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Abstract. Uncertainty quantification (UQ) in aerodynamic simulations is hindered
by the high computational cost of CFD models. With gradient information obtained
efficiently by using an adjoint solver, gradient-employing surrogate methods are
promising in speeding up the UQ process. To investigate the efficiency of UQ meth-
ods we apply gradient-enhanced radial basis functions, gradient-enhanced point-
collocation polynomial chaos, gradient-enhanced Kriging and quasi-Monte Carlo
(QMC) quadrature to a test case where the geometry of an RAE2822 airfoil is per-
turbed by a Gaussian random field parameterized by 10 independent variables. The
four methods are compared in their efficiency in estimating some statistics and the
probability distribution of the uncertain lift and drag coefficients. The results show
that with the same computational effort the gradient-employing surrogate methods
achieve better accuracy than the QMC does.

1 Introduction

In aerodynamic simulations it is beneficial to consider uncertainties in the inputs,
the formulation and the numerical error of the CFD model. In this work our concern
is confined to the uncertainties in the model’s input and probabilistic approaches
for uncertainty quantification (UQ) for CFD models. The uncertainties in the input
propagates to the system response quantities (SRQ) through the model. Minor un-
certainties can have an amplified impact in some instances and lead to occurrences
of rare catastrophic events. Quantifying the uncertainties associated with the SRQ
enhances the reliability of the simulations and enables robust design optimization.
Most often this UQ process is done in a probabilistic framework in which the input
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uncertainties are represented by random variables, and the consequent uncertainties
in the SRQ are quantified by determining its probability distribution or statistical
moments.

However, uncertainties in the input, especially those spatially or temporally dis-
tributed, like geometric uncertainties, often generate a large number of variables.
The “curse of dimensionality” prohibits the use of tensor-product quadratures. In
[16] and [21] sparse grid quadratures were employed in aerodynamic UQ problems
due to uncertain airfoil geometry. Nevertheless, if the number of variables is lar-
ger than 10 even sparse grid methods suffer limitations in applicability [17]. The
high computational cost of CFD models also makes the traditional sampling meth-
ods such as Monte-Carlo and its variance-reduced variants (e.g. Latin Hypercube
method) not efficient due to their slower error convergence rate.

Surrogate methods are gaining more attention in UQ as they provide approxim-
ations of the CFD model which are much cheaper to evaluate while maintaining a
reasonable accuracy so that the UQ can be performed on the basis of a large number
of samples evaluated on the surrogate model. E.g. [12] shows a Kriging surrogate
method better than plain Monte Carlo and Latin Hypercube methods in estimating
the mean value of a bivariate Rosenbrock function. A comparative study of surrog-
ate methods that are not employing gradients [23] shows Kriging is more accurate
than radial basis functions and multivariate polynomial in approximating some 10-
variate test functions.

Gradient-employing also give an edge to surrogate methods if the gradients are
obtained at a relatively lower cost than that of the SRQ, which is the case when
an adjoint CFD solver [5] is used and the number of SRQ is less than the number
of variables. It should be noted that the gradient information cannot be effectively
utilized by the UQ methods based on direct sampling of the CFD model. A naive
augmentation of samples by finite difference brings no benefit because the augment-
ing samples are not statistically independent of the original ones.

Different sampling schemes are adopted by surrogate methods, majorly of two
groups: “on-grid” sampling and scattered sampling. The former is used in some
methods based on polynomial approximations, e.g. stochastic collocation methods
[2], and affected by the “curse of dimensionality” if the number of variables is large.
The latter is more robust since it admits an arbitrary number of samples and arbitrary
sample sites. This flexibility not only makes it tolerate sample failures (due to, e.g.
poor convergence, as often observed in CFD models), but also makes an incorpor-
ation of pre-existing or additional samples possible and enables run-time adaptive
sampling.

In this work we apply three gradient-employing surrogate methods, i.e. gradient-
enhanced radial basis functions (GERBF), gradient-enhanced point-collocation
polynomial chaos (GEPC) and gradient-enhanced Kriging (GEK) [13], and for the
purpose of comparison, also the quasi-Monte Carlo quadrature, to a UQ test case
where an RAE2822 airfoil is subject to random geometric perturbations, and we
compare their efficiency in estimating some statistics and probability distribution
of the resulting uncertain lift and drag coefficients. The number of CFD model
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evaluations is kept small (≤ 200) in this numerical comparison to make it relev-
ant to large-scale industrial applications.

