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Abstract. High-quality software needs to meet both functional and non-
functional requirements. In some cases, software must accomplish specific per-
formance requirements, but most of the time, only high-level performance
requirements are available: it is up to the developer to decide what performance
should be expected from each part of the system. In this work, we show several
algorithms that infer the required throughput and time limits for each action in an
UML activity diagram from a global constraint and some optional local annota-
tions. After studying their theoretical and empirical performance, we propose an
approach for generating performance test cases from the activity diagram after it
has been implemented as code. Our approach decouples the performance analysis
model from the implementation details of the code to be tested.

Keywords: Model-driven engineering, Performance testing, UML, MARTE,
Non-functional requirements, Model weaving.

1 Introduction

In addition to functional requirements, software must meet non-functional require-
ments. Among them, performance plays a major role in shaping the user experience. In
some cases, meeting specific performance requirements is critical. This is the case not
only in soft and hard real-time systems, but also in service-oriented architectures [13],
where Service Level Agreements (SLAs) may have been signed between the provider
and the consumer of a service.

For these reasons, there has been considerable work in estimating and measuring the
performance of software systems [28]. Estimating the performance of a prospective sys-
tem usually requires building high-level execution and architecture models and deriving
a formalism from them, as in [25,30], among many others. Measuring the performance
of a system requires instrumenting it to produce the desired results, instead of building a
model. These approaches complement each other: estimations can be performed before
the actual system is implemented, while measurements are more accurate.

Measuring the performance of a system can be useful for many purposes: finding
performance degradations over time, identifying load patterns over specific time periods
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and checking if the system is meeting its performance requirements. Obviously, this
last use case requires that the performance requirements have been previously defined.
However, most of the time, detailed performance requirements are not provided [27].
Developers may have to meet high-level performance requirements without a clear view
of what performance is required in each part of the system.

In this work we propose a model-driven approach to deriving the low-level perfor-
mance requirements of a system from high-level performance requirements. The user
creates UML models annotated with a small subset of the MARTE profile [23] and runs
our inference algorithms to derive the low-level requirements. After the UML models
have been implemented as code, the user can weave the analysis model with an imple-
mentation model to generate the concrete performance test cases.

The rest of this paper is structured as follows: in Section 2, we introduce the MARTE
profile for UML, describe the subset used in our work and show our running example.
Section 3 defines the inference algorithms and outlines some of the optimisations per-
formed. Section 4 is dedicated to analysing the restrictions imposed upon the algorithms
and evaluating their performance. Section 5 describes our proposed approach for gen-
erating the concrete performance test cases. Section 6 discusses related work. Finally,
Section 7 condenses the main points of this paper and lists our future lines of work.

2 The MARTE Profile

UML has been widely adopted as a general purpose modelling language for describ-
ing software systems. However, UML itself does not include support for modelling
scheduling, performance or time aspects, among other non-functional aspects.

For this reason, the Object Management Group proposed in 2005 the SPT (Schedula-
bility, Performability and Time) profile [21], which extended UML with a set of stereo-
types describing scenarios that various analysis techniques could take as inputs. In 2008,
OMG proposed the QoS/FT (Quality of Service and Fault Tolerance Characteristics and
Mechanisms) profile [22], with a broader scope than SPT and a more flexible approach:
users formally defined their own quality of service vocabularies and used them to an-
notate their models.

When UML 2.0 was published, OMG saw the need to update the SPT profile and
harmonise it with other new concepts. This resulted in the MARTE (Modelling and
Analysis of Real-Time and Embedded Systems) profile [23], published in 2009. Like
the QoS/FT profile, the MARTE profile defines a general framework for describing
quality of service aspects. The MARTE profile uses this framework to define a set of
pre-made UML stereotypes, as those in the SPT profile.

In this section, we will introduce the parts of the MARTE profile required for our
algorithms and show an example model, using its predefined stereotypes.

