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Abstract. Many experts state that: a) specifying "all the small parts of a 
system" and b) correct expected system usage, can make Agile Software 
Development more effective. Unified Modeling Method (UML) addresses the 
former; Usability Engineering addresses the later. Taken together, they create a 
systems de-velopment framework, capable of: a) specifying functions, data, 
behavior and usage, b) rapid prototyping, and c) verifying system usability and 
correctness. All three of these methods focus first on the system, while 
secondarily trying to ascertain system context. Correct and complete context 
requires domain modeling. Structured Analysis and Design Technique 
(SADT/IDEF0) is a proven way to model any kind of domain. Its power and 
rigor come from: a) a synthesis of graphics, natural language, hierarchical 
decomposition, and relative context coding, b) distinguishing controls from 
transformations, c) function activation rules, and d) heuristics for managing 
model complexity. This paper explains how SADT/IDEF0 domain modeling 
can bring correct and complete context, to today’s commonplace disciplines of 
the Unified Modeling Language (UML), Agile System Development, and 
Usability Engineering methods. 
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1 Introduction 

Commercial software engineering disciplines have come a very long way since their 
post World War II origins. Three of the more commonplace disciplines of today are: 
a) Unified Modeling Language – UML [5], Agile Software Development [2], and 
Usability Engineering [29]. When used in combination, these methods have a strong 
track record for developing software for many kinds of problems and domains. Over 
the last ten years, a large amount of research has been done on the shortcomings of 
these methods, and a collection of this research is presented in this paper. Taken as a 
whole, this research suggests that many shortcomings arise because domain modeling 
is not at the core of these methods. Therefore, one way to bolster today’s common-
place software development methods is to augment with a proven domain modeling 
method, such as SADT/IDEF0. Domain modeling is at the core of SADT/IDEF0, and 
when properly used, the method can produces holistic domain models that can address 
any level of complexity or abstraction. To explain: 
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1.1 Domain Modeling Is Not the Core of Current Methods 

The first, and very important, aspect about modeling with today’s commonplace 
methods is that UML [5], Agile Software Development [2], and Usability Engineering 
[29] have their origins rooted in software systems. In other words, their focus is on the 
software system. Thus, their principles, languages and practices were invented for 
creating software. While each includes a component for domain modeling, that com-
ponent is not at the core of the method. For example: UML’s core is software system 
specification, Agile’s core is rapid software deployment, and UE’s core is evaluation 
of the software system during its use. For these disciplines, domain modeling is just a 
first step to getting to the core work. 

1.2 Domain Modeling Is at the Core of SADT/IDEF0 

In contrast, SADT/IDEF0 is rooted in general systems theory [35]. Its focus is any 
kind of system. Interestingly, when it was first introduced, many in the commercial 
world confused it for being a method that could just describe either software systems 
or manufacturing processes. While it can describe these two kinds of systems, its 
strength is its focus on systems in general. Therefore, it has unique principles, simple 
language, and special practices for describing any real-world phenomenon – domain 
modeling is its core! When used correctly, SADT/IDEF0 can produce a set of very 
concise, small models, with tightly connected context and content. This paper will 
illuminate the often misunderstood potential of SADT/IDEF0 as a contributor to, and 
not a replacement for, today’s software development methods (see Figure 1). 

 

 

Fig. 1. Where SADT/IDEF0 augments UML, agile and usability engineering methods 

1.3 The Use of SADT/IDEF0 Produces Holistic Domain Models 

The distinguishing, unique aspect of SADT/IDEF0 is its ability to holistically 
describe an entire domain to any desired low level of detail, and to describe its 
context to any desired high level of abstraction. It is thus a story-telling discipline 
with very rigorous engineering syntax (i.e. boxes and arrows) and semantics (e.g. box 
sides for Input, Control, Output, and Mechanism – ICOM – and corresponding 
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implicit off-page connectors), plus heuristics for managing model complexity (e.g. 
hierarchic decomposition, 3 to 6 boxes per decomposition, single purpose and 
viewpoint per model, model “call” syntax). For example, it distinguishes controls 
from inputs, and advocates stopping model decomposition when the model’s purpose 
has been fulfilled. It is the aspect of simple, concise, complete, context-rich, holistic 
description that is the primary contribution of SADT/IDEF0 to the other 
aforementioned methods [25]. 