2 Test Case

The test case we use in this work is a CFD model of the inviscid flow around a
2-dimensional RAE2822 airfoil at a Mach number of 0.73 and an angle of attack of
2.0 degrees. The source of uncertainty is the randomly perturbed airfoil geometry,
i.e., the lower and upper surfaces of the airfoil’s 2D section (as shown by the solid
line in the right part of Figure 1) are each assumed to be subject to a Gaussian
random perturbation in the direction normal to the surface. Let pppl and pppu denotes
the original lower and upper surface respectively, the perturbed surfaces are

ppp′l = pppl + nnn ·θl(x)

ppp′u = pppu + nnn ·θu(x)

with x ∈ [0,1]. nnn is the local normal vector of the surface, θ (x) is a zero-mean
Gaussian variable with standard deviations σ(x), i.e.

θl(x),θu(x)∼ N(0,σ(x))

in which

σ(x) = 0.01 ·Zmax · x(1− x) ·β (2,2)/1.5

with Zmax the maximum half-thickness of the airfoil, and β the Beta function. This
setting makes the σ(x) have its maximum (one percent of Zmax ) at x = 0.5 and being
zero at the two ends of the airfoil.

It is assumed that the random deformation is spatially correlated by a Gaussian
type correlation function, i.e.

cov[θl(x1),θl(x2)] = σ(x1)σ(x2)exp

(
− (x1 − x2)

2

�2

)

= C(x1,x2)

with �= 0.2. The same also applies to θu(x).
For the purpose of numerical computation, the correlated random fields θl(x)

and θu(x) need to be represented in terms of uncorrelated random variables. This is
furnished by Karhunen-Loève expansions (KLE) [1], e.g. for θl ,

θl(x) =
∞

∑
i=1

√
λi ξiΦi(x)

where ξi are independent standard Gaussian variables. λi andΦi(x) are the eigenval-
ues and the eigenfunctions of C(x1,x2), i.e., the solutions of the following integral
equation,
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∫ 1

0
C(x1,x2)Φi(x1)dx1 = λiΦi(x2) ∀ i = 1,2, . . .

For practical problems the KLE needs to be truncated so that only a relatively small
number of terms is kept, e.g. an approximation with κ terms:

θl(x)≈
κ

∑
i=1

√
λi ξiΦi(x)

By taking κ = 5, θl(x) is parameterized by 5 independent standard Gaussian vari-
ables. Applying the same approximation to θu(x),

θu(x)≈
2κ

∑
i=κ+1

√
λi ξiΦi(x)

we express the randomly perturbed airfoil surface as a function of 10 such variables.
This KLE representation is optimal in the sense that it retains the original geometric
variance to the maximum degree compared to any other linear-form representation
with the same number of variables [1]. Figure 1 shows three examples of random
perturbation in the upper and lower surface together with the corresponding per-
turbed RAE2822 airfoil geometry.

In this test case, the CFD model takes the input variables ξξξ = {ξ1, · · · ,ξ10} and
yields the lift and drag coefficients, C� and Cd , of the randomly perturbed airfoil.
Hereafter, the model is denoted as f (ξξξ ) in this paper. We compare the efficiency of
the candidate methods in estimating some target statistics, i.e. the means (μ�,μd),
the standard deviations (σ�,σd) of C� and Cd , and the exceedance probabilities P�, j =
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Fig. 1 Three examples of random perturbation in upper and lower surface (left) and three
examples of the randomly perturbed airfoil geometry, with the perturbations ten-times exag-
gerated (right)
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Pro{C� < μ�− j ·σ�} and Pd, j = Pro{Cd > μd + j ·σd} with j = 2,3. The accuracy
of the statistics is judged by comparing with reference statistics obtained by a QMC
integration with a large sample number (N = 2× 105).

3 Methods

Four methods are applied to the test case. They include three surrogate methods,
i.e. gradient-enhanced radial basis functions (GERBF), gradient-enhanced Kriging
(GEK) and gradient-enhanced point-collocation polynomial chaos (GEPC), and one
direct integration method, i.e. quasi-Monte Carlo (QMC) quadrature. An introduc-
tion of them is made in this section.

Since the gradients of the SRQ with respect to all the ten variables are computed
by an adjoint solver at an additional cost of approximately one evaluation of the
CFD model, to account for this additional cost we introduce the term elapsed time-
penalized sample number M by making M = 2N for the three gradient-employing
methods and M = N for QMC, with N the number of evaluations of the CFD model.
Compared to the cost of evaluating the CFD model the computational overhead of
constructing surrogates is negligible, so in the efficiency comparison we use M as
the measure of computational cost.