2.1 Selected Subset

The MARTE specification provides support for model-based analysis and design of
real-time and embedded systems. Among its sub-profiles, we are interested in a subset
of the GQAM (Generic Quantitative Analysis Modelling) profile. The GQAM domain
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model describes the concepts of the GQAM profile using the generic non-functional
property modelling framework in MARTE. The stereotypes from the GQAM profile are
prefixed with “Ga” (standing for “generic analysis”), and the non-functional property
types from the normative MARTE model library are prefixed with “NFP”.

The stereotype and attributes used by our algorithms are:

– «GaScenario»: hostDemand is used to model requirements on the CPU time to
be used and throughput indicates how many requests should be handled per sec-
ond. respT combines both, specifying the maximum response time when handling
throughput requests per second.

– «GaStep»: prob is the probability of traversing a control flow, and rep is the number
of times the annotated activity is repeated.

– «GaAnalysisContext»: contextParams contains a list of context parameters. These
are variables which can be used to parametrise the annotations using VSL (Value
Specification Language) expressions. VSL is a textual language defined in MARTE.

All the non-functional property types in the normative MARTE library share several
traits, as they inherit from NFP_CommonType. Values can be specified as literals in the
value attribute, or as VSL expressions in the expr attribute. The source of a requirement
(estimated, measured, calculated or required) is described by the source attribute.

NFP_CommonType is a VSL tuple type. In this paper we will use the notation
(key1=value1,...,keyN=valueN)for VSL tuples. For instance, a NFP_Duration of 5
milliseconds required by the client is written as (value=5,unit=ms,source=req).

2.2 Usage

Activities must have the «GaScenario» and «GaAnalysisContext» stereotypes. «GaSce-
nario» indicates the expected response time (respT) and throughput (throughput) for the
entire activity. «GaAnalysisContext» only lists the context parameters (contextParams)
which represent the slack per unit of weight assigned to each action in the activity.

Control flows leaving decision nodes are annotated with the «GaStep» stereotype,
specifying the probability (prob) of traversing one of the conditional branches. The
probabilities are estimated by the user.

Actions are annotated with the «GaStep» stereotype as well. The user must
indicate their expected number of repetitions (rep) and how the available time is to
be distributed among them. hostDemand must contain a tuple with a VSL expression
matching M+W*swI: M ≥ 0 is its minimum time limit, W ≥ 0 is its weight and swI is its
context parameter. The time limit inference algorithm will set swI to the slack per unit
of weight assigned to that action.

After the algorithms are done, results are fed back into the activity diagram, replac-
ing those from previous runs. Actions are annotated with the inferred time limits in
hostDemand, and with the inferred throughputs in throughput. Context parameters are
set to the slack per unit of weight assigned to their actions.
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Fig. 1. Running example after inferring time limits

2.3 Running Example

Figure 1 shows the UML activity diagram which we will use as running example for
the rest of this paper. Its activity, “Handle Order”, describes how to process a specific
order: first, the order is evaluated. If rejected, we simply close the order. If accepted,
we fork into two execution branches: one creates the shipping order and sends it to the
shipping partner, and the other creates the invoice, sends it to the customer and receives
the payment. Once both branches are done, the order is closed and we are done.

According to the MARTE annotations, the activity should complete its execution
in one second when receiving one request per second. Most of the actions have no
minimum time limit and weight equal to 1, except for “Evaluate Order”, whose CPU
time is fixed by the modeller to 0.4s. All actions are run once, to simplify the discussion.
The user has estimated that 80% of all orders are accepted. The annotations in bold have
been inferred by our algorithms, and will be described more in depth in Section 3.2.

3 Inference Algorithms

In the previous section, we explained how we used the MARTE profile for our al-
gorithms and described the running example for this paper (Figure 1). In this section
we will outline the algorithms themselves. The first algorithm computes the expected
throughput of each action, and the second algorithm computes the time limit for each
action. They improve upon those in [16].