1.4 SADT/IDEF0 Can Address any Level of Complexity or Abstraction 

The statement often arises: “My method is effective at domain modeling, so I do not 
need another method.” My response: “yes and no,” and here is why: For very simple 
domains or systems, it is easy to “get one’s head around the problem.” Thus, no other 
method is needed to understand the system’s immediate context. However, for very 
complex problems (e.g. enterprise-wide solutions, large weapons such as a submarine, 
aircraft sheet metal fabrication), no single software developer can understand the 
whole problem. At the extreme case (e.g. well log interpretation, disaster recovery, 
decision making, strategy formulation), no domain expert may know or be able to 
articulate consistently and accurately, the entire domain. Such situations require a 
context map [52] to documented an understanding of the domain that must then drive 
the solution design [54] [53]. SADT/IDEF0 has an extremely simple graphic language 
and a model creation technique that, from the same starting point of any particular 
subject, can describe: a) all details (i.e. decompose complexity), b) the context of that 
subject (i.e. context modeling).  

2 Why Consider SADT/IDEF0? 

Since the 1970’s, SADT/IDEF0 has been used to successfully describe a vast number 
and variety of domains. The reason for this success is best described by Doug Ross in 
his seminal paper [35]. To paraphrase: SADT/IDEF0 incorporates any other lan-
guage; its scope is universal and unrestricted. It is concerned only with the orderly 
and well-structured decomposition of a subject. Model decomposition is sized to suit 
the modes of thinking and understanding of the viewpoint of the model and the 
intended audience of readers. Units of understanding (i.e. boxes and their data) are 
expressed in a way that rigorously, precisely and consistently represents domain 
interre-lationships. Decomposition is carried out to the required degree of depth, 
breadth, and scope while still maintaining all of the above properties. Thus, 
SADT/IDEF0 increases the quantity and quality of understanding that can be beyond 
the limitations inherently imposed by other kinds of natural or formal languages. 
Some details: 

2.1 Vast Experience in a Wide Variety of Domains 

SADT/IDEF0 has over 35 years of domain modeling experience, across a vast 
number of problems involving systems ranging from tiny to huge, in a wide variety of 
industries [24]. It has been used in commerce, government and military around the 
world. It has been used by small of privately held companies (e.g. 1-2 person  
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start-ups) to some of the largest of largest organizations in the world (e.g. the U.S. Air 
Force), and on some of the largest initiatives (e.g. the U.S.A.F. Sheet Metal 
Fabrication Project [55]). This widespread success is due to its very strong set of 
domain modeling concepts, principles and features. A summary of these “features” is 
given in the Appendix of this paper, and is organized into two tables. Table 1 
summarizes the box and arrow syntax and semantics, and the rules for how they 
interconnect. Table 2 completes Table 1 and summaries the reference language used 
to identify model elements. None of the aforementioned methods can claim the array 
of features, the richness of graphic semantics, the number of in-context supplements, 
or the longevity of success across so many industries and problems for domain 
modeling. 

2.2 Strong Conceptual Underpinnings for Modeling 

Since the 1970s, experts have agreed that deep understanding of the domain is vital 
for successful and effective software engineering [44].  The conceptual underpinnings 
of SADT/IDEF0 continue to be cited as being very strong for domain modeling. Most 
notably: a) tightly managed multiple views at the architecture level for complex 
systems [19], b) support for aspect-oriented modeling by being able to modularize 
cross-cutting concerns [17], c) defining boundaries essential for specifying objects, 
system scope, human-computer interaction [40], d) hierarchical exposition of detail 
for very large domains without loss of context and without making errors when going 
to next levels of detail/abstraction [31], e) specifying strong versus weak influence 
that each datum has on its functions [40], and f) “calls” (i.e. just like a software 
subroutine call) a model from another model to maximize reuse [20]. 

