

Communications
in Computer and Information Science 303

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Tai-hoon Kim
Konkuk University, Chung-ju, Chungbuk, Korea

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Xiaokang Yang
Shanghai Jiao Tong University, China

María José Escalona
José Cordeiro Boris Shishkov (Eds.)

Software and
Data Technologies
6th International Conference, ICSOFT 2011
Seville, Spain, July 18-21, 2011
Revised Selected Papers

13

Volume Editors

María José Escalona
Universidad de Sevilla
ETS Ingeniería Informática
Av. Reina Mercedes S/N
41012 Sevilla, Spain
E-mail: mjescalona@us.es

José Cordeiro
INSTICC / IPS
Department of Systems and Informatics
Rua do Vale de Chaves, Estefanilha
2910-761 Setúbal, Portugal
E-mail: jose.cordeiro@estsetubal.ips.pt

Boris Shishkov
IICREST
1618 Sofia, Bulgaria
E-mail: b.b.shishkov@iicrest.eu

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-36176-0 e-ISBN 978-3-642-36177-7
DOI 10.1007/978-3-642-36177-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012955613

CR Subject Classification (1998): D.2.1-3, D.2.5, D.2.9, D.3.2, I.2.4, H.2.8

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected pa-
pers from the 6th International Conference on Software and Data Technologies—
ICSOFT 2011. The conference was held in Seville, Spain, in collaboration with
the University of Seville and the Escuela Técnica Superior de Ingenieŕıa In-
formática (ETSII) at the University of Seville. Sponsored by the Institute for Sys-
tems and Technologies of Information, Control and Communication (INSTICC),
ICSOFT was organized in cooperation with IICREST (Interdisciplinary Institute
for Collaboration and Research on Enterprise Systems and Technology), CEPIS
(Council of European Professional Informatics Societies), ATI (Asociación de
Técnicos de Informática), FIDETIA (Fundación para la Investigación y el De-
sarollo de las Tecnoloǵıas de la Información en Andalućıa), and INES (Iniciativa
Española de Software y Servicios).

The purpose of ICSOFT 2011 was to bring together researchers and practi-
tioners interested in information technology and software development. The con-
ference tracks were “Enterprise Software Technology,” “Software Engineering,”
“Distributed Systems,” “Data Management” and “Knowledge-Based Systems”.

Software and data technologies are essential for developing any computer
information system: ICSOFT’s scope encompassed a large number of research
topics and applications, from programming issues to the more abstract theo-
retical aspects of software engineering; from databases and data-warehouses to
the most complex management information systems; knowledge-base systems;
distributed systems, ubiquity, data quality and many other topics.

ICSOFT 2011 received 220 paper submissions from 48 countries. To evaluate
each submission, a double-blind paper evaluation method was used: each paper
was reviewed by at least two internationally known experts from the ICSOFT
Program Committee. Only 27 papers were selected to be published and presented
as full papers (10 pages in proceedings / 30-min oral presentation). Additionally,
62 papers were accepted as short papers (6 pages / 20-min oral presentation)—
for a total of 89 oral presentations—and 33 papers as posters. The full-paper
acceptance ratio was thus 12.3%, while the total oral-paper acceptance ratio
was 40.4%.

The quality of the papers presented stems directly from a successful and solid
conference, which would not have been possible but for the dedicated effort of
a complex organizing structure, from the Steering and Scientific Committees to
the INSTICC team responsible for handling all secretariat and logistical details.
A word of appreciation is also due to the conference keynote speakers and to
the many authors and attendants who gave us the honor of helping present their
ideas and hard work to the scientific community.

VI Preface

We hope that you will find these papers interesting and consider them a help-
ful reference in the future when addressing any of the research areas mentioned
above.

March 2012 Maŕıa José Escalona
José Cordeiro

Boris Shishkov

Organization

Conference Co-chairs

José Cordeiro Polytechnic Institute of Setúbal / INSTICC,
Portugal

Maria Jose Escalona University of Seville, Spain

Program Chair

Boris Shishkov IICREST, Bulgaria

Organizing Committee

Patŕıcia Alves INSTICC, Portugal
Sérgio Brissos INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Patŕıcia Duarte INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Liliana Medina INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Daniel Pereira INSTICC, Portugal
Cláudia Pinto INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Alain Abran, Canada
Muhammad Abulaish, India
Hamideh Afsarmanesh,

The Netherlands
Jacky Akoka, France
Markus Aleksy, Germany
Rafa E. Al-Qutaish, UAE
Toshiaki Aoki, Japan
Keijiro Araki, Japan
Gabriela Noemı́ Aranda, Argentina

Farhad Arbab, The Netherlands
Cyrille Artho, Japan
Colin Atkinson, Germany
Mortaza S. Bargh, The Netherlands
Bernhard Bauer, Germany
Noureddine Belkhatir, France
Fevzi Belli, Germany
Jorge Bernardino, Portugal
Marko Boškovic, Canada
Lydie du Bousquet, France

VIII Organization

Mark Van Den Brand,
The Netherlands

Lisa Brownsword, USA
Manfred Broy, Germany
Dumitru Burdescu, Romania
Cristina Cachero, Spain
Fergal Mc Caffery, Ireland
Antoni Llúıs Mesquida Calafat, Spain
José Antonio Calvo-Manzano, Spain
Gerardo Canfora, Italy
Mauro Caporuscio, Italy
Cinzia Cappiello, Italy
Cagatay Catal, Turkey
Krzysztof Cetnarowicz, Poland
Kung Chen, Taiwan
Shiping Chen, Australia
Yoonsik Cheon, USA
Chia-Chu Chiang, USA
Peter Clarke, USA
Rem Collier, Ireland
Kendra Cooper, USA
Sergiu Dascalu, USA
Steven Demurjian, USA
Giovanni Denaro, Italy
Maŕıa J. Domı́nguez-Alda, Spain
Juan C. Dueñas, Spain
Philippe Dugerdil, Switzerland
Jürgen Ebert, Germany
Fikret Ercal, USA
Maria Jose Escalona, Spain
João Faria, Portugal
Cléver Ricardo Guareis de Farias,

Brazil
Luis Fernandez, Spain
Rita Francese, Italy
Kehan Gao, USA
Jose M. Garrido, USA
Nikolaos Georgantas, France
Paola Giannini, Italy
J. Paul Gibson, France
Itana Gimenes, Brazil
Athula Ginige, Australia
Juan Carlos Granja, Spain
Des Greer, UK
Slimane Hammoudi, France

Christian Heinlein, Germany
Markus Helfert, Ireland
Brian Henderson-Sellers, Australia
Jose Luis Arciniegas Herrera,

Colombia
Jose R. Hilera, Spain
Jang-eui Hong, Republic of Korea
Shihong Huang, USA
Ilian Ilkov, The Netherlands
Ivan Ivanov, USA
Bharat Joshi, USA
Yong-Kee Jun, Republic of Korea
Sanpawat Kantabutra, Thailand
Dimitris Karagiannis, Austria
Foutse Khomh, Canada
Roger (Buzz) King, USA
Mieczyslaw Kokar, USA
Jun Kong, USA
Dimitri Konstantas, Switzerland
Walter Kosters, The Netherlands
Martin Kropp, Switzerland
Patricia Lago, The Netherlands
Philippe Lahire, France
Konstantin Läufer, USA
Raimondas Lencevicius, USA
Hareton Leung, China
Hua Liu, USA
David Lorenz, Israel
Zakaria Maamar, UAE
Ricardo J. Machado, Portugal
Leszek Maciaszek, Australia
David Marca, USA
Eda Marchetti, Italy
Katsuhisa Maruyama, Japan
Antonia Mas, Spain
Tommaso Mazza, Italy
Bruce McMillin, USA
Stephen Mellor, UK
Marian Cristian Mihaescu, Romania
Dimitris Mitrakos, Greece
Valérie Monfort, Tunisia
Mattia Monga, Italy
Sandro Morasca, Italy
Paolo Nesi, Italy
Jianwei Niu, USA

Organization IX

Rory O’Connor, Ireland
Pasi Ojala, Finland
Vincenzo Pallotta, Switzerland
Patrizio Pelliccione, Italy
Massimiliano Di Penta, Italy
César González Pérez, Spain
Pascal Poizat, France
Andreas Polze, Germany
Christoph von Praun, Germany
Rosario Pugliese, Italy
Anders Ravn, Denmark
Werner Retschitzegger, Austria
Claudio de la Riva, Spain
Colette Rolland, France
Gustavo Rossi, Argentina
Gunter Saake, Germany
Krzysztof Sacha, Poland
Francesca Saglietti, Germany
Beijun Shen, China
Boris Shishkov, Bulgaria
Yanfeng Shu, Australia
Marten van Sinderen, The Netherlands
Harvey Siy, USA

Yeong-tae Song, USA
Cosmin Stoica Spahiu, Romania
George Spanoudakis, UK
Peter Stanchev, USA
Davide Tosi, Italy
Sergiy Vilkomir, USA
Gianluigi Viscusi, Italy
Florin Vrejoiu, Romania
Christiane Gresse von Wangenheim,

Brazil
Martijn Warnier, The Netherlands
Ing Widya, The Netherlands
Dietmar Wikarski, Germany
Eric Wong, USA
Jongwook Woo, USA
Qing Xie, USA
Haiping Xu, USA
Tuba Yavuz-kahveci, USA
I-Ling Yen, USA
Fatiha Zaidi, France
Xiaokun Zhang, Canada
Hong Zhu, UK
Elena Zucca, Italy

Auxiliary Reviewers

Narciso Albarracin, USA
Tom Arbuckle, Ireland
Carmen Bratosin, The Netherlands
Patricia Shiroma Brockmann,

Germany
Félix Cuadrado, Spain
Subhomoy Dass, USA
Boni Garćıa, Spain
Rodrigo Garcia-Carmona, Spain
Michiel Helvensteijn, The Netherlands
Joseph Kaylor, USA
Dae S. Kim-Park, Spain
Ruurd Kuiper, The Netherlands

James Mulcahy, USA
Rob van Nieuwpoort, The Netherlands
Behrooz Nobakht, The Netherlands
Marcos Palacios, Spain
Jesús Pardillo, Spain
Ignazio Passero, Italy
Jose Proenca, Belgium
Alexander Schneider, Germany
Davide Taibi, Italy
Saleem Vighio, Denmark
Anton Wijs, The Netherlands
Yunqi Ye, USA

Invited Speakers

Ivan Ivanov, SUNY Empire State College, USA
Antonia Bertolino, Italian National Research Council – CNR, Italy
David Marca, University of Phoenix, USA
Oscar Pastor, Universidad Politécnica de Valencia, Spain

Table of Contents

Invited Papers

The Impact of Emerging Computing Models on Organizational
Socio-technical System . 3

Ivan I. Ivanov

On-the-Fly Dependable Mediation between Heterogeneous Networked
Systems . 20

Antonia Bertolino, Antonello Calabrò, Felicita Di Giandomenico,
Nicola Nostro, Paola Inverardi, and Romina Spalazzese

SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering
Methods . 38

David A. Marca

From Requirements to Code: A Full Model-Driven Development
Perspective . 56

Óscar Pastor, Marcela Ruiz, and Sergio España

Part I: Enterprise Software Technology

Enabling Automatic Process-Aware Collaboration Support in Software
Engineering Projects . 73

Gregor Grambow, Roy Oberhauser, and Manfred Reichert

Part II: Software Engineering

Hybrid Debugging of Java Programs . 91
Christian Hermanns and Herbert Kuchen

Combined Constraint-Based Analysis for Efficient Software Regression
Detection in Evolving Programs . 108

Anh D. Le, Tho T. Quan, Nguyen T. Huynh,
Phung H. Nguyen, and Nhat-Van Le

Requirements-Driven Iterative Project Planning . 121
Yves Wautelet, Manuel Kolp, and Stephan Poelmans

An Approach for Model-Driven Design and Generation of Performance
Test Cases with UML and MARTE . 136

Antonio Garćıa-Domı́nguez, Inmaculada Medina-Bulo, and
Mariano Marcos-Bárcena

XII Table of Contents

Typing Legacy COBOL Code . 151
Alvise Spanò, Michele Bugliesi, and Agostino Cortesi

A Repository for Integration of Software Artifacts with Dependency
Resolution and Federation Support . 166

Rodrigo Garćıa-Carmona, Félix Cuadrado, Juan C. Dueñas, and
Álvaro Navas

Automated System Testing of Dynamic Web Applications 181
Hideo Tanida, Mukul R. Prasad, Sreeranga P. Rajan, and
Masahiro Fujita

Part III: Distributed Systems

Technologies for Autonomic Dependable Services Platform:
Achievements and Future Challenges . 199

Eila Ovaska, Liliana Dobrica, Anu Purhonen, and Marko Jaakola

Part IV: Data Management

Extracting the Main Content of Web Documents Based on Character
Encoding and a Naive Smoothing Method . 217

Hadi Mohammadzadeh, Thomas Gottron, Franz Schweiggert, and
Gholamreza Nakhaeizadeh

Facilitating Structuring of Information for Business Users with Hybrid
Wikis . 237

Florian Matthes, Christian Neubert, and Alexander Steinhoff

Part V: Knowledge-Based Systems

Statistical and Possibilistic Methodology for the Evaluation
of Classification Algorithms . 255

Olgierd Hryniewicz

What Else Can Be Extracted from Ontologies? Influence Rules 270
Barbara Furletti and Franco Turini

Author Index . 287

Invited Papers

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 3–19, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Impact of Emerging Computing Models
on Organizational Socio-technical System

Ivan I. Ivanov

State University of New York - Empire State College, Long Island Center, NY 11788, U.S.A.
Ivan.Ivanov@esc.edu

Abstract. Consolidated Enterprise IT solutions have proven to enhance
business efficiency when significant fractions of local computing activities are
migrating away from desktop PCs and departmental servers and are being
integrated and packaged on the Web into “the computing cloud.” Whether
referred to Grid, Utility or Cloud Computing, the idea is basically the same:
instead of investing in and maintaining expensive applications and systems,
users access and utilize dynamic computing structures to meet their fluctuating
demands on IT resources and pay a fixed subscription or an actual usage fee.
The immense economic demands in the last several years, in conjunction with
the immediate reduction of upfront capital and operational costs when cloud-
based services are employed, increase the speed and the scale of cloud
computing adoption both horizontally -across industries-, and vertically –in
organizations’ technology stacks.

In actuality, the radical changes for organizations are in rethinking and
reengineering their traditional IT resources, advancing them with cloud
architectures and implementing services based on dynamic computing delivery
models. The changes and business transformations are underway on a large
scale, from providers and customers to vendors and developers. The key issues
are not only in economics and management, but essentially how emerging IT
models impact organizational structure, capabilities, business processes, and
consequential opportunities. This paper explores the impact of the dynamic
computing models on the organizational socio-technical system and provides
the author's vision and experience in strategizing and utilizing emerging cloud-
based applications and services.

Keywords: Cloud Computing, Virtualization, On-demand Services, Cloud-
based Services, Dynamic Structures, Emerging Technologies, Socio-technical
System, Systemic Effect, IT Architecture, Enterprise Architecture.

1 Introduction

Increasingly we have witnessed how business success and economic opportunities
steadily depend on IT-enabled capabilities and IT-driven business transformations. In
today’s global digital economy, the technology and business domains are colliding
forcefully than ever and new business models and growing prospects emerge.

4 I.I. Ivanov

The IT and especially emerging technologies profoundly change how companies
create value both within specific industries, and through industry boundaries.

Consolidated Enterprise IT solutions have proven to enhance business efficiency
when significant fractions of local computing activities are migrating away from
desktop PCs and departmental servers and are being integrated and packaged on the
Web into “the computing cloud.” Whether referred to as Grid, Utility or Cloud
Computing, the idea is basically the same: instead of investing in and maintaining
expensive applications and systems, users access and efficiently utilize dynamic
computing structures to meet their fluctuating demands on IT resources, and pay a
fixed subscription or an actual usage fee [1].

Insightful businesses and organizations grasp the “grid,” “virtual,” or “cloud”
ideas, discerning what the emerging computing services and models proffer, gauge
how they can utilize them to confront business challenges to create a competitive
advantage. Lynda Applegate’s textbook, Corporate Information Strategy and
Management, illuminates this “jump-on-the-ball” approach comparing it with a start
of a football game: the referee blows the whistle to start the play and, immediately, all
players on both teams jump on the ball. Similarly, executives often use the “jump-on-
the-ball” approach particularly during emergence of a new business phenomenon or a
novel technology [2]. This approach was popular and widely implemented in the
1990s during the “dot-com” era when many blinded by the Internet phenomenon lost
the ability to stick to fundamental business principals when planning new sustainable
business ventures.

Although organizations today are facing increasing pressures with respect to
innovations, operational excellence, and performance efficiency, the economic
difficulties and cautiousness are keeping the costs for novel technology at an absolute
minimum. In actuality, the radical changes for organizations are in rethinking and
reengineering their traditional IT architectures to one with a creative digital business
mindset. These transformations require new advanced knowledge and skills sets with
emerging technologies, particularly, virtualization, cloud architectures and services
based on more dynamic computing delivery models. The changes and business
transformations are underway on a large scale, from the C-levels to end-users, from
providers and vendors to developers and system architectures. The key issues extend
beyond economics and management, and focus on how emerging IT models impact
organizational strategy, capabilities, business processes, and consequential
opportunities and rational value.

In the paper I will give emphasis to the impact of emerging dynamic computing
models on the socio-technical system and related organizational and management
considerations.

2 IT in the Organizational Context

To explore the complexity of the problems and to avoid unrealistic expectations when
employing new technologies and emerging models, a formal methodology of
examining and evaluating IT in the organizational context can be applied. The
contemporary approaches to Information Systems, and more specifically IT,
encompass multidisciplinary theories and perspectives with no dominance of a single
discipline or model.

The Impact of Emerging Computing Models on Organizational Socio-technical System 5

2.1 Information Systems as Sociotechnical Systems

In the “Information Systems for Managers” text, the author Gabriele Picolli features
IT as a critical component of a formal, sociotechnical information system designed to
collect, process, store, and distribute information [3]. Authors, Kenneth and Jane
Laudon in Managing the Digital Firm, define Information Systems as Sociotechnical
Systems incorporating two approaches: Technical and Behavioral, with several major
disciplines that contribute expertise and solutions in the study of Information systems
[4].

The notion of above definitions is based on the Sociotechnical theory work
developed by Tavistock Institute in London in mid-50s and 60-ties. The IT
Sociotechnical approach not only visualizes the concept, but reveals the impact of
new technologies and processes –the technical subsystem- on the entire work system,
and the dependencies and interactions between all other facets and components of the
sociotechnical system.

According to Picolli any organizational Information System can be represented as
a Sociotechnical system which comprises four primary components that must be
balanced and work together to deliver the information processing functionalities
required by the organization to fulfill its information needs (Figure 1). The IS
Sociotechnical model validates the most important components, and at the same time
primary driving forces, within organizations: structure, people, process, and
technology. The first two – people and structure – shape the social subsystem, and
represent the human element of the IS. The latter two – process and technology (more
specifically - I.T.) – contour the technical subsystem of the IS and relate to a wide
range of IT resources and services intertwined with a series of steps to complete
required business activities.

Fig. 1. Information systems primary components as a sociotechnical system [3]

Structure I T

People Processes

Technical System Social System

6 I.I. Ivanov

In addition, the Laudons identify the disciplines that contribute respectively to the
technical and the behavioral approaches. The founding disciplines of the technical
approach to information systems include computer science, management science and
operations research. Their knowledge areas communicate and provide physical
technology and logical structures, mathematical models, management practices and
optimization techniques when studying formal capabilities, performance and
efficiency of the Information Systems. The technical subsystem is frequently the case
of behavior problems or issues such as design, implementation, and strategic
integration of business innovations; alignment, acceptance and utilization of emerging
applications and systems; changes in management policy, organizational culture, and
cost control structures [4]. To understand, address, and resolve behavior concerns,
multi-disciplinarily knowledge and exploration in economics, sociology, and
psychology need to be applied.

The Sociotechnical system approach validates the four critical components of the
Information system interdependency and proves that none of them works in isolation.
They all interact, are mutually dependent, and consequently are subject to “systemic
effects,” defined as any change in one component affecting all other components of
the system. Bob Napier, former CIO of HP, was credited in 2003 with the quote:
“Every business decision triggers an IT event.” Certainly the quote was valid eight
years ago; it can be argued that today it is even more important. The two occurrences
should not be separated: when addressing business issues like productivity, service
quality, cost control, risk management, and ROI the decision-makers have to consider
the appropriate corresponding modifications in the IT domain.

The process of changes and reciprocal adjustment of both technical and social
subsystems should continue to interplay and growing closer until a mutually
satisfying results are reached [4]. However, the model in reality could not be with
equal subsystems’ changes. It should evolve from micro to macro level to reflect
crucial influences of the external environment, including regulatory requirements,
social and business trends, competitive pressures, interoperability with partnering
institutions, especially when we analyze the role of the IT domain.

2.2 Organizational Information Systems

In his classic book, Images of Organization, Gareth Morgan outlines diverse
perspectives of organizational processes and paradoxes: “Organizations are
information systems. They are communications systems. And they are decision-
making systems. If one thinks about it, every aspect of organizational functioning
depends on information processing of one form or another [5].” As the saying goes
“organizations are information processing systems,” and as such we need to examine
thoroughly the limitations in processing capacity and in functional integration from
the two key perspectives of the organizational model: hierarchical and functional.

The hierarchical perception defines three primary levels in an organization where
specific to each level of activity and decision making event takes place [3]. At the
operational level on the bottom of the organization’s model short-term, highly
structured activities are performed and the objective is an efficient transaction

The Impact of Emerging Computing Models on Organizational Socio-technical System 7

processed under a limited degree of uncertainty. The IT, commonly known as
transaction processing systems, is utilized to structure and automate recurring
operations assuring speed, accuracy, and precision in their execution.

Fig. 2. Hierarchical, functional and process perceptions

At the managerial level the main concerns and decision making activities are
semi-structured and related to functional areas. The middle management, as a key
factor at this level, executes and controls the processes based on adopted patterns and
proven models. The IT systems supporting this operational model are mostly known
as Decision Support Systems (DSS). They provide information and resources founded
on internal operations and data analysis gleaned from the organization’s processing
systems to functional managers for tactical planning and mid-term decision-making.

The executive level handles all strategic planning and ad hoc circumstances,
prioritizing long-term and wide-range decisions. Senior management must focus on
industry trends, the competitive environment, and current organizational standing.
The IT systems supporting this level known as executive information systems (EIS)
are capable to collect, analyze, and synthesize organizational and external trend data.

The hierarchical perspective evolves, and following recent trends toward flatting
organizational hierarchy moves to decentralization within organization creating
business entities based on distinct functional areas such as Sales, Marketing,
Production and Services, Finance and Accounting, Human Resources. The formed
functional perspective alters the organization’s information processing needs and a
new variety of information systems, unique and homogeneous within a functional
area such as CRM, SCM, HRS emerges. However, the technology support to local
and enterprise-wide information processing and inter-functional areas sharing was
insufficient.

Both hierarchical and functional perspectives suffer from a lack of integration
among diversified systems, significant redundancy of data and resources, and
operational limitations both technical and decision-making. A process perspective
was prompted along with a business process reengineering (BPR) approach that
employs a process view of organization’s activities – Figure 2. The BPR utilizes top-
down methodology to achieve internal business integration, activities rationalization,
and duplications elimination across functional areas and managerial levels. Despite
efficiency and cost saving achieved when employing BPR, as methodology it has

8 I.I. Ivanov

experienced difficulties and criticism as a result of neglecting the people factor, and
focusing only on a single dimension of optimization and improvements.

2.3 IT Transformations and Competitive Advantage

To provide maximum benefits and strategic advances with novel networked
technologies, information systems must be developed with a holistic understanding of
the organization, its tactical goals, the competitive forces in related industries and in
the surrounding environment. Ultimately, Michael Porter’s five forces of the
competitive position model is recently the most widely adopted approach (Figure 3).
The model comprehensively exposes not only a general view of the organization with
its traditional direct competitors, but also the reliance with four other forces within its
market environment: new market entrants, supplier power, substitute products and
technology development, and customer power [6].

Fig. 3. Michael Porter’s competitive forces model

While all of the five forces are critically important when strategic planning and
managerial decisions are taken, the most associated force with emerging technologies
is substitute products and technology development. The fast evolving technologies
create new substitute products and services all the time. The impact of this force is not
only local in reducing the company’s price control and the profit margins in general,
but also it is magnified because of the “networked businesses,” speedy global market
exposure, and consequent legislative effects.

A brilliant illustration of Porter’s competitive forces model and how emerging
technologies and innovative ideas could transform large business organizations is the
IBM’s “Business On Demand” approach launched by the CEO Sam Palmisano in mid
2000s. Employing emerging technologies still in their hype such as grid,

The Impact of Emerging Computing Models on Organizational Socio-technical System 9

virtualization, utility and later cloud computing, the most innovative IT company
aggressively expanded their products, services and operations across industries and
globally, and made them available upon customers’ demand, market opportunity or
external threat. Strictly focus on the power and capabilities of emerging technologies,
IBM sold its traditional personal computer business to Lenovo in 2005, and shifted
sharply into higher-margin businesses, increasing recently its earnings per share
fourfold. Continuing with this strategic transformation, IBM is building a
government-funded private cloud in the Wuxi Industrial park in China. The China
Cloud Computing Center in Wuxi is based on IBM’s “Blue Cloud” technologies
comprised of IBM CloudBurst - PaaS, IBM Tivoli Service Automation Manager –
IaaS, a full range of SaaS including CRM and eCommerce solutions, open source
software with capabilities to deliver Web 2.0 applications such as mashups, open
collaboration, social networks, and mobile commerce. IBM has a significant research,
development and business presence in China and a potential expansion of this cloud
initiative to 100 more Chinese cities looks even more promising and favorable [7].

The success of IBM’s business transformations and strategic cloud utilization
harmonized to Porter’s competitive forces model in all principal perceptions. In
addition, these business cases validate that to execute a successful business strategy
for rapid, right-size deployment of advanced transformations, a comprehensive
analysis and realignment of capabilities within the following principal areas must be
performed [2]:

• technology and infrastructure
• processes and products
• people and partners
• organizational culture, leadership and governance.

The process of repositioning the IT capabilities with listed principal areas, precisely
harmonized with the sociotechnical system components, will result in enabling the IT
alignment with organization’s business strategy. The approach protects and maximize
the value of IT investments, and facilitates the next phase of the process – designing
adventurous enterprise architecture.

2.4 Aligning IT with Enterprise Architecture

The process of enterprise architecture design requires a holistic view of the
organization. Following such approach makes possible to explore how business
processes, information flow, systems, technology and predominantly business
priorities and strategies interact and contribute value to the organization.

Hence, understanding the organizational synergy in detail provides the means to
define two important choices related to organizational business operations:

• How standardized its business should be across operational units?
• How integrated its business processes should be across those units?

Any organization operates in one of the four possible operating models, based on the
business process selection as illustrated by Jeanne Ross from MIT Center for
Information Systems Research. Which one is considered as “the right one “depends
on the organization executives’ strategic decision [8]:

10 I.I. Ivanov

• In the diversification model - low standardization and low integration -
organizations operate in a decentralized mode with independent transactions, unique
units with few data standards across local autonomies, most IT decisions are made
within the units;
• The coordination model - low standardization, high integration - is used by
organizations that deliver customized services and solutions by unique business units,
while accumulating and providing access to integrated data across the divisions. The
IT decisions should be made in consensus for designing IT infrastructure and
integrated services, while IT applications decisions are processed within individual
units;

• Organizations implementing the replication model - high standardization, low
integration - typically provide high operational autonomy to their business units while
requiring highly structured and standardized business processes. All decisions related
to IT infrastructure, applications and services are centrally mandated;

• Organizations operating in the unification model - high standardization, high
integration - are centralized managed with highly integrated and standardized
business processes. The Enterprise IT is highly centralized and all decisions are made
centrally.

For the IT domain it is most important to define and establish the organization’s IT
architecture underneath the enterprise architecture. A well-formulated IT architecture
typically consists of content and processes and describes the technology components
of the enterprise IT architecture:

• Technology strategy, governance and decisions aligned to business processes

• Information and data flow architecture

• Functional systems and applications architecture, including correlated interfaces

• Existing technology: technical infrastructure, platforms, services, and adopted
standards.

An organization’s imperative benefits come with a symbiosis and advancement of IT
and the enterprise architecture defined by Ross as: “the organizing logic for business
processes and IT infrastructure, reflecting the integration and standardization
requirements of the firm’s operating model.” The MIT Center for IS Research
describes the process of IT and enterprise architecture evolution in terms of four
maturity stages [9]:

• Stage 1- Business Silos: complex and expensive localized IT solutions that
respond to instant business needs, helping in local and functional optimization

• Stage 2– Standardized Technology: disciplined processes in IT service delivery
and investment prioritization, achieving IT functional efficiency as to low OpEx and
high reliability

• Stage 3– Optimized Core: defined enterprise priorities, investing in core
packaged or customized integrated platforms and systems, accomplishing high
operational efficiency

The Impact of Emerging Computing Models on Organizational Socio-technical System 11

• Stage 4– Business Modularity: synchronized strategic and operational decisions
with clear rules, reliable data, and business intelligence, gaining the most of IT-
enabled capabilities towards assets utilization and business growth.

Evolving through the four stages is a challenging and advancing experience for
organizations and their IT. As it has been said at the beginning - the radical changes
impact the organizational mindsets in rethinking and reengineering their traditional IT
resources. Indicators for such transformations can be seen analyzing the IT budget
patterns from the MIT Center for Information Systems Research survey comparing
2007 and 2010 IT budget spending across the four stages [10].

Fig. 4. Business capabilities relative to stages of architecture maturity [9]

An evident variation from the first three stages is at stage four where a substantial
increase in IT budget occurs. While in stages 1 to 3 cutting IT costs is a priority and
investments are mostly for eliminating inefficiencies by optimizations, in stage four
organizations invest in increasing reliability and efficiency of the IT operations,
seeking advances innovativeness in IT-enabled business processes and opportunities
for driving value from IT (Figure 4). The decision makers at this stage are exploring
and are ready to take the advantage of emerging technologies and delivery models. As
one CIO is cited “we stopped thinking of the IT as a bad, and started thinking of it as
what keeps the business running.”

Fig. 5. The CIOs reimagine IT [11]

12 I.I. Ivanov

The latest Gardner Executive Report “The 2011 CIO Agenda” surveying over
2000 CIOs across industries worldwide affirms the aforementioned trend of radical
transformations in IT to support the growth and competitive advantage [11]. The trend
comes together with sustained tight IT budgets as it is evident from the diagram,
which leads to the next trend in IT reengineering - reducing costs and creating new
products and services- that would happen through a process of “creative destruction.”

The figures show that these strategic alterations are with second highest priority in
the executives’ 2011 and projected 2014 agendas – Figure 5. In the same survey close
to half of all CIOs are confident in shifting their operations to applications, platforms,
and infrastructures using cloud technologies.

3 Emerging Technologies Implications

As the demand of faster, efficient, and powerful computing structures intensifies, the
need for more capable and dynamic computing environments increases. IT systems
evolve over time. Each new generation of technology can, if utilized properly,
perform faster and improve productivity at lower cost and higher quality. The
economic and social motivation for specialized and consolidated IT models steadily
intensifies. Any delays in understanding and adapting novelties might lead to
dramatic changes or collapses. One of the many examples from the first decade of the
century is with the retail book industry - it was slow in adapting to the E-commerce
opportunities and got “Amazoned.”

3.1 The Evolution of Emerging Dynamic Structures

Today’s cloud computing is based on foundational concepts that addressed an early
need to best leverage computing resources over 40 years ago, taking the concepts of
commodity grid computing and virtualization further by allowing self-services,
metered usage and more automated dynamic resource and workload management
practices.

Grid computing specifically refers to leveraging massive numbers of computers in
parallel to solve particular problems, or to run specific applications. Grid computing
is the underlying technology for a utility type computing model. Afterwards, with
virtualization of systems, servers and applications, the model has expanded to a
virtual platform without a specific underlying infrastructure. Virtualization is an
abstract layer that allows multiple virtual machines, with heterogeneous operating
systems to execute separately side-by-side on a same physical system. Virtualized
services allow customers to utilize and expand their systems in many directions such
as: server consolidation, storage and network virtualization, disaster recovery and
business continuity protection, streamline testing and training, and secure enterprise
desktops.

A splendid example of successful massive virtualization deployment is shared in
the IDC Analyze the Future report from March 2011. Emerson, a diversified $21
billion technology company, consolidated its IT infrastructure and deployed an
inclusive virtualization model and efficient de-duplication backups. Based on the
virtualization approach, Emerson now employs a utility chargeback model with its

The Impact of Emerging Computing Models on Organizational Socio-technical System 13

internal divisions. Costs are assigned as services are consumed or equipment is used.
The user can control, plan and manage their IT budgets more effectively.
Consolidating all IT resources within two high-tech global datacenters, Emerson gains
agility and cost efficiency, aligning the IT capabilities with its core business model
[12].

Grid computing is now heading towards a convergence of utility pricing model,
Web service integration, and virtualized technologies to enable a variety of cloud
computing platforms for delivery and deployment.

3.2 The Cloud Hype

To design and deliver a future IT architecture that captures the promises and the
benefits of Cloud Computing, the five core characteristics defined by National
Institute for Standards and Technology must be considered:

• On-demand self-service
• Broad network access
• Resource pooling
• Rapid elasticity
• Measured Service

Besides the five core features, there are favorable advances which focus on further
strategies for adopting cloud-based services [13]:

• Lower cost: consolidated cloud resources operate at higher efficiencies and with
greater utilization, resulting in significant cost reduction. Though cloud vendors
charge premium for their services, the customers would save money by selecting the
most needed options. Additionally, cloud computing deployment lets someone else
manage the cloud infrastructure, while the organization will focus on managing their
core activities, achieving considerable reductions in IT staffing costs

• Ease of utilizations: depending upon the type of services there would be no or
minimal hardware and software requirements, upfront costs or adoption time

• Quality of Services: the higher cloud QoS compares to on-premises IT, can be
obtain under the contract or SLA from the cloud vendor

• Reliability: The scale of cloud resources and their ability to provide load balancing
and failover makes them highly reliable, often much more consistent than IT service
in a single organization

• Simplified maintenance and upgrade: Naturally for centralized systems all patches
and upgrades are easily performed and the users always have access to the latest
versions timely

• Low Barrier to Entry: In particular, as upfront CapEx are dramatically reduced
despite the institutional size, anyone in or because of cloud computing can gain the
most of it at any time.

The largest cloud category to date and an anticipated leader in the next decade is
Software as a Service. Customers use software applications, hosted by a cloud

14 I.I. Ivanov

provider and available over the Internet. According to Forrester Report from 2011, the
SaaS revenue will reach in 2011 $21.2 billion from total of $25.5 billion from the
public cloud. As a result of a strong demand from companies and organizations,
Forrester predicts SaaS revenues to elevate up to $92.8 billion by 2016, which would
be 26% of the total software market [14].

Platform as a Service is the third largest cloud delivery model with a market size
of $820 million in 2011, with a predicted growth from 2012 on. PaaS is the
middleware of the cloud, and customers use infrastructure and programming tools
hosted by the service provider to develop their own applications. The customer does
not manage or control the underlying cloud infrastructure, but has control over the
deployed applications and possibly application hosting environment configurations.

The second largest cloud category, with a $2.9 billion market size in 2011 is
Infrastructure as a Service. The IaaS provides computing power, storage, archiving,
and other fundamental computing resources to an organization with a utility pricing
and delivery model. The consumer does not manage or control the underlying cloud
infrastructure, but does have control over operating systems, storage, deployed
applications, and possibly select networking components.

For many organizations the primary question is not related to the delivery models,
but directed to the purpose of the cloud and the nature of how the cloud is located: in
other words - the deployment model. According to the NIST, the four cloud
deployment models are: Private cloud, Community cloud; Public cloud; and Hybrid
cloud.

IT professionals in organizations with a well-established and up-to-date data
centers are inclined more towards private cloud solutions than to public or other
varieties of off-premises cloud services. In Indiana University for example, with their
approximately 1300 virtual servers and dynamic storage capabilities the private cloud
architecture is a powerful and efficient data strategy [15]. By deploying internal cloud
services on the newly refresh servers at their two data centers, without critical
disruption of the institutional sociotechnical system, the university achieved long-
term savings, immediate high performance and energy gains, substantial savings
related to licensing and staff recruitment and training.

When exploring the main domains of the cloud services model, organizations need
to consider not only the capabilities and the economic efficiency of the scale-oriented
delivery, but the organization’s comfort with and possible resistance to the idea of
third party service provisioning. Cloud initiatives offer promise in the minds of
executives and IT professionals alike, but the new delivery models take time to gain
acceptance, and there are often technological and organizational inhibitors to adoption
reflecting specifics in the socio-technical organization context.

According to a world-wide study comprised over 400 professionals published by
Management Insight Technology, economic factors, and to a lesser extent, better
services and increased productivity, are leading executive interests in the cloud [16].
At the same time, IT professionals, IT decision makers, and implementers are
enthusiastic to work in the latest high-tech environment where better technology will
lead to greater efficiency, improved services and they will be gaining current skills set
(Figure 6).

The Impact of Emerging Computing Models on Organizational Socio-technical System 15

Fig. 6. Private and public cloud implications [16]

Most executives and financial managers however, advocate for public clouds as
initially more cost-efficient, flexible, and scalable with a global access solution.
Strategizing the enterprise cloud solutions for many organizations might be most
appropriate to build a specific hybrid model incorporating internal private cloud for
the most sensitive data and critical applications and to off-premises - public or
community clouds – for some less decisive systems and routine applications.
Evolving the internal IT infrastructure toward a cloud-like model for supporting the
most sensitive business operations at lower risk and higher security, will enhance and
facilitate the integration with outside applications running into external clouds. In
many organizations such an approach would decrease the risk of disruptive
technology and process changes, and they will better control their information assets.

3.3 Emerging Dynamic Structures Impacts

To summarize the impact of emerging technologies on sociotechnical systems the
following significant points should be considered:

• People factor - the resistance to changes
• Process change – from operational efficiency – to business agility and growth
• Structure rationalization – changing IT from a cost center to advance assets
• Strategic choice towards distinctive digitalization

The first finding reflects a common reason for high-tech failures is not the failure of
the technology, but the resistance to change individual routines, and to invest
additional time and efforts that may not be compensated. This phenomenon is visible
from the latest survey by Management Insight Technologies – where risk of job lost,
IT loss of control, lack of skills, and perceived benefits, are the critical IT staff
concerns [16] – Figure 7.

16 I.I. Ivanov

Fig. 7. People considerations to changes [16]

In conjunction with the latest economic difficulties and the reductions of the
operational budgets the options for staff benefits are diminished – Figure 8. The two
statistics only reinforce the importance of the people factor when novel technologies
are considered.

Fig. 8. Annual operational budget trend [17]

Fig. 9. IT spending per user [17]

The second finding suggests process transformations not only towards operational
and service efficiency, but to support business mobility and growth with emerging
technologies and new delivery models. The Computer Economy survey confirms that

The Impact of Emerging Computing Models on Organizational Socio-technical System 17

since 2006 to 2011, there was a steady decline of IT spending per user, and the
pressure to do more with less IT costs per user, is a motive to not only address the
operational efficiency, but to explore advanced technologies and new cost saving
models – Figure 9.

The third finding reinforced Structure rationalization to transform IT from a cost
center to advanced assets and business intelligence capabilities. The Gartner research
on Future Directions of the IT industry from 2011, exemplifies several emerging IT-
enabled initiatives capable to increase the revenue if appropriate structural changes
are employed. The IT Money Spending Model at Figure 10 depicts where the
transformations are the most appropriate – from lessening the After the Sale IT
spending to substantial increase the investments in Before the Sale and The Sale
sectors. The process will require significant alternations in the enterprise structure to
support emerging technologies and initiatives such as: content-aware computing,
social and cloud computing, and information-enabled pattern- based strategy.

Fig. 10. IT money spending model (last 50 years) [18]

Fig. 11. Public vs. Private IT spending [17]

The fourth finding is that in a digital economy every organization needs to adopt a
strategic choice towards distinctive Digitalization. This will maximize the
contribution IT makes to core performance areas from the executives’ perspective:

18 I.I. Ivanov

business growth, business agility, and asset utilization. According to latest survey of
Center for IS Research from March 2011, “firms scoring in the top quartile on
digitalization impact had a 5% higher return on equity than the average firm, and 15%
higher than the bottom quartile in their industry.” This forth finding should concern
more the public sector as Computer Economics Analysis illustrates at Figure 11
government organizations are still cutting their IT spending levels with 3%, while the
private sector indicates 2% growth, and some industries such as Insurance,
Wholesales, Manufacturing, Hi-Tech and Healthcare are between 3% to 5% growth.

There are many other organizational considerations and challenging socio-
technical implications of emerging technologies in difficult economic times:
asymmetric competition, speed of innovations, speed to the market, speed of
institutional model’s evolution. All these specifics require more effort and analysis on
how to integrate technology into the sociotechnical system to stretch the core business
activities and to excel on IT-enabled capabilities. We may need to take a fresh look at
Peter Drucker’s pivotal statement from 1980: “In turbulent times, an enterprise has to
be able to withstand sudden blows and avail itself of unexpected opportunities. This
means that, in turbulent times, the fundamentals must be managed and managed
well.”

References

1. Ivanov, I.: Emerging Utility and Cloud Computing Models. In: I-WEST 2009. INSTICC
Press, Portugal (2009)

2. Applegate, L., Austin, R., Soule, D.: Corporate Information Strategy and Management:
Text and Cases. McGraw-Hill/Irwin, Inc., New York (2009)

3. Picolli, G.: Information Systems for Managers: Text and Cases. John Wiley and Sons, Inc.,
Hoboken (2008)

4. Laudon, K., Laudon, J.: Management Information Systems: Managing the Digital Firm.
Pearson Education, Inc., Upper Saddle River (2011)

5. Morgan, G.: Images of Organization. Sage Publications, Inc., Thousand Oaks (2006)
6. Brown, C., Dehayes, D., Hoffer, J., Martin, E., Perkins, W.: Managing Information

Technology. Pearson Education, Inc., Publishing as Prentice Hall, Upper Saddle River
(2011)

7. IBM Case Study: Wuxi builds engine for economic growth with cloud computing solution
from IBM. IBM Systems and Technology Group, NY (October 2009)

8. Ross, J.: Forget Strategy: Focus IT on Your Operating Model, vol. V(3C). Center for
Information Systems Research, Sloan School of Management, MIT, Research Briefing
(2005)

9. Ross, J., Beath, C.: Maturity Still Matters: Why A Digitized Platform is Essential to
Business Success, vol. XI(II). Center for Information Systems Research, Sloan School of
Management, MIT, Research Briefing (2011)

10. Quaadgras, A., Weill, P., Ross, J.: The MIT CISR Value Framework: Commitments and
the Practices that Support Them, vol. XI(III). Center for Information Systems Research,
Sloan School of Management, MIT, Research Briefing (2011)

11. McDonald, M., Aron, D.: Gartner Executive Programs Reimaging IT: The 2011 CIO
Agenda. Gartner, Inc., Stamford (2011)

The Impact of Emerging Computing Models on Organizational Socio-technical System 19

12. DuBois, L.: Case Study: Emerson Consolidates Its IT Infrastructure and Deploys
Virtualization and Deduplication for Efficiency and Cost Savings. IDC Analyze the
Future, Framingham (2011); ID Number: 226383

13. Sosinsky, B.: Cloud Computing Bible. John Wiley and Sons, Inc., Hoboken (2010)
14. O’Neill, S.: Forrester: Public Cloud Growth to Surge, Especially SaaS. CIO Magazine

(April 26, 2011), http://www.cio.com/article/print/680673
15. Biddick, M.: The Why and How of Private Clouds. InformationWeek (June 05, 2010),

http://www.informationweek.com/news/hardware/
data_centers/225300316

16. Black, L., Mandelbaum, J., Grover, I., Marvi, Y.: The Arrival of “Cloud Thinking”. White
Paper, Management Insight Technologies, U.S.A. (2010)

17. Computer Economics: IT Spending & Staffing Benchmarks. Executive Summary
2011/2012, 2082 Business Center Drive, Suite 240, Irvine, CA 92612, U.S.A. (2011)

18. McGee, K.: The 2011 Gartner Scenario: Current States and Future Directions of the IT
Industry. Gartner, Inc., Stamford (2011); ID Number G00209949

On-the-Fly Dependable Mediation between
Heterogeneous Networked Systems

Antonia Bertolino1, Antonello Calabrò1, Felicita Di Giandomenico1, Nicola Nostro1,
Paola Inverardi2, and Romina Spalazzese2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy
2 Department of Computer Science, University of L’Aquila, Coppito (AQ), Italy

firstname.lastname@isti.cnr.it,
{paola.inverardi,romina.spalazzese}@univaq.it

Abstract. The development of next generation Future Internet systems must be
capable to address complexity, heterogeneity, interdependency and, especially,
evolution of loosely connected networked systems. The European project CON-
NECT addresses the challenging and ambitious topic of ensuring eternally func-
tioning distributed and heterogeneous systems through on-the-fly synthesis of
the CONNECTors through which they communicate. In this paper we focus on
the CONNECT enablers that dynamically derive such connectors ensuring the
required non-functional requirements via a framework to analyse and assess de-
pendability and performance properties. We illustrate the adaptive approach un-
der development integrating synthesis of CONNECTors, stochastic model-based
analysis performed at design time and run-time monitoring. The proposed frame-
work is illustrated on a case study.

1 Introduction

We live in the Future Internet (FI) era, which is characterized by unprecedented levels
of connectivity and evolution. Software systems are increasingly pervasive, dynamic
and heterogeneous, and many -even critical- aspects of modern society rely on their
continuous availability and seamless interoperability. Ensuring the successful dynamic
composition among heterogenous, independently developed Networked Systems (NSs)
raises the need of novel computing paradigms, such as the revolutionary approach to on-
the-fly connection pursued within the European FP7 Future and Emerging Technology
Project CONNECT.

CONNECT follows the ambitious goal of enabling seamless and dependable interop-
erability among NSs in spite of technology diversity and evolution. The key idea is to
compose systems by generating on-the-fly the interoperability solution necessary to as-
sure the connection among the heterogenous NSs both at application and at middleware
level. The synthesized solution is called a CONNECTor or also mediating connector or
mediator for short; the system obtained from the composition of the NSs through the
CONNECTor is said the CONNECTed System.

Automatically synthesized CONNECTors are concrete emergent entities that medi-
ate the NSs discrepancies, i.e., they translate and coordinate mismatching interaction
protocols, actions, and/or data models, allowing applications to interact effectively.

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 20–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 21

A synthesized CONNECTor, if it exists, provides by construction a correct solution to
functional interoperability among the NSs.

This is however not sufficient: effective interoperability also requires that such
on-the-fly CONNECTed systems provide the required non-functional properties and
continue to do so even in presence of evolution. The CONNECTors are not a priori guar-
anteed to provide the desired non-functional properties for the CONNECTed system,
thus a suitable and adaptive assessment framework is required. In this paper, we focus
on the problem of ensuring the non-functional properties for CONNECTed systems.

Concerning dependability and performance properties, several challenges arise. Off-
line, or pre-deployment, assessment can help to take appropriate design decisions by
providing a priori feedback about how the system is expected to operate. Nevertheless,
the unavoidable high chance of inaccurate/unknown model parameters might result in
inadequate analysis results. Moreover, the many possible variations occurring during
the system lifetime would require to foresee and analyze all the possible scenarios
which could take place at run-time (e.g., to be stored in a look-up table from which
to retrieve the correct analysis upon a scenario’s occurrence). On the other hand, resort-
ing to processing the measurements collected in real operation at a later stage, e.g. in
periodic reviews, may be inadequate, since by the time the observations are processed
the operational environment may have changed. Furthermore, in the CONNECT context
the above problems are exacerbated because, as said, components are dynamically as-
sembled to satisfy an emergent user goal. In this scenario the only part of the system
under control is the synthesized CONNECTor, whereas for the NSs only declarative or
learned on-the-fly knowledge can be assumed.

To contribute to overcome the above issues, we have developed an approach which
tries to combine the benefits of both pre-deployment and processing of data obtained
from real executions. The proposed assessment framework combines stochastic model-
based analysis [1] with continuous on-line assessment of non-functional properties
through a lightweight flexible monitoring infrastructure, and applies such approach to
the on-the-fly CONNECT system into a continuous loop.

In the following we initially provide the context for our approach by introducing
the CONNECT architecture (Section 2). Then we introduce the case study that is used to
demonstrate the applicability of the integrated analysis framework (Section 3). Mediator
synthesis (Section 4), pre-deployment analysis (Section 5) and the run-time monitor
(Section 6) are briefly presented, and hence their synergic usage (Section 7), through
which adaptive assessment is pursued. Finally we overview related work (Section 8)
and draw conclusions (Section 9).

2 The CONNECT Project

Our research is carried out in the context of the FP7 “ICT forever yours” European
Project CONNECT1, belonging to the Future and Emerging Technologies track. As said
in the introduction, the ambition of the project is to have eternally functioning systems
within a dynamically evolving context.

1 http://connect-forever.eu

22 A. Bertolino et al.

In Figure 1 we provide an overview of the CONNECT vision and architecture. In brief,
the NSs manifest the intention to connect to other NSs. The Enablers are networked
entities that incorporate all the intelligence and logic offered by CONNECT for enabling
the required connection. We show in schematic form the enablers which are currently
part of the CONNECT enabling architecture:

Discovery Enabler: discovers the NSs, catches their requests for communication and
initiates the CONNECT process. We tend to make the minimum possible assump-
tions on the information (called the affordance) that NSs must provide;

Learning Enabler: we use active learning algorithms to dynamically determine the in-
teraction behaviour of a NS and produce a model in the form of a labeled transition
system (LTS);

Synthesis Enabler: from the models of the two NSs, this enabler synthesizes a me-
diator component through automated behavioural matching. More details on this
enabler are given in Section 4;

Deployment Enabler: deploys and manages the synthesized CONNECTors;
Monitor Enabler: collects raw information about the CONNECTors behaviour, filters

and passes them to the enablers who requested them. The CONNECT monitoring
infrastructure is further described in Section 6;

DEPER Enabler: this is the enabler assessing dependability and performance proper-
ties and is described in detail in Section 5;

Security and Trust Enabler: collaborates with the synthesis enabler to satisfy possi-
ble security and trust requirements. It also continuously determines if the require-
ments are maintained at run-time, by receiving monitoring data from the monitoring
enabler. For reasons of space, we do not deal with this enabler in this paper.

All communication among the enablers and with the CONNECTors happens through a
message bus, which is currently implemented by a simple message-based communica-
tion model (as for instance the Java Messaging Service (JMS)).

In this paper we provide a snapshot of the functioning of CONNECT over the case
study introduced in the following section. For space limitation, we focus on the interac-
tion among Synthesis, Dependability&Performance and Monitor, which are highlighted
by tick borders in Figure 1. We show first how a dependable CONNECTor is deployed
(pre-deployment analysis), and then how, via the feedback obtained through run-time
monitoring of the CONNECTor behaviour, CONNECTor adaptation is triggered and man-
aged. In particular, we devise a process for the CONNECTor creation that is supported
by powerful infrastructures made available by CONNECT itself. Once the Discovery En-
abler discovers new devices, the CONNECT supporting infrastructure starts the compu-
tation of a CONNECTor on the fly –if possible. Then, when the intent to communicate is
manifested, the CONNECTor -if it exists- is partially computed and is hence concretized.
Note that the CONNECTor could not exist because NSs are not compatible and then do
not have a way to communicate.

3 Case Study

In this section, we present our running example for presenting how synthesis, analysis
and monitoring work in integrated way.

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 23

Fig. 1. The CONNECT architecture

3.1 Terrorist Alert Scenario

We consider the CONNECT Terrorist Alert scenario [2], depicting the critical situation
that during a show in the stadium, the stadium control center spots one suspect terror-
ist moving around. This emergency situation makes it necessary to exchange informa-
tion between policemen and security guards patrolling the surroundings of the stadium
equipped with heterogeneous applications.

Each policeman can exchange confidential data with other policemen with a Secured-
FileSharing application. Security guards, on the other hand, exchange information by
using another application, denominated EmergencyCall. The two applications have the
same aim (i.e., enable information exchange), but use different protocols as we describe
in the following.

SecuredFileSharing

– The peer that initiates the communication denominated coordinator (the Police-
men of our example) sends a broadcast message (selectArea) to selected peers
operating in a specified area of interest (the Police control center of our example).

– The selected peers reply with an areaSelected message.
– The coordinator sends an uploadData message to transmit confidential data to

the selected peers.
– Each selected peer automatically notifies the coordinator with an uploadSuccess

message when the data have been successfully received or the coordinator can re-
ceive an exception.

An example of message flow between a coordinator, i.e., a Policeman, and a Police
control center is depicted in Figure 2(a) while the application behaviour of another
Policeman is shown in Figure 3. It is worth to notice that, for readability, in the figure

24 A. Bertolino et al.

(a) SecuredFileSharing Application (b) EmergencyCall Application

Fig. 2. Sequence Diagrams of the applications

Fig. 3. LTS of the Policeman application

the LTS of the Policeman describes the sending of the broadcast alert to two selected
peers while in the experiments we conducted, we used 11 selected peers.

The affordance of the Policeman application includes also the following non-func-
tional requirement: she/he should receive the 65% of acknowledgements for the alerts
sent within 30 time units, otherwise a failure is reported.

EmergencyCall

– The Guards Control Center sends an eReq message to the Commanders of the
Patrolling Groups operating in a given area of interest.

– The Commanders reply with an eResp message.
– The Guards Control Center sends an emergencyAlert message to all Guards

of the patrolling groups; the message reports the alert details.
– Each Guard’s device automatically notifies the Guards Control Center with an
eACK message when the data has been successfully received.

The message flow among the Guard control Center, the Commander and the Other
Guards is depicted in Figure 2(b). Figure 4(a) shows the LTS of the Commander, and
the LTS of the Other Guards is shown in Figure 4(b).

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 25

(a) Commander. (b) Other guards.

Fig. 4. LTSs of the EmergencyCall application

3.2 CONNECT in the Case Study

With reference to CONNECT architecture (see Figure 1), the two NSs which need to
communicate but are not a priori compatible, are the devices implementing the de-
scribed applications SecuredFileSharing and EmergencyCall. Hence, to allow a Police-
man and the Guards, operating in the zone where the suspect terrorist has escaped,
to communicate, CONNECT proposes to automatically synthesize on-the-fly a CON-
NECTor that can mediate between the two different communication protocols. Such
CONNECTor should be able to support the exchange of information, while also fulfill-
ing possible non-functional requirements.

4 Automated Mediator Synthesis

Our focus is on the interoperability between heterogeneous protocols. By interoper-
ability we mean the ability of protocols to correctly communicate and coordinate i.e.,
to correctly synchronize. In other words, two systems successfully interoperate if they
correctly exchange compatible conversations or compatible traces. By heterogeneous
protocols we mean that, although in principle they could interact since they have com-
patible (i.e., complementary) functionalities, protocols can be characterized by discrep-
ancies that may undermine their ability to seamlessly interoperate (i.e., communicate
and coordinate). Discrepancies include incompatible interaction protocols and/or differ-
ent interfaces meaning different actions and/or data models. Examples of heterogeneous
application protocols are the Policeman and Commander of the Patrolling Group of the
case study.
In order to enable interoperability among heterogeneous protocols, we devised a theory
for the automated synthesis of CONNECTors [3, 4], also called mediating connectors or
mediators for short. Figure 5 provides an overview of our methodology.

Our approach takes as input the descriptions of two NSs and in particular their be-
havioral protocols, described as Labeled Transition Systems (LTSs), together with their
ontological information conceptualizing their actions through an application domain
ontology. By referring to the case study, the synthesis takes as input the LTS of the Po-
liceman, the LTS of a Commander of the Patrolling Group and of its Guards and their
ontologies and follows a process made up by three phases or steps as described in the
following.

26 A. Bertolino et al.

Fig. 5. An overview of the mediator synthesis approach

Fig. 6. Domain Ontology (upper case elements) where the ontologies of both protocols have
been mapped (Dots and dashes boxes - Ontology of the Guards Control Center; dashed boxes -
Ontology of the Policeman)

1. Abstraction that makes models comparable and, if possible, reduces their size mak-
ing it easier and faster to reason on them. Reasoning on ontologies, a common
language for both protocols is identified on the domain ontology and used to re-
label them. The common language of our case study is illustrated by the elements
with upper case names in Figure 6.

2. Matching that checks the NSs compatibility identifying possible mismatches. Com-
patible protocols can potentially interoperate despite they show some differences.
That is, communication and coordination between such protocols is possible in
principle since they are semantically equivalent and complementary, but cannot
be achieved seamlessly because of heterogeneity: mismatches and/or third parties
conversations. Examples of mismatches are: protocol languages have (i) different
granularity, or (ii) different alphabets; protocols behavior have different sequences
of actions with data (i.e., traces) because of (a.1) the order in which actions and data
are performed by a protocol is different from the order in which the other protocol
performs the complementary actions with data. Protocols behavior may have dif-
ferent sequences of actions also because of (a.2) interleaved actions related to third
parties conversations i.e., with other systems, the environment. In some cases, as

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 27

Fig. 7. Synthesised CONNECTor for the case study

for example (i), (ii) and (a.1), it is necessary to properly perform a manipulation of
the two languages. In the case (a.2) it is necessary to abstract the third parties con-
versations that are not relevant to the communication. Referring to the case study,
the heterogeneities we identify are what we call signature mismatches [5, 6], i.e.,
the two protocols use different names for semantically equivalent concepts.
Synchronization between protocols, thus, can be achieved under mediation i.e.,
through a mediator that while managing such mismatches, allows protocols to ef-
fectively exchange compatible traces (sequences of actions).

3. Mapping or Synthesis that produces a mediator that mediates the found mismatches
so enabling the NSs to communicate. Figure 7 illustrates the synthesized CON-
NECTor between the Policeman and the Commander of the Patrolling Group appli-
cations of our case study.

– The selectArea message of the Policeman is translated into an eReq mes-
sage directed to the Commander of the Patrolling Group operating in the area
of interest.

– The eRespmessage of the Commander is translated into an areaSelected
message for the Policeman.

– The uploadData message of the Policeman is translated into a multicast
emergencyAlert message to all the Guards (Commander included).

– EacheACKmessage automatically sent by the Guards’ devices that correctly re-
ceive the emergencyAlertmessage are translated into a uploadSuccess
message for the Policeman.

Note that still for figure readability, the illustrated CONNECTor is between one Police-
man, a Commander of the Patrolling Group and one Guard.

A mediator is then a protocol that allows communication and coordination among
compatible protocols by mediating their differences. It serves as the locus where

28 A. Bertolino et al.

Fig. 8. Architecture of the Dependability&Performance (DEPER) Enabler

semantically equivalent and complementary actions are correctly synchronized thus
enabling (a mediated) interoperability among protocols.

In summary, by reasoning about the protocols discrepancies, our theory automati-
cally identifies and synthesizes an emerging mediator that solves them thus allowing
protocols to interoperate. Automatically synthesized CONNECTors are concrete emer-
gent entities that translate and coordinate mismatching interaction protocols, actions,
and/or data models, letting applications interact effectively

5 Pre-deployment Analysis to Support CONNECTor Synthesis

Pre-deployment assessment is a crucial activity to drive the system design towards a
realization compliant with the required quality levels. In fact, it allows for early de-
tection of design deficiencies, so as to promptly take the appropriate recovery actions,
thus significantly saving in money and time with respect to discovering such problems
at later stages. As briefly outlined in the Introduction, the pre-deployment assessment
in CONNECT is performed by the Dependability and Performance enabler, introduced
in Figure 1 and shortly referred to as DEPER, which exploits State-Based Stochastic
modelling and analysis, embedded in an automated process. Figure 8 illustrates the
architecture of DEPER that, together with the prototype implementation based on the
Möbius evaluation framework, is documented in [7, 8].

Very briefly, the activities of modules Builder, Analyser and Evaluator, triggered
in sequence, perform the cycle of the pre-deployment analysis: from the specification
of the CONNECTed system (both functional and non-functional) and of the metrics to
be analysed, to checking whether the analysis results match with the metrics level, as
requested by the NSs.

Evaluator informs Synthesis about the outcome of the check. In case of mismatch,
it may receive back a request to evaluate if enhancements can be applied to improve
the dependability or performance level of the CONNECTed system, thus calling the
intervention of the Enhancer module. In the other case, the CONNECTor’s design is
considered satisfactory and ready to be deployed, thus terminating the pre-deployment

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 29

analysis phase. However, because of possible inaccuracy of model parameters due to
potential sources of uncertainty dictated by the dynamic and evolving context, Evaluator
also instructs the Updater module about the events to be observed on-line by the Monitor
enabler.

The attempts to improve dependability and performance of the CONNECTor consist
in extending the model with a dependability mechanism, selected from a library of
already defined ones (see [9]), until either a successful mechanism is found, or all the
mechanisms are exhausted.

The Updater module provides adaptation of the off-line analysis performed at pre-
deployment time to cope with changes in, or inaccurate estimates of, model parame-
ters, through interactions with the Monitor enabler (e.g., because of limited knowledge
of the NSs characteristics acquired by Learning/Discovery enablers). It receives from
Monitor a continuous flow of data for the parameters under monitoring relative to the
different executions of the CONNECTor. Accumulated data are processed through sta-
tistical inference techniques. If, for a given parameter, the statistical inference indicates
a discrepancy between the on-line observed behaviour and the off-line estimated value
used in the model resulting into a significant deviation of the performed analysis, a new
analysis is triggered.

5.1 Pre-deployment Analysis in the Terrorist Alert Scenario

Taking as a reference the above described scenario, we focus in the following on the
basic interactions between Synthesis and DEPER enablers, performed to exchange re-
quests for dependability analysis of a pre-deployed CONNECTor.

The interaction starts when Synthesis sends a JMS message to DEPER. The message
contains the specification of the LTSs of the CONNECTor and of the NSs involved.

Figure 9 depicts the dependability and performance model of the synthesized CON-
NECTor built by DEPER at design time, using the SAN formalism [10]. The model is
obtained through automatic transformation from the LTS specification of the NSs, that
is the SecuredFileSharing and EmergencyCall in the considered scenario. The measure
assessed in the evaluation is the coverage. Coverage represents a dependability indica-
tor and is given by the percentage of responses the control center receives back from
the guards within a certain time T .

Once the message has been received and the SAN models have been built, DEPER

starts the coverage analysis through the Möbius tool [11]. The performed analysis is
shown in Figure 12 of Section 7 and allows to state that the CONNECTor fully satisfies
the coverage requirement with a Timeout greater than 2 time units. Hence, a response
is sent, through a JMS message, from DEPER to Synthesis to communicate that the
CONNECTor can be dependably deployed.

After the deployment of the CONNECTor a sensitivity analysis from DEPER on the
impact of model parameters on the assessment of the selected measure revealed that crit-
ical parameters to keep under observation on-line via the Monitor enabler, for the cover-
age measure, are occurrences of transitions eACK. Refining the pre-analysis knowledge
on the values assumed for such parameters by real observations constitutes a fundamen-
tal step in enhancing the accuracy of the analysis results. In fact, should the initial fore-
cast for these parameters deviate from what is evidenced through repeated executions,

30 A. Bertolino et al.

Fig. 9. SAN model of the CONNECTor

Fig. 10. GLIMPSE architecture

a new analysis round needs to be triggered to understand whether the dependability and
performance requirements are still met by the CONNECTed system.

6 Events Observation through Monitoring

Timely and effective run-time adaptation can only be ensured by continuously observ-
ing the interactions among the NSs. To this purpose, in CONNECT we have devel-
oped a modular, flexible and lightweight monitoring infrastructure, called GLIMPSE2.
GLIMPSE infrastructure, shown in Figure 10, is totally generic and can be easily ap-
plied to different contexts. To provide a better communication decoupling, we adopted
a publish-subscribe communication paradigm.

2 GLIMPSE is an acronym for Generic fLexIble Monitoring based on a Publish-Subscribe in-
frastructurE.

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 31

The lowest level of the monitoring is represented by the probe deployed into the
CONNECTor; this probe monitors the messages exchanged among the NSs involved
into the communication, possibly applying a local filter in order to decrease the amount
of messages sent on the CONNECT bus. Note that such probes are non intrusive data
collectors (proxies), i.e., they have no effect on the order and timing of events in the
application and do not generate overhead on the communication or on the interacting
services.

The second layer of the monitoring infrastructure is represented by the information
consumers, the entities interested to obtain the evaluation of a non-functional property
or interested to receive notification of occurrences of events/exceptions that may occurs
into the CONNECTor.

The gathered information is provided in form of events. An event is an atomic de-
scription, a smaller part of a larger and more complex process at application level. In
CONNECT, an event represents a method invocation on a remote web service: the invo-
cation, coming from the producer to the consumer, is captured when it comes through
the CONNECTor, encapsulated into a specific object, and sent through the CONNECT

bus. A Complex Event Processor (CEP) analyzes the atomic events to infer complex
events matching the consumer requests, by a rule engine. In the current GLIMPSE im-
plementation, we adopt the Drools Fusion rule language [12] that is open source and
can be fully embedded in the realized Java architecture.

Finally, the Manager module is in charge to manage all the communication between
the consumers and the CEP.

7 Continuous Run-Time Adaptation

After having performed the pre-deployment analysis phase and the deployment of the
CONNECTor, we focus here on its adaptive assessment via the interaction among Syn-
thesis, DEPER and the Monitor enabler. Basically, the dynamicity and evolution of the
targeted environment lead to potential sources of uncertainty, which undermine the ac-
curacy of the off-line analysis. To cope with this issue, run-time monitoring is exploited
to re-calibrate and enhance the dependability and performance prediction along time.
As already pointed out in Section 5, the continuous run-time adaptation of the pre-
deployment performed analysis is in charge to the Updater module.

DEPER and Monitor interact by using a Publish/Subscribe protocol. The interaction
starts when DEPER sends a JMS message whose payload contains an XML object rule
generated using ComplexEventRule classes [7].

Once the CONNECTor is deployed, data (events) derived from real executions are
sent by the probe to the CONNECT bus. The Monitor enabler gathers those events and
using the CEP component, tries to infer one or more of the patterns to which the DEPER

enabler is subscribed.
Upon occurrence of a relevant event the DEPER enabler is notified: the latter, in

turn, performs a statistical analysis of the monitored observations and uses such infor-
mation to check the accuracy of the model analysed before deployment. If the model
parameters are found to be inaccurate, DEPER updates the model with the new values,

32 A. Bertolino et al.

and performs a new analysis. If the new analysis evidences that the deployed CON-
NECTor needs adjustments, a new synthesis-analysis cycle starts.

As an example, we consider the steps to refine the accuracy of the failure probability
of the communication channel between the EmergencyCall application and the CON-
NECTor. We accumulated data generated from several executions of the CONNECTor,
in scenario’s configurations with a fixed number of 11 guards, which allowed to refine
the value of the failure probability from 0.02, assumed during pre-deployment depend-
ability analysis, to 0.1.

Upon updating the parameter, a new dependability analysis is performed in order
to verify if the updated CONNECTor still satisfies the requirement. Unfortunately, the
analysis shows that coverage measure does not meet the requirement. The CONNECTor
needs to be enhanced. Based on the library of dependability mechanism [9], the retry
mechanism has been automatically selected and implemented in the already developed
CONNECTor model, in order to enhance the CONNECTed system and satisfy the re-
quirement.

The retry mechanism consists in re-sending messages that get corrupted or lost
during communications, e.g., due to transient failures of communication links. This
mechanism is widely adopted in communication protocols, such as TCP/IP for enabling
reliable communication over unreliable channels. A typical implementation of the retry
mechanism uses time-outs and acknowledgements: after transmitting a message, the
sender waits for a message of the receiver that acknowledges successful communica-
tion. If the acknowledgement is not received within a certain time interval, the sender
assumes that the communication was not successful, and re-transmits the message.

The SAN model of the retry mechanism is shown in Figure 11. On the sender side,
the mechanism creates a message re-transmission policy for re-sending the message at
most N = 3 times; on the receiver side, the mechanism creates a policy for avoid-
ing duplicated reception of messages and for sending acknowledgements. The sender
stops re-transmitting the message as soon as it gets an acknowledgement that the mes-
sage has been successfully received, or after N attempts. A detailed description of the
mechanism model can be found in [9].

Figure 12 shows the trend of the coverage (on the y axis) at increasing values of
Timeout (on the x axis). Also, the threshold coverage line as specified in the require-
ment (set to the value 0.65) is reported. The figure includes three plots, corresponding
to: (i) the results of the pre-deployment analysis; (ii) the results of the analysis after
the parameters influencing coverage have been updated with actual values from the
run-time observations; and (iii) the results of the analysis after both the parameters in-
fluencing coverage have been updated and a retry mechanism have been implemented
to enhance the CONNECTed system. It is worth noting that coverage value obtained
through the pre-deployment analysis is fully satisfying the requirement with timeout
value greater than 3 (time units). While the coverage value after updating the failure
probability parameter never satisfies the requirement, although the value of timeout in-
creases, which means that the estimation of coverage at pre-deployment time was too
optimistic. Finally, we note that the analysis performed considering the actual value of
failure probability and including the enhanced mechanism provides results on coverage
that satisfies the coverage requirement.

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 33

Fig. 11. Retry mechanism

Fig. 12. Trend of Coverage as a function of Timeout

The CONNECTor needs to be enhanced; therefore DEPER informs the Synthesis en-
abler about the analysis results and appropriate actions are taken by Synthesis (typically,
a new CONNECTor is synthesised).

8 Related Work

The automated synthesis of application-layer CONNECTors relates to a wide number of
works in the literature within different research areas.

The Ubiquitous Computing (UbiComp) proposed by Weiser [13] has a key principle
that is to make the computer able to vanish in the background to increase their use
making it in an efficient and invisible manner to users. Our CONNECTors fit perfectly
the ubiquitous vision where each NS maintains its own characteristics, being able to
communicate and cooperate with the others without having any prior knowledge of
them thanks to the support provided by the mediators that masks divergencies making
them appear homogeneous.

Interoperability and mediation have been investigated in several contexts, among
which protocol conversion [14–16], integration of heterogeneous data sources [17],
software architecture [18], architectural patterns [19], design patterns [20], patterns of
connectors [21, 22], Web services [23–27], and algebra to solve mismatches [28] to
mention a few.

34 A. Bertolino et al.

A lot of work has also been devoted to connectors like for example [29–33] to men-
tion few. A work strictly related to the mediators is the seminal work by Yellin and
Strom [34]. With respect to our synthesis approach, this work prevents to deal with or-
dering mismatches and different granularity of the languages (see [5, 6] for a detailed
mismatches description). Other works related to our but posing the focus on different
problems are [35] and [36].

Stochastic model-based approaches for quantitative analysis of non-functional prop-
erties have been largely developed along the last decades and documented in a huge
literary production on this topic. The already cited papers [1, 37] provide a survey of
the most popular ones. The choice of the most appropriate type of model to employ
depends upon the complexity of the system under analysis, the specific aspects to be
studied, the attributes to be evaluated, the accuracy required, and the resources avail-
able for the study. The prototype implementation of our DEPER enabler is based on
Stochastic Activity Networks (SANs) [10], a variant of the Stochastic Petri Nets class.

With regard to monitoring, various approaches have been recently proposed. Simi-
larly to GLIMPSE, also [38] presents an extended event-based middleware with com-
plex event processing capabilities on distributed systems, adopting a publish/subscribe
infrastructure, but it is mainly focused on the definition of a complex-event specifica-
tion language. The aim of GLIMPSE is to give a more general and flexible monitoring
infrastructure for achieving a better interpretability with many possible heterogeneous
systems. Another monitoring architecture for distributed systems management is pre-
sented in [39]. Differently from GLIMPSE, this architecture employs a hierarchical and
layered event filtering approach. The goal of the authors is to improve monitoring scal-
ability and performance for large-scale distributed systems, minimizing the monitoring
intrusiveness.

