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Abstract. Web applications pervade all aspects of human activity today. Rapid
growth in the scope, penetration and user-base of web applications, over the past
decade, has meant that web applications are substantially bigger, more complex
and sophisticated than ever before. This places even more demands on the vali-
dation process for web applications. This paper presents an automated approach
for the system testing of modern, industrial strength dynamic web applications,
where a combination of dynamic crawling-based model generation and back-end
model checking is used to comprehensively validate the navigation behavior of
the web application. We present several case studies to validate the proposed
approach on real-world web applications. Our evaluation demonstrates that the
proposed approach is not only practical in the context of applications of such
size and complexity but can provide greater automation and better coverage than
current industrial validation practices based on manual testing.
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1 Introduction

Web applications are ubiquitous today. The last decade has witnessed rapid growth
in both the scope and the penetration of web applications. On one hand, the wide-scale
adoption of web applications in all spheres of human activity has brought validation and
quality assurance of such applications into focus. On the other hand, the development of
WEB 2.0 technologies such as AJAX (Asynchronous JavaScript and XML) and Flash
has resulted in feature-rich and highly interactive web applications, which are even
more difficult to validate.

Current industrial practice for the functional validation of web applications still con-
tinues to largely rely on manually written test cases which exercise and check the
application behavior one trace at a time. There is a growing gap between the cover-
age, automation and scalability of traditional testing-based validation methodologies
and the validation requirements of modern WEB 2.0 applications, which has been ac-
knowledged by validation researchers and practitioners alike. Research on automated
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model generation [9], model-based testing [10,8,7,3], and model checking [1] offers
the promise to address this gap. Specifically, there has been a recent work on automated
model generation [9] and model-based testing [10] of AJAX applications that looks es-
pecially promising.

This paper addresses the problem of developing a better and practical validation so-
lution for WEB 2.0 application development. We propose a methodology for functional
validation of WEB 2.0 AJAX applications that is based on an efficacious combination
of some previously proposed techniques in the validation literature and our own novel
extensions to these techniques. We present several case studies of applying this method-
ology to the validation of WEB 2.0 applications. The main objectives and contributions
of this paper are as follows:

– We propose a solution for automated system testing of modern industrial-strength
dynamic web applications. This solution employs a combination of automated dy-
namic crawling to extract a model of the navigation behavior of the web application
and model checking techniques to check this model for various properties of inter-
est.

– We extend and adapt the dynamic crawling and model checking techniques in sev-
eral novel ways to fit our application domain and to ensure that the validation so-
lution is simple, scalable, automated and applicable in an industrial context. We
believe our solution is fairly complementary to current industrial practices of web
application validation and at least in some respects, superior to them.

– We present several case studies of applying the proposed approach to the validation
of real web applications and report on both the successes and short-comings of
our proposed approach. We feel these lessons would be vital in developing and
delivering the next generation of industrial practices for web application validation.

The rest of the paper is organized as follows. In the next section we survey related
work. Section 4 presents our proposed validation approach. In Section 5 we describe
the implementation of this approach. Section 6 presents three case studies evaluating
our approach on real-world web applications, followed by a discussion of the lessons
learnt in Section 7. We summarize and conclude the paper in Section 8.

2 Related Work

This work is aimed at system testing of dynamic web applications and specifically, val-
idating the navigational aspects of their behavior. The vast body of research on web
application validation spans several other important areas such as validation of the
server-tiers of web applications, or that of security or performance aspects of the be-
havior. Nevertheless, these areas are beyond the scope of this paper and are therefore
not surveyed in this section.

Current industrial practice for system testing of web applications primarily involves
the use of capture-replay tools such as Selenium 1, WebKing 2 and Sahi 3. Using these

1 http://seleniumhq.org/
2 http://www.parasoft.com/jsp/solutions/soa solution.jsp?itemId=86
3 http://sahi.co.in/w/
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frameworks, users manually exercise the application through various test scenarios, one
at a time. These actions are recorded by the tool and can be replayed back at a later time,
usually with user-defined assertions expressing expected behavior, inserted at various
steps. This mode of validation, however, requires a substantial amount of manual effort.

Our proposed method for system testing of dynamic web applications involves ex-
tracting a state-based navigation model of the web application behavior by automat-
ically crawling the deployed web application. This model is then checked against a
temporal logic specification, represented as a set of properties, using model checking
[4] techniques. There are several works which overlap with one or more aspects of our
approach but differ in other respects.