2.3 SADT/IDEF0 Features Are for Domain Modeling 

Back in the 1970s, we did not have the universally understood notion of “ontology” as 
we know it today in the software engineering field. Nonetheless, since 1977, SADT™ 
has had a complete ontology for domain modeling [38]. Back then, the components of 
the ontology were called “features.” Three of its core features are: context, model, and 
viewpoint [35]. With these three features, a core modeling principle was constructed: 
one model = one subject, described from one viewpoint [18]. This is, in effect, what 
we commonly call today the “system boundary.” This demarcation point allows 
SADT/IDEF0 to consider a domain to be the whole context within which a system 
operates (e.g. the enterprise for a financial system as well as the business environment 
around that enterprise, the submarine for a defensive weapon system, the building for 
a thermostat control system). Also, SADT/IDEF0 has a simple box-and-arrow graphic 
language with associated semantics that make it ideal for capturing domain 
knowledge and reviewing it with end-users [10]. 

2.4 Preservation of Context 

Probably the most important aspects of a domain modeling method are: a) simple 
syntax within which domain-specific language can be embedded, b) powerful seman-
tics for representing the various roles information play in a domain, c) rigorous de-
composition rules to support the detailing of highly complex subjects as well as the 
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abstraction (to any level) of the context around any given system boundary, and d) 
consistent subject boundary management so that no context is lost when you move 
“into” the details of the subject. Together, these aspects provide a means by which 
context is always preserved. Figure 2 provides an example of context preservation. 
Notice how the data (arrow) inputs (I), controls (C), outputs (O), and mechanisms (M) 
that cross the functional boundary (box) are tied directly to the arrows on the diagram 
that details the function through the use of ICOM coding. With ICOM codes, you can 
never loose your way when you decompose a subject or create an abstraction that 
represents the context of a subject. Thus, since context preservation is crucial for 
domain modeling, SADT/IDEF0 has merit for augmenting the system development 
methods [25] such as the ones given earlier in this paper. 

 

 

Fig. 2. An example of how SADT/IDEF0 models preserve context [24] 

3 Augmentation Approach 

The augmentation approach given in this paper is based on over 10 years of research 
by many practitioners and researchers. They point out particular shortcomings in the 
domain modeling portions of the aforementioned methods. They identified particular 
domain knowledge that, if it were available, could improve the results generated by 
the methods. So, given that particular domain knowledge required by UML, Agile and 
Usability Engineering methods. In short, correct, comprehensive and consistent speci-
fications of domain knowledge are needed. Not only can SADT/IDEF0 correctly, 
comprehensively and consistently describe an entire domain – and not just the imme-
diate context of a software system – it can describe that domain in rich and varied 
ways using carefully designed in-context supplements [38]. To explain: 
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3.1 Domain Knowledge Required by Other Methods 

When practiced correctly, SADT/IDEF0 compresses a wealth of domain knowledge 
into a manageable set of small models. SADT/IDEF0 models and the special supple-
ments created from the diagrams in those models, describe particular domain know-
ledge which the aforementioned methods depend upon: a) for UML: the system 
interface with its environment, decisions around manual versus automated function 
realization, functional scope, important objects in the domain, data dictionary, control 
data distinct from transactional data, overarching rules (often expressed as policies or 
doctrine), domain events and responses to those events (often called scenarios), and 
common versus special case scenarios; b) for Agile: same as for UML; and c) for 
Usability Engineering: the users’ work, the context of that work, the tasks for 
accomplishing the work, the systems users need, and system usage scenarios. 

3.2 Strong Specifications of Domain Knowledge 

This paper briefly looks at some of the ontology of SADT (see Appendix), plus some 
additional features added after 1977, and explain how they can be used to augment the 
domain modeling portions of UML, Agile, and UE. Section 4 explains through figures 
and tables how SADT/IDEF0 models create stronger specifications of domain 
knowledge than the method it is augmenting. For example: a) knowledge that would 
have been missed by the other method, b) knowledge that would have been very hard 
to identify or describe by the other method, c) knowledge that needs to appear in all 
three methods that does not now do so, and d) how knowledge can be traced through 
all three methods. It is important to repeat that the domain modeling portions of the 
aforementioned methods are not bad; they just have shortcomings that over 10 years 
of practice have identified and documented (see References). SADT/IDEF0 can 
support the improvement recommendations in that documentation. 