A prominent part of our framework is in the combined usage of pre-deployment
model-based analysis and run-time observations via monitoring. Preliminary studies
that attempt combining off-line with on-line analysis have already appeared in the lit-
erature. A major area on which such approaches have been based is that of autonomic
computing. Among such studies, in [40], an approach is proposed for autonomic sys-
tems, which combines analytic availability models and monitoring. The analytic model
provides the behavioural abstraction of components/subsystems and of their intercon-
nections and dependencies, while statistical inference is applied on the data from real
time monitoring of those components and subsystems, to assess parameter values of
the system availability model. In [41], an approach is proposed to carry out run-time
reliability estimation, based on a preliminary modelling phase followed by a refine-
ment phase, where real operational data are used to overcome potential errors due to
model simplifications. Our approach aims at proposing a general and powerful evalua-
tion framework, tailored to a variety of dependability and performance metrics, to meet
a wide spectrum of system requirements and adaptation needs.

9 Conclusions

We have introduced the ambitious vision of the CONNECT project for an eternally and
dependably CONNECTed world. Of the complex CONNECT architecture under devel-
opment, we have focused here on the Synthesis enabler, which derives on-the-fly a

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 35

mediator enabling the functional interoperation among heterogenous NSs; the Depend-
ability&Performance enabler, which applies Stochastic model-based analysis for
assessing the desired non-functional properties; and the Monitor, which observes the
run-time CONNECTor behaviour. We have discussed on a case study their integrated
usage to allow for adaptive analysis accounting for possible inaccurate information or
potential evolution of the involved NSs. We refer to a library of adaptation patterns that
DEPER suggests to Synthesis to enhance the CONNECTor and make it compliant with
the expected non-functional properties. At present, Synthesis uses such suggestion to
synthesize a new CONNECTor that can satisfy the non-functional requirements. In fu-
ture, we will investigate approaches for on-the-fly adaptation of the CONNECTor, where
possible.

For reasons of space, we could not cover other important enablers in the CONNECT

architecture. Further information can be obtained from the project web site.

Acknowledgements. This work has been partially supported by the European Project
CONNECT Grant Agreement No.231167.

References

1. Bondavalli, A., Chiaradonna, S., Giandomenico, F.D.: Model-based evaluation as a support
to the design of dependable systems. In: Diab, H.B., Zomaya, A.Y. (eds.) Dependable Com-
puting Systems: Paradigms, Performance Issues, and Applications, pp. 57–86. Wiley (2005)

2. CONNECT Consortium: Deliverable 6.1 – Experiment scenarios, prototypes and report –
Iteration 1 (2011)

3. Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Connectors. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 236–250. Springer,
Heidelberg (2010)

4. Spalazzese, R., Inverardi, P., Issarny, V.: Towards a formalization of mediating connectors for
on the fly interoperability. In: Proceedings of the WICSA/ECSA 2009, pp. 345–348 (2009)

5. Spalazzese, R., Inverardi, P.: Mediating Connector Patterns for Components Interoperability.
In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 335–343. Springer,
Heidelberg (2010)

6. Spalazzese, R., Inverardi, P.: Components interoperability through mediating connector pat-
tern. In: WCSI 2010, arXiv:1010.2337. EPTCS, vol. 37, pp. 27–41 (2010)

7. Bertolino, A., Calabró, A., Di Giandomenico, F., Nostro, N.: Dependability and Performance
Assessment of Dynamic CONNECTed Systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 350–392. Springer, Heidelberg (2011)

8. Masci, P., Martinucci, M., Di Giandomenico, F.: Towards automated dependability analysis
of dynamically connected systems. In: Proc. IEEE International Symposium on Autonomous
Decentralized Systems, Kobe, Japan, pp. 139–146. IEEE (June 2011)

9. Masci, P., Nostro, N., Di Giandomenico, F.: On Enabling Dependability Assurance in Het-
erogeneous Networks through Automated Model-Based Analysis. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 78–92. Springer, Heidelberg (2011)

10. Sanders, W.H., Malhis, L.M.: Dependability evaluation using composed SAN-based reward
models. Journal of Parallel and Distributed Computing 15, 238–254 (1992)

11. Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius: An Extensi-
ble Tool for Performance and Dependability Modeling. In: Haverkort, B.R., Bohnenkamp,
H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 332–336. Springer, Heidelberg
(2000)

36 A. Bertolino et al.

12. Drools fusion: Complex event processor,
http://www.jboss.org/drools/drools-fusion.html

13. Weiser, M.: Hot Topics: Ubiquitous Computing. IEEE Computer (1993)
14. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE Journal on Selected

Areas in Communications 8, 127–142 (1990)
15. Lam, S.S.: Correction to ”protocol conversion”. IEEE Trans. Software Eng. 14, 1376 (1988)
16. Okumura, K.: A formal protocol conversion method. In: SIGCOMM, pp. 30–37 (1986)
17. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Com-

puter 25, 38–49 (1992)
18. Garlan, D., Shaw, M.: An introduction to software architecture. Technical Report CMU-CS-

94-166, Carnegie Mellon University (1994)
19. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-

ware Architecture. A System of Patterns, vol. 1. Wiley, Chichester (1996)
20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Resusable

Object-Oriented Software. Addison-Wesley Professional (1995)
21. Wermelinger, M., Fiadeiro, J.L.: Connectors for mobile programs. IEEE Trans. Softw.

Eng. 24, 331–341 (1998)
22. Spitznagel, B.: Compositional Transformation of Software Connectors. PhD thesis, Carnegie

Mellon University (2004)
23. Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web service

interfaces for adapter development. In: Proceedings of the 19th International Conference on
World Wide Web, WWW 2010, pp. 731–740. ACM, New York (2010)

24. Cimpian, E., Mocan, A.: WSMX Process Mediation Based on Choreographies. In: Bus-
sler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 130–143. Springer, Heidelberg
(2006)

25. Vaculı́n, R., Sycara, K.: Towards automatic mediation of OWL-S process models. In: IEEE
International Conference on Web Services, pp. 1032–1039 (2007)

26. Williams, S.K., Battle, S.A., Cuadrado, J.E.: Protocol Mediation for Adaptation in Semantic
Web Services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 635–649.
Springer, Heidelberg (2006)

27. Cavallaro, L., Di Nitto, E., Pradella, M.: An Automatic Approach to Enable Replacement
of Conversational Services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg (2009)

28. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation for Service
Interface Adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

29. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers. In: ICSE,
pp. 374–384 (2003)

30. Fiadeiro, J.L., Lopes, A., Wermelinger, M.: Theory and practice of software architectures.
Tutorial at the 16th IEEE Conference on Automated Software Engineering, San Diego, CA,
USA, November 26-29 (2001)

31. Lopes, A., Wermelinger, M., Fiadeiro, J.L.: Higher-order architectural connectors. ACM
Trans. Softw. Eng. Methodol. 12, 64–104 (2003)

32. Barbosa, M.A., Barbosa, L.S.: Specifying Software Connectors. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 52–67. Springer, Heidelberg (2005)

33. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput.
Sci. 366, 98–120 (2006)

34. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Trans.
Program. Lang. Syst. 19 (1997)

35. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based architec-
tures. Sci. Comput. Program. 71, 181–212 (2008)

http://www.jboss.org/drools/drools-fusion.html

On-the-Fly Dependable Mediation between Heterogeneous Networked Systems 37

36. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioral mismatching com-
ponents. IEEE Trans. Software Eng. 34, 546–563 (2008)

37. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from dependability to
security. IEEE Transactions on Dependable and Secure Computing 1, 48–65 (2004)

38. Pietzuch, P., Shand, B., Bacon, J.: Composite event detection as a generic middleware exten-
sion. IEEE Network 18, 44–55 (2004)

39. Hussein, E.A.S., Abdel-wahab, H., Maly, K.: HiFi: A New Monitoring Architecture for Dis-
tributed Systems Management. In: Proceedings of ICDCS, pp. 171–178 (1999)

40. Mishra, K., Trivedi, K.S.: Model Based Approach for Autonomic Availability Management.
In: Penkler, D., Reitenspiess, M., Tam, F. (eds.) ISAS 2006. LNCS, vol. 4328, pp. 1–16.
Springer, Heidelberg (2006)

41. Pietrantuono, R., Russo, S., Trivedi, K.S.: Online monitoring of software system reliability.
In: Proc. EDCC 2010 - 2010 European Dependable Computing Conference, pp. 209–218.
IEEE Computer Society (2010)

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 38–55, 2013.
© Springer-Verlag Berlin Heidelberg 2013

SADT/IDEF0 for Augmenting UML,
Agile and Usability Engineering Methods

David A. Marca

The University of Phoenix, Online School College of Information Systems and Technology,
3157 East Elwood Street, Phoenix, Arizona 85034, U.S.A.

dmarca@email.phoenix.edu

Abstract. Many experts state that: a) specifying "all the small parts of a
system" and b) correct expected system usage, can make Agile Software
Development more effective. Unified Modeling Method (UML) addresses the
former; Usability Engineering addresses the later. Taken together, they create a
systems de-velopment framework, capable of: a) specifying functions, data,
behavior and usage, b) rapid prototyping, and c) verifying system usability and
correctness. All three of these methods focus first on the system, while
secondarily trying to ascertain system context. Correct and complete context
requires domain modeling. Structured Analysis and Design Technique
(SADT/IDEF0) is a proven way to model any kind of domain. Its power and
rigor come from: a) a synthesis of graphics, natural language, hierarchical
decomposition, and relative context coding, b) distinguishing controls from
transformations, c) function activation rules, and d) heuristics for managing
model complexity. This paper explains how SADT/IDEF0 domain modeling
can bring correct and complete context, to today’s commonplace disciplines of
the Unified Modeling Language (UML), Agile System Development, and
Usability Engineering methods.

Keywords: Domain Modeling, General Systems Theory, UML, Agile
Development, Usability Engineering, SADT, IDEF0, Domain Driven Design.

1 Introduction

Commercial software engineering disciplines have come a very long way since their
post World War II origins. Three of the more commonplace disciplines of today are:
a) Unified Modeling Language – UML [5], Agile Software Development [2], and
Usability Engineering [29]. When used in combination, these methods have a strong
track record for developing software for many kinds of problems and domains. Over
the last ten years, a large amount of research has been done on the shortcomings of
these methods, and a collection of this research is presented in this paper. Taken as a
whole, this research suggests that many shortcomings arise because domain modeling
is not at the core of these methods. Therefore, one way to bolster today’s common-
place software development methods is to augment with a proven domain modeling
method, such as SADT/IDEF0. Domain modeling is at the core of SADT/IDEF0, and
when properly used, the method can produces holistic domain models that can address
any level of complexity or abstraction. To explain:

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 39

1.1 Domain Modeling Is Not the Core of Current Methods

The first, and very important, aspect about modeling with today’s commonplace
methods is that UML [5], Agile Software Development [2], and Usability Engineering
[29] have their origins rooted in software systems. In other words, their focus is on the
software system. Thus, their principles, languages and practices were invented for
creating software. While each includes a component for domain modeling, that com-
ponent is not at the core of the method. For example: UML’s core is software system
specification, Agile’s core is rapid software deployment, and UE’s core is evaluation
of the software system during its use. For these disciplines, domain modeling is just a
first step to getting to the core work.

1.2 Domain Modeling Is at the Core of SADT/IDEF0

In contrast, SADT/IDEF0 is rooted in general systems theory [35]. Its focus is any
kind of system. Interestingly, when it was first introduced, many in the commercial
world confused it for being a method that could just describe either software systems
or manufacturing processes. While it can describe these two kinds of systems, its
strength is its focus on systems in general. Therefore, it has unique principles, simple
language, and special practices for describing any real-world phenomenon – domain
modeling is its core! When used correctly, SADT/IDEF0 can produce a set of very
concise, small models, with tightly connected context and content. This paper will
illuminate the often misunderstood potential of SADT/IDEF0 as a contributor to, and
not a replacement for, today’s software development methods (see Figure 1).

Fig. 1. Where SADT/IDEF0 augments UML, agile and usability engineering methods

1.3 The Use of SADT/IDEF0 Produces Holistic Domain Models

The distinguishing, unique aspect of SADT/IDEF0 is its ability to holistically
describe an entire domain to any desired low level of detail, and to describe its
context to any desired high level of abstraction. It is thus a story-telling discipline
with very rigorous engineering syntax (i.e. boxes and arrows) and semantics (e.g. box
sides for Input, Control, Output, and Mechanism – ICOM – and corresponding

System
Agile

Methods
Develop &

Deploy Fast

Usage
Usability

Engineering
Verify

Usability

SADT/
IDEF0

Understand
Environment

Specification
Unified Modeling

Language
Define

Operation

Domain

System
Agile

Methods
Develop &

Deploy Fast

Usage
Usability

Engineering
Verify

Usability

SADT/
IDEF0

Understand
Environment

Specification
Unified Modeling

Language
Define

Operation

Domain

40 D.A. Marca

implicit off-page connectors), plus heuristics for managing model complexity (e.g.
hierarchic decomposition, 3 to 6 boxes per decomposition, single purpose and
viewpoint per model, model “call” syntax). For example, it distinguishes controls
from inputs, and advocates stopping model decomposition when the model’s purpose
has been fulfilled. It is the aspect of simple, concise, complete, context-rich, holistic
description that is the primary contribution of SADT/IDEF0 to the other
aforementioned methods [25].

1.4 SADT/IDEF0 Can Address any Level of Complexity or Abstraction

The statement often arises: “My method is effective at domain modeling, so I do not
need another method.” My response: “yes and no,” and here is why: For very simple
domains or systems, it is easy to “get one’s head around the problem.” Thus, no other
method is needed to understand the system’s immediate context. However, for very
complex problems (e.g. enterprise-wide solutions, large weapons such as a submarine,
aircraft sheet metal fabrication), no single software developer can understand the
whole problem. At the extreme case (e.g. well log interpretation, disaster recovery,
decision making, strategy formulation), no domain expert may know or be able to
articulate consistently and accurately, the entire domain. Such situations require a
context map [52] to documented an understanding of the domain that must then drive
the solution design [54] [53]. SADT/IDEF0 has an extremely simple graphic language
and a model creation technique that, from the same starting point of any particular
subject, can describe: a) all details (i.e. decompose complexity), b) the context of that
subject (i.e. context modeling).

2 Why Consider SADT/IDEF0?

Since the 1970’s, SADT/IDEF0 has been used to successfully describe a vast number
and variety of domains. The reason for this success is best described by Doug Ross in
his seminal paper [35]. To paraphrase: SADT/IDEF0 incorporates any other lan-
guage; its scope is universal and unrestricted. It is concerned only with the orderly
and well-structured decomposition of a subject. Model decomposition is sized to suit
the modes of thinking and understanding of the viewpoint of the model and the
intended audience of readers. Units of understanding (i.e. boxes and their data) are
expressed in a way that rigorously, precisely and consistently represents domain
interre-lationships. Decomposition is carried out to the required degree of depth,
breadth, and scope while still maintaining all of the above properties. Thus,
SADT/IDEF0 increases the quantity and quality of understanding that can be beyond
the limitations inherently imposed by other kinds of natural or formal languages.
Some details:

2.1 Vast Experience in a Wide Variety of Domains

SADT/IDEF0 has over 35 years of domain modeling experience, across a vast
number of problems involving systems ranging from tiny to huge, in a wide variety of
industries [24]. It has been used in commerce, government and military around the
world. It has been used by small of privately held companies (e.g. 1-2 person

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 41

start-ups) to some of the largest of largest organizations in the world (e.g. the U.S. Air
Force), and on some of the largest initiatives (e.g. the U.S.A.F. Sheet Metal
Fabrication Project [55]). This widespread success is due to its very strong set of
domain modeling concepts, principles and features. A summary of these “features” is
given in the Appendix of this paper, and is organized into two tables. Table 1
summarizes the box and arrow syntax and semantics, and the rules for how they
interconnect. Table 2 completes Table 1 and summaries the reference language used
to identify model elements. None of the aforementioned methods can claim the array
of features, the richness of graphic semantics, the number of in-context supplements,
or the longevity of success across so many industries and problems for domain
modeling.

2.2 Strong Conceptual Underpinnings for Modeling

Since the 1970s, experts have agreed that deep understanding of the domain is vital
for successful and effective software engineering [44]. The conceptual underpinnings
of SADT/IDEF0 continue to be cited as being very strong for domain modeling. Most
notably: a) tightly managed multiple views at the architecture level for complex
systems [19], b) support for aspect-oriented modeling by being able to modularize
cross-cutting concerns [17], c) defining boundaries essential for specifying objects,
system scope, human-computer interaction [40], d) hierarchical exposition of detail
for very large domains without loss of context and without making errors when going
to next levels of detail/abstraction [31], e) specifying strong versus weak influence
that each datum has on its functions [40], and f) “calls” (i.e. just like a software
subroutine call) a model from another model to maximize reuse [20].

2.3 SADT/IDEF0 Features Are for Domain Modeling

Back in the 1970s, we did not have the universally understood notion of “ontology” as
we know it today in the software engineering field. Nonetheless, since 1977, SADT™
has had a complete ontology for domain modeling [38]. Back then, the components of
the ontology were called “features.” Three of its core features are: context, model, and
viewpoint [35]. With these three features, a core modeling principle was constructed:
one model = one subject, described from one viewpoint [18]. This is, in effect, what
we commonly call today the “system boundary.” This demarcation point allows
SADT/IDEF0 to consider a domain to be the whole context within which a system
operates (e.g. the enterprise for a financial system as well as the business environment
around that enterprise, the submarine for a defensive weapon system, the building for
a thermostat control system). Also, SADT/IDEF0 has a simple box-and-arrow graphic
language with associated semantics that make it ideal for capturing domain
knowledge and reviewing it with end-users [10].

2.4 Preservation of Context

Probably the most important aspects of a domain modeling method are: a) simple
syntax within which domain-specific language can be embedded, b) powerful seman-
tics for representing the various roles information play in a domain, c) rigorous de-
composition rules to support the detailing of highly complex subjects as well as the

42 D.A. Marca

abstraction (to any level) of the context around any given system boundary, and d)
consistent subject boundary management so that no context is lost when you move
“into” the details of the subject. Together, these aspects provide a means by which
context is always preserved. Figure 2 provides an example of context preservation.
Notice how the data (arrow) inputs (I), controls (C), outputs (O), and mechanisms (M)
that cross the functional boundary (box) are tied directly to the arrows on the diagram
that details the function through the use of ICOM coding. With ICOM codes, you can
never loose your way when you decompose a subject or create an abstraction that
represents the context of a subject. Thus, since context preservation is crucial for
domain modeling, SADT/IDEF0 has merit for augmenting the system development
methods [25] such as the ones given earlier in this paper.

Fig. 2. An example of how SADT/IDEF0 models preserve context [24]

3 Augmentation Approach

The augmentation approach given in this paper is based on over 10 years of research
by many practitioners and researchers. They point out particular shortcomings in the
domain modeling portions of the aforementioned methods. They identified particular
domain knowledge that, if it were available, could improve the results generated by
the methods. So, given that particular domain knowledge required by UML, Agile and
Usability Engineering methods. In short, correct, comprehensive and consistent speci-
fications of domain knowledge are needed. Not only can SADT/IDEF0 correctly,
comprehensively and consistently describe an entire domain – and not just the imme-
diate context of a software system – it can describe that domain in rich and varied
ways using carefully designed in-context supplements [38]. To explain:

M1

I2

O2

I1 O1

C1 C2

M1

I2

O2

I1 O1

C1 C2

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 43

3.1 Domain Knowledge Required by Other Methods

When practiced correctly, SADT/IDEF0 compresses a wealth of domain knowledge
into a manageable set of small models. SADT/IDEF0 models and the special supple-
ments created from the diagrams in those models, describe particular domain know-
ledge which the aforementioned methods depend upon: a) for UML: the system
interface with its environment, decisions around manual versus automated function
realization, functional scope, important objects in the domain, data dictionary, control
data distinct from transactional data, overarching rules (often expressed as policies or
doctrine), domain events and responses to those events (often called scenarios), and
common versus special case scenarios; b) for Agile: same as for UML; and c) for
Usability Engineering: the users’ work, the context of that work, the tasks for
accomplishing the work, the systems users need, and system usage scenarios.

3.2 Strong Specifications of Domain Knowledge

This paper briefly looks at some of the ontology of SADT (see Appendix), plus some
additional features added after 1977, and explain how they can be used to augment the
domain modeling portions of UML, Agile, and UE. Section 4 explains through figures
and tables how SADT/IDEF0 models create stronger specifications of domain
knowledge than the method it is augmenting. For example: a) knowledge that would
have been missed by the other method, b) knowledge that would have been very hard
to identify or describe by the other method, c) knowledge that needs to appear in all
three methods that does not now do so, and d) how knowledge can be traced through
all three methods. It is important to repeat that the domain modeling portions of the
aforementioned methods are not bad; they just have shortcomings that over 10 years
of practice have identified and documented (see References). SADT/IDEF0 can
support the improvement recommendations in that documentation.

3.3 Knowledge Specification Using In-Context Supplements

The basic “unit of specification” of SADT/IDEF0 is the diagram, and a collection of
diagrams comprises a model. However, SADT/IDEF0 has additional means by which
domain knowledge is specified. To explain, the SADT/IDEF0 modeling process gives
a person much more information than what is put on the basic diagram [24]. For
example: a) terminology definitions, b) properties of functions and data, c) in-context
narratives about the domain, d) particular situations (e.g. control flows, work flows)
and special circumstances (e.g. mutually constraining functions) that occur in the
domain, and e) rules by which functions activate and data must or must not interact
with each other. Figure 3 gives an example of one basic diagram plus its supplemental
pages, each identified with a letter corresponding to a-e above.

SADT/IDEF0 uses diagram supplements to capture this information, usually just
after a basic diagram is approved by the domain experts that were interviewed by the
systems analyst who authored the diagram. The supplements are: i) glossary page, ii)
for exposition only (FEO) page, and iii) text page [38]. A glossary page defines
terminology. A text page succinctly describes the operation of each box on the
diagram. FEO pages contain closely related figures or pictures, or they annotate the

44 D.A. Marca

basic diagram with: property labels, highlighted boxes and arrows, or box activation
rules. Each supplement is derived directly from only its basic diagram, and thus these
specifications of domain knowledge are always inside the context of one, well-
bounded subject. Thus, SADT/IDEF0 supplements are fully consistent with each
other.

Fig. 3. A supplement set for a single SADT/IDEF0 diagram [24]

3.4 SADT/IDEF0 Ontology and Model Supplements Enable Augmentation

Figure 3 shows that the supplements developed directly from a single diagram com-
prise a rich specification of one bounded subject in the domain. Return to Table 1 and
2 in the Appendix, and identify all the ontology elements that go into these
supplements: you will see the depth of SADT/IDEF0 for representing domain
knowledge. As Section 2.4 says, the ontology is power enough for describing any
system to any level of detail and any level of abstraction without loosing context.
Thus:

Hypothesis 1: A set of SADT/IDEF0 diagrams and supplements that correctly and
completely describe the domain in which a software system will operate, has content
that is essential for augmenting the UML, Agile, and Usability Engineering methods.

Hypothesis 2: The content of those SADT/IDEF0 models and diagram supplements
can be extracted and organized so that it can become useful input to the UML, Agile,
and Usability Engineering methods, and without altering those methods.

 AB C

D

E

AB C

D

E

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 45

4 Augmentations for UML, Agile and Usability Engineering

The proposed augmentation approach centers on comprehensive, correct and consis-
tent specifications of domain knowledge. When used properly, SADT/IDEF0 can
create such specification of an entire domain, not just the immediate context, for a
software system. And it can describe that domain in rich and varied ways using in-
context supplements which contain the: language, beliefs, assumptions, human
organization, human work, work tasks and tools, and system usage expectations, that
are vital to the successful application of UML, Agile, and Usability Engineering
methods. This section summarizes shortcomings and corresponding improvement
recommendations, based on over 10 years of experience with the aforementioned
methods. The combination of shortcomings, recommendations, and the
representational power of SADT/IDEF0 diagrams and supplements led to this
approach.

4.1 Benefits to UML

UML Shortcomings. Experts have consistently noted that object-oriented code design
methods are better at specifying software than they are at modeling domains [16]. For
domain modeling, UML considers the domain to be the entities that touch the
software system [27], and that is what UML “domain model” specify. The only other
outward-facing UML model, the “business model,” specifies how the software system
will be used [56] [57]. These models can define a software system’s boundary,
provided they are complete and accurate. But assuring completeness and accuracy
without context is risky. Since modeling languages optimized for software systems
are less effective at modeling the software system’s environment, augmentations have
been proposed to attach more domain knowledge to UML software specifications.

Fig. 4. How UML can benefit from SADT/IDEF0 domain modeling

SADT/IDEF0 Feature Benefits to UML

Activation Rule In-context specification of business rule or decision-making rule.

Annotation -- Graphic (Diagram Highlights)
In-context system use case specifications are created by telling a story based on just the
highlighted boxes and arrows.

Annotation -- Text (Diagram Notes) A well-written paragraph for each box can turn into formal descriptions of the domain.

Context Diagram, Context Model
In-context general background knowledge: a) to any highest level of abstraction, b) to any lowest
level of detail.

Control Versus Input
Separation of concerns: an accurate & complete model of the control system independent from an
accurate & complete model of the transaction system.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example:
"we always did it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") In-context domain terminology, from which an ontology for the domain can be created,

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined
the human/system interface points.

Feedback Loop (output-input, output-control)
Useful for understanding: a) domain pathologies, b) interaction scenarios, c) architectural
constraints.

Model Tie (i.e. "model call") Encoding
In-context formal description of "aspect," permits faster identification of cross-system common
functionality.

Small, Multiple Models
Identification of key objects in the domain. Specify object functions independent of object
modes/states.

Why, What, How (i.e. levels of abstraction)
Separation of concerns: distinct models for why (rationale), what (function), and how (mechanism)
= modular understanding of context at different levels of abstraction.

46 D.A. Marca

UML Augmentation. The augmentations that suggest strengthening UML’s ability to
define a software system’s environment advise doing domain modeling using some
other language or tool, and then linking captured knowledge to UML software specifi-
cations. For example: a) domain ontology database [6], b) general background
knowledge base with reasoning logic [43], c) in-context identification, specification
and validation of business rules [16] [47], and decision-making rules [58], d) how and
why people do the work that they do [23], and e) formal descriptions of the domain
[7]. Taken together, these augmentations suggest: a) that SADT/IDEF0 models of a
domain contain knowledge that can benefit UML specifications, and b) efficacy can
be achieved if domain modeling is a activity distinct from software specification.
Figure 5 shows how SADT/IDEF0 diagrams and supplements can augment UML.

Fig. 5. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment the
development of UML specifications

4.2 Benefits to Agile

Agile Shortcomings. One component of the Agile Manifesto advocates working
software over comprehensive documentation [2]. Not surprisingly, traditional domain
modeling methods have not heretofore been recommended for augmenting Agile
software development efforts. However, "small method" augmentations have been
recommended since Agile was first purported. These suggestions carefully
distinguish “comprehensive” from “essential” documentation. Yes, comprehensive
documentation can, when taken to the extreme, merely adds time and cost to projects
without adding value to the software system. But taken to the other extreme, a lack of
documentation altogether often creates gaps in verified understanding between users
and software developers, and leaves no rationale behind for those who maintain or
wish to reuse the resulting software system. Clearly, a middle ground of specification
(i.e. for domain, analysis and design) would seem to benefit all parties, so long as
those specifications are efficient and effective [3]. Figure 6 summarizes the benefits.

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

Object,
Class,

Relationship

Types, Roles,
Interfaces

Use Case &
Interaction

Business
Rule / Event

Activity Diagram
& State Machine

1

2

4

3

55

6

Aspect

7

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 47

Fig. 6. How agile can benefit from SADT/IDEF0 domain modeling

Agile Augmentation. Past recommendations have suggested augmenting the informal
artifacts of Agile, and advocate for practices that focus on the domain to explain why:
a) people need the system, b) will use the system in particular ways, c) they expect to
see certain menus, displays, interactions, and functionality, and d) they are investing
their time in the software development project. For example: a) documenting domain
knowledge using JAD [14], self-reflection [14], and Wikis [33] [11], b) making and
keeping fixed major object architecture decisions which enable parallel development
by many Agile teams in support of very large projects [34] [3], c) documenting
system design knowledge with informal specifications [37], and informal tools [8], d)
making explicit tacit design assumptions with Total Quality methods [12] and self-
reflection [36], and e) publishing (including vital documentation) competing
prototypes to the wider community for evaluation and selection a best solution for
reuse [50]. Taken together, these recommendations point to an interesting line of
augmentation (Figure 3) by using traditional modeling methods such as
SADT/IDEF0. Figure 7 shows how SADT/IDEF0 diagrams and supplements can be
used to augment Agile.

4.3 Benefits to Usability Engineering

Usability Engineering Shortcomings. Practitioners and researchers have already
shown: a) how Usability Engineering can be combined with Agile [15] [59], b) that
particular combinations can enable effective design space exploration [32], c) and that
the prototypes from those explorations can be systematically evaluated and
augmented to create best-in-class production software [49]. However, such outcomes
rely on augmenting the traditional usability engineering methods with very good
knowledge acquisition methods and very good modeling tools [44] [41]. To explain,
Usability Engineering has had a tradition of employing the concepts and methods of
participatory design [42] to obtain optimal understanding of a domain and especially
the tacit knowledge of domain inhabitants. So, traditional Usability Engineering
methods have employed ethnographic techniques, which have traditionally relied on

SADT/IDEF0 Feature Benefits to Agile Software Development

Activation Rule
Complete hierarchy of rule cause-and-effect: Highest-level rule activation causes lower-level rule activations
(traceability).

Annotation -- Graphic (Diagram Highlights)
In-context system use case specifications are created by telling a story based on just the highlighted boxes and
arrows.

Annotation -- Text (Diagram Notes) In-context informal descriptions of software activations (include in prototype wrapper documentation).

Context Diagram, Context Model In-context general background knowledge: a) to any highest level of abstraction, b) to any lowest level of detail.

Control Versus Input Understand how to make, and then keep fixed, major object architecture decisions.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: "we always did
it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") Quickly understand the user's language, and the context for language usage.

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined the
human/system interface points.

Feedback Loop (output-input, output-control)
Document domain knowledge using self-reflection to uncover and assess tacit knowledge and fundamental
assumptions.

Model Tie (i.e. "model call") Encoding In-context formal description of "aspect," permits faster identification of cross-system common functionality.

Small, Multiple Models Identification of key objects in the domain. Specify object functions independent of object modes/states.

Why, What, How (i.e. levels of abstraction)
Separation of concerns: distinct models for why (rationale), what (function), and how (mechanism) = modular
understanding of context at different levels of abstraction.

48 D.A. Marca

hand-written field notebooks and not on formal models. But, adding formal modeling
to ethnographic practices can add value [25]. Also, with the advent of Computer
Aided Software Engineering (CASE) tools, the creation and review of formal models
can happen much more quickly than in the days of purely manual drawing, copying,
distributing copies, the recording of feedback, and so on.

Fig. 7. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment the
artifacts of agile software development

Fig. 8. How usability engineering can benefit from SADT/IDEF0 domain modeling

Usability Engineering Augmentation. Many augmentations to Usability Engineering
have been suggested, and most have been centered on incorporating ethnographic
concepts and field work. Some of the most noteworthy augmentations are: a) models
that distinguish local dynamics from global dynamics from contextual dynamics [45],
b) a context-based, generalized navigation space model that is used that model to

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

DB Object
& Relation

System Use
Notes/Sketch

GUI
Prototype

Rule as
RPC Code

Workflow
Notes/Sketch

Subroutine

13

2

6

5

4

Header / Block
Comment

7

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

DB Object
& Relation

System Use
Notes/Sketch

GUI
Prototype

Rule as
RPC Code

Workflow
Notes/Sketch

Subroutine

13

2

6

5

4

Header / Block
Comment

7

SADT/IDEF0 Feature Benefits to Usability Engineering

Activation Rule In-context interaction posibilities (patterns) and their rationale, plus associated potential implications (claims).

Annotation -- Graphic (Diagram Highlights) In-context specification of work tasks. Context provides background and rationale for the users' work.

Annotation -- Text (Diagram Notes) Text for all manual boxes becomes an in-context description of people's work.

Context Diagram, Context Model Formalize and limit "context," noting how relevant information differs from context to context.

Control Versus Input
Distinguish which user generated artifacts are simply material for the next step in processing from those
artifacts than govern subsequent workflow steps.

Coupling/Cohesion (assessment)
Apply these concepts to a completed model to assess pathologies in the domain. For example: "we always did
it that way" becomes immediately apparent.

Data Dictionary (i.e. "glossary") Quickly understand the user's language, and the context for language usage.

Decomposition -- Stopping Heuristic
When decomposition stops when a function is all manual or all automated, then you have defined the
human/system interface points.

Feedback Loop (output-input, output-control) Use to create test cases to evaluate software prototypes (in-context cases).

Model Tie (i.e. "model call") Encoding
Create patterns by unifying the often scattered aspects (i.e. usage behaviors) by constructing themes (i.e.
relationship rules among aspects).

Small, Multiple Models
Create a context-based, generalized navigation "space" model, and then use it to create a UI presentation
model.

Why, What, How (i.e. levels of abstraction) Distinguish local dynamics from global dynamics from contextual dynamics .

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 49

create a UI presentation model [22], c) formalized context that shows how
information differs from context-to-context [28], d) UI design trade-offs via patterns –
in-context problem-solution pairs – and claims – implications of design decisions [1]
e) a claims library that enables UI design reuse [60], e) patterns that unify the highly
scattered aspects of usage behavior via a set of themes that define relationship rules
for aspects [4], and f) domain models that have syntax and semantics that enable
consistency across architectural, design, structural, behavioral models [13] [26].

Fig. 9. The Step-by-step use of SADT/IDEF0 diagram and supplement content to augment
usability engineering

5 Summary, Conclusions and Future Work

This paper has taken an approach to providing benefits to UML, Agile, and Usability
Engineering methods by using SADT/IDEF0: a) for domain modeling, and b) in par-
ticular ways based on over 10 years of experience with these methods by a variety of
practitioners and researchers. These experiences were selected based on their: a) ad-
vocating specific augmentations to the aforementioned methods, and b) showing how
those augmentations could benefit: i) the software development process advocated by
the method, ii) any software or non-software prototypes generated by the method, and
iii) the reuse and maintenance of the final specifications generated by the method. The
recommended shortcomings and corresponding improvement recommendations were
used to develop the proposed augmentation approach.

The approach centers on comprehensive, correct and consistent specifications of
domain knowledge. When used properly, SADT/IDEF0 can create such specifications
of an entire domain, not just the software system’s immediate context. And it can
describe that domain in rich and varied ways using in-context supplements which
contain the: language, beliefs, assumptions, human organization, human work, work
tasks and tools, and system usage expectations, vital to the successful application of
UML, Agile, and Usability Engineering methods. Figure 10 summarizes the role
SADT/IDEF0 plays in the augmentation process. It also shows how the SADT/IDEF0

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

Work
Artifact

Fundamental
Assumption

Cultural
Norms

Native
Language

Use
Case

HCI
Model

Business
Rule / Event

Field
Notes

The
Work

Aspect

1

3

7

6

2

2

8

6

9Coupling & Cohesion

Traditions4

Pathology5

Diagram-3

Diagram-2

Diagram-1

Glossary-3

Glossary-2

Glossary-1

Text-3

Text-2

Text-1

Highlight-3

Highlight-2

Highlight-1

Activation-3

Activation-2

Activation-1

Work
Artifact

Fundamental
Assumption

Cultural
Norms

Native
Language

Use
Case

HCI
Model

Business
Rule / Event

Field
Notes

The
Work

Aspect

1

3

7

6

2

2

8

6

9Coupling & Cohesion

Traditions4

Pathology5

50 D.A. Marca

Author Reader Cycle [24]) can augment Agile by providing domain experts time to
think about the knowledge already given to software developers to ensure facts are
consistent and correct with the current common understanding.

Fig. 10. Augmenting UML, agile and usability engineering with SADT/IDEF0 models and the
author/reader review cycle

The combination of over 10 years of experience by practitioners and researchers,
their recommendations for improving upon the shortcomings they discovered, and the
ability of the SADT/IDEF0 to support those recommendations, led the author to
conclude that there is also merit for further elaboration and demonstration of the
approach’s viability by extending a commercial SADT/IDEF0 tool. Specifically, such
a CASE tool could be extended by: a) enhancing its existing ontology of
SADT/IDEF0, b) integrating that ontology with UML tools, c) creating an interface to
a domain knowledge reasoning system and a formal specification system, and d)
building a component for the automatic generation of a deep human-system
interaction model that includes patterns and claims [1]. A proposal for future work is
underway.

Acknowledgements. The author wishes to first and foremost acknowledge the late
Douglas T. Ross for his contributions to the fields of industrial engineering and computer
science, and for his inventions of APT, PLEX and SADT™. In alphabetical order,
acknowledgements go to: Michael Connor, Melvin Dickover, Patricia Duran, Clarence
Feldman, Al Irvine, Clement McGowan, Robert Munck, Chuck Patrick, Kenneth
Schoman, Michelle Stowe, and the late Daniel Thornhill – the people whose early work
with SADT™, and later with its public domain version IDEF0, greatly furthered: its
ontology, the correct understanding of its principles, and how to correctly practice its
methods. Lastly, recognition is given to the insightful researchers and practitioners cited
in this paper for experiences with the UML, Agile and Usability Engineering methods,
and their work in clarifying shortcomings and related practical issues surrounding the
domain modeling embedded in those software development methods.

UML UE

Agile
Development

Usability
Evaluation

Author/Reader
Cycle

Final
System

Prototype
System

Tacit
Knowledge

Collaborations Shortcomings

Human-Computer Interaction Learnings

Business
Model

Evaluation CriteriaSpecifications

SADT/IDEF0

UML UE

Language  Beliefs  Assumptions  Organization 
Work  Tasks  Tools  System Usage Expectations

Deep
Knowledge

UML UE

Agile
Development

Usability
Evaluation

Author/Reader
Cycle

Final
System

Prototype
System

Tacit
Knowledge

Collaborations Shortcomings

Human-Computer Interaction Learnings

Business
Model

Evaluation CriteriaSpecifications

SADT/IDEF0

UML UE

Language  Beliefs  Assumptions  Organization 
Work  Tasks  Tools  System Usage Expectations

Deep
Knowledge

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 51

References

1. Abraham, G., Atwood, M.: Patterns or claims: do they help in communicating design
advice? In: Proceedings of the 21st Annual Conference of the Australian Computer-
Human Interaction Special Interest Group (2009)

2. Abrahamsson, P., et al.: Agile Software Development Methods: Review and Analysis.
VTT Publications, Number 478, Kaitovayla (2002)

3. Alleman, G.B.: Agile Project Management Methods for ERP: How to Apply Agile
Processes to Complex COTS Projects and Live to Tell about It. In: Wells, D., Williams, L.
(eds.) XP 2002. LNCS, vol. 2418, pp. 70–88. Springer, Heidelberg (2002)

4. Baniassad, E., Clarke, S.: Theme: An Approach for Aspect-Oriented Analysis and Design.
In: Proceedings of the 26th International Conference on Software Engineering (2004)

5. Booch, G., et al.: The Unified Modeling Language User Guide. Addison-Wesley, Boston
(1999)

6. Brockmans, S., Haase, P., Hitzler, P., Studer, R.: A Metamodel and UML Profile for Rule-
Extended OWL DL Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 303–316. Springer, Heidelberg (2006)

7. Bryant, B., et al.: From Natural Language Requirements to Executable Models of Software
Components. In: Proceedings of the Monterey Workshop on Software Engineering for
Embedded Systems: From Requirements to Implementation (2003)

8. Bryant, S., et al.: Pair programming and the re-appropriation of individual tools for
collaborative software development. In: Proceedings of the Conference on Cooperative
Systems Design (2006)

9. Calvary, G., Thevenin, D.: A Unifying Reference Framework for the Development of
Plastic User Interfaces. In: Little, M.R., Nigay, L. (eds.) EHCI 2001. LNCS, vol. 2254, pp.
173–192. Springer, Heidelberg (2001)

10. Congram, C., Epelman, M.: How to describe your service: An invitation to Structured
Analysis and Design Technique. International Journal of Service Industry
Management 6(2) (1995)

11. Decker, B., et al.: A framework for Agile reuse in software engineering using Wiki
Technology. In: Proceedings of the Knowledge Management for Distributed Agile
Processes Workshop (2005)

12. Dingsøyr, T., Hanssen, G.K.: Extending Agile Methods: Postmortem Reviews as Extended
Feedback. In: Henninger, S., Maurer, F. (eds.) LSO 2003. LNCS, vol. 2640, pp. 4–12.
Springer, Heidelberg (2003)

13. Egyed, A., Medvidovic, N.: A Formal Approach to Heterogeneous Software Modeling. In:
Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 178–192. Springer, Heidelberg (2000)

14. Friedrich, W., van der Poll, J.: Towards a Method to Elicit Tacit Domain Knowledge from
Users. Interdisciplinary Journal of Information, Knowledge, and Management 2 (2007)

15. Granollers, T., et al.: Usability Engineering Process Model. Integration with Software
Engineering. In: Proceedings of the HCI International Conference 2003 (2003)

16. Halpin, T.: Augmenting UML with fact-orientation. In: Proceedings of the 34th Annual
Hawaii International Conference on Systems Sciences (2001)

17. Hilliard, R.: Using Aspects in Architectural Description. In: Moreira, A., Grundy, J. (eds.)
Early Aspects 2007 Workshop. LNCS, vol. 4765, pp. 139–154. Springer, Heidelberg (2007)

18. Hilliard, R.: Aspects, Concerns, Subjects, Views, ... In: OOPSLA 1999 Workshop on
Multi-Dimensional Separation of Concerns in Object-Oriented Systems (1999)

19. Hilliard, R.: Views and Viewpoints in Software Systems Architecture. In: First Working
IFIP Conference on Software Architecture (WICSA 1) (1999)

20. Hilliard, R., et al.: The architectural metaphor as a foundation for systems engineering. In:
Proceedings of the 6th Annual International Symposium of the International Council on
Systems Engineering (1996)

52 D.A. Marca

21. Iachello, G., Abowd, G.: From privacy methods to a privacy toolbox: Evaluation shows
that heuristics are complementary. ACM Transactions on Computer-Human
Interaction 15(2) (2008)

22. Koch, N., et al.: The Authoring Process of the UML-based Web Engineering Approach. In:
Proceedings of the 1st International Workshop on Web-oriented Software Technology (2001)

23. Larsen, G.: Designing component-based frameworks using patterns in the UML.
CACM 42(10) (1999)

24. Marca, D.: IDEF0 and SADT: A Modeler’s Guide, 3rd edn. OpenProcess, Inc., Boston
(2006)

25. Marca, D.: Augmenting SADT to develop computer support for cooperative work. In:
Proceedings of the 13th International Conference on Software Engineering (1991)

26. Medvidovic, N., et al.: Round-Trip Software Engineering Using UML: From Architecture
to Design and Back. In: Proceedings of the 7th European Conference on Software
Engineering (1999)

27. Menard, R.: Domain modeling: Leveraging the heart of RUP for straight through
processing. IBM Developer Works (2003),
http://www.ibm.com/developerworks/rational/library/2234.html
(retrieved on March 17, 2011)

28. Najar, S., et al.: Semantic representation of context models: a framework for analyzing and
understanding. In: Proceedings of the 1st Workshop on Context, Information and
Ontologies, CIAO 2009 (2009)

29. Nielsen, J.: Usability Engineering. Academic Press, London (1993)
30. Normantas, K., Vasilecas, O., Sosunovas, S.: Augmenting UML with decision table

technique. In: International Conference on Computer Systems and Technologies:
CompSys-Tech 2009 (2009)

31. Ng, J., et al.: The development of an enterprise resources planning system using a
hierarchical design pyramid. Journal of Intelligent Manufacturing 9(5) (1996)

32. Paelke, V., Nebe, K.: Integrating Agile methods for mixed reality design space
exploration. In: Proceedings of the 7th ACM Conference on Designing Interactive
Systems, DIS 2008 (2008)

33. Rech, J., et al.: Riki: A System for Knowledge Transfer and Reuse in Software
Engineering Projects. In: Lytras, M., Naeve, A. (eds.) Open Source for Knowledge and
Learning Management: Strategies Beyond Tools. IGI Global Publishers (2007)

34. Reifer, D., et al.: Scaling Agile Methods. IEEE Software (July/August 2003)
35. Ross, D.: Structured Analysis (SA): A Language for Communicating Ideas. IEEE

Transactions on Software Engineering 3(1) (1977)
36. Salo, O., Kolehmainen, K., Kyllönen, P., Löthman, J., Salmijärvi, S., Abrahamsson, P.:

Self-Adaptability of Agile Software Processes: A Case Study on Post-iteration Workshops.
In: Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 184–193. Springer,
Heidelberg (2004)

37. Scacchi, W.: Is Open Source Software Development Faster, Better, and Cheaper than
Software Engineering? In: Proceedings of the 2nd ICSE Workshop on Open Source
Software Engineering (2002)

38. Schoman, K., Ross, D.: Structured Analysis for Requirements Definition. IEEE
Transactions on Software Engineering 3(1) (1977)

39. Seffah, A., et al.: HCI, Usability and Software Engineering Integration: Present & Future.
In: Human-Centered Software Engineering: Integrating Usability in the Software
Development Lifecycle. HCI Series, vol. 8 (2005)

40. Siltala, M.: Modeling Contracting Procedure and the Concept of the Service Portfolio for
Finnish Municipalities using SADT. Nordic Journal of Surveying and Real Estate
Research 1 (2009)

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 53

41. Sitou, W., Spanfelner, B.: Towards requirements engineering for context adaptive systems.
In: 31st Annual International Computer Software and Applications Conference, COMP-
SAC 2007, vol. 2 (2007)

42. Spradley, J.: Participant Observation. Holt, Rinehart and Winston, London (1980)
43. Süß, J., Leicher, A.: Augmenting Domain Specific UML Models with RDF. In:

Proceedings of the 3rd Workshop in Software Model Engineering, Lisbon (2004)
44. Sutcliffe, A.: Applying small group theory to analysis and design of CSCW systems. In:

Proceedings of the Workshop on Human and Social Factors of Software Engineering,
HSSE 2005 (2005)

45. Sutcliffe, A.: On the effective use and reuse of HCI knowledge. ACM Transactions on
Computer-Human Interaction (TOCHI) 7(2) (2000)

46. Sutcliffe, A.: The Domain Theory for Requirements Engineering. IEEE Transactions on
Software Engineering 24(3) (1998)

47. Skersys, T., Gudas, S.: The Enhancement of Class Model Development Using Business
Rules. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 480–490.
Springer, Heidelberg (2005)

48. Wahid, S.: Investigating design knowledge reuse for interface development. In:
Proceedings of the 6th Conference on Designing Interactive Systems, DIS 2006 (2006)

49. Verlinden, J., Horva, I.: Analyzing opportunities for using interactive augmented
prototyping in design practice. In: Artificial Intelligence for Engineering Design, Analysis
and Manufacturing. Cambridge University Press (2009)

50. Lethbridge, T.C., Laganiére, R.: Object-Oriented Software Engineering: Practical Software
Development Using UML and Java. McGraw-Hill, London (2001)

51. Winckler, M., et al.: Tasks and scenario-based evaluation of information visualization
techniques. In: Proceedings of the 3rd Annual Conference on Task Models and Diagrams,
TAMODIA 2004 (2004)

52. Novak, J., Cañas, A.: The Theory Underlying Concept Maps and How to Construct Them,
Technical Report IHMC CmapTools 2006-01 Rev 01-2008, Florida Institute for Human
and Machine Cognition (2008)

53. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Developing
applications using model-driven design environments. IEEE Computer 39(2) (2006)

54. Hruby, P.: Ontology-based domain-driven design. In: OOPSLA Workshop on Best
Practices for Model-Driven Software Development, San Diego, CA, USA (2005)

55. Wikipedia: Integrated Computer-Aided Manufacturing (2011),
http://en.wikipedia.org/wiki/
Integrated_Computer-Aided_Manufacturing (retrieved March 20, 2011)

56. Coste, P., et al.: Multilanguage Design of Heterogeneous Systems. In: CODES 1999
(1999)

57. Stuikys, V., Damasevicius, R.: Relationship Model of Abstractions Used for Developing
Domain Generators. Informatica 13(1) (2001)

58. Vasilecas, O., Normantas, K.: Decision table based approach for business rules modelling
in UML/OCL. In: Proceedings of the 11th International Conference on Computer Systems
and Technologies and Workshop (2010)

59. Seffah, A., et al.: HCI, Usability and Software Engineering Integration: Present & Future.
In: Human-Centered Software Engineering: Integrating Usability in the Software
Development Lifecycle. HCI Series, vol. 8 (2005)

60. Brel, C., Renevier-Gonin, P., Occello, A., Déry-Pinna, A.-M., Faron-Zucker, C., Riveill,
M.: Application Composition Driven By UI Composition. In: Bernhaupt, R., Forbrig, P.,
Gulliksen, J., Lárusdóttir, M. (eds.) HCSE 2010. LNCS, vol. 6409, pp. 198–205. Springer,
Heidelberg (2010)

54 D.A. Marca

Appendix

1 “Features” of the SADT Ontology

Table 1. SADT “features” published in 1977 by Douglas Ross [35]

Context
Arrow
Transform
Control
Means
Verbs
Nouns
Path
Dominance
Relevance
Omissions

Branches
Joins

OR
AND
Boundary
Parent
ICOM

Calls

Context
Arrow
Transform
Control
Means
Verbs
Nouns
Path
Dominance
Relevance
Omissions

Branches
Joins

OR
AND
Boundary
Parent
ICOM

Calls

 SADT/IDEF0 for Augmenting UML, Agile and Usability Engineering Methods 55

Table 1. (continued)

Feedback

Pipeline

Tunnel

To/From All

Note

Footnote

Meta-Note

Squiggle

Sequence

Node

Model

Interface

To-From

Reference

Dominance

Description

Highlights

Glossary

Index

Feedback

Pipeline

Tunnel

To/From All

Note

Footnote

Meta-Note

Squiggle

Sequence

Node

Model

Interface

To-From

Reference

Dominance

Description

Highlights

Glossary

Index

Feedback

Pipeline

Tunnel

To/From All

Note

Footnote

Meta-Note

Squiggle

Sequence

Node

Model

Interface

To-From

Reference

Dominance

Description

Highlights

Glossary

Index

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 56–70, 2013.
© Springer-Verlag Berlin Heidelberg 2013

From Requirements to Code:
A Full Model-Driven Development Perspective*

Óscar Pastor, Marcela Ruiz, and Sergio España

Centro de Investigación ProS, Universitat Politècnica de València, València, Spain
{opastor,lruiz,sergio.espana}@pros.upv.es

Abstract. Models play a paramount role in model-driven development (MDD):
several modelling layers allow defining views of the system under construction
at different abstraction levels, and model transformations facilitate the transition
from one layer to the other. However, how to effectively integrate requirements
engineering within model-driven development is still an open research
challenge. This paper shows a full MDD approach that covers from
requirements engineering to automatic software code generation. This has been
achieved by the integration of two methods: Communication Analysis (a
communication-oriented requirements engineering method [1]) and the
OO-Method (a model-driven object-oriented software development method
[2]). For this purpose, we have proposed a systematic technique for deriving
conceptual models from from business process and requirements models; it
allows deriving class diagrams, state-transition diagrams and specifications of
class service behaviour. The approach has been evaluated by means of an
ontological evaluation, lab demos and controlled experiments; we are currently
planning apply it under conditions of practice in an action research endeavour.

Keywords: Information Systems, Requirements Model, Business Process
Model, Model Transformation, Class Diagram, Communication Analysis, OO-
method.

1 Introduction

The level of abstraction of software engineering methods has been lifted over the
years, in order to tackle with the ever increasing complexity of software development
projects: from assembler code, to structured programming languages, object-oriented
programming languages, aspect-orientation, service-orientation... A new paradigm
referred to as model-driven development (MDD) has recently placed all the emphasis
on the role of models, to the point of changing the motto “the code is the model” to
“the model is the code” [3]. “Software has the rare property that it allows us to
directly evolve models into full-fledged implementations without changing the
engineering medium, tools, or methods”1. Ideally, the computerised information

* Research supported by projects GVA ORCA (PROMETEO/2009/015), MICINN PROS Req

(TIN2010-19130-C02-02), Santiago Grisolía grant (GRISOLIA/2011/005) and co-financed
with ERDF.

1 Bran Selic and John Hogg have expressed this idea in a number of presentations (e.g. Selic
keynote at Workshop on Critical Systems Development with UML, San Francisco, CA, USA,
October 2003).

 From Requirements to Code: A Full Model-Driven Development Perspective 57

system is specified in an abstract model and then, by means of model transformations,
subsequent models are obtained until the source code is automatically generated. The
advent of the Model-Driven Architecture (MDA) [4] as a development paradigm and
the Unified Modeling Language (UML) as a de facto standard notation have paved
the way for viable MDD proposals (e.g. Extreme Non-Programming [5], Conceptual
Schema-Centric Development [6]).

However, despite the importance of requirements engineering as a key success
factor for software development projects, there is a lack of MDD methods that cover
the full development lifecycle from requirements engineering to code generation.
Most MDD methods range from conceptual modelling to code generation and do not
address requirements. There are definitely many open research challenges in model-
driven requirements engineering [7]. Furthermore, the code generation capabilities of
most MDD methods are currently limited to create-read-update-delete (CRUD)
operations and more complex reactions need to be programmed manually.

In this article, we describe an attempt to bridge the gap from requirements to fully
functional software code in an MDD way. We have integrated two existing methods:
Communication Analysis (a communication-oriented business process modelling and
requirements engineering method) [1] and the OO-Method (an object-oriented model-
driven development framework with automatic code generation capabilities2) [2]. The
contributions of this article are the following:
─ An overview of an MDD method that covers the software development lifecycle
from requirements engineering to code generation is provided, explaining how it was
the result of the integration of two methods.
─ A detailed example of how a set of requirements evolves from their elicitation to
the generated code is shown.

The paper is structured as follows. Section 2 presents the OO-Method framework, a
complete MDD environment with specific methods for requirements engineering and
for conceptual modelling, which moreover provides for model compilation features.
Section 3 describes the overal OO-Method framework, focusing on how one of the
requirements engineering methods was integrated into the framework; it also provides
an outline of the corresponding model transformation. Section 4 exemplifies how the
requirements evolve from their elicitation to the software code generation. Section 5
presents conclusions and future work.

2 The OO-Method Framework

The OO-method was first proposed in the academy [8], on top of a formal object-
oriented algebra named OASIS. Soon a spin-off company named CARE Technologies
was created, with the aim of creating the tool to support the OO-method. The result of
this endeavour was the Integranova Model Execution system. The suite of tools
includes Integranova Modeler, a computer-aided software engineering (CASE) tool
that allows specifying the Conceptual Model, and a model compiler. Both the
OO-Method and the Integranova technology are used in practice to develop enterprise
information systems.

2 Integranova Model Execution System
http://www.care-t.com Accessed 12-2011.

58 Ó. Pastor, M. Ruiz, and S. España

O
O

-M
et

ho
d

m
et

ho
do

lo
gi

ca
l c

or
e

Fig. 1. Methodological core of the OO-method

2.1 The Conceptual Modelling Core

The OO-method methodological core is the object-oriented conceptual modelling
stage, the result of which is the Conceptual Model, an object-oriented model that
describes the computerised information sub-system disregarding the implementation
platform. This way, the OO-method Conceptual Model corresponds to the Platform
Independent Model (PIM) layer of the Model Driven Architecture. It is comprised of
four interrelated models:

• The Object Model allows specifying the static aspect of the system in the form of
a UML-compliant class diagram. This model allows describing the following
elements of the computerised information sub-system (among others): the business
objects in terms of classes of objects, structural relations among classes of objects,
agents of the system (an abstraction of the users of the software system) and relations
among agents and class services.

• The Dynamic Model specifies the possible sequences of method invocations that
can occur in the life of an object; it is expressed as a State-Transition Diagram.

• The Functional Model specifies the effect that the method invocations have in the
state of the objects; it is expressed as generic pseudo-code specifications (which is
independent of any programming language).

• The Presentation Model offers an abstract description of the computerised
information sub-system interface. This model is structured in three abstract pattern
levels.

After the conceptual modelling stage, a model compiler takes as input the conceptual
model and a set of compilation parameters (e.g. the selected database management
system and programming language) and it generates the source code of a software
application that is functionally equivalent to the conceptual model (i.e. the application
fulfils the specifications determined by the model). The automatically generated
software application is fully functional and it is organised in a three-layer
architecture: interface, business logic and persistence.

 From Requirements to Code: A Full Model-Driven Development Perspective 59

Several proposals build upon the methodological core of the OO-Method. Some of
these proposals extend the method with modelling techniques aimed at a specific type
of software system (e.g. OOWS [9] for web applications). Also, some extensions
addressing different requirements engineering orientations have been proposed (see
the available catalogue in Fig. 2). We outline them in the following.

Fig. 2. Several approaches to requirements engineering in the OO-method

The use case-oriented proposal defines a requirements model that describes what
the computerised information sub-system has to do, and a requirements analysis
process that offers methodological guidance to derive a conceptual model [10]. First,
a Requirements Model is created; it consists of a Mission Statement, a Function
Refinement Tree and a Use Case Diagram. Then, the Requirements Analysis Process
is a strategy to describe concrete details such as the composition of the computerised
information sub-system; it comprises a set of Sequence Diagrams and Function
Decomposition Tables.

With regards to the linguistic-pattern-based approach, a natural step after defining
a requirements engineering approach based on use cases is the definition of a
restricted natural language for the textual templates [11]. First, the analyst creates a
Use Case Model and Linguistic Model of Use Cases (a set of normalised use-case
specification templates). A set of transformation patterns is applied to the Linguistic
Model of Use Cases so as to derive an initial version of the OO-Method Object
Model, as well as an Interaction Model (which is a UML Sequence Diagram that is
not part of the core Conceptual Model).

A goal-oriented approach proposed by [12] proposes creating business models
based on the i* framework. First, a Business Model is created, which consists of a
Goal-Refinement Tree, a Strategic Dependency Model and a Strategic Rationale
Model. These models are later used to derive a functional requirements model based
on Use Cases and Scenarios.

A recent business process- and goal-oriented approach proposes several models
aimed at describing the organisation and its work practice [13]. The first step is to
perform organisational modelling (i.e. a glossary, a domain data model, a set of
business process diagrams, etc.). Then the problems and needs of the organisational
system are analysed by means of a goals/strategies diagrams and operationalisation
tables. Next, the analyst performs the specification of system requirements using

60 Ó. Pastor, M. Ruiz, and S. España

Extended Task Descriptions. Finally the OO-Method Object Model and part of the
Dynamic Model can be derived by means of manual transformation guidelines.

This article focuses in the communication-oriented approach since it has been
fully integrated with the conceptual modelling stage and tool support has been
provided, both for creating and transforming models.

2.2 Communication Analysis

Since information systems are a support to organisational communication [14], a
communicational approach to information systems analysis is necessary.
Communication Analysis is a requirements engineering method that analyses the
communicative interactions between the information system and its environment; it
was, therefore, a good candidate for completing the catalogue of requirements
engineering approaches within the OO-Method framework.

The methodological core of Communication Analysis is the information system
analysis stage, the result of which is an analysis specification, a communication-oriented
documentation that describes the information system disregarding its possible
computerisation. This way, the analysis specification produced by Communication
Analysis corresponds to the CIM layer of the Model Driven Architecture.

Communication Analysis offers a requirements structure and several modelling
techniques for business process modelling and requirements specification. The
Communicative Event Diagram is intended to describe business processes from a
communicational perspective. A communicative event is a set of actions related to
information (acquisition, storage, processing, retrieval, and/or distribution), that are
carried out in a complete and uninterrupted way, on the occasion of an external
stimulus. Business process model modularity is guided by unity criteria [15]; there are
evidences that the application of these criteria improve the quality of models [16].
The Event Specification Template allows structuring the requirements associated to a
communicative event. Among other requirements, it contains a description of the new
meaningful information that is conveyed to the information system in the event. This
is specified by means of Message Structures, a modelling technique that is based on
structured text. Previous work [17] presents the grammar of Message Structures and
provides guidelines for their application during analysis and design (they are used
differently in each development stage). To create the message structures, the analyst
interviews the users and analyses the available business forms. They merely describe
messages and are, therefore, an analysis artefact. The structure of message fields lies
vertically and field properties can be arranged horizontally; e.g. information
acquisition operation, field domain, an example value provided by users, etc.

At the time we undertook the integration of Communication Analysis into the
OO-Method, a strong theoretical foundation and several specifications of
the requirements engineering method were available [18]. There was experience with
the method in action. By means of technology transfer projects, the method had been
adopted by several companies: (a) the Valencia Port Authority, (b) the Infrastructure
and Transport Ministry of the Valencian Regional Government, (c) and Anecoop S.
Coop. However, requirements models were mainly specified using word processors
and general-purpose diagramming tools. Also, no attempts to integrate
Communication Analysis in an MDD framework had been made. The final software
implementation was either carried out within the organisation or it was outsourced.

 From Requirements to Code: A Full Model-Driven Development Perspective 61

C
om

m
un

ic
at

io
n

A
na

ly
si

s
m

et
ho

do
lo

gi
ca

l c
or

e

Fig. 3. Methodological core of communication analysis

3 Integration

The first steps were aimed at improving the method specification, providing more
rigorous definitions for the underlying concepts [1] and designing the artefacts needed
for a successful integration into an MDD framework, such as a method metamodel.
Also, an Eclipse-based tool was implemented in order to support the creation of
Communication Analysis requirements models [19]. Then the concepts of both
methods were aligned in order to provide a sound theoretical basis and to envision
how the integration should be performed. As a result, a flow of activities has been
defined (see Fig. 4). The activities from Communication Analysis that correspond to
the information system analysis stage have been preserved, but those related to design
have been substituted by the OO-Method conceptual modelling stage.

Furthermore, a derivation technique aimed at obtaining a first version of the
conceptual model from a requirements model has been proposed. Two kinds of
derivation are provided: namely, a manual derivation intended to be performed by an
analyst, and model transformation that automates the process as much as possible.
Depending on the development project context (e.g. expertise of the team,
organisational culture concerning MDD), one of the alternatives is to be chosen.

The manual derivation technique consists of a set of guidelines that allow to
systematically reason the elements of the conceptual model, including the Object
Model, the Dynamic Model and part of the Functional Model. The Presentation
Model is, for the moment, out of the scope since many improvements are being made
on human-computer interaction [20-22] and the derivation should take these into
account once they are consolidated.

62 Ó. Pastor, M. Ruiz, and S. España

Fig. 4. Activities of the integrated method

The derivation of the Object Model consists of three main steps. Firstly, the scope
of the derivation is defined; that is, the analyst may want to derive the conceptual
model for the whole requirements model or just for some part of it (e.g. only the sales
management business process). This is done by marking which communicative events
are intended to be supported by the conceptual model. In the former case, all events
are marked by default. In the latter case, the marked communicative events are added
to a diagram, incuding the precedences between them; then, the diagram is extended
by including any other events that are precedent to the marked ones. Secondly, the
communicative events in the transformation-scope diagram are sorted according to
their precedences so as to later process them in order. These two steps prevent
inconsistencies in the conceptual model such as referencing an inexistent class. The
third step implies processing each communicative event to create its class-diagram
view; that is, producing the portion of the class diagram that corresponds to the
communicative event. For this purpose, the message structure is processed, and other
requirements in the event specification templates are taken into account (e.g.
restrictions). By incrementally integrating all the class-diagram views, a complete
object model is obtained. Not only the classes and relationships are derived, but also
most of their properties; for instance, attribute properties, relationship cardinalities,
class services and their arguments. See [23] for more details.

The derivation of the Dynamic Model consists of creating a state-transition
diagram for each class that is affected by several communicative events, so as to
constrain how the users can trigger the software functions over a given business
object. The Dynamic Model can be obtained mainly by processing the
Communicative Event Diagram. The main derivation guideline is the following:
communicative events are converted into transitions and precedence relationships are
converted into states. However, business process gateways lead to more complex

 From Requirements to Code: A Full Model-Driven Development Perspective 63

state-transition diagrams. Also, additional transitions can be added to the state
transition diagram; for instance, transitions that correspond to atomic edition and
destruction services (e.g. edit and destroy, respectively), as well as transitions that
correspond to atomic services that take part in a transaction (these transitions appear
as a result of processing the event specification templates). See [24] for more details.

Last but not least, the derivation of the Functional Model completes the
conceptual model by specifying the reaction of the class services. Valuation rules
provide the meaning to atomic services, whereas transaction formulas allow defining
more complex behaviours.

4 The Life of Requirements

The proposed MDD framework allows to transform requirements to elements of the
conceptual model and, from there, to pieces of the final software application.
Traceability is enhanced by creating many trace links during the development
process, most of them automatically as a result of model transformations. Although
the current state of the framework provides for post-RS traceability (e.g. the classes
that are affected by a business process), pre-RS traceability can still be recorded and
maintained manually (e.g. the representative user that formulated a specific
requirement during an interview). In the following, we illustrate the life of a set of
requirements during a development project that applies the proposed MDD
framework. The example is based on the SuperStationery Co. case, a lab demo that is
reported in full detail in [26]. Keep in mind that, in the following, we provide a
simulation that illustrates the application of the method.

SuperStationery Co. is a fictional intermediary company that provides office
material to its clients. To place an order, most clients phone the Sales Department,
where they are attended by a salesman. Then the client requests products that are to be
sent to one or many destinations (a client company can have decentralised offices).
The salesman takes note of the order. Then the Sales Manager assigns the order to one
of the many suppliers that work with the company. The supplier can either accept or
reject the order. In case of acceptance several arrangements are made before the order
is shipped.

John is a salesman from the company who has participated as representative user
in the development project. Henry is the senior analyst who has been in charge of the
development. He conducted several joint application development sessions. The
outcome of the sessions was written into proceedings documents, but we provide the
transcription of part of an interview.

─ John: Yes, each order is assigned to a supplier. Well, actually, I do not do that
myself... It is Mr Lowen [the Sales Manager] who does this. I can show you the info
that he provides me. There! These fields...
─ (John points at several fields of the order form, see Fig. 5)
─ Henry: Are all orders assigned to suppliers?
─ John: Yes.
─ Henry: Can an order be assigned to several supplier. For instance, in case it is big.

64 Ó. Pastor, M. Ruiz, and S. España

─ John: No, that is not how we work. A supplier always has to serve all the items
referred in the order. But the assignation is tentative; the suppliers actually commit
once they know the full details.
─ Henry: So, they can refuse to serve it? [...]

Fig. 5. Fields that correspond to the assignment of an order to a supplier

Fig. 6 presents part of the communicative event diagram of the Sales management
business process. It addresses the communicative event mentioned by John; that is
SALE 2. Sales manager assigns supplier. Fig. 7 presents three message structures
related to SALE 2. The first one is incorrect because it does not capture the real essence
of the message, beyond the actual pieces of data that the current business form
contains. For instance, it does not acknowledge the fact that the data about the
supplier is already known by the company. The second message structure is correct
but we consider it inappropriate at analysis time; it acknowledges the fact that the
name and the address of a supplier are derived information but this is indeed design
information (it reflects the current technological support; e.g., if a web service was
finally implemented to support the assignation, probably it would not contain the
fields Name and Address to avoid inconsistencies). The third message structure indeed
follows the Communication Analysis guidelines.

Other requirements are specified within the event specification templates. Once
the requirements model is complete enough, the analyst proceeds to derive an initial
version of the conceptual model. This can be done manually (by applying a set of
manual derivation guidelines) or automatically (by executing the ATL transformation
rules). We now provide an example of the rationale behind the model transformation
strategy, disregarding whether it is automated or not.

The communicative event SALE 2 affects the same business object as
communicative event SALE 1; namely, the client order. Note that the reference field
Order in the message structure of SALE 2 indicates the business object being modified.

 From Requirements to Code: A Full Model-Driven Development Perspective 65

This way, the class that corresponds to this business object is extended; namely,
CLIENTORDER is affected by SALE 2. The data fields in the message structure of SALE 2
lead to adding new attributes to this class, whereas the reference fields in the message
structure lead to adding new structural relationships between class CLIENTORDER and
other classes that already exist in the class diagram under construction.

Fig. 6. Part of the communicative event diagram of the Sales management business process

FIELD OP DOMAIN EXAMPLE VALUE
ASSIGNMENT =
< Assignment date +
 SUPPLIER =
 < Code +
 Name +
 Address
 >
>

i

i
i
i

date

text
text
text

01-09-2009

OFFIRAP
Office Rapid Ltd.
Brandenburgen street, 46, 2883 Millhaven



FIELD OP DOMAIN EXAMPLE VALUE
ASSIGNMENT =
< Order +
 Assignment date +
 SUPPLIER(Code)=
 < Name +
 Address
 >
>

i
i
i
d
d

Client order
date
text
text
text

10352
01-09-2009
OFFIRAP
Office Rapid Ltd.
Brandenburgen street, 46, 2883 Millhaven

~

ç

FIELD OP DOMAIN EXAMPLE VALUE
ASSIGNMENT =
< Order +
 Assignment date +
 Supplier
>

i
i
i

Client order
date
Supplier

10352
01-09-2009
OFFIRAP, Office Rapid Ltd.



LEGEND For more details see [17] GRAMMATICAL CONSTRUCTS
 < + > AGGREGATION { } ITERATION [|] SPECIALISATION
 SUBSTRUCTURE SUBSTRUCTURE SUBSTRUCTURE

TYPES OF FIELDS
• DATA FIELDS HAVE A BASIC DOMAIN (e.g. Assignment date)
• REFERENCE FIELDS HAVE A BUSINESS OBJECT TYPE AS A

DOMAIN (e.g. Supplier)

Fig. 7. Several message structures related to communicative event SALE 1

With regards to data fields, the field Assignment date leads to adding an attribute
named assignment_date to the class CLIENTORDER. Fig. 8 depicts this derivation and
specifies the details of the new attribute. All attributes that are added to a class as a

66 Ó. Pastor, M. Ruiz, and S. España

result of a class extension have the following properties: these attributes are not part
of the identification function, the attribute type is Variable, they are not requested
upon creation, and they allow nulls. The data type is derived from the domain of the
field, according to a set of heuristics (this case is trivial, the data type of
assignment_date is Date because the field domain of Assignment date is date).

Attr. name Id Attr. type Data type Size Requested Null allowed
assignment_date no Variable Date no yes

Fig. 8. Class diagram view of SALE 2 and specification of the new attribute

With regards to reference fields, the field Supplier references a business object that
was processed in the communicative event SUPP 2. Therefore, a structural relationship
is defined between the class CLIENTORDER and the class SUPPLIER. The cardinality is
defined as 0:1 in the side of SUPPLIER because the orders are not assigned to suppliers
when they are placed, but it occurs in a later moment in time. For the same reason, it
is dynamic.

With respect to the services, several are added. A service is added to the class in
order to introduce the values of this attribute; it is named set_assignment_date. Two
shared services are included in both classes due to the cardinality of the structural
relationship, and the fact that it is dynamic; namely an insertion shared service named
ins_supplier and a deletion shared service named del_supplier (shared events manage
links between instances). A transaction named S2_ASSIGN_SUPPLIER is defined in
order to execute atomically the services set_assignment_date and ins_supplier.

By incrementally integrating the class diagram views, the complete Object Model
is obtained. Then the Dynamic Model and the Functional Model are derived as well.

All in all, it is possible to maintain pre-RS traceability. For instance, to trace the
communicative event SALE 2 to its source: the representative user John, who
formulated them during an interview. The fields in the message structure ASSIGNMENT
can be traced back to both the user John and to the fields of the current paper form
where they were formerly supported. It is also possible to maintain post-RS
traceability. There exist trace links between elements of the requirements model and
the conceptual model. For instance, during the derivation of the conceptual model,
SALE 2 has generated its own class diagram view; this view includes attributes of the
classes CLIENTORDER and SUPPLIER. More specifically, there are trace links from the
message structure fields to the attributes of the classes (e.g. the data field Assignment
date has led to the derivation of CLIENTORDER.assignment_date) and to the structural
relationships (e.g.the reference field Supplier has led to the derivation of the
relationship clientorder_supplier). Also, there are trace links between the elements of the

 From Requirements to Code: A Full Model-Driven Development Perspective 67

conceptual model and the software components of the generated application. For
instance, the attribute CLIENTORDER.assignment_date is presented in the interface, as
shown in Fig. 9.

As promoted by the MDD paradigm, user requirements evolve during the
development process; they are transformed to elements of the subsequent models until
they end up being projected onto the final software product, keeping traces of their
evolution.

Fig. 9. Screenshot of the automatically generated application

5 Some Open Challenges and Future Work

There are many open challenges in the area of MDD, especially in industry adopted
MDD methods. We now enumerate some areas where our proposal can be improved.

