
M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 73–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Enabling Automatic Process-Aware Collaboration
Support in Software Engineering Projects

Gregor Grambow1, Roy Oberhauser1, and Manfred Reichert2

1 Computer Science Dept., Aalen University, Aalen, Germany
2 Institute for Databases and Information Systems, Ulm University, Ulm, Germany

{gregor.grambow,roy.oberhauser}@htw-aalen.de,
manfred.reichert@uni-ulm.de

Abstract. Software Engineering (SE) remains an immature discipline and SE
projects continue to be challenging due to their dynamic nature. One
problematic aspect is the coordination of and collaboration among the many
individuals working in such projects. Numerous efforts to establish software
engineering environments (SEEs) to address this aspect have been made.
However, since SE projects depend on individuals and their intentions, their
collaboration is still performed manually to a large degree. Manual tasks are
subject to human error in omission or commission that can result in
communication breakdowns which are compounded within multi-project
environments. This paper describes a synergistic approach that extends a
process-aware information system with contextual awareness and integrates this
in a SEE. This enables the system to support the users with active and passive
information and support collaboration. Context information is presented to the
users, providing them with process navigability information relating to their
current activities. Additionally, automated information distribution improves
awareness about the actions of others. Finally, this approach enables the
automatic initiation and governance of follow-up activities caused by changes
implied by other activities.

Keywords: Computer-supported Cooperative Work, Process-centered Software
Engineering Environments, Process-aware Information Systems, Context-
awareness, Semantic Web Applications.

1 Introduction

Recently, a trend towards greater automation and process-centricity can be observed
in various industries for achieving predictable quality and efficiency [1]. Typically,
process automation is applied in domains with foreknown and predictable activity
sequences such as production, business, and logistics. In the software development
domain, low-level operational workflows involving collaborations typically aberrate
sufficiently to make process automation especially challenging.

To enhance the automated coordination capabilities in software engineering
environments (SEEs), various challenges must be addressed. Software development is
project-oriented and lacks the typical production stage with repeatable activities or

74 G. Grambow, R. Oberhauser, and M. Reichert

interactions. Process-Centered Software Engineering Environments (PCSEEs) [2]
support such projects with both tooling and processes, yet these must be tailored to
the unique and diverse project and product needs (e.g., quality levels, team size, etc.).
While common software engineering (SE) process models (e.g., VM-XT [3] or Open
Unified Process [4]) have proven to be beneficial, they are typically manually
implemented (especially in small-to-medium enterprises), often remain coarse in their
granularity, are documented to an often general level, and rely on humans to follow
and map actual low-level concrete actions and events to the appropriate higher-level
process (process navigability).

In this paper, the following definition of process and workflow will be used:
Process Management deals with the explicit identification, implementation, and
governance of processes incorporating organizational or business aspects. Workflow
management, in turn, deals with the automation of business processes or parts thereof.
Consequently, a workflow is the technical implementation of a process (or part
thereof).

A lack of automatic process guidance and support in an SEE can result in a
disparity between the specified and the executed process, and lead to unpredictable
process and product quality. Furthermore, uncoordinated activities may occur,
affecting process efficiency. From the process perspective, activities and workflows
can be roughly separated in two categories: Intrinsic activities are planned and
executed as part of the SE process model (e.g., VM-XT [3] or Open Unified Process
[4]). Extrinsic activities, in turn, are executed outside the reference process model and
are thus unplanned and difficult to trace or support. For an example of extrinsic vs.
intrinsic workflows, we refer to Fig. 1. The figure shows a source code modification
activity (intrinsic) that causes necessary modifications on other artifacts. These
modification activities are not part of the process (extrinsic).

Fig. 1. Intrinsic and Extrinsic workflows

Our previous work has described a holistic framework that applies semantic
technologies to SE lifecycles [5] and integrates context-awareness and PAIS (Process-
Aware Information System) technology [6] to provide SE process support. [7] dealt

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 75

with the explicit modeling and execution support for extrinsic activities utilized for
the automated treatment of specialized issues in SE projects (e.g., bug fixing or
refactoring). [8] investigated consistency in the modeling of processes and workflows
in SE to unite abstractly specified processes as well as the concretely and
automatically supported workflows. Finally, automatic integration of quality aspects
into processes was investigated in [9][10][11].

