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Abstract. In this work we research the propagation of uncertainties in parameters
and airfoil geometry to the solution. Typical examples of uncertain parameters are
the angle of attack and the Mach number. The discretisation techniques which we
used here are the Karhunen-Loève and the polynomial chaos expansions. To integ-
rate high-dimensional integrals in probabilistic space we used Monte Carlo simula-
tions and collocation methods on sparse grids. To reduce storage requirement and
computing time, we demonstrate an algorithm for data compression, based on a low-
rank approximation of realisations of random fields. This low-rank approximation
allows us an efficient postprocessing (e.g. computation of the mean value, variance,
etc) with a linear complexity and with drastically reduced memory requirements.
Finally, we demonstrate how to compute the Bayesian update for updating a priori
probability density function of uncertain parameters. The Bayesian update is also
used for incorporation of measurements into the model.

1 Introduction

Nowadays, the trend of numerical mathematics is often trying to resolve inexact
mathematical models by very exact deterministic numerical methods. The reason
of this inexactness is that almost each mathematical model of a real world situation
contains uncertainties in the coefficients, right-hand side, boundary conditions, ini-
tial data as well as in the computational geometry. All these uncertainties can affect
the solution dramatically, which is, in its turn, also uncertain. The information of the
interest is usually not the whole set of realisations of the solutions (too much data),
but some other stochastic information: cumulative distribution function, probability
density function, mean value, variance, quantiles, exceedance probability etc.
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During the last few years, one can see an increasing interest in numerical methods
for solving stochastic computational fluid dynamic (CFD) problems [3, 8, 17, 19,
24, 26]. In this work we consider an example from aerodynamics, described by
a system of Navier-Stokes equations with a k-w turbulence model. Uncertainties
in parameters such as the angle of attack α and Mach number are modelled by
random variables, uncertainties in the shape of the airfoil are modelled by a random
field [14, 12]. Uncertain output fields such as pressure, density, velocity, turbulence
kinetic energy are modelled by random fields as well. The lift, drag and moments
will be random variables.

We assume that there is a solver which is able to solve the deterministic (without
uncertainties) Navier-Stokes problem. In this work we used the TAU code (de-
veloped in DLR) with k-w turbulence model [4]. We also assume that spatial discret-
isation of the airfoil is given. Our job is the appropriate modelling of uncertainties
and developing stochastic/statistical numerical techniques for further quantification
of uncertainties. At the same time, due to the high complexity of the deterministic
solver, we are allowed to use only non-intrusive stochastic methods such as Monte
Carlo or collocation methods. So, we are interested in methods which do not require
changes in the deterministic code.

The rest of the paper is structured as follows. In Section 3 we describe the prob-
lem and discretisation techniques, such as the Karhunen-Loève expansion (KLE)
[16] and polynomial chaos expansion (PCE) of Wiener [25]. In Section 2.1 we ex-
plain how we model uncertainties in the parameters angle of attack and Mach num-
ber. Uncertainty in the airfoil geometry is described in Section 2.2. The low-rank
response surface is presented in Section 4. To avoid large memory requirements
and to reduce computing time, low-rank techniques for representation of input and
output data (solution) were developed in Section 5. Section 7 is devoted to the nu-
merical results, where we demonstrate the influence of uncertainties in the angle of
attack α , in the Mach number Ma and in the airfoil geometry on the solution - drag,
lift, pressure and absolute friction coefficients. The strongly reduced memory re-
quirement for storage stochastic realisations of the solution is demonstrated as well.
In Section 6 we demonstrate how to use the Bayesian update (BU) for improving the
statistical description of the random airfoil geometry. Section 7 is devoted to other
numerical experiments.

