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Abstract. In the paper we consider the problem of the statistical evaluation and 
comparison of different classification algorithms. For this purpose we apply the 
methodology of statistical tests for testing independence in the case the 
multinomial distribution. We propose to use two-sample tests for the comparison 
of different classification algorithms. In the paper we consider only the case of the 
supervised classification when an external ‘expert’ evaluates the correctness of 
classification. The results of the proposed statistical tests are interpreted using 
possibilistic methodology based on indices of dominance introduced by [7]. 
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1 Introduction 

Statistical algorithms used for classification (discrimination) and clustering of 
observations (data points, data records) are considered as a part machine learning. 
Classification algorithms in machine learning are considered as the algorithms of 
supervised learning. On the other hand, data clustering algorithms in machine learning 
are used as the algorithms of unsupervised learning. In this paper we will discuss the 
problem of the evaluation of the quality of the algorithms used for classification, 
usually understood as the accuracy of classification, from a statistical point of view. A 
natural measure of such quality is the percentage of correctly classified objects, 
usually called classification accuracy. This measure is used by all authors of papers 
devoted to classification problems, both developers of new algorithms, and users of 
existing algorithms who apply them for solving practical problems. 

Quality of classification measured by the accuracy index may not be sufficient for 
the comparison of algorithms. Consider for example a decision support system that 
classifies patients to different classes of illness. It is usually not unimportant if all 
false classifications are evenly distributed over all possible classes or if they are 
concentrated in one class. When we have only two classes or when this distinction is 
not important we can use indices whose background can be found in medical 
sciences, namely the indices of sensitivity and specificity. Let us assume that 
considered objects can be assigned to two disjoint classes called ‘positive’, and 
‘negative’. By sensitivity (also known in machine learning as recall) we understand 
the conditional probability that the object which should be classified to the ‘positive’ 
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class has been correctly assigned to this class. By specificity (also known in machine 
learning as recall of negatives) we understand the conditional probability that the 
object which should be classified to the ‘negative’ class has been correctly assigned to 
this class. For good classification rules the values of these indices should be both 
close to one. In machine learning some functions of these indices (e.g. F-measures or 
ROC diagrams) are used. For more information see e.g. Chapter 7 in [2]. 

When the number of possible classes is larger than two we have to take into 
account statistical relationship between errors of different kind. Some measures 
proposed for the evaluation of algorithms in the case of multiple classes, like e.g. the 
error correlation EC, have probabilistic interpretation, but the majority of them are 
based on some heuristics. For more information on this subject see e.g. Chapter 11 in 
[15]. The lack of statistical interpretation is of lesser importance if we deal with only 
one set of data. However, automatic classifiers may be used in situations when 
analyzed data sets may belong to different populations. For example, in automatic 
inspection of production processes classifiers are designed at the outset of the process 
using some training data, and then used using different set of ‘test’ data acquired 
prom a production process. In such cases possible classification algorithms should be 
compared using statistical methods. We believe that without statistical interpretation 
we are not able to present sound comparisons of different algorithms. 

Application of statistical tests for the evaluation of classification algorithms has 
been proposed in [10]. In this paper, which presents an extended analysis of some 
problems considered in that paper, we propose to use some known statistical tests to 
evaluate and compare the quality of classification algorithms. In the second section of 
the paper we consider the problem of the comparison of algorithms. We consider two 
important practical cases. First is typical to the problem of supervised learning when 
the quality of classification of compared algorithms is evaluated using classification 
provided by an expert. In the second case, typical for algorithms related to 
unsupervised learning, we deal only with purely random data yielded by the compared 
algorithms. 

The main problem with the application of different statistical tests is related to their 
interpretation. In the third section of the paper we propose a new application of 
possibilistic measures for the comparison of classification algorithms. This measures 
are based on the possibilistic interpretation of statistical tests proposed in [9], and 
provide the user with information about possibility or necessity of prefering one 
algorithm over another one. The paper is concluded in the fourth section where 
problems for future considerations are also formulated. 