To comprehensively support the SE process, various other aspects should also be
considered: As the SE process largely depends on individuals and their collaboration,
the concrete triggering and orchestration of collaboration activities is desirable. To
enable configurable collaboration support, various activity dependencies should be
supported. For instance, direct follow-up actions may be necessary while in other
cases notification to other team members may suffice. Extrinsic follow-up activities
should be connected to the appropriate intrinsic activities that caused them to support
traceability and integration into the SE process. In support of user contextual-
awareness, automated guidance should not only be provided for the activities in one
workflow (horizontal connections between the activities), but also vertically, making
the hierarchical connections between processes and workflows explicit.

This paper presents an approach for collaboration support featuring different
capabilities of active and passive information provision to users in an SE project.
Furthermore, the connection of intrinsic and extrinsic activities is addressed, featuring
a context-based reasoning process to automatically derive consequences of activities
(e.g., impacts on other artifacts) and to govern follow-up activities. Additionally, the
connection between abstract processes and concrete workflows is emphasized,
providing this information to the user to support navigability and process awareness.
The following three points sum up the contribution of this paper:

- Individuals working in multi project environments are supported by the automatic
provision of extended activity information and process navigability information.
- Automatic information distribution is enabled to inform individuals about various
events in a project including the actions of others.
- Automatic initiation and governance of related follow-up activities required by
certain actions is provided.

The structure of the paper is as follows: the problems addressed are illustrated in the
next section, followed in Section 3 with a description of our solution approach.
Section 4 shows the application of our approach to the illustrated problems. Section 5
addresses the issue of the additional effort required. Section 6 then discusses related
work, followed by the conclusion.

2 Problem Scenario

The issues being addressed will be illustrated using typical situations in a software
company: various projects are executed in parallel by different teams of different
sizes. People often have to switch between different projects, and within each project,
larger numbers of people are working on the same artifacts. Without additional

76 G. Grambow, R. Oberhauser, and M. Reichert

coordination effort things can easily be forgotten. Activities mostly imply changes to
artifacts, and thus not only relations between intrinsic and extrinsic activities exist,
but there is also a continuously changing artifact base. These facts result in the three
problems illustrated below:

Problem A. Project Switching. One issue reported by developers is related to
frequent project switching. A person doing this in such a multi-team / multi-project
environment has to manually gather context information after a switch to work
effectively: Which assignment has to be processed for which project? Which are
potential milestones and deadlines? What is the state of the currently processed
assignment? What are upcoming activities to be completed?

Problem B. Change Notification. When cooperatively working on the same artifact
base, activities and the accompanying changes to artifacts often remain unnoticed by
other people. For example, if two teams (e.g. a development team and a test team) are
working on the same source code artifacts, they might want to be informed about
changes to the artifacts. Such information is often transferred manually and is
therefore prone to forgetfulness.

Problem C. Follow-up Action Implications. Also when cooperatively working on
the same artifact base, artifact changes often imply certain follow-up actions that are
hitherto coordinated manually. This is typically dependent on the artifacts, their
relations, and the type of change (e.g., interfaces concern the architect,
implementation changes concern the testers, GUI changes concern the user manual
author). Fig. 1 depicts a scenario detailing this: It concerns a source code artifact that
is part of an interface component: since the file belongs to an interface component, the
applied changes possibly not only affect the file’s unit tests, but also other artifacts
such as the architecture specification or integration tests. These additional activities
are usually neither covered by the SE process nor governed by workflows; manual
coordination can lead to impacts being overlooked and result in inconsistencies, e.g.,
between the source code and the tests or specifications. The fact that these activities
belong to different project areas with often also different responsible persons makes
this even more difficult. Even if not forgotten, follow-up actions could benefit from
automated governance and support. Furthermore, it can be difficult to determine
which stakeholder should be informed about which change and when, especially
considering the dynamic and diverse nature of the artifact-to-stakeholder relationship
and various information needs.

3 Automatic Coordination Support

This section starts with a brief introduction of the framework we continue to develop
for supporting the SE process. In particular we want to make clear what capabilities
this approach can draw on. For further technical details on its realization, we refer to
[11]. The essence of our solution approach is the combination of an adaptive PAIS
with semantic technology. A Process Management module is used to model both

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 77

intrinsic and extrinsic workflows in an integrated way, while additional information
about hierarchical dependencies and the context are stored and processed in a
semantic-based context management module. To acquire information about the
environment, low-level events occurring during SE tool usage (e.g., saving a file or
changing code) are extracted and combined to derive higher-level activities such as
creating a unit test.