2 Statistical Modelling of Uncertainties

The problem to consider in this work is the stationary system of Navier-Stokes equa-
tions with uncertain coefficients and parameters:

v(x,ω) ·∇v(x,ω)− 1
Re∇

2v(x,ω)+∇p(x,ω) = g(x) x ∈ G , ω ∈Ω
∇ · v(x,ω) = 0

(1)
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Fig. 1 Two random vectors v1 and v2 model free-stream turbulence, u and u
′

old and new
free stream velocities, α and α ′

old and new angles of attack

with some initial and boundary conditions. Here v is velocity, p pressure and g the
right-hand side, the computational domain G is RAE-2822 airfoil with some area
around. Examples of uncertain parameters are the angle of attack α and the Mach
number Ma. Uncertainty in the airfoil geometry is modelled via random field (see
Section 7).

2.1 Modelling of Uncertainties in Parameters

We assume that the free-stream turbulence in the atmosphere randomly and simul-
taneously changes the velocity vector or, what is equivalent the Mach number Eq. 4
and the angle of attack Eq. 3. One should not mix this kind of turbulence with the
turbulence in the boundary layer reasoned by friction. It is assumed that turbulence
vortices in the atmosphere are comparable with the size of the airplane. The free-
stream turbulence in the atmosphere is modelled by two additionally axes-parallel
velocity vectors v1 := v1(θ1) and v2 := v2(θ2) (Fig. 1), which have Gaussian distri-
bution [13]. We model the free-stream turbulence via two random vectors (in 3D it
will be three vectors) v1 and v2 which change α and Ma (see Fig. 1):

v1 =
σθ1√

2
and v2 =

σθ2√
2
,

where θ1 and θ2 are two Gaussian random variables with zero mean and unit vari-
ance, σ := Iu∞, I the mean turbulence intensity and u∞ the undisturbed free stream
velocity beyond the boundary layer. This mean turbulence intensity is often used
for characterising turbulence in a wind tunnel. For instance, I = 0.001 means low
turbulence, I= 0.002 middle and I= 0.005 high turbulence.
Denoting

θ :=
√
θ 2

1 +θ 2
2 , v :=

√
v2

1 + v2
2, β := arctg

v2

v1
and z :=

Iθ√
2
, (2)

and performing easy geometrical computations, obtain the new angle of attack and
the new Mach number:
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Fig. 2 (left) The difference Δρ := |ρ−ρ| between the deterministic density ρ := ρ(α,Ma)
and the mean density ρ . (right) The same is for the pressure Δ p := |p− p|. Here ρ ∈ (0.5,1.2)
and p ∈ (0.7,1.3).

α
′
(θ1,θ2) = arctg

sinα+ zsinβ
cosα− zcosβ

, (3)

Ma
′
(θ1,θ2) = Ma

√
1+

I2θ 2

2
−
√

2Iθ cos(β +α). (4)

Further we study how uncertainties in α and Ma spread into the solution. We note
that uncertainties in α and in Ma can be modelled in a different way (see e.g.

[23], [27]). >From the construction one can see that Ma
′

:= E(Ma
′
(θ1,θ2)) and

α ′ := E(α ′
(θ1,θ2)) are equal to the deterministic values Ma and α , here E(·) is

the mathematical expectation. In Fig. 2 (left) we compare the deterministic dens-
ity ρ(α,Ma) with the ρ := E(ρ(α ′

(θ1,θ2),Ma
′
(θ1,θ2))) for the Case 9 (α = 2.79,

Ma := 0.734). In Fig. 2 (right) we do the same comparison for the deterministic
pressure. One can see a large difference in the shock position. This large difference
motivates us to model uncertainty in α and in Ma.

2.2 Modelling of Uncertainties in the Airfoil Geometry

We model uncertainties in the geometry of RAE-2822 airfoil via random boundary
perturbations:

∂Gε (ω) = {x+ εκ(x,ω)n(x) : x ∈ ∂G }, (5)

where n(x) is the normal vector in a point x, κ(x,ω) a random field, G the computa-
tional geometry and ε � 1. We assume that the covariance function is of Gaussian
type

covκ(κ1,κ2) = σ2 · exp(−d2), d =
√
|x1 − x2|2/l2

1 + |z1 − z2|2/l2
2 ,
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Table 1 Statistics obtained for uncertainties in the airfoil geometry. We used the Gaussian
covariance function, PCE of order P = 1 with M = 3 random variables and the sparse Gauss-
Hermite grid with nq = 25 points.