3.3 Knowledge Specification Using In-Context Supplements 

The basic “unit of specification” of SADT/IDEF0 is the diagram, and a collection of 
diagrams comprises a model. However, SADT/IDEF0 has additional means by which 
domain knowledge is specified. To explain, the SADT/IDEF0 modeling process gives 
a person much more information than what is put on the basic diagram [24]. For 
example: a) terminology definitions, b) properties of functions and data, c) in-context 
narratives about the domain, d) particular situations (e.g. control flows, work flows) 
and special circumstances (e.g. mutually constraining functions) that occur in the 
domain, and e) rules by which functions activate and data must or must not interact 
with each other. Figure 3 gives an example of one basic diagram plus its supplemental 
pages, each identified with a letter corresponding to a-e above. 

SADT/IDEF0 uses diagram supplements to capture this information, usually just 
after a basic diagram is approved by the domain experts that were interviewed by the 
systems analyst who authored the diagram. The supplements are: i) glossary page, ii) 
for exposition only (FEO) page, and iii) text page [38]. A glossary page defines 
terminology. A text page succinctly describes the operation of each box on the 
diagram. FEO pages contain closely related figures or pictures, or they annotate the 
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basic diagram with: property labels, highlighted boxes and arrows, or box activation 
rules. Each supplement is derived directly from only its basic diagram, and thus these 
specifications of domain knowledge are always inside the context of one, well-
bounded subject. Thus, SADT/IDEF0 supplements are fully consistent with each 
other. 

 

 

Fig. 3. A supplement set for a single SADT/IDEF0 diagram [24] 

3.4 SADT/IDEF0 Ontology and Model Supplements Enable Augmentation 

Figure 3 shows that the supplements developed directly from a single diagram com-
prise a rich specification of one bounded subject in the domain. Return to Table 1 and 
2 in the Appendix, and identify all the ontology elements that go into these 
supplements: you will see the depth of SADT/IDEF0 for representing domain 
knowledge. As Section 2.4 says, the ontology is power enough for describing any 
system to any level of detail and any level of abstraction without loosing context. 
Thus: 

Hypothesis 1: A set of SADT/IDEF0 diagrams and supplements that correctly and 
completely describe the domain in which a software system will operate, has content 
that is essential for augmenting the UML, Agile, and Usability Engineering methods. 

Hypothesis 2: The content of those SADT/IDEF0 models and diagram supplements 
can be extracted and organized so that it can become useful input to the UML, Agile, 
and Usability Engineering methods, and without altering those methods. 
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4 Augmentations for UML, Agile and Usability Engineering 

The proposed augmentation approach centers on comprehensive, correct and consis-
tent specifications of domain knowledge. When used properly, SADT/IDEF0 can 
create such specification of an entire domain, not just the immediate context, for a 
software system. And it can describe that domain in rich and varied ways using in-
context supplements which contain the: language, beliefs, assumptions, human 
organization, human work, work tasks and tools, and system usage expectations, that 
are vital to the successful application of UML, Agile, and Usability Engineering 
methods. This section summarizes shortcomings and corresponding improvement 
recommendations, based on over 10 years of experience with the aforementioned 
methods. The combination of shortcomings, recommendations, and the 
representational power of SADT/IDEF0 diagrams and supplements led to this 
approach. 

4.1 Benefits to UML 

UML Shortcomings. Experts have consistently noted that object-oriented code design 
methods are better at specifying software than they are at modeling domains [16]. For 
domain modeling, UML considers the domain to be the entities that touch the 
software system [27], and that is what UML “domain model” specify. The only other 
outward-facing UML model, the “business model,” specifies how the software system 
will be used [56] [57]. These models can define a software system’s boundary, 
provided they are complete and accurate. But assuring completeness and accuracy 
without context is risky. Since modeling languages optimized for software systems 
are less effective at modeling the software system’s environment, augmentations have 
been proposed to attach more domain knowledge to UML software specifications. 

