
M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 38–55, 2013.
© Springer-Verlag Berlin Heidelberg 2013

SADT/IDEF0 for Augmenting UML,
Agile and Usability Engineering Methods

David A. Marca

The University of Phoenix, Online School College of Information Systems and Technology,
3157 East Elwood Street, Phoenix, Arizona 85034, U.S.A.

dmarca@email.phoenix.edu

Abstract. Many experts state that: a) specifying "all the small parts of a
system" and b) correct expected system usage, can make Agile Software
Development more effective. Unified Modeling Method (UML) addresses the
former; Usability Engineering addresses the later. Taken together, they create a
systems de-velopment framework, capable of: a) specifying functions, data,
behavior and usage, b) rapid prototyping, and c) verifying system usability and
correctness. All three of these methods focus first on the system, while
secondarily trying to ascertain system context. Correct and complete context
requires domain modeling. Structured Analysis and Design Technique
(SADT/IDEF0) is a proven way to model any kind of domain. Its power and
rigor come from: a) a synthesis of graphics, natural language, hierarchical
decomposition, and relative context coding, b) distinguishing controls from
transformations, c) function activation rules, and d) heuristics for managing
model complexity. This paper explains how SADT/IDEF0 domain modeling
can bring correct and complete context, to today’s commonplace disciplines of
the Unified Modeling Language (UML), Agile System Development, and
Usability Engineering methods.

Keywords: Domain Modeling, General Systems Theory, UML, Agile
Development, Usability Engineering, SADT, IDEF0, Domain Driven Design.

1 Introduction

Commercial software engineering disciplines have come a very long way since their
post World War II origins. Three of the more commonplace disciplines of today are:
a) Unified Modeling Language – UML [5], Agile Software Development [2], and
Usability Engineering [29]. When used in combination, these methods have a strong
track record for developing software for many kinds of problems and domains. Over
the last ten years, a large amount of research has been done on the shortcomings of
these methods, and a collection of this research is presented in this paper. Taken as a
whole, this research suggests that many shortcomings arise because domain modeling
is not at the core of these methods. Therefore, one way to bolster today’s common-
place software development methods is to augment with a proven domain modeling
method, such as SADT/IDEF0. Domain modeling is at the core of SADT/IDEF0, and
when properly used, the method can produces holistic domain models that can address
any level of complexity or abstraction. To explain:

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 39

1.1 Domain Modeling Is Not the Core of Current Methods

The first, and very important, aspect about modeling with today’s commonplace
methods is that UML [5], Agile Software Development [2], and Usability Engineering
[29] have their origins rooted in software systems. In other words, their focus is on the
software system. Thus, their principles, languages and practices were invented for
creating software. While each includes a component for domain modeling, that com-
ponent is not at the core of the method. For example: UML’s core is software system
specification, Agile’s core is rapid software deployment, and UE’s core is evaluation
of the software system during its use. For these disciplines, domain modeling is just a
first step to getting to the core work.

1.2 Domain Modeling Is at the Core of SADT/IDEF0

In contrast, SADT/IDEF0 is rooted in general systems theory [35]. Its focus is any
kind of system. Interestingly, when it was first introduced, many in the commercial
world confused it for being a method that could just describe either software systems
or manufacturing processes. While it can describe these two kinds of systems, its
strength is its focus on systems in general. Therefore, it has unique principles, simple
language, and special practices for describing any real-world phenomenon – domain
modeling is its core! When used correctly, SADT/IDEF0 can produce a set of very
concise, small models, with tightly connected context and content. This paper will
illuminate the often misunderstood potential of SADT/IDEF0 as a contributor to, and
not a replacement for, today’s software development methods (see Figure 1).

Fig. 1. Where SADT/IDEF0 augments UML, agile and usability engineering methods

1.3 The Use of SADT/IDEF0 Produces Holistic Domain Models

The distinguishing, unique aspect of SADT/IDEF0 is its ability to holistically
describe an entire domain to any desired low level of detail, and to describe its
context to any desired high level of abstraction. It is thus a story-telling discipline
with very rigorous engineering syntax (i.e. boxes and arrows) and semantics (e.g. box
sides for Input, Control, Output, and Mechanism – ICOM – and corresponding

System
Agile

Methods
Develop &

Deploy Fast

Usage
Usability

Engineering
Verify

Usability

SADT/
IDEF0

Understand
Environment

Specification
Unified Modeling

Language
Define

Operation

Domain

System
Agile

Methods
Develop &

Deploy Fast

Usage
Usability

Engineering
Verify

Usability

SADT/
IDEF0

Understand
Environment

Specification
Unified Modeling

Language
Define

Operation

Domain

40 D.A. Marca

implicit off-page connectors), plus heuristics for managing model complexity (e.g.
hierarchic decomposition, 3 to 6 boxes per decomposition, single purpose and
viewpoint per model, model “call” syntax). For example, it distinguishes controls
from inputs, and advocates stopping model decomposition when the model’s purpose
has been fulfilled. It is the aspect of simple, concise, complete, context-rich, holistic
description that is the primary contribution of SADT/IDEF0 to the other
aforementioned methods [25].