First of all, we acknowledge that practitioners are usually reluctant to use non-
standard notations. We therefore plan adopt the Business Process Modeling Notation
(BPMN) to support Communication Analysis business process modelling. The BPMN
Choreography Diagram is the first candidate to represent communicative event
diagrams. Three challenges stem from this decision. First, a careful investigation
needs to be carried out to adopt the notation while preserving the concepts and criteria
of the method. Second, the derivation technique needs to be adapted to deal with the
new notation. Third, a proper tool support needs to be provided, in order to facilitate
validation, promote adoption, etc. With regards to the latter challenge, there are plenty

68 Ó. Pastor, M. Ruiz, and S. España

of business process management suites in the wild these days; among them, Oryx3
stands as a clear candidate because of its open, academic nature; also Modelio4, since
it has recently moved to open source.

Furthermore, we plan to investigate how other analytical perspectives (e.g. goal or
value orientation) may extend our approach and become useful under certain project
circumstances. In Communication Analysis, business processes are means to fulfil the
business goals; however, no methodological support is provided to elicit or model
goals. This research line is still active due to its many open challenges [28].

Moreover, ontological analyses, lab demos and controlled experiments have been
carried out, but further validations of the derivation technique are planned. This
includes an action research application of the derivation technique in a pilot
development project, probably carried out in the context of GEM Biosoft5 (a spin-off
of the Research Center on Software Production Methods). Several controlled
experiments have already been carried out and their data is being analysed; others are
being designed. There is a long way ahead, but we are confident that the sceintific
community will work together to fulfill the vision of the MDD paradigm: providing
full model-driven support to all the activities of a software project.

Acknowledgements. We are indebted to Arturo González, for his wise advices on
taking the most out of Communication Analysis. We also thank CARE Technologies
for their support in using the Integranova MDD suite, including its model compiler.

References

1. España, S., González, A., Pastor, Ó.: Communication Analysis: A Requirements
Engineering Method for Information Systems. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 530–545. Springer, Heidelberg (2009)

2. Pastor, O., Molina, J.C.: Model-Driven Architecture in practice: a software production
environment based on conceptual modeling, 302 p. Springer, New York (2007)

3. Embley, D.W., Liddle, S.W., Pastor, O.: Conceptual-model programming: a manifesto. In:
Embley, D.W., Thalheim, B. (eds.) Handbook of Conceptual Modeling, pp. 3–16. Springer
(2011)

4. OMG. MDA Guide Version 1.0.1 (2003), http://www.omg.org/docs/omg/03-
06-01.pdf (cited 2008 12-2010)

5. Morgan, T.: Business rules and information systems - Aligning IT with business goals.
Addison-Wesley (2002)

6. Olivé, À.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

7. Loniewski, G., Insfran, E., Abrahão, S.: A Systematic Review of the Use of Requirements
Engineering Techniques in Model-Driven Development. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 213–227. Springer,
Heidelberg (2010)

3 http://oryx-project.org
4 http://www.modeliosoft.com
5 http://www.gembiosoft.com

 From Requirements to Code: A Full Model-Driven Development Perspective 69

8. Pastor, Ó., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method approach for
information systems modeling: from object-oriented conceptual modeling to automated
programming. Information Systems 26(7), 507–534 (2001)

9. Fons, J., Pelechano, V., Albert, M., Pastor, Ó.: Development of Web Applications from
Web Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W.,
Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg
(2003)

10. Insfrán, E., Pastor, Ó., Wieringa, R.: Requirements engineering-based conceptual
modelling. Requirements Engineering 7(2), 61–72 (2002)

11. Díaz, I., Sánchez, J., Matteo, A.: Conceptual Modeling Based on Transformation
Linguistic Patterns. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor,
Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 192–208. Springer, Heidelberg (2005)

12. Estrada, H., Martínez, A., Pastor, Ó.: Goal-Based Business Modeling Oriented towards
Late Requirements Generation. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann,
P. (eds.) ER 2003. LNCS, vol. 2813, pp. 277–290. Springer, Heidelberg (2003)

13. de la Vara, J.L., Sánchez, J., Pastor, Ó.: Business Process Modelling and Purpose Analysis
for Requirements Analysis of Information Systems. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 213–227. Springer, Heidelberg (2008)

14. Langefors, B.: Theoretical analysis of information systems, 4th edn. Studentlitteratur,
Lund (1977)

15. González, A., España, S., Pastor, Ó.: Unity criteria for Business Process Modelling: A
theoretical argumentation for a Software Engineering recurrent problem. In: Third
International Conference on Research Challenges in Information Science, RCIS 2009, Fes,
Morocco, pp. 173–182. IEEE (2009)

16. España, S., Condori-Fernández, N., González, A., Pastor, Ó.: Evaluating the completeness
and granularity of functional requirements specifications: a controlled experiment. In: 17th
IEEE International Requirements Engineering Conference, RE 2009, Atlanta, Georgia,
USA, pp. 161–170. IEEE (2009)

17. González, A., Ruiz, M., España, S., Pastor, Ó.: Message Structures: a modelling technique
for information systems analysis and design. In: Lencastre, M., Estrada, H. (eds.) 14th
Workshop on Requirements Engineering, WER 2011, Rio de Janeiro, Brazil (2011),
extended version in English and Spanish available at
http://arxiv.org/abs/1101.5341

18. González, A.: Algunas consideraciones sobre el uso de la abstracción en el análisis de los
sistemas de información de gestión (PhD thesis) Some considerations on the use of
abstraction in management information systems analysis (in Spanish), in Departamento de
Sistemas Informáticos y Computación. Universidad Politécnica de Valencia, Valencia
(2004)

19. Ruiz, M., España, S., Gonzalez, A., Pastor, O.: Análisis de Comunicaciones como un
enfoque de requisitos para el desarrollo dirigido por modelos. In: Avila-García, O., et al.
(eds.) VII Taller sobre Desarrollo de Software Dirigido por Modelos (DSDM 2010),
Jornadas de Ingeniería de Software y Bases de Datos (JISBD), Valencia, España, pp. 70–
77 (2010)

20. Valverde, F., Pastor, O.: Facing the Technological Challenges of Web 2.0: A RIA Model-
Driven Engineering Approach. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 131–144. Springer, Heidelberg (2009)

21. Panach, J.I., España, S., Moreno, A.M., Pastor, Ó.: Dealing with Usability in Model
Transformation Technologies. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 498–511. Springer, Heidelberg (2008)

70 Ó. Pastor, M. Ruiz, and S. España

22. Aquino, N., Vanderdonckt, J., Pastor, O.: Transformation templates: adding flexibility to
model-driven engineering of user interfaces. In: Shin, S.Y., et al. (eds.) 25th ACM
Symposium on Applied Computing, SAC 2010, Sierre, Switzerland, pp. 1195–1202. ACM
(2010)

23. González, A., España, S., Ruiz, M., Pastor, Ó.: Systematic Derivation of Class Diagrams
from Communication-Oriented Business Process Models. In: Halpin, T., Nurcan, S.,
Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and
EMMSAD 2011. LNBIP, vol. 81, pp. 246–260. Springer, Heidelberg (2011)

24. España, S., Ruiz, M., Pastor, Ó., González, A.: Systematic derivation of state machines
from communication-oriented business process models. In: IEEE Fifth International
Conference on Research Challenges in Information Science, RCIS 2011, Guadeloupe -
French West Indies, France. IEEE (2011)

25. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability problem. In:
1st International Conference on Requirements Engineering (1994)

26. España, S., González, A., Pastor, Ó, Ruiz, M.: Integration of Communication Analysis and
the OO-Method: Manual derivation of the conceptual model. The SuperStationery Co. lab
demo.2011, Technical report ProS-TR-2011-01, ProS Research Centre, Universitat
Politècnica de València, Spain (2011), http://arxiv.org/abs/1101.0105

27. OMG. Business Process Modeling Notation (BPMN) version 2.0 (2011),
http://www.omg.org/spec/BPMN/2.0/ (cited 2011 04-2011)

28. Cardoso, E., Almeida, J.P.A., Guizzardi, R.S.S., Guizzardi, G.: A method for eliciting
goals for business process models based on non-functional requirements catalogues.
International Journal of Information System Modeling and Design 2(2), 1–18 (2011)

Part I

Enterprise Software Technology

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 73–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Enabling Automatic Process-Aware Collaboration
Support in Software Engineering Projects

Gregor Grambow1, Roy Oberhauser1, and Manfred Reichert2

1 Computer Science Dept., Aalen University, Aalen, Germany
2 Institute for Databases and Information Systems, Ulm University, Ulm, Germany

{gregor.grambow,roy.oberhauser}@htw-aalen.de,
manfred.reichert@uni-ulm.de

Abstract. Software Engineering (SE) remains an immature discipline and SE
projects continue to be challenging due to their dynamic nature. One
problematic aspect is the coordination of and collaboration among the many
individuals working in such projects. Numerous efforts to establish software
engineering environments (SEEs) to address this aspect have been made.
However, since SE projects depend on individuals and their intentions, their
collaboration is still performed manually to a large degree. Manual tasks are
subject to human error in omission or commission that can result in
communication breakdowns which are compounded within multi-project
environments. This paper describes a synergistic approach that extends a
process-aware information system with contextual awareness and integrates this
in a SEE. This enables the system to support the users with active and passive
information and support collaboration. Context information is presented to the
users, providing them with process navigability information relating to their
current activities. Additionally, automated information distribution improves
awareness about the actions of others. Finally, this approach enables the
automatic initiation and governance of follow-up activities caused by changes
implied by other activities.

Keywords: Computer-supported Cooperative Work, Process-centered Software
Engineering Environments, Process-aware Information Systems, Context-
awareness, Semantic Web Applications.

1 Introduction

Recently, a trend towards greater automation and process-centricity can be observed
in various industries for achieving predictable quality and efficiency [1]. Typically,
process automation is applied in domains with foreknown and predictable activity
sequences such as production, business, and logistics. In the software development
domain, low-level operational workflows involving collaborations typically aberrate
sufficiently to make process automation especially challenging.

To enhance the automated coordination capabilities in software engineering
environments (SEEs), various challenges must be addressed. Software development is
project-oriented and lacks the typical production stage with repeatable activities or

74 G. Grambow, R. Oberhauser, and M. Reichert

interactions. Process-Centered Software Engineering Environments (PCSEEs) [2]
support such projects with both tooling and processes, yet these must be tailored to
the unique and diverse project and product needs (e.g., quality levels, team size, etc.).
While common software engineering (SE) process models (e.g., VM-XT [3] or Open
Unified Process [4]) have proven to be beneficial, they are typically manually
implemented (especially in small-to-medium enterprises), often remain coarse in their
granularity, are documented to an often general level, and rely on humans to follow
and map actual low-level concrete actions and events to the appropriate higher-level
process (process navigability).

In this paper, the following definition of process and workflow will be used:
Process Management deals with the explicit identification, implementation, and
governance of processes incorporating organizational or business aspects. Workflow
management, in turn, deals with the automation of business processes or parts thereof.
Consequently, a workflow is the technical implementation of a process (or part
thereof).

A lack of automatic process guidance and support in an SEE can result in a
disparity between the specified and the executed process, and lead to unpredictable
process and product quality. Furthermore, uncoordinated activities may occur,
affecting process efficiency. From the process perspective, activities and workflows
can be roughly separated in two categories: Intrinsic activities are planned and
executed as part of the SE process model (e.g., VM-XT [3] or Open Unified Process
[4]). Extrinsic activities, in turn, are executed outside the reference process model and
are thus unplanned and difficult to trace or support. For an example of extrinsic vs.
intrinsic workflows, we refer to Fig. 1. The figure shows a source code modification
activity (intrinsic) that causes necessary modifications on other artifacts. These
modification activities are not part of the process (extrinsic).

Fig. 1. Intrinsic and Extrinsic workflows

Our previous work has described a holistic framework that applies semantic
technologies to SE lifecycles [5] and integrates context-awareness and PAIS (Process-
Aware Information System) technology [6] to provide SE process support. [7] dealt

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 75

with the explicit modeling and execution support for extrinsic activities utilized for
the automated treatment of specialized issues in SE projects (e.g., bug fixing or
refactoring). [8] investigated consistency in the modeling of processes and workflows
in SE to unite abstractly specified processes as well as the concretely and
automatically supported workflows. Finally, automatic integration of quality aspects
into processes was investigated in [9][10][11].

To comprehensively support the SE process, various other aspects should also be
considered: As the SE process largely depends on individuals and their collaboration,
the concrete triggering and orchestration of collaboration activities is desirable. To
enable configurable collaboration support, various activity dependencies should be
supported. For instance, direct follow-up actions may be necessary while in other
cases notification to other team members may suffice. Extrinsic follow-up activities
should be connected to the appropriate intrinsic activities that caused them to support
traceability and integration into the SE process. In support of user contextual-
awareness, automated guidance should not only be provided for the activities in one
workflow (horizontal connections between the activities), but also vertically, making
the hierarchical connections between processes and workflows explicit.

This paper presents an approach for collaboration support featuring different
capabilities of active and passive information provision to users in an SE project.
Furthermore, the connection of intrinsic and extrinsic activities is addressed, featuring
a context-based reasoning process to automatically derive consequences of activities
(e.g., impacts on other artifacts) and to govern follow-up activities. Additionally, the
connection between abstract processes and concrete workflows is emphasized,
providing this information to the user to support navigability and process awareness.
The following three points sum up the contribution of this paper:

- Individuals working in multi project environments are supported by the automatic
provision of extended activity information and process navigability information.
- Automatic information distribution is enabled to inform individuals about various
events in a project including the actions of others.
- Automatic initiation and governance of related follow-up activities required by
certain actions is provided.

The structure of the paper is as follows: the problems addressed are illustrated in the
next section, followed in Section 3 with a description of our solution approach.
Section 4 shows the application of our approach to the illustrated problems. Section 5
addresses the issue of the additional effort required. Section 6 then discusses related
work, followed by the conclusion.

2 Problem Scenario

The issues being addressed will be illustrated using typical situations in a software
company: various projects are executed in parallel by different teams of different
sizes. People often have to switch between different projects, and within each project,
larger numbers of people are working on the same artifacts. Without additional

76 G. Grambow, R. Oberhauser, and M. Reichert

coordination effort things can easily be forgotten. Activities mostly imply changes to
artifacts, and thus not only relations between intrinsic and extrinsic activities exist,
but there is also a continuously changing artifact base. These facts result in the three
problems illustrated below:

Problem A. Project Switching. One issue reported by developers is related to
frequent project switching. A person doing this in such a multi-team / multi-project
environment has to manually gather context information after a switch to work
effectively: Which assignment has to be processed for which project? Which are
potential milestones and deadlines? What is the state of the currently processed
assignment? What are upcoming activities to be completed?

Problem B. Change Notification. When cooperatively working on the same artifact
base, activities and the accompanying changes to artifacts often remain unnoticed by
other people. For example, if two teams (e.g. a development team and a test team) are
working on the same source code artifacts, they might want to be informed about
changes to the artifacts. Such information is often transferred manually and is
therefore prone to forgetfulness.

Problem C. Follow-up Action Implications. Also when cooperatively working on
the same artifact base, artifact changes often imply certain follow-up actions that are
hitherto coordinated manually. This is typically dependent on the artifacts, their
relations, and the type of change (e.g., interfaces concern the architect,
implementation changes concern the testers, GUI changes concern the user manual
author). Fig. 1 depicts a scenario detailing this: It concerns a source code artifact that
is part of an interface component: since the file belongs to an interface component, the
applied changes possibly not only affect the file’s unit tests, but also other artifacts
such as the architecture specification or integration tests. These additional activities
are usually neither covered by the SE process nor governed by workflows; manual
coordination can lead to impacts being overlooked and result in inconsistencies, e.g.,
between the source code and the tests or specifications. The fact that these activities
belong to different project areas with often also different responsible persons makes
this even more difficult. Even if not forgotten, follow-up actions could benefit from
automated governance and support. Furthermore, it can be difficult to determine
which stakeholder should be informed about which change and when, especially
considering the dynamic and diverse nature of the artifact-to-stakeholder relationship
and various information needs.

3 Automatic Coordination Support

This section starts with a brief introduction of the framework we continue to develop
for supporting the SE process. In particular we want to make clear what capabilities
this approach can draw on. For further technical details on its realization, we refer to
[11]. The essence of our solution approach is the combination of an adaptive PAIS
with semantic technology. A Process Management module is used to model both

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 77

intrinsic and extrinsic workflows in an integrated way, while additional information
about hierarchical dependencies and the context are stored and processed in a
semantic-based context management module. To acquire information about the
environment, low-level events occurring during SE tool usage (e.g., saving a file or
changing code) are extracted and combined to derive higher-level activities such as
creating a unit test.

The realization of the solution approach is the Context-aware Software
Engineering Environment Event-driven frameworK (CoSEEEK). It is comprised of
modules in a service-based architecture: The Process Management module
orchestrates SE activities for all project participants. Adaptive PAISs support the
coordination of activities according to a pre-specified process model as well as
dynamic process changes (e.g., to add, delete, or move activities) in order to cope
with unforeseen situations [13][14][15][16]. To enable Context Management,
semantic technology was chosen due to its many advantages [17], especially a
vocabulary including logic statements about the modeled entities and relations as well
as a taxonomy for these entities. Furthermore, well-structured ontologies also enhance
interoperability between different applications and agents, fostering knowledge
sharing and reuse as well as enabling automated consistency checking. The Context
Management component makes heavy use of semantic technology, utilizing an OWL-
DL [18] ontology as well as SWRL [19] for semantic rules processing and SPARQL
[20] for semantic querying. Programmatic access to the ontology is supported by the
Jena framework [21]. Automatic reasoning capabilities as well as the execution of
SWRL rules [22] (while guaranteeing that their execution does not lead to violations
of description logic statements) are enabled by Pellet [23].

Event Extraction primarily utilizes sensors for collecting contextual state changes
in external elements via events and data associated with various SE tools. Therefore,
the sensor framework Hackystat [24] is applied. These low-level atomic events and
data are aggregated in the Event Processing module, which uses complex event
processing (CEP) [25] to create high-level events with contextual semantic value.

The combination of these modules enables CoSEEEK to automatically manage
ad-hoc dependencies of certain activities in an either active or passive information
distribution fashion to provide coordination support.

3.1 Active Coordination Support

Active coordination support enables the system to automatically assign follow-up
activities to responsible persons or teams. To realize this, the system must be aware of
the intrinsic activities and workflows that may cause the need for coordination. These
workflows, which are based on the users’ planned activities (called Assignments here,
e.g., develop some feature) and which are part of the SE process, are created within
CoSEEEK or imported from external process management tools (e.g., MicroTool
inStep) in use by an organization. In this paper, OpenUP is used as SE process model.
Assignments concerning software development are executed by the ‘Develop Solution
Increment’ workflow in that model and imply certain activities like ‘Implement
Solution’ or ‘Implement Tests’ for the user. The detection of required follow-up
activities is realized featuring a three-phased approach:

78 G. Grambow, R. Oberhauser, and M. Reichert

1. Determine Projects Areas Being Affected by an Activity: The first step is
configurable and can take into account various facts to determine which areas of a
project are affected. For the third problem in Section 2 such a configuration can be
‘Search for affected areas in case of technical issues if an activity implies a change to
an artifact and the artifact is a source code artifact belonging to an interface
component’.

2. Determine the Concrete Target Being Affected within the Area: The second
step takes the selected areas and the target of the applied activity as input. This target
can be a concrete artifact as in the given scenario or a more abstract section of the
project as, e.g., a module. The concrete target is then determined via relations of the
different sections. An example for this can be implementation and testing: the testing
(structural or retesting) of an artifact relates to its implementation. In the given
example, the relation does not need to be in place for the concretely processed
component, but can be also found if one exists elsewhere in the hierarchy (e.g., the
module the concrete artifact belongs to). If there is no direct relation from the
processed source code artifact, the system looks for other components the file belongs
to (e.g., the module).

3. Determine the Information Recipient Being Responsible for the Chosen
Target: Once the target of the information distribution or follow-up action is
determined, the responsible persons or teams have to be discovered. For example, if
the target of the follow-up action is a source code file with no direct responsible party
defined, the overlying sections are taken into account, e.g., the encapsulating module.
If a team is responsible, the information is referred to the designated contact of that
team for further distribution.

To enable such automated information distribution, a system must be aware of various
facts of the project. Furthermore, to realize automated detection of follow-up actions,
different concepts have to be present in the system in order to enable awareness of
them:

(1) The project has to be hierarchically split up into components like areas or
modules.

(2) Connections of relating components must be established; e.g., the fact that testing
a module relies on implementing that module.

(3) Information that can be used to clarify under which circumstances one area affects
another must be present.

(4) Different components must be classified; e.g., a package in the source code that
realizes the interface of a component.

To support this, the CoSEEEK Context Management component contains
representations of various project facts. To support awareness and to enrich workflow
execution with context information, as shown in Fig. 2, workflows enacted within the
Process Management module are annotated by concepts in the Context Management
module. A workflow is mapped by a Work Unit Container and an activity is mapped
by a Work Unit. These are in turn extended by Assignments and Assignment Activities,

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 79

which explicitly represent the content of the work the user has to perform for the
project. Different areas of a project (like ‘Implementation’ or ‘Testing’) are explicitly
modeled by the Area concept (1), while further separation of the project into logical
components is done by the Project Component (2). The latter is an abstract building
block for structuring a project, which has various subclasses.

Fig. 2 shows two of the subclasses of the Building Block: Artifact, which is used
for various types of processed artifacts (like documents or source code files), and the
Section that is used for concrete structuring purposes (e.g., used to map a source code
package). An Assignment Activity being executed by a Person processes a certain
Project Component. A Project Component, in turn, has a responsible Role taken by a
Resource that is a Team or a Person. To enable the configuration of various possible
impacts of an activity within the system, different concepts are used: The Potential
Impact captures potential impacts between Areas, like ‘When a technical change
happens to a component in Area a, this has an impact on Area b’. Project
Components of different Areas can be related to each other, like ‘Testing of Module x
relates to the implementation of Module x’. Many of the concepts also have asserted
subclasses for further classifying them. These subclasses of which two are shown in
Fig. 2 (3) are dependent on certain conditions. For example, if a Section is connected
to problems that were detected by the system (e.g., code problems indicated by static
analysis tools), the integrated reasoner automatically infers that it belongs to concept
Risk Section.

Fig. 2. Concepts enabling active coordination support

3.2 Passive Coordination Support

Passive coordination support comprises the provisioning of process navigability
information and automatic change notifications for users.

Navigability information support is enabled since the workflows governing the
users’ activities are mapped by concepts in the Context Management module. Thus
additional information becomes available to the user that can be useful, e.g., when
switching between the activities of different projects. The additionally modeled
activity information is illustrated in Fig. 3 and explained below. Additional

80 G. Grambow, R. Oberhauser, and M. Reichert

information comprises the current user Assignment: the Assignment Activity, Activity
Steps, the current Task, and the Activity Group to which the current Activity belongs.
These concepts can be useful for capturing exactly what the user is doing at the
moment as well as for additional support information coming from the process. An
example for all additional information presented here is provided in Section 4.

In the Context Management module, a concept exists mapping internal variables
used for workflow governance to so-called User Decisions. That way the user can
decide how the workflow is actually executed, incorporating information of the
current situation that cannot be known a priori. That way, the user not only has a more
semantic and usable influence on the workflow, but also knows what lies ahead. As
the more abstract process regions are connected to the operational workflows, the user
can also directly receive information about them. This includes e.g., information
about the current Project or its Milestones, which are also modeled in the Context
Management component.

 Context Management

Project
Component

Artifact

Resource

Person Team

Notification
Role

Status

Assignment

Assignment
Activity

Event Section

Work Unit
Work Unit ContainerProject

Milestone

Activity Step

Atomic Task

Activity Group

User Decision

Generalization

Association

Generalization

Legend

Fig. 3. Concepts enabling passive coordination support

Automatic change notification is the second passive coordination ability provided
by the system. To support users in their collaboration and to counteract forgetfulness,
automatic notifications can be beneficial in the first case for two situations in SE
projects: When events happen that relate to activities or artifacts and when status
changes occur according to the latter. Therefore, several concepts in the Context
Management component are involved as shown in Fig. 3.

To be able to easily add notification support for the aforementioned example in
Section 2, explicit concepts for Event and Status are utilized. Primarily, Events relate
to events that occur in the context of a SE project and that are automatically detected
by the Event Management module. The Status concept has been introduced to
explicitly model the status of various other concepts such as Assignments or Artifacts.
In an SE project, various artifacts exist with different relations belonging to different
areas of the project. Examples include requirements specifications or source code
artifacts. To be able to explicitly describe this in the Context Management module, the
Project Component is used as abstract building block for structuring of a project.

Specializations of this concept are the aforementioned Artifacts and Sections. As
example consider a source code structure where the sections depict the source code
packages. User management in the Context Management component includes

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 81

concepts for roles, persons, and teams. A Role can be used as a placeholder for an
activity when it is not yet known who should execute the activity. They can also be
used in relation to Project Components to express, e.g., that a Person is responsible
for a certain source code package. Persons and Teams are abstracted to a Resource
concept to enable the assignment of activities to Teams as well as single Persons.
Utilizing all of the aforementioned concepts, it is easily possible with the Notification
concept to configure user notifications relating to various events and status changes in
a SE project. Two types of notifications are supported: General notifications that are
abstractly pre-defined, e.g., a notification for a role in a process that has not yet
started. This notification is distributed to the person executing the role when the
process is running. The second type is user-related notifications that can be added by
the users themselves, as when a user wants to be kept up to date on the status of a
certain Artifact.

4 Application Example

For validating our solution, the problems from Section 2 are used. Prior work
investigated the practicality of technical aspects such as performance with regard to
CoSEEEK realization elements [7], [9].

For the problem example (A) of a user switching between different projects, the
solution illustrates the usability of additional process navigability information. In one
project, she deals with requirements elicitation and executes the ‘Identify and Refine
Requirements’ workflow from the OpenUP process [4]. In the other project, she
develops software executing the ‘Develop Solution Increment’ workflow. Fig. 4
shows diverse supplementary information on the Activities as it is specified in the
OpenUP process. There are supportive Activity Steps (as e.g., “Gather Information”),
a so called discipline for the Activity (e.g., “Requirements”, also provided by the
OpenUP process), the current processed task (e.g., “Coding”) and the specific User
Assignment (as ‘Develop Feature X’). Additionally, the specific project (e.g., ‘Project
A’) and its milestones according to the OpenUP process (e.g., ‘Initial Operational
Capability’) are also included. In the ‘Develop Solution Increment’ workflow there
are many decisions for potential loops or optional activities. These decisions are
dependent on internal workflow variables. In this example the mapping from
workflow variables to user decisions is done in a way that the user can directly select
the next upcoming activity. As shown in the example, after the ‘Implement Solution’
activity, there are four possible successors the user can directly choose.

The second problem (B) deals with information requirements relating to different
people and teams working on the same artifact base. The solution for this is a pre-
configured Notification to inform users or teams being responsible for source code
packages of changes made to them. As the Notification is pre-defined, it does not
relate to a concrete Person or Team but to a Role defined for a Section. This Role is
later taken by a Resource; when detecting that changes to Artifacts contained in that
Section are made, the Resource is automatically notified. However, users can
configure personalized Notifications as well: Assume that a user is interested in a
certain Assignment of another user as her work relies on it. Therefore, she registers for
a new Notification relating to the state of the Assignment. When the Assignment
reaches that state (e.g., ‘completed’) she is automatically notified.

82 G. Grambow, R. Oberhauser, and M. Reichert

The third problem (C) deals with intrinsic activities whose outcome requires
certain extrinsic follow-up activities. As illustrated in Section 2, the modification of a
source code artifact that belongs to the interface of a component is the target. Such
changes often require adapting integration tests or architecture documents. Dependent
adaptations usually do not appear in the workflows belonging to SE processes and are
thus extrinsic workflows. The given example illustrates the case for the follow-up
actions regarding the tests as shown in Fig. 5. It shows two defined
project areas ‘Implementation’ and ‘Test’. There is a PotentialImpact configured for
relating technical issues from ‘Implementation’ to ‘Test’. For the implementation
area, there are different modules with different packages. Modules x and y also
appear in the test area and relate to the counterparts in the implementation area as
indicated by the curved lines. Developer 2 is responsible for the tests of Modules x
and y. Assume now that Developer 1 changes a class belonging to Package b,
indicated by the change activity.

Fig. 4. Navigability information example

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 83

The information about the component, the kind of change applied to it, and the
user ID of the responsible person are forwarded via an event to the Process
Management module, which starts a workflow to govern the desired activities for the
respective user. This workflow can be based on a predefined workflow template or be
custom-built from a problem-oriented declarative definition as described in [7]. When
a task of that workflow becomes available to a user, an event is automatically
distributed to CoSEEEK’s web GUI shown in Fig. 6.

All tasks are shown at the bottom of the GUI. In order to avoid subjecting a user to
information overload, only the current task and the next upcoming task proposed by
the system are shown. The user may change the selection of the next upcoming task
via a dropdown list. In this example, the current task is “Implement Tests” from an
intrinsic workflow, while the next upcoming task is “Check Component due to
Interface Change” from an extrinsic workflow. The upper part of the GUI contains
information provided by the framework. Among other things, it can be used to display
additional task information and notifications about components for which change
notification is configured. This example shows the notification about the change of an
artifact.

Fig. 5. Active coordination support example

Fig. 6. CoSEEEK Web GUI

84 G. Grambow, R. Oberhauser, and M. Reichert

In summary, the resolution provides collaboration capabilities via coordination of
extrinsic and intrinsic workflows in a PAIS and the availability and use of context
information via semantic technology. Activities that are often omitted and not
modeled in PCSEEs are explicitly modeled and automatically coordinated via
CoSEEEK. Additional support is provided for software engineers working in multi-
project environments by making navigability information available and fostering
situational awareness. Finally, automatic information provision can keep users
updated on artifacts states or other new events in the project.

5 Modeling Effort

Additional modeling effort is imposed by the approach. The processes are modeled
not only in the PAIS but also in the ontology. Configuration is required for how
various follow-up actions should be treated. To keep the effort reasonable, some
default functions and definitions are provided in the framework. The semantic
enhancements to process management (WorkUnitContainers and WorkUnits) are
generated automatically from the workflow templates of the Process Management
module. To gain an awareness of project artifacts, scans are conducted on specified
folders. Since the system is aware of SE tools via sensors, it becomes aware of all
processed and new artifacts, and the information is acquired on the fly. An initial set
of ProjectComponents is provided and the structure of certain Areas can be imported,
e.g., from a folder structure or a source code package structure. Examples include the
Areas ‘Implementation’ and ‘Test’: the system can automatically read the package
structure and thus import references to all artifacts into the ontology that are
hierarchically organized under various Sections that are created from the different
packages in the source code. The names of the packages can be automatically
matched to those to which they may relate. For instance, relations between ‘Test’
packages and ‘Implementation’ packages can be automatically established.

6 Related Work

With regard to PCSEEs, [13] describe SOA-based extensible and self-contained sub-
processes that are aligned to each task. A dynamic runtime selection is made
depending on the context of the particular work instance. OPEN [26] is a CORBA-
based PCSEE that addressed business, quality, model, and reuse issues. DiME [27]
provides a proprietary, integrated, collaborative environment for managing product
definition, development, and delivery processes and information. CASDE [28] and
CooLDev [29] utilize activity theory for building an environment supporting
collaborative work. CASDE features a role-based awareness module managing
mutual awareness of different roles. CooLDev is a plug-in for the Eclipse IDE that
manages activities performed with other plug-ins in the context of global cooperative
activities. CAISE [30] is a collaborative SE framework with the ability to integrate SE
tools. CAISE supports the development of new SE tools based on collaboration
patterns.

An industry approach for collaborative development is provided by the IBM Jazz /
Rational Team Concert products [31]. Jazz offers an infrastructure for distributed

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 85

development including the technical basis for integration of various clients as well as
data and services. It enables comprehensive project, bug, and configuration
management as well as event notifications, traceability, and other software
development related tasks. Team Concert is a collaborative software development
environment built on Jazz technology utilizing its capabilities to provide an integrated
solution for software configuration management, work item management, and build
management with additional features like customizable dashboards, milestone
tracking, or process templates for common processes.

In contrast, CoSEEEK offers a combination of features not found in the
aforementioned approaches: workflow guidance is not only offered for activities
contained in development processes (intrinsic), but also for extrinsic activities, which
are not explicitly modeled within those processes. The holistic combination of all
project areas in conjunction with semantic technology also enables the framework to
provide intelligent decisions and thus a higher level of automation. The tight
integration of PAIS technology with context knowledge not only enables the
distribution of information, but also the automated support and governance of
activities in adapted workflows.

Modeling SE processes in semantic technologies can enhance reuse and leverage
available tooling, as shown by [32]. [33] used an ontology for CMMI-SW
assessments, and [34] used ontologies for the Software Engineering Body of
Knowledge (SWEBOK). CoSEEEK leverages semantic usage for real-time
contextual-awareness in SEEs to improve SE workflows and collaboration and for
supporting navigability and situational-awareness. The main differentiation criterion
to other approaches utilizing ontologies for collaboration is the holistic integration of
all project areas to foster synergies, and in having collaboration not be the sole focus
of the framework (e.g., software quality assurance is adaptively integrated as
described in [11]). Other approaches have collaboration via ontologies as their focus
[35][36]. [35] presents a workflow-centric collaboration system whereby the main
component is an ontology repository with ontologies of different abstraction levels.
The process model is based on enhanced Petri nets and thus lacks complementary
support for dynamic adaptability. [36] presents an Ontology for Contextual
Collaborative Applications (OCCA) that provides a generic semantic model
specialized for distributed, heterogeneous, and context-aware environments. In
contrast to these approaches, CoSEEEK utilizes querying and reasoning capabilities
over an ontology and integrates these with process management to support automated
dynamic process governance.

7 Conclusions

The high degree of dynamic collaboration in SE raises challenges for the automated
support of process awareness and guidance in SEEs. Currently, SEEs lack contextual
information and integration, especially with regard to adaptive collaboration and
workflows. The presented CoSEEEK approach extends adaptive PAIS with semantic
web technologies and advanced event processing techniques. CoSEEEK explicitly
models and manages both intrinsic and extrinsic activities. These are coordinated, and
the automatic initiation and distribution of activities can be individually configured. A
dynamic information distribution strategy enables related components to be associated

86 G. Grambow, R. Oberhauser, and M. Reichert

even if no direct relations between the source component and the target component
exist. The person being responsible for a component can also be determined if no
direct responsibility is defined. The procedure requires neither rigidly predefined
information channels nor relies on comprehensive and fine-grained predefined
information on relating artifacts or responsible persons. The configuration effort to
enable automated coordination is reduced by the ability to automatically import
needed information and via the inference and reasoning capabilities.

As the automatic initiation of new follow-on activities is neither necessary nor
desired in all cases, the system also provides passive collaboration support abilities.
These comprise automatic user notifications on various events in a project. Both
general pre-configured notifications and user-configured personalized notifications
are possible.

Extrinsic activities that have hitherto typically been excluded from modeling are
now guided by workflows. These capabilities enable the integration of general
process models with concrete activities even if they are extrinsic to a particular SE
process. Support for situational awareness and navigability becomes vital as
collaborations become more complex. Additional process navigability information
can be automatically provided by CoSEEEK. Individuals working in multi-project
environments can profit from this information since it supports them operationally,
e.g., when they are switching contexts by providing all relevant information for the
current activity.

The presented scenario demonstrated a situation where improved coordination and
situational awareness were supported while providing process guidance and
navigability for collaborating software engineers, enhancing process quality.

Automated support for coordinated collaborative software engineering, with its
human interactions and continuously changing tool and process environment, will
remain a challenge. Further research potential lies in the aggregation and utilization of
available contextual information to increase process effectiveness and efficiency.
Future work will investigate industrial usage in production environments with our
project partners. For efficiency, a planned feature will aggregate related tasks and,
when a predefined threshold is reached, trigger a workflow instance with the
cumulated task information. More complex task treatments can also be designated:
e.g., in an agile project, emergent uncompleted tasks can be collected and stored in a
backlog to inform team members at the beginning of the next iteration. A GUI that
enables the easy definition of rules for the automatic initiation of follow-up activities
is planned. It will also support the easy registration for notifications on state changes
of activities or artifacts or other events.

Acknowledgements. This work was sponsored by BMBF (Federal Ministry of
Education and Research) of the Federal Republic of Germany under Contract No.
17N4809.

References

1. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the effectiveness of process-oriented
information systems: Problem analysis, critical success factors, and implications. IEEE
Transactions on Systems, Man, and Cybernetics 38(3), 280–291 (2008)

 Enabling Automatic Process-Aware Collaboration Support in SE Projects 87

2. Gruhn, V.: Process-centered software engineering environments, a brief history and future
challenges. Annals of Software Engineering 14(1), 363–382 (2002)

3. Rausch, A., Bartelt, C., Ternité, T., Kuhrmann, M.: The V-Modell XT Applied–Model-
Driven and Document-Centric Development. In: Proc. 3rd World Congress for Software
Quality, vol. III, pp. 131–138 (2005)

4. OpenUP (2011), http://epf.eclipse.org/wikis/openup/
5. Oberhauser, R., Schmidt, R.: Towards a Holistic Integration of Software Lifecycle

Processes using the Semantic Web. In: Proc. 2nd Int. Conf. on Software and Data
Technologies, vol. 3, pp. 137–144 (2007)

6. Oberhauser, R.: Leveraging Semantic Web Computing for Context-Aware Software
Engineering Environments. In: Semantic Web, pp. 157–179. In-Tech, Vienna (2010)

7. Grambow, G., Oberhauser, R., Reichert, M.: Semantic workflow adaption in support of
workflow diversity. In: Proc. 4th Int’l Conf. on Advances in Semantic Processing, pp.
158–165 (2010)

8. Grambow, G., Oberhauser, R., Reichert, M.: Towards a Workflow Language for Software
Engineering. In: Proc. 10th IASTED Conference on Software Engineering (2011)

9. Grambow, G., Oberhauser, R.: Towards Automated Context-Aware Selection of Software
Quality Measures. In: Proc. 5th Intl. Conf. on Software Engineering Advances, pp. 347–
352 (2010)

10. Grambow, G., Oberhauser, R., Reichert, M.: Contextual Injection of Quality Measures into
Software Engineering Processes. Int’l Journal on Advances in Software 4(1 & 2), 76–99
(2011)

11. Grambow, G., Oberhauser, R., Reichert, M.: Employing Semantically Driven Adaptation
for Amalgamating Software Quality Assurance with Process Management. In: Proc. 2nd
Int’l. Conf. on Adaptive and Self-adaptive Systems and Applications, pp. 58–67 (2010)

12. Grambow, G., Oberhauser, R., Reichert, M.: Towards Automatic Process-aware
Coordination in Collaborative Software Engineering. In: Proc. 6th International
Conference on Software and Data Technologies, pp. 5–14 (2011)

13. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006, Part I. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg
(2006)

14. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Computer Science-Research and Development 23(2),
81–97 (2009)

15. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity–dynamic process lifecycle support.
Computer Science-Research and Development 23(2), 47–65 (2009)

16. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in Process-Aware Information
Systems. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp.
115–135. Springer, Heidelberg (2009)

17. Gasevic, D., Djuric, D., Devedzic, V.: Model driven architecture and ontology
development. Springer (2006)

18. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C
recommendation (2004)

19. World Wide Web Consortium: SWRL: A Semantic Web Rule Language Combining OWL
and RuleML. W3C Member Submission (2004)

20. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C WD 4 (2006)
21. McBride, B.: Jena: A semantic web toolkit. IEEE Internet Computing 6(6), 55–59 (2002)

88 G. Grambow, R. Oberhauser, and M. Reichert

22. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web
Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)

23. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–
53 (2007)

24. Johnson, P.M.: Requirement and design trade-offs in Hackystat: An in-process software
engineering measurement and analysis system. In: Proc. 1st Int. Symp. on Empirical
Software Engineering and Measurement, pp. 81–90 (2007)

25. Luckham, D.C.: The power of events: an introduction to complex event processing in
distributed enterprise systems. Addison-Wesley Longman Publishing Co., Inc., Boston
(2001)

26. Henderson-Sellers, B.: Process metamodelling and process construction: examples using
the OPEN Process Framework (OPF). Annals of Software Engineering 14(1), 341–362
(2002)

27. Koenig, S.: Integrated process and knowledge management for product definition,
development and delivery. In: Proc. IEEE International Conference on Software-Science,
Technology & Engineering, p. 133 (2003)

28. Jiang, T., Ying, J., Wu, M.: CASDE: An Environment for Collaborative Software
Development. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.) CSCWD.
LNCS, vol. 4402, pp. 367–376. Springer, Heidelberg (2007)

29. Lewandowski, A., Bourguin, G.: Enhancing Support for Collaboration in Software
Development Environments. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.)
CSCWD. LNCS, vol. 4402, pp. 160–169. Springer, Heidelberg (2007)

30. Cook, C., Churcher, N., Irwin, W.: Towards synchronous collaborative software
engineering. In: Proc. 11th Asia-Pacific Software Engineering Conference, pp. 230–239
(2004)

31. IBM Jazz, http://www.jazz.net
32. Liao, L., Qu, Y., Leung, H.: A software process ontology and its application. In: Proc.

ISWC 2005 Workshop on Semantic Web Enabled Software Engineering, pp. 6–10 (2005)
33. Soydan, G.H., Kokar, M.: An OWL ontology for representing the CMMI-SW model. In:

Proc. 2nd Int’l Workshop on Semantic Web Enabled Software Engineering, pp. 1–14
(2006)

34. Calero, C., Ruiz, F., Piattini, M.: Ontologies for software engineering and software
technology. Springer-Verlag New York Inc. (2006)

35. Yao, Z., Liu, S., Han, L., Ramana Reddy, Y.V., Yu, J., Liu, Y., Zhang, C., Zheng, Z.: An
Ontology Based Workflow Centric Collaboration System. In: Shen, W., Luo, J., Lin, Z.,
Barthès, J.-P.A., Hao, Q. (eds.) CSCWD. LNCS, vol. 4402, pp. 689–698. Springer,
Heidelberg (2007)

36. Wang, G., Jiang, J., Shi, M.: Modeling Contexts in Collaborative Environment: A New
Approach. In: Shen, W., Luo, J., Lin, Z., Barthès, J.-P.A., Hao, Q. (eds.) CSCWD. LNCS,
vol. 4402, pp. 23–32. Springer, Heidelberg (2007)

Part II

Software Engineering

Hybrid Debugging of Java Programs

Christian Hermanns and Herbert Kuchen

Institute of Information Systems, University of Münster
Leonardo-Campus 3, Münster, Germany

chr.hermanns@gmx.de, kuchen@uni-muenster.de

Abstract. Until today the most common technique to debug Java programs is
trace debugging. In this work we present two different debugging approaches for
Java: declarative debugging, which has its origins in the area of functional and
logic programming, and omniscient debugging, which is basically an extension
of trace debugging. To benefit from the advantages of both techniques we have
integrated them into a single hybrid debugger called JHyde. We use JHyde to
debug an erroneous merge sort algorithm and mention important aspects of its
implementation. Furthermore, we show that the efficiency of the declarative de-
bugging method can be significantly improved by a new debugging strategy.

Keywords: Java, Debugging, Hybrid, Declarative, Omniscient, Coverage crite-
ria, Divide and query.

1 Introduction

Debugging is a complex and time-consuming task of the software development process.
Software developers spend a considerable amount of time debugging, trying to locate
bugs in software programs. Reducing the time and effort required to detect a bug can
greatly increases the efficiency and productivity of software development [1].

No matter what debugging method or tools are used to locate a bug, the general
debugging process looks as follows (cf. [2]). At first the user notices a failure, i.e.
an externally observable error in the program behaviour. The failure is caused by an
infection, that is a deviation of the actual program state from the intended program
state. The user’s task is to locate the bug, i.e. the defect statement(s) in the debuggee
program which caused the initial infection. In many cases the initial infection does
not directly result in an observable program failure. Instead, it is propagated into later
program states causing further infections which eventually cause a program failure. As a
consequence, the user has to reason backwards in the execution history from the failure
to the bug.

Until today, the most common debuggers used for object-oriented programming lan-
guages like Java are program tracers which track the execution of a debuggee program
in a step-by-step manner. A trace debugger works on a low level of abstraction. Start-
ing at a breaking point which predates the bug in the execution history the user has to
inspect the sequence of statements executed by the debuggee program. The debugging
process ends when the user encounters a buggy statement, i.e. bug, which produces the
initial infection. While this method works well for a narrow search space, it can be very
annoying and time-consuming if there aren’t any clues about the position of the bug.

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 91–107, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

92 C. Hermanns and H. Kuchen

To minimize debugging effort the starting point should be as close to the bug as
possible. However, the defect and its position in the execution history are unknown.
When selecting a starting point for program tracing, we risk to select a point which lies
chronologically either far before or even after the bug. In the first case we will have to
inspect a lot of instructions and in the second case we will have to restart debugging
with an earlier starting point.

Another severe drawback of trace debuggers is the fact that they are only capable of
executing the debuggee program forward in time, while the reasoning from the program
failure to the program defect naturally happens backwards in time. Omniscient debug-
ging [3], an extension of the trace debugging technique, addresses these shortcomings.
The idea is to record the entire execution history of a debuggee program, making it
possible to inspect the execution history back and forth in time. Nevertheless, even om-
niscient debugging takes place on a relatively low level of abstractions where the user
still has to check single statements for validity.

A debugging method which abstracts from the details of implementation is declara-
tive debugging. The method was developed by E. Y. Shapiro [4] for the Logic Program-
ming paradigm. It was later applied to other declarative programming paradigms such
as functional [5] and functional logic [6] programming. A declarative debugger asks
the user questions about the validity of the program execution and infers the location
of the bug from the user’s answers. The precision by which the location of a bug can
be detected depends on the level of abstraction of the declarative debugger. The more
abstract the questions, the less precise the location of the bug can be determined. For
example, a declarative debugger asking questions about the validity of method calls is
able to detect a method containing a defect, but it cannot tell which statement inside the
method is defect.

In this paper we present JHyde (Java Hybrid Debugger), a debugger which imple-
ments a hybrid debugging method for the object-oriented language Java. JHyde com-
bines omniscient and declarative debugging into one debugging tool. In general, our
hybrid debugging method looks as follows. At first the declarative debugging method
is used to locate the method call causing the initial infection. After that omniscient de-
bugging functionality is used to find the buggy statement inside the method. Thus, the
user can at first, during the declarative debugging process, concentrate on “what” the
method calls do and can ignore “how” the calls work internally. Afterwards, the identi-
fied call causing the initial infection provides a narrow search space for the omniscient
debugging method. That way, our hybrid debugging technique abstracts from the im-
plementation details during declarative debugging but is yet capable of identifying the
exact buggy statement by means of omniscient debugging.

JHyde is based on a declarative debugger for the Java programming language which
we developed in former work [7]. The main contribution of this paper is to show how
omniscient and declarative debugging can be combined. We present JHyde which is
available for download [8] and show important aspects of implementation. Furthermore,
we have developed a declarative debugging strategy based on coverage information
which reduces the number of method calls a user has to inspect. Tests show that this
strategy saves up to 40 percent of the debugging effort.

Hybrid Debugging of Java Programs 93

The rest of the paper is organized as follows: In the next section we present our
hybrid debugging technique for Java programs. Section 3 describes the user interface
of JHyde, a prototypical plugin for the Eclipse IDE [9] which implements the hybrid
debugging technique. To show how our debugger behaves in practice, we debug a sam-
ple program using JHyde in Section 4. In Section 5 we provide some implementation
details. Section 6 presents some test results which proof the usefulness of the coverage-
based search strategy. In section 7 we discuss how our paper is related to other works in
this field. This paper ends with section 8, where we conclude and point out future work.

2 Hybrid Debugging Technique

2.1 Overview

As indicated before the general idea of our hybrid debugging technique is to combine
elements of omniscient debugging and declarative debugging. Declarative debugging
has the benefit that it works on a higher level of abstraction relieving the user from
the task to inspect implementation details. Nevertheless, it is somewhat imprecise. For
example, a declarative debugger for Java Programs is only able to identify the method
containing the bug, but not the buggy statements inside the method.

This is where the omniscient debugging functionality of our debugger comes into
play. Once the method call causing the initial infection is found using declarative de-
bugging, the user can resort to the omniscient debugging. By tracking the execution of
the method call in a step-by-step manner back and forth in time, the user can exactly
determine the buggy statement(s).

2.2 Declarative Debugging

Declarative debugging requires the execution of the debuggee program to be repre-
sented by a computation tree (CT). To enable the declarative debugging of Java pro-
grams we have defined a suitable CT data structure in [7]. In our data structure each
node of the CT will contain information about a particular method call of the compu-
tation. Let a be a node of the CT containing information about a call of method ma.
Child nodes of a correspond to calls that have been executed during the computation of
the result of a.

During the declarative debugging process the user will be asked to classify nodes of
the CT. A node has to be classified as valid if the represented method call produced a
valid result, i.e. the return value including all side effects and as invalid if the repre-
sented method call produced an invalid result. Furthermore, a method can be classified
as trusted if we know that it does not contain any defects. In this case every node rep-
resenting a call of the trusted method is automatically trusted. A trusted node will not
cause an infection, but it can have untrusted subnodes which could infect the program
state.

The classification of the nodes is used to reduce the set of suspicious nodes, i.e. the
set of nodes that can be buggy. We defineN as the set of all nodes of the CT andAi ⊆ N
as the set of suspicious nodes after the i-th user answer. At the beginning A0 contains

94 C. Hermanns and H. Kuchen

all nodes of the CT, i.e. A0 = N . Furthermore, let Sa ⊆ N be the set of all nodes of
the subtree rooted at node a in the CT. If node a ∈ Ai−1 is classified, the suspicious
set Ai−1 can be reduced by the following rules. If node a is classified as valid, all its
subnodes are automatically valid, i.e. Ai = Ai−1 \ Sa. If a method call is classified as
invalid either the call itself or any of its sub calls must be the buggy method call we are
looking for. Hence, the debugger will continue the search in the subtree of this method
call and we get Ai = Sa. If a method call is classified as trusted, then all calls of the
same method will also become trusted. JHyde will not ask any questions about trusted
method calls. However, a trusted method call can have unclassified child calls. These
calls must be considered in the further debugging process. Thus, Ai = Ai−1 \ {b ∈
Ai−1|mb = ma}. A method call’s state can be set to unclassified if the user is not sure
about the classification and wants to categorize it later.

If at least one method call has been classified as invalid, the size of the suspicious
set is eventually reduced to 1, i.e. ∃z ∈ N : |Az | = 1. The only node n remaining in
Az is an invalid node with no invalid children. The call represented by the buggy node
produced an invalid result while its inputs, i.e. the arguments provided by the parent
call and the return values of the child calls, are all valid. We call this node the buggy
node. The method call associated to the buggy node must contain a bug we are looking
for.

A method call in an object-oriented language can produce side effects which are
considered to be part of its result. These side effects must be taken into account during
classification of a method call. Hence, the data presented to the user at each node of our
CT will be:

– The fully qualified name of the method being called.
– All local variables of the method call, i.e. the arguments of the call and all locally

defined variables. In case of a call to a non-static method the “this” reference to
the object whose method is being called is also considered as an argument. For
each local variable an entry and an exit value will be stored. The entry value is the
variable’s value at the beginning of the method call and can be regarded as part of
the method’s input. The exit value is the value at the end of the call and belongs to
the method’s result.

– The fields of referenced objects. For any object directly or indirectly referenced
by a local variable we need to know the entry and exit values of its fields w.r.t.
the considered method call. An array is considered as a special type of object with
all its fields of the same type. Note that the fields of referenced objects can in turn
reference further objects, spanning a graph of referenced objects. We call this graph
the state space which is accessible by the respective method call. The accessible
state spaces spanned by the entry and exit values are part of the method’s input and
the method’s result, respectively.

– Additionally, the entry and exit values of static class fields should be available
because they can be part of the methods input and output as well.

– Finally, we need the return value.

The usability of the debugger will depend on a compact and clear representation of the
relevant (changed) information.

Hybrid Debugging of Java Programs 95

2.3 Omniscient Debugging

Omniscient debugging is an extension of trace debugging. During trace debugging the
user directly observes the effects of executed statements on the program state. To find a
defect the first statement in the execution history which changed the program state from
valid to infected must be identified.

A severe drawback of trace debugging is that we have to trace statements executed
before the defect, while a defect effects the program states which occur after its execu-
tion. Before the defect is executed the program state is sane which is why we do not
have facts we can use to reason about the location of the bug. Hence, the odds are that
we miss the defect and have to start over again.

Omniscient debugging addresses these drawbacks as it allows to track the execution
of a program back and forth in time. If we miss the execution of a defect, we can
now simply step back in the execution history and do not have to restart our debugger.
More importantly, we can now reason backwards from the program failure to the initial
infection, following the infected program states to the bug. This is a great improvement
over ordinary trace debugging.

It is obvious that these benefits come with costs. Omniscient debugging requires us
to record the entire execution history of the debuggee program. The amount of data we
have to record can be huge, especially for large and complex programs. But we have to
record most of the execution information anyway for declarative debugging. Therefore,
in the case of our hybrid debugger we get the benefits of omniscient debugging almost
for free.

2.4 Coverage Based Navigation Strategy

How do the individual debugging efforts develop if the size of the recorded execution
history grows? On average, we expect the omniscient debugging effort to remain almost
constant as we are looking for the defect in a single method call, while we expect
the declarative debugging effort to grow as we are facing a growing size of the CT.
Especially when debugging complex programs the number of executed method calls
can become huge. Thus, an efficient strategy for the declarative debugging process can
greatly reduce the overall debugging effort.

One possible declarative debugging strategy is based on the divide and query (D&Q)
strategy developed by Shapiro [4]. The idea of D&Q is to halve the set of suspicious
nodes Ai with every user answer. Let wi : N → N, wi(a) = |Sa∩Ai| return the weight
of a node a in the suspicious set after i user answers and let Wi = |Ai| be the weight of
the suspicious set.

D&Q will select the node a whose weight wi(a) is closest to half of the weight of
the suspicious set, i.e. Wi/2, for classification. After the user answer, the weight of the
remaining suspicious set Wi+1 will be Wi − wi(a) or wi(a) if the answer was “valid”
or “invalid”, respectively. Especially for big and unbalanced CTs D&Q performs better
than a top-down strategy. In the worst case only O(log n), n = |N | user answers are
required.

D&Q assumes that every node of the CT has the same probability to contain a bug. In
real applications this is rarely the case as method calls can have different complexities

96 C. Hermanns and H. Kuchen

which result in different probabilities to contain a bug. We can improve the performance
of D&Q if we take take varying error probabilities into account. For this, we define
a coverage entity to be either a control-flow or data-flow element whose coverage is
monitored during program execution. To estimate the complexity of a method call we
assume that the complexity of a method call increases with the number of entities that
are covered.

Let E be the set of all entities covered during the debuggee execution, Ea ⊆ E the
covered entities of node a, and Vi ⊂ N the subset of nodes classified as valid after
i user answers. Furthermore, the function vi : E → N� returns the number of valid
classifications of a coverage entity after i user answers, i.e. vi(e) = |{a ∈ Vi : e ∈
Ea}|. We compute the coverage-based weight of a node after i answers by cbwi : N →
R

+ as follows:

cbwi(a) =
∑

b∈(Sa∩Ai)

∑
e∈Eb

g(vi(e)).

Where the function g : N0 → R
+ returns the weight of a single entity e based on

the number of valid classifications of e. Thus, the weight of a node a is the weight
of all covered entities of all nodes which are element of the subtree rooted at a and
the suspicious set Ai. In order to reduce the contribution of entities which have been
classified as valid, the function g should be monotonically decreasing.

One possible definition of g is: g(x) = px, with p ∈ [0, 1]. In this case the contribu-
tion to the coverage-based weight of an entity e which has not been classified as valid
yet, i.e. vi(e) = 0, is p0 = 1. The contribution of e is exponentially reduced as the
number of valid classification of e increases. For example, if p = 1/2 the contribution
is halved for any additional valid classification.

Let CBWi =
∑

b∈Ai

∑
e∈Eb

g(vi(e)) be the coverage-based weight of the suspi-
cious set Ai. Similar to D&Q, our coverage-based D&Q will select the node a from Ai

whose coverage-based weight cbwi(a) is nearest to half of the weight of the suspicious
set, CBWi/2, for the next classification. This way we try to halve the coverage-based
weight of the suspicious set, CBWi, with every user answer. We have implemented
coverage-based D&Q using coverage of the edges of the control flow graph (CFG) and
def-use chain coverage.

In a CFG each edge represents the flow of control between two nodes, i.e. basic
blocks. A basic block is a sequence of code which has only one entry (no code within
the sequence is destination of a jump) and one exit point (no jump statements within
the sequence).

A def-use chain is a triple of a variable, a statement where the variable’s value is
computed, i.e. defined, and a statement where the variable’s value is used. Moreover,
the variable’s value must not change between the definition and the use.

Both metrics, edge coverage of the CFG and def-use chain coverage, are common
in the area of glass-box testing [10], where they are used to measure the coverage of
test cases. The goal is to generate a minimal set of test cases which completely covers
a tested component w.r.t. to a certain coverage criterion. It is assumed that the proba-
bility of a component containing a defect is almost zero, if all test cases pass and their
coverage is complete. Similarly, we employ coverage information during the debugging

Hybrid Debugging of Java Programs 97

process to determine which parts of the program have the highest probability to contain
a defect.

Please note, that we have employed edge and def-use chain coverage to reduce the
number of questions during the declarative debugging process before [7]. In our earlier
works we avoid questions about method calls whose covered entities are completely
covered by method calls which are classified as valid. In other words, if Ea ⊆ ⋃

b∈Vi
Eb

holds, a will be automatically assumed to be valid. This approach significantly reduces
the debugging effort, but it has a major drawback: if our debugger infers a wrong classi-
fication, this strategy might identify a wrong buggy method call. Our new approach does
not have these shortcomings because we do not infer any answers but simply change
the order of questions. Thus, our method always returns the correct result.

3 User Interface

The task of the JHyde front-end is to present the execution data of a program run in
a structured and accessible way. The interface must be easy to use and understand to
find bugs quickly. The JHyde front-end is an Eclipse [9] plugin. The plugin enables the
user to conduct the hybrid debugging process for Java programs. When started JHyde
executes the selected program and records its entire execution history. The search for the
bug starts when the debuggee’s execution is finished. The execution data is presented to
the user in four different views shown in Figure 1. Each view is designed to present a
different aspect of the execution data.

The Computation Tree View shows the CT of the debuggee program. Via the tool-
bar the user can classify the currently selected method call as valid, invalid, trusted or
unclassified (unknown). According to its classification a method call is highlighted by
green (valid), red (invalid), yellow (trusted), or white (unclassified) background color.
After classification the debugger selects a new, yet unclassified method call. JHyde sup-
ports four different navigation strategies: top-down, D&Q, D&Q by edge coverage of
the CFG, and D&Q by def-use chain coverage.

In order to classify a method call we need information about the inputs and outputs
of a method call. This information is shown in the Node View of JHyde. As described
in Section 2.2 we need all local variables, i.e. the arguments of the call, all locally
defined variables, and the “this” reference to the object whose method is being called
if the method is not static. Furthermore, we need all static variables. The Node View
will always show these variables for the method call selected in the CT View. The Node
View has a timestamp interval. The lower and the upper bound of the interval are set to
the entry and exit timestamp of the method call selected in the Computation Tree View,
respectively. For each variable its value at the lower bound (old value) and its value
at the upper bound (new value) are shown. If the variable type is not a primitive but a
reference type and at least one of the variable’s values is not null then the fields of the
referenced object will be shown in the variable’s subtree.

To validate the selected method call a user can browse the old and new values of
all relevant variables. If the method call’s actual effect matches its intended effect the
call is classified as valid. If actual and desired effect do not match, it must be classi-
fied as invalid. Validating the state change of the affected variables is a complex and

98 C. Hermanns and H. Kuchen

Fig. 1. Screenshot of the JHyde plugin which consists of the Computation Tree View, the Node
View, Event List View, and the Variable History View, which help to navigate the execution data
of a debuggee program. The views represent the execution of the MergeSort program shown
in Listing 1.1.

time-consuming task. In the Node View every variable whose value changed during the
selected method call is marked by a certain background color. A variable whose value
changed is marked red, e.g. la, lb, c[0]. . .c[2], and lc. A variable whose value
did not change can reference an object whose variables, i.e. fields, have changed. These
variables are marked yellow, e.g. c. The highlighting of the state changes makes it much
easier to evaluate a method call. The user can directly navigate to the changes and check
their correctness.

The Event List View and the Variable History View are used for omniscient debug-
ging. The Event List View shows a chronological list of all events that occurred during
the method call selected in the CT View. It is used to track the changes step-by-step,
back and forth in time. If a user selects a specific event from the list, the source code line
which produced this event is shown in the source code editor. Furthermore, the upper
bound of the timestamp interval of the Node View is set to the timestamp of the selected
event. This has the following effect: In the Node View the new value of each variable
now shows the value the respective variable had right after the execution of the selected
event. Hence, the Node View now shows all state changes which happened between the
execution of the first event, i.e. the beginning of the method call, and the event selected

Hybrid Debugging of Java Programs 99

in the Event List View. This gives the user a summary of all state changes performed
by the events of the method call which precede the selected event. Thus, the user can
conveniently check if the program state is still valid at the selected event.

If we want to lookup the event which changed a variable’s value in the Event List
View, we can select the desired variable in the Node View. Every event which changed
the value of the selected variable will now be highlighted in the Event List View. For
example, the array field c[2] is selected in the Node View in Figure 1. Thus, the events
which changed c[2] are highlighted in the Event List View. If a changing event is
located in the subtree of an event it is marked with yellow (light gray) background color,
e.g. timestamps 208, 231, and 232. If the event itself changed the value, it is marked red
(dark gray), e.g. timestamp 235. The interaction between the Event List View and the
Node View offers some nice and handy features which facilitate the search for a defect
in the method call’s execution history.

The second view which can be employed to search for the program bug is the Vari-
able History View. It displays a chronological list of all events of the complete execution
history that changed a specific variable. To assign a variable to the Event List View we
can right click on any variable in the Node View and select “display in History View”.
For example, the History View in Figure 1 shows the value history of c[2]. With the
help of the Variable History View we can check the value history of a Variable for in-
valid values. If we have identified an undesired value, we can select the corresponding
event, e.g. the event with timestamp 235 which changed the value of c[2] to 9. Click-
ing an event in the History View will cause an update of the other views of JHyde. In
the CT View the method call which executed the selected event is selected, the Event
List View shows the events of the method call selected in the CT View. Furthermore,
the examined event, i.e. the event with timestamp 235, is selected in the Event List
View. The Node View will show the value changes of all variables of the corresponding
method call from the beginning of the call to the timestamp of the selected event. Fig-
ure 1 shows the state of all JHyde views after the event with timestamp 235 has been
selected in the History View. Hence, the Variable History View is a useful utility to
navigate the execution data. By selecting an event in the History View we can directly
jump to its location in the execution history. Thus, the History View allows us to reason
backwards in the execution history. If we notice a program failure after the execution
of the debuggee program, we can use the variable whose value caused the failure to
trace back to the point in the execution history where a wrong value was assigned to
the variable. If the wrong value was assigned due to a defect in the program, we have
found the bug. Otherwise the wrong value must result from another variable which has
a wrong value at the given time in the execution history. We can continue the backward
reasoning process with this new variable. By this process we will eventually find the
bug causing the program failure.

4 Debugging Session Example

To demonstrate how JHyde is used, we will show how to debug the Java implementation
of the well-known merge sort algorithm [11] presented in Listing 1.1. We assume that
our debugger uses a top-down declarative debugging strategy.

100 C. Hermanns and H. Kuchen

5 public class MergeSort {
6

7 private static void merge(int[] a, int la,
8 int ra, int[] b, int lb, int rb, int[] c,

int lc) {
9 while (la < ra && lb < rb)

10 c[lc++] = (a[la] < b[lb]) ? a[la++] :
b[lb++];

11 while (la < ra)
12 c[lb++] = a[la++]; // must be: c[lc++]

=a[la++];
13 while (lb < rb)
14 c[lc++] = b[lb++];
15 }
16

17 private static void distribute(int[] a, int[] b,
int[] c, int l) {

18 int i = 0;
19 for (int j = 0; j < a.length; j += 2 * l) {
20 for (int k = j / 2; k < j / 2 + l; k++)
21 b[k] = a[i++];
22 for (int k = j / 2; k < j / 2 + l; k++)
23 c[k] = a[i++];
24 }
25 }
26

27 public static void sort(int[] a) {
28 int[] b = new int[a.length];
29 int[] c = new int[a.length];
30 for (int size=1; size < a.length; size *= 2) {
31 distribute(a, b, c, size);
32 for (int i = 0; i < a.length / 2; i += size)
33 merge(b, i, i + size, c, i, i + size,

a, 2 * i);
34 }
35 }
36

37 public static void main(String[] args) {
38 int[] a = new int[] {4,9,1,7};
39 MergeSort.sort(a);
40 System.out.println(Arrays.
41 toString(a));
42 }

Listing 1.1. Java implementation of the merge sort algorithm containing a defect in line 12. The
line numbering starts at line 5 to match the numbering in the source code editor of Figure 1.

Hybrid Debugging of Java Programs 101

The semantics of the methods is straight forward. The method merge merges the
values of array a from index la to index ra and b from index lb to rb into array c,
starting at position lc. If a and b are sorted within the defined intervals, the result will
be a sorted sequence of all elements of the intervals of a and b starting at lc in c.

The method distribute distributes the elements of a to b and c. Therefore, a is
divided in subsequent chunks of size l. The chunks are copied to b and c, in turns.

The method sort uses distribute and merge to sort array a. Therefore, the
contents of a are distributed to b and c and merged back into a. To get a com-
pletely sorted array log2a.length, distribute and a.length-1 merge operations
must be performed. The sequence of chunk lengths after each distribute steps is (20, . . . ,
2log2 n−1). Please note that this simple implementation of merge sort does only sort ar-
rays of length 2i, i ∈ N. Finally, the method main calls the sort method to sort the
array [4, 9, 1, 7] and prints the result to the console output.

The implementation contains a defect in line 12, which should read “c[lc++] =
a[la++];”. When executing the main method of the MergeSort class, the output
is the incorrectly sorted array “[1,4,9,7]”. We will now show how JHyde can be
used to detect the bug.

To debug the MergeSort program we first have to execute it using JHyde. After the
execution is finished we can use the views of JHyde to explore the recorded execution
data and find the bug. Figure 1 shows the state of the JHyde views at the end of the
debugging session, when the defect has been detected.

The CT View shows the CT of the MergeSort execution. The call of the main
and the sort method have been classified as invalid. The main method prints a wrong
result array and the sort does not sort the elements of the argument array correctly.
The two sibling calls of the sort call, toString and println are automatically
marked as trusted because they are part of the Java API. The first 4 sub calls of sort
are classified as valid as they return the expected result. The last call of the merge
method is still unclassified. As this method is selected in the Computation Tree View,
the Node View shows all local variables of this call. For each variable the start value
and the end value are the variable’s value at the beginning and the end of the selected
method call, respectively. The variables whose values changed during the method call,
e.g. la, lb, c[0]. . .c[2], and lc, are marked red (dark grey). The local variable c
is marked yellow (light grey) because the value of c did not change, but some fields of
c changed.

Due to the intended semantics of the merge method, we would expect the chunks
[4, 9] and [1, 7] stored in a and b, respectively, to get merged to [1, 4, 7, 9] in c. The
Node View tells us that the actual result of the merge call stored in c is [1, 4, 9, 7]. If
we mark this method as invalid in the Computation Tree View the debugger informs us
that the method merge must contain a bug because its inputs were all valid, while it
produced a wrong result.

To find the exact location of the bug in the merge source code we switch to omni-
scient debugging. The field at index 2 of the array c is a promising entry point. The
expected value of this field is 7, while its actual value is 9. We right click this variable
in the Node View and select “Show in History View”. The result is the value history
shown in the History View of Figure 1. During the execution the value of the array field

102 C. Hermanns and H. Kuchen

c[2] has changed 4 times. The History View shows the value, the full method signa-
ture, the timestamp, and the source code line of each value change. If we select the last
entry in the list, where the value is changed to 9, the source code line which caused
the value change is highlighted in the source code editor. Furthermore, the event with
the timestamp 235 is selected in the Event List View. At this point all views of JHyde
look exactly as shown in Figure 1. A further look at the History View tells us that the
correct value was already assigned to the c[2] in line 10 by the same method call at
timestamp 227. The value 9 should have been assigned to c[3]. Hence, line 12 must
contain the defect.

Note that we could have used the Variable History View even at an earlier point in
the debugging process to directly jump to the bug. For example, if we evaluate the result
of the call sort, we notice the erroneous result a = [1, 4, 9, 7]. Via the value history
for c[2] we can directly jump from the method call sort to the buggy method call
merge, skipping the previous children of sort. Thus, the value history is an excellent
tool if we detect a variable with a wrong value. In this case we can easily track back to
the origin of the infected program state.

Nevertheless, there are cases where the program state is infected but we do not have
a wrong value which we can use to track back to the program bug. This is the case if the
program state is not infected due to wrong values, but due to missing values. For exam-
ple, consider a merge sort implementation with a defect merge method which misses
lines 11-12. For the input [4,9,1,7] this implementation would return a=[1,4,7,7]. Al-
though, the value of a[3], which must be 9, is not correct, we cannot use the value
history of a[3] to track back to the origin of incorrect value. During the computation
a[3] is assigned two values. The first value (7) is assigned during the initialization of
a in the main method and the second value, which is also 7, is assigned during the
second invocation of the merge method. As both value assignments are correct, the in-
correct value of a[3] is a missing assignment and not a wrong assignment. We cannot
track missing assignments with the Value History. In this cases we need the declarative
debugger to identify the buggy method.

If we use a D&Q strategy based on edge coverage instead of the top-down strategy
for declarative debugging, the debugger would compute the weight of each node in
the CT w.r.t. edge coverage. At the beginning of the declarative debugging process the
weight of the nodes shown in the CT View is: 46, 45, 7, 8, 8 ,7, 10, 0, and 0 (preorder
traversal). Hence, the debugger would at first ask the user to classify the last call of
merge, whose weight 10 is closest to 46

2 . In this case the buggy method call is found
after the classification of only one method call, while 6 method calls can be skipped.

5 Implementation

Figure 2 shows the architecture of our declarative debugger. It consists of four basic
components: the Instrumentation Engine, the Transmission Engine, the Recording En-
gine, and the Debugging Engine. The components are distributed over the Debugger
JVM which conducts the debugging process and the Debuggee JVM which executes
the debuggee program. The distribution over two separate JVMs decouples the execu-
tion process from the debugging process.

Hybrid Debugging of Java Programs 103

Debuggee
(instrumented

bytecode)

Instrumentation
Engine

Classloader

Recording
Engine

Debugging
Engine

class files

Transmission
Engine

Debuggee VM

Debugger VM

Fig. 2. Architecture of the declarative debugger

During the class loading process of the Debuggee JVM the bytecode of the loaded
class is manipulated by the Instrumentation Engine. After the instrumentation process,
the bytecode of the loaded class contains additional instructions which invoke debug-
ging event methods of the Transmission Engine. The instrumentation is done with the
ASM [12], a fast bytecode manipulation framework based on the visitor pattern [13].
The instrumentation process of ASM is controlled by user-defined visitors which inject
additional bytecode into the visited class. As the instrumentation process is conducted
during the dynamic class loading process at bytecode level, it is transparent from a pro-
grammer’s point of view. In a debugging session a programmer will always work with
the original source code.

The Transmission Engine forwards the received events to the Recording Engine in
the Debugger JVM. To transmit the events, they are converted to a byte stream in the
Debuggee JVM and sent to the Debugger JVM via a socket connection. In the Debugger
JVM the Transmission Engine reconstructs the debugging events form the received byte
stream and forwards them to the Recording Engine.

The Recording Engine stores the received events in an event file on the hard disk in
chronological order. During the debugging process the execution data is lazily loaded
from the event file and transferred to the Debugging Engine.

To reconstruct the program state of the debuggee program at an arbitrary time in the
execution history the Recording Engine could theoretically reproduce the effect of all
events from the beginning of the execution history to the desired point in the execution
history. Especially for larger execution histories this would be much to slow to allow the
user to navigate the execution history and the program state in real time. The debugging
process would be unacceptably slow.