The realization of the solution approach is the Context-aware Software
Engineering Environment Event-driven frameworK (CoSEEEK). It is comprised of
modules in a service-based architecture: The Process Management module
orchestrates SE activities for all project participants. Adaptive PAISs support the
coordination of activities according to a pre-specified process model as well as
dynamic process changes (e.g., to add, delete, or move activities) in order to cope
with unforeseen situations [13][14][15][16]. To enable Context Management,
semantic technology was chosen due to its many advantages [17], especially a
vocabulary including logic statements about the modeled entities and relations as well
as a taxonomy for these entities. Furthermore, well-structured ontologies also enhance
interoperability between different applications and agents, fostering knowledge
sharing and reuse as well as enabling automated consistency checking. The Context
Management component makes heavy use of semantic technology, utilizing an OWL-
DL [18] ontology as well as SWRL [19] for semantic rules processing and SPARQL
[20] for semantic querying. Programmatic access to the ontology is supported by the
Jena framework [21]. Automatic reasoning capabilities as well as the execution of
SWRL rules [22] (while guaranteeing that their execution does not lead to violations
of description logic statements) are enabled by Pellet [23].

Event Extraction primarily utilizes sensors for collecting contextual state changes
in external elements via events and data associated with various SE tools. Therefore,
the sensor framework Hackystat [24] is applied. These low-level atomic events and
data are aggregated in the Event Processing module, which uses complex event
processing (CEP) [25] to create high-level events with contextual semantic value.

The combination of these modules enables CoSEEEK to automatically manage
ad-hoc dependencies of certain activities in an either active or passive information
distribution fashion to provide coordination support.

3.1 Active Coordination Support

Active coordination support enables the system to automatically assign follow-up
activities to responsible persons or teams. To realize this, the system must be aware of
the intrinsic activities and workflows that may cause the need for coordination. These
workflows, which are based on the users’ planned activities (called Assignments here,
e.g., develop some feature) and which are part of the SE process, are created within
CoSEEEK or imported from external process management tools (e.g., MicroTool
inStep) in use by an organization. In this paper, OpenUP is used as SE process model.
Assignments concerning software development are executed by the ‘Develop Solution
Increment’ workflow in that model and imply certain activities like ‘Implement
Solution’ or ‘Implement Tests’ for the user. The detection of required follow-up
activities is realized featuring a three-phased approach:

78 G. Grambow, R. Oberhauser, and M. Reichert

1. Determine Projects Areas Being Affected by an Activity: The first step is
configurable and can take into account various facts to determine which areas of a
project are affected. For the third problem in Section 2 such a configuration can be
‘Search for affected areas in case of technical issues if an activity implies a change to
an artifact and the artifact is a source code artifact belonging to an interface
component’.

2. Determine the Concrete Target Being Affected within the Area: The second
step takes the selected areas and the target of the applied activity as input. This target
can be a concrete artifact as in the given scenario or a more abstract section of the
project as, e.g., a module. The concrete target is then determined via relations of the
different sections. An example for this can be implementation and testing: the testing
(structural or retesting) of an artifact relates to its implementation. In the given
example, the relation does not need to be in place for the concretely processed
component, but can be also found if one exists elsewhere in the hierarchy (e.g., the
module the concrete artifact belongs to). If there is no direct relation from the
processed source code artifact, the system looks for other components the file belongs
to (e.g., the module).

3. Determine the Information Recipient Being Responsible for the Chosen
Target: Once the target of the information distribution or follow-up action is
determined, the responsible persons or teams have to be discovered. For example, if
the target of the follow-up action is a source code file with no direct responsible party
defined, the overlying sections are taken into account, e.g., the encapsulating module.
If a team is responsible, the information is referred to the designated contact of that
team for further distribution.

To enable such automated information distribution, a system must be aware of various
facts of the project. Furthermore, to realize automated detection of follow-up actions,
different concepts have to be present in the system in order to enable awareness of
them:

(1) The project has to be hierarchically split up into components like areas or
modules.

(2) Connections of relating components must be established; e.g., the fact that testing
a module relies on implementing that module.

(3) Information that can be used to clarify under which circumstances one area affects
another must be present.

(4) Different components must be classified; e.g., a package in the source code that
realizes the interface of a component.

To support this, the CoSEEEK Context Management component contains
representations of various project facts. To support awareness and to enrich workflow
execution with context information, as shown in Fig. 2, workflows enacted within the
Process Management module are annotated by concepts in the Context Management
module. A workflow is mapped by a Work Unit Container and an activity is mapped
by a Work Unit. These are in turn extended by Assignments and Assignment Activities,

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 79

which explicitly represent the content of the work the user has to perform for the
project. Different areas of a project (like ‘Implementation’ or ‘Testing’) are explicitly
modeled by the Area concept (1), while further separation of the project into logical
components is done by the Project Component (2). The latter is an abstract building
block for structuring a project, which has various subclasses.