1.4 SADT/IDEF0 Can Address any Level of Complexity or Abstraction

The statement often arises: “My method is effective at domain modeling, so I do not
need another method.” My response: “yes and no,” and here is why: For very simple
domains or systems, it is easy to “get one’s head around the problem.” Thus, no other
method is needed to understand the system’s immediate context. However, for very
complex problems (e.g. enterprise-wide solutions, large weapons such as a submarine,
aircraft sheet metal fabrication), no single software developer can understand the
whole problem. At the extreme case (e.g. well log interpretation, disaster recovery,
decision making, strategy formulation), no domain expert may know or be able to
articulate consistently and accurately, the entire domain. Such situations require a
context map [52] to documented an understanding of the domain that must then drive
the solution design [54] [53]. SADT/IDEF0 has an extremely simple graphic language
and a model creation technique that, from the same starting point of any particular
subject, can describe: a) all details (i.e. decompose complexity), b) the context of that
subject (i.e. context modeling).

2 Why Consider SADT/IDEF0?

Since the 1970’s, SADT/IDEF0 has been used to successfully describe a vast number
and variety of domains. The reason for this success is best described by Doug Ross in
his seminal paper [35]. To paraphrase: SADT/IDEF0 incorporates any other lan-
guage; its scope is universal and unrestricted. It is concerned only with the orderly
and well-structured decomposition of a subject. Model decomposition is sized to suit
the modes of thinking and understanding of the viewpoint of the model and the
intended audience of readers. Units of understanding (i.e. boxes and their data) are
expressed in a way that rigorously, precisely and consistently represents domain
interre-lationships. Decomposition is carried out to the required degree of depth,
breadth, and scope while still maintaining all of the above properties. Thus,
SADT/IDEF0 increases the quantity and quality of understanding that can be beyond
the limitations inherently imposed by other kinds of natural or formal languages.
Some details:

2.1 Vast Experience in a Wide Variety of Domains

SADT/IDEF0 has over 35 years of domain modeling experience, across a vast
number of problems involving systems ranging from tiny to huge, in a wide variety of
industries [24]. It has been used in commerce, government and military around the
world. It has been used by small of privately held companies (e.g. 1-2 person

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 41

start-ups) to some of the largest of largest organizations in the world (e.g. the U.S. Air
Force), and on some of the largest initiatives (e.g. the U.S.A.F. Sheet Metal
Fabrication Project [55]). This widespread success is due to its very strong set of
domain modeling concepts, principles and features. A summary of these “features” is
given in the Appendix of this paper, and is organized into two tables. Table 1
summarizes the box and arrow syntax and semantics, and the rules for how they
interconnect. Table 2 completes Table 1 and summaries the reference language used
to identify model elements. None of the aforementioned methods can claim the array
of features, the richness of graphic semantics, the number of in-context supplements,
or the longevity of success across so many industries and problems for domain
modeling.

2.2 Strong Conceptual Underpinnings for Modeling

Since the 1970s, experts have agreed that deep understanding of the domain is vital
for successful and effective software engineering [44]. The conceptual underpinnings
of SADT/IDEF0 continue to be cited as being very strong for domain modeling. Most
notably: a) tightly managed multiple views at the architecture level for complex
systems [19], b) support for aspect-oriented modeling by being able to modularize
cross-cutting concerns [17], c) defining boundaries essential for specifying objects,
system scope, human-computer interaction [40], d) hierarchical exposition of detail
for very large domains without loss of context and without making errors when going
to next levels of detail/abstraction [31], e) specifying strong versus weak influence
that each datum has on its functions [40], and f) “calls” (i.e. just like a software
subroutine call) a model from another model to maximize reuse [20].

2.3 SADT/IDEF0 Features Are for Domain Modeling

Back in the 1970s, we did not have the universally understood notion of “ontology” as
we know it today in the software engineering field. Nonetheless, since 1977, SADT™
has had a complete ontology for domain modeling [38]. Back then, the components of
the ontology were called “features.” Three of its core features are: context, model, and
viewpoint [35]. With these three features, a core modeling principle was constructed:
one model = one subject, described from one viewpoint [18]. This is, in effect, what
we commonly call today the “system boundary.” This demarcation point allows
SADT/IDEF0 to consider a domain to be the whole context within which a system
operates (e.g. the enterprise for a financial system as well as the business environment
around that enterprise, the submarine for a defensive weapon system, the building for
a thermostat control system). Also, SADT/IDEF0 has a simple box-and-arrow graphic
language with associated semantics that make it ideal for capturing domain
knowledge and reviewing it with end-users [10].

2.4 Preservation of Context

Probably the most important aspects of a domain modeling method are: a) simple
syntax within which domain-specific language can be embedded, b) powerful seman-
tics for representing the various roles information play in a domain, c) rigorous de-
composition rules to support the detailing of highly complex subjects as well as the

42 D.A. Marca

abstraction (to any level) of the context around any given system boundary, and d)
consistent subject boundary management so that no context is lost when you move
“into” the details of the subject. Together, these aspects provide a means by which
context is always preserved. Figure 2 provides an example of context preservation.
Notice how the data (arrow) inputs (I), controls (C), outputs (O), and mechanisms (M)
that cross the functional boundary (box) are tied directly to the arrows on the diagram
that details the function through the use of ICOM coding. With ICOM codes, you can
never loose your way when you decompose a subject or create an abstraction that
represents the context of a subject. Thus, since context preservation is crucial for
domain modeling, SADT/IDEF0 has merit for augmenting the system development
methods [25] such as the ones given earlier in this paper.