To speed up the reconstruction of the program states the Recording Engine constructs
3 additional data structures which are kept in the memory of the Debugger VM. The
first data structure stores the static structure of the debuggee program, i.e. its classes,
methods, fields, and local variables. The second structure is the CT of the debuggee

104 C. Hermanns and H. Kuchen

program, i.e. a tree representing the method call history. The third structure stores data-
flow information. It stores an array of timestamps for every variable of the debuggee
execution. Each timestamp refers to the time in the execution history when the value of
the associated variable changed. For each timestamp the Recording Engine can directly
compute the position of the associated event in the event file.

Writing the whole execution data to the event file and keeping only three data struc-
tures in memory to speed up the navigation, is a trade-off between memory usage and
required effort to navigate the execution data.

The user interface of JHyde, i.e. the set of views as described in section 3, is imple-
mented by the Debugging Engine. Hence, the Debugging Engine’s task is to present the
execution data to the user in a accessible way and conduct the interactive debugging
process.

6 Test Results

To test the benefit of the coverage-based D&Q strategy, we have conducted the declar-
ative debugging process with a set of selected test programs. For each of the programs
which originally contained no errors we created several test samples. Each sample was
generated from the original program by changing one distinct line of the source code
such that the resulting test sample would contain a common programming error. This
way we have created a set of 32 test samples out of 5 different programs (Avl: 10 test
cases, binary tree: 5, B tree: 7, heap sort: 5, hash table: 5). Using the declarative de-
bugger component of JHyde we have determined the number of questions a user would
have to answer, i.e. how many method calls he has to evaluate, before the erroneous
method is found. The debugging process has been conducted four times for each error
sample using top-down (TD), ordinary D&Q, D&Q by def-use chain coverage (DUC),
and D&Q by edge coverage (Edge) strategies. DUC and Edge have been conducted
with p = 0.6 and p = 0.5, respectively. These values minimize the number of ques-
tions w.r.t. the set of test cases. The number of questions we have to answer for each of
strategy allows us to evaluate the efficiency of the different strategies.

Table 1 shows the test results. Column one indicates the name of the program which
was subject to debugging. The values in column 2 indicate the average size of the
generated CT. Column 3 shows the average number of trusted method calls in the
CT. Columns 4-7 contain the average number of answers necessary to find the buggy
method. Each column corresponds to one of the above mentioned strategies. On average
D&Q by edge coverage performs best, asking 7.66 questions, while the other strategies
yield 8.25 (D&Q by def-use chain coverage), 10 (D&Q), and 12.84 (top-down). The
ratio of classified method calls in columns 8-11 is calculated by dividing the average
number of answers by the average number of untrusted method calls in the computa-
tion. On average we have to validate 23% of the CT using top-down, 18% using D&Q,
15% using D&Q by def-use chain coverage, and 14% using D&Q by edge coverage.
Columns 12-14 show the relative savings, i.e. the percentage of questions that is saved
w.r.t. a top-down strategy. On average we save 22% with D&Q and 36% with D&Q by
de-use chain coverage. D&Q by edge coverage performs best saving 40% percent of
questions on average. The number of saved questions is nearly doubled w.r.t. ordinary
D&Q.

Hybrid Debugging of Java Programs 105

Table 1. Results of test cases processed with the declarative debugger of JHyde

Avg. # of Avg. number of Classified Savings [%]
method calls answers method calls[%]

Program Total Trusted TD D&Q DUC Edge TD D&Q DUC Edge D&Q DUC Edge
Avl 132.80 65.30 13.90 9.10 7.70 6.60 0.21 0.13 0.11 0.10 0.35 0.45 0.53
Binary tree 128.00 84.00 11.80 10.20 7.40 7.80 0.27 0.23 0.17 0.18 0.14 0.37 0.34
B tree 195.86 118.86 15.57 13.43 8.57 9.43 0.20 0.17 0.11 0.12 0.14 0.45 0.39
Heap sort 68.00 25.80 9.60 7.20 9.00 9.00 0.23 0.17 0.21 0.21 0.25 0.06 0.06
Hash table 73.40 22.40 11.20 9.60 9.00 5.80 0.22 0.19 0.18 0.11 0.14 0.20 0.48
Total Avg. 119.61 63.27 12.84 10.00 8.25 7.66 0.23 0.18 0.15 0.14 0.22 0.36 0.40

7 Related Work

The idea to apply declarative debugging outside the declarative programming paradigm
is not new. In 1998 Shahmehri and Fritzson presented an approach for declarative de-
bugging of the imperative language Pascal [14] which was further developed by the
same authors in [15]. The main difference of our approach w.r.t. these earlier proposals
is that Java is a language much more complex than Pascal. The declarative debugging
of programs including objects and object states introduces new difficulties.

There are several approaches which use an execution history to locate bugs in Java
programs. In a first step these methods trace and record the complete execution of the
debuggee program. In a second step the recorded information is used to identify errors
in the debuggee program. For example, JavaDD [16] follows a query-based approach,
storing events occurring during the debuggee execution in a deductive database. The
database can be queried to retrieve the states of different program entities (variables,
threads, etc.) at different moments of the computation history to infer where the bug is
located. Another approach is omniscient debugging [3] which can trace the execution of
the debuggee program back and forth in time. Our debugger does also record the entire
execution of a debuggee program before the debugging process is started and it supports
omniscient debugging as well. But in contrast to these approaches, our debugger does
also support declarative debugging, which concentrates on the logic of method calls,
storing them in a structured way, i.e. the CT. The declarative debugging component
allows our debugger to guide the debugging process, deducing the wrong method from
user answers.

Hoon-Joon Kouh et al. [17] propose a debugging technique for Java which combines
algorithmic and step-wise debugging. In contrast to our work they neither present a tool
implementation nor do they present a solution to display side effects in an accessible
form. Furthermore, they use slicing techniques to reduce the size of the CT, while our
tool uses enhanced D&Q strategies.

JHyde is based on a declarative debugger we have developed for the Java program-
ming language [7]. In this paper we extend our declarative debugger to a hybrid debug-
ging tool which supports declarative and omniscient debugging. Furthermore, we have
developed and tested new declarative debugging strategies which enhance the D&Q
strategy by def-use chain and edge coverage information. These strategies improve our
previous answer-inference based approach. First our new optimization is guaranteed to
be correct and cannot infer any wrong answers, second the reduction of the debugging
effort is slightly more efficient.

106 C. Hermanns and H. Kuchen

As described by Silva [18] a lot of different strategies have been developed to reduce
the number of questions asked during declarative debugging. Like our approach some of
the more advanced strategies estimate the error probability of CT nodes based on previ-
ous user answers. However, none of these approaches is based on coverage information.
To the best of our knowledge, there exists no strategy which is based on data-flow and/or
control-flow coverage to calculate the error probability of nodes of the CT.

8 Conclusions and Future Work

We have presented a tool which enables the hybrid debugging of Java programs combin-
ing declarative and omniscient debugging methods. The major advantage of declarative
debugging compared to conventional debugging is that it works on a higher level of
abstraction. The tester is relieved from the task to inspect the state space after each in-
struction starting from some break point. By answering questions about the soundness
of some method calls the user can concentrate on the semantics. A major drawback
of declarative debugging is the fact, that we can only determine a buggy method call
but not the buggy statements inside a method. This downside is cured by the fact that
JHyde does also support omniscient debugging. With omniscient debugging the user
can track the execution of a debuggee program statement-wise back and forth in time.
The combination of both debugging techniques JHyde can profit from the advantages
both methods, the abstraction of the declarative debugging method and the precision of
the omniscient debugging method.

The JHyde user interface consists of four views which allow the user to inspect and
navigate the execution history of a debuggee program effectively. At any point in the
debugging process the user is free to choose the most suitable views and/or debugging
method.

A particular novelty of our approach is the usage of code-coverage criteria such as
def-use chain coverage and coverage of the edges of the control-flow graph to calculate
the error probability of method calls. The error probability increases with the number
of covered entities, i.e. def-use chains or edges of the CFG. Furthermore, our strategy
takes previous user answers into account. The more often an entity is classified as valid
the lesser its contribution to the error probability of a method call.

We have conducted a number of tests, using different declarative debugging strate-
gies to debug a set of buggy Java programs. The results show that up to 40% of the
questions asked can be saved with our coverage-based D&Q strategy w.r.t. the ordi-
nary top-down strategy. Furthermore, our strategy is an efficient improvement to the
ordinary D&Q strategy. In our test scenario the number of questions saved could be
nearly doubled if D&Q is enhanced by coverage-based error probability. The improved
reduction of the debugging effort makes our debugger more suitable for real-world ap-
plications where the debugging effort has great influences on the costs of the software
development process.

In the future we plan to investigate how our hybrid debugging method can be ex-
tended to multi-threaded program executions. Although, our debugger is already capa-
ble of recording multi-threaded programs, there are still some problems to be tackled
regarding a multi-threaded hybrid debugging method. For example, it is much harder to
check the validity of method calls if their execution is interleaved.

Hybrid Debugging of Java Programs 107

References

1. Hailpern, B., Santhanam, P.: Software debugging, testing, and verification. IBM Systems
Journal 41, 4–12 (2002)

2. Zeller, A.: How Failures Come to Be. In: Why Programs Fail: A Guide to Systematic De-
bugging, pp. 1–26. Morgan Kaufmann (2005)

3. Lewis, B.: Debugging Backwards in Time. CoRR cs.SE/0310016 (2003)
4. Shapiro, E.Y.: Algorithmic Program DeBugging. MIT Press (1983)
5. Nilsson, H.: How to look busy while being as lazy as ever: the Implementation of a lazy

functional debugger. Journal of Functional Programming 11, 629–671 (2001)
6. Caballero, R., Rodrı́guez-Artalejo, M.: A Declarative Debugging System for Lazy Functional

Logic Programs. Electronic Notes in Theoretical Computer Science 64 (2002)
7. Caballero, R., Hermanns, C., Kuchen, H.: Algorithmic Debugging of Java Programs. Elec-

tronic Notes in Theoretical Computer Science 177, 75–89 (2007)
8. Hermanns, C.: JHyde - Eclipse plugin (2011),

http://www.wi.uni-muenster.de/pi/personal/hermanns.php
9. Eclipse Foundation: Eclipse IDE (2011), http://www.eclipse.org/

10. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 5th edn. McGrapw-Hill
(2001)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
The MIT Press (2001)

12. Object Web: Asm (2011), http://asm.ow2.org/
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Boston

(1995)
14. Shahmehri, N., Fritzson, P.: Algorithmic Debugging for Imperative Languages with Side-

Effects. In: Hammer, D. (ed.) CC 1990. LNCS, vol. 477, pp. 226–227. Springer, Heidelberg
(1991)

15. Fritzson, P., Shahmehri, N., Kamkar, M., Gyimothy, T.: Generalized algorithmic debugging
and testing. ACM Letters on Programming Languages and Systems 1, 303–322 (1992)

16. Girgis, H.Z., Jayaraman, B.: JavaDD: a Declarative Debugger for Java. Technical report,
Department of Computer Science and Engineering, University at Buffalo (2006)

17. Kouh, H.-J., Kim, K.-T., Jo, S.-M., Yoo, W.-H.: Debugging of Java Programs Using HDT
with Program Slicing. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K.,
Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp. 524–533. Springer, Heidelberg (2004)

18. Silva, J.: A Comparative Study of Algorithmic Debugging Strategies. In: Puebla, G. (ed.)
LOPSTR 2006. LNCS, vol. 4407, pp. 143–159. Springer, Heidelberg (2007)

http://www.wi.uni-muenster.de/pi/personal/hermanns.php
http://www.eclipse.org/
http://asm.ow2.org/

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 108–120, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Combined Constraint-Based Analysis for Efficient
Software Regression Detection in Evolving Programs

Anh D. Le, Tho T. Quan, Nguyen T. Huynh, Phung H. Nguyen, and Nhat-Van Le

Faculty of Computer Science and Engineering,
Hochiminh City University of Technology, Hochiminh City, Vietnam

tintinkool@gmail.com, {qttho,htnguyen,phung}@cse.hcmut.edu.vn,
ccnhatvan@yahoo.com

Abstract. Software regression is a bug that makes software stop functioning
normally after a certain event. In this paper, we investigate detecting regression
when software evolves to a new version. In this context, regression bugs occur
in parts of software that already passed testing process in the old version.
Hence, such kind of bugs is difficult to be discovered if normal strategy like
white-box testing is applied. Moreover, since both old and new versions must
be taken into account during the testing process, the computational cost is
usually high in this con-text.

Concolic testing in an emerging extension of white-box testing that can
reduce significantly the number of execution paths needed to be analyzed.
However, the typical concolic testing is not really efficient when dealing with
software regression. Thus, we propose a new approach based on combined
constraint to solve this problem, known as CTGE (Efficient Constraint-based
Test-cases Generation) approach. The soundness of our theoretical contribution
is formally proved and supported by some initial experiments conducted in
education environment.

Keywords: Constraint-based Test-case Generation, Regression Bugs, Evolving
Programs Debugging.

1 Introduction

A software regression is a bug which makes a feature stop functioning as intended
after a certain event. In practice, this kind of bug involves in many contexts like test-
ing documentation [8] or testing of component-based software [9].

In this paper, we investigate a situation where regression bugs regularly occur.
That is, when a program is evolved into a new version to meet new requirements or
just to refine the code, chances are that the new evolved program may accidentally
violate the original requirements.

So far, software practitioners have still been commonly using testing techniques to
detect program bugs. Traditionally, a set of test-cases will be generated for testing.
Basically, a test-case is a set of inputs, execution conditions and desired outputs
which can be tested by the system when functioning accordingly using some test

 Combined Constraint-Based Analysis for Efficient Software Regression Detection 109

procedures and test scripts. However, the generation of test-case is usually costly and
thus requiring a systematic method. White-box testing (or structural testing) tech-
nique, based on flow-control analysis, is typically applied in this case [6]. In this
method, the tested program is analyzed in terms of control flow and data flow. Thus,
the test-cases are generated accordingly to (1) exercise independent paths within a
module or unit; (2) exercise logical decisions on both their true and false side; (3)
execute loops at their boundaries and within their operational bounds; and (4) exercise
internal data structures to ensure their validity [10].

The main advantage of white-box testing is that it does not only detect the bugs,
but also help locate the piece of code that causes the problem. However, the primary
disadvantage of this method is the suffering of high execution cost. If we have a
program which has 10 independent if…then…else… statements, there are totally 210
execution paths needed to be explored. When dealing with evolving programs, this
problem is still even more crucial, since we must do the combined analysis on both
old and new versions.

There are many attempts which have been made to efficiently explore program
paths for test-case generation purpose, in which the infeasible combined paths are
eliminated [3]. Nowadays, the most prominent testing method based on the white-box
approach technique is concolic testing approach. In this approach, apart from concrete
execution of the tested program based on certain input, symbolic execution [4] is also
involved to resolve the path constraints by means of theorem provers. Hence, only the
feasible paths are considered for generating appropriate test-case, thus significantly
reducing the numbers of test-case needed for path coverage. This technique is then
adopted and exploited remarkably in various testing tools like PathCrawler [16],
jCUTE [13] and SAGE [5]. However, DASH [1] is perhaps the most efficient
concolic-based technique which uses abstraction to deal which real complex practical
programs.

Unfortunately, the typical white-box testing and its concolic-based variations are
not able to fully detect this regression in evolving programs, even when the flow
analysis is performed on both original and evolved versions. To make it clearer, in the
following discussion in Section 2, we will give some motivating examples on this
issue. To overcome this problem, we suggest an approach of using constraints
combined from path conditions of both original and evolved program versions. We
then formally prove the soundness of this approach, under the context of well-
conditioned programs. To make this approach practical, we also propose an
algorithm, known as CTGE (Efficient Constraint-based Test-case Generation) that
reduces the cost of test-case generation from exponential complexity to linear one.

The rest of the paper is organized as follows. Section 2 presents a motivating ex-
ample which shows that when a program evolves, neither test-cases generated merely
from the old version nor the new version are sufficient to detect regression bug.
Section 3 discusses our proposed approach on generating test-case by combining
execution paths from the previous version and the evolved version of a program into
constraints. In Section 4, we introduce the ultimate CTGE algorithm, an improvement
of the test-case generation algorithm to reduce its complexity significantly. Section 5
gives some experiments. Finally, Section 6 concludes the paper.

110 A.D. Le et al.

2 Motivating Example

To give a clear motivation of our work, we first define well-conditioned program as
follows.

Definition 1 (Well-conditioned Program). A program P is said well-conditioned
with respect to a property π, denoted as ∠ (P, π), if P produces same outcomes w.r.t.
π for all inputs satisfying same path conditions in P.

void f(int n){
if(n>0) return n = 2*n;

 else return n = -2*n;
}

Listing 1. An example program PX.

Example 1. In the example program PX given in Listing 1, there are two path
conditions C1: (n >0) and C2 : (n ≤ 0) corresponding to the execution paths of if and
else clauses. Let us consider two properties: (i) π1: the program result is a positive
number; and (ii) π2: the program result is a number dividable by 4. One can easily
observe that all inputs satisfying C1 (e.g. n= 4) will make π1 true. Similarly, all
inputs satisfying C2 (e.g. n = -7) will make π1 false. Thus, we can say PE is well-
conditioned w.r.t. π1 or ∠(PE,π1). In contrast, all inputs satisfying C1 or C2 cannot
guarantee the same outcomes w.r.t. π2. For instance, the inputs of n=3 and n=4 both
satisfy C1 but making π2 false and true respectively.
In the situation of testing a program P against a requirement R, it is easily observable
that if ∠(P,R) then a set of test-cases covering all of path conditions in P is sufficient
to detect any bugs if occurring.

Example 2. (Requirement RP) Write a function f taking an integer parameter n that
returns the absolute value of n.
For instance, let us consider the requirement RP given in Example 2. In Listing 2(a),
an implementation of f is given in program VP, which has two path conditions P1 =
(n>0) and P2 = ¬(n>0). Since ∠(VP,RP), two test-cases covering those two path
conditions of VP, e.g. n=5 and n=-7, are sufficient to ensure the correctness of VP

 1.

Example 3. (Requirement RE) Write a function f taking an integer parameter n that
returns the absolute value of n. In addition, if n is greater than 3, f will increase the
value of the global variable Global by 1.
Assume that the requirement is now upgraded in order to fulfill a new requirement RE
as present in Example 3. We say that RE is evolved from RP since we can consider RE

= RP∪RN, where RN is the additional requirement of “if n is greater than 3, f will
increase the value of the global variable Global by 1”. Then, VP is evolved
accordingly as a new version VE given in Listing 1(b).

1 In this paper we only discuss generating test-cases covering all execution paths. The test-

cases for extreme cases, for example n=0 for the program in Listing 1(a), are out of the scope
of this paper.

 Combined Constraint-Based Analysis for Efficient Software Regression Detection 111

int f(int n){
if(n>0) return n;
else return -n;

}
(a) The previous version Vp

int f(int n){
 if(n>3)
 {
 Global++;
 return n;
 }
 else return -n;
}

(b) The evolved version VE with regression bugs

Listing 2. Evolving programs

Since ∠(VE,RN), two test-cases covering all two path conditions Q1 = n >3 and Q2
= ¬(n>3) of VE, e.g. n = 5 and n = -3, are sufficient to test whether VE fulfills the
additional requirement RN. But those two test-cases cannot show that VE violates the
old requirement RP. For example, if the input is 2, the result will wrongly be -2.
Generally, this problem arises since we cannot always guarantee that ∠(VE,RP).

Table 1. Constraints generated

Conjunction Combined Constraint
Simplified

Constraints
Test-case

P1 ∧ Q1 n>0 && n>3 n >3 n = 5

P1 ∧ Q2 n>0&& !(n>3) 0 < n < 3 n = 2

P2 ∧ Q1 !(n>0)&& n>3 no test-case

P2 ∧ Q2 !(n>0)&& !(n>3) n <=0 n = -7

Note that even though this is only a toy problem, the logic error in Listing 2(b)

reflects a practical situation occurring in evolving programs. That is, while making
the evolved program satisfy the additional requirements, we may accidentally violate
the original requirements. We consider this kind of error as regression bugs as
introduced in Section 1.

The above-discussed examples also show that even though employing test-case
covering all path conditions in both previous and evolved versions of evolving
programs, we can still miss the regression bugs. In the next section, we will introduce
the combined constrain solving approach to deal with this problem.

3 Constraint Solving for Regression Bugs Detection

The motivating example in Section 2 has well illustrated that when a program evolves
from an old version to a new evolved version, both path conditions of two versions

112 A.D. Le et al.

should be taken into account when generating test-cases. The philosophy here is that a
program will be considered evolved when new requirement is added, like stated in
Example 1 and Example 2. Thus, the new program should satisfy not only new
requirements added but also old requirements as well.

In order to do this, we make use of an approach based on combined constraint as
follows. From the path conditions of both old and evolved versions, we generate
combined constraints by make conjunctions of the path conditions. Each combined
constraint is a conjunction of a pair of path conditions, one from the old version and
the other from the evolved version. Then, we generate test-cases that cover all of
possibly combined constraints. That is, we generate some input values that satisfy the
combined constraints. The constraint solving here is by no means an easy task to be
done manually. In practice, we use the theorem prover Z3 [1] to make the constraints
simplified and generate test-cases accordingly for each constraint generated.

For instance, Table 1 presents the combined constraints generated from programs
in Listing 1 and the test-cases generated accordingly. Obviously, we can detect the
regression bug when the test-case of n = 2 is executed.

The algorithm CTG to generate test-case is presented in Figure 1. In the algorithm,
there is a particular operation of solve_constraint included. This operation is in charge
of generating combined constraints by conjunction and makes them simplified, then
finds an appropriate test-case fulfilling the constraint. This operation is supposedly
handled by means of a theorem prover.

The CTG algorithm should be sufficient to find any regression bugs. In Theorem
1, we show that this statement is sound under Assumption 1.

Algorithm: CTG (Constraint-based Test-cases

Generation)

Input: VP,VE: Original and evolved programs

Output: T : set of test-cases

Operations

 T = Ø

 Foreach (path condition α ∈ VP)

 Foreach (path condition β ∈ VE)
 t = solve_constraint (α∩β)
 If t ≠ Ø then

 Add t to T

 Endif

 End for

 End for

Fig. 1. The CTG (Constraint-based Test-case Generation) algorithm

Assumption 1. Given a previous version VP that is well-conditioned w.r.t an original
requirement RP, i.e. ∠(VP,RP). When VP is evolved into a new version VN to fulfil new
requirement RN, then ∠(VN,RN).

 Combined Constraint-Based Analysis for Efficient Software Regression Detection 113

Theorem 1. The set of test-cases generated by CTG algorithm is sufficient to detect
regression bugs on a program VN evolved from original program VP when the
requirements evolved from RP to RN respectively.

Proof. If there is a regression bug ϑ occuring in VN, then exists an input I that results
in different outcomes of OP and ON w.r.t. RP when executed in VP and VN respectively.
Assume that I belongs to condition paths α∈VP and β∈VN respectively. Since
∠(VP,RP) and ∠(VN,RN); and RP⊂RN then ∠(VN,RP), any input generated from the
combined constraint α∩β will result in the same outcome OP and ON w.r.t. RP when
executed in VP and VN respectively. Since I∈α and I∈β then α ∩ β ≠∅, i.e. there is at
least an input I’∈α∩β existing and will be generated when the CTG algorithm tries to
make all possible combinations of condition paths between VP and VN, thus causing
the corresponding regression bug ϑ to be detected accordingly.

Complexity Analysis. It is easily observable that the CTG algorithm produces test-
cases by solving of possible constraints generated from the old version VP and the
evolved version VE. Thus, it suffers high complexity as it takes Ο(N×M) times to
make a solver process all constraints where N and M are the path conditions on VP and
VE respectively. In the next section, we introduce the CTGE algorithm, an enhanced
algorithm that only involves solver to process solvable constraints, thus improving
significantly the performance of test-case generation process.

4 The CTGE Algorithm

Among the 4 constraints presented in Table 1, there are 3 solvable constraints and one
unsolvable one (i.e. a constraint that we cannot find any test-case/input satisfying it).
However, the CTG algorithm requires a solver to process unnecessarily all of 4
constraints. To overcome this problem, in the new version of CTGE algorithm
presented in this section, we will take into account only solvable constraints. The
CTGE algorithm is shown in Figure 2.

The major improvement of CTGE
 is that it does not try to make all possible

combined constraints. Instead, CTGE processes each path condition of the original
version VP. For each path condition, CTGE first produces an appropriate test-case.
Then, it calls a subprocedure named combine to further process.

For every test-case t processed in combine, a specific function named
symbolic_exec will be called to find the corresponding path conditions of t when
executed in VP and VE respectively. The operation of symbolic_exec will perform
symbolic execution, a classical technique to trace the execution path of given input by
tracking symbolic rather than actual values [7]. Based on the retrieved path
conditions, combine keeps generating relevant constraints and calls itself recursively
to generate more suitable test-cases. During the whole process of CTGE, we also make
use of a special constraint named Cmark which marks the explored parts in the space of
test-case domain. Therefore, CTGE

 can avoid duplication when generating constraints
and test-cases.

114 A.D. Le et al.

Algorithm: CTGE (Efficient Constraint-based
Test-cases Generation)
Input: VP,VE: Original and evolved programs
Output: T : set of test-cases
Operations
T = Ø
Cmark = Ø
Foreach (path condition χ ∈ VP)
 t = solve_constraint (χ∩¬Cmark)
 combine(t)
End For

SubProcedure combine (test-case t)
Begin
 add t to T
 α = symbolic_exec(t,Vp)
 β = symbolic_exec(t,VE)
 Cmark = Cmark ∪ (α ∩ β)
 if (α∩¬β∩¬Cmark) ≠∅ then
 combine(solve_constraint(α∩¬β∩¬Cmark))
 end if
 if (¬α∩β∩Cmark) ≠∅ then
 combine(solve_constraint(¬α∩β∩Cmark))
 end if
End

Fig. 2. Efficient Constraint-based Test-case Generation (CTGE) algorithm

Theorem 2. The set of test-cases generated by CTGE algorithm is sufficient to detect
regression bugs on a program VN evolved from old program VP when the
requirements evolve from RP to RN respectively.

Fig. 3. A graph representation of combined constraints

Proof. We consider an undirected graph G = <V,E> constructed as follows. Each
vertex v in V corresponds to a solvable combined constraint generated by the CTE
algorithm. We add an edge eij= (vi,vj) to E if vi and vj are subcondition of a path
condition in either VP or VN.

For example, in Figure 3 is the graph constructed when we consider the program
versions presented in Figure 1 and the combined constraints in Table 1. In the
graph, there are three vertices corresponding to three solvable constraints in Table
1. There is an edge connecting v1 and v2 since their constraints are both
subconditions of P1. Similarly, v2 and v3 are connected since their constraints are
both subconditions of Q2 Next, we relate the test-case generation process in the
CTGE as graph traversal carried out in G. A vertex v is considered visited if CTGE
produces a test-case satisfying the corresponding combined constraint of v.
According to Theorem 1, if all vertices in G are visited after CTGE finishes, then
CTGE generates sufficient test-cases to detect any regression bugs.

 Combined Constraint-Based Analysis for Efficient Software Regression Detection 115

When CTGE begins, it starts by a certain test-case I generated to satisfy a path
condition α of VP. Using symbolic execution, one can determine the path condition β
of VN which I belongs to. It means that a vertex q = α∩β just has been initially
visited.

Consider the formula α∩β referring to a vertex q’, which should be connected to q
since α∩β and α∩β are both subcondition of α. Let Cmark be the formula representing
all of vertices already visited (i.e. the combined constraints whose corresponding test-
cases have been generated already). Similarly reasoning, we finally obtain that the
two formulas α∩β∩Cmark and α∩β∩Cmark should represent all vertices connecting to
q which have not been visited. By recursively solving those formulas and updating
Cmark in the subprocedure combine, CTGE will iteratively visit all of vertices in the
connected component which q belongs to.

Lastly, one can note that by checking all of path conditions of VP, CTGE will travel
to all possible connected components of G. Thus, all vertices of G will be logically
visited when CTGE performed and there are no vertices doubly visited.

For instance, consider using CTGE for generating test-case for evolving programs
in Listing 1. Firstly, the two path conditions P1 and P2 are collected. Then, CTGE

generates randomly a test-case for a path condition. Let it be n = 4 for P1. Performing
symbolic execution on the test-case, one can realize that the test-case falls into the
combined constraint P1∧Q1 = n>0 && n>3 = n >3. Then, CTGE

 tries to solve the
formula P1∧Q1∧Cmark with Cmark being updated as Cmark =P1∧Q1. We have
P1∧Q1∧Cmark = n>0 && (n>3) && (n>3) = n>0 && n≤3. Then, a test-case is
generated accordingly, e.g. n = 2.

Next, combine(2) is invoked, which is corresponding to the constraint P1∧Q2 with
Cmark being updated as n > 3 ∪ n>0 && n ≤3 = n> 0. We then have P1∧Q2∧Cmark =
n>0 && n>3 && !(n>0) = ∅, then then this formula is not considered.

int grade(int n){
 if(n > 100) return Invalid;
 else if(n>=90) return Excellent;
 else if(n>=80) return Very good;
 else if(n>=70) return Good;
 else if(n>=60) return Fairly good;
 else if(n>=50) return Average;
 else if(n>=0) return Fail;
 else return Invalid;
}

(a) Student grading program – preliminary version

int grade(int n){
 if(n > 100) return Invalid;
 else if(n>90) return Excellent;
 else if(n>80) return Very good;
 else if(n>70) return Good;
 else if(n>60) return Fairly good;
 else if(n>50) return Average;
 else if(n>0) return Fail;
 else return Invalid;
}

(b) Student grading program – final version

Listing 3. Evolving programs

116 A.D. Le et al.

Meanwhile, we have P1∧Q2∧Cmark = !(n>0) && !(n>3) && !(n>0) = n≤0.
Solving this constraint, we, for instance, get a new test-case of n = -7. Then,
combine(-7) is invoked accordingly. At the moment, Cmark is updated as n > 0 ∪
!(n>0) && !(n>3) = n > 0 ∪ n ≤ 0, making P2∧Q2∧Cmark = P2∧Q2∧Cmark
=P1∧Q1∧Cmark = ∅. Thus, the algorithm stops with no more test-cases generated.

Complexity Analysis. Performing elementary analysis on CTGE, one can realize that
CTGE will involve the embedded solver 2K times, with K is the number of test-cases
generated and K ≤ N+M where N and M are the path conditions on VP and VE
respectively. If we take into account the actions of generating N path conditions on
VP, the total complexity of CTGE will be Ο(2K +M) ~ Ο(3N +M) which should be
improved significantly compared to that of the original CTG.

To illustrate this, consider the two versions of evolving programs given in Listing
3. The program intends to grade students’ works. After the preliminary version is
finished as presented in Listing 3(a), a new version is released afterward as presented
in Listing 3(b).

Table 2. Initial example test-cases for preliminary version in Listing 2

Condition Test case

n>100 103

n>=90 && n<=100 91

n>=80 && n<90 85

n>=70 && n<80 73

n>=60 && n<70 66

n>=50 && n<60 54

n>=0 && n<50 32

n<0 -7

Table 3. Total test-cases generated for evolving versions in Listing 2

Test case α β α∩¬β ¬α∩β

103 n>100 n>100 ∅ ∅
91 n>=90 && n<=100 n>90 && n<=100 new test-case: 90 ∅
90 n>=90 && n<=100 n>80 && n <=90 ∅ ∅
85 n>=80 && n<90 n>80 && n<=90 new test-case: 80 ∅
80 n>=80 && n<90 n>70 && n<=80 ∅ ∅
73 n>=70 && n<80 n>70 && n<80 new test-case: 70 ∅
70 n>=70 && n<80 n>60 && n<=70 ∅ ∅
66 n>=60 && n<70 n>60 && n<=70 new test-case: 60 ∅
60 n>=60 && n<70 n>50 && n<=60 ∅ ∅
54 n>=50 && n<60 n>50 && n<=60 new test-case: 50 ∅
50 n>=50 && n<60 n>0 && n<=50 ∅ ∅
32 n>=0 && n<50 n>0 && n<=50 new test-case: 0 ∅
0 n>=0 && n<50 n<=0 ∅ ∅
-7 n<0 n<=0 ∅ ∅

 Combined Constraint-Based Analysis for Efficient Software Regression Detection 117

There are 8 path conditions in each version, therefore the CTG algorithm will
make use of the solver 64 times to generate test-cases. Meanwhile, when CTGE is
performed, it will basically generate 8 initial test-cases covering 8 path conditions of
the preliminary program as presented in Table 2 (the test-cases presented here are just
of example basis).

Then, when the algorithm advances, there will be 6 additional test-cases generated
corresponding to non-empty domain marked in Table 3. Totally, the solver only needs
to be involved 14 times for generating test-cases and 8 times for initial path
conditions.

Table 4. Programming problems used as experimental data

No Problem Constraint
Solver calls

(CTG)

Solver calls

(CTGE)

1 Leap year checking 14 42 40

2 Triangle classification 22 89 31

3 Date validation checking 62 736 90

4 Time validation checking 28 96 37

5 Factorial computing 28 96 58

6 Calculating xy 28 96 56

7 Prime number checking 56 384 92

8 Sum of 1..n 25 84 54

Table 5. Bugs detected by white-box and combined constraints approach

Problem No Real Bugs Detected by white-box Detected by DART Detected by CTG(E)

1 12 11 11 12

2 10 6 8 10

3

4

5

6

7

8

12

13

14

11

12

12

10

10

14

11

12

12

10

11

14

11

12

12

10

13

13

11

12

11

Total 96 86(89%) 89 (93%) 94(98%)

5 Experimental Results

In order to evaluate the performance of the CTGE algorithm, we have conducted an
experiment in the education domain. The requirements to be fulfilled in this
experiment are non-trivial programming problems given to students. The list of
problems is given in Table 4, which also gives the information of the combined
constraints make from path conditions. For loop-based programs, the path conditions
are computed using the coverage analysis technique [14] in which the loops are

118 A.D. Le et al.

enforced to repeat respectively 0,1,2 and more than 2 times. Thus, our algorithm may
have some limitations on programs with complicated loops.

The dataset used in this experiment is collected from the works of 50 students. In
fact, there are actual marked programming works. Basically, for each programming
problem, the teacher will produce a sample solution. In order to mark student works
automatically, some test-cases are generated for testing. However, as discussed in
Section 2, if we apply the typical white-box approach for generating test-cases, the
test-cases are not sufficient to detect all of bugs in student works, even though both
sample solutions and actual students’ works are concerned when test-cases are
generated. We also did experiment using DART algorithm, considered as the most
popular concolic-based technique.

When manually inspecting, we observe that there are only 89% students’ bugs
detected using white-box approach. Exact information on improvement of bug
detection is given in Table 5. When the constraint-based approach is applied with
teachers’ sample solutions playing the roles of original versions and student works
evolved versions, the performance of bug detection is significantly improved with
98% bugs detected. Few bugs are still missed because the Z3 solver fails to resolve
some complex non-linear expression in path conditions.

As compared to white-box testing, DART only improves slightly in terms of bug
detection. However, DART reduced significantly the computational time due to its
capability of path exploration reduction, as presented in Figure 4. As compared to
CTG and white-box testing, DART outperforms in terms of execution time. However,
with the improvement made on CTGE, the improved algorithm is comparable with
DART in terms of speed and therefore practical for dealing with real programs.

Fig. 4. Execution time of testing methods

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Problems

White-box

CTG

CTG(E)

DART

 Combined Constraint-Based Analysis for Efficient Software Regression Detection 119

6 Conclusions

In this paper, we propose an approach for effective detection of software regression in
evolving programs. First, we explain by a means of motivation example why white-
box testing may fail to discover regression bugs. Then, we introduce a concolic-based
approach to detect the regression bugs. Instead of individually performing concolic
testing on both old and new programs, we suggest combining constraints extracted
from both programs, thus ensuring the detection of any regression error. Our approach
is presented theoretically with formal definitions and proof provided. To avoid the
explosion path problem, we refine the approach as ultimate algorithm known as CTGE
whose complexity is reduced significantly to linear time.

We have also preliminary tested our approach in education environment, with
dataset being programming works collected from students. The experimental results
showed that the CTGE algorithm achieved better performance in terms of bug
detection coverage and execution time, compared to the white-box testing and DART,
a popular concolic-based testing. It also shows potential to apply CTGE to industry
environment.

Ackowledgements. This work is part of the Higher Education Project 2 project
(supported by World Bank and Hochiminh – Vietnam National University).

References

1. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J., Tetali, S.D., Thakur, A.V.:
Proofs from Tests. IEEE Transactions on Software Engineering (2012)

2. Bjørner, N., Moura, L.D.: Z310: Applications, Enablers, Challenges and Directions. In:
Proceedings of Workshop on Constraints in Formal Verification (2009)

3. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: USENIX Symposium on Operating
Systems Design and Implementations (2008)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, vol. 40(6), pp. 213–223. ACM (2005), doi:10.1145/1065010.1065036

5. Godefroid, P.: Random testing for security: blackbox vs. whitebox fuzzing. In:
Proceedings of the 2nd International Workshop on Random Testing: Co-located with the
22nd IEEE/ACM International Conference on Automated Software Engineering, p. 1.
ACM (2007), doi:10.1145/1292414.1292416

6. Hutcheson, M.L.: Software Testing Fundamentals-Methods and Metrics. Wiley Publishing
(2003)

7. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7),
385–394 (1976), doi:10.1145/360248.360252

8. Morasca, S., Taibi, D., Tosi, D.: T-DOC: A Tool for the Automatic Generation of Testing
Documentation for OSS Products. In: Ågerfalk, P., Boldyreff, C., González-Barahona,
J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 200–213. Springer,
Heidelberg (2010)

120 A.D. Le et al.

9. Orso, A., Harrold, M.J., Rosenblum, D., Rothermel, G., Soffa, M.L., Do, H.: Using
component metacontent to support the regression testing of component-based software. In:
Proceedings of IEEE International Conference on Software Maintenance (2001)

10. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw Hill, Boston
(2001)

11. Qi, D., Roychoudhury, A., Liang, Z.: Test generation to expose changes in evolving
programs. In: Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, pp. 397–406. ACM (2010), doi:10.1145/1858996.1859083

12. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
vol. 30(5), pp. 263–272. ACM (2005), doi:10.1145/1081706.1081750

13. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-
Checking Tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423.
Springer, Heidelberg (2006)

14. Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations. Rocky Nook, California
(2006)

15. Wang, T., Roychoudhury, A.: Dynamic slicing on java bytecode traces. ACM Transactions
on Programming Languages and Systems 30(2) (2008), doi:10.1145/1330017.1330021

16. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: Automatic Generation of Path
Tests by Combining Static and Dynamic Analysis. In: Dal Cin, M., Kaâniche, M.,
Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer, Heidelberg
(2005)

Requirements-Driven Iterative Project Planning

Yves Wautelet1, Manuel Kolp2, and Stephan Poelmans1

1Hogeschool-Universiteit Brussel, Brussels, Belgium
2Université Catholique de Louvain, Louvain, Belgium

{yves.wautelet,stephan.poelmans}@hubrussel.be,
manuel.kolp@uclouvain.be

Abstract. Organizational modeling with the i* framework has widely been used
for model-driven software development adopting a transformational approach,
notably within the Tropos process. Its high-level representation elements allow
to partition the software problem into adequate and manageable elements (ac-
tors, goals, tasks, resources and dependencies) leading to an agent-oriented de-
sign, and eventually an implementation with agent technologies (JACK, Jadex,
Chimera Agent, ...). This paper proposes to use the i* framework for iterative
software planning; each of the goals from the i* strategic dependency model are
evaluated on the basis of the (high-level) threats they face and the expected qual-
ity factors. This allows to determine a priority among the model goals and “feed”
an iterative template to plan the whole project realization. This framework is thus
meant to be applied during the first iteration of the project for model-driven soft-
ware project management. The development of a production management system
in the steel industry is used as an example.

1 Introduction

Due to benefits and advantages such as efficient software project management, con-
tinuous organizational modeling and requirements acquisition, early implementation,
continuous testing and modularity, iterative development is more and more adopted by
software engineering professionals especially through methodologies such as the Uni-
fied Process inspired ones (RUP, OpenUP, EUP, AUP, ... [8–10, 12]). The idea govern-
ing the iterative approach is to decompose a software development process into a series
of manageable entities avoiding to face as a whole, every aspect of the project. More-
over, variable and non-measurable effort is spent on each of the engineering disciplines
during every iteration for fast prototyping and early testing. Obviously, the most risky
issues i.e., the most difficult to be expressed by the users, understood by the analysts
or those addressing the most sensitive issues (such as security, flexibility, adaptabil-
ity,...) receive highest priority. Consequently, these “critical” questions are dealt with
first so that the development team receives feedback from users and from the whole
system environment early on. This improves the probability of adequately meeting user
requirements and getting the right adoption of the system into its environment.

Most software methodologies based on the agent paradigm use a pure waterfall
software development life cycle (SDLC) or advise their users to repeat stages “itera-
tively” during the project in an ad-hoc way. One main reason resides in the fact that no

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 121–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 Y. Wautelet, M. Kolp, and S. Poelmans

theoretical framework to support this way of proceeding has ever been defined and pub-
lished. We believe that iterative development requires a formal or semi-formal manage-
rial framework to support dynamic requirements and risk-driven development planning
so that we require an adequate way of breaking the software problem into independent
manageable entities and then to prioritize them to plan their development and evaluate
their achievement.

Tropos [4] is an agent-oriented requirement-driven methodology that uses the i*
(i-star) modeling framework [17, 18] during the analysis stage; i* defines advanced
organizational modeling features and semantics in the form of agents, goals, tasks and
resources. This allows to partition a software problem on the basis of the agent paradigm
which is the main reason why we have chosen to extend Tropos with an iterative tem-
plate and use the i* goals as fundamental entities to decompose the problem into several
aspects. Let us note that the research is actually generic enough to be adopted to extend
other agent-oriented software methodologies. Iterative planning is here based on the i*
strategic dependency diagram’s goals. Moreover, when planning a project with an iter-
ative SDLC, one needs a generic process template. For this matter, we define, in this
paper, an “UP-compliant” reference framework in line with existing theory on iterative
SDLCs. The contributions of this paper include this iterative template and a planning
method illustrated with a running example based on the development of a production
management system in the steel industry.

The paper is structured as follows: Section 2 overviews a proposal for an itera-
tive template for Tropos developments. Section 3 presents a model-driven architecture
method for iterative planning in the context of I-Tropos developments. This method
deals with threats and quality factors as fundamental criterias for goal prioritization.
Section 4 points to related work and finally Section 5 gives the reader a conclusion.

2 Iterative Template

The first proposal of this paper is to adopt the traditional Tropos models and stages
to define a project management template used to drive the software process. We also
propose a common engineering terminology.

An “I-Tropos development” is an extension of the Tropos methodology, made of
disciplines iteratively repeated while the relative effort spent on each one is variable
from one iteration to another. The phase and discipline notions are often presented as
synonyms in the software engineering literature. Indeed, Tropos is described in [4] as
composed of five phases (Early Requirements, Late Requirements, Architectural De-
sign, Detailed Design and Implementation). However, the Software Process Engineer-
ing Metamodel [1] defines a discipline as a particular specialization of Package that
partitions the Activities within a process according to a common “theme”, while a
phase is defined as a specialization of WorkDefinition such that its precondition defines
the phase entry criteria and its goal (often called a “milestone”) defines the phase exit
criteria. The Unified Process [12] defines disciplines as a collection of activities that
are all related to a major “area of concern” while the phases here are not the tradi-
tional sequence of requirements analysis, design, coding, integration, and test. They are
completely orthogonal to the traditional phases. Each phase is concluded by a major

Requirements-Driven Iterative Project Planning 123

milestone. In order to be compliant with the most generic terminology, traditional Tro-
pos phases will be called disciplines in our software process description since “they
partition activities under a common theme”. In the same way, phases will be considered
as groups of iterations which are workflows with a minor milestone.

In I-Tropos, the Organizational Modeling and Requirements Engineering disciplines
respectively correspond to Tropos’ Early and Late Requirements disciplines. The
Architectural and Detailed Design disciplines correspond to the same stages of the
traditional Tropos process. I-Tropos includes core disciplines, i.e., Organizational Mod-
eling, Requirements Engineering, Architectural Design, Detailed Design, Implementa-
tion, Test and Deployment but also support disciplines to handle the project development
called Risk Management, Time Management, Quality Management and Software Pro-
cess Management. There is little need for support activities in a process using a waterfall
SDLC since the core disciplines are sequentially achieved once for all. However, for an
iterative process, the need for support disciplines to manage the whole software project
is from primary importance to precisely understand which project aspect to work on
(and through which activity) at a specific time and with the best resources. I-Tropos
process’ disciplines are described extensively in [15].

Using an iterative SDLC implies repeating process’ disciplines many times during
the software project. Each iteration belongs to one of the phases usually four to six
depending on the process itself, four in our case. We relate to the phases defined in
the UP-based methodologies (RUP, OpenUP, EUP, ...) but are redefined here to better
match with the Tropos specificities. These phases are achieved sequentially and have
different goals assessed at milestones through knowledge and achievement oriented
metrics. Phases are informally described into the next section. Figure 1 offers a two
dimensional view of the I-Tropos process depicting the disciplines on Y-axis and the
four different phases they belong to on X-axis.

2.1 Core Disciplines

The I-Tropos process has been fully described using the Software Engineering Process
Metamodel in [15] that details each process’ Discipline, Activity, Role, WorkDefinition
and WorkProduct, so that it can be used as a reference, template, pattern or guide for
managing the system project. A lightened overview is given below. As already pointed
out, the first four disciplines are inspired by the Tropos original stage.

– the Organizational Modeling discipline aims to understand the problem by studying
the existing organizational setting;

– the Requirements Engineering discipline extends models created previously by in-
cluding the system to-be, modeled as one or more actors;

– the Architectural Design discipline aims to build the system’s architecture specifi-
cation, by organizing the dependencies between the various sub-actors identified so
far, in order to meet functional and non-functional requirements of the system;

– the Detailed Design discipline aims at defining the behavior of each architectural
component in further detail;

– the Implementation discipline aims to produce an executable release of the applica-
tion on the basis of the detailed design specification;

124 Y. Wautelet, M. Kolp, and S. Poelmans

Fig. 1. I-Tropos: Iterative Perspective

– the Test discipline aims on evaluating the quality of the executable release;
– the Deployment discipline aims to test the software in its final operational environ-

ment.

2.2 Support Disciplines

These support disciplines provide features to support the software development on a
particular project i.e., tools to manage threats, quality factors, time, effort, resources
allocation but also the software process itself. All those features can be regrouped onto
the term software project management [11].

– Risk Management is the process of identifying, analyzing, assessing risk as well
as developing strategies to manage it. Strategies include transferring risk to an-
other party, avoiding risk, reducing its negative effects or accepting some or all of
the consequences of a particular one. Technical answers are available to manage
risky issues. Choosing the right mean to deal with particular risk is a matter of
compromise between level of security and cost. This trade-off requires an accurate
identification of the threats as well as their adequate evaluation;

– Quality Management is the process of ensuring that quality expected and contracted
with clients is achieved throughout the project. Strategies include defining quality
issues and the minimum quality level for those issues. Technical answers are avail-
able to reach quality benchmarks. Choosing the right mean to deal with quality
issues is a matter of compromise between level of quality and cost. This trade-off

Requirements-Driven Iterative Project Planning 125

requires an accurate identification of the quality benchmarks as well as their ade-
quate evaluation;

– Time Management is the process of monitoring and controlling the resources (time,
human and material) spent on the activities and tasks of a project. This discipline
is of primary importance since, on the basis of the risk and quality analyses, the
global iterations time and human resources allocation are computed; they are re-
vised during each iteration;

– Software Process Management is the use of process engineering concepts, tech-
niques, and practices to explicitly monitor, control, and improve the systems engi-
neering process. The objective of systems’ engineering process management is to
enable an organization to produce system/segment products according to plan while
simultaneously improving its ability to produce better products. In this context,
Software Process Management regroups the activities aimed to tailor the generic
process onto a specific project as well as improving the software process.

2.3 Process Phases

I-Tropos phases are inspired by UP-based processes and their milestones are based on
the metrics from [3]; each phase is made of one or more iterations. Disciplines are
conducted through the phases sequentially. Each phase has its own goal:

– the Setting phase is designed to identify and specify most stakeholders require-
ments, have a first approach of the environment scope, identify and evaluate project’s
threats and identify and evaluate quality factors;

– the Blueprinting phase is designed to produce a consistent architecture for the sys-
tem on the basis of the identified requirements, eliminate most risky features in
priority and evaluate blueprints/prototypes to stakeholders;

– the Building phase is designed to build a working application and validate develop-
ments;

– the Setuping phase is designed to finalize production, train users and document the
system.

3 Iterative Planning

This section describes a method for planning Iterative Tropos developments. The rele-
vant disciplines are illustrated on a running example, the development of an enterprise
information system in the steel industry.

3.1 Running Example: Coking Process

CARSID, a steel production company located in the Walloon region , is developing a
production management software system for a coking plant. The aim is provide users,
engineers and workers with tools for information management, process automation, re-
source and production planning, decision making, etc. Coking is the process of heating
coal into ovens to transform it into coke and remove volatile matter from it. Metal-
lurgical Coke is used as a fuel and reducing agent in the production of iron, steel,

126 Y. Wautelet, M. Kolp, and S. Poelmans

ferro-alloys, elemental phosphorus, calcium carbide and numerous other production
processes. It is also used to produce carbon electrodes and to agglomerate sinter and
iron ore pellets. The production of coke is one of the steps of steel making but further
details about other phases of the production process are not necessary to understand the
case study.

3.2 Agents for Steel Making

First of all, one question must be answered: How can an industrial domain such as the
steel industry that seems to belong to the past be interested in agent technologies? In
other words why agent-oriented modeling (and development) would be more indicated
than traditional - possibly object - technologies?

The steel industry is by essence an agent-oriented world. Indeed, factories as a cok-
ing plant or a blast furnace are made of hundreds of different types of agents: software
agents, machines, automates, humans, sensors, releases, effectors, controllers, pyrome-
ters, mobile devices, conveying belts, etc. These are agents in the sense that:

– they are autonomous and dedicated to specific tasks;
– they are situated in a physical environment;
– they can act upon their environment if this is necessary by warning users, proposing

solutions or taking autonomous action.

The whole I-Tropos project profile is illustrated in Figure 2. Rectangles represent the
relative effort spent on each of the disciplines during each of the phases. Typically, the
reader can notice that the effort spent on analysis disciplines (organizational modeling
and requirements engineering) is higher into the setting and blueprinting phases and
marginal for the building and setuping ones. On the contrary, the design (architectural
design and detail design) and implementation ones are marginal for the setting phase (at
the early beginning of the project) and higher in the blueprinting and building phases.
The project management disciplines (i.e., the support disciplines) are addressed on a
continuous basis with a stronger focus early on in the project (during the setting phase).
We mostly concentrates in this paper on disciplines and activities performed during
the setting phase since the focus is to describe a method for iterative planning. More
precisely concerning the engineering disciplines, we will only focus here on organi-
zational modeling and requirements engineering since they are the ones required for
model-driven planning. The support disciplines will be covered in detail to depict the
process of goal prioritization and development planning. However, the support disci-
pline Software Process Management is not covered here since it goes into too many
low-level details than we can afford in this research paper.

3.3 Engineering Disciplines

The i* framework can be evaluated on a series of nine features following [14]: refine-
ment, modularity, repeatability, complexity management, expressiveness, traceability,
reusability, scalability and domain applicability. Those features are exhaustively as-
sessed on the basis of a not supported/not well supported/well supported scale. Notably

Requirements-Driven Iterative Project Planning 127

Elab #1Elab #1

Org. Modeling

Construction Transition

Tran #1

Construction TransitionBuilding Setuping

Tran #1

Req. Engineering

Architectural Design

Detailed Design

Implementation

Test

Deployment

Project Management

BlueprintingSetting

Setting Blue #1 SetupingBlue #2 Blue #3 Build #1 Buildt #2 Build #3

Fig. 2. I-Tropos profile for the Carsid Coking Plant project

they enlighten what is clearly needed to extend the i* framework with mechanisms to
manage granularity and refinement. Indeed, [14] points out the lacks of mechanisms in
i* for defining granules of information at different abstraction levels to structure, hier-
archise or aggregate the semantics represented in the model. One of the flaws of i* is
actually that all of the organizational modeling elements are represented on a unique ab-
straction level with poor hierarchy and composition/aggregation. Moreover, except for
specifying abstract primitives as building blocks, analysts must be provided with guide-
lines to model a complete business setting through a set of organizational processes.
These building entities could then be enriched into a set of more specific components
that capture a certain organizational behavior.

These discussions are from primary concern in the perspective of finding scope ele-
ments, i.e., primary abstractions to drive the whole development process including sup-
port disciplines rather than just software engineering ones. Instead of defining a new
model reaching those criteria, as proposed in [6, 14, 16], we rather prefer to provide
guidelines to the software analysts in order to specify an i* strategic dependency model
where each of the goals can be taken as input into the I-Tropos process. Those include:

– a goal must be defined at the highest abstraction level such as the organizational
and strategic levels. Typically a scope element should describe a conceptual pro-
cess, e.g., one business process so that a goal must encapsulate a high level service
provided by the enterprise;

– lower level processes must be represented as tasks and a task must always be a
refinement of a goal;

– goals are expressed independently, overlaps must be avoided and, if not possible,
eventual redundancy among tasks of two different goals are addressed at a lower
level.

By respecting those rules, all the goals of the i* strategic dependency diagram (SDD)
are scope elements for breaking down the software project into manageable parts and

128 Y. Wautelet, M. Kolp, and S. Poelmans

are taken as input in the support disciplines as shown in the next sections. Figure 3 (also
reproduced at the end of the document) represents the SDD model built up following
those rules on the CARSID case study. Due to the lack of space we cannot detail each
of the diagram elements here, nevertheless the reader should pay attention to the facts
that:

– Human actors are represented as circles, for example the FADS Team is the team in
charge of handling the coal reception;

– Equipment actors are also represented as circles, for example the Coke Car is the
automotive wagon that transports the red-hot coke to the Quenching Tower;

– Resources are represented as rectangles, for example Coal is the raw coal received
at the coking plant;

– Goals represented as rounded rectangles, for example Baking is the process for
which the Oven Team supervises the baking of the Coal Charge in the Oven;

– Softgoals represented as clouds, for example Quality Coke represent the willingness
of Management to insure that the Coke produced in the coking plant is good as the
steel quality depends on the Coke quality;

– Tasks are represented as hexagonal forms, for example Bake is a sub-process of the
Baking goal only concerned with the physical transformation of the Coal Charge
into Coke.

3.4 Risk Management

The Risk Management discipline uses the goals identified into the organizational mod-
eling and requirements analysis disciplines as fundamental scope elements. Conse-
quently the identified threats are evaluated on the basis of their impact on these ele-
ments. We define a threat as an event that can negatively affect the proper resolution of
a goal or that can be the result of the misuse of a goal execution both in terms of goal
achievement and degradation of quality. A threat is expressed as an aggregate risk with
a quantification of the negative impact and a occurrence probability. A threat is later
refined into a series of softgoals with respect to the transformation process.

Risk analysis was done in collaboration with stakeholders estimating and validat-
ing the possible threats impact. Risk quantification is done on a double basis. Firstly
the general threat weight is estimated on the basis of the impact it can have on the
project under development, the system-to-be or the concerned organization. Secondly,
the involvement of each goal with respect to the risk evoked is evaluated following a
Low/Medium/High scale. This has led to the identification of six categories of threats:

– Requirements poorly understood: the system does not run as expected. This threat
is particularly faced by user-intensive software applications. This kind of risk has a
weight of 3 since huge resources can be devoted to produce an inadequate system;

– Facility damage: it concerns the damages caused to production facilities. A repre-
sentative example is when the pusher machine pushes while hot coke is stuck in the
oven, resulting in damaging the pusher machine and/or the oven’s walls. This kind
of risk has a weight of 2 since facilities repairs are cost-intensive;

Requirements-Driven Iterative Project Planning 129

Fig. 3. Organizational Modeling

– Mechanical error: it concerns errors due to machinery dysfunction. For instance, a
failure in the coke car engine, making impossible to cool down the coke. This risk
has a weight of 1 since it will delay production;

– Human injuries: it concerns injury (or even death) of the staff and/or workers. A
coking plant is a hazardous place; a replacement worker was recently killed in a
coke plant in Ohio, and other numerous accident of this type took place in the past.
This risk has a weight of 3 since it is very costly in terms of money and reputation;

– Human error: it concerns errors due to human intervention. This risk has a weight
of 2 since it can potentially lead to other risks.

– System failure: the information system is not available. The system may be down
and cannot be used for a certain amount of time. This risk has a weight of 1 because
it will delay production.

130 Y. Wautelet, M. Kolp, and S. Poelmans

T
h

re
a
t

w
e
ig

h
t

A
li

g
n

in
g

B
a
k
in

g

B
le

n
d

in
g

C
h

a
rg

in
g

C
o

o
li

n
g

C
re

a
ti

n
g

P
u

s
h

in
g

P
la

n
n

in
g

In
v
e
rs

in
g

L
o

a
d

in
g

M
a
n

a
g

e
P

ro
d

u
c
ti

o
n

P
ro

c
e
s
s

P
u

s
h

in
g

R
e
a
c
h

in
g

P
o

s
it

io
n

R
e
c
e
p

ti
o

n
H

a
n

d
li

n
g

R
e
c
o

rd
in

g
In

fo
rm

a
ti

o
n

R
e
c
o

rd
in

g
T

e
m

p
e
ra

tu
re

R
e
tr

ie
v
in

g
In

fo
rm

a
ti

o
n

S
e
tt

in
g

Requirements poorly understood 3 L H H

Facility damage 2 L L L M H L

Mechanical error 1 L L L M M L M M M L

Human injury 3 L L M L L L

Human error 2 M M H H

System failure 1 M L L L

Data loss 2 M M M

Goal Risk Exposure 1 3 1 7 2 10 5 10 18 13 5 10 13 5 10 8

Fig. 4. Project Goals Risk Exposure

– Data loss: some needed data is lost or never existed. It may happen if one of the
worker forgets to encode some data. This risk has a weight of 2 because it will
delay production and can potentially lead to other risks.

On the basis of the organizational model of Figure 3 and the risk analysis, the matrix
in Figure 4 summarizes the impact of the identified threats onto the modeled goals.
A specific goal is facing a particular threat is the marked and a measure is given. For
example the goal Aligning faces the threat Mechanical Error even if the probability of
occurence of the threat on the goal remains Low. The overall risk exposure of each goal
is finally computed on the basis of the threats they faced, the intensity and the threat’s
weight.

3.5 Quality Management

The Quality Management discipline uses the goals identified into the organizational
modeling and requirements analysis disciplines as fundamental scope elements. Con-
sequently the identified Quality Factors are envisaged on the basis of their impact on
them. Quality factors must firstly be distinguished from traditional softgoals in the sense
defined in [5]. Since we address a higher level business view of the system to-be, we
need an abstraction where we can specify the quality concerns of the system rather than
its states as softgoals would characterize. In this sense, softgoals describe functions of a
system while quality factors do not. We define a threat as a constraint onto one or more
goals in the form of a degree of excellence. A quality factor is later refined into a serie
of softgoals in the transformation process.

Quality analysis was done in collaboration with stakeholders estimating and validat-
ing the possible quality factors impact. That work has led to the identification of six
categories of quality factors:

Requirements-Driven Iterative Project Planning 131

– Reliability: Software Reliability is the probability of failure-prone software opera-
tion for a specified period of time in a specified environment. This quality factor
deals with the question: What level of trust can be placed in what the system does?

– Efficiency: Software Efficiency deals with execution time, the later can be influ-
enced by source code optimization, the use of performing algorithmic techniques,
faster sequential execution or code parallelization. This quality factor deals with
the question: How well are resources utilized?

– Usability: Software Usability is the capability of the software product to be under-
stood, learned, used and attractive to the user, when used under specified conditions.
This quality factor deals with the question: How easy is it to use?

– Integrity: Software Integrity is the ability of software to resist, tolerate and recover
from events that threaten its dependability. This quality factor deals with the ques-
tion: How secure is it?

– Testability: Software testability is a software characteristic that refers to the ease
with which some formal or informal testing criteria can be satisfied. This quality
factor deals with the question: How easy is it to verify conformance to require-
ments?

– Flexibility: Software flexibility is the ability of a software system to adapt to change.
This quality factor deals with the question: How easy is it to modify?

– Interoperability: Software interoperability is defined as the ability for multiple soft-
ware components written in different programming languages and distributed across
multiple platforms to communicate and interact with one another. This quality fac-
tor deals with the question: How easy is it to interface with another system?

Based on the organizational model in Figure 3 and the quality analysis, the matrix in
Figure 5 summarizes the impact of the identified quality factors onto the modeled goals.
A goal facing a particular quality factor is marked and a measure is given, for example
the goal Aligning faces the quality factor Efficiency even if the concern remains Low.
The overall quality factor exposure of each goal is finally computed on the basis of the
quality factors they faced, the intensity and the quality factor’s weight.

3.6 Time Management

The previous two sections studied the threats and quality factors impact on the goals
from the SDD. This section uses the global risk and quality exposures to determine
a goal priority. Indeed, within the defined iterative life cycle we will plan the goals’
realization. Goals with highest priority will firstly be designed, prototyped and tested
during the Blueprinting phase and then implemented during the Building phase. This
allows scrutinizing the trickiest issues first so that risks are addressed early on in the
project when corrective actions are easier and cheaper to put into practice.

The relevant concepts and their computations are summarized in Figure 6. Particu-
larly, we emphasize that:

– The Overall Risk Exposure is the sum of all threats involvement at any level on one
goal;

– The Total Risk Exposure is the sum of the Overall Risk Exposure of all the project
goals;

132 Y. Wautelet, M. Kolp, and S. Poelmans

Q
u

a
li

ty
F

a
c
to

r
W

e
ig

h
t

A
li

g
n

in
g

B
a
k
in

g

B
le

n
d

in
g

C
h

a
rg

in
g

C
o

o
li

n
g

C
re

a
ti

n
g

P
u

s
h

in
g

P
la

n
n

in
g

In
v
e
rs

in
g

L
o

a
d

in
g

M
a
n

a
g

e
P

ro
d

u
c
ti

o
n

P
ro

c
e
s
s

P
u

s
h

in
g

R
e
a
c
h

in
g

P
o

s
it

io
n

R
e
c
e
p

ti
o

n
H

a
n

d
li

n
g

R
e
c
o

rd
in

g
In

fo
rm

a
ti

o
n

R
e
c
o

rd
in

g
T

e
m

p
e
ra

tu
re

R
e
tr

ie
v
in

g
In

fo
rm

a
ti

o
n

S
e
tt

in
g

Reliability 3 M L M M H M H M H L

Efficiency 2 L L H H M L L L M M

Usability 1 M M M

Integrity 3 L M H M M

Testability 1 L L L M L L M M L M L

Flexibility 2 M M L H L M M M M

Interoperability 2 M L L L L L M L M M L

Goal Quality Exposure 16 3 1 11 5 31 1 5 32 20 16 1 30 18 26 14

Fig. 5. Project Goals Quality Issues

O
v

e
ra

ll
R

is
k

E
x

p
o

s
u

re

R
e

la
ti

v
e

R
is

k
E

x
p

o
s

u
re

O
v

e
ra

ll
Q

u
a

li
ty

E
x

p
o

s
u

re

R
e

la
ti

v
e

Q
u

a
li
ty

E
x

p
o

s
u

re

P
ri

o
ri

ty
L

e
v

e
l

G
o

a
l
P

ri
o

ri
ty

G
o

a
l
C

o
m

p
le

x
it

y

G
o

a
l
C

o
m

p
le

x
it

y
W

e
ig

h
t

P
re

c
e

d
e

n
c

e

1 Aligning 1 0,008264463 16 0,069565217 0,023589651 13 L 5

2 Baking 3 0,024793388 3 0,013043478 0,021855911 14 L 5

3 Blending 1 0,008264463 1 0,004347826 0,007285304 16 M 10

4 Charging 7 0,05785124 11 0,047826087 0,055344951 9 M 10

5 Cooling 2 0,016528926 5 0,02173913 0,017831477 15 M 10

6 Creating Pushing Planing 10 0,082644628 31 0,134782609 0,095679123 4 H 15 G4, G10

7 Inversing 5 0,041322314 1 0,004347826 0,032078692 12 L 5

8 Loading 10 0,082644628 5 0,02173913 0,067418254 6 M 10

9 Manage Production Process 18 0,148760331 32 0,139130435 0,146352857 1 H 15

10 Pushing 13 0,107438017 20 0,086956522 0,102317643 3 H 15

11 Reaching Position 5 0,041322314 16 0,069565217 0,04838304 11 M 10

12 Reception Handling 10 0,082644628 1 0,004347826 0,063070428 8 L 5

13 Recording Information 13 0,107438017 30 0,130434783 0,113187208 2 L 5

14 Recording Temperature 5 0,041322314 18 0,07826087 0,050556953 10 L 5

15 Retrieving Information 10 0,082644628 26 0,113043478 0,090244341 5 M 10 G13

16 Setting 8 0,066115702 14 0,060869565 0,064804168 7 M 10

121 1 230 1 1 145

G
o

a
l

Sum

Fig. 6. Goal Prioritization

– On the basis of the Overall Risk Exposure, the Relative Risk Exposure is computed
using the formula: RelativeRiskExposure = OverallRiskExposure

TotalRiskExposure ;
– The Overall Quality Exposure is the sum of all the levels of involvement of all the

quality factors on one goal;
– The Total Quality Exposure is the sum of the Overall Quality Exposure of all the

project goals;
– Based on Overall Quality Exposure, the Relative Quality Exposure is computed

with the formula: RelativeQualityExposure = OverallQualityExposure
TotalQualityExposure ;

Requirements-Driven Iterative Project Planning 133

P
ri

o
ri

ty

C
o

m
p

le
x

it
y

E
la

b
o

ra
ti

o
n

1

E
la

b
o

ra
ti

o
n

2

E
la

b
o

ra
ti

o
n

3

C
o

n
s

tr
u

c
ti

o
n

1

C
o

n
s

tr
u

c
ti

o
n

2

C
o

n
s

tr
u

c
ti

o
n

3

1 Manage Production Process 1 H X X

2 Recording Information 2 L X X

3 Pushing 3 H X X

4 Charging 9 M X X

5 Creating Pushing Planing 4 H X X

6 Retrieving Information 5 M X X

7 Loading 6 M X X

8 Setting 7 M X X

9 Reception Handling 8 L X X

10 Recording Température 10 L X X

11 Reaching Position 11 M X X

12 Inversing 12 L X X

13 Aligning 13 L X X

14 Baking 14 L X X

15 Cooling 15 M X X

16 Blending 16 M X X

145 15 16,66667 16,66667 30 33,33333 33,33333

G
o

a
l

Total Effort Weight

Fig. 7. Iteration Plan

– The Priority Level is computed by ”balancing” the Relative Risk Exposure and
the Relative Quality Exposure. For this particular project we chose a repartition
key of 75 percent for the risk component and 25 for the quality component. This
repartition key can vary from one project to another and should be calibrated from
data collected on a large number of projects as well as considering the working
team experience;

– On the basis of the Priority Level, each Goals Priority is deduced.

On the basis of the Goal Priority list, the Precedence constraints and the estimated
Goal Complexity we instanciate the iteration template defined in Section 2. The process
is summarized in Figure 7. The Goal complexity estimates the amount of effort required
to develop it. I-Tropos uses three categories of goal complexity, i.e., Low/Medium/High,
owning respectively a weight of 5/10/15. Transforming the overall weight to man-month
requires calibration typically based on a regression model using statistics from large
numbers of projects and remains an open issue. The proposed planning will be subject
to modifications/reviews during the software project supported by users and environ-
mental feedbacks.

4 Related Work

Numerous agent-oriented software development methodologies have been proposed in
the past twenty years. We overview hereafter some of them with a particular focus on
iterative SDLC and software project management. Tropos [4] offers the most advanced
agent-based modeling features through the i* models, one of the reasons we use it as a
basis for the process presented in this paper. Some papers related to this methodology
propose to develop a software system in an iteratively way but no supporting theoretical
framework has ever been proposed. Gaia [19], one of the most popular methodologies

134 Y. Wautelet, M. Kolp, and S. Poelmans

due to its simple and clear process as weel as its neutrality with respect to implemen-
tation techniques or platforms has been extended with an iterative SDLC in [7]. The
main drawback of their proposal is that they decompose functionality on the basis of
design models (called “parts”) and not analysis ones. Moreover, the priority given to
those functional parts is done in an ad hoc manner since no framework is given to
evaluate the criticality of these “functional parts”. There is also no real template pro-
vided for cutting out the project into phases so that each iteration can be considered
as a “sub-waterfall project” with no rapid prototyping for testing as implied by the cut
out between blueprinting and building phases in our framework. ADELFE [2] claims
to follow the RUP but no guideline or planning method is actually given for that pur-
pose. The process is depicted in [2] in a waterfall manner. Finally, MASSIVE [13]
uses an Iterative View Engineering approach itself based on Iterative Enhancement and
Round-trip Engineering. From the authors’ point of view, the method can be said to
be incremental rather than iterative. As a matter of fact, it is founded on producing hy-
brid models to be tested and enhanced later on into the project on the basis of users’
feedback. However, the software project is not broken down into manageable elements
that are prioritized and worked on during multiple iterations so that no software project
management framework is required to manage the SDLC.

5 Conclusions

Since the emergence of spiral development, software engineering professionals have un-
derstood the benefits of iterative approaches. However, poor guidelines and too simple
project management frameworks have failed to provide practionners with clear methods
to deal with such SDLCs in a structured manner. Moreover, Model-Driven Architecture
(MDA) and Model-Driven Development (MDD) are extensively used in the software
transformation process, i.e., the process of tracing high level analysis elements into de-
sign and implementation ones. This principle is applied here but analysis models are
used to feed the process at a managerial level for goal-driven project management.
Contributions thus include a structured (model-driven) method for iterative lifecycle
management.

The process needs however to be refined and better calibrated on the basis of expe-
rience gained from multiple projects. It has recently been applied on the development
of a collaborative supply chain management platform from which an in-depth analysis
of the empirical results will be presented soon. A CASE-Tool called DesCARTES Ar-
chitect supporting all of the methodology’s models and I-Tropos life cycle management
has also been developed to better operationalize the method. The present research is
clearly driven by the willingness to bring agent-based development to large enterprise
software developments in order to propose an integrated process with clear guidelines
supported by practical tools. Finally and as just mentioned, the method was used here
in the context of agent-oriented development but the transformation process from i*
models can lead to an object implementation. Similarly, the goal planning method can
be very easily and flexibly adapted to (semantically poorer) UML use-cases and serve
RUP practionners in their everyday iterative development planning.