2 Statistical Tests for the Comparison of Classification 
Algorithms 

Let us assume that we have to classify n objects into K disjoint classes using two 
algorithms, say A and B. In this paper we restrict ourselves to the case when the 
classification algorithm classifies each object to only one of possible classes. We do 
not impose any restriction on the type of the algorithm used for this purpose. This can 
be artificial neural network classifier, set of classification rules, vector supporting 
machine classifier, Bayes naïve classifier or any other algorithm that can be proposed 



Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 257 

for this purpose. An expert may act as one of these algorithms. In this case we are 
able to evaluate the correctness of the classification of each considered object by the 
second algorithm, as in the case of classical supervised learning. Thus, in this case we 
can use our statistical test to evaluate the quality of the classification algorithm. 
However, when we are not able to evaluate the correctness of the classification, we 
can only compare the performance of considered algorithms. This situation is typical 
when the algorithms are built using the methodology of unsupervised learning (e.g. 
using methods of data clustering). 

When we compare two classification algorithms using the same dataset of n 
objects the results of the comparison may be presented in the form of a two-way 
contingency table, such as Table 1. 

Table 1. Data for the comparison of algorithms using the same dataset 

Alg.A/Alg.B 1 ... j ... K Total A 
1 n11 ... n1j ... n1K nA1 

... ... ... ... ... ... ... 
i ni1 ... nij ... niK nAi 

... ... ... ... ... ... ... 
K nK1 ... nKj ... nKK nAK 

Total B nB1 ... nBj ... nBK n 

 
By nij, i=1,...,K; j=1,...,K in this table we denote the number of observations that 

have been classified by the algorithm A to the ith class, and by the algorithm B to the 
jth class. We assume that the results of classification by the algorithm A are described 
by the set ( )AKAA nnn ,,, 21  , and that the results of classification by the algorithm B 

are described by the set ( )BKBB nnn ,,, 21  . The data can come from classifications 

performed on a test sample, combined results of cross-validation experiments or 
classification obtained in the learning process (training sample). However, in the latter 
case the results are of rather limited interest, as all good classification algorithms 
perform rather well on training data. 

We are interested in the verification of the statistical hypothesis that the probability 
distributions are such that these sets of data are strongly dependent. This strong 
dependence means that both compared algorithms provide the same or nearly the 
same results of classification. When one of the compared algorithms is just an expert, 
the measure of such dependence is also the measure of the correctness of 
classification. Otherwise, the strength of dependence is the measure of the 
equivalence of the compared algorithms. 

When we assume that the classification by the algorithm A and the classification by 
the algorithm B are independent then the data presented in Table 1 are distributed 
according to the multiple hypergeometric distribution. Probability of observing the 
two-way contingency table {nij} with the fixed values of marginal observations 

KjKinn BjAi ,,1,,,1,,  ==  is given by the formula: 
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The probability distribution given by (1) can be used for the construction of the test of 
independence. The general idea of this test, known as Fisher’s exact test, is simple. 
We have to generate all possible contingency tables, such as Table 1, with the fixed 
margins equal to the margins observed for the considered table 

KjKinn BjAi ,,1,,,1,,  == . For all these tables we have to calculate, using (1), 

their probabilities. The sum of those probabilities whose values do not exceed the 
probability of the observed table is equal to the p-value (significance) of the test. Low 
values of this characteristics, say less than 0,05 (or 5%), indicate that the observed 
table does not support the hypothesis of the independence between classifications 
obtained using both compared algorithms, and thus, supports the alternative 
hypothesis of dependence. 

Despite its simple and intuitive description the implementation of this algorithm is 
very difficult as the computational volume grows exponentially with the increasing 
values of K and n. Till the publication of the network algorithm in [13] computations 
were possible only for small tables. This algorithm, presented in the form of the 
FORTRAN code in [14] allows to compute p-values of Fisher’s exact test for tables 
with larger values of n, provided that the table contains many cells with very low (i.e. 
equal to zero or close to zero) values. Fortunately, this is the case when we analyze 
good classification algorithms with a low percentage of false classifications. 