Both require that activities do not contain cycles, that they only have one initial node,
and that all their actions are reachable from it. Let us define some terms:
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– s(e) and g(e) are the source and target vertex of the edge e, respectively.
– i(n) and o(n) are the incoming and outgoing edges of the node n, respectively.
– L > 0 is the expected response time (the global time limit) of the activity.
– c(n) = (m(n),w(n)) ∈C(L) is the constraint of the node n, where m(n) is the min-

imum time limit of n and w(n) is its weight (see Section 2.2). The set of all valid
constraints with L as global time limit is C(L) = {(m,w) |0 ≤ m ≤ L,w ≥ 0}.

– Each path p also has a constraint, c(p) = (m(p),w(p))∈C(L), with m(p) =
∑n∈p m(n) and w(p) = ∑n∈p w(n).

– A node n is run R(n)≥ 1 times (once by default).

3.1 Throughput Inference

We will define T as a function from a node or edge to its expected throughput. For a
control flow e, T (e) = P(e)T (s(e)), where P(e) is the probability of traversing e.

For a node n, the actual formula depends on its type. For an initial node, T (n) is
the expected throughput of the activity. For a join node, T (n) =mine∈i(n) T (e), since re-
quests in the least performing branch set the pace. For a merge node, T (n)=∑e∈i(n) T (e),
as requests from mutually exclusive branches are reunited. For any other type of node,
T (n) = T (e1), where e1 ∈ i(n) is its only incoming edge.

Using these formulas, computing T (Create Invoice) for the example shown in Fig-
ure 1 requires walking back to the initial node, finding an edge with a probability of
0.8, no merge nodes and an initial node receiving 1 request/second. Therefore, it would
be equal to pL = 0.8.

To compute these values efficiently, the expressions are evaluated in a topological
traversal of the graph. For each action a, throughput will contain a single tuple of the
form (value=T(a),unit=Hz,source=calc).

3.2 Time Limit Inference

Inferring the time limits of each action inside an activity is considerably more complex
than inferring their required throughputs. After more definitions, we will describe the
algorithm, and then apply it to the running example in Figure 1.

Preliminaries. The algorithm adds a (value=t(n), unit=s, source=calc) tuple to the
attribute hostDemand of each action node n, where t(n) is its inferred time limit. The
algorithm also updates the appropriate context parameter with the final slack per unit of
weight distributed to n.

Let I be the initial node of the activity being annotated and let PS(n) contain all paths
from the node n to a final node. t(n) must meet the following constraints:

– For every action n, t(n) ≥ m(n): the assigned time limit must be greater or equal
than the minimum set by the user.

– For every path p in PS(I), ∑n∈p R(n)t(n)≤ L: the sums of the time limits over each
path meet the global time limit.

The available time “flows” from the initial node. If a node n receives 0 ≤ r(n) ≤ L
seconds, every path p ∈ PS(n) receives r(p) = r(n) seconds to distribute among its
nodes. r(n) is not known a priori except for the initial node: r(I) = L.
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If the «GaStep» and «GaScenario» annotations are consistent with each other, then
r(p) ≥ m(p) for every path p: the minimum time constraints of all actions are always
met. s(p) = r(p)−m(p)≥ 0 is known as the slack of the path p. s(p) is distributed over
p according to the weight of each node: the slack per unit of weight initially assigned to
each node is Sw(p) = s(p)/w(p). When w(p) = 0, we assume that Sw(p) = 0: all nodes
in p have a zero weight, so no slack can be distributed.

The algorithms must ensure that w(p) > 0 ⇒ s(p) > 0, so every path p with a non-
zero weight has some slack to distribute. If this condition is not met or the annotations
are inconsistent, the user should be notified and every change should be rolled back.

Definition. The algorithm is a recursive function, taking a node n and the time it re-
ceives, r(n). Initially, n = I and r(n) = L, the global time limit. Its steps are as follows:

1. Select two paths from PS(n):
– pms(n) has the minimum SW (p) when r(n) seconds are available. In case of a

tie, pick the path with the maximum w(p).
– pMm(n) has the maximum m(p).