Requirements-Driven Iterative Project Planning 135

References

1. Anonymous. Software & systems process engineering meta-model specification. version 2.0.
Technical report, Object Management Group (2008)

2. Bernon, C., Gleizes, M.P., Picard, G., Glize, P.: The adelfe methodology for an intranet sys-
tem design. In: AOIS@CAiSE (2002)

3. Boehm, B.: Software Project Management. Addison-Wesley (1998)
4. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems en-

gineering: the tropos project. Inf. Syst. 27(6), 365–389 (2002)
5. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in software en-

gineering. Kluwer Academic Publishing (2000)
6. Estrada, H., Rebollar, A.M., Pastor, O., Mylopoulos, J.: An Empirical Evaluation of the i*

Framework in a Model-Based Software Generation Environment. In: Martinez, F.H., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

7. Gonzalez-Palacios, J., Luck, M.: Extending Gaia with Agent Design and Iterative Develop-
ment. In: Luck, M., Padgham, L. (eds.) AOSE 2007. LNCS, vol. 4951, pp. 16–30. Springer,
Heidelberg (2008)

8. IBM. The rational unified process. Rational Software Corporation, Version 2003.06.00.65
(2003)

9. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process. Addision-
Wesley (1999)

10. Jacobson, I., Bylund, S.: The road to the unified software development process. Cambridge
University Press (2000)

11. Jalote, P.: Software Project Management in Practice. Addison Wesley (2002)
12. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley

(2003)
13. Lind, J.: The MASSIVE Method. LNCS (LNAI), vol. 1994. Springer, Heidelberg (2001)
14. Pastor, O., Estrada, H., Martı́nez, A.: The strengths and weaknesses of the i* framework: an

experimental evaluation. In: Giorgini, P., Maiden, N., Mylopoulos, J., Yu, E. (eds.) Social
Modeling for Requirements Engineering. MIT Press (2011)

15. Wautelet, Y.: A goal-driven project management framework for multi-agent software devel-
opment. PhD thesis, Université catholique de Louvain, Belgium (2008)

16. Wautelet, Y., Achbany, Y., Kolp, M.: A service-oriented framework for mas modeling. In:
Cordeiro, J., Filipe, J. (eds.) ICEIS (3-1), pp. 120–128 (2008)

17. Yu, E.: Modeling strategic relationships for process reengineering. PhD thesis, University of
Toronto, Department of Computer Science, Canada (1995)

18. Yu, E.: Social Modeling for Requirements Engineering. MIT Press (2011)
19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The gaia

methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

An Approach for Model-Driven Design and Generation
of Performance Test Cases with UML and MARTE

Antonio García-Domínguez1, Inmaculada Medina-Bulo1,
and Mariano Marcos-Bárcena2

1 Department of Computer Languages and Systems, University of Cádiz, Cádiz, Spain
2 Department of Mechanical Engineering and Industrial Design, University of Cádiz,

Cádiz, Spain
{antonio.garciadominguez,inmaculada.medina,mariano.marcos}@uca.es
http://neptuno.uca.es/∼agarcia, http://neptuno.uca.es/∼imedina

Abstract. High-quality software needs to meet both functional and non-
functional requirements. In some cases, software must accomplish specific per-
formance requirements, but most of the time, only high-level performance
requirements are available: it is up to the developer to decide what performance
should be expected from each part of the system. In this work, we show several
algorithms that infer the required throughput and time limits for each action in an
UML activity diagram from a global constraint and some optional local annota-
tions. After studying their theoretical and empirical performance, we propose an
approach for generating performance test cases from the activity diagram after it
has been implemented as code. Our approach decouples the performance analysis
model from the implementation details of the code to be tested.

Keywords: Model-driven engineering, Performance testing, UML, MARTE,
Non-functional requirements, Model weaving.

1 Introduction

In addition to functional requirements, software must meet non-functional require-
ments. Among them, performance plays a major role in shaping the user experience. In
some cases, meeting specific performance requirements is critical. This is the case not
only in soft and hard real-time systems, but also in service-oriented architectures [13],
where Service Level Agreements (SLAs) may have been signed between the provider
and the consumer of a service.

For these reasons, there has been considerable work in estimating and measuring the
performance of software systems [28]. Estimating the performance of a prospective sys-
tem usually requires building high-level execution and architecture models and deriving
a formalism from them, as in [25,30], among many others. Measuring the performance
of a system requires instrumenting it to produce the desired results, instead of building a
model. These approaches complement each other: estimations can be performed before
the actual system is implemented, while measurements are more accurate.

Measuring the performance of a system can be useful for many purposes: finding
performance degradations over time, identifying load patterns over specific time periods

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 136–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Approach for Model-Driven Design and Generation of Performance Test Cases 137

and checking if the system is meeting its performance requirements. Obviously, this
last use case requires that the performance requirements have been previously defined.
However, most of the time, detailed performance requirements are not provided [27].
Developers may have to meet high-level performance requirements without a clear view
of what performance is required in each part of the system.

In this work we propose a model-driven approach to deriving the low-level perfor-
mance requirements of a system from high-level performance requirements. The user
creates UML models annotated with a small subset of the MARTE profile [23] and runs
our inference algorithms to derive the low-level requirements. After the UML models
have been implemented as code, the user can weave the analysis model with an imple-
mentation model to generate the concrete performance test cases.

The rest of this paper is structured as follows: in Section 2, we introduce the MARTE
profile for UML, describe the subset used in our work and show our running example.
Section 3 defines the inference algorithms and outlines some of the optimisations per-
formed. Section 4 is dedicated to analysing the restrictions imposed upon the algorithms
and evaluating their performance. Section 5 describes our proposed approach for gen-
erating the concrete performance test cases. Section 6 discusses related work. Finally,
Section 7 condenses the main points of this paper and lists our future lines of work.

2 The MARTE Profile

UML has been widely adopted as a general purpose modelling language for describ-
ing software systems. However, UML itself does not include support for modelling
scheduling, performance or time aspects, among other non-functional aspects.

For this reason, the Object Management Group proposed in 2005 the SPT (Schedula-
bility, Performability and Time) profile [21], which extended UML with a set of stereo-
types describing scenarios that various analysis techniques could take as inputs. In 2008,
OMG proposed the QoS/FT (Quality of Service and Fault Tolerance Characteristics and
Mechanisms) profile [22], with a broader scope than SPT and a more flexible approach:
users formally defined their own quality of service vocabularies and used them to an-
notate their models.

When UML 2.0 was published, OMG saw the need to update the SPT profile and
harmonise it with other new concepts. This resulted in the MARTE (Modelling and
Analysis of Real-Time and Embedded Systems) profile [23], published in 2009. Like
the QoS/FT profile, the MARTE profile defines a general framework for describing
quality of service aspects. The MARTE profile uses this framework to define a set of
pre-made UML stereotypes, as those in the SPT profile.

In this section, we will introduce the parts of the MARTE profile required for our
algorithms and show an example model, using its predefined stereotypes.

2.1 Selected Subset

The MARTE specification provides support for model-based analysis and design of
real-time and embedded systems. Among its sub-profiles, we are interested in a subset
of the GQAM (Generic Quantitative Analysis Modelling) profile. The GQAM domain

138 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

model describes the concepts of the GQAM profile using the generic non-functional
property modelling framework in MARTE. The stereotypes from the GQAM profile are
prefixed with “Ga” (standing for “generic analysis”), and the non-functional property
types from the normative MARTE model library are prefixed with “NFP”.

The stereotype and attributes used by our algorithms are:

– «GaScenario»: hostDemand is used to model requirements on the CPU time to
be used and throughput indicates how many requests should be handled per sec-
ond. respT combines both, specifying the maximum response time when handling
throughput requests per second.

– «GaStep»: prob is the probability of traversing a control flow, and rep is the number
of times the annotated activity is repeated.

– «GaAnalysisContext»: contextParams contains a list of context parameters. These
are variables which can be used to parametrise the annotations using VSL (Value
Specification Language) expressions. VSL is a textual language defined in MARTE.

All the non-functional property types in the normative MARTE library share several
traits, as they inherit from NFP_CommonType. Values can be specified as literals in the
value attribute, or as VSL expressions in the expr attribute. The source of a requirement
(estimated, measured, calculated or required) is described by the source attribute.

NFP_CommonType is a VSL tuple type. In this paper we will use the notation
(key1=value1,...,keyN=valueN)for VSL tuples. For instance, a NFP_Duration of 5
milliseconds required by the client is written as (value=5,unit=ms,source=req).

2.2 Usage

Activities must have the «GaScenario» and «GaAnalysisContext» stereotypes. «GaSce-
nario» indicates the expected response time (respT) and throughput (throughput) for the
entire activity. «GaAnalysisContext» only lists the context parameters (contextParams)
which represent the slack per unit of weight assigned to each action in the activity.

Control flows leaving decision nodes are annotated with the «GaStep» stereotype,
specifying the probability (prob) of traversing one of the conditional branches. The
probabilities are estimated by the user.

Actions are annotated with the «GaStep» stereotype as well. The user must
indicate their expected number of repetitions (rep) and how the available time is to
be distributed among them. hostDemand must contain a tuple with a VSL expression
matching M+W*swI: M ≥ 0 is its minimum time limit, W ≥ 0 is its weight and swI is its
context parameter. The time limit inference algorithm will set swI to the slack per unit
of weight assigned to that action.

After the algorithms are done, results are fed back into the activity diagram, replac-
ing those from previous runs. Actions are annotated with the inferred time limits in
hostDemand, and with the inferred throughputs in throughput. Context parameters are
set to the slack per unit of weight assigned to their actions.

An Approach for Model-Driven Design and Generation of Performance Test Cases 139

Fig. 1. Running example after inferring time limits

2.3 Running Example

Figure 1 shows the UML activity diagram which we will use as running example for
the rest of this paper. Its activity, “Handle Order”, describes how to process a specific
order: first, the order is evaluated. If rejected, we simply close the order. If accepted,
we fork into two execution branches: one creates the shipping order and sends it to the
shipping partner, and the other creates the invoice, sends it to the customer and receives
the payment. Once both branches are done, the order is closed and we are done.

According to the MARTE annotations, the activity should complete its execution
in one second when receiving one request per second. Most of the actions have no
minimum time limit and weight equal to 1, except for “Evaluate Order”, whose CPU
time is fixed by the modeller to 0.4s. All actions are run once, to simplify the discussion.
The user has estimated that 80% of all orders are accepted. The annotations in bold have
been inferred by our algorithms, and will be described more in depth in Section 3.2.

3 Inference Algorithms

In the previous section, we explained how we used the MARTE profile for our al-
gorithms and described the running example for this paper (Figure 1). In this section
we will outline the algorithms themselves. The first algorithm computes the expected
throughput of each action, and the second algorithm computes the time limit for each
action. They improve upon those in [16].

Both require that activities do not contain cycles, that they only have one initial node,
and that all their actions are reachable from it. Let us define some terms:

140 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

– s(e) and g(e) are the source and target vertex of the edge e, respectively.
– i(n) and o(n) are the incoming and outgoing edges of the node n, respectively.
– L > 0 is the expected response time (the global time limit) of the activity.
– c(n) = (m(n),w(n)) ∈C(L) is the constraint of the node n, where m(n) is the min-

imum time limit of n and w(n) is its weight (see Section 2.2). The set of all valid
constraints with L as global time limit is C(L) = {(m,w) |0 ≤ m ≤ L,w ≥ 0}.

– Each path p also has a constraint, c(p) = (m(p),w(p))∈C(L), with m(p) =
∑n∈p m(n) and w(p) = ∑n∈p w(n).

– A node n is run R(n)≥ 1 times (once by default).

3.1 Throughput Inference

We will define T as a function from a node or edge to its expected throughput. For a
control flow e, T (e) = P(e)T (s(e)), where P(e) is the probability of traversing e.

For a node n, the actual formula depends on its type. For an initial node, T (n) is
the expected throughput of the activity. For a join node, T (n) =mine∈i(n) T (e), since re-
quests in the least performing branch set the pace. For a merge node, T (n)=∑e∈i(n) T (e),
as requests from mutually exclusive branches are reunited. For any other type of node,
T (n) = T (e1), where e1 ∈ i(n) is its only incoming edge.

Using these formulas, computing T (Create Invoice) for the example shown in Fig-
ure 1 requires walking back to the initial node, finding an edge with a probability of
0.8, no merge nodes and an initial node receiving 1 request/second. Therefore, it would
be equal to pL = 0.8.

To compute these values efficiently, the expressions are evaluated in a topological
traversal of the graph. For each action a, throughput will contain a single tuple of the
form (value=T(a),unit=Hz,source=calc).

3.2 Time Limit Inference

Inferring the time limits of each action inside an activity is considerably more complex
than inferring their required throughputs. After more definitions, we will describe the
algorithm, and then apply it to the running example in Figure 1.

Preliminaries. The algorithm adds a (value=t(n), unit=s, source=calc) tuple to the
attribute hostDemand of each action node n, where t(n) is its inferred time limit. The
algorithm also updates the appropriate context parameter with the final slack per unit of
weight distributed to n.

Let I be the initial node of the activity being annotated and let PS(n) contain all paths
from the node n to a final node. t(n) must meet the following constraints:

– For every action n, t(n) ≥ m(n): the assigned time limit must be greater or equal
than the minimum set by the user.

– For every path p in PS(I), ∑n∈p R(n)t(n)≤ L: the sums of the time limits over each
path meet the global time limit.

The available time “flows” from the initial node. If a node n receives 0 ≤ r(n) ≤ L
seconds, every path p ∈ PS(n) receives r(p) = r(n) seconds to distribute among its
nodes. r(n) is not known a priori except for the initial node: r(I) = L.

An Approach for Model-Driven Design and Generation of Performance Test Cases 141

If the «GaStep» and «GaScenario» annotations are consistent with each other, then
r(p) ≥ m(p) for every path p: the minimum time constraints of all actions are always
met. s(p) = r(p)−m(p)≥ 0 is known as the slack of the path p. s(p) is distributed over
p according to the weight of each node: the slack per unit of weight initially assigned to
each node is Sw(p) = s(p)/w(p). When w(p) = 0, we assume that Sw(p) = 0: all nodes
in p have a zero weight, so no slack can be distributed.

The algorithms must ensure that w(p) > 0 ⇒ s(p) > 0, so every path p with a non-
zero weight has some slack to distribute. If this condition is not met or the annotations
are inconsistent, the user should be notified and every change should be rolled back.

Definition. The algorithm is a recursive function, taking a node n and the time it re-
ceives, r(n). Initially, n = I and r(n) = L, the global time limit. Its steps are as follows:

1. Select two paths from PS(n):
– pms(n) has the minimum SW (p) when r(n) seconds are available. In case of a

tie, pick the path with the maximum w(p).
– pMm(n) has the maximum m(p).

2. If s(pMm(n))< 0, the minimum time limits cannot be satisfied: abort.
3. If s(pms(n)) = 0 and w(pms(n)) > 0, there is no slack in a path with a non-zero

weight: abort.
4. Set the time limit of n, t(n), to m(n)+Sw(pms(n))w(n). The remaining time will be

TR = T −R(n)t(n) seconds. Mark v as visited.
5. Sort each edge e ∈ o(n) in ascending order of Sw(pms(g(e))) with r(g(e)) = TR, the

minimum slack per unit of weight when TR seconds are available for all paths that
start at the target of e.

6. Visit each edge in o(n):
(a) If the target of e has been visited before, check if the time which was sent to it,

T ′
R, is strictly less than TR, the time which would have been sent through e.

In that case, try to reuse the surplus TR − T ′
R seconds on the source of e and

its ancestors, and send T ′
R seconds through e. Go back in the graph from the

source of e, collecting nodes with non-zero weights into C until a node with
more than one incoming or outgoing edge is found. Increase the time limit of
each collected node by (TR −T ′

R)w(n)/w(C), where w(C) = ∑n∈C R(n)w(n).
(b) If the target of e has not been visited before, invoke this algorithm recursively,

setting n to the target of e and r(n) = TR.
7. Set the context parameter related to n to 0 if w(n) = 0, and to (t(n)−m(n))/w(n)

otherwise. This is the effective slack per unit of weight distributed to n.

Key Optimisations. The algorithm above uses several optimisations to improve its
performance. First of all, each path p is not represented by its sequence of nodes, but
by its constraint c(p) = (m(p),w(p)), saving much memory.

To select pMm(n) at each node we need to know the maximum m(p) for each path
p ∈ PS(n), which we will note as m(pMm(n)). We can compute it in advance using (1).
As it is recursive, we can evaluate (1) incrementally, starting from the final nodes (for
which m(pMm(n)) = 0) and going back to the initial node in reverse topological order:

m(pMm(n)) = R(n)m(n)+max{m(pMm(g(e))) |e ∈ o(n)} (1)

142 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

To select pms(n) at each node we need to know the strictest path starting from it.
We cannot compute it in advance, as it depends on the time received by the node, r(n),
which is not known a priori. Instead, we remove redundant paths from PS(n). We will
call this reduced set P′

S(n). A path pa ∈ PS(n) is removed when it is said to be always
less or just as strict than some other path pb ∈ PS(n), independently of the time received
by n or the common ancestors of pa and pb. We denote this by c(pa) �s(L) c(pb), and
define it formally as follows:

(a,b)�s(L) (c,d)≡
∀t ∈ [0,L] ∀x ∈ [0,L] ∀y ≥ 0

a+ x ≤ t ∧ c+ x ≤ t ∧b+ y > 0∧d+ y > 0 ⇒ t − (a+ x)
b+ y

≥ t − (c+ x)
d + y

(2)

We can simplify (2) into:

a ≤ c∧ (b ≤ d∨a < L∧b > d ∧ (b− d)L ≤ bc− ad) (3)

It can be proved that this defines a partial order (a reflexive, antisymmetric, and transi-
tive binary relation) on C(L). The proof is omitted for the sake of brevity.

Like m(pMm(n)), P′
S(n) can also be computed incrementally by traversing the graph

in reverse topological order. Let ni be a child of n and pa and pb be two paths in PS(ni),
so c(pa) �s(L) c(pb). By definition, pa is less or just as strict as pb regardless of their
common ancestors, so 〈n〉+ pa will also be discarded from P′

S(n) over 〈n〉+ pb. This
means that instead of comparing every path in PS(n) for every node n, we can build
P′

S(n) by adding n at the beginning of the paths in P′
S(ni), for every child ni of n, and

then filtering the redundant paths using �s(L).
Let max�s(L)

S select the paths in S which are not always less or just as strict than any
other (maximal elements according to �s(L)). We define P′

S(n) as:

P′
S(n) = max

�s(L)

{
(R(n)m(n)+M,R(n)w(n)+W) |e ∈ o(n),(M,W) ∈ P′

S(g(e))
}

(4)

Note that PS(f) = (0,0), where f is a final node.

Example. Previously, we defined the algorithm and described the key optimisations
performed. We will now apply the algorithm to the example in Figure 1, producing the
outputs highlighted in bold. To save space, we will shorten action names to their initials:
“Evaluate Order” will be simply “EO”.

First, m(pMm(n)) and P′
S(n)) are precomputed:

– m(pMm(CO)) = 0, P′
S(CO) = {(0,1)}.

– m(pMm(PP)) = 0, P′
S(PP) = {(0,2)}.

– m(pMm(CI)) = 0, P′
S(CI) = {(0,3)}.

– m(pMm(SO)) = 0, P′
S(SO) = {(0,2)}.

– m(pMm(EO)) = 0.4, P′
S(EO) = {(0.4,3)}.

After that, the algorithm sends the available second (L = 1s) into the initial node and
then into EO. EO takes 0.4s and sends the remaining 0.6 seconds through the decision

An Approach for Model-Driven Design and Generation of Performance Test Cases 143

node. The next action in the strictest path is CI, which takes 0.2s and sends 0.4s into PP.
PP takes another 0.2s and sends the remaining 0.2s to CO.

Once the strictest path is done, we back up and proceed with the next strictest path,
sending 0.4s into SO. At first, SO takes only 0.3s, but since CO received only 0.2s
before, we reuse the extra 0.1s into SO. The final time limit of SO is 0.4s. We back up
and continue with the empty branch for rejected orders: we are done.

As for the context parameters: swEO is set to 0, as w(EO) = 0. swCI, swPP and swCO
are set to 0.2. swSO is set to 0.4: note that the initial slack per unit of weight for SO was
0.3, but after reusing the extra 0.1 seconds, it changed to 0.4.

4 Evaluation

The algorithms have been implemented using the Epsilon Object Language (EOL) [19]
and integrated into the Papyrus graphical UML editors [12]. Code is available at [15].
In this section we will analyse their restrictions and performance.

4.1 Restrictions

The inference algorithms are limited in several ways. The most important restriction is
that the graph formed by the nodes of the activity must be acyclic, which hinders the
modelling of repetitive structures. We have partially addressed this issue by using the
attribute rep of «GaStep» to indicate the expected number of repetitions of an action.

At first glance, the algorithm still requires to annotate each action with some knowl-
edge from the modeller, so it would appear not to save much effort. However, the in-
formation annotated by the user on each activity only depends on the action (minimum
time and weight) or control flow (probability) themselves, instead of all the paths they
are part of. In addition, any sufficiently advanced tool can add the missing annotations
with the default values set by the user. The time limit inference algorithm also ensures
that the annotations are consistent with each other.

The algorithms do not take into account the fact that the same behaviour might be
reused in several places: each action is assumed to be different from the rest. A simple
and conservative solution would be simply taking the strictest constraint over all the
occurrences of that behaviour. Integrating the “same behaviour” constraint would be
interesting, but it might considerably increase the cost of the algorithm.

4.2 Theoretical Performance

Let us consider an activity with n nodes and e∈ O(n2) edges, with O(n) incoming edges
in each node. The throughput inference algorithm is easy to analyse: by going back from
the final nodes to the initial nodes, each node and edge in the activity needs to be visited
exactly once. The throughput for the O(n) join and merge nodes requires evaluating an
expression in constant time over their O(n) incoming edges. However, throughputs for
the rest of the O(n+ e) nodes and edges can be computed in constant time. Therefore,
a conservative upper bound for the running time of the throughput inference algorithm
is O(n)O(n)+O(n+ e)O(1) = O(n2). The running time does not depend on the values
of the annotations.

144 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

The time limit inference algorithm is harder to analyse. Its performance depends both
on the structure of the graph and the values of the annotations. For this reason, we will
use a specific kind of activity to frame the analysis, which we call a fork-join activity.
As shown in Figure 2, it has an initial node, I, followed by a sequence of f “levels”.
Each level has a fork node with two branches with a single action, joined before the
next level. The activity has n = 2+ 4 f ∈ Θ(f) nodes and e = 1+ 5 f ∈ Θ(f) edges in
total, and there are 2 f paths from the initial node to the final node. These activities are
inexpensive to generate, as the number of nodes and edges grows linearly. At the same
time, they can represent the worst case of the algorithm, since the number of paths from
the initial node to the final node grows exponentially.

Fig. 2. Example fork-join activity with f levels

Having defined the structure of the activities, let us analyse the worst case by parts:

– Computing m(pMm(n)) in advance for each node always takes O(1)O(n) = O(n)
operations, as it requires evaluating an arithmetic expression over the O(1) incom-
ing edges of each of the n nodes.

– Computing P′
S(n) in advance for each node is actually the most expensive part of

the algorithm: in the worst case, O(2 f) paths need to be considered at every node
and selecting the strictest ones takes O(4 f) operations per node and O(n4 f) in total.

– The last step depends on the number of elements of P′
S(g(e)) for each edge e in

the graph: in the worst case, |P′
S(g(e))| = |PS(g(e))| for every node and O(n2 f)

operations are required.

In total, we have O(n4 f) operations in the worst case, which can be very expensive.

4.3 Empirical Performance

Previously, we concluded that the throughput algorithm had polynomial cost regardless
of the annotations, and that the time limit inference algorithm could reach exponential
cost, depending on the annotations. In this section we will study how close are the
average times to this absolute worst case.

We first measured the performance of the algorithms using fork-join activities with 1
to 25 levels. We ran the algorithms on these activities requiring 1s response time when
1 request was received per second. The actions were annotated in two ways: either
using a fixed minimum time limit and weight (0 and 1, respectively) or using uniformly
distributed random values, so the minimum time limits were consistent and weights
were between 0 and 1. To simplify the analysis, each action had rep set to 1.

The results are shown in Figures 3(a) and 3(b). Figure 3(a) confirms that the time
required for the throughput inference algorithm grows linearly, regardless of the anno-
tations. Figure 3(b) suggests that the average times for fixed and random annotations
are quite far from the O(n4 f) absolute worst case.

An Approach for Model-Driven Design and Generation of Performance Test Cases 145

(a) Throughputs (10 runs fixed and random) (b) Time limits (10 runs fixed, 100 runs random)

Fig. 3. Average running times by number of levels and type of annotation

It is interesting to note that when the minimum time limit is equal to 0 in all actions,
the partial order in (3) can be simplified to a ≤ c, which is a total order. Therefore, these
fixed annotations are instances of the best case of the time limit inference algorithm,
in which all paths are comparable. As shown in Figure 3(b), the time limit inference
algorithm required 400ms on average with a fork-join activity with fixed annotations
and 25 levels.

On the other hand, using uniformly distributed random annotations resulted in much
larger running times, with 10s required on average to annotate a fork-join activity with
25 levels. Nevertheless, Figure 3(b) does not grow as quickly as would be expected
from the O(n4 f) absolute worst case.

This suggests that removing redundant paths reduces the impact of the absolute worst
case. However, its effectiveness depends on the relative magnitude of the minimum time
limits and weights with regards to the global time limit L. The left operand of (b−d)L<
bc− ad, part of (3), grows as L increases and reduces the number of comparable pairs
of paths.

We performed an additional study to clarify how common the absolute worst case
was and study its relationship with L. We sampled with L = 0.5s and L = 1.5s the
space of all fork-join activities with 3 levels which contained a 2-level fork-join with 4

Fig. 4. Distribution of incomparable top-level paths over sampled 3-level fork-join activities, by
global time limit

146 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

incomparable paths. Minimum time limits for the actions ranged from 0 to min{L,1},
in steps of 0.1s. Weights ranged from 0 to 10, in steps of 1 unit. Inconsistent graphs
were discarded. For each activity, we measured the number of incomparable paths at
the initial node (“top-level paths”): in a 3-level fork-join activity, there can be between
1 and 23 = 8 such paths.

Evaluating 1.99× 106 fork-join activities for L = 0.5s and 7.16× 109 for L = 1.5s
produced the results in Figure 4. It is interesting to note that for L= 1.5s, while 31.842%
of all 1-level fork-join activities were in the worst case, only 2.492% 2-level fork-join
activities were in the worst case. With 3 levels, no fork-join activities were in the worst
case with L = 0.5s, and only 0.047% were in the worst case with L = 1.5s. This sug-
gests that the absolute worst case becomes harder to find with more complex graphs,
explaining why average times did not grow exponentially in Figure 3(b). It also indi-
cates that the worst case is more common when L grows in relation to the values in the
annotations.

5 Generation of Test Cases

In previous sections, we have shown how to create the performance analysis models and
how to infer the missing constraints from the existing annotations. These performance
analysis models can already be useful as a way to check if a certain performance level
is feasible or not, and to negotiate SLAs. In this section, we will propose another use
case for the performance analysis model: test case generation.

Generating test cases directly from an abstract model such as that in Figure 1 is
unfeasible, as it lacks the implementation details that are required. At the same time, it
is undesirable to pollute an abstract model with these implementation details and couple
it to a specific technology. To solve this situation, we propose linking the performance
analysis model to implementation model, using a third generic weaving model. Model
weaving is a well-known model management technique and is readily implemented in
tools such as AMW [11] or Epsilon ModeLink [18].

Performance analysis model Implementation artifacts

Model extraction

Implementation model

Weaving model Optional adaptation (M2M)

Adapted weaving model Test case generation (M2T)

Test artifacts

Fig. 5. Proposed approach for test case generation

An Approach for Model-Driven Design and Generation of Performance Test Cases 147

The resulting approach is shown in Figure 5.

1. First, appropriate models of the implementation artifacts are extracted. Model ex-
traction may involve parsing program code and creating an abstract syntax tree, us-
ing tools like MoDisco [8]. Alternatively, the model may already be available if the
code was generated using a contract-first or model-driven approach. This is quite
common for web services described using WSDL [31] documents: frameworks like
Apache CXF [2] generate code from them.

2. Next, the user creates a weaving model that relates the implementation artifacts
with the activities in the UML activity diagram. An activity could be linked to a
JUnit test case to be reused as a performance test case, or as a web service described
in a WSDL document.

3. The weaving model may not be usable as-is. In that case, an additional M2M
(Model-to-Model) transformation will be required. Examples of M2T technologies
include ATL [9] or ETL [19].

4. Finally, the weaving model will be used in an M2T (Model-to-Text) transformation
to produce the test cases. In the case of a JUnit test case, it could be wrapped
as a performance test case using a library such as JUnitPerf [10] to wrap the test
case as a performance test case. For WSDL-based web services, a test plan for a
performance testing tool such as Apache JMeter [14].

The main advantage to this approach is that it keeps the performance analysis model
decoupled from both the methodology used to produce the implementation artifacts and
the technologies used in them. Additionally, if the performance requiremens change, the
algorithms can be run again and the performance test cases can be regenerated with no
additional work. The main challenge is managing the additional complexity introduced
by the steps in Figure 5, but it can be overcome with proper tooling.

6 Related Work

Obtaining the desired level of performance has been a regular concern since the de-
velopment of the first computer systems, as shown by the early survey in [20]. There
are basically two approaches: evaluating a model of a prospective system, or measur-
ing the performance of an implemented system. These approaches are complementary:
using analytic models reduces the risk of implementing an inefficient software architec-
ture, which is expensive to rework [25], and can find potential bottlenecks before they
happen [4]. When the system is implemented, measuring its performance is more accu-
rate, and can detect not only design issues, but also bad coding practices, unexpected
workloads or platform issues. Avritzer et al. describe in [5] an interesting case study
in which a simulation model was used to find the cause for a performance regression
found during regular monitoring of a configuration derived from regular performance
testing. Our work adapts the MARTE profile, a standard notation used for modeling
non-functional requirements and creating analytic models from them, to generate the
performance requirements for testing each part of the system.

Using analytic models requires highly specialised knowledge and notations. Wide-
spread adoption of UML as a de facto standard notation has prompted researchers to

148 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

derive their analytic models from UML models, first with ad hoc annotations and later
consolidating on the standard extensions to UML, such as QoS/FT [22] or SPT [21]. The
survey in [29] reviews many of the approaches before MARTE replaced SPT in 2009.
Since then, MARTE has been used for many purposes, such as deriving process algebra
specifications [26] and extended Petri networks [32] or detecting data races [24], among
others. We selected MARTE as it is based on UML, it is being actively used and offers
both pre-made annotations (like SPT) and a generic framework (like QoS/FT).

Bernardi et al. have defined the Dependability and Analysis Modeling sub-profile for
MARTE [7]. It has been combined with the standard GQAM and PAM sub-profiles of
MARTE to evaluate the risk that a soft real-time system does not meet its time limits [6].
Our work also handles time limits, but our focus is different: we help the tester “fill in
the blanks” using the available partial information. We use a model of the system to
generate some of the parameters of the performance test cases.

Alhaj and Petriu generated intermediate performance models from a set of UML
diagrams annotated with the MARTE profile, describing a service-oriented architec-
ture [1]: UML activity diagrams model the workflows, UML component diagrams rep-
resent the architecture and UML sequence diagrams detail the behaviour of each action
in the workflows. In our previous work, we similarly modeled workflows in a service-
oriented architecture using an ad hoc notation based on UML activity diagrams [16].
However, our approach does not model the resources used by the system: we assume
tests are performed in an environment which mimics the production environment.

There are many other recent approaches that use UML activity diagrams for gener-
ating performance test cases, without using MARTE. Avritzer et al. describe in [3] an
approach for generating performance test cases considering the most common states in
a system, modelled as a Markov chain. Garousi [17] uses UML sequence and activity
diagrams in combination with other models to generate network stress tests for a dis-
tributed system, using evolutionary algorithms to drive the process. In general, these
approaches attempt to generate test cases that cover the entire system. In comparison,
our approach focuses on obtaining test cases for each part of the system, based on global
requirements for the entire system.

7 Conclusions and Future Work

Software needs to meet its performance requirements in addition to its functional re-
quirements. To achieve this goal, several approaches can be combined: the expected
performance can be estimated using an early model, or the actual performance of the
system can be measured. Currently, the research community is converging on the UML
MARTE profile [23] as a standard notation to drive early performance and scheduling
analysis. On the other hand, performance testing requires expectations to be defined for
each part of the system. However, these are usually only available for high-level com-
ponents: developers need to manually translate these to lower-level requirements for the
smaller subcomponents.

In this work, we have adapted and improved the algorithms in [16] to operate on
MARTE-annotated UML activity diagrams, inferring performance requirements from
a global annotation and some local ones. One algorithm infers throughputs and has
polynomial cost in relation to the number of nodes of the activity. The other infers time

An Approach for Model-Driven Design and Generation of Performance Test Cases 149

limits and its worst case has exponential cost, as it may need to enumerate all paths
from the initial node to the final nodes. However, further analysis of the average case
suggests that this worst case is very rare, and becomes even harder to find as graphs are
more complex. This is because the time limit inference algorithm discards redundant
subpaths using a partial order relation.

After describing and evaluating the inference algorithms, we have propose an
approach for generating concrete performance test cases for each action in the UML ac-
tivity diagram. To keep it decoupled from the implementation technology and method-
ology, we propose weaving it to an implementation model and generating the actual test
cases from the weaving model. The implementation model may already exist if using a
contract-first or model-driven methodology. Alternatively, the model may be extracted
from the actual code. We have selected some target technologies to implement our ap-
proach for regular JUnit functional tests and WSDL-based web services. We plan to
implement the proposed approach for some of these technologies in the near future.

As for the algorithms, we intend to handle nested activities in a later version, so the
user can describe the system as a hierarchy of components and infer time limits and
throughputs in a top-down approach. Handling actions which are repeated in several
places would be interesting, but the cost of the algorithms might increase.

Acknowledgements. This work was partly funded by the research scholarship PU-
EPIF-FPI-C 2010-065 of the University of Cádiz.

References

1. Alhaj, M., Petriu, D.C.: Approach for generating performance models from UML models
of SOA systems. In: Proc. of the 2010 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON 2010, pp. 268–282. ACM, New York (2010)

2. Apache Software Foundation: Apache CXF (November 2011), https://cxf.apache.org/
3. Avritzer, A., Vieira, M.E.R.: Generating performance tests from UML specifications using

Markov chains. USPTO Patent Application 11/386,971 (November 2006)
4. Avritzer, A., Weyuker, E.J.: The automatic generation of load test suites and the assessment

of the resulting software. IEEE Transactions on Software Engineering 21(9), 705–716 (1995)
5. Avritzer, A., Weyuker, E.J.: The role of modeling in the performance testing of e-commerce

applications. IEEE Transactions on Software Engineering 30(12), 1072–1083 (2004)
6. Bernardi, S., Campos, J., Merseguer, J.: Timing-Failure risk assessment of UML design us-

ing time petri net bound techniques. IEEE Transactions on Industrial Informatics PP(99), 1
(2010)

7. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE. Software
& Systems Modeling 10(3), 313–336 (2009)

8. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and extensible frame-
work for model driven reverse engineering. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium, pp. 173–174 (Septem-
ber 2010)

9. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: The AMMA platform support for mod-
eling in the large and modeling in the small. Research Report 04.09, LINA, University of
Nantes, Nantes, France (February 2005)

10. Clark, M.: JUnitPerf (October 2009),
http://clarkware.com/software/JUnitPerf.html

https://cxf.apache.org/
http://clarkware.com/software/JUnitPerf.html

150 A. García-Domínguez, I. Medina-Bulo, and M. Marcos-Bárcena

11. Del Fabro, M.D., Bézivin, J., Valduriez, P.: Weaving models with the eclipse AMW plugin.
In: Proceedings of the 2006 Eclipse Modeling Symposium, Eclipse Summit Europe, Esslin-
gen, Germany (October 2006)

12. Eclipse Foundation: Homepage of the Eclipse MDT Papyrus project (2011),
http://www.eclipse.org/modeling/mdt/papyrus/

13. Erl, T.: SOA: Principles of Service Design. Prentice Hall, Indiana (2008)
14. Apache Software Foundation: Apache JMeter (November 2011),

http://jakarta.apache.org/jmeter/
15. García-Domínguez, A.: Homepage of the SODM+T project (January 2011),

https://neptuno.uca.es/redmine/projects/sodmt
16. García-Domínguez, A., Medina-Bulo, I., Marcos-Bárcena, M.: Inference of performance

constraints in Web Service composition models. In: CEUR Workshop Proc. of the 2nd Int.
Workshop on Model-Driven Service Engineering, vol. 608, pp. 55–66 (June 2010)

17. Garousi, V.: Traffic-aware Stress Testing of Distributed Real-Time Systems based on UML
Models using Genetic Algorithms. PhD thesis, Carleton University, Ottawa, Canada (August
2006)

18. Kolovos, D.S.: Epsilon ModeLink (2011),
http://eclipse.org/gmt/epsilon/doc/modelink/

19. Kolovos, D., Paige, R., Rose, L., Polack, F.: The Epsilon Book (2010),
http://www.eclipse.org/gmt/epsilon

20. Lucas, H.: Performance evaluation and monitoring. ACM Computing Surveys 3(3), 79–91
(1971)

21. OMG: UML Profile for Schedulability, Performance, and Time (SPTP) 1.1 (January 2005),
http://www.omg.org/spec/SPTP/1.1/

22. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms (QFTP) 1.1 (April 2008), http://www.omg.org/spec/QFTP/1.1/

23. OMG: UML Profile for Modeling and Analysis of Real-Time and Embedded systems
(MARTE) 1.0 (November 2009), http://www.omg.org/spec/MARTE/1.0/

24. Shousha, M., Briand, L.C., Labiche, Y.: A UML/MARTE Model Analysis Method for De-
tection of Data Races in Concurrent Systems. In: Schürr, A., Selic, B. (eds.) MODELS 2009.
LNCS, vol. 5795, pp. 47–61. Springer, Heidelberg (2009)

25. Smith, C.U., Williams, L.G.: Software performance engineering. In: Lavagno, L., Martin,
G., Selic, B. (eds.) UML for Real: Design of Embedded Real-Time Systems, pp. 343–366.
Kluwer, The Netherlands (2003)

26. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML
activity diagrams annotated with the MARTE profile. In: Proc. of the 7th Int. Workshop on
Software and Performance, Princeton, NJ, USA, pp. 67–78. ACM (2008)

27. Weyuker, E.J., Vokolos, F.I.: Experience with performance testing of software systems: Is-
sues, an approach, and case study. IEEE Transactions on Software Engineering 26, 1147–
1156 (2000)

28. Woodside, M., Franks, G., Petriu, D.: The future of software performance engineering. In:
Proc. of Future of Software Engineering 2007, pp. 171–187 (2007)

29. Woodside, M.: From Annotated Software Designs (UML SPT/MARTE) to Model For-
malisms. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 429–467.
Springer, Heidelberg (2007)

30. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance
by unified model analysis (PUMA). In: Proc. of the 5th Int. Workshop on Software and
Performance, Palma, Illes Balears, Spain, pp. 1–12. ACM (2005)

31. World Wide Web Consortium: WSDL 2.0 part 1: Core Language (June 2007),
http://www.w3.org/TR/wsdl20

32. Yang, N., Yu, H., Sun, H., Qian, Z.: Modeling UML sequence diagrams using extended Petri
nets. In: Proc. of the 2010 Int. Conference on Information Science and Applications, pp. 1–8
(2010)

http://www.eclipse.org/modeling/mdt/papyrus/
http://jakarta.apache.org/jmeter/
https://neptuno.uca.es/redmine/projects/sodmt
http://eclipse.org/gmt/epsilon/doc/modelink/
http://www.eclipse.org/gmt/epsilon
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/MARTE/1.0/
http://www.w3.org/TR/wsdl20

Typing Legacy COBOL Code

Alvise Spanò, Michele Bugliesi, and Agostino Cortesi

Dipartimento di Scienze Ambientali, Informatica e Statistica,
Università Ca’ Foscari Venezia, Venice, Italy
{spano,michele,cortesi}@dsi.unive.it

Abstract. Maintenance of COBOL applications that still exist and work today
is an open issue for many companies that have not yet undertaken the crucial
decision of migrating to a modern development platform. And even those who
did, most likely had to face a major challenge: understanding what those million
lines of code do and what business processes they originally implemented. Au-
tomating the task of reconstructing the business logic of programs somehow is
hard nonetheless: COBOL code is difficult to even get parsed - let alone applying
Program Understanding techniques based on sophisticate deductions over infor-
mation inferred from the code. Here we propose a system based on the translation
of COBOL into a simpler and cleaner language and a type system capable of in-
ferring types of program variables. Being COBOL a language in which variable
reuse has been a widespread practice for decades, strong typing rules in the usual
sense wouldn’t simply fit, therefore our system provides special flow types for
tracking multiple types a variable may assume and follows the program control-
flow until no more type-changes occur for variables in the typing context. Along-
side it detects also a number of error-prone situations, type mismatches and data
corruptions due to misalignment or misfit in variable reuse when types have in-
compatible in-memory representations, while still guaranteing the typing process
does not halt.

Keywords: Type system, Type inference, Variable reuse, Type flow, Flow type,
Island grammar, IBM z/OS, COBOL, COBOL85.

1 Introduction

In this paper we propose a revision of the system originally presented in [13], which is a
light-weight system for statically typing COBOL with rich yet simple types that pursue
a number goals:

1. model the COBOL picture system without losing storage format information such
as computational fields or the size of a numeric; this let us reconstruct the exact in-
memory representation of datatypes and perform precise comparisons among the
many formats COBOL supports;

2. deal with what in [5] is called pollution in such a way that no complex relational
property system among types is needed, by tracking type alterations that variables
are subject to in the following scenarios:

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 151–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

152 A. Spanò, M. Bugliesi, and A. Cortesi

(a) when data is reused for different purposes in a program: many COBOL pro-
grammers have been used to this practice in order to save memory and the
result is often poorly maintainable and error-prone code;

(b) when the language performs an implicit datatype cast, readapting value repre-
sentation to fit a target variable having a different format than the source - and
this can happen in COBOL either at compile-time or at run-time.

3. deal with branches in the program flow that are not statically decidable (i.e. condi-
tional statements) by embedding into the type itself multiple types a variable may
possibly assume during the execution. In other words, we don’t try to guess how a
condition is evaluated - we rather keep track of the types a variable might assume
in multiple control-flow branches.

Type System. Usually types are given both to expressions and computations that do
not lie in memory and to data bound to variable names or memory cells. We introduce a
form of type for both cases plus a higher-order special type for variables having multiple
types.

1. storage types are the single types having an in-memory representation a variable
may assume;

2. temporary types are the single types a computation can assume before it gets stored
in memory or bound to a variable;

3. choice types are the multiple storage types a variable can assume resulting from
conditional branches in the program flow;

4. flow types are simply a pair encapsulating a choice type and the original initializa-
tion storage type of a variable.

Jumps and Loops. GOTO and PERFORM instructions are constantly found in legacy
COBOL code as the main constructs for altering the control-flow of programs, hence
our system cannot behave like an ordinary type-checker or type-inference algorithm: it
looks more like a type analyzer capable of following jumps and branches in the code,
detect cycles and avoid loops by checking for a convergence in the status of the typ-
ing function - in a way that somehow resembles that of typical Abstract Interpretation
techniques [6]1.

Implementation. A prototype of the system described in this article has been devel-
oped in F# for the .NET 4.0 platform and includes a full-featured COBOL parser and
translator to our Intermediate Language as well. A Lex & Yacc tweak has been designed
for reproducing the behavior of Island Grammars [11] while keeping the benefits of an
efficient LALR parser.

Typing-wise, it is currently able to parse large COBOL source programs (up to many
hundreds of thousands of lines) and to type them generating as output the flow-types

1 Finding a convergence in the status of the typing function is almost trivial compared to inter-
preting computations on abstract domains. That is basically thanks to the static nature of types:
even including variable reuse, the overall number of reuses in any program is finite and can be
statically determined in a finite number of passes.

Typing Legacy COBOL Code 153

annotated at every variable occurrence. Additionally, it annotates useful information
on type usage in form of error messages, warnings and hints. Again as opposed to a
compiler, errors do not make the system fail: typing carries on and is tolerant to ill-typed
situations by simply switching back to the initialization type of a variable whenever
ambiguous scenarios are found.

1.1 Overview

Our system does not manipulate COBOL code directly: as other remarkable systems do
[3], we translate COBOL into an Intermediate Language (from now on referred to as
IL) resembling modern imperative languages without altering COBOL semantics and
principles. The syntax of IL is shown in section 3.1. Notably, what in COBOL speak
is referred to as a program (i.e. a compilation unit), in IL becomes a procedure with
its own set of static variable declarations. A COBOL application consisting of many
programs translates into a single large IL program and the COBOL entry-point as its
bottom unnamed block.

Before performing the type checking, the system labels all variable occurrences in
the program with an unique identifier - for example a fresh integer. The type checker
eventually proceeds statement by statement and recursively descends into expressions,
basically performing two operations:

1. updating the possible type changes a variable is subject to and keeping track of
multiple types variables could concurrently assume;

2. annotating each variable occurrence with its current flow-type at that point in the
program.

Assignments and call-by-reference argument passing are the two scenarios where vari-
ables could be subject to an implicit cast, hence the type of a variable could change.
And conditional constructs are responsible for merging multiple types resulting from
the typing of the two sub-blocks of an if-then-else statement into one choice type.

Look at the following sample code directly translated from COBOL into IL:
{
x := x + 1;
if x > 0 then x := "foo";
x := x + 23;

}
where x : num[2] := 11

Our system can reconstruct the types of the program and annotate each occurrence of
variable x with its flow-type in that point of the code. Typing follows all branches in the
control-flow: after the if block the system has to remember that x might have become a
string. Also, where an ambiguous or ill-typed operation takes place, the system reports
that and recovers to a default decision.
{
(x : num[2]) := (x : num[2]) + 1; [WARNING] possible truncation in assignment: num[3] :> num[2]
if (x : num[2]) > 0 then

(x : alpha[2]) := "foo"; [ERROR] truncation in assignment: alpha[3] :> num[2]

(x : num[2]) := (x : num[2]|alpha[2]) + 23;
[HINT] type of ’x’ is ambiguous in expression: assuming initialization type num[2]
[WARNING] possible truncation in assignment: num[3] :> num[2]

}
where x : num[2] := 11

154 A. Spanò, M. Bugliesi, and A. Cortesi

In the statement at line 1, in which x gets incremented by 1, its type is annotated both
at its usage as a right-value and as the target at the left hand of an assignment. In the
right-hand its type is the initialization type num[2], which obviously happens to be its
current type at the beginning of the program; in the left-hand x should apparently be
given a wider numeric type, because the result of the sum of a num[2] and a literal
whose type is num[1] actually leads to a num[3]2, but it gets truncated in order to
fit the initialization type, exactly as COBOL run-time does. The final type happens to
be equivalent to the initialization type and nothing seems changed, but internally the
whole process has passed through the creation and the truncation of the temporary type
num[3].

Encountering the if statement makes the analyzer descend into the then block: a
truncation is detected therein (being alpha[3] wider than the target type num[2]) and
the truncated type alpha[2] is finally given to x, which fits the initialization type.
Such information must then be merged to what had been previously inferred before
the if statement: hence why, in the assignment under ther if block, the type of x in
the right hand is not a simple type. A choice type has been introduced here by the
merge: it shows the multiple types x might have at that program point. Which leads
to an ambiguity when typing the sum operation and so the system needs to recover to
the initial type declaration to prevent from failing. That might seem odd, but is in fact a
viable solution: in COBOL every variable strictly adheres to its picture declaration, thus
falling back to the initialization type is not unsafe - it is just inaccurate, but it serves just
as a last resort in unsolvable situations.

1.2 Comparisons and Motivation

As already mentioned, the legacy software analysis system thoroughly presented in
[12]3 rely on mechanisms for producing information over types that mainly serve Pro-
gram Understanding techniques, Concept Analysis [10] and other high-level elabora-
tions. In general, its scope is wider than ours and not entirely overlapping. While the
basic goal may look similar, i.e. giving somehow interesting types to COBOL variables,
there are several differences.

– We translate COBOL into a simpler intermediate language as [2] does, though with-
out leaving out important language constructs whose behavior is relevant to typing
real-world programs, such as jump primitives, procedure calls and conditional state-
ments.

– Our type syntax is more complete and open to orthodox type manipulation, as it
doesn’t provide a flat representation of COBOL picture system4.

2 Simply because a number of 2 digits plus a number of 1 digit could possibly lead to a number
of 3 digits, as 99+ 9 = 109. See the type rules for expressions in table 6 for details on how
arithmetic operations formally affect numeric type formats.

3 That is a Ph.D. thesis collecting previous works on the same subject and anticipating some that
yet had to come. In general, that system has been proposed several times in more articles with
some additions - we might therefore refer to either [2], [5], [4], [10] or [12].

4 Syntax of types in [2], weirdly, include variable names and picture format strings into type
terms, leaving unclear how the type environment and type comparison functions handle them.

Typing Legacy COBOL Code 155

– The type inference rules given in [5]5 are sometimes a tad trivial. In our type system
the type reconstruction is more detailed, e.g. our type rules for arithmetic operators
in table 6 recalculate the resulting type format length in order to detect a number of
size errors at typing time.

– We don’t infer a type equivalence when two or more types are expected to be the
same. Our system rather falls back to a variable initialization type in case a type
mismatch or ambiguity is detected. This trade off does not necessarily imply a loss
of information and reflects COBOL run-time semantics better.

– The system in [10] represents the inferred set of type relations via a Relational
Algebra and resolves it by applying an algorithm written in Grok [7]: the resolution
is actually a simplification process performing iterative unification. This approach
doesn’t seem to take into account control-flow jumps. Our system performs a code
analysis at typing time by following branches and jumps and thus detects a wider
range of possible type anomalies and variable reuses.

– According to [5], pollution occurs whenever a type-equivalence involves types that
are not equivalent or subtypes: we do not handle this as a special case, but it auto-
matically comes from non-singleton choices within flow-types, which are natively
supported by our type-system and do not require any further processing.

– Our subtype relation deals with the in-memory representation of a wider range of
type formats and qualifiers that are very common in COBOL programs, such as all
COMP fields (translated into native integer, floating point and binary-coded-decimal
types), signed/unsigned numeric formats and mixed alphabetic/alphanumeric strings.

– In [5] there is no mention on how COBOL references6 are handled, nor on how
COBOL run-time data conversions affect type rules manipulating different picture
formats and computational fields (e.g. a COMPUTE instruction using mixed numeric
variables and literals). A major feature of our system is to statically reproduce
COBOL run-time and compile-time behaviors, keeping track of numeric formats
and sizes and introducing temporary types for R-values7 which are eventually pro-
moted to storage types when a type coercion to a L-value occurs (see definitions 1
and 6).

2 Type System

2.1 Storage Types and Flow-types

COBOL picture declarations in the Working Storage section of the Data Division define
data instances along with their own storage format: they’re not just type declarations.

5 The word inference, with a clear reference to ML and type theory in the functional language
world, is a bit improper for the context: we’d rather prefer reconstruction or analysis, as there
is no use of type variables and unification for resolving a set of constraints over type equations
as in actual type inference systems [1].

6 According to COBOL syntax specification in [8], accessible memory cells are called refer-
ences. We renamed them as left values in our intermediate language for the sake of symmetry
with imperative languages such as C that define them as a sub-class of expressions which can
appear at the left side on an assignment and refer to a real memory location [9].

7 Symmetrically, emphright values are expressions that can stand on the right side of an assign-
ments, hence evaluate to a temporary value [14] that does not lie in memory.

156 A. Spanò, M. Bugliesi, and A. Cortesi

Our system must of course reproduce this design, but mapping COBOL picture format
strings into types. For example, consider the following picture declaration:
DATA DIVISION.
WORKING-STORAGE SECTION.

01 A PIC 9(3) COMP-3 OCCURS 10.
01 N PIC COMP 9(8).
01 R1.

02 R1-S PIC A(2).
02 R1-B PIC X(3)9(2)A(3).

01 R2 OCCURS 7.
02 X PIC S99V9 COMP-2.

We translate it into more readable and compact type bindings that are quite self-
explanatory:

A : numbcd[3] array[10]
N : numint32 [8]

R1 : {S : alpha[2]; B : alphanum[8]}
R2 : {X : numfloat64 [S2.1]} array[7]

Picture format strings are mapped into either numeric, pure alphabetic or alphanumeric
types according to their structure; arrays and records are also first-class citizens of the
type language in our system and can therefore be nested at will, yielding to types that re-
semble those of modern functional languages. Moreover, numeric types carry along de-
tailed information on their in-memory representation at machine level, sign and length
of both integral and fractional parts; while arrays and alphabetic/alphanumeric strings
simply carry their length. The full syntax of the type-system follows:

τ := storage types
numq[ρ] numeric

| alpha[n] alphabetic string
| alphanum[n] alphanumeric string
| τ array[n] array
| {x1 : τ1 .. xn : τn} record

σ := temporary types
τ

| bool boolean
| num[ρ] abstract numeric

q := numeric storage qualifier
ascii display or ASCII

| bcd binary-packed decimal
| int16|32|64 native integer
| f loat32|64 native float

ρ := [S]n.d numeric format

ϕ := {τ1 .. τk} flow-item or choice

Φ := 〈ϕ;τ〉 flow-type

where k ≥ 1, n ∈ N
∗, d ∈ N

Typing Legacy COBOL Code 157

There are two distinct classes of types:

– τ is the type of storage variables and L-values in general, i.e. the type of data that
stands in memory and has some representation8;

– σ, where σ ⊃ τ, is the type given to expression terms only and is never produced by
picture translation, serving just as a temporary light-weight type whose in-memory
representation is yet to be known in that context.

As typing rules will show,such temporary types are eventually promoted to ordinary τ
types as soon as the storage type of an actual variable becomes known, for example
when an expression that’s given a temporary is then assigned to a L-value or passed
as a call-by-ref argument in an procedure call. Finally, a flow-type is a simply a pair
of possibly multiple storage types (those a variable may concurrently have following
statically undecidable conditional branches in the program flow, as stated in section 1)
and an additional single storage type, which is the type initially declared for the variable
in the global environment. We’ll be often referring to the first component of a flow-type
as flow-item or choice.

2.2 Environments

Type rules operate over a number of environments mapping different entities.

Type Environment Γ maps variable identifiers to flow-types: this environment is ini-
tially populated with global type declarations and its bindings are then updated
when the current flow-type changes during typing. It contains bindings of form
x : Φ.

Topological Environment Θ collects all annotations produced by the type analyzer by
mapping labeled variable occurrences xκ to its flow-type at that program point. It
represents also the status of the typing function in the detection of loop termination.
It contains bindings of form xκ : Φ.

Procedure Environment Π maps procedure names to signatures (see definition 8). It
contains bindings of form p �→ 〈y1 : τp

1 .. yn : τp
n ;Γp〉.

Block Environment Σ maps label identifiers to blocks of statements. It contains bind-
ings of form l �→ {st1 .. stn}.

2.3 Coercion of L-Values

Take the following example:

{
a[0].l := "boo";
}
where a : { l : num[2]; m : alpha[10] } array[5]

And its annotated form resulting from the type analysis:

8 ASCII is the default qualifier for numeric types: whenever unspecified this one holds, as in
num[3] for example.

158 A. Spanò, M. Bugliesi, and A. Cortesi

{
(a : { { l : alpha[2]; m : alpha[10] } array[5])[0].l

:= "boo";
}
where a : { l : num[2]; m : alpha[10] } array[5]

The literal "boo" having type alpha[3] is assigned to field l of a record within a cell of
an array. The flow-type of variable a needs to be updated here somehow with the type of
the right-hand of the assignment - and of course it’s not to a that such type must naively
be given, but to the record field l nested within. Nonetheless the environment binds
variable identifiers to flow-types, thus there is no way to update the type of a record
label (as l in our case) or of an array cell alone. Therefore the whole type of a variable
must be updated keeping the original structure layout and replacing the appropriate bit
nested within it. Hence, the whole type of a in the example becomes { l : alpha[2];
m : alpha[10] } array[5].

This shows also that the expected type alpha[3] of the literal "boo" has been
adapted to fit into the initialization type num[2]: coercion in assignments needs there-
fore both to replace a piece of a type and to resize it accordingly, keeping the original
storage class (num in our example) and recalculating the format in such a way that the
overall size of the new resulting type fits the initialization one.

For this reasons, judgements for L-value terms are slightly different: Π;Σ;Γ;Θ0 �lv

lv : τ\θxκ
� Θ1 means that the L-value lv has a storage type τ coercible by the substitu-

tion θxκ
, where x is the root variable of lv (formally x = ℜ(lv) as of definition 7) and xκ

is its labeled occurrence. θ is a function from storage types to storage types that can be
passed by typing rules that need to update the type of the root variable of an L-value to
the coerce function C (see definition 6), which performs the proper fit operation among
other things.

2.4 Loops and Convergence

As informally stated in section 1, the type analyzer follows goto and perform state-
ments unless already visited and a convergence in the status of the typing function is
detected. In subsection 2.2 we said that this status actually consists of the topological
environment Θ. The typing function at step i of the analysis can be defined as a function
taking the statement fetched at that step and the topological environment:

Ti(stB,p,Θi) = Θi+1

where stB,p is the statement located within block B at position p.
Each time the typing function encounters a jump statement, it performs a number

of operations. Say a jump statement stA,q ≡ goto l is encountered by T at step i while
typing block A = {stA,1 .. stA,n} (with q ∈ [1,n]):

1. it saves the topological environment Θi built up so far, binding it to the current
program location;

2. it looks up the destination block of statements from the block environment, hence
B = {stB,1 .. stB,m}= Σ(l);

3. it continues the analysis from there, i.e. from statement stB,1.

Typing Legacy COBOL Code 159

Let’s consider that later at step j (obviously j > i) T reaches the jump statement stA,q
again: then the new current topological environment Θ j is compared against Θi, which
had formerly been saved at that program location. If Θ j � Θi (see definition 11) then it
means that no further type information has been collected during the second pass and
we can therefore assume that the analysis can safely skip the jump statement stA,q and
continue from stA,q+1. Else, the new topological environment Θ j is saved (replacing the
old Θi previously stored) and the analysis continues from the jump statement destination
stB,1 again.

We observed that the system detects a convergence averagely in 1 and anyway in up
to 3 reiterations of the same piece of code. The reason is twofold:

– the topological environment cannot by definition be subject to binding removal,
hence ∀xκ ∈ Θi. xκ ∈ Θi+1 at any given step i;

– flow-types bound to variable occurrences in the topological environment can only
grow - they can never diminish in width. Given we’re dealing with types and not
values, the stability is certain: storage types of variables do not change from pass to
pass for obvious reasons and the only thing that could change and modify the status
Θ of the typing function T is the flow-item ϕ part of flow-types bound to variable
occurrences. ϕ is defined as a set of storage types τ in table 2.1 and it is subject to a
single operation: the merge function as of definition 9, which basically consists in
a set-union between flow-items. Duplicate types can therefore never occur and no
element could be removed.

3 Formal Specification

In this section we give the full specification of the IL language and the type-system
described in section 2.

3.1 IL

Grammar rules for IL syntax are given below together with lexical rules for identifiers,
literals and operators. Terminal symbols are underlined, non-terminal symbols are in
italics and EBNF meta-operators are in plain form.

P := proc p((y : τ)∗) B in P procedure
| B main

B := st where (x : τ [:= lit])∗ body with environment bindings

st := lv := e assignment
| if e then st [else st] if-then/if-then-else
| p((a)∗) call
| goto l goto
| perform l [l] perform/perform-thru
| return return
| [l:] { (st)+ } anonymous/named-block

160 A. Spanò, M. Bugliesi, and A. Cortesi

lv := x variable
| lv[e] array subscript
| lv.z record field select

a := val e call-by-value
| ref lv call-by-reference

e := e (opa|opl |opr) e binary operator application
| (− | not) e unary operator application
| lit literal
| lv l-value

lit := [−]n[.n] numeric literal
| ” [ˆ”]∗ ” string literal
| true | f alse boolean literal

x,y,z, l, p := [a−z A−Z][a−z A−Z − 0−9]∗ identifiers

opa := + | − | ∗ | / binary arithmetic operators

opl := and | or binary logic operators

opr := < | = | ! = | <= | > | >= binary relational operators

n := [0−9]+ natural number

3.2 Definitions

A number of formal definitions is needed before presenting type rules.

Definition 1 (Promote). The promotion �σ�τ of a temporary type σ to a storage type τ
produces a storage type that transform σ into a storable type inheriting the character-
istics of τ. The promotion function is defined as follows (top-down closest-match rule
on the left hand holds):

�num[ρ2]�
numq[ρ1] = numq[ρ2]
�bool�τ = �num[1.0]�τ

�num[ρ]�τ = numascii[ρ]
�τ2�

τ1 = τ2

Definition 2 (Representation). We define a function rep : τ → N for calculating the
in-memory byte size of a storage type:

rep(numascii[n.d]) = n+ d
rep(numbcd[n.d]) = � n+d+1

2 �
rep(numintb [ρ]) = b/8

rep(num f loatb [ρ]) = b/8

rep(alpha[n]) = n
rep(alphanum[n]) = n

rep(τ array[n]) = rep(τ)∗ n

rep({x1 : τ1..xn : τn}) =
n

∑
i=1

rep(τi)

Definition 3 (Subtype). We define a total-order between storage types such that the
relation τ1 � τ2 holds when rep(τ1)≤ rep(τ2).

Typing Legacy COBOL Code 161

Definition 4 (Var-Bound Substitution). A substitution θxκ
is a function from storage

types to storage types that carries along a labeled identifier xκ which stands for the
variable occurrence whose type the substitution has been built from and is supposed to
replace9.

Definition 5 (Fit). The fit �τ1�τ2 of a storage type τ1 to a storage type τ2 produces a
storage type whose storage class is equivalent to that of τ1 and whose size fits into that
of τ2. The fit function is defined as follows:

�numq[ρ]�τ = numq[ρ′] | rep(numq[ρ′]) = rep(τ)
�alpha[n]�τ = alpha[n′] | rep(alpha[n′]) = rep(τ)

�alphanum[n]�τ = alphanum[n′] | rep(alphanum[n′]) = rep(τ)
�τa array[n]�τ = τ′a array[n′] | rep(τ′a array[n′]) = rep(τ)

�{l1 : τ1..ln : τn}�τ = {l1 : τ′1..ln : τ′n} | rep({l1 : τ′1..ln : τ′n}) = rep(τ)

Definition 6 (Coerce). The coerce function C updates the given type and topological
environments by applying a given substitution function θxκ

to the types a given flow-
item ϕ consists of; it produces a new pair of form 〈Γ;Θ〉 consisting of the type and
topological environments endowed with updated bindings for the variable x and the
occurrence label κ annotated on the substitution function θxκ

itself:

C (ϕ,θxκ
,Γ,Θ) = 〈Γ,x : Φ′;Θ,κ : Φ′〉 with

〈ϕ;τx〉= Γ(x)
Φ′ = 〈{∀τi ∈ ϕ.�θxκ

(τi)�τx};τx〉
Definition 7 (Root Variable). Given an L-value lv, its root variable is the identifier x
evaluated by the recursive function defined as:

ℜ(x) = x ℜ(lv[e]) = ℜ(lv) ℜ(lv.l) = ℜ(lv)

Definition 8 (Signature). A signature is a pair 〈Yp;Γp〉 where p is a procedure name,
Yp are its formal parameters y1 : τp

1 ..yn : τp
n and Γp is the output type environment re-

turned by typing the body of p.

Definition 9 (Type Environment Merge). The binary function ⊕ merges two given
type environments into one as Γ1 ⊕Γ2 = Γ∗ ∪ (Γ1\Γ2)∪ (Γ2\Γ1) where Γ∗ = {x : 〈ϕ1 ∪
ϕ2;τ1〉|Γ1(x) = 〈ϕ1;τ1〉∧Γ2(x) = 〈ϕ2;τ2〉∧ τ1 = τ2}.

Definition 10 (Partial Ordering of Flow-Types). We define a partial order between
flow-types such that Φ1 � Φ2 holds when, let Φ1 = 〈ϕ1;τ1〉 and Φ2 = 〈ϕ2;τ2〉, then
ϕ1 ⊆ ϕ2 ∧ τ1 = τ2.

Definition 11 (Partial Ordering of Topological Environments). We define a partial
order between topological environments such that Θ1 �Θ2 holds when ∀x : Φ1 ∈Θ1.x∈
dom(Θ2)∧Φ1 � Φ2, where Φ2 = Θ2(x).

9 Substitution functions are recursively defined by type rules for L-Values as shown in table 4.
They’re meant for generically replacing a term nested within a storage type of arbitrary com-
plexity by reproducing its original structure of recursive type terms and changing the innermost
part only.

162 A. Spanò, M. Bugliesi, and A. Cortesi

3.3 Type Rules

Syntax-directed type rules are divided by category. Rules for Programs are shown in
table 1, for Statements in table 2, for Expressions in table 6, for Arguments in table 3
and for Literals in table 5.

Table 1. Type Rules for Programs and Body

MAIN
Π; /0;Θ0 �B B � Γ;Θ1

Π;Θ0 �P B � Θ1

PROC
Γp = /0,y1 : 〈{τp

i };τp
i 〉..yn : 〈{τp

n};τp
n〉

Π;Γp;Θ0 �B B � Γ′
p;Θ1

Π, p �→ 〈y1 : τp
1 ..yn : τp

n ;Γ′
p〉;Θ1 �P P � Θ2

Π;Θ0 �P proc p(y1 : τp
1 ..yn : τp

n) B in P � Θ2

BODY
∀i ∈ [1,n].Π;Σ;Γ0;Θ0 �lit liti : σi ∧ �σi�

τi � τi
Π; /0;Γ0,x1 : 〈{τ1};τ1〉..xn : 〈{τn};τn〉;Θ0 �st st � Γ1;Θ1

Π;Γ0;Θ0 �B st where x1 : τ1 := lit1..xn : τn := litn � Γ1;Θ1

Most judgements give a type to a term of the language in a context consisting of a tu-
ple of environments and output the updated Γ and Θ, except judgements for Statements
and Programs that give no type and simply update the environments. As a general rule,
the topological environment Θ is always forwarded to and returned by all judgements
(except literals), because flow-types must be annotated recursively on each variable oc-
curring in any subterm of the program. While the type environment Γ is output only
by rules that actually update it: consider it as returned back untouched when there’s no
mention of it among outputs.

Judgements are of a number of forms, each syntactic category having its own, though
most of them are quite self-explanatory. For example, Π;Σ;Γ;Θ0 �e e : σ � Θ1 denotes
that, in the given environments, expression e is given a temporary type σ and the topo-
logical environment Θ1 is output.

Judgements for Arguments probably need some extra words. Call-by-ref calls need
to update the type environment of the the caller because the flow-type of argument
might be modified by the invoked procedure. The procedure environment Π stores the
type environment Γp for each procedure p of the program, thus the flow-type of a vari-
able passed by reference to p can be updated according to the flow-type of the cor-
responding formal parameter bound in Γp. Such update is carried on by the coerce
function C , as shown by rule BYREF in table 3. The mechanism resembles that in rule
ASSIGN in table 2: call-by-reference argument application indeed behaves like an as-
signment (call-by-value doesn’t).

Rules for Arguments have form Π;Σ;Γ0;Θ0 �a a : τi � Γ1;Θ1, meaning that, in the
given environments, the actual argument a has type τp

i , which is the type of the i-th
formal parameter of procedure p.

Typing Legacy COBOL Code 163

Table 2. Type Rules for Statements

ASSIGN
Π;Σ;Γ0;Θ0 �e e : σe � Θ1

Π;Σ;Γ0;Θ1 �lv lv : τlv\θxκ
� Θ2

xκ = ℜ(lv)
〈Γ1;Θ2〉= C (�σe�

τlv ,θxκ
,Γ0,Θ2)

Π;Σ;Γ0;Θ0 �st lv := e � Γ1;Θ2

IF
Π;Σ;Γ0;Θ0 �e e : bool � Θ1
Π;Σ;Γ0;Θ1 �st st � Γ1;Θ2

Γ2 = Γ0 ⊕Γ1

Π;Σ;Γ0;Θ0 �st if e then st1 � Γ2;Θ2

IF-ELSE
Π;Σ;Γ0;Θ0 �e e : bool � Θ1
Π;Σ;Γ0;Θ1 �st st1 � Γ1;Θ2
Π;Σ;Γ0;Θ2 �st st2 � Γ2;Θ3

Γ3 = Γ1 ⊕Γ2

Π;Σ;Γ0;Θ0 �st if e then st1 else st2 � Γ3;Θ3

PERFORM
{st1..stn}= Σ(l)

Π;Σ;Γ0;Θ0 �st {st1..stn} � Γ1;Θ1

Π;Σ;Γ0;Θ0 �st perform l � Γ1;Θ1

PERFORM-THRU
∀i ∈ [a,b) {sti,1..sti,ni}= Σ(li)

Π;Σ;Γi−a;Θi−a �st {sti,1..sti,ni} � Γi−a+1;Θi−a+1

Π;Σ;Γ0;Θ0 �st perform la lb � Γb−a−1;Θb−a−1

GOTO
l ∈ dom(Σ)

Π;Σ;Γ0;Θ0 �st goto l � Γ0;Θ0

CALL
〈y1 : τp

1 ..yn : τp
n ;Γp〉= Π(p)

∀i ∈ [1,n].Π;Σ;Γi−1;Θi−1 �a ai : τp
i � Γi;Θi

Π;Σ;Γ0;Θ0 �st p(a1..an) � Γn;Θn

BLOCK
∀ j|st0, j ≡ l j :{st j,1..st j,nj}

Σ′ = Σ, l j �→ {st j,1..st j,nj}..
∀i ∈ [1,m]|m ≤ n∧ sti ≡ goto l
Π;Σ′;Γi−1;Θi−1 �st sti � Γi;Θi

Π;Σ;Γ0;Θ0 �st l0 : {st0,1..st0,n0} � Γn;Θn

Table 3. Type Rules for Arguments

BYVAL
Π;Σ;Γ0;Θ0 �e e : σ � Θ1

�σ�τp
i � τp

i

Π;Σ;Γ0;Θ0 �a val e : τp
i � Γ0;Θ1

BYREF
Π;Σ;Γ0;Θ0 �lv lv : τ′\θxκ

� Θ1
x = ℜ(lv) τ′ � τp

i〈y1 : τp
1 ..yn : τp

n ;Γp〉= Π(p)
〈ϕp

i ;τp
i 〉= Γp(yi)

〈Γ1;Θ2〉= C (ϕp
i ,θ

xκ
,Γ0,Θ1)

Π;Σ;Γ0;Θ0 �a ref lv : τp
i � Γ1;Θ2

Table 4. Type Rules for L-Values

VAR-INIT
Γ(x) = Φ = 〈{τ1τ2..τn};τ0〉

Θ1 = Θ0,x
κ : Φ θxκ

(τ) = τ
Π;Σ;Γ;Θ0 �lv xκ : τ0\θxκ

� Θ1

VAR-CURR
Γ(x) = Φ = 〈{τ1};τ0〉

Θ1 = Θ0,x
κ : Φ θxκ

(τ) = τ
Π;Σ;Γ;Θ0 �lv xκ : τ1\θxκ

� Θ1

SUBSCRIPT
Π;Σ;Γ;Θ0 �e e : num[ρ] � Θ1

Π;Σ;Γ;Θ1 �lv lv : τ array[n]\θxκ

lv � Θ2
x = ℜ(lv)

θxκ
(τ) = θxκ

lv (τ array[n])

Π;Σ;Γ;Θ0 �lv lv[e] : τ\θxκ
� Θ2

SELECT
Π;Σ;Γ;Θ0 �lv lv : {z1 : τ1..z : τ..zn : τn}\θxκ

lv � Θ1
x = ℜ(lv)

θxκ
(τ) = θxκ

lv ({z1 : τ1..z : τ..zn : τn})
Π;Σ;Γ;Θ0 �lv lv.z : τ\θxκ

� Θ2

164 A. Spanò, M. Bugliesi, and A. Cortesi

Table 5. Type Rules for Literals

NUM-U
n = len(n1) d = len(n2)

Π;Σ;Γ;Θ �lit n1[.n2] : num[n.d]

NUM
n = len(n1) d = len(n2)

Π;Σ;Γ;Θ �lit −n1[.n2] : num[Sn.d]

STRING-ALPHANUM
{0 .. 9}∩"str.." = /0

n = len(str)

Π;Σ;Γ;Θ �lit "str.." : alphanum[n]

STRING-ALPHA
n = len("str..")