In the aspect of design of experiment, the study in [23] shows surrogate models
based on samples with relatively high degree of uniformity (using Latin Hyper-cube
sampling) are more accurate than those based on samples of lower degree of uni-
formity (using plain Monte-Carlo sampling). For all the four methods in this work
we adopt the QMC sampling scheme [7] because it achieves even higher degree of
sample uniformity than Latin Hyper-cube sampling.

We use the DLR-TAU code [10] to solve the CFD model. The geometry per-
turbation is implemented by using a mesh deformation tool based on radial basis
functions incorporated in the DLR-TAU code as described in [14].

3.1 Quasi-Monte Carlo Quadrature

Quasi-Monte Carlo (QMC) quadrature [7] samples at a low discrepancy set of points
generated by deterministic number-theoretic formulas. The “discrepancy” here is
a measurement of how much the distribution of this set of points deviates from
the underlying pdf. A low discrepancy set of points achieves a higher degree of
uniformity with respect to a given pdf than a pseudo-random set of points does.
So QMC is usually much more efficient than a Monte Carlo quadrature. The error
bound of QMC is of order O(N−1(logN)d) in which d is the number of variables. In
many cases this is quite a loose upper bound of the error, i.e. QMC often performs
better than that.
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A variety of low discrepancy point sets exist, e.g. Van der Corput, Halton, Sobol,
Hammersley and Niederreiter point set. The last one is used in this work as it is
considered the most efficient when d is large [19]. The point set is generated by
the program from [4]. The statistics of the SRQ are directly computed from the
samples.

3.2 Gradient-Enhanced Radial Basis Functions

The radial basis function (RBF) method [6] approximates an unknown function by a
weighted linear combination of radial basis functions each being radially symmetric
about a center. An RBF approximation takes the form

f̂ (ξξξ ) =
N

∑
i=1

wi φi(‖ξξξ − ξξξ 〈i〉‖)

where φi are radial basis functions, ‖ · ‖ denotes the Euclidean norm, and ξξξ 〈i〉 are
the N sample points each taken as the center of a radial basis function. Making
f̂ (ξξξ ) interpolate the N samples leads to N linear equations. The coefficients wi are
determined by solving this linear system.

Denoting the Euclidean distance from the center as r, popular types of φ(r)
include

√
r2 + a2 (multiquadric), 1/

√
r2 + a2 (inverse multiquadric), exp(−a2r2)

(Gaussian) and r2 ln(ar) (thin plate spline), in which a is a parameter to be fine-tuned
for a particular set of samples. Gradient-employing versions of RBF were proposed
in [11, 20] where first-order derivatives of the SRQ are exploited and second-order
derivatives of RBF are involved in the system.

In this work we propose a different gradient-employing RBF method that in-
volves only the first-order derivative of RBF, termed gradient-enhanced RBF
(GERBF). To accommodate the gradient informations of the SRQ, this method in-
troduces additional RBF that are centered at non-sampled points, i.e. an GERBF
approximation is

f̂ (ξξξ ) =
K

∑
i=1

wi φi(‖ξξξ − ξξξ 〈i〉‖), with N < K ≤ N(1+ d)

The ξξξ 〈i〉 with i ≤ N are sampled points, those with i > N are non-sampled points
which can be chosen randomly as long as none of them duplicates the sampled ones.
The coefficients www = {w0,w1, · · · ,wK}T are determined by solving the following
system,

ΦΦΦwww = fff
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in which

ΦΦΦ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(ξξξ 〈1〉) Φ2(ξξξ 〈1〉) · · · ΦK(ξξξ 〈1〉)
...

...
. . .

...
Φ1(ξξξ 〈N〉) Φ2(ξξξ 〈N〉) · · · ΦK(ξξξ 〈N〉)

Φ(1)
1 (ξξξ 〈1〉) Φ(1)

2 (ξξξ 〈1〉) · · · Φ(1)
K (ξξξ 〈1〉)

...
...

. . .
...

Φ(1)
1 (ξξξ 〈N〉) Φ(1)

2 (ξξξ 〈N〉) · · · Φ(1)
K (ξξξ 〈N〉)

...
...

. . .
...

Φ(d)
1 (ξξξ 〈1〉) Φ(d)

2 (ξξξ 〈1〉) · · · Φ(d)
K (ξξξ 〈1〉)

...
...

. . .
...

Φ(d)
1 (ξξξ 〈N〉) Φ(d)

2 (ξξξ 〈N〉) · · · Φ(d)
K (ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ξξξ 〈1〉)
...

f (ξξξ 〈N〉)

f (1)(ξξξ 〈1〉)
...

f (1)(ξξξ 〈N〉)
...

f (d)(ξξξ 〈1〉)
...

f (d)(ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Φ( j)
i = ∂Φi/∂ξ j, f ( j) = ∂ f/∂ξ j . We chose K = N

2 (1+d) in this work, which
results in an over-determined system that is solved by a Least Squares method.