mean st. dev. σ σ /mean
CL 0.8552 0.0049 0.0058
CD 0.0183 0.00012 0.0065

where κ1 = κ((x1,0,z1),ω), κ2 = ((x2,0,z2),ω) are two random variables in points
(x1,0,z1) and (x2,0,z2). For numerical simulations we take the covariance lengths
l1 = |maxi(xi)−mini(xi)|/10 and l2 = |maxi(zi)−mini(zi)|/10, standard deviation
σ = 10−3, m = 3 the number of KLE terms (see Eq. 6), the stochastic dimension
M = 3 and the number of sparse Gauss-Hermite points (in 3D) for computing PCE
coefficients in (Eq. 8) nq = 25. In [13] one can see 21 random realisations of RAE-
2822 airfoil.

Table 1 demonstrates the surprisingly small uncertainties (the last column) in the
lift and in the drag — 0.58% and 0.65% correspondingly. A possible explanation
can be small uncertain perturbations in the airfoil geometry.

3 Discretisation Techniques

In the following, (Ω ,B,P) denotes a probability space, where Ω is the set of ele-
mentary events, B is the σ -algebra of events and P is the probability measure. The
symbol ω always specifies an elementary event ω ∈Ω .

The random field κ(x,ω) needs to be discretised both in the stochastic and in the
spatial dimensions. One of the main tools here is the Karhunen-Loève expansion
(KLE) [16]. By definition, KLE of a random field κ(x,ω) is the following series
[16]

κ(x,ω) = κ(x)+
∞

∑
�=1

√
λ�φ�(x)ξ�(ω), (6)

where ξ�(ω) are uncorrelated random variables and κ(x) is the mean value of
κ(x,ω), λ� and φ� are the eigenvalues and the eigenvectors of problem

Tφ� = λ�φ�, φ� ∈ L2(G ), � ∈ N, (7)

and operator T is defined like follows

T : L2(G )→ L2(G ), (Tφ)(x) :=
∫

G
covκ(x,y)φ(y)dy,

where covκ is a given covariance function. Throwing away all unimportant terms
in KLE, one obtains the truncated KLE, which is a sparse representation of the
random field κ(x,ω). Each random variable ξ� can be approximated in a set of
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new independent Gaussian random variables (polynomial chaos expansions (PCE)
of Wiener [7, 25]), e.g.

ξ�(ω) = ∑
β∈J

ξ (β )
� Hβ (θ (ω)),

where θ (ω) = (θ1(ω),θ2(ω), ...), ξ (β )
� are coefficients, Hβ are multivariate Hermite

polynomials, β ∈ J is a multiindex, J := {β |β = (β1, ...,β j, ...), β j ∈ N0} is a
multi-index set [18].

For the purpose of actual computation, truncate the polynomial chaos expansion
after finitely many terms, e.g.

β ∈ JM,P := {β ∈ J | γ(β )≤ M, |β | ≤ P}, γ(β ) := max{ j ∈ N |β j > 0}.

Since Hermite polynomials are orthogonal, the coefficients ξ (β )
� can be computed

by projection

ξ (β )
� =

1
β !

∫
Θ

Hβ (θ )ξ�(θ )P(dθ ).

This multidimensional integral over Θ can be computed approximately, for ex-
ample, on a sparse Gauss-Hermite grid with nq grid points

ξ (β )
� ≈ 1

β !

nq

∑
i=1

Hβ (θ i)ξ�(θ i)wi, (8)

where weights wi and points θ i are defined from sparse Gauss-Hermite integration
rule. After a finite element discretisation (see [10] for more details) the discrete
eigenvalue problem (7) looks like

MCMφ � = λ h
� Mφ �, Ci j = covκ(xi,y j). (9)

Here the mass matrix M is stored in a usual data sparse format and the dense mat-
rix C ∈ R

n×n (requires O(n2) units of memory) is approximated in the sparse H -
matrix format [10] (requires only O(n logn) units of memory) or in the Kronecker
low-rank tensor format [9]. To compute m eigenvalues (m � n) and corresponding
eigenvectors we apply the Lanczos eigenvalue solver [11, 22].