Fig. 2. An example of how SADT/IDEF0 models preserve context [24]

3 Augmentation Approach

The augmentation approach given in this paper is based on over 10 years of research
by many practitioners and researchers. They point out particular shortcomings in the
domain modeling portions of the aforementioned methods. They identified particular
domain knowledge that, if it were available, could improve the results generated by
the methods. So, given that particular domain knowledge required by UML, Agile and
Usability Engineering methods. In short, correct, comprehensive and consistent speci-
fications of domain knowledge are needed. Not only can SADT/IDEF0 correctly,
comprehensively and consistently describe an entire domain – and not just the imme-
diate context of a software system – it can describe that domain in rich and varied
ways using carefully designed in-context supplements [38]. To explain:

M1

I2

O2

I1 O1

C1 C2

M1

I2

O2

I1 O1

C1 C2

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 43

3.1 Domain Knowledge Required by Other Methods

When practiced correctly, SADT/IDEF0 compresses a wealth of domain knowledge
into a manageable set of small models. SADT/IDEF0 models and the special supple-
ments created from the diagrams in those models, describe particular domain know-
ledge which the aforementioned methods depend upon: a) for UML: the system
interface with its environment, decisions around manual versus automated function
realization, functional scope, important objects in the domain, data dictionary, control
data distinct from transactional data, overarching rules (often expressed as policies or
doctrine), domain events and responses to those events (often called scenarios), and
common versus special case scenarios; b) for Agile: same as for UML; and c) for
Usability Engineering: the users’ work, the context of that work, the tasks for
accomplishing the work, the systems users need, and system usage scenarios.

3.2 Strong Specifications of Domain Knowledge

This paper briefly looks at some of the ontology of SADT (see Appendix), plus some
additional features added after 1977, and explain how they can be used to augment the
domain modeling portions of UML, Agile, and UE. Section 4 explains through figures
and tables how SADT/IDEF0 models create stronger specifications of domain
knowledge than the method it is augmenting. For example: a) knowledge that would
have been missed by the other method, b) knowledge that would have been very hard
to identify or describe by the other method, c) knowledge that needs to appear in all
three methods that does not now do so, and d) how knowledge can be traced through
all three methods. It is important to repeat that the domain modeling portions of the
aforementioned methods are not bad; they just have shortcomings that over 10 years
of practice have identified and documented (see References). SADT/IDEF0 can
support the improvement recommendations in that documentation.

3.3 Knowledge Specification Using In-Context Supplements

The basic “unit of specification” of SADT/IDEF0 is the diagram, and a collection of
diagrams comprises a model. However, SADT/IDEF0 has additional means by which
domain knowledge is specified. To explain, the SADT/IDEF0 modeling process gives
a person much more information than what is put on the basic diagram [24]. For
example: a) terminology definitions, b) properties of functions and data, c) in-context
narratives about the domain, d) particular situations (e.g. control flows, work flows)
and special circumstances (e.g. mutually constraining functions) that occur in the
domain, and e) rules by which functions activate and data must or must not interact
with each other. Figure 3 gives an example of one basic diagram plus its supplemental
pages, each identified with a letter corresponding to a-e above.

SADT/IDEF0 uses diagram supplements to capture this information, usually just
after a basic diagram is approved by the domain experts that were interviewed by the
systems analyst who authored the diagram. The supplements are: i) glossary page, ii)
for exposition only (FEO) page, and iii) text page [38]. A glossary page defines
terminology. A text page succinctly describes the operation of each box on the
diagram. FEO pages contain closely related figures or pictures, or they annotate the

44 D.A. Marca

basic diagram with: property labels, highlighted boxes and arrows, or box activation
rules. Each supplement is derived directly from only its basic diagram, and thus these
specifications of domain knowledge are always inside the context of one, well-
bounded subject. Thus, SADT/IDEF0 supplements are fully consistent with each
other.

Fig. 3. A supplement set for a single SADT/IDEF0 diagram [24]

3.4 SADT/IDEF0 Ontology and Model Supplements Enable Augmentation

Figure 3 shows that the supplements developed directly from a single diagram com-
prise a rich specification of one bounded subject in the domain. Return to Table 1 and
2 in the Appendix, and identify all the ontology elements that go into these
supplements: you will see the depth of SADT/IDEF0 for representing domain
knowledge. As Section 2.4 says, the ontology is power enough for describing any
system to any level of detail and any level of abstraction without loosing context.
Thus:

Hypothesis 1: A set of SADT/IDEF0 diagrams and supplements that correctly and
completely describe the domain in which a software system will operate, has content
that is essential for augmenting the UML, Agile, and Usability Engineering methods.

Hypothesis 2: The content of those SADT/IDEF0 models and diagram supplements
can be extracted and organized so that it can become useful input to the UML, Agile,
and Usability Engineering methods, and without altering those methods.

 AB C

D

E

AB C

D

E

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 45

4 Augmentations for UML, Agile and Usability Engineering

The proposed augmentation approach centers on comprehensive, correct and consis-
tent specifications of domain knowledge. When used properly, SADT/IDEF0 can
create such specification of an entire domain, not just the immediate context, for a
software system. And it can describe that domain in rich and varied ways using in-
context supplements which contain the: language, beliefs, assumptions, human
organization, human work, work tasks and tools, and system usage expectations, that
are vital to the successful application of UML, Agile, and Usability Engineering
methods. This section summarizes shortcomings and corresponding improvement
recommendations, based on over 10 years of experience with the aforementioned
methods. The combination of shortcomings, recommendations, and the
representational power of SADT/IDEF0 diagrams and supplements led to this
approach.

4.1 Benefits to UML

UML Shortcomings. Experts have consistently noted that object-oriented code design
methods are better at specifying software than they are at modeling domains [16]. For
domain modeling, UML considers the domain to be the entities that touch the
software system [27], and that is what UML “domain model” specify. The only other
outward-facing UML model, the “business model,” specifies how the software system
will be used [56] [57]. These models can define a software system’s boundary,
provided they are complete and accurate. But assuring completeness and accuracy
without context is risky. Since modeling languages optimized for software systems
are less effective at modeling the software system’s environment, augmentations have
been proposed to attach more domain knowledge to UML software specifications.