2. If s(pMm(n))< 0, the minimum time limits cannot be satisfied: abort.
3. If s(pms(n)) = 0 and w(pms(n)) > 0, there is no slack in a path with a non-zero

weight: abort.
4. Set the time limit of n, t(n), to m(n)+Sw(pms(n))w(n). The remaining time will be

TR = T −R(n)t(n) seconds. Mark v as visited.
5. Sort each edge e ∈ o(n) in ascending order of Sw(pms(g(e))) with r(g(e)) = TR, the

minimum slack per unit of weight when TR seconds are available for all paths that
start at the target of e.

6. Visit each edge in o(n):
(a) If the target of e has been visited before, check if the time which was sent to it,

T ′
R, is strictly less than TR, the time which would have been sent through e.

In that case, try to reuse the surplus TR − T ′
R seconds on the source of e and

its ancestors, and send T ′
R seconds through e. Go back in the graph from the

source of e, collecting nodes with non-zero weights into C until a node with
more than one incoming or outgoing edge is found. Increase the time limit of
each collected node by (TR −T ′

R)w(n)/w(C), where w(C) = ∑n∈C R(n)w(n).
(b) If the target of e has not been visited before, invoke this algorithm recursively,

setting n to the target of e and r(n) = TR.
7. Set the context parameter related to n to 0 if w(n) = 0, and to (t(n)−m(n))/w(n)

otherwise. This is the effective slack per unit of weight distributed to n.

Key Optimisations. The algorithm above uses several optimisations to improve its
performance. First of all, each path p is not represented by its sequence of nodes, but
by its constraint c(p) = (m(p),w(p)), saving much memory.

To select pMm(n) at each node we need to know the maximum m(p) for each path
p ∈ PS(n), which we will note as m(pMm(n)). We can compute it in advance using (1).
As it is recursive, we can evaluate (1) incrementally, starting from the final nodes (for
which m(pMm(n)) = 0) and going back to the initial node in reverse topological order:

m(pMm(n)) = R(n)m(n)+max{m(pMm(g(e))) |e ∈ o(n)} (1)
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To select pms(n) at each node we need to know the strictest path starting from it.
We cannot compute it in advance, as it depends on the time received by the node, r(n),
which is not known a priori. Instead, we remove redundant paths from PS(n). We will
call this reduced set P′

S(n). A path pa ∈ PS(n) is removed when it is said to be always
less or just as strict than some other path pb ∈ PS(n), independently of the time received
by n or the common ancestors of pa and pb. We denote this by c(pa) 	s(L) c(pb), and
define it formally as follows:

(a,b)	s(L) (c,d)≡
∀t ∈ [0,L] ∀x ∈ [0,L] ∀y ≥ 0

a+ x ≤ t ∧ c+ x ≤ t ∧b+ y > 0∧d+ y > 0 ⇒ t − (a+ x)
b+ y

≥ t − (c+ x)
d + y

(2)

We can simplify (2) into:

a ≤ c∧ (b ≤ d∨a < L∧b > d ∧ (b− d)L ≤ bc− ad) (3)

It can be proved that this defines a partial order (a reflexive, antisymmetric, and transi-
tive binary relation) on C(L). The proof is omitted for the sake of brevity.

Like m(pMm(n)), P′
S(n) can also be computed incrementally by traversing the graph

in reverse topological order. Let ni be a child of n and pa and pb be two paths in PS(ni),
so c(pa) 	s(L) c(pb). By definition, pa is less or just as strict as pb regardless of their
common ancestors, so 〈n〉+ pa will also be discarded from P′

S(n) over 〈n〉+ pb. This
means that instead of comparing every path in PS(n) for every node n, we can build
P′

S(n) by adding n at the beginning of the paths in P′
S(ni), for every child ni of n, and

then filtering the redundant paths using 	s(L).
Let max	s(L)

S select the paths in S which are not always less or just as strict than any
other (maximal elements according to 	s(L)). We define P′

S(n) as:

P′
S(n) = max

	s(L)

{
(R(n)m(n)+M,R(n)w(n)+W) |e ∈ o(n),(M,W ) ∈ P′

S(g(e))
}

(4)

Note that PS( f ) = (0,0), where f is a final node.