Fig. 2 shows two of the subclasses of the Building Block: Artifact, which is used
for various types of processed artifacts (like documents or source code files), and the
Section that is used for concrete structuring purposes (e.g., used to map a source code
package). An Assignment Activity being executed by a Person processes a certain
Project Component. A Project Component, in turn, has a responsible Role taken by a
Resource that is a Team or a Person. To enable the configuration of various possible
impacts of an activity within the system, different concepts are used: The Potential
Impact captures potential impacts between Areas, like ‘When a technical change
happens to a component in Area a, this has an impact on Area b’. Project
Components of different Areas can be related to each other, like ‘Testing of Module x
relates to the implementation of Module x’. Many of the concepts also have asserted
subclasses for further classifying them. These subclasses of which two are shown in
Fig. 2 (3) are dependent on certain conditions. For example, if a Section is connected
to problems that were detected by the system (e.g., code problems indicated by static
analysis tools), the integrated reasoner automatically infers that it belongs to concept
Risk Section.

Fig. 2. Concepts enabling active coordination support

3.2 Passive Coordination Support

Passive coordination support comprises the provisioning of process navigability
information and automatic change notifications for users.

Navigability information support is enabled since the workflows governing the
users’ activities are mapped by concepts in the Context Management module. Thus
additional information becomes available to the user that can be useful, e.g., when
switching between the activities of different projects. The additionally modeled
activity information is illustrated in Fig. 3 and explained below. Additional

80 G. Grambow, R. Oberhauser, and M. Reichert

information comprises the current user Assignment: the Assignment Activity, Activity
Steps, the current Task, and the Activity Group to which the current Activity belongs.
These concepts can be useful for capturing exactly what the user is doing at the
moment as well as for additional support information coming from the process. An
example for all additional information presented here is provided in Section 4.

In the Context Management module, a concept exists mapping internal variables
used for workflow governance to so-called User Decisions. That way the user can
decide how the workflow is actually executed, incorporating information of the
current situation that cannot be known a priori. That way, the user not only has a more
semantic and usable influence on the workflow, but also knows what lies ahead. As
the more abstract process regions are connected to the operational workflows, the user
can also directly receive information about them. This includes e.g., information
about the current Project or its Milestones, which are also modeled in the Context
Management component.

 Context Management

Project
Component

Artifact

Resource

Person Team

Notification
Role

Status

Assignment

Assignment
Activity

Event Section

Work Unit
Work Unit ContainerProject

Milestone

Activity Step

Atomic Task

Activity Group

User Decision

Generalization

Association

Generalization

Legend

Fig. 3. Concepts enabling passive coordination support

Automatic change notification is the second passive coordination ability provided
by the system. To support users in their collaboration and to counteract forgetfulness,
automatic notifications can be beneficial in the first case for two situations in SE
projects: When events happen that relate to activities or artifacts and when status
changes occur according to the latter. Therefore, several concepts in the Context
Management component are involved as shown in Fig. 3.

To be able to easily add notification support for the aforementioned example in
Section 2, explicit concepts for Event and Status are utilized. Primarily, Events relate
to events that occur in the context of a SE project and that are automatically detected
by the Event Management module. The Status concept has been introduced to
explicitly model the status of various other concepts such as Assignments or Artifacts.
In an SE project, various artifacts exist with different relations belonging to different
areas of the project. Examples include requirements specifications or source code
artifacts. To be able to explicitly describe this in the Context Management module, the
Project Component is used as abstract building block for structuring of a project.

Specializations of this concept are the aforementioned Artifacts and Sections. As
example consider a source code structure where the sections depict the source code
packages. User management in the Context Management component includes

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 81

concepts for roles, persons, and teams. A Role can be used as a placeholder for an
activity when it is not yet known who should execute the activity. They can also be
used in relation to Project Components to express, e.g., that a Person is responsible
for a certain source code package. Persons and Teams are abstracted to a Resource
concept to enable the assignment of activities to Teams as well as single Persons.
Utilizing all of the aforementioned concepts, it is easily possible with the Notification
concept to configure user notifications relating to various events and status changes in
a SE project. Two types of notifications are supported: General notifications that are
abstractly pre-defined, e.g., a notification for a role in a process that has not yet
started. This notification is distributed to the person executing the role when the
process is running. The second type is user-related notifications that can be added by
the users themselves, as when a user wants to be kept up to date on the status of a
certain Artifact.