Fig. 4. How UML can benefit from SADT/IDEF0 domain modeling

SADT/IDEF0 Feature Benefits to UML

Activation Rule In-context specification of business rule or decision-making rule.

Annotation -- Graphic (Diagram Highlights)
In-context system use case specifications are created by telling a story based on just the
highlighted boxes and arrows.

Annotation -- Text (Diagram Notes) A well-written paragraph for each box can turn into formal descriptions of the domain.

Context Diagram, Context Model
In-context general background knowledge: a) to any highest level of abstraction, b) to any lowest
level of detail.

Control Versus Input
Separation of concerns: an accurate & complete model of the control system independent from an
accurate & complete model of the transaction system.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example:
"we always did it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") In-context domain terminology, from which an ontology for the domain can be created,

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined
the human/system interface points.

Feedback Loop (output-input, output-control)
Useful for understanding: a) domain pathologies, b) interaction scenarios, c) architectural
constraints.

Model Tie (i.e. "model call") Encoding
In-context formal description of "aspect," permits faster identification of cross-system common
functionality.

Small, Multiple Models
Identification of key objects in the domain. Specify object functions independent of object
modes/states.

Why, What, How (i.e. levels of abstraction)
Separation of concerns: distinct models for why (rationale), what (function), and how (mechanism)
= modular understanding of context at different levels of abstraction.

46 D.A. Marca

UML Augmentation. The augmentations that suggest strengthening UML’s ability to
define a software system’s environment advise doing domain modeling using some
other language or tool, and then linking captured knowledge to UML software specifi-
cations. For example: a) domain ontology database [6], b) general background
knowledge base with reasoning logic [43], c) in-context identification, specification
and validation of business rules [16] [47], and decision-making rules [58], d) how and
why people do the work that they do [23], and e) formal descriptions of the domain
[7]. Taken together, these augmentations suggest: a) that SADT/IDEF0 models of a
domain contain knowledge that can benefit UML specifications, and b) efficacy can
be achieved if domain modeling is a activity distinct from software specification.
Figure 5 shows how SADT/IDEF0 diagrams and supplements can augment UML.

Fig. 5. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment the
development of UML specifications

4.2 Benefits to Agile

Agile Shortcomings. One component of the Agile Manifesto advocates working
software over comprehensive documentation [2]. Not surprisingly, traditional domain
modeling methods have not heretofore been recommended for augmenting Agile
software development efforts. However, "small method" augmentations have been
recommended since Agile was first purported. These suggestions carefully
distinguish “comprehensive” from “essential” documentation. Yes, comprehensive
documentation can, when taken to the extreme, merely adds time and cost to projects
without adding value to the software system. But taken to the other extreme, a lack of
documentation altogether often creates gaps in verified understanding between users
and software developers, and leaves no rationale behind for those who maintain or
wish to reuse the resulting software system. Clearly, a middle ground of specification
(i.e. for domain, analysis and design) would seem to benefit all parties, so long as
those specifications are efficient and effective [3]. Figure 6 summarizes the benefits.

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

Object,
Class,

Relationship

Types, Roles,
Interfaces

Use Case &
Interaction

Business
Rule / Event

Activity Diagram
& State Machine

1

2

4

3

55

6

Aspect

7

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 47

Fig. 6. How agile can benefit from SADT/IDEF0 domain modeling

Agile Augmentation. Past recommendations have suggested augmenting the informal
artifacts of Agile, and advocate for practices that focus on the domain to explain why:
a) people need the system, b) will use the system in particular ways, c) they expect to
see certain menus, displays, interactions, and functionality, and d) they are investing
their time in the software development project. For example: a) documenting domain
knowledge using JAD [14], self-reflection [14], and Wikis [33] [11], b) making and
keeping fixed major object architecture decisions which enable parallel development
by many Agile teams in support of very large projects [34] [3], c) documenting
system design knowledge with informal specifications [37], and informal tools [8], d)
making explicit tacit design assumptions with Total Quality methods [12] and self-
reflection [36], and e) publishing (including vital documentation) competing
prototypes to the wider community for evaluation and selection a best solution for
reuse [50]. Taken together, these recommendations point to an interesting line of
augmentation (Figure 3) by using traditional modeling methods such as
SADT/IDEF0. Figure 7 shows how SADT/IDEF0 diagrams and supplements can be
used to augment Agile.

4.3 Benefits to Usability Engineering

Usability Engineering Shortcomings. Practitioners and researchers have already
shown: a) how Usability Engineering can be combined with Agile [15] [59], b) that
particular combinations can enable effective design space exploration [32], c) and that
the prototypes from those explorations can be systematically evaluated and
augmented to create best-in-class production software [49]. However, such outcomes
rely on augmenting the traditional usability engineering methods with very good
knowledge acquisition methods and very good modeling tools [44] [41]. To explain,
Usability Engineering has had a tradition of employing the concepts and methods of
participatory design [42] to obtain optimal understanding of a domain and especially
the tacit knowledge of domain inhabitants. So, traditional Usability Engineering
methods have employed ethnographic techniques, which have traditionally relied on

SADT/IDEF0 Feature Benefits to Agile Software Development

Activation Rule
Complete hierarchy of rule cause-and-effect: Highest-level rule activation causes lower-level rule activations
(traceability).