Example. Previously, we defined the algorithm and described the key optimisations
performed. We will now apply the algorithm to the example in Figure 1, producing the
outputs highlighted in bold. To save space, we will shorten action names to their initials:
“Evaluate Order” will be simply “EO”.

First, m(pMm(n)) and P′
S(n)) are precomputed:

– m(pMm(CO)) = 0, P′
S(CO) = {(0,1)}.

– m(pMm(PP)) = 0, P′
S(PP) = {(0,2)}.

– m(pMm(CI)) = 0, P′
S(CI) = {(0,3)}.

– m(pMm(SO)) = 0, P′
S(SO) = {(0,2)}.

– m(pMm(EO)) = 0.4, P′
S(EO) = {(0.4,3)}.

After that, the algorithm sends the available second (L = 1s) into the initial node and
then into EO. EO takes 0.4s and sends the remaining 0.6 seconds through the decision



An Approach for Model-Driven Design and Generation of Performance Test Cases 143

node. The next action in the strictest path is CI, which takes 0.2s and sends 0.4s into PP.
PP takes another 0.2s and sends the remaining 0.2s to CO.

Once the strictest path is done, we back up and proceed with the next strictest path,
sending 0.4s into SO. At first, SO takes only 0.3s, but since CO received only 0.2s
before, we reuse the extra 0.1s into SO. The final time limit of SO is 0.4s. We back up
and continue with the empty branch for rejected orders: we are done.

As for the context parameters: swEO is set to 0, as w(EO) = 0. swCI, swPP and swCO
are set to 0.2. swSO is set to 0.4: note that the initial slack per unit of weight for SO was
0.3, but after reusing the extra 0.1 seconds, it changed to 0.4.

4 Evaluation

The algorithms have been implemented using the Epsilon Object Language (EOL) [19]
and integrated into the Papyrus graphical UML editors [12]. Code is available at [15].
In this section we will analyse their restrictions and performance.

4.1 Restrictions

The inference algorithms are limited in several ways. The most important restriction is
that the graph formed by the nodes of the activity must be acyclic, which hinders the
modelling of repetitive structures. We have partially addressed this issue by using the
attribute rep of «GaStep» to indicate the expected number of repetitions of an action.

At first glance, the algorithm still requires to annotate each action with some knowl-
edge from the modeller, so it would appear not to save much effort. However, the in-
formation annotated by the user on each activity only depends on the action (minimum
time and weight) or control flow (probability) themselves, instead of all the paths they
are part of. In addition, any sufficiently advanced tool can add the missing annotations
with the default values set by the user. The time limit inference algorithm also ensures
that the annotations are consistent with each other.

The algorithms do not take into account the fact that the same behaviour might be
reused in several places: each action is assumed to be different from the rest. A simple
and conservative solution would be simply taking the strictest constraint over all the
occurrences of that behaviour. Integrating the “same behaviour” constraint would be
interesting, but it might considerably increase the cost of the algorithm.

4.2 Theoretical Performance

Let us consider an activity with n nodes and e∈ O(n2) edges, with O(n) incoming edges
in each node. The throughput inference algorithm is easy to analyse: by going back from
the final nodes to the initial nodes, each node and edge in the activity needs to be visited
exactly once. The throughput for the O(n) join and merge nodes requires evaluating an
expression in constant time over their O(n) incoming edges. However, throughputs for
the rest of the O(n+ e) nodes and edges can be computed in constant time. Therefore,
a conservative upper bound for the running time of the throughput inference algorithm
is O(n)O(n)+O(n+ e)O(1) = O(n2). The running time does not depend on the values
of the annotations.
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The time limit inference algorithm is harder to analyse. Its performance depends both
on the structure of the graph and the values of the annotations. For this reason, we will
use a specific kind of activity to frame the analysis, which we call a fork-join activity.
As shown in Figure 2, it has an initial node, I, followed by a sequence of f “levels”.
Each level has a fork node with two branches with a single action, joined before the
next level. The activity has n = 2+ 4 f ∈ Θ( f ) nodes and e = 1+ 5 f ∈ Θ( f ) edges in
total, and there are 2 f paths from the initial node to the final node. These activities are
inexpensive to generate, as the number of nodes and edges grows linearly. At the same
time, they can represent the worst case of the algorithm, since the number of paths from
the initial node to the final node grows exponentially.