In the case of large samples with significant percentage of false classifications we 
can use the well known Pearson’s chi-square asymptotic test for independence. The 
chi-square statistic is given by 
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is the expected number of observations in the ijth cell when both classifications, i.e. 
by the algorithm A and the algorithm B, are statistically independent. When the total 
number of observations n is large (greater than 100), and the expected number of 
observations in every cell is larger than 5, the chi-square statistic, defined by (2), is 
distributed according to the chi-square distribution with (K-1)2 degrees of freedom. 
Thus, the p-value of this test is computed by solving, with respect to p, the following 
equation: 

( )
2

1,1
2

2 pKI −−= χχ , (4)

where ( )
2

1,1 2 pK −−χ is the quantile of the 1-p order from the chi-square distribution with 

( )21−K degrees of freedom. When the total number of observations n is large we can 

consider the expectations calculated according to (3) as close to the theoretical 
expected values of observations. Then, we can use the rule proposed in [16] which 
states that if r is the number of cells with the expectations less than 5, then the lowest 
expectation could be as small as 5r/K2. When the chi-square test of independence is 
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used for the evaluation of classification algorithms Yarnold’s rule could be very 
useful in practice. 

Let us apply the methodology explained above for the analysis of the classical 
linear discrimination algorithm (LDA) applied for a well known benchmark test – the 
famous Fisher’s Iris test. The results of classification using the LDA algorithm 
implemented in the statistical package STATISTICA and the Iris data set are 
displayed in Table 2. 

Table 2. Classification of the Iris data with the LDA algorithm 

Expert \ LDA Iris-Setosa Iris-Versicolor Iris-Virginica 
Iris-Setosa 50 0 0 

Iris-Versicolor 0 48 2 
Iris-Virginica 0 1 49 

The probability of the observation of this table, when the hypothesis of 
independence is true, is extremely low (3,1E-65). Thus, the p-value for Fisher’s exact 
test of independence in the case of these data is equal to 0. It means that the results of 
classification provided by the expert are, as expected, strongly dependent. This 
supports the opinion that the LDA algorithm for this data set is very efficient. 

Now, let us consider the application of another algorithm, namely Classification 
Regression Tree (CRT). The results of the application of this algorithm implemented 
in the statistical package STATISTICA are presented in Table 3. 

Table 3. Classification of the Iris data with a CRT algorithm 

Expert \ LDA Iris-Setosa Iris-Versicolor Iris-Virginica 
Iris-Setosa 50 0 0 

Iris-Versicolor 0 48 2 
Iris-Virginica 0 4 46 

The probability of the observation of this table, when the hypothesis of 
independence is true, is also extremely low (1,6E-61). Hence, the p-value for Fisher’s 
exact test of independence in the case of these data is equal to 0. Therefore, from a 
statistical point of view both algorithms are fully efficient. We have to note, however, 
that the difference between the numbers of observed false classification (3 by the 
LDA algorithm, and 6 by the CRT algorithm) in the case of a relatively small sample 
(150 observations) may be considered as random. 

The Iris data are well separable, and classification algorithms usually perform very 
well on this benchmark. Let us consider now another example, presented in the paper 
[4], where number of false classifications, even on a training data set, is quite large. 
The results of the classification using a proposed in this paper Complete Gradient 
Clustering Algorithm (CGCA) are presented in Table 4. 

Table 4. Classification of the wheat kernel data with the CGCA algorithm 

Expert \ CGCA Kama Rosa Canadian 
Kama 59 2 9 
Rosa 3 67 0 

Canadian 3 0 67 
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The application of Fisher’s exact test gives in this case also a extremely low p-
value (0,897E-74) showing the great strength of dependence between the results of 
classification provided by the expert and the evaluated algorithm. 

The numerical examples presented above show that the proposed statistical 
methodology is computationally demanding, and its results are difficult to interpret. The 
ratio of observed p-values provides some information about the superiority of one 
algorithm over another one, but this interpretation does not have any sound statistical 
basis. 