Annotation -- Graphic (Diagram Highlights)
In-context system use case specifications are created by telling a story based on just the highlighted boxes and
arrows.

Annotation -- Text (Diagram Notes) In-context informal descriptions of software activations (include in prototype wrapper documentation).

Context Diagram, Context Model In-context general background knowledge: a) to any highest level of abstraction, b) to any lowest level of detail.

Control Versus Input Understand how to make, and then keep fixed, major object architecture decisions.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: "we always did
it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") Quickly understand the user's language, and the context for language usage.

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined the
human/system interface points.

Feedback Loop (output-input, output-control)
Document domain knowledge using self-reflection to uncover and assess tacit knowledge and fundamental
assumptions.

Model Tie (i.e. "model call") Encoding In-context formal description of "aspect," permits faster identification of cross-system common functionality.

Small, Multiple Models Identification of key objects in the domain. Specify object functions independent of object modes/states.

Why, What, How (i.e. levels of abstraction)
Separation of concerns: distinct models for why (rationale), what (function), and how (mechanism) = modular
understanding of context at different levels of abstraction.

48 D.A. Marca

hand-written field notebooks and not on formal models. But, adding formal modeling
to ethnographic practices can add value [25]. Also, with the advent of Computer
Aided Software Engineering (CASE) tools, the creation and review of formal models
can happen much more quickly than in the days of purely manual drawing, copying,
distributing copies, the recording of feedback, and so on.

Fig. 7. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment the
artifacts of agile software development

Fig. 8. How usability engineering can benefit from SADT/IDEF0 domain modeling

Usability Engineering Augmentation. Many augmentations to Usability Engineering
have been suggested, and most have been centered on incorporating ethnographic
concepts and field work. Some of the most noteworthy augmentations are: a) models
that distinguish local dynamics from global dynamics from contextual dynamics [45],
b) a context-based, generalized navigation space model that is used that model to

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

DB Object
& Relation

System Use
Notes/Sketch

GUI
Prototype

Rule as
RPC Code

Workflow
Notes/Sketch

Subroutine

13

2

6

5

4

Header / Block
Comment

7

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

DB Object
& Relation

System Use
Notes/Sketch

GUI
Prototype

Rule as
RPC Code

Workflow
Notes/Sketch

Subroutine

13

2

6

5

4

Header / Block
Comment

7

SADT/IDEF0 Feature Benefits to Usability Engineering

Activation Rule In-context interaction posibilities (patterns) and their rationale, plus associated potential implications (claims).

Annotation -- Graphic (Diagram Highlights) In-context specification of work tasks. Context provides background and rationale for the users' work.

Annotation -- Text (Diagram Notes) Text for all manual boxes becomes an in-context description of people's work.

Context Diagram, Context Model Formalize and limit "context," noting how relevant information differs from context to context.

Control Versus Input
Distinguish which user generated artifacts are simply material for the next step in processing from those
artifacts than govern subsequent workflow steps.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: "we always did
it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") Quickly understand the user's language, and the context for language usage.

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined the
human/system interface points.

Feedback Loop (output-input, output-control) Use to create test cases to evaluate software prototypes (in-context cases).

Model Tie (i.e. "model call") Encoding
Create patterns by unifying the often scattered aspects (i.e. usage behaviors) by constructing themes (i.e.
relationship rules among aspects).

Small, Multiple Models
Create a context-based, generalized navigation "space" model, and then use it to create a UI presentation
model.

Why, What, How (i.e. levels of abstraction) Distinguish local dynamics from global dynamics from contextual dynamics .

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 49

create a UI presentation model [22], c) formalized context that shows how
information differs from context-to-context [28], d) UI design trade-offs via patterns –
in-context problem-solution pairs – and claims – implications of design decisions [1]
e) a claims library that enables UI design reuse [60], e) patterns that unify the highly
scattered aspects of usage behavior via a set of themes that define relationship rules
for aspects [4], and f) domain models that have syntax and semantics that enable
consistency across architectural, design, structural, behavioral models [13] [26].

Fig. 9. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment
usability engineering

5 Summary, Conclusions and Future Work

This paper has taken an approach to providing benefits to UML, Agile, and Usability
Engineering methods by using SADT/IDEF0: a) for domain modeling, and b) in par-
ticular ways based on over 10 years of experience with these methods by a variety of
practitioners and researchers. These experiences were selected based on their: a) ad-
vocating specific augmentations to the aforementioned methods, and b) showing how
those augmentations could benefit: i) the software development process advocated by
the method, ii) any software or non-software prototypes generated by the method, and
iii) the reuse and maintenance of the final specifications generated by the method. The
recommended shortcomings and corresponding improvement recommendations were
used to develop the proposed augmentation approach.

The approach centers on comprehensive, correct and consistent specifications of
domain knowledge. When used properly, SADT/IDEF0 can create such specifications
of an entire domain, not just the software system’s immediate context. And it can
describe that domain in rich and varied ways using in-context supplements which
contain the: language, beliefs, assumptions, human organization, human work, work
tasks and tools, and system usage expectations, vital to the successful application of
UML, Agile, and Usability Engineering methods. Figure 10 summarizes the role
SADT/IDEF0 plays in the augmentation process. It also shows how the SADT/IDEF0

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

Work
Artifact

Fundamental
Assumption

Cultural
Norms

Native
Language

Use
Case

HCI
Model

Business
Rule / Event

Field
Notes

The
Work

Aspect

1

3

7

6

2

2

8

6

9Coupling & Cohesion

Traditions4

Pathology5

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

Work
Artifact

Fundamental
Assumption

Cultural
Norms

Native
Language

Use
Case

HCI
Model

Business
Rule / Event

Field
Notes

The
Work

Aspect

1

3

7

6

2

2

8

6

9Coupling & Cohesion

Traditions4

Pathology5

50 D.A. Marca

Author Reader Cycle [24]) can augment Agile by providing domain experts time to
think about the knowledge already given to software developers to ensure facts are
consistent and correct with the current common understanding.