The Target Applications. Several previous works [12,3,2] target traditional (WEB 1.0)
web applications, employing some form of automatic crawling to extract a navigation
model for validation. However, as also pointed out by others [10,8], the crawlers used
there would not be applicable to WEB 2.0 applications. Further, the nature and scope of
the model extracted from traditional web applications as well the properties to be val-
idated on them would differ substantially from those of the dynamic web applications
we target. This is also true of previous work on GUI Application testing by Memon et
al. [13], which, while qualitatively similar in many respects, cannot be directly applied
to our application domain. The tool MCWEB [1] is one of the few instances of the di-
rect application of model checking to web application navigation behavior. However,
the work was also targeted towards WEB 1.0 applications. Further, the lack of sup-
port for automated model extraction and the use of µ-calculus for specifying properties
makes the tool difficult to use for non-formalists. Our approach emphasizes automation,
scalability and ease of use in an industrial setting.

The Verification Methodology. Almost all previous papers rely on trace-by-trace test-
ing as the end means to validate the behavioral model. The authors of [10,8] automat-
ically generate test-benches which exercise one trace at a time from the model. While
this definitely increases the level of automation compared to the current industrial prac-
tice of manually written test-cases, the underlying validation is still test-case driven and
hence the requirements and their checking very trace-specific. We submit that our ap-
proach, which is based on model checking, is much more natural, given that we have
a pre-generated navigation model. Further, we can pose and check more general and
global properties of the application. We present several instances of this and the advan-
tages it provides, in Section 6.

3 Background

In this section we review some technologies that form the foundations of our approach
for web application validation.

3.1 Automated Crawling of AJAX Applications

We use the technique proposed in the CRAWLJAX work [9] as the basis for exploring
the behavior of the web application under test. CRAWLJAX is a tool for automatically
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exploring the dynamic state space of modern web applications. It is capable of interact-
ing with the client-side code of a web application through programmatic interfaces that
are available for most of the popular web browsers. CRAWLJAX analyzes a web page
to detect widgets to click on (clickables), and systematically exercises them to explore
dynamic web application behavior. Changes in the dynamic DOM tree of the page are
detected and recorded as new states of the behavior. By systematically detecting new
states and executing clickables on them the crawler is able to build a finite-state model
of the navigation behavior of the web application. CRAWLJAX provides a set of options
to configure the crawling behavior. For example, the set of widgets to click on or not
click on, during crawling, can be specified. For more details about the algorithms, ar-
chitecture and features of CRAWLJAX the interested reader is referred to [9]. We have
extended the basic CRAWLJAX in several ways for the purposes of this work. These
extensions are discussed in Section 4.

3.2 Model Checking

Model Checking [4] is a set of automated techniques for checking if the behavior of a
hardware or software system satisfies a certain property. This is typically done by ex-
tracting a finite-state abstraction M, of the relevant behavior of the system under test.
The property to be checked is expressed as a logical formula f in a temporal logic. Sub-
sequently, model checking algorithms are applied to check if M satisfies f . A temporal
logic is a formalism for expressing sequential properties of dynamic systems, for the
purposes of automated reasoning through techniques such as model checking. There
are several temporal logics that have been proposed in the literature, varying in their
syntax, expressive power as well as the complexity of the model checking algorithms
that work on them. CTL (computation tree logic) and LTL (linear temporal logic) are
the two most popular ones. Our property checking approach, proposed this paper, is a
simplification of traditional temporal logic model checking.

4 Proposed Method

This work addresses the validation of modern, dynamic applications. These applications
usually support a feature-rich, highly-interactive, client-side user-interface, typically by
the use of technologies such as AJAX and Flash. Further, this work focuses on validating
the navigational aspects of the behavior of such application (as opposed to, for example,
the performance, security or concurrency aspects of the behavior).

Our overall approach is a two step process. The first step is to extract a finite-state
model of the navigation behavior of the web application. This is done by automatically
crawling the web application in the style of CRAWLJAX and capturing the observed
behavior as a navigation model. In order to facilitate a more comprehensive, yet scal-
able crawling behavior, applicable to industrial-strength applications, we propose an
extension to CRAWLJAX’s basic crawling, called guided crawling. This is described in
Section 4.1. The second step is to validate various functional requirements of the ap-
plication against the navigation model. To do this we employ a variant of traditional
temporal logic model checking, called template-based property checking. This is de-
scribed in Section 4.2.
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This two-step approach has several advantages. First, it allows us to isolate the rela-
tively expensive crawling step from the actual validation and do the crawling once (or
a few times) in a mostly requirement and validation independent manner. Second, it
allows us to extract a compact model of the navigation behavior, by a judicious choice
of the model representation as well as by discarding irrelevant application-level details
during crawling. This accelerates both the crawling and the downstream model check-
ing. Third, since all the requirements to be checked are often not known during the
initial stages of validation, performing the validation offline obviates the need to repeat
the expensive crawling step.