4 Low-Rank Response Surface

To compute statistics of the random (uncertain) solution (error-bars, quantiles, cu-
mulative density function, etc) accurate enough, one needs a large sample size.
Monte Carlo simulations are expensive. To decrease the computational costs we
compute a, so-called, response surface — (multivariate) polynomial (see Eq. 10).
The idea [13] is to construct a good response surface from few samples and then
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to use the residual for its improvement. A motivation for this idea comes from the
fact that in many software packages for solving engineering and physical problems
it is impossible or very difficult to change the code, but it is possible to access the
residual. Later on the computed response surface is used for very fast generation of
a large sample.

Let v(x,θ) be the solution ( or a functional of the solution). It can be pressure,
density, velocity, lift, drag etc. v(x,θ ) can be approximated in a set of new independ-
ent Gaussian random variables (truncated polynomial chaos expansions of Wiener
[25])

v(x,θ (ω))≈ ∑
β∈JM,P

vβ (x)Hβ (θ ) = [...vβ (x)...][...Hβ (θ )...]T , (10)

where coefficients vβ (x) are computed as follows

vβ (x) =
1
β !

∫
Θ

Hβ (θ )v(x,θ )P(dθ )≈
1
β !

nq

∑
i=1

Hβ (θ i)v(x,θ i)wi, (11)

The PCE representation in Eq. 10 was used to compute the mean and the variance of
the pressure (see Fig. 3) for the Case 1 (α = 1.93 and Ma = 0.676, no shock). PCE
coefficients are computed by the sparse Gauss Hermite grid with nq = 281 nodes.
Here the multidimensional integral overΘ is computed approximately, for example,
on a sparse Gauss-Hermite grid [6, 2].

Fig. 4 demonstrates the mean of density and mean of pressure, computed again
as in Eq. 10 for the Case 9 (α = 2.79 and Ma = 0.734, with shock).

Fig. 5 demonstrates the variance of density and variance of pressure, computed
via Monte Carlo methods for the Case 9. One can see the largest uncertainty in the
shock position.

Fig. 3 (left) The mean pressure in Case 1; (right) The variance of the pressure in Case 1.
Both are computed by the sparse Gauss Hermite grid with nq = 281 nodes.
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Fig. 4 (left) The mean density; (right) the mean pressure computed by PCE in the Case 9
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Fig. 5 (left) The variance of the density; (right) The variance of the pressure computed by
MC in the Case 9.

Using the rank-k approximation of [v(x,θ 1), ...,v(x,θ nq)], obtain

vβ (x) =
1
β !

[v(x,θ1), ...,v(x,θ nq)] · [Hβ (θ 1)w1, ...,Hβ (θ nq)wnq ]
T ≈ ABT cβ , (12)

where A ∈ R
n×k, B ∈ R

nq×k, k � min{n,nq} and
vector cβ := 1

β ! [Hβ (θ 1)w1, ...,Hβ (θ nq)wnq ]
T . The matrix of all PCE coefficients

will be
[...vβ (x)...] = ABT [...cβ ...], β ∈ JM,P. (13)

Taking Eq. 10 and Eq. 13, obtain the final formula for the low-rank response
surface

v(x,θ (ω))≈ ABT [...cβ ...][...Hβ (θ )...]T . (14)
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4.1 Update of the Low-Rank Response Surface via Computing the
Residual

In real-world applications, the deterministic solver is very complicated and it is dif-
ficult or even impossible to change it, but one can often print out the norm of the
residual. Assume that we already approximated the unknown solution by a response
surface. Our response surface is approximation via multivariate Hermite polynomi-
als like in Eq. 14, where coefficients are computed like in Eq. 13 with quadrature
points θ i, i = 1..nq. The following algorithm updates the given response surface.