Consider now the situation when all false classifications are equally important. In 
this case we can put them together in one class of incorrectly classified objects. Let 
( )121 +KK n,n,,n,n   be the vector describing the results of the application of the 

considered classification algorithm. First K components of this vector represent the 
numbers of cases of the correct classification to K considered classes. The last 
component gives the total number of incorrectly classified objects. 

Let us assume now that observed values of ( )121 +KK n,n,,n,n   represent a 

sample from an unknown multinomial distribution, defined by the probability mass 
function 
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objects classified in a similar way to that used for the classification of the considered 
sample. 

Now, let us suppose that we have to compare two classification algorithms, whose 
results of application are given in the form of two vectors ( )121 +KK n,n,,n,n  , and 

( )121 +KK m,m,,m,m  , respectively. First, let us consider the case that both 

algorithms are compared using the same set of observations. Thus, the sample sizes in 
both cases are equal and both observed vectors are statistically dependent. In such 
case in order to compare the considered algorithms we have to know the results of the 
classification of each object, and then to use statistical methods devised for the 
analysis of pair-wise matched data. Theoretically, it is possible if we construct 
Fisher’s test of independence using three-dimensional contingency table. Taking into 
account computational problems with classical Fisher’s exact test it seems to be rather 
impossible to propose a test which compares classification algorithms taking into 
account their efficiencies. 

The situation is different if we want to compare two algorithms without taking into 
account their efficiencies understood as probabilities of yielding correct 
classifications. In such a case the comparison can be done relatively easily when the 
data from a classification experiment performed on the same sample are given in the 
form presented in Table 5. 

Table 5. Comparison of dependent test data 

 Alg.1 -correct Alg.1 - false 
Alg. 2-correct k11 k12

Alg. 2 - false k21 k22
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In this table k11 denotes the number of objects classified correctly by both 
algorithms, k12 denotes the number of objects classified correctly by the Algorithm 1 
but incorrectly by the Algorithm 2, k21 is the number of objects classified correctly by 
the Algorithm 2 but incorrectly by the Algorithm 1, and k22 is the number of objects 
classified incorrectly by both algorithms. 

Let us notice that the only information about the differences between both 
algorithms are contained in k12 and k21. We can verify two hypotheses related to these 
values. First hypothesis is that the probabilities of incorrect classification that 
generate observations k12 and k21 are the for both compared algorithms are the same, 
and this hypothesis is tested against the alternative that they are simply different. In 
this case we have to apply the so called two-sided statistical test. We may also 
consider testing this statistical hypothesis against the alternative hypothesis that one 
particular algorithm is better than a second one. In this case we have to apply the so-
called one-sided statistical test. 

When both compared probabilities are equal it is known, see e.g. [1] for more 
information, that the number of incorrect classifications by only one algorithm k21 (or 
k12)  is described by the Binomial probability distribution with the parameters 

k=k12+k21 and p=0,5. Let us assume now that we observe ∗
12k  and ∗

21k  incorrectly 

classified (only by one algorithm!) objects. The probability of observing k21 false 

classification given *
12

*
12 kkk +=∗  can be calculated from the following formula 
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In order to verify the hypothesis of equal probabilities of misclassification we have to 

calculate, according to (6), the probabilities of all possible pairs ( )∗kk ,21 . In the case of 

the two-sided test the sum of those probabilities that do not exceed the probability of the 

observed pair ( )∗∗= kkk ,2121  gives the value of the significance (known also as the p-

value) of the tested hypothesis. When this value is greater than 0,05 it is usually 
assumed that the hypothesis of the equal probabilities should not be rejected. In the case 

of the one-sided test we consider only these pairs ( )∗kk ,21  that are less or equally 

probable that the observed pair ( )∗∗ kk ,21 , and  support the one-sided alternative. Thus, 

the p-value in the case of the one-sided alternative is smaller than in the case of the two-
sided alternative. Hence, it is easier to reject the hypothesis that one algorithm is not 
worse than the other one than to reject the hypothesis that they are statistically 
equivalent. 