4.1 Model Generation

The Navigation Model. The navigation model represents the structure and screen
content observed by the crawler while dynamically crawling the web application. It is
comprised of a state transition graph (STG), representing the topology of the crawled
behavior, as well as the content of each crawled state.

index
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user-guided crawling onclick /HTML/BODY[1]/A[1] onclick /HTML/BODY[1]/INPUT[3] onclick /HTML/BODY[1]/A[1]
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Fig. 1. Graphical view of a State Transition Graph

Fig.1 shows an example of an STG. An STG is a labelled directed graph where
each node (state) corresponds to a web page viewable on a web browser. Each state
is represented by the DOM (document object model) of its corresponding web page,
in the navigation model. A change in the DOM of a web page, typically through the
execution of a user action (such as a button click), constitutes a new state. Edges in
the STG represent transitions from one state to another and are typically labelled with
the user action (e.g., a click) and the XPath of the element on which it was executed.
This is the case with most edges in Fig.1. Some edges are labelled “user-guided crawl-
ing” and correspond to a transition made by a sequence operations from a guidance
directive. Guided crawling and guidance directives are discussed in the next section.

Note that some web applications may, theoretically, have an infinite state space (for
example based on infinite different sets of data inputs). However, due to obvious prac-
tical constraints of crawling time and navigation model size we only crawl and validate
a finite but behavior-rich subset of the state space of a given web application. A finite
state model is also a requirement of the downstream property checking algorithms.

Guided Crawling. The CRAWLJAX tool [9] offers users some control over the crawled
behavior by specifying the overall set of widgets to click or not click during crawl-
ing. Users can also specify one or more sets of data for each HTML <form/> element
encountered during crawling. However, the crawling of real-life enterprise web appli-
cations often requires a more tighter control over the crawling, for example, in the
following practical scenarios.
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1. User Authentication: This is a common requirement in several web application in-
teractions, when viewing confidential information or executing transactions. How-
ever, typical web application interactions are a complex mix of unauthenticated and
authenticated behavior, with authentication being activated under specific scenar-
ios (e.g. some applications like Amazon.com do not require a login till the checkout
stage).

2. Form Data Filling: HTML forms are commonplace in modern web applications
(a user authentication panel is a special instance of this). CRAWLJAX allows form-
data filling but always fills a given form with the same data (or data-sets). For more
intelligent crawling, it would be desirable to fill a given form with one of several
data sets driven by the scenario being navigated.

3. Excluding Behavior from the Model: When crawling real web applications, the
crawling time as well as the size of the crawled model needs to be managed, ac-
cording to available computation resources. One strategy is to surgically exclude
features and crawl scenarios outside the scope of the ensuing validation, from the
crawling.

It is very difficult, if not impossible, to adequately service the above scenarios (and
many others), using the default crawling controls provided by CRAWLJAX. We propose
a technique called guided crawling to provide the user with more direct control over
the crawled behavior. It allows the user to specify scenario-based desired crawling be-
havior. This is done by creating one or more guidance directives, specific to the target
application being crawled. The crawling alternates between the fully automatic default
crawling and the scenario-specific behavior specified by the guidance directives.

Definition 1 (Guidance Directive). A Guidance Directive G = (p,A) is an ordered
pair that consists of a predicate p that is evaluated on a web application state, and an
action sequence A . A = (α1,α2 . . . ,αk) is a sequence of atomic actions αi. Each atomic
action α = (e,u,D) is a triple consisting of a DOM element e, a user-action u and a set
of data-instances D (potentially empty) associated with u.

As per Definition 1, a guidance directive G , includes the predicate p that determines
when G should be activated. p is evaluated on the current state of the web application,
during crawling, i.e., on the DOM of the current page loaded in the web browser. If
p is true in the current state, the crawling action sequence A is executed on the web
application. Each atomic action α in A is a simple (browser-based) user action u on a
particular DOM element e on the current web-page/screen. For example, u could be a
click and e could be a button. Such actions have no associated data. Hence, D = /0 (the
empty set) in this case. Another example of an action would be selecting an option from
a <select/> element or assigning a string value to an <input/> element etc. In these
cases D would be the set of data values to exercise the element with.