A numerical comparison of the accuracy of the aforementioned four types of
RBF in approximating this CFD model f (ξξξ ) was made by the author. The result
favors the inverse multiquadric RBF which is therefore used in this work for the
comparison with other UQ methods. The internal parameter a is fine-tuned by a
leave-one-out error minimizing procedure as in [3].

For this UQ job we first establish a GERBF surrogate model of f (ξξξ ) based on
QMC samples of the CFD model, and integrate for the target statistics and pdf by a
large number (105) of QMC samples on the surrogate model.

3.3 Gradient-Enhanced Kriging Method

Kriging [9] approximates f (ξξξ ) by a weighted linear combination of samples, i.e.

f̂ (ξξξ ) = γ(ξξξ )+
N

∑
i=1

wi(ξξξ 〈i〉) f (ξξξ 〈i〉)

where f (ξξξ 〈i〉) are N samples of the SRQ. γ and wi are determined by minimizing
the variance of the error e = f − f̂ with the assumptions that the expectation of e
is zero and that f (ξξξ ) honors a spatial correlation model. We use direct gradient-
enhanced Kriging (GEK) [8] that incorporates gradient information as secondary
samples by an extended spatial correlation model that accommodates gradients. We
implement GEK using the Surrogate-Modeling for Aero-Data Toolbox (SMART)
[13] developed at DLR, opting for ordinary Kriging and a correlation model of
spline type which is considered the most efficient in similar situations in [17]. The
internal parameters of the correlation model are fine-tuned to fit the sampled data
by a maximum likelihood estimation [24].
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For this UQ job we first establish a GEK surrogate model of f (ξξξ ) based on QMC
samples of the CFD model, and integrate for the target statistics and pdf by a large
number (105) of QMC samples on the surrogate model.

3.4 Gradient-Enhanced Point-Collocation Polynomial Chaos
Method

According to Wiener [22], f (ξξξ ) can be approximated by a truncated polynomial
chaos expansion (PCE)

f̂ (ξξξ ) =
K

∑
i=0

ciΨi(ξξξ ) (1)

whereΨi is Hermite polynomial chaos (PC) to which a detailed description can be
found in, e.g. [18]. The total number of terms is K = (p+ d)!/(p!d!) with p the
order of PC.

To determine the coefficients ci we use a point-collocation method similar to
the one used in [15], the difference being that we utilize gradient information. In
this gradient-enhanced point-collocation polynomial chaos (GEPC) method the ccc =
{c0,c1, · · · ,cK}T is determined by solving the following system,

ΨΨΨccc = fff

with ΨΨΨ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ0(ξξξ 〈1〉) Ψ1(ξξξ 〈1〉) · · · ΨK(ξξξ 〈1〉)
...

...
. . .

...
Ψ0(ξξξ 〈N〉) Ψ1(ξξξ 〈N〉) · · · ΨK(ξξξ 〈N〉)

Ψ (1)
0 (ξξξ 〈1〉) Ψ (1)

1 (ξξξ 〈1〉) · · · Ψ (1)
K (ξξξ 〈1〉)

...
...

. . .
...

Ψ (1)
0 (ξξξ 〈N〉) Ψ (1)

1 (ξξξ 〈N〉) · · · Ψ (1)
K (ξξξ 〈N〉)

...
...

. . .
...

Ψ (d)
0 (ξξξ 〈1〉) Ψ (d)

1 (ξξξ 〈1〉) · · · Ψ (d)
K (ξξξ 〈1〉)

...
...

. . .
...

Ψ (d)
0 (ξξξ 〈N〉) Ψ (d)

1 (ξξξ 〈N〉) · · · Ψ (d)
K (ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ξξξ 〈1〉)
...

f (ξξξ 〈N〉)

f (1)(ξξξ 〈1〉)
...

f (1)(ξξξ 〈N〉)
...

f (d)(ξξξ 〈1〉)
...

f (d)(ξξξ 〈N〉)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whereΨ (k)
i = ∂Ψi/∂ξk, f (k) = ∂ f/∂ξk, and ξξξ 〈i〉 = {ξ1,ξ2, · · · ,ξd}i with i= 1, · · · ,N

denote the sample points. The K is chosen to be half of the number of available “con-
ditions”, N(1+d), for the best performance according to [15]. This over-determined
system is solved by a Least Squares method.