Fig. 2. Example fork-join activity with f levels

Having defined the structure of the activities, let us analyse the worst case by parts:

– Computing m(pMm(n)) in advance for each node always takes O(1)O(n) = O(n)
operations, as it requires evaluating an arithmetic expression over the O(1) incom-
ing edges of each of the n nodes.

– Computing P′
S(n) in advance for each node is actually the most expensive part of

the algorithm: in the worst case, O(2 f ) paths need to be considered at every node
and selecting the strictest ones takes O(4 f ) operations per node and O(n4 f ) in total.

– The last step depends on the number of elements of P′
S(g(e)) for each edge e in

the graph: in the worst case, |P′
S(g(e))| = |PS(g(e))| for every node and O(n2 f )

operations are required.

In total, we have O(n4 f ) operations in the worst case, which can be very expensive.

4.3 Empirical Performance

Previously, we concluded that the throughput algorithm had polynomial cost regardless
of the annotations, and that the time limit inference algorithm could reach exponential
cost, depending on the annotations. In this section we will study how close are the
average times to this absolute worst case.

We first measured the performance of the algorithms using fork-join activities with 1
to 25 levels. We ran the algorithms on these activities requiring 1s response time when
1 request was received per second. The actions were annotated in two ways: either
using a fixed minimum time limit and weight (0 and 1, respectively) or using uniformly
distributed random values, so the minimum time limits were consistent and weights
were between 0 and 1. To simplify the analysis, each action had rep set to 1.

The results are shown in Figures 3(a) and 3(b). Figure 3(a) confirms that the time
required for the throughput inference algorithm grows linearly, regardless of the anno-
tations. Figure 3(b) suggests that the average times for fixed and random annotations
are quite far from the O(n4 f ) absolute worst case.
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(a) Throughputs (10 runs fixed and random) (b) Time limits (10 runs fixed, 100 runs random)

Fig. 3. Average running times by number of levels and type of annotation

It is interesting to note that when the minimum time limit is equal to 0 in all actions,
the partial order in (3) can be simplified to a ≤ c, which is a total order. Therefore, these
fixed annotations are instances of the best case of the time limit inference algorithm,
in which all paths are comparable. As shown in Figure 3(b), the time limit inference
algorithm required 400ms on average with a fork-join activity with fixed annotations
and 25 levels.

On the other hand, using uniformly distributed random annotations resulted in much
larger running times, with 10s required on average to annotate a fork-join activity with
25 levels. Nevertheless, Figure 3(b) does not grow as quickly as would be expected
from the O(n4 f ) absolute worst case.

This suggests that removing redundant paths reduces the impact of the absolute worst
case. However, its effectiveness depends on the relative magnitude of the minimum time
limits and weights with regards to the global time limit L. The left operand of (b−d)L<
bc− ad, part of (3), grows as L increases and reduces the number of comparable pairs
of paths.

We performed an additional study to clarify how common the absolute worst case
was and study its relationship with L. We sampled with L = 0.5s and L = 1.5s the
space of all fork-join activities with 3 levels which contained a 2-level fork-join with 4

Fig. 4. Distribution of incomparable top-level paths over sampled 3-level fork-join activities, by
global time limit
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incomparable paths. Minimum time limits for the actions ranged from 0 to min{L,1},
in steps of 0.1s. Weights ranged from 0 to 10, in steps of 1 unit. Inconsistent graphs
were discarded. For each activity, we measured the number of incomparable paths at
the initial node (“top-level paths”): in a 3-level fork-join activity, there can be between
1 and 23 = 8 such paths.