Π;Σ;Γ;Θ �lit "str.." : alpha[n]

TRUE

Π;Σ;Γ;Θ �lit true : bool

FALSE

Π;Σ;Γ;Θ �lit f alse : bool

Table 6. Type Rules for Expressions

DEMOTE-NUM
Π;Σ;Γ;Θ0 �e e : numq[ρ] � Θ0

Π;Σ;Γ;Θ0 �e e : num[ρ] � Θ0

LV
Π;Σ;Γ;Θ0 �lv lv : τ\θxκ

� Θ1

Π;Σ;Γ;Θ0 �e lv : τ � Θ1

LIT
Π;Σ;Γ;Θ �lit lit : σ

Π;Σ;Γ;Θ0 �e lit : σ � Θ0

NEG-S
Π;Σ;Γ;Θ0 �e e : num[Sn.d] � Θ1

Π;Σ;Γ;Θ0 �e − e : num[Sn.d] � Θ1

NEG-U
Π;Σ;Γ;Θ0 �e e : num[n.d] � Θ1

Π;Σ;Γ;Θ0 �e − e : num[Sn.d] � Θ1

NOT
Π;Σ;Γ;Θ0 �e e : bool � Θ1

Π;Σ;Γ;Θ0 �e not e : bool � Θ1

PLUS-U
Π;Σ;Γ;Θ0 �e e1 : num[n1.d1] � Θ1
Π;Σ;Γ;Θ1 �e e2 : num[n2.d2] � Θ2
n = max(n1,n2) d = max(d1,d2)

Π;Σ;Γ;Θ0 �e e1 + e2 : num[Sn.d] � Θ2

PLUS-MINUS-S
Π;Σ;Γ;Θ0 �e e1 : num[S1n1.d1] � Θ1
Π;Σ;Γ;Θ1 �e e2 : num[S2n2.d2] � Θ2
S = S1 ∨S2 n = max(n1,n2)+1

d = max(d1,d2)

Π;Σ;Γ;Θ0 �e e1(+|−)e2 : num[Sn.d] � Θ2

MULT
Π;Σ;Γ;Θ0 �e e1 : num[S1n1.d1] � Θ1
Π;Σ;Γ;Θ1 �e e2 : num[S2n2.d2] � Θ2

S = S1 ∨S2
n = n1 +n2 d = d1 +d2

Π;Σ;Γ;Θ0 �e e1 ∗ e2 : num[Sn.d] � Θ2

DIV
Π;Σ;Γ;Θ0 �e e1 : num[S1n1.d1] � Θ1
Π;Σ;Γ;Θ1 �e e2 : num[S2n2.d2] � Θ2

S = S1 ∨S2
n = n1 +d2 d = d1 +n2

Π;Σ;Γ;Θ0 �e e1/e2 : num[Sn.d] � Θ2

BIN-REL-NUM
Π;Σ;Γ;Θ0 �e e1 : num[S1n1.d1] � Θ1
Π;Σ;Γ;Θ1 �e e2 : num[S2n2.d2] � Θ2

Π;Σ;Γ;Θ0 �e e1opre2 : bool � Θ2

BIN-REL-ALPHANUM
Π;Σ;Γ;Θ0 �e e1 : alphanum[n1] � Θ1
Π;Σ;Γ;Θ1 �e e2 : alphanum[n2] � Θ2

Π;Σ;Γ;Θ0 �e e1opre2 : bool � Θ2

BIN-LOGIC
Π;Σ;Γ;Θ0 �e e1 : bool � Θ1
Π;Σ;Γ;Θ1 �e e2 : bool � Θ2

Π;Σ;Γ;Θ0 �e e1ople2 : bool � Θ2

As a final notice, for the sake of simplicity we assume that all labels in the program
are named in order of occurrence: if ln and lm are two labels and m > n, then lm appear
below ln in the program. That makes type rules for jump statements simpler.

Typing Legacy COBOL Code 165

References

1. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL, pp. 207–
212 (1982)

2. van Deursen, A., Moonen, L.: Type inference for cobol systems. In: WCRE (Working Con-
ference on Reverse Engeneering), pp. 220–230 (1998)

3. van Deursen, A., Moonen, L.: Understanding cobol systems using inferred types. In: IWPC.
IEEE Computer Society (1999)

4. van Deursen, A., Moonen, L.: Exploring legacy systems using types. In: WCRE (Working
Conference on Reverse Engeneering), pp. 32–41 (2000)

5. van Deursen, A., Moonen, L.: An empirical study into cobol type inferencing. Sci. Comput.
Program. 40(2-3), 189–211 (2001)

6. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Static Analysis. Springer (1999)
7. Holt, R.C.: WCRE 1998 most influential paper: Grokking software architecture. In: WCRE

(Working Conference on Reverse Engeneering), pp. 5–14. IEEE (2008)
8. IBM: Cobol z/OS language reference (2009),

http://publib.boulder.ibm.com/info-center/pdthelp/v1r1/index.jsp?topic=/
com.ibm.debugtool.doc 7.1/eqa7rm0293.html

9. Kernighan, B.W., Ritchie, D.: The C Programming Language, 2nd edn. Prentice-Hall (1988)
10. Kuipers, T., Moonen, L.: Types and concept analysis for legacy systems. In: IWPC, pp. 221–

230. IEEE Computer Society (2000)
11. Moonen, L.: Generating robust parsers using island grammars. In: WCRE (Working Confer-

ence on Reverse Engeneering) (2001)
12. Moonen, L.: Exploring software systems. In: ICSM, pp. 276–280. IEEE Computer Society

(2003)
13. Spanò, A., Bugliesi, M., Cortesi, A.: Type-flow analysis for legacy cobol code. In: ICSOFT

(2), pp. 64–75 (2011)
14. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston (2000)

http://publib.boulder.ibm.com/info-center/pdthelp/v1r1/index.jsp?topic=/com.ibm.debugtool.doc_7.1/eqa7rm0293.html
http://publib.boulder.ibm.com/info-center/pdthelp/v1r1/index.jsp?topic=/com.ibm.debugtool.doc_7.1/eqa7rm0293.html

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 166–180, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Repository for Integration of Software Artifacts
with Dependency Resolution and Federation Support

Rodrigo García-Carmona, Félix Cuadrado, Juan C. Dueñas, and Álvaro Navas

Departamento de Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación,
Universidad Politécnica de Madrid, Madrid, Spain

{rodrigo,fcuadrado,jcduenas,anavas}@dit.upm.es

Abstract. While developing new IT products, reusability of existing compo-
nents is a key aspect that can considerably improve the success rate. This fact
has become even more important with the rise of the open source paradigm.
However, integrating different products and technologies is not always an easy
task. Different communities employ different standards and tools, and most
times is not clear which dependencies a particular piece of software has. This is
exacerbated by the transitive nature of these dependencies, making component
integration a complicated affair. To help reducing this complexity we propose a
model-based repository, capable of automatically resolve the required depen-
dencies. This repository needs to be expandable, so new constraints can be ana-
lyzed, and also have federation support, for the integration with other sources of
artifacts. The solution we propose achieves these working with OSGi compo-
nents and using OSGi itself.

Keywords: Component Distribution, Model-driven Engineering, OSGi, Open
Source, Software Integration.

1 Introduction

In recent years software development has been undergoing a huge change, evolving
from a closed software paradigm to new processes that incorporate open source soft-
ware in products and services. The number and relevance of software developments
based in the open source paradigm have experienced an exponential growth [1].

The reason for this lies in the particular strengths that open source can bring into
the table, like its ability to reduce IT costs, deliver products faster and improve the
security and reliability of systems. This situation has been also fostered by the numer-
ous success cases in industry that have followed this model. In fact, sources like
Forrester have described 2009 as “the year IT professionals realized that open source
runs their business”, and predict that this trend is going to continue in the following
years [2].

Most of the strengths that open source provide are the product of the open com-
munities and the development models that arise from them. At this point it has be-
come clear that the community efforts are leveraged by the participating elements,
with everyone benefitting from the created ecosystem. Example succesful communi-
ties are the Apache Software Foundation, the Eclipse Foundation, the ObjectWeb
community and SourceForge.

 A Repository for Integration of Software Artifacts with Dependency Resolution 167

Those communities have matured with different collaboration and architecture
models. As a consequence, these communities are like isolated islands which no
communication between them. Unfortunately, while they achieve a very high internal
consistency, there is a severe lack of compatibility and integration among them. This
hampers one of the most important factors for the success of open source; the reusa-
bility of code, since the lack of integration complicates this process. These integration
challenges are also aggravated by the multiplicity of tools used by different projects.
To further complicate this issue, most of these tools are not concerned in working
with other solutions.

The heart of this problem lies in evaluating the interdependencies of software
components. These dependencies tend to form a complex mesh that can span several
projects and code bases and it is difficult and costly to navigate. One of the most se-
vere problems of open source development is figuring which already existing compo-
nents one has to use.

In addition to the technology impedance mismatch, there are additional factors
which must be considered. An often overlooked factor with open source usage is the
existence of several software licenses. While on first thought these elements should
not interfere, they do actually restrict the potential uses, since some of these licenses
are incompatible between them or with commercial ones.

It can be seen that the problem lies not only in code interoperability but also in ad-
ditional aspects, such as legal license compatibility, or design according to similar
hardware capabilities. In practice, all these problems tend to produce fragmentation,
complicating the use of what software it is already available.

The meeting point for this integration is, in almost every community, a software
repository. Since the repository act as a central hub for all development efforts, the
difficulties exposed here are particularly evident in it.

In this article we present a comprehensive, model-based component repository
that provides two features that ease the integration of software elements: 1) An auto-
matic dependency resolution that can work with several types of concerns (software,
hardware, etc...) and 2) A federation system that can aggregate the contents of other
repositories and in turn expose their own components to the outside world.

This repository has been developed in the context of the ITEA-OSAMI European
project and its objective is to act as a main hub in an Internet federation of reposito-
ries, while being publicly available. It integrates artifacts published by the members
of both the ITEA-OSAMI project itself and external partners.

This article is structured as follows: The next section gives a brief explanation of
the most recent developments in the topics that concern our work. Section 3 explains
our proposal in detail, and section 4 performs a validation of our work using an im-
plementation of the repository. Finally, the last section outlines the conclusions we
have reached and shows how our work could be further developed in the future.

2 State of the Art

In this section we provide a brief state of the art of the technologies that are especially
relevant for our proposal: the OSGi component model and the already existing soft-
ware repository solutions.

168 R. García-Carmona et al.

2.1 The OSGi Component and Service Model

OSGi is an open specification that defines a component and service model for the
Java platform. The latest version of the specification is 4.2 [3], and is maintained by
the OSGi Alliance, a consortium formed by embedded and enterprise companies, such
as IBM, Oracle, Red Hat or Siemens. It was originally designed for home gateways
and embedded systems, but its adoption has greatly increased lately in desktop tools
and enterprise application servers.

The relevance of the OSGI specification has increased mainly because it provides
a modularity layer that was missing in the Java platform. This is enabled by the defi-
nition of OSGi bundles. Bundles extend java libraries (JAR files), allowing them to
expose their functionality to the rest of the platform in a controlled way. Bundles use
the Java manifest file to declare explicitly what does the component provide to the
rest of elements (in the form of java packages) and what does it require in order to
work properly (either java packages or complete bundles), providing in both cases
version compatibility information. This directly addresses the ‘JAR hell’ problem of
complex Java-based systems, greatly easing the deployment and configuration of new
software.

Additionally, OSGi bundles collaborate through a lightweight service mechanism,
with services being runtime Java objects that implement interfaces. This enables ef-
fective decoupling between collaborating components and simplifies the development
of extensible systems. The OSGi framework provides an execution platform for OSGi
bundles, enabling dynamic deployment and configuration of the components. These
factors make OSGi bundles an ideal specification for open, composable service-based
ecosystems, as it provides simple mechanisms for effective interoperability and mod-
ularization.

All in all, OSGi is the best solution in the Java world for the design and imple-
mentation of modular applications. It enables an even lower coupling and brings the
SOA principles to the virtual machine. Our proposal will use OSGi for both the com-
ponents the repository will manage and the actual repository itself.

2.2 Software Repository Standards

At this moment there are several repository technologies that are popular in open
source communities. Every one of them has its own component model and capabili-
ties. We detail each in this section, with a special focus in their support of OSGi bun-
dles and federation capabilities.

Maven [4] is one of these solutions, a software project management and compre-
hension tool. Maven has become the de facto standard for managing Java projects,
thanks mainly to the support and its extended use inside the Apache community. Ma-
ven uses a generic project description model for describing software projects named
Project Object Model (POM). The POM file of a project defines the project’s life-
cycle as well as its dependencies and configuration parameters. However, this model
has been defined as generic as possible, in order to cover a wide range of software
projects. Hence, it does not accurately reflect the special relationships of specific
types of software components, such as OSGi bundles. For example, dependencies
onto a particular software package can be defined, but not onto a complete bundle.

 A Repository for Integration of Software Artifacts with Dependency Resolution 169

POM cannot describe these kinds of dependencies, losing information in going from
manifest to POM. Despite this disadvantage, Maven repositories provide other inter-
esting capabilities, such as being able to store all the information concerning a project
(source code, documentation, etc) or the hierarchical federation with other Maven
repositories, augmenting the Maven basic dependency resolution mechanism. How-
ever, this mechanism does not work with repositories implemented using other tech-
nologies.

Another model used to describe bundles is the OBR (OSGi Bundle Repository)
project. This model was presented as the draft OSGi RFC 112 [5]. The RFC defines
both an XML schema for bundle description and the Java API for browsing OBR
repositories. An OBR repository is very simple in its structure, providing just an XML
file describing the server contents. This eases the creation of OBR repositories as only
the bundles and how to download them need to be described, leaving plenty of free-
dom to design the architecture supporting those operations. This simplicity has the
drawback that the clients are forced to carry out most of the operations, a problem
aggravated by the fact that there is no standard definition of an OBR client. The draft
status of the OBR presents additional disadvantages, such as the lack of mechanisms
for managing repository contents (e.g. upload new bundle, update, or delete). and that
the federation mechanism between OBR repositories is not well-defined.

In the 3.0 version of Eclipse, the Eclipse architecture was changed to use OSGi as
the project core. This change pushed the Eclipse community to develop their own
bundle repository, named P2 [6]. The P2 repository is widely used, since version 3.4
of the Eclipse Platform uses it as the management mechanism for its components
(OSGi bundles). The P2 specification defines two repository types: metadata and
artifact. The metadata repository stores Installable Units, which are the P2 representa-
tion of an artifact. This means that almost anything can be described as an Installable
Unit (configuration files, bundles, executables, etc). The metadata repository also
provides the P2 federation mechanism. Complementing it is the artifact repository,
which stores the binary and description files associated to the Installable Units. There
is also a third component, the Director, which is part of the repository client. The
Director is in charge of resolving dependencies and installing and uninstalling the
artifacts. However, this solution has an important drawback: Its component model is
concerned only with software direct dependencies, being oblivious to other con-
straints that could affect artifacts.

Also, the increasing success of the OSGi platform has stimulated the creation of
proprietary bundle repositories especially dedicated to store this type of software
components. The Spring Bundle Repository [7] is the most notorious example of this
trend. This repository stores a collection of bundles and library description files ready
for production use. A library description file is a document describing a set of bundles
that are frequently used together. The access to the repository is made through Maven,
Ivy or a web interface. The web interface shows information related to the dependen-
cies and exported resources of a bundle, offering links to download them. However,
the proprietary nature of this solution greatly limits its applicability and usefulness.

It can be seen that there are a lot of existing solutions for a bundle repository. But
with the exception of the Spring repository (which supports Maven), there are no
federation mechanisms between repositories of different types. On top of that, differ-
ent development communities have chosen different repository solutions. This fact
makes implementing a dependency resolution mechanism a difficult task.

170 R. García-Carmona et al.

Despite a previous attempt at creating standard-complying repositories [8], this
work has not been followed up since its publication.

However, in the digital contents world there are many studies [9] and proposals
[10-12] on this topic. But none of them have been applied to a software artifact repo-
sitory. There are huge differences in nature and needs between software components
and multimedia contents, and the solution that works with one cannot be used with the
other without severe modifications.

3 Proposed Solution

In this section we detail our proposed solution. For this aim we have divided this
chapter in several subsections.

As we have already said in the introduction, our aim was to provide an artifact re-
pository that helps to improve software integration. To achieve this, our solution pro-
vides two main features: A faceted dependency resolution, and a repository federation
engine. One subsection is devoted to each of them.

Also, to fully grasp how we propose to fulfill both, first we introduce two basic
topics needed for the proper understanding of our proposed repository: 1) the charac-
teristics of the model representation of software artifacts, and 2) the architecture of
the repository itself.

3.1 Software Component Metamodel

To enable the correct processing of the components the repository needs to manage,
and the integration of information to and from other solutions, it is imperative to have
a model representation of the software elements. Therefore, we have defined a meta-
model with enough expressivity to capture all the information that we need, but at the
same time hiding non needed data.

From this metamodel, a model instance describing each software artefact, its ca-
pabilities and its needs can be created. We have named these model instances Dep-
loyment Descriptors.

Although the metamodel will be primarily used to represent OSGi-related arte-
facts, it has been designed to support without modifications other elements, such as
non-bundle JARs or additional component/service models (such as EJBs, Spring
beans or Web Services). The metamodel aims to capture all the relevant information
of all types of software elements. This is enabled by the concept of Resource, which
we have adopted from the OMG Deployment & Configuration [13] standard.

Figure 1 depicts a subset of the metamodel. As can be seen in it, Resources are the
main building blocks. A Resource represents any logical or physical manageable sys-
tem element, and it is defined by three fixed parameters (name, version and type)
common to all Resources and an undefined list of specific Properties for each Re-
source type.

The core element is the Deployment Unit. Deployment Units represent the arti-
facts which can be deployed over the environment containers. In an OSGi context,
Deployment Units represent OSGi bundles. Conceptually, a Deployment Unit would
be the lowest abstraction level of our software model, being the unit of software
distribution. The Deployment Unit is composed by a set of children Resources, De-
pendencies and Constraints that provide computable information about the developer,

 A Repository for Integra

software license, packaging
ware compatibility restrictio

Fi

Dependencies represent
order to assure a smooth ru
satisfy a Dependency: speci
the two main mechanisms
addition to this, the metamo
enabling to differentiate re
Services from requirements
provides a Java package). T
be remote or local.

Finally, Constraints ena
tion environment, each one
from) the environment. Fo
Constraints, depending on
(to be present and not used

ation of Software Artifacts with Dependency Resolution

g type, exported packages, logical dependencies and ha
ons.

g. 1. Software component metamodel

t the required physical and logical dependencies needed
unning of the Deployment Unit. Two types of elements
ific Resources or whole Deployment Units. This represe
defined in OSGi: Require-Bundle and Import-Package
odel allows us to further describe the type of Dependen
equirements on remote resources such as Web or RE
s that must be satisfied by a unit in the same host (e.g. a
This aspect is identified by a locality parameter that co

able the expression of requirements over the runtime exe
e requiring a specific Resource to be present at (or abs
ollowing this definition, we have defined three kinds
the required behaviour: default (to be present), exclus

d more than once) and not (to not be present). To furt

171

ard-

d in
can
ents

e. In
ncy,
EST
as it
ould

ecu-
sent
s of
sive
ther

172 R. García-Carmona et al.

extend the Dependency and Constraint models, Properties can be defined. Each
needed Property can be defined by a name, an evaluation function and a threshold
value.

As an example, a typical Constraint would identify a Resource of type “hard-
ware.processor” with an additional Property “speed” of a kind “minimum” and an
expression value of “2000”. This means that the Deployment Unit requires a micro-
processor with a minimum speed of 2 GHz.

Both Dependencies and Constraints are shown in Figure 2.

Fig. 2. Dependencies and constraints

The metamodel allows us to represent all the OSGi-specific mechanisms, as well
as expressing important information that is not contemplated on the original format
(the manifest file) or the information models of other repository solutions. This means
that a conversion from one of those solutions into our proposal would not result in the
loss of information, although the opposite would.

3.2 Repository Architecture

The need to federate with multiple types of repositories, as well as evaluating compo-
nent dependency taking into account multiple factors have motivated us to design the
architecture of the repository with a modular and extensible approach. We have
selected the OSGi platform as the base technology to achieve those requirements. On
a side note, this allowed us to test the system from the start, in order to check whether

 A Repository for Integration of Software Artifacts with Dependency Resolution 173

the repository was able to host itself successfully. Figure 3 shows a layered view of
the repository components.

Fig. 3. Repository architecture

In the lower levels lie the Java Virtual Machine, the OSGi framework, and a data-
base solution for storing the relevant information. On top of it are the basic OSGi
components from third parties that are needed for the repository to work. The reposi-
tory uses Spring Dynamic Modules for structuring the inter-bundle communications.
The EMF (Eclipse modeling Framework) components enable the definition of the
metamodel and provide the tools needed to work with them programmatically. Hiber-
nate Provides an ORM (Object-Relational Mapping) interface with the database sys-
tem. Finally, the Apache Tomcat bundles embed a lightweight application server that
will host the remote access interfaces developed for the repository.

The next layer contains the basic components of the repository:

• Software Model: Provides the metamodel defined at the previous section, as well
as Java bindings and marshalling mechanisms.
• Repository Core: The basic component of the repository. Provides the main ser-
vice interfaces of the components and defines the extension semantics.

174 R. García-Carmona et al.

• Repository Manager: This component manages the physical artifacts and the com-
ponent information. It provides CRUD (Create-Read-Update-Delete) operations over
the managed Deployment Units,
• Web Interface: Web-based graphical user interface that allows human users to
browse the repository contents.
• Remote Interface: Exposes a REST interface that enables the communication be-
tween the repository and other software.
• Resolver: The component that processes and resolves Deployment Unit dependen-
cies, obtaining unit closures that work correctly together.

Finally, the topmost level of the diagram shows some extensions to the repository that
expand the base functionality to federate with an additional type of repositories
(OBR), and apply additional criteria for the dependency resolution. Over the next
sections we will present additional details on the federation and resolution capabilities
of the repository.

3.3 Faceted Dependency Resolution

This modular architecture makes possible the easy expansion of the repository capa-
bilities. This feature is used to define different types of dependencies, each one re-
solved by a different component. Moreover, this structure enables the definition of a
faceted dependency resolution engine. In it, there are not only several dependency
types, but also additional conditions that the candidates to satisfy one need to comply.
These conditions are called Facets.

An example of a Facet is the license compatibility. It is perfectly possible that a
Deployment Unit satisfies every dependency that another has, but at the same time do
not be valid because their licenses are incompatible. Other Facets could be security
settings, packaging procedures or execution requirements. Each Facet can be added to
the resolution engine as an OSGi bundle, and it offers its features as services that are
called by the resolution core component.

An example of this process that uses a License Compatibility Facet we developed
is shown in Figure 4. In it a user calls the resolver with the intention of knowing the
dependencies needed for a Deployment Unit (DU). The resolver processes every De-
pendency, looking for other Deployment Units that can satisfy it. After some of them
have been found, the resolver searches for Facets that need to be checked and, after
finding one (License Compatibility), makes use of it. In this particular example only
one unit is valid after this check.

The integration of new facets to the dependency resolution is straightforward, and
the license compatibility is just one example of application. As the diagram shows,
the second loop will check each DU for every detected facet.

3.4 Repository Federation

To enable the integration between open source components it is not enough to just re
solve their dependencies. It is also necessary to be able to provide the artifacts that
fulfill those requirements.

 A Repository for Integration of Software Artifacts with Dependency Resolution 175

Fig. 4. Faceted dependency resolution

Since open source communities are fragmented and each one uses different tools
and techniques, the repository needs to access and understand the information that lies
in other repositories. To achieve this end, the federation capabilities allow our reposi-
tory to communicate with external types of repositories currently available. Federa-
tion support is designed with extensibility in mind, and each technology extension can
be federated just by providing three services:

• Model transformation service between our information model instances and the
format the target solution uses to represent software artifacts.
• Remote manager service that accesses the information contained in the external
federated repositories.
• Remote interface service that can be accessed by the target solution repositories.
This is only possible if the target solution has some kind of federation support for
repositories of its own type.

For a more detailed explanation of how these features can be implemented we will
use OBR as an example of a target solution. An example of an infrastructure that uses
this two-way federation is depicted in Figure 5.

Sample Integration: OBR. The OSGi Bundle Repository RFC is a draft standard for
providing a common interface to distributed OSGi repositories. Its official nature,
alignment to OSGi concepts and the explicit acknowledgement of federation require-
ments make it an ideal candidate for testing our federation approach. Here we present
how we achieve two-way integration between our repository instances and federated
OBR repositories.

We talk about two-way federation, as we both act as OBR providers and consum-
ers. For external OBR repositories, we offer an OBR view that can be used by them in
their standard federated dependency resolution processes. Additionally, our repository
can handle a list of external OBR repositories, and can delegate dependency

176 R. García-Carmona et al.

resolution requests to the distributed OBR instances. Both approaches of federation
are achieved though the same method: Model transformation from our generic model
to the specific component model defined by OBR.

Fig. 5. Repository federation

For maximizing extensibility, the OBR model does not explicitly rely on OSGi
concepts. The repository works with resources, identified by a symbolic name and a
version. Additionally, a download URL is provided for each element. Each resource
contains two types of declarations. First, resources offer a list of capabilities to the
environment. They represent either the whole element (named bundle), or a software
element such as a java package (named package). Each capability is further refined
through properties, which have a name, value and value type (e.g. String or number).
The second kind of elements are requirement statements, that demand the presence of
resources in the resolved configuration. They model logical requirements that must be
satisfied. This specification’s concepts can be mapped to a subset of the Deployment
Unit model.

Figure 6 presents an example mapping between both models. Every OBR concept
has an equivalent definition in our abstractions. The OBR resource plus the bundle
capability elements are mapped to the base Deployment Unit concept (The definition

 A Repository for Integration of Software Artifacts with Dependency Resolution 177

of units as resource subclasses allows this). Additional capabilities are mapped to unit
exported Resources, such as the presented java package. Resource visibility informa-
tion is lost, which is not problematic for OSGi-specific elements (all of them are lo-
cal), but presents the limitations of OBR for reasoning over distributed physical envi-
ronments. Additionally, each OBR requirement is mapped into a logical Dependency.
All the information derived from the Constraints from our model has no equivalent.
This bears no impact from the OBR perspective, as our repository provides all the
required information. On the other hand, the use of federated OBR repositories by our
specific instance can result in lesser-quality results, in cases when physical concerns
need to be evaluated.

Fig. 6. Model mapping between OBR and the presented model

4 Validation

ITEA-OSAMI is an european project which was executed by 34 partners from both
the academia and enterprise. The objective of this project was to develop open source
common foundations for a distributed, dynamic service-oriented platform.

Consortium partners came from multiple domains (healthcare, personal, and mo-
bile office), followed different software development processes, and depended on
existing open source resources from different communities. This created a need for a
centralized platform that eased partner integration.

The repository presented in this article has been developed and deployed in order
to address the project requirements. It has widely succeeded at this task, becoming the
central point of the ITEA-OSAMI ecosystem. ITEA-OSAMI’s running instance of the
repository could be publicly accessed at the time of writing of this article1. (Figure 7
shows the visual aspect of the web interface, which is listing several units already
resolved).

1 http://repository.osami-commons.org

178 R. García-Carmona et al.

Fig. 7. Screenshot of the repository

After assessing partner concerns, we provided two extensions to the repository.
Regarding federation, an OBR extension was developed, as it was mandatory to sup-
port OBR-based deployment clients as well as accessing open source bundles devel-
oped at two third-party repositories. Additionally, since the beginning of the project
open source license management was a potentially conflicting aspect among partners.
However, these issues were addressed with the definition of a license-aware depen-
dency Facet, based on the dependency compatibility analysis module from another
project partner.

In this context, we have validated the proposed metamodel, as well as the defined
architecture and extensibility capabilities. It has successfully been used by all the
project partners, providing a common integration point for the developed open source
software and services, both internally created and from the main open source com-
munities.

5 Conclusions and Future Work

In this article we have proposed an architecture for a repository for the integration of
software artifacts, with a special focus on OSGi bundles. This repository has been
designed around an information model for software components, which manages to
show all relevant data while hiding the undesired complexities.

 A Repository for Integration of Software Artifacts with Dependency Resolution 179

We have also shown how this architecture has been created to be extensible. Using
this modularity we have demonstrated how it can be easily expanded to support two
important features:

• Faceted dependency resolution: Offers support for an unlimited number of condi-
tions that dependencies are forced to respect.
• Two-way federation: Enables our solution to access contents available in other
repositories and at the same time expose itself to them.

We also have developed a license compatibility Facet based upon existing open
source work and the components needed to achieve federation with OBR repositories.

Finally, our work has been validated in the context of the ITEA-OSAMI European
project, where it has been subjected to an intensive use by more than 30 partners from
different countries and sources (universities, research centers, software and telecom
companies, etc).

Concerning future developments, the most straightforward way to improve the al-
ready existing work is through the support of more repository technologies for federa-
tion and new dependency Facets. In the first field, federation with Eclipse P2 would
be the most interesting repository to support, since it sees wide use in several com-
munities. About dependency Facets, more of them could be developed, taking as an
example the license check already created. These components are relatively easy to
implement thanks to the infrastructure of our proposal.

Not directly related with this, but also interesting, are the possibilities for the repo-
sitory to work in a cloud environment. This line of work is concerned not only with
the deployment of the repository itself, but also with how it can manage the software
artifacts of several types of cloud solutions (IaaS, PaaS or SaaS). To support features
like these the information model would probably need to be extended and the archi-
tecture of the repository revised.

Using the capabilities of OSGi plus some extensions already in the making2, the
possibility of extending OSGi for a complete PaaS solution is turning into a reality. If
this possibility finally materializes, the proposed repository could be expanded to
work in this kind of environment.

Acknowledgements. The work presented in this article has been performed in the
context of the European project ITEA-OSAMI, under grant by Spanish Ministerio de
Industria, Turismo y Comercio in the PROFIT program.

References

1. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Systems. IFIP, vol. 275, pp. 197–
209. Springer, Boston (2008)

2. Evelson, B., Hammond, J.: The Forrester Wave: Open Source Business Intelligence (BI),
Q3 2010, Forrester Research (2010)

2 http://www.osgi.org/wiki/uploads/Design/
rfp-0133-Cloud_Computing.pdf

180 R. García-Carmona et al.

3. OSGi Alliance, OSGi Service Platform Release 4 Version 4.2 Specifications (June 2009)
4. Massol, V., Van Zyl, J., Porter, B., Casey, J., Sanchez, C.: Better builds with Maven. Mer-

gere Inc. (2006)
5. Hall, R.S.: OSGi RFC-0112 Bundle Repository (February 2006)
6. Le Berre, D., Rapicault, P.: Dependency management for the Eclipse ecosystem: Eclipse

P2, metadata and resolution. In: Proceedings of the 1st International Workshop on Open
Components Ecosystem. ACM (2009)

7. Rubio, D.: Pro Spring Dynamic Modules for OSGiTM Service Platforms. Apress (2009)
8. Iyengar, S.: A universal repository architecture using the OMG UML and MOF. In: Pro-

ceedings of the Second International Enterprise Distributed Object Computing Workshop,
EDOC 1998 (1998)

9. Kraan, W., Mason, J.: Issues in Federating Repositories, A Report on the First Internation-
al CORDRAtm Workshop. D-Lib Magazine 11(3) (2005)

10. Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., Tansley, R.,
Walker, J.H.: DSpace, An open Source Dynamic Digital Repository. D-Lib Magazine 9(1)
(2003)

11. Van de Sompel, H., Lagoze, C., Bekaert, J., Liu, X., Payette, S., Warner, S.: An Interoper-
able Fabric for Scholarly Value Chains. D-Lib Magazine 12(10) (2006)

12. Van de Sompel, H., Chute, R., Hoschstenbach, P.: The aDORe federation architecture:
digital repositories at scale. International Journal on Digital Libraries 9(2)

13. Object Management Group. Deployment and Configuration of Distributed Component-
based Applications Specification. Version 4.0 (April 2006)

Automated System Testing
of Dynamic Web Applications

Hideo Tanida1,�, Mukul R. Prasad2, Sreeranga P. Rajan2, and Masahiro Fujita1

1The University of Tokyo, Tokyo, Japan
2Fujitsu Laboratories of America, Sunnyvale, CA, U.S.A.

tanida@cad.t.u-tokyo.ac.jp, fujita@ee.t.u-tokyo.ac.jp,
{mukul.prasad,sree.rajan}@us.fujitsu.com

Abstract. Web applications pervade all aspects of human activity today. Rapid
growth in the scope, penetration and user-base of web applications, over the past
decade, has meant that web applications are substantially bigger, more complex
and sophisticated than ever before. This places even more demands on the vali-
dation process for web applications. This paper presents an automated approach
for the system testing of modern, industrial strength dynamic web applications,
where a combination of dynamic crawling-based model generation and back-end
model checking is used to comprehensively validate the navigation behavior of
the web application. We present several case studies to validate the proposed
approach on real-world web applications. Our evaluation demonstrates that the
proposed approach is not only practical in the context of applications of such
size and complexity but can provide greater automation and better coverage than
current industrial validation practices based on manual testing.

Keywords: Dynamic analysis, Validation, Web application.

1 Introduction

Web applications are ubiquitous today. The last decade has witnessed rapid growth
in both the scope and the penetration of web applications. On one hand, the wide-scale
adoption of web applications in all spheres of human activity has brought validation and
quality assurance of such applications into focus. On the other hand, the development of
WEB 2.0 technologies such as AJAX (Asynchronous JavaScript and XML) and Flash
has resulted in feature-rich and highly interactive web applications, which are even
more difficult to validate.

Current industrial practice for the functional validation of web applications still con-
tinues to largely rely on manually written test cases which exercise and check the
application behavior one trace at a time. There is a growing gap between the cover-
age, automation and scalability of traditional testing-based validation methodologies
and the validation requirements of modern WEB 2.0 applications, which has been ac-
knowledged by validation researchers and practitioners alike. Research on automated

� This author was a research intern at Fujitsu Laboratories of America, when this work was
done.

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 181–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

182 H. Tanida et al.

model generation [9], model-based testing [10,8,7,3], and model checking [1] offers
the promise to address this gap. Specifically, there has been a recent work on automated
model generation [9] and model-based testing [10] of AJAX applications that looks es-
pecially promising.

This paper addresses the problem of developing a better and practical validation so-
lution for WEB 2.0 application development. We propose a methodology for functional
validation of WEB 2.0 AJAX applications that is based on an efficacious combination
of some previously proposed techniques in the validation literature and our own novel
extensions to these techniques. We present several case studies of applying this method-
ology to the validation of WEB 2.0 applications. The main objectives and contributions
of this paper are as follows:

– We propose a solution for automated system testing of modern industrial-strength
dynamic web applications. This solution employs a combination of automated dy-
namic crawling to extract a model of the navigation behavior of the web application
and model checking techniques to check this model for various properties of inter-
est.

– We extend and adapt the dynamic crawling and model checking techniques in sev-
eral novel ways to fit our application domain and to ensure that the validation so-
lution is simple, scalable, automated and applicable in an industrial context. We
believe our solution is fairly complementary to current industrial practices of web
application validation and at least in some respects, superior to them.

– We present several case studies of applying the proposed approach to the validation
of real web applications and report on both the successes and short-comings of
our proposed approach. We feel these lessons would be vital in developing and
delivering the next generation of industrial practices for web application validation.

The rest of the paper is organized as follows. In the next section we survey related
work. Section 4 presents our proposed validation approach. In Section 5 we describe
the implementation of this approach. Section 6 presents three case studies evaluating
our approach on real-world web applications, followed by a discussion of the lessons
learnt in Section 7. We summarize and conclude the paper in Section 8.

2 Related Work

This work is aimed at system testing of dynamic web applications and specifically, val-
idating the navigational aspects of their behavior. The vast body of research on web
application validation spans several other important areas such as validation of the
server-tiers of web applications, or that of security or performance aspects of the be-
havior. Nevertheless, these areas are beyond the scope of this paper and are therefore
not surveyed in this section.

Current industrial practice for system testing of web applications primarily involves
the use of capture-replay tools such as Selenium 1, WebKing 2 and Sahi 3. Using these

1 http://seleniumhq.org/
2 http://www.parasoft.com/jsp/solutions/soa solution.jsp?itemId=86
3 http://sahi.co.in/w/

Automated System Testing of Dynamic Web Applications 183

frameworks, users manually exercise the application through various test scenarios, one
at a time. These actions are recorded by the tool and can be replayed back at a later time,
usually with user-defined assertions expressing expected behavior, inserted at various
steps. This mode of validation, however, requires a substantial amount of manual effort.

Our proposed method for system testing of dynamic web applications involves ex-
tracting a state-based navigation model of the web application behavior by automat-
ically crawling the deployed web application. This model is then checked against a
temporal logic specification, represented as a set of properties, using model checking
[4] techniques. There are several works which overlap with one or more aspects of our
approach but differ in other respects.

The Target Applications. Several previous works [12,3,2] target traditional (WEB 1.0)
web applications, employing some form of automatic crawling to extract a navigation
model for validation. However, as also pointed out by others [10,8], the crawlers used
there would not be applicable to WEB 2.0 applications. Further, the nature and scope of
the model extracted from traditional web applications as well the properties to be val-
idated on them would differ substantially from those of the dynamic web applications
we target. This is also true of previous work on GUI Application testing by Memon et
al. [13], which, while qualitatively similar in many respects, cannot be directly applied
to our application domain. The tool MCWEB [1] is one of the few instances of the di-
rect application of model checking to web application navigation behavior. However,
the work was also targeted towards WEB 1.0 applications. Further, the lack of sup-
port for automated model extraction and the use of µ-calculus for specifying properties
makes the tool difficult to use for non-formalists. Our approach emphasizes automation,
scalability and ease of use in an industrial setting.

The Verification Methodology. Almost all previous papers rely on trace-by-trace test-
ing as the end means to validate the behavioral model. The authors of [10,8] automat-
ically generate test-benches which exercise one trace at a time from the model. While
this definitely increases the level of automation compared to the current industrial prac-
tice of manually written test-cases, the underlying validation is still test-case driven and
hence the requirements and their checking very trace-specific. We submit that our ap-
proach, which is based on model checking, is much more natural, given that we have
a pre-generated navigation model. Further, we can pose and check more general and
global properties of the application. We present several instances of this and the advan-
tages it provides, in Section 6.

3 Background

In this section we review some technologies that form the foundations of our approach
for web application validation.

3.1 Automated Crawling of AJAX Applications

We use the technique proposed in the CRAWLJAX work [9] as the basis for exploring
the behavior of the web application under test. CRAWLJAX is a tool for automatically

184 H. Tanida et al.

exploring the dynamic state space of modern web applications. It is capable of interact-
ing with the client-side code of a web application through programmatic interfaces that
are available for most of the popular web browsers. CRAWLJAX analyzes a web page
to detect widgets to click on (clickables), and systematically exercises them to explore
dynamic web application behavior. Changes in the dynamic DOM tree of the page are
detected and recorded as new states of the behavior. By systematically detecting new
states and executing clickables on them the crawler is able to build a finite-state model
of the navigation behavior of the web application. CRAWLJAX provides a set of options
to configure the crawling behavior. For example, the set of widgets to click on or not
click on, during crawling, can be specified. For more details about the algorithms, ar-
chitecture and features of CRAWLJAX the interested reader is referred to [9]. We have
extended the basic CRAWLJAX in several ways for the purposes of this work. These
extensions are discussed in Section 4.

3.2 Model Checking

Model Checking [4] is a set of automated techniques for checking if the behavior of a
hardware or software system satisfies a certain property. This is typically done by ex-
tracting a finite-state abstraction M, of the relevant behavior of the system under test.
The property to be checked is expressed as a logical formula f in a temporal logic. Sub-
sequently, model checking algorithms are applied to check if M satisfies f . A temporal
logic is a formalism for expressing sequential properties of dynamic systems, for the
purposes of automated reasoning through techniques such as model checking. There
are several temporal logics that have been proposed in the literature, varying in their
syntax, expressive power as well as the complexity of the model checking algorithms
that work on them. CTL (computation tree logic) and LTL (linear temporal logic) are
the two most popular ones. Our property checking approach, proposed this paper, is a
simplification of traditional temporal logic model checking.

4 Proposed Method

This work addresses the validation of modern, dynamic applications. These applications
usually support a feature-rich, highly-interactive, client-side user-interface, typically by
the use of technologies such as AJAX and Flash. Further, this work focuses on validating
the navigational aspects of the behavior of such application (as opposed to, for example,
the performance, security or concurrency aspects of the behavior).

Our overall approach is a two step process. The first step is to extract a finite-state
model of the navigation behavior of the web application. This is done by automatically
crawling the web application in the style of CRAWLJAX and capturing the observed
behavior as a navigation model. In order to facilitate a more comprehensive, yet scal-
able crawling behavior, applicable to industrial-strength applications, we propose an
extension to CRAWLJAX’s basic crawling, called guided crawling. This is described in
Section 4.1. The second step is to validate various functional requirements of the ap-
plication against the navigation model. To do this we employ a variant of traditional
temporal logic model checking, called template-based property checking. This is de-
scribed in Section 4.2.

Automated System Testing of Dynamic Web Applications 185

This two-step approach has several advantages. First, it allows us to isolate the rela-
tively expensive crawling step from the actual validation and do the crawling once (or
a few times) in a mostly requirement and validation independent manner. Second, it
allows us to extract a compact model of the navigation behavior, by a judicious choice
of the model representation as well as by discarding irrelevant application-level details
during crawling. This accelerates both the crawling and the downstream model check-
ing. Third, since all the requirements to be checked are often not known during the
initial stages of validation, performing the validation offline obviates the need to repeat
the expensive crawling step.

4.1 Model Generation

The Navigation Model. The navigation model represents the structure and screen
content observed by the crawler while dynamically crawling the web application. It is
comprised of a state transition graph (STG), representing the topology of the crawled
behavior, as well as the content of each crawled state.

index

s t a t e _ 5

user-guided crawling onclick /HTML/BODY[1]/A[1] onclick /HTML/BODY[1]/INPUT[3] onclick /HTML/BODY[1]/A[1]

s t a t e _ 6

onclick /HTML/BODY[1]/INPUT[1]

onclick /HTML/BODY[1]/A[1]

onclick /HTML/BODY[1]/INPUT[1]

Fig. 1. Graphical view of a State Transition Graph

Fig.1 shows an example of an STG. An STG is a labelled directed graph where
each node (state) corresponds to a web page viewable on a web browser. Each state
is represented by the DOM (document object model) of its corresponding web page,
in the navigation model. A change in the DOM of a web page, typically through the
execution of a user action (such as a button click), constitutes a new state. Edges in
the STG represent transitions from one state to another and are typically labelled with
the user action (e.g., a click) and the XPath of the element on which it was executed.
This is the case with most edges in Fig.1. Some edges are labelled “user-guided crawl-
ing” and correspond to a transition made by a sequence operations from a guidance
directive. Guided crawling and guidance directives are discussed in the next section.

Note that some web applications may, theoretically, have an infinite state space (for
example based on infinite different sets of data inputs). However, due to obvious prac-
tical constraints of crawling time and navigation model size we only crawl and validate
a finite but behavior-rich subset of the state space of a given web application. A finite
state model is also a requirement of the downstream property checking algorithms.

Guided Crawling. The CRAWLJAX tool [9] offers users some control over the crawled
behavior by specifying the overall set of widgets to click or not click during crawl-
ing. Users can also specify one or more sets of data for each HTML <form/> element
encountered during crawling. However, the crawling of real-life enterprise web appli-
cations often requires a more tighter control over the crawling, for example, in the
following practical scenarios.

186 H. Tanida et al.

1. User Authentication: This is a common requirement in several web application in-
teractions, when viewing confidential information or executing transactions. How-
ever, typical web application interactions are a complex mix of unauthenticated and
authenticated behavior, with authentication being activated under specific scenar-
ios (e.g. some applications like Amazon.com do not require a login till the checkout
stage).

2. Form Data Filling: HTML forms are commonplace in modern web applications
(a user authentication panel is a special instance of this). CRAWLJAX allows form-
data filling but always fills a given form with the same data (or data-sets). For more
intelligent crawling, it would be desirable to fill a given form with one of several
data sets driven by the scenario being navigated.

3. Excluding Behavior from the Model: When crawling real web applications, the
crawling time as well as the size of the crawled model needs to be managed, ac-
cording to available computation resources. One strategy is to surgically exclude
features and crawl scenarios outside the scope of the ensuing validation, from the
crawling.

It is very difficult, if not impossible, to adequately service the above scenarios (and
many others), using the default crawling controls provided by CRAWLJAX. We propose
a technique called guided crawling to provide the user with more direct control over
the crawled behavior. It allows the user to specify scenario-based desired crawling be-
havior. This is done by creating one or more guidance directives, specific to the target
application being crawled. The crawling alternates between the fully automatic default
crawling and the scenario-specific behavior specified by the guidance directives.

Definition 1 (Guidance Directive). A Guidance Directive G = (p,A) is an ordered
pair that consists of a predicate p that is evaluated on a web application state, and an
action sequence A . A = (α1,α2 . . . ,αk) is a sequence of atomic actions αi. Each atomic
action α = (e,u,D) is a triple consisting of a DOM element e, a user-action u and a set
of data-instances D (potentially empty) associated with u.

As per Definition 1, a guidance directive G , includes the predicate p that determines
when G should be activated. p is evaluated on the current state of the web application,
during crawling, i.e., on the DOM of the current page loaded in the web browser. If
p is true in the current state, the crawling action sequence A is executed on the web
application. Each atomic action α in A is a simple (browser-based) user action u on a
particular DOM element e on the current web-page/screen. For example, u could be a
click and e could be a button. Such actions have no associated data. Hence, D = /0 (the
empty set) in this case. Another example of an action would be selecting an option from
a <select/> element or assigning a string value to an <input/> element etc. In these
cases D would be the set of data values to exercise the element with.

Algorithm 1 presents the pseudo code for our model generation, incorporating guided
crawling. The main procedure, GuidedCrawl accepts a target web application, W and a
set of associated guidance directives, G set . It initializes the navigation model M, loads
the initial web-page (InitPage) of W in the web browser and invokes procedure Guid-
edCrawlFromState on it. GuidedCrawlFromState() does the actual crawling and recur-
sively calls itself on new successor states. GuidedCrawlFromState() starts with a check

Automated System Testing of Dynamic Web Applications 187

(IsVisited(S)) to see if state S has been visited by a previous invocation of Guided-
CrawlFromState. This check accounts for any specified state-abstractions (explained in
Section 19). If so, the crawling returns back to calling state. If not, MarkVisited() marks
state S as visited, to exclude it from future guided crawls, and AddState() records S in
the navigation model M as a newly discovered state. Next, the state S is analyzed to
compute the set of actions (Actions), to execute on it, to continue the crawling. First,
function FindActions() (line 7) computes the set of basic (non-guided) user actions,
which can be executed on it, based on the clickables specified to the crawler. Next the
set of guidance directives, G set is processed to find additional actions to execute on S
(lines 8− 11). For each guidance directive G that can be activated on S (line 9) func-
tion ComputeActionSequences() computes concrete action sequences of actions from
G by picking specific data values in its constituent atomic actions α. All possible se-
quences that can be created by various choices of the specified data-values are con-
structed and added to the Actions set. Subsequently, each action a in Actions is fired on
S (lines 13−18). Execute() Executes the action (or action sequence) a on W to discover
a next state (nextState) and AddTransition() records this transition in model M. Guid-
edCrawlFromState() is then recursively called on nextState (line 14). UndoTransition()
functionally reverses the transition S → nextState on W to restore it to state S.

Model Reduction. The size of the navigation model has a direct bearing on the ef-
ficiency of the property checking. We employ the following two features, to derive a
compact and meaningful model for validation.

1. Specifying User Events: CRAWLJAX provides several mechanisms for specifying
the set of widgets to be exercised (or excluded) during crawling. Our guided crawl-
ing technique further supplements these mechanisms. The specification is done by
the user on application-specific basis, as an input to the model generation step.

2. State Abstraction: Since the crawler uses the screen DOM as the unique identifier
for a state, identical looking screens can often be mapped to different states in the
model because of slight differences in their DOMs. This can happen because of
entities such as visit counters or date/time stamps, included in the DOM or even
minor differences in white-spacing or the attribute order in dynamically generated
web-pages. Therefore, we have implemented a state abstraction technique which
accepts a set of user-given XPaths and removes all matching elements and their
descendents from the DOM tree of each state and uses the resulting abstracted
DOM as the state identifier, specifically in determining equivalence of two states.
This technique is implemented within the IsVisited() function in Algorithm 14.

Our experience regarding the specific use of these features, in the light of our case
studies, is discussed in Section 6.

4.2 Model Validation

As mentioned in Section 2 one of the key differences between our approach and prior art
in this area is that while other approaches resort trace-by-trace checking of the behavior

4 CRAWLJAX provides a similar, albeit independently developed, mechanism called oracle com-
parators for state abstraction.

188 H. Tanida et al.

Algorithm 1. Guided Crawling

/* GuidedCrawl(W,G set) -- main procedure */
Input : W : Web application under test

G set : Set of guidance directives
Output: M: Crawled navigation model

1 begin
2 M = /0
3 InitPage ← LoadBrowser(W)
4 GuidedCrawlFromState(InitPage, M)
5 return M
6 end

/* GuidedCrawlFromState(S, W, G set, M) */
Input : S: Current state for guided crawling

W : Web application under test
G set : Set of guidance directives
M: Navigation model being built

1 begin
2 if IsVisited(S) then
3 return
4 end
5 MarkVisited(S)
6 AddState(S,M)
7 Actions ← FindActions(S)
8 foreach G(p,A) ∈ G set do
9 if p(S) = true then

10 Actions ← Actions ∪ ComputeActionSequences(A)
11 end
12 end
13 foreach a ∈ Actions do
14 nextState ← Execute(a,W,S)
15 AddTransition(nextState, S,M)
16 GuidedCrawlFromState(nextState)
17 UndoTransition(a,W,S)
18 end
19 end

a la traditional testing, we propose to check the navigation model as a whole using the
formal technique of model checking [4]. The use of a pre-generated, finite state naviga-
tion model makes the application of model checking both easy and very efficient. We
claim that the expected navigational behavior of web applications can be quite naturally
expressed as properties in temporal logic [4], the input language of model checkers. In
the following we present a few examples of such classes of requirements and specific
instances in each class.

Automated System Testing of Dynamic Web Applications 189

1. Screen Sequence/Transition Requirements: The simplest and most common check
on web applications is of the form: A user input i with the web application on
Screen A takes it to Screen B. Here, screens A and B may be screens or pages
of the web application, identified by the presence or absence of certain features,
widgets or DOM elements, while input i may be a simple input like a mouseover
or button/link click or a more complicated sequence of such actions interspersed
with data inputs to various widgets on the screen. This kind of requirement may
be further generalized in checking (for example) that Screen B follows A in one,
all or none of the valid execution sequences of the web application. Some specific
examples of this class of requirements could be:

– In a web application with user authentication: The LOGOUT screen is always
preceded by the LOGIN screen

– On a utilities web-site under the bill-payment section: If the CONFIRM button
is clicked on the PAYMENT-DETAILS screen then the next screen is always
the RECEIPT screen.

2. Global Navigation Structure or Usability Requirements: This kind of requirement
typically apply to the overall structure of the web application’s navigation behavior.
Thus, they are by their very intent, global and ideally suited for checking on a sin-
gle, consolidated navigation model (versus conventional trace-by-trace checking).
Some examples of requirements in this class are:

– All features of are accessible within 5 clicks, starting from the home page
– The initial page is accessible from every screen

Temporal Property Templates. Since each screen of the web application and all fea-
tures, widgets or DOM elements on each screen are represented as part of our navi-
gation model, it would in theory be possible to express our requirements as properties
in a temporal logic [4] such CTL (Computation Tree Logic) or LTL (Linear Temporal
Logic). With minor modifications to our navigation model, these properties could then
be checked on it using one of the commonly used model checkers, e.g., NuSMV [11].

However, writing properties in temporal logic is quite difficult, error-prone and unin-
tuitive for non-formalists, such as the average software developer or quality assurance
engineer. Further, as demonstrated in a study by Dwyer et al. [5] most validation re-
quirements observed in practice, can be captured by properties in a limited number of
temporal classes. A temporal class refers to a set of temporal logic formulas that share
a common temporal structure and differ only in the propositional expressions within
this temporal structure. For example, the LTL temporal formulas G(a∧b) and G(¬p1)
share the common temporal structure G(exp), differing only in the value of expression
exp.

Composing Properties. Motivated by the above arguments, our approach uses a set of
temporal property templates, rather than a complete temporal logic, for specifying prop-
erties. For the purposes of this work, we used the three templates shown in Fig.2. Here
p,p1 and p2 are expressions which are evaluable in a given single state, based on the
contents of that state. They are essentially assertions about the state of different DOM
elements on the page or relationships between them, very similar to assertions used in

190 H. Tanida et al.

�

�

�

�

1. Global Template:: G(p): Globally p is true
2. Screen Transition Template:: p1, i → p2: After transiting from a state where p1 is true,

with an input or a guidance-directive-driven input sequence which matches i, or with any
input (i =nil), p2 is always satisfied

3. Precedence Template:: p1 → Pp2: Need to reach a state where p2 is true, prior to reach
a state where p1 is true

Fig. 2. Temporal property templates used

existing automatic web application system testing frameworks such as Selenium. There-
fore, it is quite easy for developers in field to migrate to our methodology. Examples
of such expressions include availability of a node with given type and attribute, and
availability of text content which matches a given regular expression.

Our Global Template is essentially an assertion p that would be checked on each state
of the STG. A counter-example to this would be a state S where p is false. The Screen
Transition Template relates to a pair of neighboring states S1,S2 and a user action i
that caused the transition between them. i is a tuple of a user event (e.g., a click) and
a unique identifier of the DOM element on which it was performed. This template is
particularly useful to check the function of a specific widget, a very common testing
scenario. A counter-example to this property would be a tuple (S1,T ,S2), where S1 is a
state in which p1 is true, S2 is a state in which p2 is false, and T is a transition from S1 to
S2 made by an input or a guidance-directive-driven input sequence which matches i. The
last template, the Precedence Template, is intended to check more global relationships
in the navigation structure of the web application, for example, that a logout event
in a web application is always preceded by a login event. A counter-example for this
template would be a sequence of transitions which starting from the initial state, reaches
a state where p1 is true, without going through any state where p2 is true.

Model Checking Algorithm. Rather than using a general purpose model checking
algorithm for one of the common temporal logics (e.g. CTL or LTL) we found it more
efficient to implement the actual model checking itself through a set of state-traversal
checkers, one for each template. It is easy to see that any property expressed using the
templates in Fig. 2 can be checked using a single, linear-time traversal of the STG in
the navigation model. This also gives a flexible and extensible model checker, to which
more templates can be easily added in future or existing ones modified to fit practical
situations.

5 Tool Implementation

We have implemented our proposed validation approach in a system, which is com-
prised of two components. One of the components of the system is an extended version
of open-source web application crawler CRAWLJAX. The second is a custom model
checker called GOLIATH, which supports checking of template-based properties on the
navigation model generated by the crawler, as explained in Section 4.2.

Model Generation. Our principal extension to CRAWLJAX is an implementation of the
guided crawling feature described in Section 4.1. Our extended crawler supports Java

Automated System Testing of Dynamic Web Applications 191

APIs for instantiating an object encoding a guidance directive (as per Definition 1). The
user can instantiate one or more such application specific guidance directives and add
them to the driver for crawling a specific target web application.

Another significant extension is a modification to CRAWLJAX’s behavior discovery
mechanism, to ensure that all behavior reachable up to a specified crawling depth is
included in the model, regardless of the order of firing user events. This was previously
not the case.

Model Validation. Our model checker, GOLIATH is implemented in Ruby and accepts
the crawled navigation model as well as a set of properties formulated in terms of the
property templates of Fig.2, with the expressions (e.g. (p, p1 and p2 in Fig.2) specified
as Ruby expressions. These expressions can refer to specific DOM elements using the
standard DOM API. We use the Nokogiri 5 HTML parser in our implementation, to
parse and interpret such references.

The following is a very simple instance of a supported expression, which is true if
and only if there is some <a/> element with id attribute value login. Here doc refers
to the document DOM object of the page.

doc.xpath(’//a[@id="login"]’).any?

A little more complex and useful expression instances can be constructed as the follow-
ing sequence of expressions:

login_xpath = ’//a[@id="login"]’;
logout_xpath = ’//a[@id="logout"]’;
login_avail = doc.xpath(login_xpath);
logout_avail = doc.xpath(logout_xpath);
login_avail.any? != logout_avail.any?

The last expression (hereafter referred to as pnot together) is true only in states where
precisely one of login/logout button exists. Note that in Ruby, sequences of expres-
sions can be evaluated as an expression which yields the value of the final expression.
Thus, the property G(pnot together), composed using the Global Template, checks that
there is no state in the extracted navigation model, where both the login and logout
buttons simultaneously exist.

6 Case Study

The proposed method has been implemented and evaluated by applying them to appli-
cations including an industrial one as well as an open source well-known application.
To assess the efficacy and utility of our approach and the corresponding implemented
tool, we have conducted a number of case studies following guidelines from [6]. All
experiments are performed on a workstation with Intel Xeon CPU W5590@3.33GHz.

5 http://nokogiri.org/

http://nokogiri.org/

192 H. Tanida et al.

6.1 Subject Web Applications

We conducted our case studies on three web applications. The first subject
(ORGANIZER) is a schedule organizer application, called MyOrganizer, taken from a
textbook [14] on AJAX-based web application development. It is composed of 8,004
lines of Java code, 2,885 lines of JavaScript code, and 1,137 lines of JSP code. The
second web application (BPM) is a commercial business process manager comprised
of 58,701 lines of Java code, 61,541 lines of JavaScript code, and 90,742 lines of JSP
code. It uses the YUI6 AJAX library. The last subject (REDMINE) is the free and open-
source, project management and bug-tracking tool Redmine (v1.2.1). It is composed of
66,778 lines of Ruby code, 18,402 lines of JavaScript code, and 5,751 lines of RHTML
code. It is implemented based on the Ruby on Rails 7 framework.

6.2 Model Generation

Appropriate guidance directives, which are the keys for meaningful and relatively quick
model generations, are given to generate the corresponding screen transition diagrams
for the three test subjects. The directives include operations for logging in by providing
usernames and passwords whenever there is a screen image having login prompts, or
operations for creation of data entries such as bug reports in Redmine at appropriate
stages during crawling.

Model reduction techniques are used with all of the applications to allow generation
of models in reasonable time. Namely, elements to be clicked during fully automatic
crawling are specified based on validation requirements of each application. In addition,
for ORGANIZER, we have employed a state abstraction technique to ignore changes on
element attribute from mouseover events on elements.

The server-tiers of the applications are also controlled to restore their state every time
the crawler goes back to the initial page to achieve extraction of models with higher
accuracy. For ORGANIZER, a hook to ensure the availability of the user account to be
used during model generation is used. For REDMINE, a hook to revert backend database
to the state with one normal user created from its initial installation is employed.

Table 1 shows the model (screen transition diagram) generation configurations and
results for the examples. Please note loops are excluded on obtaining #path and maxi-
mum depth. Although we also tried to generate tests using the approach shown in [10],
it did not finish generations for neither of the examples, simply because there are so
many cases from its exhaustive analysis even with the depth limit.

6.3 Model Checking

We prepared multiple properties for each of benchmarks. Table 2 contains number of
properties for the benchmarks categorized by their temporal templates and verification
results, i.e. satisfied or unsatisfied. The table also contains maximum / average / min-
imum check count observed during model checking . Check counts are provided with
the definitions shown in Fig.3 for each of temporal property templates.

6 http://developer.yahoo.com/yui/
7 http://rubyonrails.org

http://developer.yahoo.com/yui/
http://rubyonrails.org

Automated System Testing of Dynamic Web Applications 193

Table 1. Model generation configurations and results

Crawling #Guidance #State #Transition #Path Max. Avg. Time
depth direc. depth depth (min.)

ORGANIZER 11 1 38 232 65 13 6.385 133
BPM 8 1 765 4039 830 41 22.161 2769

REDMINE 11 7 1580 2528 1220 15 12.937 2634

Table 2. Model checking configurations and results

G(p) p1, i → p2 p1 → Pp2
Sat. Unsat. #Check Sat. Unsat. #Check Sat. Unsat. #Check

prop. prop. prop. prop. max/avg/min. prop. prop. max/avg/min
ORGANIZER 0 0 0 0 7 23/20.4/5 0 0 0

BPM 9 0 765 2 0 113/61.5/10 2 0 13504317615/
6752159070/525

REDMINE 2 1 1580 3 2 4/2.2/1 10 0 294/154.4/2

�

�

�

	

1. G(p): Number of states within the model
2. p1, i → p2: Number of transitions made by inputs or guidance-directive-driven input

sequences which matches i, from states which make p1 true.
3. p1 → Pp2: Number of transition sequence to states which make p1 true from states

which makes p2 true

Fig. 3. Check count for the property templates

All 7 properties for ORGANIZER including Prop. 1a shown in Fig.4, which are all in
form of p1, i → p2 are violated and yielded counter examples. Playing back input se-
quences to reach and activate the counter examples, actually results in transitions which
do not meet the properties. Execution of the counter examples for 5 of the properties
generate an error message dialog in client-side web browser and a record indicating
“Null Pointer Exception” in the log of Java server software. On execution of counter
example for another property, state transition on a user input does not occur. Execution
of counter example for the other property results in a state which does not satisfy post
condition p2. They are real bugs in a program shown in the textbook.

Prop. 1a. doc.xpath(’//img[@id="dayAtAGlance"]’).any? , //img[@id="dayAtAGlance"]:onclick ->
doc.xpath(’//img[@src="img/head_dayAtAGlance.gif"]’).any?

Prop. 3a. G (["home","projects","help"].map { |c|
doc.xpath(’//a[@class="’ + c + ’"]’).any? }.all?)

Prop. 3b.

doc.xpath(’//input[@value="Create"]’).any? &&
doc.xpath(’//input[@id="issue_subject" and @value and (0<string-length(@value))]’).any? &&
doc.xpath(’//input[@id="issue_parent_issue_id" and @value="10"]’).any? ,
//input[@value=’Create’]:onclick ->
doc.xpath(’//a[contains(@class,"issue") and contains(text(),"10")]’).any? ||
doc.xpath(’//div[@class="errorExplanation"]’).any?

Fig. 4. Properties used in the experiments.

All 13 properties for BPM are satisfied. Check counts while model checking proper-
ties in temporal form of p1 → Pp2, are large due to large number of traces to navigate

194 H. Tanida et al.

back to states which make p2 true from states which make p1 true. It is impossible to
track through all of the traces in test-based approaches.

In REDMINE, Prop. 3a shown in Fig.4 which is in the form of G(p) is violated. The
property is violated in a state where the web browser is showing a file in a special for-
mat. 2 properties in the form of p1, i → p2 are also violated in REDMINE. The violated
properties including the one shown as Prop 3b , require the application to transit to
a DOM page containing a reference to a ticket (bug report etc.) or to a page indicat-
ing an error, from a form with a reference to the ticket input by the user, on “Create”
button click. However, the application proceeds without any error even if the referred
ticket does not exist, and the resulting pages do not contain any reference to the ticket
specified.

Each checking of properties in the experiments finished within 10 seconds. As you
can see from the results, once the model is generated, model checking is relatively
very quick, and various properties can be examined with reasonable time even for large
examples.

7 Discussion

Completeness. Since our technique relies on the finite state navigation model extracted
by the crawler, erroneous behaviors not included in this model cannot be exposed by the
subsequent model checking step. Although we attempt to capture the largest possible
set of relevant behaviors, through crawler enhancements like guided crawling, and by
the judicious choice of clickable widgets and crawling depth, the model generation step
is inherently incomplete and in practice limited by computation resources.

However, compared to prevailing industrial practices of using trace-by-trace testing
based on manually written tests, our technique is able to automatically explore and test
a significantly larger set of behaviors and thereby expose many more errors.

Scope. Like other black-box validation techniques, in order to detect errors, our tech-
nique requires erroneous behaviors to be propagated and observable at the user interface
of the web application, i.e., on the client-tier content displayed on the web browser. In
other words, the technique cannot directly detect problematic server-tier behaviors, such
as perhaps those pertaining to security or performance aspects of behavior. However, it
is an ideal fit for testing validating behavior, which typically manifests at the client-tier.

Further, compared to other black-box system testing techniques for web applica-
tions, namely those based on user-given test cases and assertions, our approach which
makes use of more expressive user-given guidance directives and temporal properties
can target extensive classes of behavior.

Automation Level. Our model generation technique require the user to specify a
crawler configuration, which is composed of set of elements to be clicked during fully-
automatic crawling, state abstraction configuration to ignore some part of DOM page,
and a set of guidance directives to partially control the crawling behavior. Our model
checking technique is supplied from the user with the properties to be checked. User
inputs required for the validation is small, considering large number of execution traces
covered with a single configuration, as observed in our case studies.

Automated System Testing of Dynamic Web Applications 195

Scalability. Our case studies confirm that our technique is applicable to large real-
world applications in real use. However, our experience also showed that the model
generation (crawling) time far exceeds the model checking time. Most of time required
for the crawling is due to the communication latency between the crawler and the target
application. As the computation burden of the process is relatively small, parallelizing
and distributing the crawling is an attractive option for reducing the crawling latency.

Model reduction techniques (for example those described in Section 19) are another
option for pruning the state-space and hence the crawling time. We did employ these
techniques in our case studies, but to a limited extent. Although more aggressive model
reduction, based on the properties to be verified, could reduce the model generation
time further, it needs to be implemented and confirmed through more case studies.

Correctness. Since our crawling only observes the client-tier of the web application,
the state computed and recorded by it is actually an abstraction of the true system state
(which should include the state of the server tiers as well). Thus, the STG computed by
the crawler represents an over-approximation of the ”‘true”’ possible set of traces of the
web application. Thus, it is theoretically possible that an error trace produced by our
model checking is not reproducible on the actual web application, i.e. a false positive.

However, all the counter examples reported in our case-study are confirmed to repro-
duce. Reproducibility of counter examples is expected to depend also on the degree of
abstraction, which is expected be useful to scalability of the technique.

Threats to Validity. We have discussed some of issues related to the external validity
of our evaluation in the discussions above. The internal validity of our evaluation may
depend on implementation of software tools used. We have minimized the chance by
making use of test sets for the tools, which are completely separated from benchmarks
used in the evaluation.

8 Conclusions and Future Work

We have proposed a new approach for the automated system testing of modern, dy-
namic web applications. Our method employs automatic crawling to extract a finite
state navigation model of the web application behavior. The user authors a set of proper-
ties, expressing desired navigation behavior, using a simple and intuitive template-based
specification language. These are then efficiently checked on the extracted model. Our
experience with this approach, through several case studies, confirms that it both appli-
cable to industrial strength applications, as well as superior to current industrial practice
based on manual testing.

Future works include more verification trials with larger applications for more robust
evaluations of the proposed techniques as well as their extensions.

References

1. de Alfaro, L.: Model Checking the World Wide Web. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 337–349. Springer, Heidelberg (2001)

196 H. Tanida et al.

2. Andrews, A.A., Offutt, J., Alexander, R.T.: Testing Web Applications by Modeling with
FSMs. Software and Systems Modeling 4, 326–345 (2005)

3. Benedikt, M., Freire, J., Godefroid, P.: VeriWeb: Automatically Testing Dynamic Web Sites.
In: Proceedings of 11th International World Wide Web Conference (2002)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-

State Verification. In: ICSE 1999: Proceedings of the 21st International Conference on Soft-
ware Engineering, pp. 411–420. ACM, New York (1999)

6. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case Studies for Method and Tool Evaluation.
IEEE Softw. 12(4), 52–62 (1995)

7. Marchetto, A., Ricca, F., Tonella, P.: A Case-Study Based Comparison of Web Testing Tech-
niques Applied to AJAX Web Applications. International Journal on Software Tools for
Technology Transfer (STTT) 10(6), 477–492 (2008)

8. Marchetto, A., Tonella, P., Ricca, F.: State-Based Testing of Ajax Web Applications. In: ICST
2008: Proceedings of the 2008 International Conference on Software Testing, Verification,
and Validation, pp. 121–130. IEEE Computer Society, Washington, DC (2008)

9. Mesbah, A., Bozdag, E., Deursen, A.V.: Crawling AJAX by Inferring User Interface State
Changes. In: ICWE 2008: Proceedings of the 2008 Eighth International Conference on Web
Engineering, pp. 122–134. IEEE Computer Society, Washington, DC (2008)

10. Mesbah, A., Deursen, A.V.: Invariant-Based Automatic Testing of AJAX User Interfaces. In:
Proceedings of the 31st International Conference on Software Engineering, ICSE 2009 (May
2009)

11. NuSMV, http://nusmv.irst.itc.it/
12. Ricca, F., Tonella, P.: Analysis and Testing of Web Applications. In: Proceedings of the 23rd

International Conference on Software Engineering, ICSE 2001, pp. 25–34. IEEE Computer
Society (2001)

13. Strecker, J., Memon, A.M.: Testing Graphical User Interfaces. In: Encyclopedia of Informa-
tion Science and Technology, 2nd edn. IGI Global (2009)

14. Zammetti, F.: Practical Ajax Projects with Java Technology. Apress (2006)

http://nusmv.irst.itc.it/

Part III

Distributed Systems

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 199–214, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Technologies for Autonomic Dependable Services
Platform: Achievements and Future Challenges

Eila Ovaska1, Liliana Dobrica2, Anu Purhonen1, and Marko Jaakola1

1 VTT Technical Research Centre of Finland, Kaitoväylä 1, 90571 Oulu, Finland
2 University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania

{eila.ovaska,anu.purhonen,marko.jaakola}@vtt.fi,
liliana@aii.pub.ro

Abstract. A city is smart if it can provide ambient services for citizens and oth-
er end-users who have to tackle emergency situations, including small and wide
scale accidents and incidents. These ambient services embody intelligence of
autonomic systems based on heterogeneous execution platforms enhanced with
services that provide mechanisms for self-adaptation of dependable applica-
tions. This paper aims to serve as a reference point and guide for researchers
and developers interested in technologies of autonomic dependable service
platforms from three viewpoints: i) architectural options, ii) ontology models
for services, context and dependability, and iii) modeling methods and practices
for achieving high quality service platforms and intelligent applications. Our
findings are illustrated through a smart city experiment and a set of open re-
search challenges that need to be carried out for achieving a generic solution for
an autonomic dependable service platform.

Keywords: Self-adaptive, Service Architecture, Ontology, Dependability,
Security, Context, Semantic, Modeling.

1 Introduction

Besides situation based information, smart cities also provide quality-critical services
for their communities, i.e. high quality services for professionals such as firemen,
medical service providers, police, etc. These workers are responsible for real-time
reaction in emergency situations. An emergency situation – caused by an extensive
accident - means that the environment immediately changes, and therefore, the type
and amount of information required for decision making and actions are also chang-
ing. These changes affect on the use and availability of computing and communica-
tion resources and the applications and services they provide for problem solving.

Smart city environments heavily rely on a multitude of sensor networks, embedded
systems and devices that produce a large amount of data to be analyzed and reacted
on in the short run by the security and safety monitoring processes executed by criti-
cal information systems. Our focus is on heterogeneous systems that embody large
scale sensor networks, embedded systems, mobile devices and enterprise systems. On
the one hand, sensors interact with other nodes in various ways and communication
may be periodic or ad-hoc over wired and/or wireless networks. Moreover, computers

200 E. Ovaska et al.

differ in their architecture and computing resources, such as CPUs, operating systems,
processing power, amount of memory, energy requirements, etc. For example, motes
that are tiny devices powered by a battery and featuring low-power wireless commu-
nication capability bring challenges for application developers. On the other hand,
information systems bring tight quality requirements, which are to be fulfilled in any
case, preventing human and economical damages, by reacting with adaptive and auto-
nomous behavior to changing situations and disappearing resources.

The development of smart cities benefits from the results gained from worldwide
sensor webs [3] and service oriented architectures, also applied to sensor webs [13].
However, smart city applications require more; the platform shall be able to adjust its
behavior based on defined dependability requirements, users’ goals, quality of servic-
es and quality of available resources. Thus, this adaptation requires intelligence that
enables real-time identification, reasoning and proactive reaction on alerts.

The objective of this paper is to explore the existing technologies for developing a
service platform that is able to make autonomously the needed corrective and preven-
tive actions in abnormal situations, and thereby provide a dependable infrastructure
upon which adaptive applications can easily be developed and deployed. In particular,
we focus on how dependability of applications can be guaranteed in ad-hoc situations.

The main contributions of this paper are 1) the options of adaptive service archi-
tectures for autonomic dependable service platform, 2) the inventory of potential on-
tologies that could be exploited in the development of a dependable service platform,
and 3) the approaches applicable in the development of quality critical and situation
based smart city applications. In summary, self-adaptation is based on context-
awareness, realized as situation based behavior that takes into account the functional
and quality properties of the environment and system itself, and the needs of system’s
end-users.

The structure of the paper is as follows. Sections 2 and 3 explore existing self-
adaptation technologies and introduce a selected set of ontologies for representing
services, context and dependability. Section 4 discusses modeling methods and tech-
niques applicable for modeling context and dependability. Section 5 describes our
experiences. Section 6 summarizes the open challenges, and conclusions close the
paper.