Algorithm: (Update of the response surface)

1. Take the next point θ nq+1 and evaluate the response surface Eq. 14 in this point.
Let u(x,θ nq+1) be the obtained predicted solution.

2. Compute the norm of the residual ‖r‖ of the deterministic problem (e.g. evaluate
one iteration). If ‖r‖ is small then there is no need to solve the expensive de-
terministic problem in θ nq+1, otherwise (if ‖r‖ is large) solve the deterministic
problem and recompute A, BT and cβ in Eq. 12.

3. Go to item (1).

In the best case we never solve the deterministic problem again. In the worst case
we must solve the deterministic problem for each θ nq+i, i = 1,2, ... To test this al-
gorithm we computed the solution in Case 1 with 10000 TAU iterations (is usual
number of iterations). Then, first, we computed the solution with the response sur-
face (as described above) and, second, corrected it with 1000 TAU iterations. Then
we compared both solutions and observed only a very small difference. Thus, the
response surface reduced the number of needed iterations from 10000 to 1000. We
note that the solution in Case 1 is smooth and there is no shock.

We tested this Algorithm also in the Case 9 (solution with a shock) and it failed.
We pre-computed the solution by two different response surfaces (of order P = 2
and P = 4). Both response surfaces failed to produce a good result. For instance,
we observed not only one shock, but many smaller shocks. Then we observed an
increasing range of e.g. pressure (range (−6;5) in contrast to (0.5,1.3)). It is similar
when one tries to approximate a step function by a polynomial — the amplitude of
oscillations grows up. Another negative effect which we observed during further
iterating the solution, obtained from the response surface, was that the deterministic
solver (TAU) produces “nan” after few iterations. A possible reason is that some
important solution values, obtained from the response surface, are out of the physical
range (e.g. negative density) and are non-realistic.

Thus, we can come to the conclusion that if the solution is smooth (e.g. as in Case
1) then response surface produces a good starting value. Otherwise, if the solution
has a shock, the response surface produces a very poor approximation and further
iterations do not help.

The computed solution u(x,θ nq+1) can be used to update the response surface,
i.e. to recompute the matrices A, B and [...cβ ...] and PCE coefficients (Eq. 13).
Please note that this update works only in the case of the usage of embedded sparse
grids or (Q)MC in Eq. 11.
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5 Data Compression

A large number of stochastic realisations of random fields requires a large amount of
memory and powerful computational resources. To decrease memory requirements
and computing time we offer to use a low-rank approximation for all realisations of
the solution [13]. This low-rank approximation allows us an effective postprocessing
(computation of the mean value, variance, exceedance probability) with drastically
reduced memory requirements (see Table 4). For each new realisation only the cor-
responding low-rank update will be computed (see, e.g. [1]). This can be practical
when, e.g. the results of many thousands Monte Carlo simulations should be com-
puted and stored. Let vi ∈ R

n, i = 1..Z, be the solution vector (already centred),
where Z is a number of stochastic realisations of the solution. Let us build from all
these vectors the matrix W = (v1, ...,vZ) ∈ R

n×Z and consider the factorisation

W = ABT , where A ∈ R
n×k and B ∈R

Z×k. (15)

We say that matrix W is a rank-k matrix if the representation in Eq. 15 is given.
We denote the class of all rank-k matrices for which factors A and BT in Eq. 15 exist
by R(k,n,Z). If W ∈R(k,n,Z) we say that W has a low-rank representation. The
first aim is to compute a rank-k approximation Wk of W, such that

‖W−Wk‖< ε, k � min{n,Z}.

The second aim is to compute an update for the approximation Wk with a linear
complexity for every new coming vector vZ+1. Below in Section 5.1 we present the
algorithm which performs this.