Algorithm 1 presents the pseudo code for our model generation, incorporating guided
crawling. The main procedure, GuidedCrawl accepts a target web application, W and a
set of associated guidance directives, G set . It initializes the navigation model M, loads
the initial web-page (InitPage) of W in the web browser and invokes procedure Guid-
edCrawlFromState on it. GuidedCrawlFromState() does the actual crawling and recur-
sively calls itself on new successor states. GuidedCrawlFromState() starts with a check
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(IsVisited(S)) to see if state S has been visited by a previous invocation of Guided-
CrawlFromState. This check accounts for any specified state-abstractions (explained in
Section 19). If so, the crawling returns back to calling state. If not, MarkVisited() marks
state S as visited, to exclude it from future guided crawls, and AddState() records S in
the navigation model M as a newly discovered state. Next, the state S is analyzed to
compute the set of actions (Actions), to execute on it, to continue the crawling. First,
function FindActions() (line 7) computes the set of basic (non-guided) user actions,
which can be executed on it, based on the clickables specified to the crawler. Next the
set of guidance directives, G set is processed to find additional actions to execute on S
(lines 8− 11). For each guidance directive G that can be activated on S (line 9) func-
tion ComputeActionSequences() computes concrete action sequences of actions from
G by picking specific data values in its constituent atomic actions α. All possible se-
quences that can be created by various choices of the specified data-values are con-
structed and added to the Actions set. Subsequently, each action a in Actions is fired on
S (lines 13−18). Execute() Executes the action (or action sequence) a on W to discover
a next state (nextState) and AddTransition() records this transition in model M. Guid-
edCrawlFromState() is then recursively called on nextState (line 14). UndoTransition()
functionally reverses the transition S→ nextState on W to restore it to state S.

Model Reduction. The size of the navigation model has a direct bearing on the ef-
ficiency of the property checking. We employ the following two features, to derive a
compact and meaningful model for validation.

1. Specifying User Events: CRAWLJAX provides several mechanisms for specifying
the set of widgets to be exercised (or excluded) during crawling. Our guided crawl-
ing technique further supplements these mechanisms. The specification is done by
the user on application-specific basis, as an input to the model generation step.

2. State Abstraction: Since the crawler uses the screen DOM as the unique identifier
for a state, identical looking screens can often be mapped to different states in the
model because of slight differences in their DOMs. This can happen because of
entities such as visit counters or date/time stamps, included in the DOM or even
minor differences in white-spacing or the attribute order in dynamically generated
web-pages. Therefore, we have implemented a state abstraction technique which
accepts a set of user-given XPaths and removes all matching elements and their
descendents from the DOM tree of each state and uses the resulting abstracted
DOM as the state identifier, specifically in determining equivalence of two states.
This technique is implemented within the IsVisited() function in Algorithm 14.

Our experience regarding the specific use of these features, in the light of our case
studies, is discussed in Section 6.

4.2 Model Validation

As mentioned in Section 2 one of the key differences between our approach and prior art
in this area is that while other approaches resort trace-by-trace checking of the behavior

4 CRAWLJAX provides a similar, albeit independently developed, mechanism called oracle com-
parators for state abstraction.
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Algorithm 1. Guided Crawling

/* GuidedCrawl(W,G set) -- main procedure */
Input : W : Web application under test

G set : Set of guidance directives
Output: M: Crawled navigation model

1 begin
2 M = /0
3 InitPage← LoadBrowser(W )
4 GuidedCrawlFromState(InitPage, M)
5 return M
6 end

/* GuidedCrawlFromState(S, W, G set, M) */
Input : S: Current state for guided crawling

W : Web application under test
G set : Set of guidance directives
M: Navigation model being built

1 begin
2 if IsVisited(S) then
3 return
4 end
5 MarkVisited(S)
6 AddState(S,M)
7 Actions← FindActions(S)
8 foreach G(p,A) ∈ G set do
9 if p(S) = true then