4 Application Example

For validating our solution, the problems from Section 2 are used. Prior work
investigated the practicality of technical aspects such as performance with regard to
CoSEEEK realization elements [7], [9].

For the problem example (A) of a user switching between different projects, the
solution illustrates the usability of additional process navigability information. In one
project, she deals with requirements elicitation and executes the ‘Identify and Refine
Requirements’ workflow from the OpenUP process [4]. In the other project, she
develops software executing the ‘Develop Solution Increment’ workflow. Fig. 4
shows diverse supplementary information on the Activities as it is specified in the
OpenUP process. There are supportive Activity Steps (as e.g., “Gather Information”),
a so called discipline for the Activity (e.g., “Requirements”, also provided by the
OpenUP process), the current processed task (e.g., “Coding”) and the specific User
Assignment (as ‘Develop Feature X’). Additionally, the specific project (e.g., ‘Project
A’) and its milestones according to the OpenUP process (e.g., ‘Initial Operational
Capability’) are also included. In the ‘Develop Solution Increment’ workflow there
are many decisions for potential loops or optional activities. These decisions are
dependent on internal workflow variables. In this example the mapping from
workflow variables to user decisions is done in a way that the user can directly select
the next upcoming activity. As shown in the example, after the ‘Implement Solution’
activity, there are four possible successors the user can directly choose.

The second problem (B) deals with information requirements relating to different
people and teams working on the same artifact base. The solution for this is a pre-
configured Notification to inform users or teams being responsible for source code
packages of changes made to them. As the Notification is pre-defined, it does not
relate to a concrete Person or Team but to a Role defined for a Section. This Role is
later taken by a Resource; when detecting that changes to Artifacts contained in that
Section are made, the Resource is automatically notified. However, users can
configure personalized Notifications as well: Assume that a user is interested in a
certain Assignment of another user as her work relies on it. Therefore, she registers for
a new Notification relating to the state of the Assignment. When the Assignment
reaches that state (e.g., ‘completed’) she is automatically notified.

82 G. Grambow, R. Oberhauser, and M. Reichert

The third problem (C) deals with intrinsic activities whose outcome requires
certain extrinsic follow-up activities. As illustrated in Section 2, the modification of a
source code artifact that belongs to the interface of a component is the target. Such
changes often require adapting integration tests or architecture documents. Dependent
adaptations usually do not appear in the workflows belonging to SE processes and are
thus extrinsic workflows. The given example illustrates the case for the follow-up
actions regarding the tests as shown in Fig. 5. It shows two defined
project areas ‘Implementation’ and ‘Test’. There is a PotentialImpact configured for
relating technical issues from ‘Implementation’ to ‘Test’. For the implementation
area, there are different modules with different packages. Modules x and y also
appear in the test area and relate to the counterparts in the implementation area as
indicated by the curved lines. Developer 2 is responsible for the tests of Modules x
and y. Assume now that Developer 1 changes a class belonging to Package b,
indicated by the change activity.

Fig. 4. Navigability information example

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 83

The information about the component, the kind of change applied to it, and the
user ID of the responsible person are forwarded via an event to the Process
Management module, which starts a workflow to govern the desired activities for the
respective user. This workflow can be based on a predefined workflow template or be
custom-built from a problem-oriented declarative definition as described in [7]. When
a task of that workflow becomes available to a user, an event is automatically
distributed to CoSEEEK’s web GUI shown in Fig. 6.

All tasks are shown at the bottom of the GUI. In order to avoid subjecting a user to
information overload, only the current task and the next upcoming task proposed by
the system are shown. The user may change the selection of the next upcoming task
via a dropdown list. In this example, the current task is “Implement Tests” from an
intrinsic workflow, while the next upcoming task is “Check Component due to
Interface Change” from an extrinsic workflow. The upper part of the GUI contains
information provided by the framework. Among other things, it can be used to display
additional task information and notifications about components for which change
notification is configured. This example shows the notification about the change of an
artifact.