When the number of objects k* that are incorrectly classified only by one algorithm 
is sufficiently large (in practice it is required that the inequality k*>10 must be 
fulfilled) the following statistic  

( )
2112

2
2112

kk

kk
T

+
−=  (7)

is approximately distributed according to the chi-square distribution with 1 degree of 
freedom. This statistic is used in the well known McNemar’s test of the homogeneity 
of proportions for pair-wise matched data. 
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Let us consider again the example of Fisher’s Iris data. We use this benchmark set 
for the comparison of two algorithms: LDA (Linear Discrimination Analysis) and 
CRT (Classification Regression Tree) – both implemented in a popular statistical 
software such as e.g. STATISTICA. For more information about these algorithms see 
e.g. [11]. Close examination of the classifications given by both algorithms results in 
the data presented in Table 6. 

Table 6. Comparison of algorithms (LDA vs. CRT) – Iris data set 

CRT\LDA LDA – correct LDA - false 
CRT - correct 143 1 
CRT - false 4 2 

The p-value for these data, computed according to the algorithm given above, is 
equal to 0,375. Therefore, the obtained statistical data do not let us to reject the 
hypothesis that the probabilities of incorrect classification are in case of these two 
algorithms the same despite the fact that the CRT algorithm gives twice as many false 
classification in comparison to the LDA classifier. 

Now, let us use the data that are less separable that the Iris data set. This situation 
is in the case of wheat kernel data considered in [4]. We will use these test data for  
the comparison of two algorithms: the Bayesian algorithm proposed in [12] and the 
classical Quadratic Discrimination Algorithm (QDA) algorithm described in [11]. The 
results of the comparison are presented in Table 7. 

Table 7. Comparison of algorithms (Bayes vs. QDA)– Wheat kernels data set 

QDA\Bayes Bayes - correct Bayes - false 
QDA - correct 85 9 
QDA - false 5 6 

The p-value in this case is equal to 0,424. Therefore, the obtained statistical data do 
not let us to reject the hypothesis that the probabilities of incorrect classification are in 
the case of these two algorithms the same despite the fact that one of the compared 
algorithms (QDA) seems to be significantly better (nearly 30% lower probability of 
incorrect classification). 

When we do not have an access to individual results of classification we can 
compare algorithms using independent samples described by the multinomial 

distributions. Let the data be described by (5), and  +
= =1

1

K

i i nn  and  +
= =1

1

K

i i mm  be 

the sample sizes which in general, as we compare the classifications of different 
samples, do not have to be equal. Moreover, note that in the case when one of these 
algorithms is a perfect classifier (e.g. a domain expert) we have 01 =+Kn  (or 

01 =+Km ). If the results of the application of the first algorithm are described by the 

multinomial distribution ( )11 +KK p,p,,pMB  , and the results of the application of the 

second algorithm are described by the multinomial distribution ( )11 +KK q,q,,qMB   
their performance can be compared by testing the statistical hypothesis 

11110 ++ === KKKK qp,qp,,qp:H  . (8)
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To test this hypothesis we may apply the methodology of two-way contingency 
tables. Test data in the case of the accumulation of all falsely classified object into 
one (K+1) class are presented in Table 8. 

Table 8. Independent test data 

Alg./Class 1 … j … K K+1 Total 

Alg. 1 n11 … n1j … n1K n1K+1 N 

Alg. 2 n21 … n2j … n2K n2K+1 M 

Total c1 … cj … cK cK+1 N+M 

 
When the hypothesis H0 given by (8) is true, the conditional distribution of 

observed random vectors ( )121 +KK n,n,,n,n  , and ( )121 +KK m,m,,m,m  , given the 

vector of their sum ( )121 +KK c,c,,c,c  , is given by the multivariate hypergeometric 

distribution [5] 
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This probability function is used for the construction of the multivariate 
generalization of Fisher’s exact test that is used for the verification of (4). Let n*, m* 
and c* be the observed data vectors. The p-value (significance) of the test is computed 
from the formula [5] 

( ) ( ),,|, 0
Γ

∗=− HPvaluep cmn  (10) 

where 

( ) ( ) ( ){ }.,|,,|,:, 00 HPHP ∗∗∗∗ ≤=Γ cmncmnmn  (11) 

The p-values of this test can be computed by the tools of statistical packages such as 
SPSS or SAS. However, in the case of many categories and large (or even moderate) 
samples the computation time may be prohibitively long. 