Fig. 10. Augmenting UML, agile and usability engineering with SADT/IDEF0 models and the
author/reader review cycle

The combination of over 10 years of experience by practitioners and researchers,
their recommendations for improving upon the shortcomings they discovered, and the
ability of the SADT/IDEF0 to support those recommendations, led the author to
conclude that there is also merit for further elaboration and demonstration of the
approach’s viability by extending a commercial SADT/IDEF0 tool. Specifically, such
a CASE tool could be extended by: a) enhancing its existing ontology of
SADT/IDEF0, b) integrating that ontology with UML tools, c) creating an interface to
a domain knowledge reasoning system and a formal specification system, and d)
building a component for the automatic generation of a deep human-system
interaction model that includes patterns and claims [1]. A proposal for future work is
underway.

Acknowledgements. The author wishes to first and foremost acknowledge the late
Douglas T. Ross for his contributions to the fields of industrial engineering and computer
science, and for his inventions of APT, PLEX and SADT™. In alphabetical order,
acknowledgements go to: Michael Connor, Melvin Dickover, Patricia Duran, Clarence
Feldman, Al Irvine, Clement McGowan, Robert Munck, Chuck Patrick, Kenneth
Schoman, Michelle Stowe, and the late Daniel Thornhill – the people whose early work
with SADT™, and later with its public domain version IDEF0, greatly furthered: its
ontology, the correct understanding of its principles, and how to correctly practice its
methods. Lastly, recognition is given to the insightful researchers and practitioners cited
in this paper for experiences with the UML, Agile and Usability Engineering methods,
and their work in clarifying shortcomings and related practical issues surrounding the
domain modeling embedded in those software development methods.

UML UE

Agile
Development

Usability
Evaluation

Author/Reader
Cycle

Final
System

Prototype
System

Tacit
Knowledge

Collaborations Shortcomings

Human-Computer Interaction Learnings

Business
Model

Evaluation CriteriaSpecifications

SADT/IDEF0

UML UE

Language  Beliefs  Assumptions  Organization 
Work  Tasks  Tools  System Usage Expectations

Deep
Knowledge

UML UE

Agile
Development

Usability
Evaluation

Author/Reader
Cycle

Final
System

Prototype
System

Tacit
Knowledge

Collaborations Shortcomings

Human-Computer Interaction Learnings

Business
Model

Evaluation CriteriaSpecifications

SADT/IDEF0

UML UE

Language  Beliefs  Assumptions  Organization 
Work  Tasks  Tools  System Usage Expectations

Deep
Knowledge

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 51

References

1. Abraham, G., Atwood, M.: Patterns or claims: do they help in communicating design
advice? In: Proceedings of the 21st Annual Conference of the Australian Computer-
Human Interaction Special Interest Group (2009)

2. Abrahamsson, P., et al.: Agile Software Development Methods: Review and Analysis.
VTT Publications, Number 478, Kaitovayla (2002)

3. Alleman, G.B.: Agile Project Management Methods for ERP: How to Apply Agile
Processes to Complex COTS Projects and Live to Tell about It. In: Wells, D., Williams, L.
(eds.) XP 2002. LNCS, vol. 2418, pp. 70–88. Springer, Heidelberg (2002)

4. Baniassad, E., Clarke, S.: Theme: An Approach for Aspect-Oriented Analysis and Design.
In: Proceedings of the 26th International Conference on Software Engineering (2004)

5. Booch, G., et al.: The Unified Modeling Language User Guide. Addison-Wesley, Boston
(1999)

6. Brockmans, S., Haase, P., Hitzler, P., Studer, R.: A Metamodel and UML Profile for Rule-
Extended OWL DL Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 303–316. Springer, Heidelberg (2006)

7. Bryant, B., et al.: From Natural Language Requirements to Executable Models of Software
Components. In: Proceedings of the Monterey Workshop on Software Engineering for
Embedded Systems: From Requirements to Implementation (2003)

8. Bryant, S., et al.: Pair programming and the re-appropriation of individual tools for
collaborative software development. In: Proceedings of the Conference on Cooperative
Systems Design (2006)

9. Calvary, G., Thevenin, D.: A Unifying Reference Framework for the Development of
Plastic User Interfaces. In: Little, M.R., Nigay, L. (eds.) EHCI 2001. LNCS, vol. 2254, pp.
173–192. Springer, Heidelberg (2001)

10. Congram, C., Epelman, M.: How to describe your service: An invitation to Structured
Analysis and Design Technique. International Journal of Service Industry
Management 6(2) (1995)

11. Decker, B., et al.: A framework for Agile reuse in software engineering using Wiki
Technology. In: Proceedings of the Knowledge Management for Distributed Agile
Processes Workshop (2005)

12. Dingsøyr, T., Hanssen, G.K.: Extending Agile Methods: Postmortem Reviews as Extended
Feedback. In: Henninger, S., Maurer, F. (eds.) LSO 2003. LNCS, vol. 2640, pp. 4–12.
Springer, Heidelberg (2003)