 

Fig. 4. How UML can benefit from SADT/IDEF0 domain modeling 

SADT/IDEF0 Feature Benefits to UML

Activation Rule In-context specification of business rule or decision-making rule.

Annotation -- Graphic (Diagram Highlights)
In-context system use case specifications are created by telling a story based on just the 
highlighted boxes and arrows.

Annotation -- Text (Diagram Notes) A well-written paragraph for each box can turn into formal descriptions of the domain.

Context Diagram, Context Model
In-context general background knowledge: a) to any highest level of abstraction, b) to any lowest 
level of detail.

Control Versus Input
Separation of concerns: an accurate & complete model of the control system independent from an 
accurate & complete model of the transaction system.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: 
"we always did it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") In-context domain terminology, from which an ontology for the domain can be created,

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined 
the human/system interface points.

Feedback Loop (output-input, output-control)
Useful for understanding: a) domain pathologies, b) interaction scenarios, c) architectural 
constraints.

Model Tie (i.e. "model call") Encoding
In-context formal description of "aspect," permits faster identification of cross-system common 
functionality.

Small, Multiple Models
Identification of key objects in the domain. Specify object functions independent of object 
modes/states.

Why, What, How (i.e. levels of abstraction)
Separation of concerns: distinct models for why (rationale), what (function), and how (mechanism) 
= modular understanding of context at different levels of abstraction.
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UML Augmentation. The augmentations that suggest strengthening UML’s ability to 
define a software system’s environment advise doing domain modeling using some 
other language or tool, and then linking captured knowledge to UML software specifi-
cations. For example: a) domain ontology database [6], b) general background 
knowledge base with reasoning logic [43], c) in-context identification, specification 
and validation of business rules [16] [47], and decision-making rules [58], d) how and 
why people do the work that they do [23], and e) formal descriptions of the domain 
[7]. Taken together, these augmentations suggest: a) that SADT/IDEF0 models of a 
domain contain knowledge that can benefit UML specifications, and b) efficacy can 
be achieved if domain modeling is a activity distinct from software specification. 
Figure 5 shows how SADT/IDEF0 diagrams and supplements can augment UML. 

 

 

Fig. 5. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment the 
development of UML specifications 

4.2 Benefits to Agile 

Agile Shortcomings. One component of the Agile Manifesto advocates working 
software over comprehensive documentation [2]. Not surprisingly, traditional domain 
modeling methods have not heretofore been recommended for augmenting Agile 
software development efforts. However, "small method" augmentations have been 
recommended since Agile was first purported. These suggestions carefully  
distinguish “comprehensive” from “essential” documentation. Yes, comprehensive 
documentation can, when taken to the extreme, merely adds time and cost to projects 
without adding value to the software system. But taken to the other extreme, a lack of 
documentation altogether often creates gaps in verified understanding between users 
and software developers, and leaves no rationale behind for those who maintain or 
wish to reuse the resulting software system. Clearly, a middle ground of specification 
(i.e. for domain, analysis and design) would seem to benefit all parties, so long as 
those specifications are efficient and effective [3]. Figure 6 summarizes the benefits. 
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Fig. 6. How agile can benefit from SADT/IDEF0 domain modeling 

Agile Augmentation. Past recommendations have suggested augmenting the informal 
artifacts of Agile, and advocate for practices that focus on the domain to explain why: 
a) people need the system, b) will use the system in particular ways, c) they expect to 
see certain menus, displays, interactions, and functionality, and d) they are investing 
their time in the software development project. For example: a) documenting domain 
knowledge using JAD [14], self-reflection [14], and Wikis [33] [11], b) making and 
keeping fixed major object architecture decisions which enable parallel development 
by many Agile teams in support of very large projects [34] [3], c) documenting 
system design knowledge with informal specifications [37], and informal tools [8], d) 
making explicit tacit design assumptions with Total Quality methods [12] and self-
reflection [36], and e) publishing (including vital documentation) competing 
prototypes to the wider community for evaluation and selection a best solution for 
reuse [50]. Taken together, these recommendations point to an interesting line of 
augmentation (Figure 3) by using traditional modeling methods such as 
SADT/IDEF0. Figure 7 shows how SADT/IDEF0 diagrams and supplements can be 
used to augment Agile. 