It can be shown that the test of the equality of two sets of multinomial probabilities 
is formally equivalent to the test of independence of categorical data, considered in 
the first part of this section. Hence, in the case of sufficiently large sample sizes with 
all cells having at least 5 observations, for testing (8) one can use Pearson’s chi-
square test of independence. These assumptions are usually fulfilled in testing 
classification algorithms, except for situations when tested data allows building 
perfect or nearly perfect classifiers. However, in such cases the problem of choice of 
the best classifiers does not exist. 

The 2χ  statistic in the considered case can be written as 
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where 
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i =  (14) 

The p-value for this test is obtained by solving, with respect to p, the equation 

2
1

2
p,K −= χχ , (15) 

where 2
1 p,K −χ  is the quantile of order 1-p in the chi-square distribution with K 

degrees of freedom. Also in this case the p-values of Pearson’s chi-square test of 
independence can be computed using the tools available in various statistical 
packages. 

In order to illustrate the application of the proposed tests in the evaluation of 
classification algorithms tested on samples of N=100 objects each which are classified 
into K=3 classes. Suppose that we want to compare three algorithms A, B, and C, 
together with a “perfect” algorithm represented by an expert E. All compared 
algorithms have their basic and ‘improved’ versions indexed by subscripts 1 and 2, 
respectively. In order to make the evaluation simple we assume that all incorrect 
(false) classifications are assigned to the additional fourth class. Suppose that the 
results of this experiment are presented in Table 9. 

Algorithms A, B and C in their both versions are characterized by the same total 
percentages of incorrect classification equal to 10% and 5%, respectively. However, 
the distribution of incorrectly classified objects depends upon the used algorithm. We 
face this situation when the algorithms are “aimed” at correct classification of chosen 
classes (e.g. Bayes classifiers). 

Table 9. Results of an experiment with independent samples 

Alg.\Class 1 2 3 4 

Expert 20 30 50 0 

A1 18 27 45 10 

A2 19 29 47 5 

B1 10 30 50 10 

B2 15 30 50 5 

C1 20 30 40 10 

C2 20 30 45 5 

In the case of the algorithm A incorrectly classified objects are distributed 
proportionally to the actual sizes of classes. For the algorithm B all incorrectly 
classified objects are assigned to the class with the lowest number of actual 
observations. Finally, in the case of the algorithm C all incorrectly classified objects 
are assigned to the class with the highest number of actual observations. 
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In Table 10 we present the p-values of both considered tests when the performance 
of each classification algorithm is compared to the classification given by the expert. 

Table 10. Comparison of different algorithms with the expert 

 Fisher’s Chi-square 
A1 vs. E 0,008 0,015 
B1 vs. E 0,002 0,004 
C1 vs. E 0,006 0,011 
A2 vs. E 0,177 0,162 
B2 vs. E 0,132 0,126 
C2 vs. E 0,165 0,154 

In the case of basic versions of all algorithms the results of classification are 
statistically significantly different than the classification provided by the expert. The 
worse classification is provided by the algorithm A. In the sample analyzed by this 
algorithm all falsely classified objects are evenly distributed over all classes.  The best 
performance is observed in case of the algorithm B characterized by the largest 
percentage-wise differences between levels of the accuracy of classification in 
different classes. In the case of the ‘improved’ versions of the considered algorithms 
the data do not let us to reject the hypothesis that the results of classification are 
statistically equivalent to the results of classification provided by the expert. 

Now, let us apply the proposed methodology for the comparison of basic and 
‘improved’ versions of our hypothetical algorithms. The results of this comparison are 
presented in Table 11. 