10 Actions← Actions ∪ ComputeActionSequences(A)
11 end
12 end
13 foreach a ∈ Actions do
14 nextState← Execute(a,W,S)
15 AddTransition(nextState, S,M)
16 GuidedCrawlFromState(nextState)
17 UndoTransition(a,W,S)
18 end
19 end

a la traditional testing, we propose to check the navigation model as a whole using the
formal technique of model checking [4]. The use of a pre-generated, finite state naviga-
tion model makes the application of model checking both easy and very efficient. We
claim that the expected navigational behavior of web applications can be quite naturally
expressed as properties in temporal logic [4], the input language of model checkers. In
the following we present a few examples of such classes of requirements and specific
instances in each class.
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1. Screen Sequence/Transition Requirements: The simplest and most common check
on web applications is of the form: A user input i with the web application on
Screen A takes it to Screen B. Here, screens A and B may be screens or pages
of the web application, identified by the presence or absence of certain features,
widgets or DOM elements, while input i may be a simple input like a mouseover
or button/link click or a more complicated sequence of such actions interspersed
with data inputs to various widgets on the screen. This kind of requirement may
be further generalized in checking (for example) that Screen B follows A in one,
all or none of the valid execution sequences of the web application. Some specific
examples of this class of requirements could be:

– In a web application with user authentication: The LOGOUT screen is always
preceded by the LOGIN screen

– On a utilities web-site under the bill-payment section: If the CONFIRM button
is clicked on the PAYMENT-DETAILS screen then the next screen is always
the RECEIPT screen.

2. Global Navigation Structure or Usability Requirements: This kind of requirement
typically apply to the overall structure of the web application’s navigation behavior.
Thus, they are by their very intent, global and ideally suited for checking on a sin-
gle, consolidated navigation model (versus conventional trace-by-trace checking).
Some examples of requirements in this class are:

– All features of are accessible within 5 clicks, starting from the home page
– The initial page is accessible from every screen

Temporal Property Templates. Since each screen of the web application and all fea-
tures, widgets or DOM elements on each screen are represented as part of our navi-
gation model, it would in theory be possible to express our requirements as properties
in a temporal logic [4] such CTL (Computation Tree Logic) or LTL (Linear Temporal
Logic). With minor modifications to our navigation model, these properties could then
be checked on it using one of the commonly used model checkers, e.g., NuSMV [11].

However, writing properties in temporal logic is quite difficult, error-prone and unin-
tuitive for non-formalists, such as the average software developer or quality assurance
engineer. Further, as demonstrated in a study by Dwyer et al. [5] most validation re-
quirements observed in practice, can be captured by properties in a limited number of
temporal classes. A temporal class refers to a set of temporal logic formulas that share
a common temporal structure and differ only in the propositional expressions within
this temporal structure. For example, the LTL temporal formulas G(a∧b) and G(¬p1)
share the common temporal structure G(exp), differing only in the value of expression
exp.

Composing Properties. Motivated by the above arguments, our approach uses a set of
temporal property templates, rather than a complete temporal logic, for specifying prop-
erties. For the purposes of this work, we used the three templates shown in Fig.2. Here
p,p1 and p2 are expressions which are evaluable in a given single state, based on the
contents of that state. They are essentially assertions about the state of different DOM
elements on the page or relationships between them, very similar to assertions used in
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1. Global Template:: G(p): Globally p is true
2. Screen Transition Template:: p1, i→ p2: After transiting from a state where p1 is true,

with an input or a guidance-directive-driven input sequence which matches i, or with any
input (i =nil), p2 is always satisfied

3. Precedence Template:: p1→ Pp2: Need to reach a state where p2 is true, prior to reach
a state where p1 is true

Fig. 2. Temporal property templates used

existing automatic web application system testing frameworks such as Selenium. There-
fore, it is quite easy for developers in field to migrate to our methodology. Examples
of such expressions include availability of a node with given type and attribute, and
availability of text content which matches a given regular expression.

Our Global Template is essentially an assertion p that would be checked on each state
of the STG. A counter-example to this would be a state S where p is false. The Screen
Transition Template relates to a pair of neighboring states S1,S2 and a user action i
that caused the transition between them. i is a tuple of a user event (e.g., a click) and
a unique identifier of the DOM element on which it was performed. This template is
particularly useful to check the function of a specific widget, a very common testing
scenario. A counter-example to this property would be a tuple (S1,T ,S2), where S1 is a
state in which p1 is true, S2 is a state in which p2 is false, and T is a transition from S1 to
S2 made by an input or a guidance-directive-driven input sequence which matches i. The
last template, the Precedence Template, is intended to check more global relationships
in the navigation structure of the web application, for example, that a logout event
in a web application is always preceded by a login event. A counter-example for this
template would be a sequence of transitions which starting from the initial state, reaches
a state where p1 is true, without going through any state where p2 is true.