4.3 Benefits to Usability Engineering 

Usability Engineering Shortcomings. Practitioners and researchers have already 
shown: a) how Usability Engineering can be combined with Agile [15] [59], b) that 
particular combinations can enable effective design space exploration [32], c) and that 
the prototypes from those explorations can be systematically evaluated and 
augmented to create best-in-class production software [49]. However, such outcomes 
rely on augmenting the traditional usability engineering methods with very good 
knowledge acquisition methods and very good modeling tools [44] [41]. To explain, 
Usability Engineering has had a tradition of employing the concepts and methods of 
participatory design [42] to obtain optimal understanding of a domain and especially 
the tacit knowledge of domain inhabitants. So, traditional Usability Engineering 
methods have employed ethnographic techniques, which have traditionally relied on 

SADT/IDEF0 Feature Benefits to Agile Software Development

Activation Rule
Complete hierarchy of rule cause-and-effect: Highest-level rule activation causes lower-level rule activations 
(traceability).

Annotation -- Graphic (Diagram Highlights)
In-context system use case specifications are created by telling a story based on just the highlighted boxes and 
arrows.

Annotation -- Text (Diagram Notes) In-context informal descriptions of software activations (include in prototype wrapper documentation).

Context Diagram, Context Model In-context general background knowledge: a) to any highest level of abstraction, b) to any lowest level of detail.

Control Versus Input Understand how to make, and then keep fixed, major object architecture decisions.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: "we always did 
it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") Quickly understand the user's language, and the context for language usage.

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined the 
human/system interface points.

Feedback Loop (output-input, output-control)
Document domain knowledge using self-reflection to uncover and assess tacit knowledge and fundamental 
assumptions.

Model Tie (i.e. "model call") Encoding In-context formal description of "aspect," permits faster identification of cross-system common functionality.

Small, Multiple Models Identification of key objects in the domain. Specify object functions independent of object modes/states.

Why, What, How (i.e. levels of abstraction)
Separation of concerns: distinct models for why (rationale), what (function), and how (mechanism) = modular 
understanding of context at different levels of abstraction.
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hand-written field notebooks and not on formal models. But, adding formal modeling 
to ethnographic practices can add value [25]. Also, with the advent of Computer 
Aided Software Engineering (CASE) tools, the creation and review of formal models 
can happen much more quickly than in the days of purely manual drawing, copying, 
distributing copies, the recording of feedback, and so on. 

 

 

Fig. 7. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment the 
artifacts of agile software development 

 

Fig. 8. How usability engineering can benefit from SADT/IDEF0 domain modeling 

Usability Engineering Augmentation. Many augmentations to Usability Engineering 
have been suggested, and most have been centered on incorporating ethnographic 
concepts and field work. Some of the most noteworthy augmentations are: a) models 
that distinguish local dynamics from global dynamics from contextual dynamics [45], 
b) a context-based, generalized navigation space model that is used that model to 
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SADT/IDEF0 Feature Benefits to Usability Engineering

Activation Rule In-context interaction posibilities (patterns) and their rationale, plus associated potential implications (claims).

Annotation -- Graphic (Diagram Highlights) In-context specification of work tasks. Context provides background and rationale for the users' work.

Annotation -- Text (Diagram Notes) Text for all manual boxes becomes an in-context description of people's work.

Context Diagram, Context Model Formalize and limit "context," noting how relevant information differs from context to context.

Control Versus Input
Distinguish which user generated artifacts are simply material for the next step in processing from those 
artifacts than govern subsequent workflow steps.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: "we always did 
it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") Quickly understand the user's language, and the context for language usage.