Table 11. Comparison of different versions of algorithms 

 Fisher’s Chi-square 
A1 vs. A2 0,640 0,613 
B1 vs. B2 0,470 0,446 
C1 vs. C2 0,599 0,581 

The results of this comparison are somewhat unexpected for a non-statistician. 
Despite seemingly large improvement (reduction of the percentage of incorrect 
classifications from 10% to 5%) the compared results statistically do not differ. The 
reason for this behavior is, of course, a small sample size. What is also interesting that 
the difference is the least significant (the highest p-value in the test of equality) in the 
case of evenly distributed misclassifications. The lowest p-value (but still very high 
using statistical standards) is for the case of algorithm B which assigns all incorrectly 
classified objects to the class with the smallest number of observations. 

Now, let us consider an example of the application of this methodology to real 
data. Suppose, that we have been provided with two algorithms for the classification 
of vehicle silhouettes data (data provided by Turing Institute, Glasgow, and available 
at the UCI web-site). One of these algorithms implements the Bayesian algorithm 
proposed in [12], and the second one implements a classical CRT algorithm described 
in [3]. The algorithms have been tested on two independent samples, and the results 
of this comparison are presented in Table 12. 
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Table 12. Comparison of algorithms - Vehicle Silhouettes data set 

Alg.\Class 1 2 3 4 5 

Bayes 55 48 112 90 141 

CRT 46 55 86 84 175 

 

The p-value obtained as the solution of (15) for these data is equal to 0,079. 
According to the classical statistical approach this result does not let us claim that the 
Bayes algorithm is better than the CRT. Note however, that similar results obtained 
on the same sample would probably indicate the superiority of the Bayes algorithm. 

3 Possibilistic Evaluation of Test Results 

In the previous section we have proposed statistical tests for the evaluation of 
classification procedures. The results of the proposed test procedures have been 
expressed in terms of significance, known also as the test volume or the p-value. 
Examples given in this section show that the results of statistical tests interpreted in a 
traditional way are not well suited for finding if one classification algorithm is better 
than the other one. Therefore, there is a need to present an additional indicator that 
can be used to show to what extent one algorithm is better than the other one despite 
the fact that they are statistically equivalent. This goal can be achieved using the 
methodology proposed in the theory of possibility. In the papers [8] and [9] the 
possibilistic interpretation of statistical tests has been proposed. This interpretation 
gives a decision maker the evaluation of test’s result using notions of possibility or 
necessity of making certain decisions. 

Statistical decision problems are described by setting a certain hypothesis H 
(usually called the null hypothesis), and an alternative hypothesis K. In the context of 
decision-making we usually choose this hypothesis which is better supported by 
statistical data. Hryniewicz [9] proposes to consider these two hypotheses separately. 
Suppose that the significance of H is given by the p-value of the test, and is equal to 
pH. The value of pH shows to what extent the statistical evidence supports the null 
hypothesis. 

In [9] it was proposed to evaluate the null hypothesis H by a fuzzy set H
~

 with the 
following membership function 

( ) [ ]
( )[ ] .

112,1min

02,1min





=−
=

=
xp

xp
x

H

H
Hμ  (16) 

This membership function may be interpreted as a possibility distribution of the truth 
of H. If ( ) 11 =Hμ  holds, it means that it is quite plausible that the considered 

hypothesis is not true. On the other hand, when ( ) 10 =Hμ , we would not be surprised 

if H were true. 
The same can be done for the alternative hypothesis K. The statistical test of this 

hypothesis may be described by another p-value, denoted by pK. When K= not H we 
have pK=1-pH. However, in a general setting this equality usually does not hold. The 
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alternative hypothesis K is now represented by a fuzzy set K
~

 with the following 
membership function 

( ) [ ]
( )[ ] .

112,1min

02,1min





=−
=

=
xp

xp
x

K

K
Kμ  (17) 

In order to choose an appropriate decision, i.e. to choose either H or K, Hryniewicz 
[9] proposes to use three measures of possibility defined in [6]. 