2 Self-adaptation Technologies

2.1 Self-*ilities of Autonomic Systems

An autonomic system has six characteristics [43] also called self-*ilities: (1) Reflex-
ivity. The system must have knowledge of its capabilities, boundaries and interdepen-
dencies, and be aware of its possible configurations and their impact on particular
quality requirements. (2) Self-configuring. The system provides increased responsive-
ness by adapting to dynamic changes occurred internally or in the external operating
environment. (3) Self-optimizing. The system provides operational efficiency by
tuning resources and balancing workload. (4) Self-healing. The system provides resi-
liency by discovering and preventing disruptions as well as recovering from malfunc-
tions. (5) Self-protecting. The system secures its assets by anticipating, detecting and

 Technologies for Autonomic Dependable Services Platform 201

protecting against attacks. (6) Adapting. The core of the system is a control loop -
sensing, decision making, and acting. The adaptive mechanisms are typically inspired
by work on machine learning, multi-agent systems, and control theory. Adaptive ser-
vice platforms most often support self-configuring or self-optimization [33, 47].
However, recently self-healing has started to receive more attention [4, 10]. As the
system is autonomic in its ‘normal’ operation, it should be able to survive failures and
to adjust system’s characteristics to altering loads and resources autonomously [7].

2.2 Adaptive Middleware Architectures

The quality management in service-oriented systems requires additional features of
the service brokering. QoS Broker utilizes a centralized approach where requests from
clients are handled by a QoS-aware broker that evaluates each request using a perfor-
mance model [29]. In a quality assurance framework the brokers are created on-
demand and all the service providers and consumers can have their own brokers [41].
AgFlow has a separate service composition manager that forms a composite service
from proper sub-services, requested from the service broker [47].

When quality management is added to the system it may cause that all the services
are required to be changed to support the new middleware. VOLARE [38] adds an
adaptation middleware between Web services and the broker module that monitors
the resources and context of a device, and adapts service requests accordingly. It also
adapts the QoS levels advertised by service providers, to realistically reflect each
provider’s capabilities at any given moment. The adapted service descriptions and
advertisements are syntactically identical to un-adapted versions, allowing interopera-
bility with non-VOLARE nodes.

In the ubiquitous environments the time spent for quality management is critical.
Consequently, the quality-aware service discovery can be divided into two levels [8].
First, the service provisioning level identifies the actual pool of concrete services that
will be used to implement the component functionalities so that the user’s end-to-end
requirements are fulfilled and the service broker’s utility function is maximized. At
the second level the service selection determines, from a pool identified by the service
provisioning, the actual concrete services which are bound to each incoming user
request. The service provisioning operates at a slower pace than the service selection.

The MUSIC platform [42] supports self-adaptation in ubiquitous and service-
oriented environments. It provides an adaptation planning framework for managing
the frequent and unexpected changes in the execution context of mobile applications.
The purpose of the adaptation planning framework is to evaluate the utility of alterna-
tive configurations in response to context changes, to select a feasible one for the
current context and to adapt the application accordingly.

The control loop of quality management can be roughly decomposed into monitor-
ing, analyzing, planning and execution [24]. Monitoring means collecting the data
needed for QoS adaptation from the system under interest. For example, in [41] moni-
tors are created at runtime to transparently intercept requests and responses between
consumers and providers. Analyzing is the phase, where the collected data is com-
bined to form proper QoS metrics, and possibly also predictions of future states are
made. Predictions are used for finding out quality violations proactively [41, 38].
Planning is the phase, where the required action is selected and it can be an aggregate

202 E. Ovaska et al.

of local and global level reasoning [31]. Local QoS requirements are filled by indi-
vidual capabilities and global QoS requirements by the service composition. The op-
timization problem is solved using, for example, models [41, 9] or fuzzy logic [33].

Execution of decisions may include adaptations at two different levels [33]: 1)
the resource management level, which performs application-neutral adaptation, and 2)
the service management level, which is responsible of the application adaptation. The
application adaptation can be about adjusting application components and configura-
tions, or about selecting appropriate service providers for services. Sometimes it is not
possible to find any service providers that fulfill the quality requirements set by the
client. In that case negotiation is needed. In [8] the service provisioning level takes
care of the negotiation with the service provides so that the actual service selection is
made faster. In [41] the consumer broker negotiates with the provider brokers.

The existing adaptive middleware solutions seem to cover collectively all the main
features required for a dependable services platform. For example, the MUSIC plat-
form is able to take into account both context and quality issues and in addition, it is
designed for ubiquitous and service-oriented environments. However, although it
seems to support self-configuring and self-optimizing it is unclear how it would suit
to an self-healing and self-protecting environment. The performance and dependabili-
ty of the existing platforms themselves are not yet clear. Some of them have been
designed for ubiquitous environments, but they have been applied only in restricted
contexts. Especially, more information is needed about how these systems would be
able to support the management of large amounts of data in a short time frame re-
quired by the critical services in the smart city environment.

2.3 Enhanced Intelligence

An intelligent system has a capability of learning and the goal of learning is to im-
prove the system performance with respect to its environment. Machine learning pa-
radigms are divided into three major areas [25]: (1) Supervised learning, where a
teacher, knowing the correct input-output pairs, provides them to the system, which is
learning. The system tries to emulate the teacher’s behavior and also generalize. (2)
Unsupervised learning, where’s no teacher, and thereby no correct outputs exist in the
learning process. (3) Reinforcement learning, where neither here are correct outputs
known, but the system learns those by interacting with its environment – the mechan-
ism is called rewarding. Supervised and unsupervised techniques have both training
phases, although the unsupervised version has no labels – correct ‘answers’ of the
training data – available [20]. A complete machine learning method includes steps of
selecting a candidate model, and then estimating parameters for it. The estimation is
done with a learning algorithm and available data. In practice, supervised learning
utilizes often an error function, which should be naturally minimized. Unsupervised
learning uses clustering; similarity of elements in the same cluster should be max-
imized, and similarity of elements in different clusters should be minimized.

In the formal model of the reinforcement learning, the system has a (discrete) state,
which perceives either completely or partially, a group of actions possible in that
state, and a reward which is received when a new state is entered. The system’s
behavior and knowledge of the environment are modeled with a function. Usually
learning is not about maximization of direct reward belonging to the state transition,

 Technologies for Autonomic Dependable Services Platform 203

but long-term performance. Reinforcement learning is applied to proactively adapting
the platform for stress peaks caused by users, overwhelming data or increased attacks.

Prediction provides four kinds of improvements to self-adaptation [12]: prevents
unnecessary self-adaptation, reduces disruption from incremental adaptation, enables
pre-adaptation to seasonal behavior, and improves overall choice of adaptation. Smart
city applications would benefit from proactive capabilities, for example, with using
the sensor information for discovering activity patterns that might lead to emergency
situations. In that way, it could be possible to act on the situations before they occur
and possibly prevent them. The similar approach is common in smart-home systems.
For example, CASAS [40] is an adaptive smart-home system that utilizes machine
learning and data-mining techniques in order to detect activity patterns, generate au-
tomation policies for those patterns, and also adapt to the changes in those patterns.

Learning capabilities can be also used for self-protection. For example, an ap-
proach for wireless anomaly based intrusion detection and response system uses
learning for detecting complex malicious attacks [16]. Training sets are used by the
system to generate rules for the behavior to be considered normal. Those rules are
used during runtime to detect complex wireless attacks and generate counter measures
to protect one or more wireless resources and the privacy of their users. Fast recovery
without human intervention requires proper policy management mechanisms and
automated ways to learn and derive policies [18]. Unlike the current self-healing sys-
tems that most often diagnose and heal failures after they have occurred rather than
anticipating failures, in consequence-oriented diagnosis and recovery the host predicts
or diagnoses the possible consequences from the symptoms [14].

3 Ontologies

3.1 Service Ontologies

Ontologies are used to represent knowledge in a uniform way that machines are able
to process. Ontologies provide knowledge for describing the required and provided
capabilities of a service, ability and rights of achieving a service, and the quality
guaranteed for a service. The eXtensible Markup Language (XML), Resource Defini-
tion Framework (RDF) [19], and Web Ontology Language (OWL) [27] schema pro-
vide a basis for service description languages and ontologies, such as Web Ontology
Language for Services (OWL-S) [5], Web Service Modeling Ontology (WSMO) [45],
and Internet Reasoning Service (IRS) [32], which in turn provide building blocks for
service semantics. The above mentioned service ontologies describe functionality of
services. Another set of ontologies focuses on service context and quality properties.
However, existing service ontologies focus mainly on Web services, and none of
them provides complete support for service descriptions as required in adaptive ser-
vice platforms. After analysis of the existing ontologies [21], a conclusion is that the
existing service ontologies have to be enhanced.

In the software architecture field, the use of viewpoints is a community-wide ac-
cepted approach to cluster stakeholder-related concerns into a single view [53]. This
principle can be lent to describing semantics of services. The use of multiple views is

204 E. Ovaska et al.

a necessity; the interests of stakeholders differ, application domains differ, and service
functionality and quality differ according to the usage and execution contexts. More-
over, different application domains, for example, information systems and pervasive
computing applications, require modeling languages that take into account the charac-
teristics of a domain by providing a notation that can be enhanced and adapted by
domain specific extensions. The approach used in software product line engineering,
namely the separation of commonality and variability [54], would be a viable ap-
proach that solves the problems in separation of common and domain specific seman-
tics, and the integrated use of the defined service ontologies.

3.2 Context Ontologies

Context is defined in [15]: ‘Context is any information that can be used to character-
ize the situation of an entity.’ Understanding of context information is heavily im-
proved during the last five years. Recently published articles, e.g. [6, 28, 22] indicate
that knowledge on specification, modeling and usage of context information might be
mature enough for realizing context-aware smart space applications. Typically, con-
text information has three dimensions: physical, computational and user context [6].
In order to assist for achieving interoperability on the levels that concern context data
and change of context, the context shall [39] i) have a complete domain coverage and
terminology; ii) be expressive and without semantic ambiguity; iii) be processed
without complexity; and iv) be evolvable.

Three types of context modeling and reasoning approaches [6] have been identi-
fied: an object-role based model, a spatial model and an ontology based model. The
object-role based approach supports various stages of the software engineering
process. Its weakness is a ‘flat’ information model, i.e. all context types are
represented as atomic facts. The spatial context model is well suited for context-aware
applications that are mainly location-based, like many mobile applications. The main
consideration of the spatial context model is the choice of the underlying location
model. Relational location models are easier to build up than geographic location
models. SOUPA [11], as the only standardized context ontology, provides the most
promising starting point for enhanced context ontology of smart cities. Therefore, an
initial version of a context ontology introduced in [37] is an enhancement of SOUPA.
This context ontology defines three levels; i) the physical context deals with raw con-
text data gathered from the environment by sensors; ii) the digital context exploits
physical context information and merges it with the system’s internal context infor-
mation related to applications and information; and finally iii) the situation context
clusters and abstracts the digital context information in a way that it matches to the
application in hand and the preferences of its user. Thereafter, the situation context is
used for adapting the application according to the view of the whole context informa-
tion that relates to the application.

3.3 QoS and Dependability Ontologies

Quality of Service (QoS) has a traditional meaning as a property of communication
technologies, including throughput, latency, jitter, error rate, availability, and network

 Technologies for Autonomic Dependable Services Platform 205

security. In service oriented architectures, QoS is defined as dependability, maintai-
nability, usability and scalability [35]. For end-users, QoS is the degree to which an
executed service meets its quality requirements. Quality characteristics are often re-
ferred as non-functional requirements, although many of them (e.g. performance and
dependability) are intertwined with functionality of software. Typically, existing qual-
ity ontologies have a specific focus. For example, a quality ontology may deal with
one or few quality attribute(s) in defining, managing, or matching quality properties.
However, to guarantee QoS requires comprehensive support for defining and manag-
ing all the relevant quality attributes of services, at design time and at run time.

There are several studies on QoS ontologies related to quality of Web Services. In
[1], an overview of resilience knowledge base (RKB) is described, in which dependa-
bility and security ontology is derived from the taxonomies [2] and developed specifi-
cally for the RKB. The ontology is represented in OWL and incorporates 166 terms
related to Dependability and Security, and 23 terms related to Systems. Moreover,
there are QoS attribute ontologies and QoS-aware discovery solutions based on ser-
vice level agreements [30]. Some papers also discuss performance, dependability and
service cost as well as mechanisms of their aggregation [46, 26]. Other dependability-
related metadata included into a description are i) the development metadata, i.e.
information about service developers and implementation technology, and ii) the dep-
loyment metadata, i.e. information related to the hosting organization, location,
deployment environment, network connection capacity, etc.. Adding this meta-
information will allow clients to decide how to use services by decreasing common
mode failures. Dynamic operational state parameters, such as current service load,
CPU and memory usage, network loading, etc. might also be added to an extended
description. Extending a service description with dependability metadata will bring us
closer to a dependable semantic service platform.

4 Modeling Approaches

4.1 Service Modeling

Service modeling can apply ontology based service engineering, software engineering
or/and domain engineering modeling techniques. Knowledge engineering applies
ontologies for capturing and structuring topic knowledge shared across people, organ-
izations, computers and software. Several methods for ontology development exist,
e.g. METHONTOLOGY [17]. Also a set of languages, such as XML, RDF, and OWL
can be applied to represent knowledge in a machine readable format. Moreover,
OWL-S as a specific service description language can be used for describing service
semantics.

Semantic Web, Ontology Engineering, Semantic Annotations, Semantic Search,
Intelligent Services (Modeling, Discovery and Integration) are standards from W3C
(www.w3c.org) and FIPA (www.fipa.org) for describing semantics models. The use
of standards and open source tools (as W3C standards and OWL in Protégé 2000
environment) helps in sharing and using ontologies. Therefore, open standards and
open source tools are the key enablers of semantics modeling. The advancement in

206 E. Ovaska et al.

open source tools has greatly improved the ability to test and build ontologies from
scratch or/and to reuse existing ontologies.

Application programming interfaces for ontology languages provide programming
language dependent means to load ontologies, manipulate the ontology classes and
relations, perform reasoning, and provide persistent storage for the model. Jena and
OWLS API are the most popular Java frameworks for building semantic Web appli-
cations. These tools provide an application developer with a programming language
for working with ontologies. Reasoning tools, such as FaCT++, Pellet, and RacerPro,
provide a standardized XML interface to description logics systems. These tools help
in ontology testing and in the development of application level intelligence based on
ontologies described in OWL. Domain ontology specific editors such as OWLS Edi-
tor and WSMO design studio help in creating error free semantic descriptions based
on a specific ontology.

Domain specific modeling addresses the specifics of an application domain in the
meta-models from which a domain specific language is derived [23]. Although UML2
is a generic modeling language, it also provides constructs to extend the language
with domain specific concepts. Thus, UML2 enhanced with domain specific ontolo-
gies that extends the language with service, context and dependability ontologies
makes it applicable to the development of autonomic service platforms.

4.2 Context Modeling

Context-aware service engineering can be classified into two classes [22]: language
based approaches and model-driven approaches. Language based approaches such as
context-oriented programming and aspect-oriented programming follow the separa-
tion of concerns; applications are kept context-free and context is handled as a first-
class entity of the programming language while separate constructs are used to inject
context-related behavior into the adaptable skeleton of an application. Context-aware
aspects programming is one step further; the aspects are driven by context, i.e. a par-
ticular aspect may or may not be executed depending on the context of use.

When trying to solve the complexity of context-aware applications, the approach-
es for context modeling and reasoning, namely object, spatial and ontology based
have the following strengths and weaknesses: (1) The object-role based approach
supports various stages of the software engineering process but has an information
model not suitable for modeling context information of smart cities. (2) The spatial
context modeling suits well for location based applications, like mobile applications.
The drawback is the effort the special context model takes to gather and keep up to
date the location data of the context information. Thus, this model is suitable for those
smart city applications that do not have critical performance and dependability re-
quirements as in emergency situations. (3) Ontological context models provide clear
advantage both in terms of support for heterogeneity and interoperability. User-
friendly graphical tools make the design of ontological context models viable to de-
velopers that are not particularly familiar with description logics. However, there is
very little support for modeling temporal aspects in ontologies. The main problem
might be that reasoning with OWL poses serious performance issues.

Programming based on the spatial context models [28] uses a small set of prede-
fined types for composing context information. Thus, it is a topographical approach

 Technologies for Autonomic Dependable Services Platform 207

for modeling a space, i.e. the context of actors is modeled as a geometric shape based
on a sequence of coordinates. This enables actors to independently define and use
potentially overlapping spatial context in a consistent manner, when relationships
between spatial objects are defined implicitly, i.e. as the positions of the spatial ob-
jects shapes within the coordinate system. Thus, this programming model enables
efficient integration of heterogeneous systems into a global smart space. Although the
programming model might be a too sophisticated and overestimated approach for
developing smart cities, it is a feasible enabler for self-organized sensor networks.

As mentioned, all approaches have weaknesses that make their use such as unfeas-
ible in autonomic dependable service platforms. However, the generic model for con-
text monitoring and situation based adaptation of application logic [15] is part of a
viable solution, as described in [37].

4.3 Dependability Modeling

Dependability is considered from three viewpoints; as a system property; as a service
capability, and a failure free operation. Dependability of a system is its ability to de-
liver a service that can justifiably be trusted. Dependability of a service is its behavior
as it is perceived by the service user(s). Based on the definition of failure, an alternate
definition of dependability exists, which complements the other definitions in provid-
ing a criterion for adjudicating whether the delivered service can be trusted or not: the
ability of a system to avoid failures that are more frequent or more severe, and outage
durations that are longer than is acceptable to the user(s). The first two definitions
relate to the system and software design and implementation. The third one relates to
the space’s ability to survive under failures. Thus, it relates to self-healing and self-
protecting, the characteristics of autonomic systems.

Dependability as a general concept manages four quality attributes: reliability,
availability, security and safety. Safety is not common in smart cities but extremely
important in safety-critical systems, e.g. in trains and airplanes. Thus, when using
sensor information for making context-aware smart city applications, we focus on
reliability, availability and security. Especially, our interest is on how to deal with
these quality properties in a situation based manner and how to assure that quality
requirements are met when ad-hoc situation based adaptations are made.

Survivability concerns autonomic systems and is a system’s capability to fulfill its
mission, in a timely manner, in the presence of attacks, failures or accidents. There
are two aspects of survivability: protection and adaptation. Survival by protection
refers to run-time security management. Survival by adaptation is an ability of a sys-
tem to adapt its behavior to the changes that occur either in the system or externally in
the operating environment and users’ requirements [44]. Thus being self-adaptive and
self-protecting, the dependable service platform should support survivability.

Security mechanisms like access control and encryption attempt to ensure survi-
vability by protecting applications from harmful, accidental or malicious changes in
the environment. Applications can also survive by adapting themselves to the chang-
ing conditions. Survival by adaptation typically involves monitoring and changing the
quality goals so that they can be reached. In order to exploit architectural design
knowledge for runtime adaptation, the following should be supported; a) identifica-
tion of the internal and external contexts of the system, b) reasoning the change of

208 E. Ovaska et al.

context, c) reasoning the activities to be taken in order to reach the quality goals, and
finally, d) reconfiguring the system in a manageable way. In proactive adaptation, all
these have to be made before they occur. Thus, appropriate learning techniques are
used for predicting the behavior and making system survivable by proactive actions.

Dependability modeling has four main phases. First, the semantics of dependability
is described at the design time by applying the quality-driven architecture design and
quality analysis methodology [36]. As a result, the sub-attributes of dependability are
described as separate ontologies for defining quality requirements. Second, quality
requirements are mapped to the elements of software architecture models [34]. Third,
the architecture is evaluated in order to detect whether required quality is met or not.
Fourth, quality of the implemented software is measured and compared to require-
ments. In practice, the above described approach with supporting techniques and tools
can be exploited but it needs enhanced middleware services that are able to use the
design knowledge, represented in the service, context and dependability ontologies, in
monitoring, reasoning and adapting dependability of smart city applications.

5 Smart City Experiment

During the last year we have developed in the SOFIA/Artemis project a pilot that
provides cross-domain services from multiple smart spaces. In that scenario, end-
users use the heterogeneous information services provided by the smart office, smart
home and smart city. The smart city provides the following services: i) multimedia
entertainment services delivered from a cloud and personalized according to the end-
user’s profile, ii) navigation services for finding the optimum route to a target place in
a city and iii) finding out a free parking place that is nearest a target place. The devel-
opment of the smart city follows the design principles and practices particularly
defined for smart space development [48].

5.1 Integration of Heterogeneous Platforms

Fig. 1 presents an overview how the autonomic dependable service platform was im-
plemented and used for integrating existing solutions running on different platforms.
On the one hand, environmental sensor networks are used for collecting data and
video about the usage status and condition of roads and weather. On the other hand,
the usage information of parking places is provided to smart applications through
web-services and the semantic information interoperability platform (SIIP). Environ-
mental changes are signalled to event subscribers via SIIP, too. Broadcast services
and music delivered through the Internet are used as sources of multimedia services.
Personalization of these content services is made by the open source content delivery
platform that takes care of content management.

5.2 Semantic Information Interoperability Platform

The bottom part of the autonomic dependable service platform is based on the SIIP
realized by Semantic Information Brokers (SIB) and agents that communicate via
SIBs. SIB is essentially a blackboard that is used for publishing and subscribing

 Technologies for Autonomic Dependable Services Platform 209

Event-Based
Emergency

Services

Parking Place
Services

 Cross-Domain Smart Space Applications

Autonomic Dependable Service Platform

Self-Adpative
Agents

Semantic Information
Brokers

Context management

Multimedia
Services

Environmental Sensor Networks
Internet Broadcast Services

Run-time
Quality Management

Ontologies
Domain, Application, Context, Security, Performance, Reliability

Fig. 1. Autonomic dependable service platform for multi-domain smart spaces

information. The smart space applications are composed of agents that produce and
consume information. Information semantics is modelled with ontologies and stored
into SIBs as subject – predicate – object RDF triplets. Because all kinds of informa-
tion is delivered from producers to consumers via SIBs, a set of ontologies are
required.

For the upper part of the SIIP we have developed several ontologies and applied
them in our experiment. For example, the domain ontology includes a sensor ontology
that has been applied to align heterogeneous sensor data collected from smart city and
smart home environments. Metamodels are used for describing capabilities of multi-
media content web services, such as news and entertainment services. However, our
main focus has been on developing context, security and performance ontologies, and
providing a set of autonomic agents that exploit these ontologies in order to achieve
smartness. The context ontology exploits SOUPA and deals with physical, digital,
situation, usage and social contexts [49]. Context monitoring, reasoning and adapta-
tion are specific agents of the autonomous dependable service platform that are used
for run-time quality management and making self-adaptive services for applications
and the platform itself. Information security ontology covers threats, security goals,
assets, countermeasures and metrics for managing information security at run-time
[50]. Security ontology exploits reliability measures [51] as security base measures
and therefore, dependability is covered by reliability and security sub-attributes. In the
similar way, performance ontology deals with performance sub-characteristics and
their related concepts, properties and metrics [52].

5.3 Dependability Metrics and Measuring Techniques

Sharing of quality information in an environment where the composition of informa-
tion from heterogeneous devices and software in a dynamic manner requires a

210 E. Ovaska et al.

common understanding of quality measures. In our experiment, the metrics ontology
is used for defining the measures in an unambiguous way. The simplest measure is a
base measure that is used to define more complex measures, i.e., derived measures,
indicators and analysis models. This approach makes it possible to create and com-
pose a new measure, i.e., analysis models, during runtime without a need to modify
the existing application code.

5.4 Proactive Adaptation

In order to continuously maintain an acceptable behaviour an application or a service
has to be able to adapt before its operation. So far, the following experiments have
been performed to validate that the SIIP is able to adapt smart city applications ac-
cording to environmental changes or adapt its own behaviour to meet the require-
ments of the changed environment (i.e. according to the physical and digital context):
(1) The navigator uses several smart city services for finding a proper parking place
by automatically selecting the parking places information service with the fastest
response time. (2) In case of traffic blocks caused by an accident or a roadwork, a
new route is calculated and proposed to the end-user based on the information and
reasoning agents running on top of the SIIP. (3) When a SIB starts to become short of
memory, the application adapts and moves its operation to another SIB. (4) When
context of the environment changes so that the required security level has to be in-
creased, more secure mechanisms are taken into use in information transfer and shar-
ing. (5) The energy consumption of a mobile device is monitored, and in case the
energy level of the battery becomes low, some operations are closed and others
moved to another device. (6) When behaviour of an agent becomes unacceptable,
another agent with similar service capability is chosen to be used in the application.
These experiments validate the automatic dependable service platform in the specific
use cases.

6 Future Challenges

As described above there are several technologies and solutions for the development
of autonomic dependable systems composed of heterogeneous subsystems such as
sensors, networks, and enterprise systems. Our experiments about smart city applica-
tions provide some solutions to handle the heterogeneity of sensor technologies,
proactive strategies for QoS adaptation and easiness to use and understand the sensor
web and its applications. However, there are still open issues to be studied extensively
in the ongoing and future research projects: (1) Semantics. A novel semantics model-
ing technique is required. The modeling approach should be i) goal oriented and
stakeholder-centric, including viewpoints and views, ii) a set of core ontologies that
cover the technology and application domains of smart city spaces, and iii) integrated
orchestration of the developed ontologies at design time and at run-time. (2) Proactive
adaptation. Novel reasoning techniques are required for measuring, monitoring,
adapting and especially predicting of system’s behavior from quality point of view.
QoS-driven proactive adaptation requires innovative solutions for 1) managing
semantic descriptions at run-time; 2) deriving quality indicators from basic QoS

 Technologies for Autonomic Dependable Services Platform 211

measurements; and 3) enhanced adaptation and learning algorithms. Furthermore, the
proactive QoS adaptation mechanism has to take into account the constraints of the
selected technology; how to deal with context awareness and resource constraints of
computing and communication environment. (3) Dynamic semantic middleware.
There is a need for a generic solution that allows proactive service discovery, service
composition and negotiation, and evolution management of cross-domain service
platforms intended for heterogeneous networked systems, devices, actuators and ap-
pliances used for environmental monitoring. The biggest challenge might be the com-
bination of run-time ontology evolution and dynamic behavior of smart environments
that heavily exploit resource scarce embedded devices.

7 Conclusions

In this paper we explored the existing technologies applicable for use in the develop-
ment of autonomic dependable service platforms that embody the technical challenges
of pervasive computing environments, the business challenges of the multi-vendor
product development and the quality of service challenges of trusted services that
insist on a dependable and high efficient service platform.

We scoped our work by smart cities, the context where intelligence of services is
benefited the most and where end-users should be supported with novel software and
service engineering technologies. Moreover, we adopted an approach that exploits
and enhances legacy systems because making running systems more intelligent and
self-adaptive is a big enough challenge.

As a conclusion, we identified three topics that need extensive research and devel-
opments, namely i) semantics modeling, ii) proactive adaptation of architectures, and
iii) middleware support for handling dynamism of self-organizing (ad-hoc) sensor
networks. Our recent experiments have addressed these topics and we have identified
two open issues required for smart cities: tiny and fast semantic information brokers
and end-user programming tools for mashing-up of smart space applications.

Acknowledgements. This work is supported by the SOFIA/Artemis project, co-
funded by EU, Tekes, and VTT and the Smash project, funded by VTT. The work of
Liliana Dobrica was supported by Romanian Scientific Council CNCSIS –
UEFISCSU, project number PNII – IDEI 1238/2008.

References

1. Anderson, T., Andrews, Z.H., Fitzgerald, J.S., Randell, B., Glaser, H., Millard, I.C.: The
ReSIST Resilience Knowledge Base. Technical Report. University of Newcastle upon
Tyne (2007)

2. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Compu-
ting 1(1), 11–33 (2004)

3. Balazinka, M., Deshpande, A., Flanklin, M.J., Gibbons, P.B., Gray, J., Nath, S., Hansen,
M., Liebhold, M., Szalay, A., Tao, V.: Data management in the worldwide sensor web.
Pervasive Computing 6(2), 30–40 (2007)

212 E. Ovaska et al.

4. Baresi, L., Guinea, S., Pasquale, L.: Towards a unified framework for the monitoring and
recovery of BPEL processes. In: TAV-WEB 2008 Workshop on Testing, Analysis and Ve-
rification of Web Services and Applications, pp. 15–19. ACM, New York (2008)

5. Barstow, A., Hendler, J., Skall, M.: OWL Web Ontology Language for Services, W3C
(2004), http://xml.coverpages.org/ni2004-01-08-a.html

6. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Niclas, D., Ranganathan, A., Riboni,
D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile Com-
puting 6(2), 161–180 (2010)

7. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC® Sensor Web Enablement: Over-
view and High Level Architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.) GSN
2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

8. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: A Scalable Ap-
proach to QoS-Aware Self-adaption in Service-Oriented Architectures. In: Bartolini, N.,
Nikoletseas, S., Sinha, P., Cardellini, V., Mahanti, A. (eds.) Qshine/AAA-IDEA 2009.
LNICST, vol. 22, pp. 431–447. Springer, Heidelberg (2009)

9. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-driven run-
time adaptation of service oriented architectures. In: ESEC/FSE 2009, pp. 131–140. ACM,
New York (2009)

10. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Towards Self-
adaptation for Dependable Service-Oriented Systems. In: de Lemos, R., Fabre, J.-C., Ga-
cek, C., Gadducci, F., ter Beek, M. (eds.) Architecting Dependable Systems VI. LNCS,
vol. 5835, pp. 24–48. Springer, Heidelberg (2009)

11. Chen, H., Finin, T., Joshi, A.: The SOUPA Ontology for Pervasive Computing. In: Ontol-
ogies for Agents: Theory and Experiences. Whitestein Series in Software Agent Technolo-
gies and Autonomic Computing, pp. 233–258. Springer, Heidelberg (2005)

12. Cheng, S.-W., Poladian, V., Garlan, D., Schmerl, B.: Improving Architecture-Based Self-
Adaptation through Resource Prediction. In: Cheng, B.H.C., de Lemos, R., Giese, H., In-
verardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 71–88. Springer,
Heidelberg (2009)

13. Chu, X., Buyya, R.: Service oriented sensor web. In: Sensor Networks and Configuration,
pp. 51–74. Springer, Heidelberg (2007)

14. Dai, Y., Xiang, Y., Zhang, G.: Self-healing and Hybrid Diagnosis in Cloud Computing. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 45–56.
Springer, Heidelberg (2009)

15. Dey, A.K., Newberger, A.: Support for Context-Aware Intelligibility and Control. In: CHI
2009, pp. 859–868. ACM, New York (2009)

16. Fayssal, S., Alnashif, Y., Kim, B., Hariri, S.: A Proactive Wireless Self-Protection System.
In: ICPS 2008, pp. 11–20. ACM, New York (2008)

17. Fernandez, M., Gomez-Perez, A., Juristo, N.: METHONTOLOGY: from ontological art
towards ontological engineering. In: AAAI 1997 Spring Symposium Series on Ontological
Engineering, Stanford, pp. 33–40 (1997)

18. Fuad, M.M.: Issues and Challenges of an Inductive learning Algorithm for Self-healing
Applications. In: 7th Intl. Conf. on Information Technology: New Generations, ITNG
2010, pp. 264–269. IEEE Press, New York (2010)

19. Hayes, P.: RDF Semantics, W3C (2004), http://www.w3.org/TR/rdf-schema/
20. Jayaraj, A., Venkatesh, T., Murthy, C.S.R.: Loss classification in optical burst switching

networks using machine learning techniques: improving the performance of TCP. IEEE
Journal on Selected Areas in Communications 26(6), 45–54 (2008)

 Technologies for Autonomic Dependable Services Platform 213

21. Kantorovitch, J., Niemelä, E.: Service Description Ontologies. In: Khosrow-Pour, M. (ed.)
Encyclopedia of Information Science and Technology, 2nd edn., pp. 3445–3451. IGI
Global (2008)

22. Kapitsaki, G., Prezerakos, G., Tselikas, N., Venieris, I.: Context-aware service engineer-
ing: A survey. J. of Systems and Software 83, 1285–1297 (2009)

23. Kelly, S., Tolvanen, J.: Domain-Specific Modelling: Enabling Full Code Generation. Wi-
ley, New Jersey (2008)

24. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

25. Könönen, V.: Multiagent reinforcement learning in Markov games: asymmetric and sym-
metric approaches. Doctoral thesis, Helsinki University of Technology, Espoo, Finland
(2004)

26. Lock, R., Dobson, G.: Developing an ontology for QoS. In: Dependability interdisciplinary
research Collaboration (Internal Annual Project Conference), Nesc (National e-Science
centre), Edinburgh (2005)

27. McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview, W3C
(2004), http://www.w3.org/TR/owl-features/

28. Meier, R., Harrington, A., Beckmann, K., Cahill, V.: A framework for incremental con-
struction of real global smart space applications. Pervasive and Mobile Computing 5, 350–
368 (2009)

29. Menasce, D.A., Dubey, V.: Utility-based QoS brokering in service oriented architectures.
In: IEEE Intl Conf. on Web Services, pp. 422–430. IEEE Press, New York (2007)

30. Menasce, D.A.: QoS Issue in Web Services. IEEE Internet Computing 6(6), 49–68 (2002)
31. Mokhtar, S.B., Georgantas, N., Issarny, V.: COCOA: COnversation-based service COm-

position in pervAsive computing environments with QoS support. J. Systems and Soft-
ware 80(12), 1941–1955 (2007)

32. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS–II: A Framework and Infrastructure
for Semantic Web Services. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 306–318. Springer, Heidelberg (2003)

33. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: QoS-aware middleware for ubiquitous and
heterogeneous environments. IEEE Communications Magazine 39(11), 140–148 (2001)

34. Niemelä, E., Evesti, A., Savolainen, P.: Modeling Quality Attribute Variability. In:
ENASE 2008, pp. 169–176. INSTICC Press, Portugal (2008)

35. O’Brien, L., Merson, P., Bass, L.: Quality Attributes for Service-Oriented Architectures.
In: SDSOA 2007, p. 3. IEEE Computer Society, Washinghton (2007)

36. Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P.: Knowledge Based Quality
Driven Architecture Design and Evaluation. Information and Software Technologies 52(6),
577–601 (2010)

37. Pantsar-Syväniemi, S., Simula, K., Ovaska, E.: Context-awareness in smart spaces. In:
IEEE Symp. on Computers and Comm., pp. 1023–1028. IEEE Press, New York (2010)

38. Papakos, P., Rosenblum, D.S., Mukhija, A., Capra, L.: VOLARE: Adaptive web service
discovery middleware for mobile systems. ECEASST 19 (2009)

39. Preuveneers, D., Berbers, Y.: Internet of Things: A Context-Awareness Perspective. In:
Yan, L., Zhang, Y., Ning, H. (eds.) The Internet of Things: From RFID to the Next Gener-
ation Pervasive Networked Systems, pp. 287–307. Auerbach Pub., New York (2008)

40. Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the
user. IEEE Trans. on Systems, Man and Cybernetics 39(5), 949–959 (2009)

214 E. Ovaska et al.

41. Robinson, D., Kotonya, G.: A self-managing brokerage model for quality assurance in ser-
vice-oriented systems. In: IEEE High Assurance Systems Eng. Symp., pp. 424–433. IEEE
Press, New York (2008)

42. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A.,
Scholz, U.: MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-
Oriented Environments. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 164–182. Springer, Heidelberg
(2009)

43. Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research Challenges.
ACM Trans. on Autonomous and Adaptive Systems 4(2), art. 14 (2009)

44. Tarvainen, P.: Adaptability evaluation of software architectures: a case study. In: IEEE Int.
COMPSAC 2007. IEEE Computer Science, Washinghton (2007)

45. WSMO: WSMO studio (2004), http://www.wsmostudio.org/
46. Yang, S., Lan, B., Chung, J.Y.: Analyses of QoS Aware Web Services. In: Intl. Comp.

Symp. on Web Technologies and Information Security, ICS (2006)
47. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware

middleware for web services composition. IEEE Trans. Soft. Eng. 30(5), 311–327 (2004)
48. Ovaska, E., Cinotti, T.S., Toninelli, A.: The design principles and practices of interopera-

ble smart spaces. In: Liu, X., Li, Y. (eds.) Advanced Design Approaches to Emerging
Software Systems: Principles, Methodologies, and Tools, pp. 18–47 (2012)

49. Pantsar-Syväniemi, S., Kuusijärvi, J., Ovaska, E.: Context-Awareness Micro-architecture
for Smart Spaces. In: Riekki, J., Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS,
vol. 6646, pp. 148–157. Springer, Heidelberg (2011)

50. Evesti, A., Savola, R., Ovaska, E., Kuusijärvi, J.: The design, instantiation, and usage of
information security measuring ontology. In: The Second International Conference on
Models and Ontology-based Design of Protocols, Architectures and Services (2011)

51. Evesti, A., Ovaska, E.: Design time reliability predictions for supporting runtime security
measuring and adaptation. In: The Third International Conference on Emerging Network
Intelligence, EMERGING 2011, 6 pages. IARIA (2011)

52. Purhonen, A., Stenudd, S.: Runtime Performance Management of Information Broker-
Based Adaptive Applications. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011.
LNCS, vol. 6903, pp. 203–206. Springer, Heidelberg (2011)

53. Dobrica, L.: Exploring Approaches of Integration Software Architecture Modeling with
Quality Analysis Models. In: 2011 Ninth IEEE/IFIP Conference on Software Architecture,
pp. 113–122. IEEE Computer Society, Los Alamitos (2011)

54. Dobrica, L., Ovaska, E.: Service Based Development of a Cross Domain Reference Archi-
tecture. In: Maciaszek, L.A., González-Pérez, C., Jablonski, S. (eds.) ENASE 2008/2009.
CCIS, vol. 69, pp. 305–318. Springer, Heidelberg (2010)

Part IV

Data Management

Extracting the Main Content of Web Documents Based
on Character Encoding and a Naive Smoothing Method

Hadi Mohammadzadeh1, Thomas Gottron2,
Franz Schweiggert1, and Gholamreza Nakhaeizadeh3

1 Institute of Applied Information Processing, University of Ulm, D-89069 Ulm, Germany
2 Institute for Web Science and Technologies, Universität Koblenz-Landau,

D-56070 Koblenz, Germany
3 Institute of Statistics, Econometrics and Mathematical Finance, University of Karlsruhe,

D-76128 Karlsruhe, Germany
{hadi.mohammadzadeh,franz.schweiggert}@uni-ulm.de,

gottron@uni-koblenz.de, nakhaeizadeh@statistik.uni-karlsruhe.de

Abstract. This chapter presents R2L, DANA and DANAg, a family of novel
algorithms for extracting the main content (MC) of web documents. The main
concept behind R2L, which also provided the initial idea and motivation for the
other two algorithms, is to exploit particularities of Right-to-Left languages for
obtaining the MC of web pages. As the English character set and the Right-to-
Left character set are encoded in different intervals of the Unicode character set,
we can efficiently distinguish the Right-to-Left characters from the English ones
in an HTML file. Afterwards, the R2L approach extracts areas of the HTML
file with a high density of Right-to-Left characters and a low density characters
from the English character set. Having recognized these areas, R2L separates
only the Right-to-Left characters as a result. The first extension, DANA, improves
effectiveness of the baseline algorithm by employing an HTML parser in a post
processing phase of R2L for extracting the MC from areas with a high density
of Right-to-Left characters. DANAg is the second extension and generalizes the
idea of R2L to render it language independent.

Keywords: Main content extraction, R2L languages, Unicode character set,
HTML documents, UTF-8 encoding form.

1 Introduction

Content extraction is the process of identifying the Main Content (MC) and/or removing
the additional items, such as advertisements, navigation bars, design elements or legal
disclaimers [5]. Estimates from 2005 [3] stated these additional items to account for 40
to 50% of the data on the World Wide Web, predicting this ratio to increase constantly
in the future.

The rapid growth of text based information on the web and various applications
making use of this data motivates the need for efficient and effective methods to iden-
tify and separate the main content from the additional content items. In particular, the
identification of the MC is beneficial for web search engines: when crawling and index-
ing the web, knowing the actual main content of each web page can be exploited for

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 217–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 H. Mohammadzadeh et al.

the purpose of determining more precise and descriptive index terms for the document.
Furthermore, MCE is also applied in scenarios where a reduction of a document to its
main content is of advantage, e.g. on devices that have limited storage or bandwidth
capacity or underlie restrictions regarding the presentation of web documents [7], such
as mobile phones, screen readers, etc. Furthermore, MCE can be considered as a pre-
processing step for general text mining applications operating on the web. All these
application scenarios have led to the development of several approaches and algorithms
for main content extraction from HTML documents.

The most common traditional approach to MCE has been to hand-code rules, often
implemented by regular expressions. These hand tailored rules achieve a high or even
perfect accuracy on the web documents for which they have been designed. But, since
different web sites have different layouts, maybe even in a variety of configurations
and layouts frequently changing over time, hand coded rules are highly labour intensive
and easily broken by changes to the structure of a web page [15]. This has led to an
interest in finding solutions, which are generic (i.e. applicable to various types of web
pages from different sites), accurate (i.e. able to extract all important content at a high
precision) and efficient (i.e. capable of processing a large number of web pages at a
high throughput rate) [9]. However, generic MCE approaches do not reach a perfect
accuracy. Even state-of-the-art methods have been shown to still leave space for im-
provements [4]. From a technical point of view, most of the approaches [5,14] for MCE
use HTML tags to separate the main content from the extraneous items. This implies the
need to employ a parser for the entire HTML document. Consequently, the computation
costs of these MCE approaches include an overhead for the parser.

In the early days of the World Wide Web, the content of the most web pages was
written in English language. By now, and especially in the last decade, a large part of
information is being published also in other languages, for example Spanish, German,
and French, etc. Except for the non-English languages mentioned here, there are several
other languages using Non-ASCII codes for their characters (Figure 1 gives an example
of web pages with a Non-ASCII character set in which we have also highlighted the
main content). The Unicode character set (UCS), which was introduced after ASCII
and ISO-8859*, reserves an exact interval for each language. Some of these intervals
have no common character with the English character set.

The R2L [13] approach presented in this chapter exploits this fact to realize an MCE
algorithm for Arabic, Farsi, Pashto, and Urdu languages. By working on the binary char-
acter encoding directly, we achieve an improvement in time performance. Moreover,
our approach outperforms all other MCE algorithms also in extraction performance,
i.e. detects the main content more accurately and reliably. This provided the motivation
for the initial version, R2L, of our algorithms presented in this chapter. With its exten-
sions DANA [12] and DANAg [11], we further enhance and generalize the original idea
towards a better performance and a language-independent version.

Altogether, in this chapter we make three main contributions:

• We develop the idea of using character encoding for developing R2L, a new
approach for MCE.

Extracting the Main Content of Web Documents 219

Fig. 1. A web page with an outlined main content

• We extend the R2L approach to the algorithms DANA and DANAg to further
improve the extraction accuracy and develop a language independent version of
the method.

• We analyse our approaches under the aspects of efficiency and effectiveness. We
compare them to eleven established MCE algorithms [7,10,2,16,5,14] and show
that we extend the state-of-the-art in terms of both, efficiency and effectiveness.

The remainder of the chapter is organized as follows: After discussing related work
in Section 2, Section 3 introduces R2L languages and elaborates UCS and the UTF-
8 encoding form. The main part of this chapter is explained in Section 4 where we
introduce our algorithms in detail. Section 5 reports the empiric evaluation of R2L,
DANA and DANAg as well as the comparison to other algorithms under the aspects of
efficiency and effectiveness. Finally, concluding remarks are given in Section 6.

2 Related Work

In the last decade, many scientists and researchers have been working on main content
extraction. Several algorithms have been introduced and many papers in this field have
been published. All these main content extraction algorithms can be categorized into
the two following groups:

220 H. Mohammadzadeh et al.

2.1 Methods Based on the DOM Tree

One of the more prominent solutions for MCE is the Crunch framework [7] of Gupta
et al. This framework applies an HTML parser to construct a DOM tree from an HTML
document. Then, by navigating the DOM tree recursively, rather than using the raw
HTML markup, and utilizing a number of heuristic filtering techniques, the main con-
tent of HTML web pages is extracted.

Mantratzis et al. proposed a new algorithm in [10] whose function was based on the
DOM tree as well. This algorithm determines the areas with a high hyperlink density
within a web document, so it can separate these areas from the main content in web
pages. In doing this, they examined the DOM tree and assigned specific scores to each
section based on the amount and relative location of hyperlink nodes in the DOM tree.

Debnath et al. [1] introduced the FeatureExtracter algorithm and its extension the K-
FeatureExtracter. These two algorithms identify the “primary content blocks” based on
several features. First, they segment the web pages into web page blocks and, second,
they separate the primary content blocks from the non-informative content blocks based
on their compliance with desired features, such as dominance of text or images.

2.2 Methods Based on HTML Source Code Elements

The work of Finn et al. [2] described the process of extracting and classifying infor-
mation from HTML documents for the purpose of integrating it into digital libraries.
They proposed the ”Body Text Extraction” (BTE) approach, which identifies a single
continuous fragment of the HTML document containing the MC. The fragment is cho-
sen to contain a high percentage of text against low percentage of tags. The choice is
formulated as an optimization problem and is based on tokenizing a web document into
a binary vector of word and tag elements.

Pinto et al. [16] introduced the Document Slope Curves (DSC) method, which is an
extended model of the BTE and is based on the same binary vector. In an intermediary
step, DSC generates a graph by plotting the accumulated tag token count for each en-
try in the vector. Then, the approach extracts long and low sloping regions of this graph
represent the main content (text without HTML tags). By employing a windowing tech-
nique, the approach can identify also a main content which is fragmented into several
parts of an HTML document.

Gottron [5] presented two new algorithms: the Content Code Blurring (CCB) and the
Adapted Content Code Blurring (ACCB) are capable of working either on characters or
tokens. CCB finds the regions in an HTML document which contains mainly content
and little code. In order to do this, the algorithm, determines a ratio of content to code
for each single element in the content code vector (CCV) in the vicinity of each element
and, by using a Gaussian blurring filter, builds a new vector, referred to as Content Code
Ratio (CCR). Now a region with high CCR values indicates the main content. In ACCB,
all anchor-tags are ignored during the creation of the CCV. Two parameters influence
the behaviour of these two algorithms, so tuning these two parameters is important in
order to produce good results [6].

Moreno et al. [14] introduced a language independent algorithm, called Density,
(tested on English, Italian and German languages) for the main content extraction.

Extracting the Main Content of Web Documents 221

This approach, similar to CCB, has two phases. In the first step, they separate texts from
the HTML tags by using an HTML parser; afterwards, the extracted texts are saved in
an array of strings L. In the second step, a region in the array L that has the highest
density will be determined as a main content. In addition to finding the highest density
area in the array L, two parameters influence the behaviour of the algorithm. The first
parameter, C1, determines minimum required length for texts in each element of the
array L to be selected and inserted to the new array of String R, which is considered to
keep the high density region of text. The second parameter, C2, specifies the acceptable
distance between lines in R and the lines which want to be added to R.

Weninger et al. introduced content extraction via tag ratios, called CETR, in [17].
This method extracts the main content from web pages by using the HTML document’s
tag ratio. Their method computes tag ratios on a line-by-line basis and, afterwards,
produces a histogram based on results. Finally by using the k-Means clustering method,
they cluster the resulting histogram into the content and the non-content area.

3 R2L Languages, Unicode, and UTF-8 Encoding Form

There are different directions in writing. Languages such as English, Spanish, and Ger-
man are written from left to right, while languages such as Arabic, Farsi, Pashto, and
Urdu are written from right to left. Our approaches R2L and DANA are able to ex-
tract the main content of right to left language web pages. Therefore, in this section
we explain some characteristics of these languages as well as their representation and
encoding.

3.1 Languages on the Web

Figure 2 provides statistics about the top 10 languages of Internet users1. Following
English, Chinese, Spanish, Japanese, Portuguese and German speaking, users speaking
Arabian – one of the four languages discussed in this chapter – rank at position 7 of this
list. Concerning the statistics from the Internet World Statistics (IWS), in 2011 more
than 33.5% of people in Arabian countries have access to the Internet. By exploring
these statistics further, we can see around 3.4% of all users in the world coming from
Arabian countries. By comparing this value with older statistics from 2000 where only
0.8% of all users in the world was from Arabian countries, we see a high growing rate of
Internet use in Arabian countries. It is important to know that the population of Arabian
countries is more than 350 million people and in the future, even more people in these
countries will have access to the Internet. Therefore, the numbers of visitors of Arabian
web pages are going to increase. This considerations motivate the importance of doing
MCE research on Arabian web sites.

3.2 Unicode Character Set

Before the Unicode Character Set was introduced, ASCII (developed to ISO 8859*) and
EBCDIC were used on computers. Thereby, only one byte was allocated for storing a

1 http://www.internetworldstats.com/

http://www.internetworldstats.com/

222 H. Mohammadzadeh et al.

Fig. 2. Top 10 languages on the Internet in millions of users in 2010

single character; consequently only 256 characters could be coded. By considering this
limitation, rows in the interval [128, 255] in the encoding table were used by different
characters of different languages. Since the introduction of UCS, where only one special
number was mapped to each character, we are able to use all characters of different
languages on computers. At first, from 1991-1995, only 16 bits were reserved for each
character, but when the new version of UCS was introduced (July 1996), it was possible
to save a character in 21 bits. The newly defined UCS encoded all characters in the
interval [U+0000, U+10FFFF]. There are several encoding forms in UCS, such as UTF-
8, UTF-16, and UTF-32. In each of these encoding forms, respectively, one character
can be saved in one to maximally four bytes, one or two words, or 32 bits.

3.3 UTF-8 Encoding Form

As we mentioned in 3.2, UTF-8 is a variable-length encoding form in UCS. This en-
coding form can code all characters in UCS and represents each character in one to four
bytes and has two following special characteristics (Keep in your mind that characters
which are used in non-English languages need two, three, or four bytes):

• It reserves the same character codes from ASCII that makes UTF-8 backward-
compatible with ASCII. Hence, every valid ASCII character (a 7-bit character set)
is a valid UTF-8 character sequence and is mapped onto the following scheme.
Each of these characters has a value of less than 128.

Extracting the Main Content of Web Documents 223

Bits Last code point Byte1
7 U+007F 0xxxxxxx

• It is capable of encoding up to 231 characters and uses the scheme in Table 1
to handle code points with up to 31 bits. Some features of these scheme are: 1)
For every UTF-8 byte sequence, the first byte determines the length of the sequence
in bytes. 2) The rest bytes have 10 as their two most-significant bits (bits 7 and 6), so
it can be recognized whether or not a byte is the first byte in a longer byte sequence.

Table 1. Scheme of byte sequence in UTF-8

Rows Bits Last code point Byte1 Byte2 Byte3 Byte4 Byte5 Byte6
1 7 U+007F 0xxxxxxx
2 11 U+07FF 110xxxxx 10xxxxxx
3 16 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
5 26 U+3FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
6 31 U+7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

All letters of non-English-languages which we will discuss in this chapter take ex-
actly 2 bytes, for example the Arabian character set has been represented in the interval
[U+0600, U+06FF], and follow the byte sequence in row 2 in Table 1. In UTF-8, each
character which needs more than one byte will be coded in such a manner that each
byte of this character is greater than 127 and so it can be distinguished from one-byte
characters with value less than 128, see Table 1.

To illustrate this, consider the following example. The letter �� in Arabian language

(corresponding to the letter b of the Latin alphabet) has been defined with the value
0x0628 (with the equivalent binary value of 0B0000110000101000). According to the
second row of Table 1, this value should be divided into three parts:

000 011000 0101000

Now, two right parts will be added to the bytes corresponding to the bytes in row 2 in
Table 1, respectively :

11000000 10000000

The result is:

11011000 10101000

Note these two byte values are greater than 127. Therefore, we can easily separate one-
byte characters with value less than 128 from double-byte characters by considering the
first bit.

4 Algorithms: R2L, DANA, and DANAg

Based on the observations regarding character encoding in Section 3 we now develop
our R2L [13] algorithm in Section 4.1. We then extend R2L to DANA [12] in Sec-
tion 4.2 to improve its effectiveness and to a language independent version DANAg [11]
in Section 4.3.

224 H. Mohammadzadeh et al.

4.1 Algorithm R2L

The process underlying R2L can be subdivided into a preprocessing step and four main
phases. The individual steps in this process work as follows.

4.1.1 Preprocessing Step
In the preprocessing step, all JavaScript and CSS codes and comments are removed
from the HTML file. There are two reasons for this: (a) they do not directly contribute
to the main text content and (b) they do not necessarily affect the content of the HTML
document at the same position where they are located in the source code. Especially
this latter incoherence between presentation and technical realisation in the source code
could introduce inconsistencies in the downstream analysis2.

4.1.2 First Phase: Character Set Separation
In the following, we define two sets, S1 and S2 we will use throughout this section:

S1 = {All characters belonging to UCS R2L languages}
S2 = {All first 128 characters of UCS}

We know that the English characters, which are used in HTML tags, have values less
than 128 and therefore can be classified to S2. All characters of R2L languages use
two bytes with a value greater than 127, and therefore they are classified to S1. This
simple rule helps us to efficiently separate R2L language characters from the first 128
characters of UCS.

In this first phase, the algorithm reads an HTML file as a stream of bytes and then by
using the above rule it distinguishes whether the generated byte is a member of S1 or
S2. Now, the characters in each line3 of the file are separated into two parts: characters
that are a member of S1, and the ones that are a member of S2. By regarding to this
condition, we are able to count the number of characters belonging to S1 and S2 for
each line of an HTML file, which is stored in two one-dimensional arrays T 1 and T 2,
respectively.

4.1.3 Second Phase: Smoothing
After storing the number of R2L and English characters for each line of the HTML file
in the two arrays T 1 and T 2, we want to recognize areas in the HTML file, where the
density of R2L and English characters is high and low, respectively.

To illustrate our approach, we depict two diagrams. In Figure 3, we draw two groups
of columns above and below the x-axis, with the length equal to the number of R2L and
English characters, as stored in T 1 and T 2, for each line of the HTML file. For example,
suppose that the i-th line of an HTML file has y1 R2L and y2 English characters. Then,
two lines with the length equal to y1 and y2 are drawn above and below the x-axis. Our
hypothesis is that the main content is typically located above the x-axis. In Figure 3,

2 This effect has already been observed in related work [5].
3 We apply a preprocessing step to normalize line length and, thereby, render the approach in-

dependent from the actual line format of the source code.

Extracting the Main Content of Web Documents 225

Fig. 3. An example plot shows the density of the main content and extraneous items

the measurement unit for the x-axis is the number of lines in the HTML file and the
measurement unit for the y-axis toward up and down is the number of R2L and English
characters, respectively, of each line of an HTML file. Here we interpret Figure 3 to
find MC of an HTML file. There are three types of regions:

• Regions that have a low or near zero density of columns above the x-axis while
having a high density of columns below the x-axis. We observed that these regions
typically consist mainly of HTML tags. We outline examples for such areas with A
in Figure 3.

• Further, we see some regions which have a high density of columns above the x-
axis and low density of columns below the x-axis, one of them is marked with B in
Figure 3. The main content, typically, will be found areas like this. In other words,
some of these areas comprise the main content.

• There are some regions that have a medium density of columns above and below
the x-axis. These regions form parts of navigation menus, panels, or other related
link lists. Here, normally, the density of the columns below the x-axis is somehow
more than the density of the columns above the x-axis because in HTML files we
need to write many tags to make menus or extraneous items. One of these areas is
outlined in Figure 3 and labelled with C.

Now the problem of finding MC in the HTML web pages becomes the problem of
finding regions such as region B in Figure 3 comprising the main content. In the next

226 H. Mohammadzadeh et al.

Fig. 4. Smoothed version of Figure 3, in which the MC can be identified more easily

two steps and in phase three (Section 4.1.4), we apply an elegant and simple method for
finding regions such as B containing the main content in an HTML file:

• For all columns i we calculate diffi by using the following formula 1. In this for-
mula, T 1i and T 2i are the number of R2L and English characters of line i in an
HTML file.

diffi = (T1i − T2i) + (T1i+1 − T2i+1) + (T1i-1 − T2i-1) (1)

This produces a smoothed plot as can be seen in Figure 4. Here again, if
diffi > 0 we draw a line with length diffi above the x-axis. Otherwise, we draw
a line with length |diffi| below the x-axis. Unlike Figure 3, a large part of menus
and additional news in Figure 4 have been hidden.

• Now in Figure 4, we identify all regions above the x-axis and, for simplicity, we
define a new set R = {r1, r2, ..., rn} of all such regions. Each element rj ∈ R
denotes only one individual line or a range of lines covering one region and n is
the total number of recognized regions above the x-axis. In our example, there are
several regions, one near the y-axis, two regions in the middle of the x-axis, and
finally some small regions in the interval[450, 500] of the x-axis. In addition, we
count the number of characters for each region and also we specify the position
of regions in Cartesian coordinate. The strong hypothesis underlying R2L is that
among all regions, the region with the maximum number of characters definitely
belongs to the main content.

Extracting the Main Content of Web Documents 227

4.1.4 Third Phase: Recognizing the Boundary of the Main Content Area
In this phase, all regions shaping the main content are discovered. Concerning the set
R = {r1, r2, ..., rn} defined at the end of the previous phase, we have two possible out-
comes: (1) we discovered only one region, i.e. n = 1, or (2) we have discovered several
regions, so n > 1. If n = 1, then r1 is the only main content region and we are done.
Otherwise, if n > 1, we start by finding the region rm ∈ R which contains the highest
number of characters. Again, we define a new empty set T , intended to denote the set
of all regions comprising the main content at the end of this phase, and add rm to this
set T . For finding all other regions of the main content, we use Algorithm 1. In this al-
gorithm, d(ri, rj) returns the distance between two regions ri and rj and the parameter
gap determines the maximum allowed distance between two sequential regions of main
content. In the Algorithm 1, the first loop discovers all regions in the left side of rm
comprising the main content. For example in the first iteration of while, Algorithm 1
evaluates the distance between sequential regions rm and rm−1 and if this distance is
less than or equal gap then rm−1 is added to the set T . Otherwise, the while loop is
terminated. Therefore, the loop while will be terminated immediately as soon as the
distance between two consecutive regions becomes greater than gap. In the same way,
the second loop distinguishes all regions to the right side of rm comprising the main
content and adds the valid regions to the set T . The result and output of Algorithm 1
is the set T comprising all regions making the main content of selected web page. It is
clear that T is a subset of R.

Algorithm 1. Finding All Regions Comprising MC.

T = {rm}, R = {r1, r2, ..., rn}
i = m
while i > 1 do

if d(ri, ri−1) ≤ gap then
T = T ∪ {ri−1}

else
break

end if
i=i-1;

end while
i = m
while i < n do

if d(ri, ri+1) ≤ gap then
T = T ∪ {ri+1}

else
break

end if
i=i+1;

end while
return T

Obviously, the parameter gap has an influence on the performance of R2L. We used
a small set of test pages to empirically find a well performing default value for gap. For
R2L a value of gap = 8 has proven to demonstrate good results.

228 H. Mohammadzadeh et al.

4.1.5 Fourth Phase: Extracting the Main Content from Selected Regions
In this phase, all Right-to-Left characters of the areas recognized in phase three are
separated from all characters belonging to S2 and then are considered as the final output
of the R2L algorithm. Effectively, the output then contains the MC.

4.2 Algorithm DANA

Here, we introduce the first extension of R2L, DANA, to improve the effectiveness
of R2L. Since the R2L approach determines its output only from the Right-to-Left
character set of the identified main content areas of web pages, it might miss some
fractions of the MC. This happens when there are some English words or characters in
the main content areas of web page. As the R2L algorithm is incapable to keep these
English words in the extracted main content the recall score of R2L algorithm will not
be optimal in these cases. This conceptual drawback is overcome by DANA.

DANA is divided into one preprocessing step and four phases. Empiric evaluation
on our small set of test pages show that for DANA the best value for the parameter gap
is 20, so all results produced by DANA are based on a value of gap = 20. The prepro-
cessing step as well as phases one, two, and three are equivalent to the R2L approach.
Thus, below we explain only the differences in phase four.

Fourth Phase of DANA: Extracting the Main Content from Selected Regions Us-
ing a Parser. In this phase of DANA, we feed only those HTML lines determined in
the third phase of R2L as an input to an error-tolerant parser [5]. Following our hypoth-
esis, the output of the parser is more accurate than the output of the phase four of the
R2L approach, so DANA achieves overall extraction performance better than R2L. On
the downside, applying the parser to selected fragments of a document causes an over-
head in computation, so R2L achieves an overall better time performance than DANA.
Concerning these two facts, we will see that the trade-off between efficiency against
effectiveness is worth the runtime overhead.

4.3 Algorithm DANAg

The R2L and DANA algorithms are both language-dependent, while the second exten-
sion of R2L, called DANAg, is a generalized method which is able to run on web pages
written in any language. The extraction process of DANAg is divided into one prepro-
cessing step and four phases as well. The preprocessing step and phases two, three, and
four are equivalent to the DANA approach. In the following, we explain only the differ-
ences in phase one.

First Phase of DANAg: Calculating the Length of Content and Code of Each Line.
In the first phase of the algorithm DANAg, our aim is to count and store the number of
characters comprising both the content and the code of segments of the whole lines of
the HTML file into two one-dimensional arrays T 1 and T 2, respectively.

To provide two one-dimensional arrays T 1 and T 2, first we count and store the num-
ber of characters of each line into one-dimensional array Length. In the second step,
we feed the HTML file to our parser to extract all words representing the content of the

Extracting the Main Content of Web Documents 229

Table 2. Evaluation corpus of 2,166 web pages introduced in [13]

Web site URL Size Languages

BBC http://www.bbc.co.uk/persian/ 598 Farsi
Hamshahri http://hamshahrionline.ir/ 375 Farsi
Jame Jam http://www.jamejamonline.ir/ 136 Farsi
Al Ahram http://www.ahram.org/ 188 Arabic
Reuters http://ara.reuters.com/ 116 Arabic
Embassy of http://www.teheran.diplo.de/ 31 Farsi
Germany, Iran Vertretung/teheran/fa/Startseite.html
BBC http://www.bbc.co.uk/urdu/ 234 Urdu
BBC http://www.bbc.co.uk/pashto/ 203 Pashto
BBC http://www.bbc.co.uk/arabic/ 252 Arabic
Wiki http://fa.wikipedia.org/ 33 Farsi

HTML file. Afterwards, we search the extracted text, which are stored in an array of
string, to find end-of-line delimiters. By this method, we are able to count and store the
number of content characters for each line in a one-dimensional array T 1. It is obvious
that we can compute the number of characters in each line used in code elements by
using Formula 2 and store results in array T 2.

T2 = Length− T1 (2)

Although DANAg generalizes the R2L and DANA to a language-independentapproach,
it is expected that incorporating the parser directly in this phase of DANAg causes an
significant overhead in computation and that DANAg runs slower than DANA.

5 Evaluation

In this section we evaluate our MCE approaches under the aspects of efficiency and
effectiveness. We look at the algorithms’ runtime on real world data to measure their
efficiency. Effectiveness is evaluated under the capability to precisely extract the main
content from documents for which a gold standard is defined.

5.1 Data Sets

For evaluation we use two different corpora. The first corpus contains 2,166 web docu-
ments in Arabic, Farsi, Pashto, and Urdu (see Table 2). This dataset has been proposed
in [13] and has been collected for the evaluation of MCE on Right-to-Left language
web pages. The second corpus contains 9,101 web pages from different web sites (see
Table 3). This dataset has been introduced in [5] and has been established for evaluation
of MCE on Western language documents.

5.2 Evaluation Methodology

In order to calculate the accuracy of any MCE method, it is necessary to provide a
manually crafted gold standard for the main content of all HTML files. Both corpora
provide such a gold standard. For the purpose of evaluation, the output of an MCE

230 H. Mohammadzadeh et al.

Table 3. Evaluation corpus of 9,101 web pages introduced in [5]

Web site URL Size Languages

BBC http://www.bbc.co.uk/ 1,000 English
Economist http://www.economist.com/ 250 English
Golem http://golem.de/ 1,000 German
Heise http://www.heise.de/ 1,000 German
Manual several 65 German, English
Republica http://wwwrepublica.it/ 1,000 Italian
Slashdot http://slashdot.org/ 364 English
Spiegel http://www.spiegel.de/ 1,000 German
Telepolis http://www.telepolis.de/ 1,000 German
Wiki http://fa.wikipedia.org/ 1,000 English
Yahoo http://news.yahoo.com/ 1,000 English
Zdf http://www.heute.de/ 422 German

algorithm is compared with the gold standard of the corresponding HTML document.
For comparing the gold standard file with the produced cleaned file it is essential to
compute an overlap between the two of them. The establish method, introduced in [4]
and used throughout several papers on MCE [5,6,14], is to use the Longest Common
Subsequence [8] to find this overlap between the gold standard and the cleaned file.
Now by counting the number of tokens of gold standard and cleaned files, g and m
respectively, and the number k of tokens return by the LCS function we can evaluate the
accuracy of the algorithm by applying the classical information retrieval performance
measures – Recall, Precision, and F1-measure [4], as defined in formula 3:

r =
length(k)

length(g)
, p =

length(k)

length(m)
, F1 = 2 ∗ p ∗ r

p + r
(3)

5.3 Results

This section presents and dicusses the average F1 scores of our three algorithms ex-
plained in this chapter, R2L, DANA, and DANAg, and compares it to 11 main content
extraction approaches which were introduced in Section 2 on Related Work.

5.3.1 Results of R2L
Table 4 shows the F1 scores of R2L algorithm on the corpus composed of Right-to-Left
language web documents. Column 3 shows F1 scores when considering the parameter
gap set to default value of 8. We can see, that the achieved accuracy of R2L is very high
in general. For many web sites, such as BBC, Hamshahri, Jame Jam it achieves nearly a
perfect F1 score very close to 1 and it has very good F1 score for most other web pages.

Additionally we investigated the theoretical upper bound for MCE using R2L. Col-
umn 4 and 5 show a theoretical optimal setting for gap, which provides the best result
that can be achieved with R2L. For example, on the Al Ahram data set, the optimal
value for the gap parameter would be 7. In this case, we achieve an F1 score of 0.983,
which is a significant improvement over the baseline of the fixed gap parameter. How-
ever, in most cases the optimum value for gap is not far from 8 and the best theoretical
F1 score does not diverge much from the performance of R2L.

Extracting the Main Content of Web Documents 231

Table 4. The Average F1 Scores of R2L based on Table 2

Web site Languages F1 with Optimal value F1 with optimal
gap = 8 for gap gap in Col. 4

BBC Farsi 0.991 8 0.991
Hamshahri Farsi 0.991 8 0.991
Jame Jam Farsi 0.977 3 0.987
Al Ahram Arabic 0.929 7 0.983
Reuters Arabic 0.936 4 0.971
Embassy of Farsi 0.954 15 0.971
Germany, Iran
BBC Urdu 0.956 11 0.997
BBC Pashto 0.974 8 0.974
BBC Arabic 0.987 8 0.987
Wiki Farsi 0.283 16 0.385

5.3.2 Results of DANA
Table 5 gives statistics showing the average F1 scores of DANA and other 11 algorithms
on 2,166 selected web pages from 10 different web sites based on a parameter setting
of gap to 20.

In Table 5, the bold values show the highest F1 score and the italic numbers represent
the highest F1 score among all algorithms except DANA. In addition, in Table 6 we
compute the processing performance in terms of data throughput (MB/s) of DANA and
other methods. By looking to these two tables, the following important points can be
noticed:

Table 5. The Average F1 Scores of DANA based on the corpus in Table 2

A
lA

hr
am

B
B

C
A

ra
bi

c

B
B

C
P

as
ht

o

B
B

C
P

er
si

an

B
B

C
U

rd
u

E
m

ba
ss

y

H
am

sh
ah

ri

Ja
m

e
Ja

m

R
eu

te
rs

W
ik

ip
ed

ia

ACCB-40 0.871 0.826 0.859 0.892 0.948 0.784 0.842 0.840 0.900 0.736
BTE 0.853 0.496 0.854 0.589 0.961 0.810 0.480 0.791 0.889 0.817
DSC 0.871 0.885 0.840 0.950 0.896 0.824 0.948 0.914 0.851 0.747
FE 0.809 0.060 0.165 0.063 0.002 0.017 0.225 0.027 0.241 0.225
KFE 0.690 0.717 0.835 0.748 0.750 0.762 0.678 0.783 0.825 0.624
LQF-25 0.788 0.780 0.844 0.841 0.957 0.860 0.765 0.737 0.870 0.773
LQF-50 0.785 0.777 0.837 0.828 0.954 0.856 0.767 0.724 0.870 0.772
LQF-75 0.773 0.773 0.837 0.819 0.954 0.852 0.756 0.724 0.870 0.750
TCCB-18 0.886 0.826 0.912 0.925 0.990 0.887 0.871 0.929 0.959 0.814
TCCB-25 0.874 0.861 0.909 0.927 0.992 0.883 0.888 0.924 0.958 0.814
Density 0.879 0.202 0.908 0.741 0.958 0.882 0.920 0.907 0.934 0.665

DANA 0.984 0.963 0.936 0.994 1.0 0.935 0.978 0.945 0.967 0.674

• As can be seen from six web sites, Al Ahram, BBC Arabic, BBC Persian, BBC
Urdu, Hamshahri, and Reuters, DANA achieves a F1 score higher than 0.95 and
especially on BBC Urdu with an F1 score of exactly 1. No other method shows
such a high effectiveness.

• In table 5 only BTE and only on Wikipedia web documents achieves an F1 score
greater than DANA. Wikipedia documents have already been observed to be very

232 H. Mohammadzadeh et al.

Table 6. Average processing performance (MB/s)

Method Performance (MB/s)

ACCB-40 0.40
BTE 0.17
DSC 7.76
FE 14.33
KFE 11.76
LQF-25 1.25
LQF-50 1.25
LQF-75 1.25
TCCB-18 17.09
TCCB-25 15.86
Density 7.62

DANA 19.43
DANAg 11.41

difficult for MCE algorithms in other papers [5]. By looking inside the Wikipedia
HTML file, we discover that there are big gaps, more than 20, between the regions
composing the main content. Looking at DANA’s recall of 0.5734 it can be seen
that it erroneously discards large parts of the main content. In the previous section,
we configured the gap parameter with a value of 20. If the gap parameter is set to
160 instead of 20, then DANA achieves a recall of 0.8364, a precision of 0.8974
and an F1 score of 0.8571. In this case, DANA outperforms all other algorithms.
In our outlook at further work, we will suggest some ideas how to overcome this
drawback of DANA to parametrize the gap value.

• Among all eleven algorithms only DSC and TCCB achieve F1 scores close to but
never as high as DANA.

• We can see that DANA also shows good efficiency, of around 19.43 MB/S. There-
fore, in comparison with the comparable methods in this chapter – DSC, TCCB-
18 and TCCB-25, which have an extraction performance close to our algorithm –
DANA has an acceptable efficiency. On Wikipedia, BTE achieves extraction per-
formance better than DANA, but DANA is about 100 times faster than BTE.

5.3.3 Results of DANAg
Tables 7 and 8 give statistics showing the average F1 scores of DANAg and other main
content extraction algorithms on both data sets. In addition, in Table 6 we compute
the processing time (MB/s) of DANAg and other approaches on the data described in
Table 2. By looking at the Tables 7 and 8, the following important observations can be
made:

Results on Arabian Language Documents

• As can be seen in Table 7 from six web pages, Al Ahram, BBC Arabic, BBC Per-
sian, BBC Urdu, Hamshahri, and Reuters, DANAg achieves F1 score more than
0.95 and especially on BBC Urdu with an F1 score extremely close to 1. In addi-
tion, no other method shows such a high effectiveness.

• In Table 7 only BTE and TCCB-18 achieve on wikipedia web documents and
Reuters, respectively, an F1 score greater than DANAg. Wikipedia documents have
already been observed to be very difficult for MCE algorithms [5].

Extracting the Main Content of Web Documents 233

• Among all eleven algorithms only DSC and TCCB achieve F1 scores close to but
never as high as DANAg.

Results on Western Language Documents.

Now, we describe the results in Table 8. For better understanding, this table was divided
into three parts. We explain each part of this table below:

• In the middle part of the Table 8, DANAg achieves F1 score higher than six web
pages, golem, heise, republica, spiegel, telepolis, and yahoo. As can be seen, ACCB
is the best algorithm, on three web pages, between all other algorithms after DANAg.

• The left side of Table 8 shows three web pages that DANAg achieves F1 score
less than DSC, CCB, and ACCB approaches. But as it can be seen, the differences
between F1 score of DANAg and last three mentioned methods are 0.013, 0.0144,
and 0.017 and it shows DANAg could be acceptable on these web pages as well.