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined the 
human/system interface points.

Feedback Loop (output-input, output-control) Use to create test cases to evaluate software prototypes (in-context cases).

Model Tie (i.e. "model call") Encoding
Create patterns by unifying the often scattered aspects (i.e. usage behaviors) by constructing themes (i.e. 
relationship rules among aspects).

Small, Multiple Models
Create a context-based, generalized navigation "space" model, and then use it to create a UI presentation 
model.

Why, What, How (i.e. levels of abstraction) Distinguish local dynamics from global dynamics from contextual dynamics .
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create a UI presentation model [22], c) formalized context that shows how 
information differs from context-to-context [28], d) UI design trade-offs via patterns – 
in-context problem-solution pairs – and claims – implications of design decisions [1] 
e) a claims library that enables UI design reuse [60], e) patterns that unify the highly 
scattered aspects of usage behavior via a set of themes that define relationship rules 
for aspects [4], and f) domain models that have syntax and semantics that enable 
consistency across architectural, design, structural, behavioral models [13] [26]. 

 

 

Fig. 9. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment 
usability engineering 

5 Summary, Conclusions and Future Work 

This paper has taken an approach to providing benefits to UML, Agile, and Usability 
Engineering methods by using SADT/IDEF0: a) for domain modeling, and b) in par-
ticular ways based on over 10 years of experience with these methods by a variety of 
practitioners and researchers. These experiences were selected based on their: a) ad-
vocating specific augmentations to the aforementioned methods, and b) showing how 
those augmentations could benefit: i) the software development process advocated by 
the method, ii) any software or non-software prototypes generated by the method, and 
iii) the reuse and maintenance of the final specifications generated by the method. The 
recommended shortcomings and corresponding improvement recommendations were 
used to develop the proposed augmentation approach. 

The approach centers on comprehensive, correct and consistent specifications of 
domain knowledge. When used properly, SADT/IDEF0 can create such specifications 
of an entire domain, not just the software system’s immediate context. And it can 
describe that domain in rich and varied ways using in-context supplements which 
contain the: language, beliefs, assumptions, human organization, human work, work 
tasks and tools, and system usage expectations, vital to the successful application of 
UML, Agile, and Usability Engineering methods. Figure 10 summarizes the role 
SADT/IDEF0 plays in the augmentation process. It also shows how the SADT/IDEF0 
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Author Reader Cycle [24]) can augment Agile by providing domain experts time to 
think about the knowledge already given to software developers to ensure facts are 
consistent and correct with the current common understanding. 

 

 

Fig. 10. Augmenting UML, agile and usability engineering with SADT/IDEF0 models and the 
author/reader review cycle 

The combination of over 10 years of experience by practitioners and researchers, 
their recommendations for improving upon the shortcomings they discovered, and the 
ability of the SADT/IDEF0 to support those recommendations, led the author to 
conclude that there is also merit for further elaboration and demonstration of the 
approach’s viability by extending a commercial SADT/IDEF0 tool. Specifically, such 
a CASE tool could be extended by: a) enhancing its existing ontology of 
SADT/IDEF0, b) integrating that ontology with UML tools, c) creating an interface to 
a domain knowledge reasoning system and a formal specification system, and d) 
building a component for the automatic generation of a deep human-system 
interaction model that includes patterns and claims [1]. A proposal for future work is 
underway. 
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Appendix 

1 “Features” of the SADT Ontology 

Table 1. SADT “features” published in 1977 by Douglas Ross [35] 

 
 

 

 

 

Context
Arrow
Transform
Control
Means
Verbs
Nouns
Path
Dominance
Relevance
Omissions

Branches
Joins

OR
AND
Boundary
Parent
ICOM

Calls

Context
Arrow
Transform
Control
Means
Verbs
Nouns
Path
Dominance
Relevance
Omissions

Branches
Joins

OR
AND
Boundary
Parent
ICOM

Calls



 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 55 

Table 1. (continued) 
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