Fig. 5. Active coordination support example

Fig. 6. CoSEEEK Web GUI

84 G. Grambow, R. Oberhauser, and M. Reichert

In summary, the resolution provides collaboration capabilities via coordination of
extrinsic and intrinsic workflows in a PAIS and the availability and use of context
information via semantic technology. Activities that are often omitted and not
modeled in PCSEEs are explicitly modeled and automatically coordinated via
CoSEEEK. Additional support is provided for software engineers working in multi-
project environments by making navigability information available and fostering
situational awareness. Finally, automatic information provision can keep users
updated on artifacts states or other new events in the project.

5 Modeling Effort

Additional modeling effort is imposed by the approach. The processes are modeled
not only in the PAIS but also in the ontology. Configuration is required for how
various follow-up actions should be treated. To keep the effort reasonable, some
default functions and definitions are provided in the framework. The semantic
enhancements to process management (WorkUnitContainers and WorkUnits) are
generated automatically from the workflow templates of the Process Management
module. To gain an awareness of project artifacts, scans are conducted on specified
folders. Since the system is aware of SE tools via sensors, it becomes aware of all
processed and new artifacts, and the information is acquired on the fly. An initial set
of ProjectComponents is provided and the structure of certain Areas can be imported,
e.g., from a folder structure or a source code package structure. Examples include the
Areas ‘Implementation’ and ‘Test’: the system can automatically read the package
structure and thus import references to all artifacts into the ontology that are
hierarchically organized under various Sections that are created from the different
packages in the source code. The names of the packages can be automatically
matched to those to which they may relate. For instance, relations between ‘Test’
packages and ‘Implementation’ packages can be automatically established.

6 Related Work

With regard to PCSEEs, [13] describe SOA-based extensible and self-contained sub-
processes that are aligned to each task. A dynamic runtime selection is made
depending on the context of the particular work instance. OPEN [26] is a CORBA-
based PCSEE that addressed business, quality, model, and reuse issues. DiME [27]
provides a proprietary, integrated, collaborative environment for managing product
definition, development, and delivery processes and information. CASDE [28] and
CooLDev [29] utilize activity theory for building an environment supporting
collaborative work. CASDE features a role-based awareness module managing
mutual awareness of different roles. CooLDev is a plug-in for the Eclipse IDE that
manages activities performed with other plug-ins in the context of global cooperative
activities. CAISE [30] is a collaborative SE framework with the ability to integrate SE
tools. CAISE supports the development of new SE tools based on collaboration
patterns.

An industry approach for collaborative development is provided by the IBM Jazz /
Rational Team Concert products [31]. Jazz offers an infrastructure for distributed

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 85

development including the technical basis for integration of various clients as well as
data and services. It enables comprehensive project, bug, and configuration
management as well as event notifications, traceability, and other software
development related tasks. Team Concert is a collaborative software development
environment built on Jazz technology utilizing its capabilities to provide an integrated
solution for software configuration management, work item management, and build
management with additional features like customizable dashboards, milestone
tracking, or process templates for common processes.

In contrast, CoSEEEK offers a combination of features not found in the
aforementioned approaches: workflow guidance is not only offered for activities
contained in development processes (intrinsic), but also for extrinsic activities, which
are not explicitly modeled within those processes. The holistic combination of all
project areas in conjunction with semantic technology also enables the framework to
provide intelligent decisions and thus a higher level of automation. The tight
integration of PAIS technology with context knowledge not only enables the
distribution of information, but also the automated support and governance of
activities in adapted workflows.

Modeling SE processes in semantic technologies can enhance reuse and leverage
available tooling, as shown by [32]. [33] used an ontology for CMMI-SW
assessments, and [34] used ontologies for the Software Engineering Body of
Knowledge (SWEBOK). CoSEEEK leverages semantic usage for real-time
contextual-awareness in SEEs to improve SE workflows and collaboration and for
supporting navigability and situational-awareness. The main differentiation criterion
to other approaches utilizing ontologies for collaboration is the holistic integration of
all project areas to foster synergies, and in having collaboration not be the sole focus
of the framework (e.g., software quality assurance is adaptively integrated as
described in [11]). Other approaches have collaboration via ontologies as their focus
[35][36]. [35] presents a workflow-centric collaboration system whereby the main
component is an ontology repository with ontologies of different abstraction levels.
The process model is based on enhanced Petri nets and thus lacks complementary
support for dynamic adaptability. [36] presents an Ontology for Contextual
Collaborative Applications (OCCA) that provides a generic semantic model
specialized for distributed, heterogeneous, and context-aware environments. In
contrast to these approaches, CoSEEEK utilizes querying and reasoning capabilities
over an ontology and integrates these with process management to support automated
dynamic process governance.