Model Checking Algorithm. Rather than using a general purpose model checking
algorithm for one of the common temporal logics (e.g. CTL or LTL) we found it more
efficient to implement the actual model checking itself through a set of state-traversal
checkers, one for each template. It is easy to see that any property expressed using the
templates in Fig. 2 can be checked using a single, linear-time traversal of the STG in
the navigation model. This also gives a flexible and extensible model checker, to which
more templates can be easily added in future or existing ones modified to fit practical
situations.

5 Tool Implementation

We have implemented our proposed validation approach in a system, which is com-
prised of two components. One of the components of the system is an extended version
of open-source web application crawler CRAWLJAX. The second is a custom model
checker called GOLIATH, which supports checking of template-based properties on the
navigation model generated by the crawler, as explained in Section 4.2.

Model Generation. Our principal extension to CRAWLJAX is an implementation of the
guided crawling feature described in Section 4.1. Our extended crawler supports Java
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APIs for instantiating an object encoding a guidance directive (as per Definition 1). The
user can instantiate one or more such application specific guidance directives and add
them to the driver for crawling a specific target web application.

Another significant extension is a modification to CRAWLJAX’s behavior discovery
mechanism, to ensure that all behavior reachable up to a specified crawling depth is
included in the model, regardless of the order of firing user events. This was previously
not the case.

Model Validation. Our model checker, GOLIATH is implemented in Ruby and accepts
the crawled navigation model as well as a set of properties formulated in terms of the
property templates of Fig.2, with the expressions (e.g. (p, p1 and p2 in Fig.2) specified
as Ruby expressions. These expressions can refer to specific DOM elements using the
standard DOM API. We use the Nokogiri 5 HTML parser in our implementation, to
parse and interpret such references.

The following is a very simple instance of a supported expression, which is true if
and only if there is some <a/> element with id attribute value login. Here doc refers
to the document DOM object of the page.

doc.xpath(’//a[@id="login"]’).any?

A little more complex and useful expression instances can be constructed as the follow-
ing sequence of expressions:

login_xpath = ’//a[@id="login"]’;
logout_xpath = ’//a[@id="logout"]’;
login_avail = doc.xpath(login_xpath);
logout_avail = doc.xpath(logout_xpath);
login_avail.any? != logout_avail.any?

The last expression (hereafter referred to as pnot together) is true only in states where
precisely one of login/logout button exists. Note that in Ruby, sequences of expres-
sions can be evaluated as an expression which yields the value of the final expression.
Thus, the property G(pnot together), composed using the Global Template, checks that
there is no state in the extracted navigation model, where both the login and logout
buttons simultaneously exist.

6 Case Study

The proposed method has been implemented and evaluated by applying them to appli-
cations including an industrial one as well as an open source well-known application.
To assess the efficacy and utility of our approach and the corresponding implemented
tool, we have conducted a number of case studies following guidelines from [6]. All
experiments are performed on a workstation with Intel Xeon CPU W5590@3.33GHz.

5 http://nokogiri.org/

http://nokogiri.org/
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6.1 Subject Web Applications

We conducted our case studies on three web applications. The first subject
(ORGANIZER) is a schedule organizer application, called MyOrganizer, taken from a
textbook [14] on AJAX-based web application development. It is composed of 8,004
lines of Java code, 2,885 lines of JavaScript code, and 1,137 lines of JSP code. The
second web application (BPM) is a commercial business process manager comprised
of 58,701 lines of Java code, 61,541 lines of JavaScript code, and 90,742 lines of JSP
code. It uses the YUI6 AJAX library. The last subject (REDMINE) is the free and open-
source, project management and bug-tracking tool Redmine (v1.2.1). It is composed of
66,778 lines of Ruby code, 18,402 lines of JavaScript code, and 5,751 lines of RHTML
code. It is implemented based on the Ruby on Rails 7 framework.

6.2 Model Generation

Appropriate guidance directives, which are the keys for meaningful and relatively quick
model generations, are given to generate the corresponding screen transition diagrams
for the three test subjects. The directives include operations for logging in by providing
usernames and passwords whenever there is a screen image having login prompts, or
operations for creation of data entries such as bug reports in Redmine at appropriate
stages during crawling.

