximal lift are ambiguous and depend on
the used meshes. The deviations of the results on the meshes which are optimized to



70 S. Albensoeder
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(c)

(d)

Fig. 12 Eddy viscosity of the wake at η = 0.514 for (a) the base coarse mesh, (b) the aniso-
tropic coarse mesh, (c) the base fine mesh and (d) the anisotropic fine mesh of the DLR-F6
configuration
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Fig. 13 (a) Lift CL as function of the angle of attack α for the TC-217 model. (b) Polar for
CL and CD of the TC-217 model. + marks the results computed on the base mesh. � denotes
the results on the modified meshes. The solid line shows the experimental results.
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an anisotropic quality measure increase. The reason for the strong deviations have
to be analyzed.

The results for the adjoint approach show additionally that the strategy to use
one grid for the whole polar works even if the adaptation was performed only for a
specific angle of attack. This strategy reduces significantly the computational effort
and makes the adjoint approach applicable.

The repairing of meshes was successfully demonstrated for several meshes. This
method is useful if a computation on a mesh due to numerical errors or negative
elements fails and a new mesh generation is not desirable.

5 Outlook

[13] couples the adjoint adaptation with the feature of anisotropy. He demonstrated
that with this mixed approach the convergence of the coefficients is much faster than
with an isotropic mesh adaptation. [13] states that the adjoint approach balances the
inaccuracies which can occur by the anisotropic meshes and uses the positive effects
of anisotropic meshes. This has to be tested with the present methods.

Additionally the introduced error estimation approach of [2] tries to reduce the
error with respect to numerical dissipation terms. The original work of [13] tries
to reduce the error with respect to the discretization itself. A comparison of both
approaches would also be interesting.

Acknowledgements. The author is grateful to R. Heinrich and E. Elsholz for providing the
shown test cases for the mesh repairing.
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