7 Conclusions

The high degree of dynamic collaboration in SE raises challenges for the automated
support of process awareness and guidance in SEEs. Currently, SEEs lack contextual
information and integration, especially with regard to adaptive collaboration and
workflows. The presented CoSEEEK approach extends adaptive PAIS with semantic
web technologies and advanced event processing techniques. CoSEEEK explicitly
models and manages both intrinsic and extrinsic activities. These are coordinated, and
the automatic initiation and distribution of activities can be individually configured. A
dynamic information distribution strategy enables related components to be associated

86 G. Grambow, R. Oberhauser, and M. Reichert

even if no direct relations between the source component and the target component
exist. The person being responsible for a component can also be determined if no
direct responsibility is defined. The procedure requires neither rigidly predefined
information channels nor relies on comprehensive and fine-grained predefined
information on relating artifacts or responsible persons. The configuration effort to
enable automated coordination is reduced by the ability to automatically import
needed information and via the inference and reasoning capabilities.

As the automatic initiation of new follow-on activities is neither necessary nor
desired in all cases, the system also provides passive collaboration support abilities.
These comprise automatic user notifications on various events in a project. Both
general pre-configured notifications and user-configured personalized notifications
are possible.

Extrinsic activities that have hitherto typically been excluded from modeling are
now guided by workflows. These capabilities enable the integration of general
process models with concrete activities even if they are extrinsic to a particular SE
process. Support for situational awareness and navigability becomes vital as
collaborations become more complex. Additional process navigability information
can be automatically provided by CoSEEEK. Individuals working in multi-project
environments can profit from this information since it supports them operationally,
e.g., when they are switching contexts by providing all relevant information for the
current activity.

The presented scenario demonstrated a situation where improved coordination and
situational awareness were supported while providing process guidance and
navigability for collaborating software engineers, enhancing process quality.

Automated support for coordinated collaborative software engineering, with its
human interactions and continuously changing tool and process environment, will
remain a challenge. Further research potential lies in the aggregation and utilization of
available contextual information to increase process effectiveness and efficiency.
Future work will investigate industrial usage in production environments with our
project partners. For efficiency, a planned feature will aggregate related tasks and,
when a predefined threshold is reached, trigger a workflow instance with the
cumulated task information. More complex task treatments can also be designated:
e.g., in an agile project, emergent uncompleted tasks can be collected and stored in a
backlog to inform team members at the beginning of the next iteration. A GUI that
enables the easy definition of rules for the automatic initiation of follow-up activities
is planned. It will also support the easy registration for notifications on state changes
of activities or artifacts or other events.

Acknowledgements. This work was sponsored by BMBF (Federal Ministry of
Education and Research) of the Federal Republic of Germany under Contract No.
17N4809.

References

1. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of process-oriented
information systems: Problem analysis, critical success factors, and implications. IEEE
Transactions on Systems, Man, and Cybernetics 38(3), 280–291 (2008)

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 87

2. Gruhn, V.: Process-centered software engineering environments, a brief history and future
challenges. Annals of Software Engineering 14(1), 363–382 (2002)

3. Rausch, A., Bartelt, C., Ternité, T., Kuhrmann, M.: The V-Modell XT Applied–Model-
Driven and Document-Centric Development. In: Proc. 3rd World Congress for Software
Quality, vol. III, pp. 131–138 (2005)

4. OpenUP (2011), http://epf.eclipse.org/wikis/openup/
5. Oberhauser, R., Schmidt, R.: Towards a Holistic Integration of Software Lifecycle

Processes using the Semantic Web. In: Proc. 2nd Int. Conf. on Software and Data
Technologies, vol. 3, pp. 137–144 (2007)

6. Oberhauser, R.: Leveraging Semantic Web Computing for Context-Aware Software
Engineering Environments. In: Semantic Web, pp. 157–179. In-Tech, Vienna (2010)

7. Grambow, G., Oberhauser, R., Reichert, M.: Semantic workflow adaption in support of
workflow diversity. In: Proc. 4th Int’l Conf. on Advances in Semantic Processing, pp.
158–165 (2010)

8. Grambow, G., Oberhauser, R., Reichert, M.: Towards a Workflow Language for Software
Engineering. In: Proc. 10th IASTED Conference on Software Engineering (2011)

9. Grambow, G., Oberhauser, R.: Towards Automated Context-Aware Selection of Software
Quality Measures. In: Proc. 5th Intl. Conf. on Software Engineering Advances, pp. 347–
352 (2010)