For two fuzzy sets A
~

 and B
~

, described by their membership functions ( )xAμ  and 

( )yBμ , respectively, the Possibility of Dominance (PD) measure is defined in [6] in 

the following way 

( ) ( ) ( )[ ].,minsup
~~

:,
yxBAPD BA

yxyx
μμ

≥
=≥  (18) 

The second index is called the Possibility of Strict Dominance (PSD), and for two 

fuzzy sets A
~

 and B
~

 is given by the expression 

( ) ( ) ( )( )[ ] .1,mininfsup
~~

: 





 −=>

≤
yxBAPSD BA

yxyx
μμ  (19) 

Positive, but smaller than 1, values of this index indicate certain weak evidence 

that A
~

strictly dominates B
~

. 
Third measure is named the Necessity of Strict Dominance, and for two fuzzy sets 

A
~

 and B
~

 has been defined in [6] as: 

( ) ( ) ( )( )[ ].,minsup1
~~

:,
yxBANSD BA

yxyx
μμ

≤
−=>  (20) 

The NSD index represents a necessity that the fuzzy set A
~

 strictly dominates the 

set B
~

. 
In the considered statistical problem of testing a hypothesis H against an alternative 

K these indices have been calculated in [8], and are given by the following formulae 

( ) ( ) ( )[ ],1,0max
~~

KHKHPD μμ=≥  (21) 

( ) ( ) ( )[ ],01,0min
~~

KHKHPSD μμ −=>  (22) 

( ) ( ) ( )[ ].0,1max1
~~

KHKHNSD μμ−=>  (23) 

The value of PD represents the possibility that according to the observed statistical 
data the choice of the null hypothesis is not a worse decision than choosing its 
alternative. The value of PSD gives the measure of possibility that the data support 
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rather the null hypothesis than its alternative. Finally, the value of NSD gives the 
measure of necessity that the data support the null hypothesis rather than its 
alternative. 

It has been proved that 

.NSDPSDPD ≥≥  (24) 

It means that according to the practical situation we can choose the appropriate 
measure of the correctness of our decision. If the choice between H and K leads to 
serious consequences we should choose the NSD measure. In such a case pH>0,5 is 
required to have NSD>0. When these consequences are not so serious we may choose 
the PSD measure. Finally, the PD measure, which is always positive, gives us the 
information of the possibility that choosing H over K is not a completely wrong 
decision. 

In some cases considered in this paper the alternative hypothesis has been 
formulated as the complement of the null hypothesis, Thus, we have the equality 

HK pp −= 1 . In this case we have 

( ) ( ) ( ),2,1min0
~~

HH pKHPD ==≥ μ  (25) 

( ) ( ) ( ).0,12max
~~~~ −=>=> HpKHNSDKHPSD  (26) 

Let us apply these results for the comparison of different algorithms using the test 
result presented in Table 6 for the comparison of the LDA and CRT algorithms used 
for the classification of the Iris data. For this statistical test we have pH=0,375, and 
pK=0,625. Hence, we have PD=0,750, and PSD=NSD=0. Therefore, there is only a 
certain possibility that these two algorithms are equivalent, but the measure of the 
necessity of such claim is equal to zero. 

The possiblilistic comparisons are not necessary when null and alternative 
hypotheses are, as in the cases considered above, complementary. In such case strong 
evidence in favor of the null hypothesis means automatically weak support of its 
complementary alternative. 

4 Conclusions 

In the paper we have considered the problem of the evaluation and comparison of 
different classification algorithms. For this purpose we have applied the methodology 
of statistical tests for the multinomial distribution. We restricted our attention to the 
case of the supervised classification when an external ‘expert’ evaluates the 
correctness of classification. The results of the proposed statistical tests are 
interpreted using the possibilistic approach introduced in [9]. The results presented in 
this paper can be extended to the case of imprecise data. In this case the applicability 
of the proposed possibilistic measures is even much stronger when we omit, for 
example, the assumption that there exists an ‘expert’ who indicates only one ‘true’ 
class. In such cases we have to use the methodology of fuzzy statistics, whose 
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overview can be found e.g. in [7]. We will face such problems, for example, when we 
will adapt the methodology presented in this paper for the case of the evaluation of 
fuzzy classifiers. 
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