To get the reduced singular value decomposition we omit all singular values,
which are smaller than a given level ε or, alternative variant, we leave a fixed number
of largest singular values. After truncation we speak about reduced singular value
decomposition (denoted by rSVD) Wk = UkΣkVk

T , where Uk ∈ R
n×k contains the

first k columns of U, Vk ∈ R
Z×k contains the first k columns of V and Σk ∈ R

k×k

contains the k-biggest singular values of Σ .
The computation of such basic statistics as the mean value, the variance, the ex-

ceedance probability can be done with a linear complexity. The following examples
illustrate computation of the mean value and the variance.

Let us take A := UkΣk and BT := VT
k ∈ R

k×Z . Denote the j-th row of matrix A
by a j ∈ R

k and the i-th column of matrix BT by bi ∈ R
k. It is evident, that if W is

given explicitly, one can compute the mean value and the variance just keeping in
memory 2 vectors - the mean (variance) and the current value. Below we show how
to compute the mean and the variance if only A and B are given.

1. One can compute the mean solution v ∈ R
n as follows

v =
1
Z

Z

∑
i=1

vi =
1
Z

Z

∑
i=1

A ·bi = Ab, (16)
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Table 2 Rank-k approximation errors of the mean and of the variance of density in Case 1.

rank k 5 20
maxx|ρ(x)−ρk(x)| 1.7e-6 4.2e-10
maxx|var(ρ)(x)−var(ρ)k(x)| 6.7e-5 2.3e-8

The computational complexity is O(k(Z + n)), in contrast to O(nZ)) for usual
dense data format. As a demonstration we compute the mean.

2. One can compute the variance of the solution var(v) ∈ R
n by the computing the

covariance matrix and taking its diagonal. First, one computes the centred matrix

Wc := W− v1T , where v = W ·1/Z, and 1 = (1, ...,1)T ∈ R
Z. (17)

Computing Wc costs O(k2(n+Z)) (addition and truncation of rank-k matrices).
By definition, the covariance matrix is C = 1

Z−1 WcWT
c . The reduced singular

value decomposition of Wc is (Wc)k = UkΣkVT
k , Uk ∈ R

n×k, Σk ∈ R
k×k and

Vk ∈ R
Z×k can be computed via the QR algorithm [5, 13]. Now, the covariance

matrix can be written like

C =
1

Z − 1
(Wc)k(Wc)

T
k ≈ 1

Z − 1
UkΣkΣT

k UT
k . (18)

The variance of the solution vector (i.e. the diagonal of the covariance matrix C
can be computed with the complexity O(k2(Z + n)).

Table 2 demonstrates the rank-5 and rank-20 approximations of the mean and of
the variance of density. One can see that both rank-k approximation errors are very
small, much smaller than e.g. the discretisation error or Monte Carlo error (by com-
puting the mean value).

Lemma 0.1. Let ‖W−Wk‖2 ≤ ε , and uk be a rank-k approximation of the mean u.
Then a) ‖u−uk‖ ≤ ε√

Ns
, b) ‖Wc − (Wc)k‖ ≤ ε , c) ‖C−Ck‖ ≤ 1

Ns−1ε
2.

Proof: Since u = 1
Ns

W1 and uk =
1

Ns
Wk1, then

‖u−uk‖2 =
1
Ns

‖(W−Wk)1‖2 ≤ 1
Ns

‖(W−Wk)‖2 · ‖1‖2 ≤ ε√
Ns

.

Let I ∈ R
Ns×Ns be the identity matrix, then

‖Wc − (Wc)k‖2 ≤ ‖W−Wk‖2 · ‖I− 1
Ns

·1 ·1T‖2 ≤ ε, and

‖C−Ck‖2 ≤ 1
Ns − 1

‖WcWT
c − (Wc)k(Wc)

T
k ‖2

=
1

Ns − 1
‖UΣΣT UT −UkΣkΣT

k UT
k ‖ ≤

1
Ns − 1

ε2.
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5.1 Concatenation of Two Low-Rank Matrices

Let A and B such that Wk = ABT be given. Suppose also that matrix W
′ ∈ R

n×m

contains new m solution vectors. For a small m, computing the factors C ∈R
n×k and

D ∈ R
m×k such that W

′ ≈ CDT is not expensive. Now our purpose is to compute
with a linear complexity the rank-k approximation of Wnew := [WW′]∈R

n×(Z+m).
To do this, we build two concatenated matrices Anew := [AC]∈R

n×2k and BT
new =

blockdiag[BT DT ] ∈ R
2k×(Z+m). Note that the difficulty now is that matrices Anew

and Bnew have rank 2k. The rank k approximation of the new matrix Wnew is done
with a linear complexity O((n+Z)k2 + k3) (for details see [13]).