10. Grambow, G., Oberhauser, R., Reichert, M.: Contextual Injection of Quality Measures into
Software Engineering Processes. Int’l Journal on Advances in Software 4(1 & 2), 76–99
(2011)

11. Grambow, G., Oberhauser, R., Reichert, M.: Employing Semantically Driven Adaptation
for Amalgamating Software Quality Assurance with Process Management. In: Proc. 2nd
Int’l. Conf. on Adaptive and Self-adaptive Systems and Applications, pp. 58–67 (2010)

12. Grambow, G., Oberhauser, R., Reichert, M.: Towards Automatic Process-aware
Coordination in Collaborative Software Engineering. In: Proc. 6th International
Conference on Software and Data Technologies, pp. 5–14 (2011)

13. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006, Part I. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg
(2006)

14. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Computer Science-Research and Development 23(2),
81–97 (2009)

15. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity–dynamic process lifecycle support.
Computer Science-Research and Development 23(2), 47–65 (2009)

16. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in Process-Aware Information
Systems. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp.
115–135. Springer, Heidelberg (2009)

17. Gasevic, D., Djuric, D., Devedzic, V.: Model driven architecture and ontology
development. Springer (2006)

18. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C
recommendation (2004)

19. World Wide Web Consortium: SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission (2004)

20. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C WD 4 (2006)
21. McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing 6(6), 55–59 (2002)

88 G. Grambow, R. Oberhauser, and M. Reichert

22. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web
Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)

23. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–
53 (2007)

24. Johnson, P.M.: Requirement and design trade-offs in Hackystat: An in-process software
engineering measurement and analysis system. In: Proc. 1st Int. Symp. on Empirical
Software Engineering and Measurement, pp. 81–90 (2007)

25. Luckham, D.C.: The power of events: an introduction to complex event processing in
distributed enterprise systems. Addison-Wesley Longman Publishing Co., Inc., Boston
(2001)

26. Henderson-Sellers, B.: Process metamodelling and process construction: examples using
the OPEN Process Framework (OPF). Annals of Software Engineering 14(1), 341–362
(2002)

27. Koenig, S.: Integrated process and knowledge management for product definition,
development and delivery. In: Proc. IEEE International Conference on Software-Science,
Technology & Engineering, p. 133 (2003)

28. Jiang, T., Ying, J., Wu, M.: CASDE: An Environment for Collaborative Software
Development. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.) CSCWD.
LNCS, vol. 4402, pp. 367–376. Springer, Heidelberg (2007)

29. Lewandowski, A., Bourguin, G.: Enhancing Support for Collaboration in Software
Development Environments. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.)
CSCWD. LNCS, vol. 4402, pp. 160–169. Springer, Heidelberg (2007)

30. Cook, C., Churcher, N., Irwin, W.: Towards synchronous collaborative software
engineering. In: Proc. 11th Asia-Pacific Software Engineering Conference, pp. 230–239
(2004)

31. IBM Jazz, http://www.jazz.net
32. Liao, L., Qu, Y., Leung, H.: A software process ontology and its application. In: Proc.

ISWC 2005 Workshop on Semantic Web Enabled Software Engineering, pp. 6–10 (2005)
33. Soydan, G.H., Kokar, M.: An OWL ontology for representing the CMMI-SW model. In:

Proc. 2nd Int’l Workshop on Semantic Web Enabled Software Engineering, pp. 1–14
(2006)

34. Calero, C., Ruiz, F., Piattini, M.: Ontologies for software engineering and software
technology. Springer-Verlag New York Inc. (2006)

35. Yao, Z., Liu, S., Han, L., Ramana Reddy, Y.V., Yu, J., Liu, Y., Zhang, C., Zheng, Z.: An
Ontology Based Workflow Centric Collaboration System. In: Shen, W., Luo, J., Lin, Z.,
Barthès, J.-P.A., Hao, Q. (eds.) CSCWD. LNCS, vol. 4402, pp. 689–698. Springer,
Heidelberg (2007)

36. Wang, G., Jiang, J., Shi, M.: Modeling Contexts in Collaborative Environment: A New
Approach. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.) CSCWD. LNCS,
vol. 4402, pp. 23–32. Springer, Heidelberg (2007)

	Enabling Automatic Process-Aware CollaborationSupport in Software Engineering Projects
	Introduction
	Problem Scenario
	Automatic Coordination Support
	Active Coordination Support
	Passive Coordination Support

	Application Example
	Modeling Effort
	Related Work
	Conclusions
	References