Model reduction techniques are used with all of the applications to allow generation
of models in reasonable time. Namely, elements to be clicked during fully automatic
crawling are specified based on validation requirements of each application. In addition,
for ORGANIZER, we have employed a state abstraction technique to ignore changes on
element attribute from mouseover events on elements.

The server-tiers of the applications are also controlled to restore their state every time
the crawler goes back to the initial page to achieve extraction of models with higher
accuracy. For ORGANIZER, a hook to ensure the availability of the user account to be
used during model generation is used. For REDMINE, a hook to revert backend database
to the state with one normal user created from its initial installation is employed.

Table 1 shows the model (screen transition diagram) generation configurations and
results for the examples. Please note loops are excluded on obtaining #path and maxi-
mum depth. Although we also tried to generate tests using the approach shown in [10],
it did not finish generations for neither of the examples, simply because there are so
many cases from its exhaustive analysis even with the depth limit.

6.3 Model Checking

We prepared multiple properties for each of benchmarks. Table 2 contains number of
properties for the benchmarks categorized by their temporal templates and verification
results, i.e. satisfied or unsatisfied. The table also contains maximum / average / min-
imum check count observed during model checking . Check counts are provided with
the definitions shown in Fig.3 for each of temporal property templates.

6 http://developer.yahoo.com/yui/
7 http://rubyonrails.org

http://developer.yahoo.com/yui/
http://rubyonrails.org
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Table 1. Model generation configurations and results

Crawling #Guidance #State #Transition #Path Max. Avg. Time
depth direc. depth depth (min.)

ORGANIZER 11 1 38 232 65 13 6.385 133
BPM 8 1 765 4039 830 41 22.161 2769

REDMINE 11 7 1580 2528 1220 15 12.937 2634

Table 2. Model checking configurations and results

G(p) p1, i→ p2 p1→ Pp2
Sat. Unsat. #Check Sat. Unsat. #Check Sat. Unsat. #Check

prop. prop. prop. prop. max/avg/min. prop. prop. max/avg/min
ORGANIZER 0 0 0 0 7 23/20.4/5 0 0 0

BPM 9 0 765 2 0 113/61.5/10 2 0 13504317615/
6752159070/525

REDMINE 2 1 1580 3 2 4/2.2/1 10 0 294/154.4/2

�

�

�

	

1. G(p): Number of states within the model
2. p1, i→ p2: Number of transitions made by inputs or guidance-directive-driven input

sequences which matches i, from states which make p1 true.
3. p1 → Pp2: Number of transition sequence to states which make p1 true from states

which makes p2 true

Fig. 3. Check count for the property templates

All 7 properties for ORGANIZER including Prop. 1a shown in Fig.4, which are all in
form of p1, i→ p2 are violated and yielded counter examples. Playing back input se-
quences to reach and activate the counter examples, actually results in transitions which
do not meet the properties. Execution of the counter examples for 5 of the properties
generate an error message dialog in client-side web browser and a record indicating
“Null Pointer Exception” in the log of Java server software. On execution of counter
example for another property, state transition on a user input does not occur. Execution
of counter example for the other property results in a state which does not satisfy post
condition p2. They are real bugs in a program shown in the textbook.

Prop. 1a. doc.xpath(’//img[@id="dayAtAGlance"]’).any? , //img[@id="dayAtAGlance"]:onclick ->
doc.xpath(’//img[@src="img/head_dayAtAGlance.gif"]’).any?

Prop. 3a. G (["home","projects","help"].map { |c|
doc.xpath(’//a[@class="’ + c + ’"]’).any? }.all? )

Prop. 3b.

doc.xpath(’//input[@value="Create"]’).any? &&
doc.xpath(’//input[@id="issue_subject" and @value and (0<string-length(@value))]’).any? &&
doc.xpath(’//input[@id="issue_parent_issue_id" and @value="10"]’).any? ,
//input[@value=’Create’]:onclick ->
doc.xpath(’//a[contains(@class,"issue") and contains(text(),"10")]’).any? ||
doc.xpath(’//div[@class="errorExplanation"]’).any?

Fig. 4. Properties used in the experiments.

All 13 properties for BPM are satisfied. Check counts while model checking proper-
ties in temporal form of p1→ Pp2, are large due to large number of traces to navigate
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back to states which make p2 true from states which make p1 true. It is impossible to
track through all of the traces in test-based approaches.