Evaluating 1.99× 106 fork-join activities for L = 0.5s and 7.16× 109 for L = 1.5s
produced the results in Figure 4. It is interesting to note that for L= 1.5s, while 31.842%
of all 1-level fork-join activities were in the worst case, only 2.492% 2-level fork-join
activities were in the worst case. With 3 levels, no fork-join activities were in the worst
case with L = 0.5s, and only 0.047% were in the worst case with L = 1.5s. This sug-
gests that the absolute worst case becomes harder to find with more complex graphs,
explaining why average times did not grow exponentially in Figure 3(b). It also indi-
cates that the worst case is more common when L grows in relation to the values in the
annotations.

5 Generation of Test Cases

In previous sections, we have shown how to create the performance analysis models and
how to infer the missing constraints from the existing annotations. These performance
analysis models can already be useful as a way to check if a certain performance level
is feasible or not, and to negotiate SLAs. In this section, we will propose another use
case for the performance analysis model: test case generation.

Generating test cases directly from an abstract model such as that in Figure 1 is
unfeasible, as it lacks the implementation details that are required. At the same time, it
is undesirable to pollute an abstract model with these implementation details and couple
it to a specific technology. To solve this situation, we propose linking the performance
analysis model to implementation model, using a third generic weaving model. Model
weaving is a well-known model management technique and is readily implemented in
tools such as AMW [11] or Epsilon ModeLink [18].

Performance analysis model Implementation artifacts

Model extraction

Implementation model

Weaving model Optional adaptation (M2M)

Adapted weaving model Test case generation (M2T)

Test artifacts

Fig. 5. Proposed approach for test case generation
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The resulting approach is shown in Figure 5.

1. First, appropriate models of the implementation artifacts are extracted. Model ex-
traction may involve parsing program code and creating an abstract syntax tree, us-
ing tools like MoDisco [8]. Alternatively, the model may already be available if the
code was generated using a contract-first or model-driven approach. This is quite
common for web services described using WSDL [31] documents: frameworks like
Apache CXF [2] generate code from them.

2. Next, the user creates a weaving model that relates the implementation artifacts
with the activities in the UML activity diagram. An activity could be linked to a
JUnit test case to be reused as a performance test case, or as a web service described
in a WSDL document.

3. The weaving model may not be usable as-is. In that case, an additional M2M
(Model-to-Model) transformation will be required. Examples of M2T technologies
include ATL [9] or ETL [19].

4. Finally, the weaving model will be used in an M2T (Model-to-Text) transformation
to produce the test cases. In the case of a JUnit test case, it could be wrapped
as a performance test case using a library such as JUnitPerf [10] to wrap the test
case as a performance test case. For WSDL-based web services, a test plan for a
performance testing tool such as Apache JMeter [14].

The main advantage to this approach is that it keeps the performance analysis model
decoupled from both the methodology used to produce the implementation artifacts and
the technologies used in them. Additionally, if the performance requiremens change, the
algorithms can be run again and the performance test cases can be regenerated with no
additional work. The main challenge is managing the additional complexity introduced
by the steps in Figure 5, but it can be overcome with proper tooling.

6 Related Work

Obtaining the desired level of performance has been a regular concern since the de-
velopment of the first computer systems, as shown by the early survey in [20]. There
are basically two approaches: evaluating a model of a prospective system, or measur-
ing the performance of an implemented system. These approaches are complementary:
using analytic models reduces the risk of implementing an inefficient software architec-
ture, which is expensive to rework [25], and can find potential bottlenecks before they
happen [4]. When the system is implemented, measuring its performance is more accu-
rate, and can detect not only design issues, but also bad coding practices, unexpected
workloads or platform issues. Avritzer et al. describe in [5] an interesting case study
in which a simulation model was used to find the cause for a performance regression
found during regular monitoring of a configuration derived from regular performance
testing. Our work adapts the MARTE profile, a standard notation used for modeling
non-functional requirements and creating analytic models from them, to generate the
performance requirements for testing each part of the system.