6 Bayesian Update of the Uncertain Airfoil Geometry

We assume that the airfoil geometry contains random deformations (e.g. dents). A
possible reason, for example, can be the influence of external forces. First our task
is to parametrize all such deformations for all given airfoils. We offer to use random
fields κ(x,ω), where ω is a vector of random parameters (see Section 2.2). The
problem is that the probability density function of ω is unknown. We assume it a
priori as Gaussian. If we could measure all given airfoils (from different airplains)
then we could build a good parametrization model, but everything we can do is to
measure airfoils only in a few points. This is our knowledge. The question now
is how to incorporate this knowledge to our parametrization model? We can do this
by using the Bayesian update. The Algorithm is described in [21, 20].

In Fig. 6 (left) you may see:

Fig. 6 (left) The truth airfoil (is in reality unknown), a priori (is our initial assumption) and
a posteriori (the measurements are taken into account) airfoils. (right) Detailed RAE-2822
airfoil picture in interval [0.05, 0.35].
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• The initial airfoil (dashed line). Is in real life, as a whole, unknown. One can
measure it only in a few points.

• A priori realization (dash-dot line). One realization computed from the a priori
model without any knowledge (without measurements). Usually does not coin-
cide with the truth. Can be far away from the truth.

• A posteriori realization (solid line) is computed via the Bayesian update (see
details of the Algorithm in [21, 20]) from the a posteriory model which takes
into account the real data measured in the 8 measurement points (8 stars). Since
large deformations are not allowed, all three curves are very similar. The detailed
picture (in interval [0.05, 0.35]) is shown in Fig. 6 (right). One can see that the
solid line (a posteriori model) is much closer to the measurement point (denoted
by stars) than to the dash-dot line (a priori model).

7 Numerics

We demonstrate the influence of uncertainties in the angle of attack, the Mach num-
ber and the airfoil geometry on the solution (the pressure, density, lift, drag, lift
and absolute skin friction coefficients). As an example we consider two-dimensional
RAE-2822 airfoil. The deterministic solver is the TAU code with the k-w turbulence
model. To quantify uncertainties we used the collocation method computed in nodes
of sparse Gauss-Hermite grid. The Hermite polynomials are of order P = {1,2,4}
with M random variables (see Eq. 10).

The last column in Tables 3 on the left and on the right shows the measure of
uncertainty σ/mean. It shows that 7.1% and 0.4% of uncertainties in α and in Ma
correspondingly result in 4.4% and 16.3% (Table 3, on the right) of uncertainties in
the lift CL and drag CD. For the comparison of different sparse grids see [13, 15].

In Fig. 7 we compare the cumulative distribution and density functions for the lift
and drag coefficients, obtained via PCE and via 6300 Monte Carlo simulations. The
response surface is PCE of order 1. There are 106 MC evaluations of the response
surface. We see three very similar graphics. Thus, one can make the conclusion that
the sparse Gauss-Hermite grid with a small number of points, e.g. nq = 13, produces
similar to MC results.

In Fig. 8 we compare the mean values computed by collocation and Monte Carlo
methods for the Case 1. The collocation points are 281 nodes of two-dimensional

Table 3 Uncertainties in the input parameters (α(θ1,θ2) and Ma(θ1,θ2)) and in the solution
(CL and CD). PCE of order 1 and sparse Gauss-Hermite grid with 137 points.

mean st. dev. σ σ /mean
α 2.8 0.2 0.071
Ma 0.73 0.0026 0.004

=⇒
mean st. dev. σ σ /mean

CL 0.85 0.0373 0.044
CD 0.0187 0.00305 0.163
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Fig. 7 Probability density functions (first row), cumulative distribution functions (second
row) of CL (left) and CD (right). PCE is of order 1 with two random variables. Three graphics
computed with 6360 MC simulations, nq = 13 and nq = 29 collocation points.