In REDMINE, Prop. 3a shown in Fig.4 which is in the form of G(p) is violated. The
property is violated in a state where the web browser is showing a file in a special for-
mat. 2 properties in the form of p1, i→ p2 are also violated in REDMINE. The violated
properties including the one shown as Prop 3b , require the application to transit to
a DOM page containing a reference to a ticket (bug report etc.) or to a page indicat-
ing an error, from a form with a reference to the ticket input by the user, on “Create”
button click. However, the application proceeds without any error even if the referred
ticket does not exist, and the resulting pages do not contain any reference to the ticket
specified.

Each checking of properties in the experiments finished within 10 seconds. As you
can see from the results, once the model is generated, model checking is relatively
very quick, and various properties can be examined with reasonable time even for large
examples.

7 Discussion

Completeness. Since our technique relies on the finite state navigation model extracted
by the crawler, erroneous behaviors not included in this model cannot be exposed by the
subsequent model checking step. Although we attempt to capture the largest possible
set of relevant behaviors, through crawler enhancements like guided crawling, and by
the judicious choice of clickable widgets and crawling depth, the model generation step
is inherently incomplete and in practice limited by computation resources.

However, compared to prevailing industrial practices of using trace-by-trace testing
based on manually written tests, our technique is able to automatically explore and test
a significantly larger set of behaviors and thereby expose many more errors.

Scope. Like other black-box validation techniques, in order to detect errors, our tech-
nique requires erroneous behaviors to be propagated and observable at the user interface
of the web application, i.e., on the client-tier content displayed on the web browser. In
other words, the technique cannot directly detect problematic server-tier behaviors, such
as perhaps those pertaining to security or performance aspects of behavior. However, it
is an ideal fit for testing validating behavior, which typically manifests at the client-tier.

Further, compared to other black-box system testing techniques for web applica-
tions, namely those based on user-given test cases and assertions, our approach which
makes use of more expressive user-given guidance directives and temporal properties
can target extensive classes of behavior.

Automation Level. Our model generation technique require the user to specify a
crawler configuration, which is composed of set of elements to be clicked during fully-
automatic crawling, state abstraction configuration to ignore some part of DOM page,
and a set of guidance directives to partially control the crawling behavior. Our model
checking technique is supplied from the user with the properties to be checked. User
inputs required for the validation is small, considering large number of execution traces
covered with a single configuration, as observed in our case studies.
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Scalability. Our case studies confirm that our technique is applicable to large real-
world applications in real use. However, our experience also showed that the model
generation (crawling) time far exceeds the model checking time. Most of time required
for the crawling is due to the communication latency between the crawler and the target
application. As the computation burden of the process is relatively small, parallelizing
and distributing the crawling is an attractive option for reducing the crawling latency.

Model reduction techniques (for example those described in Section 19) are another
option for pruning the state-space and hence the crawling time. We did employ these
techniques in our case studies, but to a limited extent. Although more aggressive model
reduction, based on the properties to be verified, could reduce the model generation
time further, it needs to be implemented and confirmed through more case studies.

Correctness. Since our crawling only observes the client-tier of the web application,
the state computed and recorded by it is actually an abstraction of the true system state
(which should include the state of the server tiers as well). Thus, the STG computed by
the crawler represents an over-approximation of the ”‘true”’ possible set of traces of the
web application. Thus, it is theoretically possible that an error trace produced by our
model checking is not reproducible on the actual web application, i.e. a false positive.

However, all the counter examples reported in our case-study are confirmed to repro-
duce. Reproducibility of counter examples is expected to depend also on the degree of
abstraction, which is expected be useful to scalability of the technique.

Threats to Validity. We have discussed some of issues related to the external validity
of our evaluation in the discussions above. The internal validity of our evaluation may
depend on implementation of software tools used. We have minimized the chance by
making use of test sets for the tools, which are completely separated from benchmarks
used in the evaluation.

8 Conclusions and Future Work

We have proposed a new approach for the automated system testing of modern, dy-
namic web applications. Our method employs automatic crawling to extract a finite
state navigation model of the web application behavior. The user authors a set of proper-
ties, expressing desired navigation behavior, using a simple and intuitive template-based
specification language. These are then efficiently checked on the extracted model. Our
experience with this approach, through several case studies, confirms that it both appli-
cable to industrial strength applications, as well as superior to current industrial practice
based on manual testing.

Future works include more verification trials with larger applications for more robust
evaluations of the proposed techniques as well as their extensions.
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