13. Egyed, A., Medvidovic, N.: A Formal Approach to Heterogeneous Software Modeling. In:
Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 178–192. Springer, Heidelberg (2000)

14. Friedrich, W., van der Poll, J.: Towards a Method to Elicit Tacit Domain Knowledge from
Users. Interdisciplinary Journal of Information, Knowledge, and Management 2 (2007)

15. Granollers, T., et al.: Usability Engineering Process Model. Integration with Software
Engineering. In: Proceedings of the HCI International Conference 2003 (2003)

16. Halpin, T.: Augmenting UML with fact-orientation. In: Proceedings of the 34th Annual
Hawaii International Conference on Systems Sciences (2001)

17. Hilliard, R.: Using Aspects in Architectural Description. In: Moreira, A., Grundy, J. (eds.)
Early Aspects 2007 Workshop. LNCS, vol. 4765, pp. 139–154. Springer, Heidelberg (2007)

18. Hilliard, R.: Aspects, Concerns, Subjects, Views, ... In: OOPSLA 1999 Workshop on
Multi-Dimensional Separation of Concerns in Object-Oriented Systems (1999)

19. Hilliard, R.: Views and Viewpoints in Software Systems Architecture. In: First Working
IFIP Conference on Software Architecture (WICSA 1) (1999)

20. Hilliard, R., et al.: The architectural metaphor as a foundation for systems engineering. In:
Proceedings of the 6th Annual International Symposium of the International Council on
Systems Engineering (1996)

52 D.A. Marca

21. Iachello, G., Abowd, G.: From privacy methods to a privacy toolbox: Evaluation shows
that heuristics are complementary. ACM Transactions on Computer-Human
Interaction 15(2) (2008)

22. Koch, N., et al.: The Authoring Process of the UML-based Web Engineering Approach. In:
Proceedings of the 1st International Workshop on Web-oriented Software Technology (2001)

23. Larsen, G.: Designing component-based frameworks using patterns in the UML.
CACM 42(10) (1999)

24. Marca, D.: IDEF0 and SADT: A Modeler’s Guide, 3rd edn. OpenProcess, Inc., Boston
(2006)

25. Marca, D.: Augmenting SADT to develop computer support for cooperative work. In:
Proceedings of the 13th International Conference on Software Engineering (1991)

26. Medvidovic, N., et al.: Round-Trip Software Engineering Using UML: From Architecture
to Design and Back. In: Proceedings of the 7th European Conference on Software
Engineering (1999)

27. Menard, R.: Domain modeling: Leveraging the heart of RUP for straight through
processing. IBM Developer Works (2003),
http://www.ibm.com/developerworks/rational/library/2234.html
(retrieved on March 17, 2011)

28. Najar, S., et al.: Semantic representation of context models: a framework for analyzing and
understanding. In: Proceedings of the 1st Workshop on Context, Information and
Ontologies, CIAO 2009 (2009)

29. Nielsen, J.: Usability Engineering. Academic Press, London (1993)
30. Normantas, K., Vasilecas, O., Sosunovas, S.: Augmenting UML with decision table

technique. In: International Conference on Computer Systems and Technologies:
CompSys-Tech 2009 (2009)

31. Ng, J., et al.: The development of an enterprise resources planning system using a
hierarchical design pyramid. Journal of Intelligent Manufacturing 9(5) (1996)

32. Paelke, V., Nebe, K.: Integrating Agile methods for mixed reality design space
exploration. In: Proceedings of the 7th ACM Conference on Designing Interactive
Systems, DIS 2008 (2008)

33. Rech, J., et al.: Riki: A System for Knowledge Transfer and Reuse in Software
Engineering Projects. In: Lytras, M., Naeve, A. (eds.) Open Source for Knowledge and
Learning Management: Strategies Beyond Tools. IGI Global Publishers (2007)

34. Reifer, D., et al.: Scaling Agile Methods. IEEE Software (July/August 2003)
35. Ross, D.: Structured Analysis (SA): A Language for Communicating Ideas. IEEE

Transactions on Software Engineering 3(1) (1977)
36. Salo, O., Kolehmainen, K., Kyllönen, P., Löthman, J., Salmijärvi, S., Abrahamsson, P.:

Self-Adaptability of Agile Software Processes: A Case Study on Post-iteration Workshops.
In: Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 184–193. Springer,
Heidelberg (2004)

37. Scacchi, W.: Is Open Source Software Development Faster, Better, and Cheaper than
Software Engineering? In: Proceedings of the 2nd ICSE Workshop on Open Source
Software Engineering (2002)

38. Schoman, K., Ross, D.: Structured Analysis for Requirements Definition. IEEE
Transactions on Software Engineering 3(1) (1977)

39. Seffah, A., et al.: HCI, Usability and Software Engineering Integration: Present & Future.
In: Human-Centered Software Engineering: Integrating Usability in the Software
Development Lifecycle. HCI Series, vol. 8 (2005)

40. Siltala, M.: Modeling Contracting Procedure and the Concept of the Service Portfolio for
Finnish Municipalities using SADT. Nordic Journal of Surveying and Real Estate
Research 1 (2009)

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 53

41. Sitou, W., Spanfelner, B.: Towards requirements engineering for context adaptive systems.
In: 31st Annual International Computer Software and Applications Conference, COMP-
SAC 2007, vol. 2 (2007)

42. Spradley, J.: Participant Observation. Holt, Rinehart and Winston, London (1980)
43. Süß, J., Leicher, A.: Augmenting Domain Specific UML Models with RDF. In:

Proceedings of the 3rd Workshop in Software Model Engineering, Lisbon (2004)
44. Sutcliffe, A.: Applying small group theory to analysis and design of CSCW systems. In:

Proceedings of the Workshop on Human and Social Factors of Software Engineering,
HSSE 2005 (2005)

45. Sutcliffe, A.: On the effective use and reuse of HCI knowledge. ACM Transactions on
Computer-Human Interaction (TOCHI) 7(2) (2000)

46. Sutcliffe, A.: The Domain Theory for Requirements Engineering. IEEE Transactions on
Software Engineering 24(3) (1998)

47. Skersys, T., Gudas, S.: The Enhancement of Class Model Development Using Business
Rules. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 480–490.
Springer, Heidelberg (2005)

48. Wahid, S.: Investigating design knowledge reuse for interface development. In:
Proceedings of the 6th Conference on Designing Interactive Systems, DIS 2006 (2006)

49. Verlinden, J., Horva, I.: Analyzing opportunities for using interactive augmented
prototyping in design practice. In: Artificial Intelligence for Engineering Design, Analysis
and Manufacturing. Cambridge University Press (2009)

50. Lethbridge, T.C., Laganiére, R.: Object-Oriented Software Engineering: Practical Software
Development Using UML and Java. McGraw-Hill, London (2001)

51. Winckler, M., et al.: Tasks and scenario-based evaluation of information visualization
techniques. In: Proceedings of the 3rd Annual Conference on Task Models and Diagrams,
TAMODIA 2004 (2004)

52. Novak, J., Cañas, A.: The Theory Underlying Concept Maps and How to Construct Them,
Technical Report IHMC CmapTools 2006-01 Rev 01-2008, Florida Institute for Human
and Machine Cognition (2008)

53. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Developing
applications using model-driven design environments. IEEE Computer 39(2) (2006)

54. Hruby, P.: Ontology-based domain-driven design. In: OOPSLA Workshop on Best
Practices for Model-Driven Software Development, San Diego, CA, USA (2005)

55. Wikipedia: Integrated Computer-Aided Manufacturing (2011),
http://en.wikipedia.org/wiki/
Integrated_Computer-Aided_Manufacturing (retrieved March 20, 2011)

56. Coste, P., et al.: Multilanguage Design of Heterogeneous Systems. In: CODES 1999
(1999)

57. Stuikys, V., Damasevicius, R.: Relationship Model of Abstractions Used for Developing
Domain Generators. Informatica 13(1) (2001)

58. Vasilecas, O., Normantas, K.: Decision table based approach for business rules modelling
in UML/OCL. In: Proceedings of the 11th International Conference on Computer Systems
and Technologies and Workshop (2010)

59. Seffah, A., et al.: HCI, Usability and Software Engineering Integration: Present & Future.
In: Human-Centered Software Engineering: Integrating Usability in the Software
Development Lifecycle. HCI Series, vol. 8 (2005)

60. Brel, C., Renevier-Gonin, P., Occello, A., Déry-Pinna, A.-M., Faron-Zucker, C., Riveill,
M.: Application Composition Driven By UI Composition. In: Bernhaupt, R., Forbrig, P.,
Gulliksen, J., Lárusdóttir, M. (eds.) HCSE 2010. LNCS, vol. 6409, pp. 198–205. Springer,
Heidelberg (2010)

54 D.A. Marca

Appendix

1 “Features” of the SADT Ontology

Table 1. SADT “features” published in 1977 by Douglas Ross [35]

Context
Arrow
Transform
Control
Means
Verbs
Nouns
Path
Dominance
Relevance
Omissions

Branches
Joins

OR
AND
Boundary
Parent
ICOM

Calls

Context
Arrow
Transform
Control
Means
Verbs
Nouns
Path
Dominance
Relevance
Omissions

Branches
Joins

OR
AND
Boundary
Parent
ICOM

Calls

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 55

Table 1. (continued)

Feedback

Pipeline

Tunnel

To/From All

Note

Footnote

Meta-Note

Squiggle

Sequence

Node

Model

Interface

To-From

Reference

Dominance

Description

Highlights

Glossary

Index

Feedback

Pipeline

Tunnel

To/From All

Note

Footnote

Meta-Note

Squiggle

Sequence

Node

Model

Interface

To-From

Reference

Dominance

Description

Highlights

Glossary

Index

Feedback

Pipeline

Tunnel

To/From All

Note

Footnote

Meta-Note

Squiggle

Sequence

Node

Model

Interface

To-From

Reference

Dominance

Description

Highlights

Glossary

Index

	SADT/IDEF0 for Augmenting UML,
Agile and Usability Engineering Methods
	Introduction
	Domain Modeling Is Not the Core of Current Methods
	Domain Modeling Is at the Core of SADT/IDEF0
	The Use of SADT/IDEF0 Produces Holistic Domain Models
	SADT/IDEF0 Can Address any Level of Complexity or Abstraction

	Why Consider SADT/IDEF0?
	Vast Experience in a Wide Variety of Domains
	Strong Conceptual Underpinnings for Modeling
	SADT/IDEF0 Features Are for Domain Modeling
	Preservation of Context

	Augmentation Approach
	Domain Knowledge Required by Other Methods
	Strong Specifications of Domain Knowledge
	Knowledge Specification Using In-Context Supplements
	SADT/IDEF0 Ontology and Model Supplements Enable Augmentation

	Augmentations for UML, Agile and Usability Engineering
	Benefits to UML
	Benefits to Agile
	Benefits to Usability Engineering

	Summary, Conclusions and Future Work
	References