Fig. 8 (left) ‖ρMC −ρSGH‖ and (right) ‖pMC − pSGH‖. pSGH was computed from the
sparse Gauss Hermite grid with 281 nodes. ρSGH ∈ (0.65,1.2), pSGH ∈ (0.7,1.3). Case 1.

sparse Gauss Hermite grid. One can see that the difference is very small compared
to the corresponding physical values ρSGH and pSGH.
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Fig. 9 3σ error bars in each point of the RAE-2822 airfoil surface for the pressure coefficient
cp (left) and friction coefficient cf (right).

The graphics in Fig. 9 demonstrate 3σ error bars, σ the standard deviation, for
the pressure cp and absolute skin friction cf coefficients in each surface point of
the RAE-2822 airfoil. The data are obtained from 645 realisation of the solution.
One can see that the largest uncertainty occurs at the shock (x ≈ 0.6). A possible
explanation is that the shock position is expected to change slightly with varying
parameters α and Ma.

In Table 4 one can see relative errors of the rank-k approximations (in the
Frobenius norm). Five solution matrices contain pressure, density, turbulence kin-
etic energy (tke), turbulence omega (to) and eddy viscosity (ev) in the whole com-
putational domain with 260000 dofs. Additionally, one can also see much smaller
memory requirement (dense matrix format costs 1.25GB). The column 7 shows
the computing time required for the SVD-update (the Algorithm described in Sec-
tion 5.1) and the the column 8 time required for the full SVD of the global matrix
∈R

260000×600 correspondingly. A possible explanation for the large computing time
for the full SVD is the lack of memory and expensive swapping of data.

Table 4 Relative errors and computational requirements of rank-k approximations of the
solution matrices ∈R

260000×600. Memory required for the storage of each matrix in the dense
matrix format is 1.25 GB.

rank k pressure density tke to ev time, sec time, sec memory
update full SVD MB

10 1.9e-2 1.9e-2 4.0e-3 1.4e-3 1.4e-3 107 1537 21
20 1.4e-2 1.3e-2 5.9e-3 3.3e-4 4.1e-4 150 2084 42
50 5.3e-3 5.1e-3 1.5e-4 9.1e-5 7.7e-5 228 8236 104
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Table 5 Rank-k approximation errors of the variance of pressure and of the variance of dens-
ity in Case 9

rank k 5 30
maxx|var(p)(x)−var(p)k(x)| 5.3e-3 1.6e-4
maxx|var(ρ)(x)−var(ρk)(x)| 3.5e-3 8.8e-5

In Table 5 we provide the rank k = {5,30} approximation errors (in the max-
imum norm) of the variance of the pressure and of the density (compare with
Fig. 5). The variances var(p)k(x) and var(ρk)(x) were computed from the matrix
W ∈ R

65568×1521 as described in Section 5.
Further, we consider Case 1 (α = 1.93 and Ma= 0.676, no shock). Fig. 10 shows

relative errors (for the Case 1) in the Frobenius and the maximum norms for pressure
and density computed in 10 points of a two-dimensional sparse Gauss-Hermite grid.
These relative errors compare the solution which we obtain after 10000 TAU itera-
tions without any start value with the solution which we obtain after only 2000 TAU
iterations with start values taken from the response surface (multivariate Hermite
polynomials with M = 2 variables and of order P = 2). One can see that the errors
are very small (of order 10−3), i. e. the response surface produces a good approxim-
ation. We note that 10 chosen points are lying in a small neighbourhood of the point
α = 1.93 and Ma = 0.676.

Fig. 10 Relative errors (Case 1) in the Frobenius and the maximum norms for the pressure
and density
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