For this UQ job we first establish a GEPC surrogate model of f (ξξξ ) based on
QMC samples of the CFD model, and compute the mean and the variance of f (ξξξ )
directly from the coefficients,
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μ = c0 , σ2 =
K

∑
i=1

(ci)
2 ·E[Ψ2

i (ξξξ )] (2)

The exceedance probabilities and pdf are integrated by a large number (105) of
QMC samples on the surrogate model.

4 Results and Discussion

The results of the efficiency comparison are shown in Figure 2 to 5. Figure 2 and 3
show the errors of the four methods in estimating the target statistics of C� and Cd . It
is observed there that the three gradient-employing surrogate methods, GEK, GEPC
and GERBF are more efficient than the QMC method since the former three reduce
their errors faster with an increasing cost measure M. Figure 4 and 5 depict the
estimated pdf of C� and Cd obtained by the four methods, comparing with the refer-
ence pdf. There we see that for the same computational cost, the surrogate methods
yield much more accurate pdf’s. This is consistent with their relative performance
in estimating the statistics.
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Fig. 3 Error in estimating mean, standard deviation (upper row) and exceedance probabilities
(lower row) of Cd

One of the reasons for the relatively better performance of the surrogate methods
is that they utilize more information with the same computational cost M, i.e. they
use (1+ d)M

2 conditions (SRQ samples and gradients) while a direct integration
method like QMC uses M conditions (SRQ samples only). This advantage is due
to the cheaper cost of obtaining gradients by an adjoint solver in the case that the
number of SRQ’s is smaller than the number of variables d, and is expected to
increase with an increasing number of variables, d.

Although it seems that GEK and GERBF perform better than the other surrogate
methods in estimating statistics of C� and Cd respectively, it may not be appropriate
to base a general conclusion on that. In Figure 4 and 5 we see the three surrogate
methods have similar accuracy in their estimated pdf of C� and Cd .

The efficiency of GEK or GERBF is sensitive to the choice of the covariance
model or the radial basis function and also to the value of the internal paramet-
ers, and excelling configurations of them are problem- and data-dependent. In this
work, different techniques are used for the optimization of the internal parameters,
i.e., maximum likelihood optimization for GEK and leave-one-out error minimiz-
ation for GERBF. This may also influence their relative efficiency, possibly differ-
ently in the C� and Cd cases. Due to the complex nature of comparative efficiency of
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Fig. 4 Estimated pdf (in dash line) of C� by QMC (1st row), GEK (2nd row), GEPC (3rd
row) and GERBF(4th row) at M = 20 (left) and M = 50 (right), dotted line shows the 10-
times scaled up error of the estimated pdf

surrogate methods with different configurations and internal optimization tech-
niques and different target SRQ, here we do not try to draw a conclusion on this
issue.
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Fig. 5 Estimated pdf (in dash line) of Cd by QMC (1st row), GEK (2nd row), GEPC (3rd
row) and GERBF(4th row) at M = 20 (left) and M = 50 (right), dotted line shows the 10-
times scaled up error of the estimated pdf

In the estimation of the statistics of C� we see GEPC is not always reducing its
error with an increasing M. This might be ascribed to the fact that the number of
polynomial chaos (PC) terms is not truncated according to the order of PC, but to
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an arbitrary number which is half of the number of available conditions. A set of PC
terms that is “incomplete” for a particular order might not lead to more accurate ap-
proximations than a set with less number of terms but “complete” for a lower order.
Nevertheless, GEPC has a favored property that we have no burden of choosing the
best-fitting configuration for it.

5 Summary

Gradient-employing surrogate methods have an advantage in handling aerodynamic
uncertainty quantification (UQ) problems in the cases that an adjoint solver is used
and the number of system response quantities (SRQ) is smaller than the number
of variables so that the gradients of SRQ can be obtained at a reduced cost. These
methods construct surrogates of the CFD model so that the statistics of an uncertain
SRQ can be integrated on the surrogates models.

For investigating the efficiency of the different UQ methods we set up a test
case where the geometry of an RAE2822 airfoil is perturbed by a Gaussian random
field which is parameterized by 10 independent variables. Three surrogate meth-
ods, gradient-enhanced radial basis functions, gradient-enhanced point-collocation
polynomial chaos and gradient-enhanced Kriging, together with a direct integration
method, quasi-Monte Carlo (QMC) quadrature, are applied to the test case and com-
pared in their efficiency in estimating some statistics and probability distribution of
the uncertain lift and drag coefficients. The results show that with the same com-
putational effort the gradient-employing surrogate methods achieve better accuracy
than the QMC does.
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