Using analytic models requires highly specialised knowledge and notations. Wide-
spread adoption of UML as a de facto standard notation has prompted researchers to
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derive their analytic models from UML models, first with ad hoc annotations and later
consolidating on the standard extensions to UML, such as QoS/FT [22] or SPT [21]. The
survey in [29] reviews many of the approaches before MARTE replaced SPT in 2009.
Since then, MARTE has been used for many purposes, such as deriving process algebra
specifications [26] and extended Petri networks [32] or detecting data races [24], among
others. We selected MARTE as it is based on UML, it is being actively used and offers
both pre-made annotations (like SPT) and a generic framework (like QoS/FT).

Bernardi et al. have defined the Dependability and Analysis Modeling sub-profile for
MARTE [7]. It has been combined with the standard GQAM and PAM sub-profiles of
MARTE to evaluate the risk that a soft real-time system does not meet its time limits [6].
Our work also handles time limits, but our focus is different: we help the tester “fill in
the blanks” using the available partial information. We use a model of the system to
generate some of the parameters of the performance test cases.

Alhaj and Petriu generated intermediate performance models from a set of UML
diagrams annotated with the MARTE profile, describing a service-oriented architec-
ture [1]: UML activity diagrams model the workflows, UML component diagrams rep-
resent the architecture and UML sequence diagrams detail the behaviour of each action
in the workflows. In our previous work, we similarly modeled workflows in a service-
oriented architecture using an ad hoc notation based on UML activity diagrams [16].
However, our approach does not model the resources used by the system: we assume
tests are performed in an environment which mimics the production environment.

There are many other recent approaches that use UML activity diagrams for gener-
ating performance test cases, without using MARTE. Avritzer et al. describe in [3] an
approach for generating performance test cases considering the most common states in
a system, modelled as a Markov chain. Garousi [17] uses UML sequence and activity
diagrams in combination with other models to generate network stress tests for a dis-
tributed system, using evolutionary algorithms to drive the process. In general, these
approaches attempt to generate test cases that cover the entire system. In comparison,
our approach focuses on obtaining test cases for each part of the system, based on global
requirements for the entire system.

7 Conclusions and Future Work

Software needs to meet its performance requirements in addition to its functional re-
quirements. To achieve this goal, several approaches can be combined: the expected
performance can be estimated using an early model, or the actual performance of the
system can be measured. Currently, the research community is converging on the UML
MARTE profile [23] as a standard notation to drive early performance and scheduling
analysis. On the other hand, performance testing requires expectations to be defined for
each part of the system. However, these are usually only available for high-level com-
ponents: developers need to manually translate these to lower-level requirements for the
smaller subcomponents.

In this work, we have adapted and improved the algorithms in [16] to operate on
MARTE-annotated UML activity diagrams, inferring performance requirements from
a global annotation and some local ones. One algorithm infers throughputs and has
polynomial cost in relation to the number of nodes of the activity. The other infers time
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limits and its worst case has exponential cost, as it may need to enumerate all paths
from the initial node to the final nodes. However, further analysis of the average case
suggests that this worst case is very rare, and becomes even harder to find as graphs are
more complex. This is because the time limit inference algorithm discards redundant
subpaths using a partial order relation.

After describing and evaluating the inference algorithms, we have propose an
approach for generating concrete performance test cases for each action in the UML ac-
tivity diagram. To keep it decoupled from the implementation technology and method-
ology, we propose weaving it to an implementation model and generating the actual test
cases from the weaving model. The implementation model may already exist if using a
contract-first or model-driven methodology. Alternatively, the model may be extracted
from the actual code. We have selected some target technologies to implement our ap-
proach for regular JUnit functional tests and WSDL-based web services. We plan to
implement the proposed approach for some of these technologies in the near future.

As for the algorithms, we intend to handle nested activities in a later version, so the
user can describe the system as a hierarchy of components and infer time limits and
throughputs in a top-down approach. Handling actions which are repeated in several
places would be interesting, but the cost of the algorithms might increase.
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