Table 7. The Average F1 Scores of DANAg based on the corpus in Table 2

A
lA

hr
am

B
B

C
A

ra
bi

c

B
B

C
P

as
ht

o

B
B

C
P

er
si

an

B
B

C
U

rd
u

E
m

ba
ss

y

H
am

sh
ah

ri

Ja
m

e
Ja

m

R
eu

te
rs

W
ik

ip
ed

ia
ACCB-40 0.871 0.826 0.859 0.892 0.948 0.784 0.842 0.840 0.900 0.736
BTE 0.853 0.496 0.854 0.589 0.961 0.810 0.480 0.791 0.889 0.817
DSC 0.871 0.885 0.840 0.950 0.896 0.824 0.948 0.914 0.851 0.747
FE 0.809 0.060 0.165 0.063 0.002 0.017 0.225 0.027 0.241 0.225
KFE 0.690 0.717 0.835 0.748 0.750 0.762 0.678 0.783 0.825 0.624
LQF-25 0.788 0.780 0.844 0.841 0.957 0.860 0.765 0.737 0.870 0.773
LQF-50 0.785 0.777 0.837 0.828 0.954 0.856 0.767 0.724 0.870 0.772
LQF-75 0.773 0.773 0.837 0.819 0.954 0.852 0.756 0.724 0.870 0.750
TCCB-18 0.886 0.826 0.912 0.925 0.990 0.887 0.871 0.929 0.959 0.814
TCCB-25 0.874 0.861 0.909 0.927 0.992 0.883 0.888 0.924 0.958 0.814
Density 0.879 0.202 0.908 0.741 0.958 0.882 0.920 0.907 0.934 0.665

DANA 0.984 0.963 0.936 0.994 1.0 0.935 0.978 0.945 0.967 0.674
DANAg 0.949 0.986 0.944 0.995 0.999 0.917 0.991 0.966 0.922 0.699

Table 8. The Average F1 Scores of DANAg based on the corpus in Table 3

B
B

C

E
co

no
m

is
t

Z
df

G
ol

em

H
ei

se

R
ep

ub
lic

a

Sp
ie

ge
l

T
el

ep
ol

is

Y
ah

oo

W
ik

ip
ed

ia

M
an

ua
l

Sl
as

hd
ot

Plain 0.595 0.613 0.514 0.502 0.575 0.704 0.549 0.906 0.582 0.823 0.371 0.106
LQF 0.826 0.720 0.578 0.806 0.787 0.816 0.775 0.910 0.670 0.752 0.381 0.127
Crunch 0.756 0.815 0.772 0.837 0.810 0.887 0.706 0.859 0.738 0.725 0.382 0.123
DSC 0.937 0.881 0.847 0.958 0.877 0.925 0.902 0.902 0.780 0.594 0.403 0.252
TCCB 0.914 0.903 0.745 0.947 0.821 0.918 0.910 0.913 0.758 0.660 0.404 0.269
CCB 0.923 0.914 0.929 0.935 0.841 0.964 0.858 0.908 0.742 0.403 0.420 0.160
ACCB 0.924 0.890 0.929 0.959 0.916 0.968 0.861 0.908 0.732 0.682 0.419 0.177
Density 0.575 0.874 0.708 0.873 0.906 0.344 0.761 0.804 0.886 0.708 0.354 0.362

DANAg 0.924 0.900 0.912 0.979 0.945 0.970 0.949 0.932 0.952 0.646 0.401 0.209

234 H. Mohammadzadeh et al.

• In the right side of Table 8, we see three web pages, manual, slashdot, and wikipedia
which DANAg and other algorithms could not achieve considerable F1 score. At
the moment, we are working on some extensions to overcome this drawback of
DANAg.

We can see that DANAg also shows good efficiency, of around 11.41 MB/s. There-
fore, in comparison with the comparable methods in this chapter – DSC, TCCB-18 and
TCCB-25, which have an extraction performance close to our algorithm – DANAg has
an acceptable efficiency.

As explained in 4.3, applying the parser in the first phase of DANAg causes an over-
head in computation and as it shown in Table 6 DANAg has a lower efficiency in com-
parison to DANA (19.43 MB/s).

6 Conclusions and Future Work

In this chapter, we presented a novel main content extraction algorithm, R2L, and its
two extensions DANA and DANAg.

The first proposed algorithm, R2L, very accurately extracts the main content from
web documents with an F1 score > 0.929. This algorithm has two further technical
advantages: 1) It is DOM tree and HTML-format independent; therefore, errors or non-
standard compliant HTML documents do not pose a problem. 2) We do not need to use
a parser for our algorithm. This improves runtime efficiency over many of the previous
MCE methods which employed the DOM tree structure or used other output of HTML
parsers for their purpose.

On the contrary, the R2L algorithm is not able to achieve an F1 score closer to 1 in
the case of documents where there are some Non-R2L characters among words in the
main content area. To overcome this problem we introduced DANA which feeds entire
lines of an HTML file with an outline of the identified MC to an HTML parser. The
output of our parser is exactly the main content of selected regions highlighted in the
third phase of DANA.

DANA, the first extension of R2L, determines the main content with previously un-
seen accuracy. Achieving an average F1 score > 0.935 on the test corpus used in this
chapter, it outperforms all previous methods. Also, DANA succeeded to achieve F1
score greater than 0.96 on over six web sites and a perfect value of 1 on BBC Urdu.

The second extension of R2L, DANAg, is a language-independent version of DANA,
with considerable effectiveness. Results show that DANAg determines the main content
with high accuracy on many standard data sets. Achieving an average F1 score > 0.90
on the test corpora used in this chapter, it outperforms the state of the art methods in
MCE.

In the future and as a next research step, we will extend DANAg to use machine
learning methods to group several areas in an HTML file contributing to the main con-
tent of web pages. This allows for discarding the parameter setting for gaps between
main content blocks and to overcome the problem observed on certain documents in
the evaluation corpora.

Extracting the Main Content of Web Documents 235

Acknowledgements. We would like to thank Dr. Norbert Heidenbluth for helping us
to prepare figures and diagrams. We would like also to thank Dr. Koen Deschacht and
the University of K.U.LEUVEN for providing us with the Content Extraction Software.

The research leading to these results has received partial funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 257859, ROBUST.

References

1. Debnath, S., Mitra, P., Giles, C.L.: Identifying Content Blocks from Web Documents. In:
Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI),
vol. 3488, pp. 285–293. Springer, Heidelberg (2005)

2. Finn, A., Kushmerick, N., Smyth, B.: Fact or fiction: Content classification for digital li-
braries. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Li-
braries (2001)

3. Gibson, D., Punera, K., Tomkins, A.: The volume and evolution of web page templates. In:
WWW 2005: Special Interest Tracks and Posters of the 14th International Conference on
World Wide Web, pp. 830–839. ACM Press, New York (2005)

4. Gottron, T.: Evaluating content extraction on HTML documents. In: ITA 2007: Proceedings
of the 2nd International Conference on Internet Technologies and Applications, pp. 123–132
(September 2007)

5. Gottron, T.: Content code blurring: A new approach to content extraction. In: DEXA 2008:
19th International Workshop on Database and Expert Systems Applications, pp. 29–33. IEEE
Computer Society (September 2008)

6. Gottron, T.: An evolutionary approach to automatically optimise web content extraction. In:
IIS 2009: Proceedings of the 17th International Conference Intelligent Information Systems,
pp. 331–343 (2009)

7. Gupta, S., Kaiser, G., Neistadt, D., Grimm, P.: DOM-based content extraction of HTML
documents. In: WWW 2003: Proceedings of the 12th International Conference on World
Wide Web, pp. 207–214. ACM Press, New York (2003)

8. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences.
Commun. ACM 18(6), 341–343 (1975)

9. Liu, C., Liao, B.: Gaussian smoothing-based web content extraction. International Journal of
Advancements in Computing Technology 3(8), 255–262 (2011)

10. Mantratzis, C., Orgun, M., Cassidy, S.: Separating XHTML content from navigation clut-
ter using DOM-structure block analysis. In: HYPERTEXT 2005: Proceedings of the Six-
teenth ACM Conference on Hypertext and Hypermedia, pp. 145–147. ACM Press, New York
(2005)

11. Mohammadzadeh, H., Gottron, T., Schweiggert, F., Nakhaeizadeh, G.: Extracting the main
content of web documents based on a naive smoothing method. In: KDIR 2011: International
Conference on Knowledge Discovery and Information Retrieval, pp. 470–475. SciTePress
(2011)

12. Mohammadzadeh, H., Gottron, T., Schweiggert, F., Nakhaeizadeh, G.: A fast and accurate
approach for main content extraction based on character encoding. In: TIR 2011: Proceedings
of the 8th International Workshop on Text-based Information Retrieval, DEXA 2011, pp.
167–171. IEEE Computer Society (2011)

13. Mohammadzadeh, H., Schweiggert, F., Nakhaeizadeh, G.: Using utf-8 to extract main con-
tent of right to left language web pages. In: Cuaresma, M.J.E., Shishkov, B., Cordeiro, J.
(eds.) ICSOFT 2011 - Proceedings of the 6th International Conference on Software and Data
Technologies, Seville, Spain, July 18-21, vol. 1, pp. 243–249. SciTePress (2011)

236 H. Mohammadzadeh et al.

14. Moreno, J., Deschacht, K., Moens, M.: Language independent content extraction from web
pages. In: Proceeding of the 9th Dutch-Belgian Information Retrieval Workshop, pp. 50–55
(2009)

15. Pasternack, J., Roth, D.: Extracting article text from the web with maximum subsequence
segmentation. In: Proceedings of the 18th International Conference on World Wide Web,
WWW 2009, pp. 971–980. ACM, New York (2009),
http://doi.acm.org/10.1145/1526709.1526840

16. Pinto, D., Branstein, M., Coleman, R., Croft, W.B., King, M., Li, W., Wei, X.: QuASM: a
system for question answering using semi-structured data. In: JCDL 2002: Proceedings of
the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 46–55. ACM Press, New
York (2002)

17. Weninger, T., Hsu, W.H.: Text extraction from the web via text-tag-ratio. In: TIR 2008: Pro-
ceedings of the 5th International Workshop on Text Information Retrieval, pp. 23–28. IEEE
Computer Society (September 2008)

http://doi.acm.org/10.1145/1526709.1526840

Facilitating Structuring of Information
for Business Users with Hybrid Wikis

Florian Matthes, Christian Neubert, and Alexander Steinhoff

Technische Universität München, Institute for Informatics
Boltzmannstr. 3, 85748 Garching, Germany

{matthes,neubert,steinhoff}@in.tum.de
http://wwwmatthes.in.tum.de

Abstract. The flexibility and general applicability of wikis make them a valuable
tool for information management and collaboration in modern enterprises. Since
information in traditional wikis is only stored in form of unstructured text pages,
the way it can be accessed by users is limited to fulltext search and navigation
along the links in wiki pages. Some wikis try to overcome this limitation by
allowing users to enrich text with semantic annotations, usually being defined in
semantic web ontologies. While this provides database-like querying capabilities,
it requires that business users learn a specific syntax and understand modelling
concepts they are not familiar with.

Our approach, called Hybrid Wikis, introduces a small set of simple struc-
turing concepts, namely attributes, type tags, and constraints. Furthermore, we
propose to apply user interface elements that users understand, such as forms,
spreadsheet-like tables, and faceted search interfaces, even though this limits
expressive power. We illustrate our approach using an example scenario and high-
light key implementation aspects of a Java-based hybrid wiki system. The pa-
per concludes with practical experiences we gained in two usage scenarios, an
overview of related work, and an outlook on future research.

1 Motivation and Problem Statement

To keep pace with the growing amount of digital information that has to be managed, en-
terprises have to adopt new tools and methods [1]. In the recent past, wikis are increas-
ingly used as lightweight shared knowledge repositories that allow to collaboratively
gather and consolidate information that was previously scattered across emails, files on
personal computers and paper documents [2]. Having this information integrated in a
central place, being able to search it and to connect related pieces of information with
hyperlinks is in fact a major advance.

However, with a growing knowledge base soon the demand arises to access informa-
tion in more structured ways that classical wikis do not support. For example, it is not
possible to query a wiki for a company’s research projects that started in the year 2010
or to export data about these project to a spreadsheet. This means that even if only rudi-
mentary structured querying functionality is required, the enterprises have to resort to
separate applications, usually specialized to manage information of particular domains
(like employees, projects or customers) or they have to develop customized solutions.
In both cases the advantages of storing information in a central repository are lost.

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 237–251, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://wwwmatthes.in.tum.de

238 F. Matthes, C. Neubert, and A. Steinhoff

From a technical point of view, semantic wikis are promising tools to tackle this
problem. They allow to combine textual contents with structured data. Typically, users
have to provide this data in the form of semantic annotations to wiki pages or parts
thereof. The structured part of the information in the wiki can then be queried similar
to the contents of a database. However, in practice they are rarely used as a general
purpose tool that dynamically adapts to new needs. In contrast, semantic wikis often are
pre-configured by experts to solve particular problems. Although they can theoretically
be used to structure arbitrary information, there are several barriers users are facing
when editing content:

– Usually, a special syntax has to be used to add semantic annotations. This makes it
difficult and cumbersome to edit structured content.

– Users are not familiar with the modelling concepts.
– It is not obvious for users how they can benefit from providing semantic annota-

tions.

This paper describes a novel approach to mitigate these problems. In Section 2, our ap-
proach of so-called hybrid wikis is presented and illustrated using an example scenario.
The main modelling concepts are described and the limitations of the approach are dis-
cussed. Important and interesting technical aspects of the implementation are covered
in Section 3. Section 4 contains two case studies demonstrating the practicability of
the approach. In Section 5, we give an overview of related work and highlight some
examples of semantic wikis that use different approaches to facilitate data entry. The
paper concludes with a short summary and an outlook on further research and planned
improvements of the prototype.

2 Hybrid Wikis

In this section, we present the concept of hybrid wikis, our approach to the problem of
facilitating the management of structured data for non-expert users is presented. The
term ‘hybrid’ expresses that wikis combine a subset of the features of semantic wikis
and classic text-based wiki software. Before we describe the structuring mechanisms
that are available in the current software implementation on a conceptual level, we first
give an overview of our goals, assumptions and motives that guided its development.
Finally, we demonstrate how the modelling concepts can be applied in practice using a
small example scenario.

2.1 General Principles and Design Rationale

In the development of hybrid wikis, our primary goal is to lower the barriers that non-
expert users encounter when they try to structure the wiki contents as it has been de-
scribed in Section 1. This means that for using the wiki neither special knowledge of
wiki syntax or modelling concepts should be required nor should the user be forced
to learn a query language to utilize the structured part of the wiki contents. We try to
find ways to enable all users to enter structured data, in contrast to a two-phase process

Facilitating Structuring of Information for Business Users with Hybrid Wikis 239

where unexperienced users enter textual content that is later enriched with annotations
by experts.

From our point of view, all attempts to translate between the expressivity of clas-
sic, established semantic web formalisms (like RDF1 or OWL2) and the user by the
means of new user interfaces are unsatisfactory. Our approach primarily focuses on
the user and accepts that there are limitations in the complexity of modelling concepts
users can be expected to understand. We start from lightweight structuring concepts and
metaphors that users are familiar with and then, in a second step, we examine how the
data the users provide by these simple means can be exploited by the system to offer
features that usually require a formally defined data model.

Therefore, we rely mainly on simple keyword-like annotations of wikipages, dynam-
ically compiled and easily extensible forms for data entry, and the presentation of data
in automatically generated tabular views. In turn, we try to avoid the notion of semantic
annotations being something that is optionally appended to pure text content and that
is defined in a separately maintained ontology or schema. Instead, we attempt to allow
the user to implicitly provide semantics by filling data in particular fields of a form or
a table, by optionally creating new such fields on demand, and by the way the data is
queried and displayed in different contexts.

Since we do not require that users explicitly maintain a data model, we focus on
dynamically mining the wiki to ‘guess’ the model and provide users with input options
to guide them towards a consistent data model and vocabulary. However, advanced users
can impose a schema and define certain integrity constraints.

For querying and browsing we provide a general search interface that allows a faceted
drill-down that is based on the structured contents of the wiki pages. Furthermore, con-
tents can be accessed in a spreadsheet-like tabular form. Our assumption is that users
feel familiar with this representation and in consequence are less hesitant to manipulate
the data.

2.2 Structuring Concepts

Hybrid wikis were implemented as an extension to the wiki component of the com-
mercial enterprise collaboration platform Tricia3. Wiki pages basically consist of a
name and some rich-text content. Pages can be organized using text labels (tags) and
page/sub-page relationships. We added two means for structuring the information on
a wiki page: attributes and so-called type tags. Both can be used independently or in
combination. They are described in the following.

Attributes. In their simplest form, attributes are key-value pairs that can be added to
wiki pages. They consist of an attribute name – the key – and a value. A value has a
specific data type. Per default, a value is a short text literal. Alternatively, the value’s
data type can be date, number or link. A link value represents a reference to another
wiki page. Attributes do not represent metadata but constitute the structured part of the

1 http://www.w3.org/RDF; visited on November 27th 2011.
2 http://www.w3.org/2004/OWL; visited on November 27th 2011.
3 http://www.infoasset.de; visited on November 27th 2011.

http://www.w3.org/RDF
http://www.w3.org/2004/OWL
http://www.infoasset.de

240 F. Matthes, C. Neubert, and A. Steinhoff

Fig. 1. Type tags and attributes in the context of a wiki page

content. For the user, the attributes are presented in a box containing a list of key-value
pairs at the right border of the page (see Figure 1). The appearance is inspired by a
kind of templates widely used in Wikipedia4 – and thus the MediaWiki software5 – to
structure the contents of pages describing objects of the same type, like for example
cities, countries or planets. Since the box forms the structured part of the page, it can
also be compared to the so-called fact box of Semantic MediaWiki, that summarizes
the facts being expressed by annotations in the text.

However, in hybrid wikis neither does the attribute box reflect facts defined some-
where else nor is the selection of attributes specified by a template. This means that
new attributes can be added to individual pages simply by adding a new entry to the
list of attributes. It is possible to assign multiple values for one attribute. The values are
ordered and can be a mix of different data types, i.e., literals, links, dates, and numbers.

To avoid redundancy, and thus inconsistencies, and to facilitate navigation in the
wiki, references from other pages are shown in an additional ‘references’ section of the
attribute box. For example, if a page for a country S references the capital M , i.e., it
contains an attribute with one value being a link to M , the page for M will show an
additional attribute entry ‘capital of S’ having the value M . The references section of
the attribute box is similar to the incoming and outgoing links as displayed in the KiWi
system6.

4 http://www.wikipedia.org; visited on November 27th 2011.
5 http://www.mediawiki.org; visited on November 27th 2011.
6 http://www.kiwi-project.eu; visited on November 27th 2011.

http://www.wikipedia.org
http://www.mediawiki.org
http://www.kiwi-project.eu

Facilitating Structuring of Information for Business Users with Hybrid Wikis 241

Type Tags. Type tags allow the user to make a statement about the type of the object
being described on the page. They are shown at the top of the attribute box as shown in
Figure 1. Like for the normal tags used in the wiki (i.e., arbitrary text labels assigned to
pages for categorization), users may choose an unlimited number of terms they consider
appropriate.

These tags can then be used to generate lists of pages describing objects of the same
type. While this is possible with standard tags as well, for example by searching for all
pages tagged ‘university’, the results are more precise when type tags are used: users
might use the same tag ‘university’ to categorize pages describing for example peo-
ple working at a university, software products targeted at an academic audience or the
concept of a university. Thus, type tags allow the user to make an important distinc-
tion when tagging wiki pages by stating that the tagged page describes an individual
instance of the respective type – in contrast to vaguely relating it to a broad topic.

Retrieving a list of pages for a specific type tag can be achieved by simply clicking
on the tag. If the pages contain attributes, they are displayed in a tabular view (as shown
in Figure 2). The table can be sorted by all columns. By using the faceted search func-
tionality of the Tricia platform type tag and attribute filters can be combined. In this
way it is possible to define very specific subsets of the wiki contents. The results can
optionally be presented in tabular form and they can be embedded in any wiki page.

It is important to note that on the one hand it was consciously avoided to force users
to explicitly create relationships between type tags and attribute names as it would be
done when defining a template. On the other hand, experienced users can assign a list
of attribute names to a type tag. These attribute names are then highlighted to the user
whenever the respective type tag is used. It is further possible to specify integrity con-
straints like the type of value, the number of values or allowed value ranges for each
attribute.

Even if no explicit relations between type tags and attributes are defined, the system
analyzes the data in the wiki to infer implicit relations based on their usage. This is
described in the following section.

2.3 Input Support

In order to encourage users to structure the content they create, we strived for a conve-
nient user interface: When viewing a wiki page, the user is offered a selection of names
of attributes she might want to add. These suggestions are shown together with the al-
ready assigned attributes at the bottom of the attribute box so that the user only has to
provide proper values (see Figure 1). The list of suggestions consists of the most fre-
quent attribute names used on similar pages. Type tags are the most important indicator
for this similarity.

In the simplest case, exactly one type tag is assigned to a page. The system then
determines the set of attributes used in combination with this type tag on other pages and
displays the most frequent attribute names. In the case of multiple type tags, not only
the attribute frequency is considered but also if an attribute occurs on pages having all or
several of the type tags assigned. Such attributes are preferred in the list of suggestions.
If no type tags are present on the given page, similar pages are determined by taking
into account only the attribute names used.

242 F. Matthes, C. Neubert, and A. Steinhoff

Fig. 2. Tabular view of wiki page attributes

This makes it in effect very convenient to create a new page of a type previously
used somewhere else in the system. Once a type is assigned, providing the attributes is
hardly more demanding for the user than filling out a form. From this point of view,
type tags can be considered a more flexible alternative to templates.

Similar to the attribute suggestions, the system recommends additional type tags
based on the type tag combinations on other pages. If the user assigns a certain tag
that is never used without another one – which is usually more general – the system
can assign the other tag automatically. This depends on the number of other wiki pages
supporting the assumption that there is really a type-subtype relation between the two
tags.

Finally, the input fields for attribute names, attribute values and type tags display
autocomplete suggestions as the user is typing. When an attribute value is typed, the
respective attribute name is factored in to improve the quality of the suggestions. This
makes it comfortable to contribute structured content and additionally fosters consistent
usage of terms.

2.4 Limitations

Since the expressivity of established semantic web technologies is sacrificed in favour
of a better user experience, modelling capabilities of hybrid wikis are constrained. In
particular it is not possible to explicitly define type-subtype relationships between type
tags. If a type tag is the generalisation of another type tag in the system, it has to be

Facilitating Structuring of Information for Business Users with Hybrid Wikis 243

manually ensured that each page with the more specific type tag also has the more
general type tag assigned. However, the system supports the user in maintaining these
implicit relationships (see Section 2.3).

It is not possible to specify any semantic relation for attributes. Since no reasoning
capabilities are provided by the system, adding properties like symmetry or transitivity
to an attribute would have no effect. Yet, attributes containing links are also visible
on the target pages as a reference. This means that relationships between two pages
are always owned by one of them and it is often not trivial to determine which one
should be the owning side (does capital city link to country or country to capital?). This
depends on the multiplicity of the relation and in particular cases on the access rights of
the pages. However, in order to lower the barriers for entering structured data, the fact
that this decision possibly has important implications is not explicitly communicated to
the user. In contrast, it is relied on the ability to invert these links later when it becomes
necessary.

Finally, querying capabilities are limited in so far that results can only be filtered
according to the very attributes of pages. It is for example not possible to express a
query targeting all pages having the attribute ‘Owned by’ set to a page with the type tag
‘Company’. Requiring that the attribute points to a specific page is of course possible.
From a technical point of view, attribute (and type tag) filters could be flexibly com-
bined using boolean operators. The current implementation supports only conjunction
of filters to keep the user interface simple . From our experience, this is sufficient for
browsing the wiki contents.

2.5 Example Scenario

In the following, we illustrate the modelling capabilities of hybrid wikis taking the ex-
ample of a small company’s intranet wiki. Among other things, the wiki is used for
gathering the knowledge about projects and people relevant for the company. We as-
sume that while there may be many pages holding information about a person or project,
there is one dedicated page for each such entity that can be considered the primary page
which holds the basic information about it and optionally links to pages with more spe-
cific information. We further assume that in the beginning, there is only little content in
the wiki and no type tags and attributes are used.

As the number of projects increases over time, there is a growing demand for a
more structured view on project related wiki content. Attributes for project start and
end dates are thus added to the respective pages and the type tag ‘Project’ is assigned.
Having marked all project pages with the type tag, an overview table of all projects
is instantly available showing sortable columns for the date attributes. Attribute values
can be changed directly in this overview table. By this means, consolidating the project
data, i.e., adding missing information or standardising the representation of attribute
values, is facilitated.

Let’s assume many of the employees have created profile pages for themselves in the
wiki to provide some information about their specific skills and experiences. Some of
them independently start to add attributes to the project pages to express their relation-
ship with these projects. For example, they state that they are members of the project
team or project managers. In the beginning, people use different terms to describe their

244 F. Matthes, C. Neubert, and A. Steinhoff

roles. As these inconsistencies become visible in the overview table, they are quickly
harmonized by the wiki users. As a result, if somebody now creates a new wiki page and
assigns the type tag ‘Project’, she is offered to provide values for the attributes ‘Start
date’, ‘End date’, ‘Project manager’ and ‘Team’. If she now adds a link to her profile
page to the ‘Project manager’ attribute, this reference will be automatically visible on
her page in the ‘References’ section of the attribute table: A new entry ‘Project manager
of’ with a single value being the link to the project is displayed.

Starting from this basic schema, the company can further adapt it to new needs:
Besides adding more attributes, the existing ones can be refined. The attribute ‘Project
manager’ can be made mandatory for the type tag ‘Project’ so users are additionally
reminded to provide this attribute. If it is omitted, the page is flagged as invalid. It can
be further specified that only a single link to a page having the type tag ‘Person’ is
accepted as a value.

New type tags can be added to distinguish different types of projects like ‘Research
project’ or ‘Internal project’. On the one hand, this allows the generation of lists and ta-
bles containing only the respective subset of the projects. On the other hand, the system
is supported in offering the user more relevant attribute suggestions. For example, the
attribute ‘Field of research’ could be suggested for a research project whereas attributes
only relevant for internal projects are not shown. It is also possible to add a temporal
dimension to the project types by adding type tags like ‘Project in preparation’, ‘Cur-
rent project’ or ‘Completed project’. Using type tags instead of status attributes has the
advantage that again attribute constraints can be related to the types: Each page of a
‘Completed project’ can be required to contain a value for the ‘End date’ of the project.

3 Implementing Hybrid Wikis

The concept of hybrid wikis is developed by members of our chair since 2009. The
system is built on the experiences made with classic and semantic Wiki technology
as well as integrated Enterprise 2.0 platforms and it is currently realized based on the
modelling framework provided by Tricia enabling the model-driven development of
web cooperation systems [3]. Hybrid wikis extend the Tricia wiki functionality by the
mechanisms described in Section 2.

The data model underlying the implementation of hybrid wikis is shown in Figure 3.
Wiki and wiki page are built-in concepts provided by Tricia, the other elements are
additionally provided by hybrid wikis. Gray colored elements refer to concepts used for
the structuring of individual wiki pages, elements with thick borders represent concepts
defining a schema, i.e., types, attribute definitions, and constraints.

The illustrated concepts are currently mapped to a SQL database7 by means of Tri-
cia’s object relational mapping mechanism. In the following we will explain the data
model of hybrid wikis and discuss some impacts on the system behaviour.

For each wiki page, multiple attributes can be assigned. Each of the attributes has
a non-empty list of ordered values being either literal, link, date or number. A wiki
page can have multiple tags assigned. A tag is a simple character sequence and either a

7 SQL is the default storage implementation, but other implementations are also supported, e.g.,
NoSQL storages.

Facilitating Structuring of Information for Business Users with Hybrid Wikis 245

WikiPage
...

Attribute
name:String
{unique for wikipage}

{abstract}
Value

 1

 *

 attributes

 0..1 values
 1..* {ordered}

Wiki
...
...

 1 pages

 *

TypeTag
name:String

 *
 tags 1

Type
name:String {unique for wiki}

AttributeDefinition
name:String {unique for type}

 * 0..1

**

 *

 *

validates

1 wiki

 *

 types

 1
 type

 *

 attributes

 *

 *
LinkConstraintEnumConstraint

 1..*

 0..1

{Attribute.name
conforms
AttributeDefinition.name}

{TypeTag.name
conforms
Type.name }

LiteralValue
text:String

LinkValue
link:String

 *

1

DateValue
date:Date

NumberValue
number:Number

DateConstraint

{abstact}
Constraint

validationMessage:String

 1

 *

NumberConstraint MultiplicityConstraint

Fig. 3. The Data model of Hybrid Wikis

normal tag or a type tag. WikiPage, TypeTag, Attribute and Value constitute
the set of concepts which are provided for structuring information in hybrid wikis.
Type, AttributeDefinition, and Constraint are additional concepts to

enable users to define types and attributes more precisely and specify validation rules.
A type contains the set of attributes that the users are urged to provide in combination
with the respective type tag. These attributes can be further used to restrict the range of
attribute values with integrity constraints.

A type is loosely coupled to a type tag by name, the same applies to attribute and
attribute definition. The fact that an attribute definition for an attribute A is bound to
a type for a tag T means that on pages with type tag T an attribute suggestion A is
shown, which takes precedence over the default attribute suggestion mechanism. In
consequence, it is not required that a page having both, tag T and attribute A, assigned
exists in the system. Thus, new attributes can be seeded top-down over typed pages by
means of suggestions.

Furthermore, for individual attribute definitions, validation rules can be specified
by using constraints. The EnumConstraint defines a finite set of values – of any

246 F. Matthes, C. Neubert, and A. Steinhoff

type – that may be assigned to an attribute. The MultiplicityConstraint allows
to specify how many values an attribute should have, e.g., at-least-one, at-most-one,
exactly-one. The LinkConstraint checks if the values of an attribute are hyper-
links. Additionally, it can be defined that these hyperlinks have to be links to wiki pages
with specific types. DateConstraint and NumberConstraint check if the val-
ues of an attribute are of type date or number respectively.

The validation rules of an attribute constraint apply when a wiki page is displayed.
This means that if a wiki page has an attribute A, a type tag T , and a type for T exists
having an attribute definition matching the name of A, the constraints will be applied to
A and its current values. In case of a validation failure, the validationMessage of
the constraint is shown in the context of the attribute. The situation that two type tags
specifying contradicting attribute constraints are assigned to a wiki page is currently
not prevented by the system and users have to solve such conflicts manually.

Beside showing validation messages for wiki page attributes, the integrity constraints
are also used to improve the input support for attribute values. For instance, if an enu-
meration constraint applies to an attribute, in the value auto-completion control only the
elements are offered which are specified for this constraint, e.g., {‘open’, ‘closed’}.

Since constraints in hybrid wikis never prevent users from entering values that con-
tradict the specified validation rules, we call them soft constraints. The system assists
users in systematically searching for contradictions. As a side-effect, it is possible to
import information from arbitrary data sources to hybrid wikis, e.g., from a Microsoft
Excel data sheet, without being restrained by hard integrity constraints. Any conflicts
with the schema can be fixed after the import.

Since the main purpose of Tricia is to enable users to find relevant information within
enterprises quickly, the content of all elements (e.g., files, wikis, blogs) is indexed by
means of the Lucene information retrieval software library8. In addition to simple text
queries, querying for metadata like tags or date of last modification is supported in
this way. For the implementation of hybrid wikis, Lucene plays a critical role in the
dynamic generation of attribute suggestions and overview tables. Lucene supports both
features by providing flexible filtering capabilities together with a very fast access to
particular fields of the indexed entities. For example, to display a table of all pages
having a specific type tag, Lucene can efficiently determine the respective set of pages
(filtered by the access rights of the user) and provide the set of attribute names used on
each page. From the analysis of the frequency of attribute names the selection and order
of the table columns is then determined.

It is possible to import and export hybrid wiki data by using the standardized Eclipse
Modeling Framework (EMF) exchange format. Models can be imported and exported as
ecore-files, model instances as xmi-files. Furthermore, the contents of hybrid wikis can
be imported from and exported to spreadsheets (e.g., Microsoft Excel). Additionally, it
is possible to visualize the contents of hybrid wikis by using an external service (System
Cartography Service9) that is accessed via RESTful API calls.

8 http://lucene.apache.org; visited on November 28th 2011.
9 http://wwwmatthes.in.tum.de/wikis/sebis/syca; visited on November 27th

2011.

http://lucene.apache.org
http://wwwmatthes.in.tum.de/wikis/sebis/syca

Facilitating Structuring of Information for Business Users with Hybrid Wikis 247

4 Practical Experiences

Hybrid wikis are currently evaluated in several industrial and research projects. In the
following, we briefly describe the usage scenarios of hybrid wikis’ technology in two
selected cases. The first is taken from one of our research projects Wiki4EAM10 where
hybrid wikis are used for the collaborative documentation of system landscapes in enter-
prises in order to evolve models representing theses landscapes bottom-up. The second
scenario is the application of hybrid wikis as a simple issue tracker in a German software
development company, the InfoAsset AG11. For both cases we sketch the models being
developed bottom-up via attribute and type suggestions as well as the (soft-)constraints
which were defined afterwards.

4.1 Wiki4EAM Community

In the Wiki4EAM community, founded in December 2010 at TUM, members share
their experiences regarding the use of hybrid wikis in the context of enterprise archi-
tecture management (EAM). A prerequisite for adequate management of the enterprise
architecture (EA) is to capture its current state in a model. Since the knowledge of all
different elements to be considered in the model (e.g., business processes, applications,
organizational units) is spread over all the different stakeholders in the company, the
documentation of the current state of the EA remains a challenging task. Hybrid wikis
enable these stakeholders to document the particular parts of the EA they are responsi-
ble for by means of (hybrid) wiki pages. Thereby, the data model emerges bottom-up
by creating, editing, linking, and structuring these particular pages. A preliminary data
analysis in two German companies from December 2010 to January 2011 showed the
following model evolution:

– Company A: 12 concepts (type tags) with 63 attributes (textual and links), 100 wiki
pages, 2 constraints were created within two weeks by four participating stakehold-
ers (editors).

– Company B: 18 concepts with 60 attributes (textual and links), 120 wiki pages, 28
constraints were created within one month by five participating stakeholders.

Although these numbers are not a founded empirical evaluation, they allow to assume
that in a relatively short time period models can emerge bottom-up by the collaborative
documentation of the particular elements when lightly structured wiki pages are used.
Indeed, feedback from the Wiki4EAM community members indicates that hybrid wikis
are well suited in cases where the target model is not completely known. They also
confirmed that attribute suggestions facilitate the evolution of the information model.

4.2 InfoAsset Bugtracker

The InfoAsset AG providing the Tricia platform for commercial use, uses hybrid wikis
among others things for its issue management. For each issue a hybrid wiki page with

10 http://wwwmatthes.in.tum.de/wikis/sebis/wiki4eam; visited on Novem-
ber 27th 2011.

11 http://www.infoasset.de; visited on November 27th 2011.

http://wwwmatthes.in.tum.de/wikis/sebis/wiki4eam
http://www.infoasset.de

248 F. Matthes, C. Neubert, and A. Steinhoff

Person

ChangeRequest
due date : Date

Issue
status : Status
priority : Priority
effort: Effort

 * related to 0..1

Bug
known since: Date

 *duplicate of 0..1

 * assigned to 0..1

0..1
reported by

 *

«enum»
Status

open, in progress, on hold,
to be discussed, solved,
postponed, rejected

«enum»
Priority

low, medium, high

«enum»
Effort

low, medium, high

 *
 requested by

 *

Refactoring

 * related to 0..1

Fig. 4. Emerged Concepts of the InfoAsset Bugtracker

tag ‘unprocessed’ and type tag ‘issue’ is created. All unprocessed issues are shown in a
list on the Tricia developer dashboard, that is built only using standard features of hybrid
wikis. This list is dynamically generated by using an embedded query which retrieves
all wiki pages having the tag ‘unprocessed’ and type tag ‘issue’ assigned. When a new
entry appears in this list, i.e., the underlying embedded query yields a new search hit,
the developers are informed through an RSS-Feed. A responsible person processes these
new entries and categorizes them by assigning additional type tags. Currently two kinds
of additional type tags are mainly used: ‘Bug’ and ‘ChangeRequest’. Furthermore, a
person is assigned who is responsible for processing this issue by setting the attribute
‘assigned to’ to the respective name and to delete the tag ‘unprocessed’ in order to
remove this issue from the dashboard list. The responsible person is in turn informed by
an RSS-Feed. The complete data model is shown as a UML class diagram in Figure 4.

The schema emerged bottom-up by management of the particular wiki pages. Only
the following attribute constraints were defined afterwards:

– Enumeration types for the attributes ‘Status’, ‘Priority’, and ‘Effort’ were created.
In the beginning these values were plain strings.

– The cardinality for the relationship ‘assigned to’ between ‘Issue’ and ‘Person’ in-
stances was set to ‘exactly-one’.

Note, that the cardinality in the UML diagram of Figure 4 is given with 0..1. This is
due to the fact that new reported issues do not have a responsible person assigned. For
theses instances a warning message is shown indicating that there should be at least one
person defined.

5 Related Work

Another way to reuse content structures among wiki pages is provided by wiki tem-
plates. In [4], Haake et al. discuss the need for structure in wikis based on templates, in
[5] different wiki templating approaches are compared to each other. Although hybrid
wikis explicitly do not support templates, attribute and type tag suggestions, based on

Facilitating Structuring of Information for Business Users with Hybrid Wikis 249

a statistical analysis of their usage, enable authors to reuse well established type struc-
tures, similar to templates.

The Semantic MediaWiki project is the most prominent example in the category of
semantic wikis. This project adds database-like structuring and querying capabilities
on top of an existing wiki, without requiring users to develop or adhere to a rigid
database schema when authoring content [6]. This project also includes various fea-
tures for browsing, searching, and aggregating the wiki’s content as well as embedding
queries in the wiki pages. Additionally, Semantic Media Wiki provides a model export
to the standardized format OWL/RDF. In contrast to hybrid wikis, meta information can
only be added to the pages by directly editing the markup in wiki syntax.

This issue is addressed by Semantic Enterprise Wiki (SWM+)12, a set of open-source
extensions to the Semantic MediaWiki. In this approach, meta data (properties) can
be defined by means of a graphical user interface, called ‘semantic toolbar’, so users
are not forced to write semantic annotations manually. Categories can be used for the
classification of pages. They are shown together with the properties as a list in the
semantic toolbar. The approach differs from hybrid wikis as follows:

– A separate annotation mode (semantic toolbar) is needed to enter structured infor-
mation.

– Users have to create and edit both, the content of the wiki page and the semantic
annotations. Users also have to be aware of content and annotations being synchro-
nized, which is an laborious and error-prone task.

– No attribute (property) suggestions based on the types (categories) are provided.

AceWiki is a semantic wiki using controlled natural language for ontology manage-
ment [7]. In [8], a lightweight approach for editing ontologies is introduced. Like hy-
brid wikis, both approaches try to facilitate structured data entry. However, in AceWiki
this is achieved by natural language processing, in the second case by introducing a
lightweight ontology editor.

The open source project TWiki13 and its fork Foswiki14 try to combine the advantages
of wikis and database systems by allowing the user to attach data records to wiki pages.
Although the schema can be changed at runtime, the effort is considerably higher than
for hybrid wikis and the usage of a special wiki syntax is required.

The research prototype SnoopyDB [9] focuses particularly on recommending at-
tributes to users when they are entering data. Types cannot be specified at all but all
attributes are suggested based on attributes of other pages. This makes it very difficult
to generate tabular overviews of pages covering certain kinds of things.

MokiWiki [10] is a plain modelling wiki, used to model the constituent parts of an
enterprise collaboratively. With hybrid wikis we focus on facilitating collaborative data
and information management within enterprises. Information models emerge bottom-
up as a by-product15.
12 http://wiki.ontoprise.de; visited on November 27th 2011.
13 http://twiki.org; visited on November 27th 2011.
14 http://foswiki.org; visited on November 27th 2011.
15 While hybrid wikis are not mainly built for modelling purposes, the models emerging through

data management in hybrid wikis can also be used to represent the particular enterprise con-
stituents (c.f. [11] and Section 4).

http://wiki.ontoprise.de
http://twiki.org
http://foswiki.org

250 F. Matthes, C. Neubert, and A. Steinhoff

In [12], the prototype system Social Infobox is introduced. The system supports prop-
erty tagging, a method to freely add attribute-value pairs to wiki-like resources without
an explicitly defined schema. A user study showed that property names were shared
among different resources which the authors interpret as the emergence of implicit
types. Furthermore, the system provides property suggestions based on an analysis of
attribute cooccurrences. Both ideas, data-driven bottom-up schema evolution and at-
tribute suggestions, are similar to hybrid wikis but there are two important differences:

– By using type tags, hybrid wikis enable users to explicitly make a statement about the
type. Since attributes can be used independently, this does not limit the flexibility.

– Beside the analysis of attribute cooccurrences, attribute suggestions in hybrid wikis
are additionally based on the combinations of type tags and attributes used in the
system. This means, that not only the frequency of occurrence is considered, but
additionally, attributes are preferred when they occur together with many or all of
the type tags.

In the Enterprise 2.0 Tool Survey that we conducted in 2008 [13], the functional capa-
bilities of integrated Enterprise 2.0 platforms are compared using a multi-dimensional
classification and evaluation framework. Especially the update of the survey in 201016

includes functional aspects regarding the ‘Structuring of Content’ as well as ‘Templates
for Structured Content’. The fact that leading social software vendors include capabili-
ties for structuring contents indicates an increasing demand in enterprises.

6 Summary and Outlook

In this article, we introduced hybrid wikis, a lightweight approach for data and infor-
mation management that facilitates structuring of contents for business users. The main
purpose of hybrid wikis is to avoid requiring users to learn complex semantic languages
for adding structure to wiki pages. Instead, we provide an easy way for structured data
entry with a small set of modelling concepts, namely attributes (key-value-pairs) and
type tags. Furthermore, attribute suggestions encourage users to employ these structur-
ing elements. Suggestions and auto-completion foster a common vocabulary, so users
immediately benefit from the structure through better search capabilities. By means of
these mechanisms, complex structures emerge bottom-up during management of par-
ticular data sets. To define validation rules we introduced the concepts of types and
attribute constraints. They can additionally be used to define advanced rules and parts
of the data model in a top-down manner.

Furthermore, we described the practical experiences made with hybrid wikis in two
concrete projects, one from the industry and one as part of our research endeavours. For
the latter, we sketched the models emerging bottom-up by means of attribute sugges-
tions as well as the constraints additionally defined top-down afterwards.

We see potential to improve and validate our approach in the following ways:

– Compare hybrid wikis to similar wiki-based approaches (c.f. Section 5). For in-
stance, we will analyze the revision history in order to compare the evolution of
structure compared to hybrid wikis.

16 http://wwwmatthes.in.tum.de/wikis/enterprise-2-0-survey/home;
visited on November 27th 2011.

http://wwwmatthes.in.tum.de/wikis/enterprise-2-0-survey/home

Facilitating Structuring of Information for Business Users with Hybrid Wikis 251

– Support advanced visualizations of structured data, which also can be used for nav-
igating the wiki contents.

– Improve the way relationships between pages are handled (c.f. Section 2.4).

References

1. Edmunds, A., Morris, A.: The problem of information overload in business organisations: a
review of the literature. International Journal of Information Management 20, 17–28 (2000)

2. Stocker, A., Tochtermann, K.: Exploring the value of enterprise wikis: A multiple-case study.
In: KMIS (2009)

3. Büchner, T., Matthes, F., Neubert, C.: Data Model Driven Implementation of Web Coopera-
tion Systems with Tricia. In: Dearle, A., Zicari, R.V. (eds.) ICOODB 2010. LNCS, vol. 6348,
pp. 70–84. Springer, Heidelberg (2010)

4. Haake, A., Lukosch, S., Schümmer, T.: Wiki-templates: adding structure support to wikis on
demand. In: WikiSym 2005: Proceedings of the 2005 International Symposium on Wikis,
pp. 41–51. ACM Press, New York (2005)

5. Di Iorio, A., Vitali, F., Zacchiroli, S.: Wiki content templating. In: WWW 2008: Proceeding
of the 17th International Conference on World Wide Web, pp. 615–624. ACM, New York
(2008)

6. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: Cruz, I., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006)

7. Kuhn, T.: Acewiki: A natural and expressive semantic wiki. Technical Report
arXiv:0807.4618, Department of Informatics University of Zurich (2008); Comments: To
be Published as: Proceedings of Semantic Web User Interaction at CHI 2008: Exploring HCI
Challenges. CEUR Workshop Proceedings

8. Paschke, A., Coskun, G., Luczak-Rösch, M., Oldakowski, R., Harasic, M., Heese, R.,
Schäfermeier, R., Streibel, O.: Realizing the corporate semantic web: Concept paper. Tech-
nical report, Freie Universität Berlin, Berlin (2009)

9. Gassler, W., Zangerle, E., Tschuggnall, M., Specht, G.: Snoopydb: narrowing the gap be-
tween structured and unstructured information using recommendations. In: Proceedings of
the 21st ACM Conference on Hypertext and Hypermedia, HT 2010, pp. 271–272. ACM,
New York (2010)

10. Ghidini, C., Kump, B., Lindstaedt, S., Mahbub, N., Pammer, V., Rospocher, M., Serafini, L.:
MoKi: The Enterprise Modelling Wiki. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC
2009. LNCS, vol. 5554, pp. 831–835. Springer, Heidelberg (2009)

11. Buckl, S., Matthes, F., Neubert, C., Schweda, C.M.: A wiki-based approach to enterprise
architecture documentation and analysis. In: The 17th European Conference on Informa-
tion Systems (ECIS) – Information Systems in a Globalizing World: Challenges, Ethics and
Practices, Verona, Italy, June 8-10, pp. 2192–2204 (2009)

12. Hamasaki, M., Goto, M., Takeda, H.: Social infobox: collaborative knowledge construction
by social property tagging. In: Proceedings of the ACM 2011 Conference on Computer Sup-
ported Cooperative Work, CSCW 2011, pp. 641–644. ACM, New York (2011)

13. Büchner, T., Matthes, F., Neubert, C.: A concept and service based analysis of commercial
and open source enterprise 2.0 tools. In: KMIS, pp. 37–45 (2009)

Part V

Knowledge-Based Systems

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 255–269, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Statistical and Possibilistic Methodology
for the Evaluation of Classification Algorithms

Olgierd Hryniewicz

Systems Research Institute, Polish Academy of Sciences, Newelska 6, Warsaw, Poland
hryniewi@ibspan.waw.pl

Abstract. In the paper we consider the problem of the statistical evaluation and
comparison of different classification algorithms. For this purpose we apply the
methodology of statistical tests for testing independence in the case the
multinomial distribution. We propose to use two-sample tests for the comparison
of different classification algorithms. In the paper we consider only the case of the
supervised classification when an external ‘expert’ evaluates the correctness of
classification. The results of the proposed statistical tests are interpreted using
possibilistic methodology based on indices of dominance introduced by [7].

Keywords: Classification, Accuracy, Statistical Tests of Independence,
Multinomial Distribution, Comparison of Algorithms, Possibility and Necessity
Indices.

1 Introduction

Statistical algorithms used for classification (discrimination) and clustering of
observations (data points, data records) are considered as a part machine learning.
Classification algorithms in machine learning are considered as the algorithms of
supervised learning. On the other hand, data clustering algorithms in machine learning
are used as the algorithms of unsupervised learning. In this paper we will discuss the
problem of the evaluation of the quality of the algorithms used for classification,
usually understood as the accuracy of classification, from a statistical point of view. A
natural measure of such quality is the percentage of correctly classified objects,
usually called classification accuracy. This measure is used by all authors of papers
devoted to classification problems, both developers of new algorithms, and users of
existing algorithms who apply them for solving practical problems.

Quality of classification measured by the accuracy index may not be sufficient for
the comparison of algorithms. Consider for example a decision support system that
classifies patients to different classes of illness. It is usually not unimportant if all
false classifications are evenly distributed over all possible classes or if they are
concentrated in one class. When we have only two classes or when this distinction is
not important we can use indices whose background can be found in medical
sciences, namely the indices of sensitivity and specificity. Let us assume that
considered objects can be assigned to two disjoint classes called ‘positive’, and
‘negative’. By sensitivity (also known in machine learning as recall) we understand
the conditional probability that the object which should be classified to the ‘positive’

256 O. Hryniewicz

class has been correctly assigned to this class. By specificity (also known in machine
learning as recall of negatives) we understand the conditional probability that the
object which should be classified to the ‘negative’ class has been correctly assigned to
this class. For good classification rules the values of these indices should be both
close to one. In machine learning some functions of these indices (e.g. F-measures or
ROC diagrams) are used. For more information see e.g. Chapter 7 in [2].

When the number of possible classes is larger than two we have to take into
account statistical relationship between errors of different kind. Some measures
proposed for the evaluation of algorithms in the case of multiple classes, like e.g. the
error correlation EC, have probabilistic interpretation, but the majority of them are
based on some heuristics. For more information on this subject see e.g. Chapter 11 in
[15]. The lack of statistical interpretation is of lesser importance if we deal with only
one set of data. However, automatic classifiers may be used in situations when
analyzed data sets may belong to different populations. For example, in automatic
inspection of production processes classifiers are designed at the outset of the process
using some training data, and then used using different set of ‘test’ data acquired
prom a production process. In such cases possible classification algorithms should be
compared using statistical methods. We believe that without statistical interpretation
we are not able to present sound comparisons of different algorithms.

Application of statistical tests for the evaluation of classification algorithms has
been proposed in [10]. In this paper, which presents an extended analysis of some
problems considered in that paper, we propose to use some known statistical tests to
evaluate and compare the quality of classification algorithms. In the second section of
the paper we consider the problem of the comparison of algorithms. We consider two
important practical cases. First is typical to the problem of supervised learning when
the quality of classification of compared algorithms is evaluated using classification
provided by an expert. In the second case, typical for algorithms related to
unsupervised learning, we deal only with purely random data yielded by the compared
algorithms.

The main problem with the application of different statistical tests is related to their
interpretation. In the third section of the paper we propose a new application of
possibilistic measures for the comparison of classification algorithms. This measures
are based on the possibilistic interpretation of statistical tests proposed in [9], and
provide the user with information about possibility or necessity of prefering one
algorithm over another one. The paper is concluded in the fourth section where
problems for future considerations are also formulated.

2 Statistical Tests for the Comparison of Classification
Algorithms

Let us assume that we have to classify n objects into K disjoint classes using two
algorithms, say A and B. In this paper we restrict ourselves to the case when the
classification algorithm classifies each object to only one of possible classes. We do
not impose any restriction on the type of the algorithm used for this purpose. This can
be artificial neural network classifier, set of classification rules, vector supporting
machine classifier, Bayes naïve classifier or any other algorithm that can be proposed

Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 257

for this purpose. An expert may act as one of these algorithms. In this case we are
able to evaluate the correctness of the classification of each considered object by the
second algorithm, as in the case of classical supervised learning. Thus, in this case we
can use our statistical test to evaluate the quality of the classification algorithm.
However, when we are not able to evaluate the correctness of the classification, we
can only compare the performance of considered algorithms. This situation is typical
when the algorithms are built using the methodology of unsupervised learning (e.g.
using methods of data clustering).

When we compare two classification algorithms using the same dataset of n
objects the results of the comparison may be presented in the form of a two-way
contingency table, such as Table 1.

Table 1. Data for the comparison of algorithms using the same dataset

Alg.A/Alg.B 1 ... j ... K Total A
1 n11 ... n1j ... n1K nA1

...
i ni1 ... nij ... niK nAi

...
K nK1 ... nKj ... nKK nAK

Total B nB1 ... nBj ... nBK n

By nij, i=1,...,K; j=1,...,K in this table we denote the number of observations that

have been classified by the algorithm A to the ith class, and by the algorithm B to the
jth class. We assume that the results of classification by the algorithm A are described
by the set ()AKAA nnn ,,, 21  , and that the results of classification by the algorithm B

are described by the set ()BKBB nnn ,,, 21  . The data can come from classifications

performed on a test sample, combined results of cross-validation experiments or
classification obtained in the learning process (training sample). However, in the latter
case the results are of rather limited interest, as all good classification algorithms
perform rather well on training data.

We are interested in the verification of the statistical hypothesis that the probability
distributions are such that these sets of data are strongly dependent. This strong
dependence means that both compared algorithms provide the same or nearly the
same results of classification. When one of the compared algorithms is just an expert,
the measure of such dependence is also the measure of the correctness of
classification. Otherwise, the strength of dependence is the measure of the
equivalence of the compared algorithms.

When we assume that the classification by the algorithm A and the classification by
the algorithm B are independent then the data presented in Table 1 are distributed
according to the multiple hypergeometric distribution. Probability of observing the
two-way contingency table {nij} with the fixed values of marginal observations

KjKinn BjAi ,,1,,,1,,  == is given by the formula:

{ } { }()
∏ ∏

∏ ∏

= =

= ===
K

i

K

j
ij

K

i

K

j
BjAi

ijij

nn

nn

nNP

1 1

1 1

!!

!! .

(1)

258 O. Hryniewicz

The probability distribution given by (1) can be used for the construction of the test of
independence. The general idea of this test, known as Fisher’s exact test, is simple.
We have to generate all possible contingency tables, such as Table 1, with the fixed
margins equal to the margins observed for the considered table

KjKinn BjAi ,,1,,,1,,  == . For all these tables we have to calculate, using (1),

their probabilities. The sum of those probabilities whose values do not exceed the
probability of the observed table is equal to the p-value (significance) of the test. Low
values of this characteristics, say less than 0,05 (or 5%), indicate that the observed
table does not support the hypothesis of the independence between classifications
obtained using both compared algorithms, and thus, supports the alternative
hypothesis of dependence.

Despite its simple and intuitive description the implementation of this algorithm is
very difficult as the computational volume grows exponentially with the increasing
values of K and n. Till the publication of the network algorithm in [13] computations
were possible only for small tables. This algorithm, presented in the form of the
FORTRAN code in [14] allows to compute p-values of Fisher’s exact test for tables
with larger values of n, provided that the table contains many cells with very low (i.e.
equal to zero or close to zero) values. Fortunately, this is the case when we analyze
good classification algorithms with a low percentage of false classifications.

In the case of large samples with significant percentage of false classifications we
can use the well known Pearson’s chi-square asymptotic test for independence. The
chi-square statistic is given by

()


= =

−
=

K

i

K

j ij

ijij
I n

nn

1 1

2
2

ˆ

ˆ
χ , (2)

where

n

nn
n BjAi

ij =ˆ (3)

is the expected number of observations in the ijth cell when both classifications, i.e.
by the algorithm A and the algorithm B, are statistically independent. When the total
number of observations n is large (greater than 100), and the expected number of
observations in every cell is larger than 5, the chi-square statistic, defined by (2), is
distributed according to the chi-square distribution with (K-1)2 degrees of freedom.
Thus, the p-value of this test is computed by solving, with respect to p, the following
equation:

()
2

1,1
2

2 pKI −−= χχ , (4)

where ()
2

1,1 2 pK −−χ is the quantile of the 1-p order from the chi-square distribution with

()21−K degrees of freedom. When the total number of observations n is large we can

consider the expectations calculated according to (3) as close to the theoretical
expected values of observations. Then, we can use the rule proposed in [16] which
states that if r is the number of cells with the expectations less than 5, then the lowest
expectation could be as small as 5r/K2. When the chi-square test of independence is

Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 259

used for the evaluation of classification algorithms Yarnold’s rule could be very
useful in practice.

Let us apply the methodology explained above for the analysis of the classical
linear discrimination algorithm (LDA) applied for a well known benchmark test – the
famous Fisher’s Iris test. The results of classification using the LDA algorithm
implemented in the statistical package STATISTICA and the Iris data set are
displayed in Table 2.

Table 2. Classification of the Iris data with the LDA algorithm

Expert \ LDA Iris-Setosa Iris-Versicolor Iris-Virginica
Iris-Setosa 50 0 0

Iris-Versicolor 0 48 2
Iris-Virginica 0 1 49

The probability of the observation of this table, when the hypothesis of
independence is true, is extremely low (3,1E-65). Thus, the p-value for Fisher’s exact
test of independence in the case of these data is equal to 0. It means that the results of
classification provided by the expert are, as expected, strongly dependent. This
supports the opinion that the LDA algorithm for this data set is very efficient.

Now, let us consider the application of another algorithm, namely Classification
Regression Tree (CRT). The results of the application of this algorithm implemented
in the statistical package STATISTICA are presented in Table 3.

Table 3. Classification of the Iris data with a CRT algorithm

Expert \ LDA Iris-Setosa Iris-Versicolor Iris-Virginica
Iris-Setosa 50 0 0

Iris-Versicolor 0 48 2
Iris-Virginica 0 4 46

The probability of the observation of this table, when the hypothesis of
independence is true, is also extremely low (1,6E-61). Hence, the p-value for Fisher’s
exact test of independence in the case of these data is equal to 0. Therefore, from a
statistical point of view both algorithms are fully efficient. We have to note, however,
that the difference between the numbers of observed false classification (3 by the
LDA algorithm, and 6 by the CRT algorithm) in the case of a relatively small sample
(150 observations) may be considered as random.

The Iris data are well separable, and classification algorithms usually perform very
well on this benchmark. Let us consider now another example, presented in the paper
[4], where number of false classifications, even on a training data set, is quite large.
The results of the classification using a proposed in this paper Complete Gradient
Clustering Algorithm (CGCA) are presented in Table 4.

Table 4. Classification of the wheat kernel data with the CGCA algorithm

Expert \ CGCA Kama Rosa Canadian
Kama 59 2 9
Rosa 3 67 0

Canadian 3 0 67

260 O. Hryniewicz

The application of Fisher’s exact test gives in this case also a extremely low p-
value (0,897E-74) showing the great strength of dependence between the results of
classification provided by the expert and the evaluated algorithm.

The numerical examples presented above show that the proposed statistical
methodology is computationally demanding, and its results are difficult to interpret. The
ratio of observed p-values provides some information about the superiority of one
algorithm over another one, but this interpretation does not have any sound statistical
basis.

Consider now the situation when all false classifications are equally important. In
this case we can put them together in one class of incorrectly classified objects. Let
()121 +KK n,n,,n,n  be the vector describing the results of the application of the

considered classification algorithm. First K components of this vector represent the
numbers of cases of the correct classification to K considered classes. The last
component gives the total number of incorrectly classified objects.

Let us assume now that observed values of ()121 +KK n,n,,n,n  represent a

sample from an unknown multinomial distribution, defined by the probability mass
function

() ∏
+

=+
+ =

1

111
11

K

i

n
i

K
KK

ip
nn

n
p,p,,pMB

!!

!


 (5)

where +
= =1

1
K
i i nn , and +

=
=

1

1
1

K

i ip , that describes a hypothetical population of

objects classified in a similar way to that used for the classification of the considered
sample.

Now, let us suppose that we have to compare two classification algorithms, whose
results of application are given in the form of two vectors ()121 +KK n,n,,n,n  , and

()121 +KK m,m,,m,m  , respectively. First, let us consider the case that both

algorithms are compared using the same set of observations. Thus, the sample sizes in
both cases are equal and both observed vectors are statistically dependent. In such
case in order to compare the considered algorithms we have to know the results of the
classification of each object, and then to use statistical methods devised for the
analysis of pair-wise matched data. Theoretically, it is possible if we construct
Fisher’s test of independence using three-dimensional contingency table. Taking into
account computational problems with classical Fisher’s exact test it seems to be rather
impossible to propose a test which compares classification algorithms taking into
account their efficiencies.

The situation is different if we want to compare two algorithms without taking into
account their efficiencies understood as probabilities of yielding correct
classifications. In such a case the comparison can be done relatively easily when the
data from a classification experiment performed on the same sample are given in the
form presented in Table 5.

Table 5. Comparison of dependent test data

 Alg.1 -correct Alg.1 - false
Alg. 2-correct k11 k12

Alg. 2 - false k21 k22

Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 261

In this table k11 denotes the number of objects classified correctly by both
algorithms, k12 denotes the number of objects classified correctly by the Algorithm 1
but incorrectly by the Algorithm 2, k21 is the number of objects classified correctly by
the Algorithm 2 but incorrectly by the Algorithm 1, and k22 is the number of objects
classified incorrectly by both algorithms.

Let us notice that the only information about the differences between both
algorithms are contained in k12 and k21. We can verify two hypotheses related to these
values. First hypothesis is that the probabilities of incorrect classification that
generate observations k12 and k21 are the for both compared algorithms are the same,
and this hypothesis is tested against the alternative that they are simply different. In
this case we have to apply the so called two-sided statistical test. We may also
consider testing this statistical hypothesis against the alternative hypothesis that one
particular algorithm is better than a second one. In this case we have to apply the so-
called one-sided statistical test.

When both compared probabilities are equal it is known, see e.g. [1] for more
information, that the number of incorrect classifications by only one algorithm k21 (or
k12) is described by the Binomial probability distribution with the parameters

k=k12+k21 and p=0,5. Let us assume now that we observe ∗
12k and ∗

21k incorrectly

classified (only by one algorithm!) objects. The probability of observing k21 false

classification given *
12

*
12 kkk +=∗ can be calculated from the following formula

() .
2

1

2

1
|

2121

21
21

kkk

k

k
kkP

−∗
∗

∗


























= (6)

In order to verify the hypothesis of equal probabilities of misclassification we have to

calculate, according to (6), the probabilities of all possible pairs ()∗kk ,21 . In the case of

the two-sided test the sum of those probabilities that do not exceed the probability of the

observed pair ()∗∗= kkk ,2121 gives the value of the significance (known also as the p-

value) of the tested hypothesis. When this value is greater than 0,05 it is usually
assumed that the hypothesis of the equal probabilities should not be rejected. In the case

of the one-sided test we consider only these pairs ()∗kk ,21 that are less or equally

probable that the observed pair ()∗∗ kk ,21 , and support the one-sided alternative. Thus,

the p-value in the case of the one-sided alternative is smaller than in the case of the two-
sided alternative. Hence, it is easier to reject the hypothesis that one algorithm is not
worse than the other one than to reject the hypothesis that they are statistically
equivalent.

When the number of objects k* that are incorrectly classified only by one algorithm
is sufficiently large (in practice it is required that the inequality k*>10 must be
fulfilled) the following statistic

()
2112

2
2112

kk

kk
T

+
−= (7)

is approximately distributed according to the chi-square distribution with 1 degree of
freedom. This statistic is used in the well known McNemar’s test of the homogeneity
of proportions for pair-wise matched data.

262 O. Hryniewicz

Let us consider again the example of Fisher’s Iris data. We use this benchmark set
for the comparison of two algorithms: LDA (Linear Discrimination Analysis) and
CRT (Classification Regression Tree) – both implemented in a popular statistical
software such as e.g. STATISTICA. For more information about these algorithms see
e.g. [11]. Close examination of the classifications given by both algorithms results in
the data presented in Table 6.

Table 6. Comparison of algorithms (LDA vs. CRT) – Iris data set

CRT\LDA LDA – correct LDA - false
CRT - correct 143 1
CRT - false 4 2

The p-value for these data, computed according to the algorithm given above, is
equal to 0,375. Therefore, the obtained statistical data do not let us to reject the
hypothesis that the probabilities of incorrect classification are in case of these two
algorithms the same despite the fact that the CRT algorithm gives twice as many false
classification in comparison to the LDA classifier.

Now, let us use the data that are less separable that the Iris data set. This situation
is in the case of wheat kernel data considered in [4]. We will use these test data for
the comparison of two algorithms: the Bayesian algorithm proposed in [12] and the
classical Quadratic Discrimination Algorithm (QDA) algorithm described in [11]. The
results of the comparison are presented in Table 7.

Table 7. Comparison of algorithms (Bayes vs. QDA)– Wheat kernels data set

QDA\Bayes Bayes - correct Bayes - false
QDA - correct 85 9
QDA - false 5 6

The p-value in this case is equal to 0,424. Therefore, the obtained statistical data do
not let us to reject the hypothesis that the probabilities of incorrect classification are in
the case of these two algorithms the same despite the fact that one of the compared
algorithms (QDA) seems to be significantly better (nearly 30% lower probability of
incorrect classification).

When we do not have an access to individual results of classification we can
compare algorithms using independent samples described by the multinomial

distributions. Let the data be described by (5), and  +
= =1

1

K

i i nn and  +
= =1

1

K

i i mm be

the sample sizes which in general, as we compare the classifications of different
samples, do not have to be equal. Moreover, note that in the case when one of these
algorithms is a perfect classifier (e.g. a domain expert) we have 01 =+Kn (or

01 =+Km). If the results of the application of the first algorithm are described by the

multinomial distribution ()11 +KK p,p,,pMB  , and the results of the application of the

second algorithm are described by the multinomial distribution ()11 +KK q,q,,qMB 
their performance can be compared by testing the statistical hypothesis

11110 ++ === KKKK qp,qp,,qp:H  . (8)

Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 263

To test this hypothesis we may apply the methodology of two-way contingency
tables. Test data in the case of the accumulation of all falsely classified object into
one (K+1) class are presented in Table 8.

Table 8. Independent test data

Alg./Class 1 … j … K K+1 Total

Alg. 1 n11 … n1j … n1K n1K+1 N

Alg. 2 n21 … n2j … n2K n2K+1 M

Total c1 … cj … cK cK+1 N+M

When the hypothesis H0 given by (8) is true, the conditional distribution of

observed random vectors ()121 +KK n,n,,n,n  , and ()121 +KK m,m,,m,m  , given the

vector of their sum ()121 +KK c,c,,c,c  , is given by the multivariate hypergeometric

distribution [5]

() ∏
+

=








=

1

1
0

K

i i

i

n

c

N

nm
H,|;P

!

!!
cmn (9)

This probability function is used for the construction of the multivariate
generalization of Fisher’s exact test that is used for the verification of (4). Let n*, m*
and c* be the observed data vectors. The p-value (significance) of the test is computed
from the formula [5]

() (),,|, 0
Γ

∗=− HPvaluep cmn (10)

where

() () (){ }.,|,,|,:, 00 HPHP ∗∗∗∗ ≤=Γ cmncmnmn (11)

The p-values of this test can be computed by the tools of statistical packages such as
SPSS or SAS. However, in the case of many categories and large (or even moderate)
samples the computation time may be prohibitively long.

It can be shown that the test of the equality of two sets of multinomial probabilities
is formally equivalent to the test of independence of categorical data, considered in
the first part of this section. Hence, in the case of sufficiently large sample sizes with
all cells having at least 5 observations, for testing (8) one can use Pearson’s chi-
square test of independence. These assumptions are usually fulfilled in testing
classification algorithms, except for situations when tested data allows building
perfect or nearly perfect classifiers. However, in such cases the problem of choice of
the best classifiers does not exist.

The 2χ statistic in the considered case can be written as

() ()2 21 1
2

1 1

ˆ ˆ

ˆ ˆ

K K
i i i i

i ii i

n n m m

n m
χ

+ +

= =

− −
= +  (12)

264 O. Hryniewicz

where

,ˆ
N

nc
n i

i = (13)

and

.ˆ
N

mc
m i

i = (14)

The p-value for this test is obtained by solving, with respect to p, the equation

2
1

2
p,K −= χχ , (15)

where 2
1 p,K −χ is the quantile of order 1-p in the chi-square distribution with K

degrees of freedom. Also in this case the p-values of Pearson’s chi-square test of
independence can be computed using the tools available in various statistical
packages.

In order to illustrate the application of the proposed tests in the evaluation of
classification algorithms tested on samples of N=100 objects each which are classified
into K=3 classes. Suppose that we want to compare three algorithms A, B, and C,
together with a “perfect” algorithm represented by an expert E. All compared
algorithms have their basic and ‘improved’ versions indexed by subscripts 1 and 2,
respectively. In order to make the evaluation simple we assume that all incorrect
(false) classifications are assigned to the additional fourth class. Suppose that the
results of this experiment are presented in Table 9.

Algorithms A, B and C in their both versions are characterized by the same total
percentages of incorrect classification equal to 10% and 5%, respectively. However,
the distribution of incorrectly classified objects depends upon the used algorithm. We
face this situation when the algorithms are “aimed” at correct classification of chosen
classes (e.g. Bayes classifiers).

Table 9. Results of an experiment with independent samples

Alg.\Class 1 2 3 4

Expert 20 30 50 0

A1 18 27 45 10

A2 19 29 47 5

B1 10 30 50 10

B2 15 30 50 5

C1 20 30 40 10

C2 20 30 45 5

In the case of the algorithm A incorrectly classified objects are distributed
proportionally to the actual sizes of classes. For the algorithm B all incorrectly
classified objects are assigned to the class with the lowest number of actual
observations. Finally, in the case of the algorithm C all incorrectly classified objects
are assigned to the class with the highest number of actual observations.

Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 265

In Table 10 we present the p-values of both considered tests when the performance
of each classification algorithm is compared to the classification given by the expert.

Table 10. Comparison of different algorithms with the expert

 Fisher’s Chi-square
A1 vs. E 0,008 0,015
B1 vs. E 0,002 0,004
C1 vs. E 0,006 0,011
A2 vs. E 0,177 0,162
B2 vs. E 0,132 0,126
C2 vs. E 0,165 0,154

In the case of basic versions of all algorithms the results of classification are
statistically significantly different than the classification provided by the expert. The
worse classification is provided by the algorithm A. In the sample analyzed by this
algorithm all falsely classified objects are evenly distributed over all classes. The best
performance is observed in case of the algorithm B characterized by the largest
percentage-wise differences between levels of the accuracy of classification in
different classes. In the case of the ‘improved’ versions of the considered algorithms
the data do not let us to reject the hypothesis that the results of classification are
statistically equivalent to the results of classification provided by the expert.

Now, let us apply the proposed methodology for the comparison of basic and
‘improved’ versions of our hypothetical algorithms. The results of this comparison are
presented in Table 11.

Table 11. Comparison of different versions of algorithms

 Fisher’s Chi-square
A1 vs. A2 0,640 0,613
B1 vs. B2 0,470 0,446
C1 vs. C2 0,599 0,581

The results of this comparison are somewhat unexpected for a non-statistician.
Despite seemingly large improvement (reduction of the percentage of incorrect
classifications from 10% to 5%) the compared results statistically do not differ. The
reason for this behavior is, of course, a small sample size. What is also interesting that
the difference is the least significant (the highest p-value in the test of equality) in the
case of evenly distributed misclassifications. The lowest p-value (but still very high
using statistical standards) is for the case of algorithm B which assigns all incorrectly
classified objects to the class with the smallest number of observations.

Now, let us consider an example of the application of this methodology to real
data. Suppose, that we have been provided with two algorithms for the classification
of vehicle silhouettes data (data provided by Turing Institute, Glasgow, and available
at the UCI web-site). One of these algorithms implements the Bayesian algorithm
proposed in [12], and the second one implements a classical CRT algorithm described
in [3]. The algorithms have been tested on two independent samples, and the results
of this comparison are presented in Table 12.

266 O. Hryniewicz

Table 12. Comparison of algorithms - Vehicle Silhouettes data set

Alg.\Class 1 2 3 4 5

Bayes 55 48 112 90 141

CRT 46 55 86 84 175

The p-value obtained as the solution of (15) for these data is equal to 0,079.
According to the classical statistical approach this result does not let us claim that the
Bayes algorithm is better than the CRT. Note however, that similar results obtained
on the same sample would probably indicate the superiority of the Bayes algorithm.

3 Possibilistic Evaluation of Test Results

In the previous section we have proposed statistical tests for the evaluation of
classification procedures. The results of the proposed test procedures have been
expressed in terms of significance, known also as the test volume or the p-value.
Examples given in this section show that the results of statistical tests interpreted in a
traditional way are not well suited for finding if one classification algorithm is better
than the other one. Therefore, there is a need to present an additional indicator that
can be used to show to what extent one algorithm is better than the other one despite
the fact that they are statistically equivalent. This goal can be achieved using the
methodology proposed in the theory of possibility. In the papers [8] and [9] the
possibilistic interpretation of statistical tests has been proposed. This interpretation
gives a decision maker the evaluation of test’s result using notions of possibility or
necessity of making certain decisions.

Statistical decision problems are described by setting a certain hypothesis H
(usually called the null hypothesis), and an alternative hypothesis K. In the context of
decision-making we usually choose this hypothesis which is better supported by
statistical data. Hryniewicz [9] proposes to consider these two hypotheses separately.
Suppose that the significance of H is given by the p-value of the test, and is equal to
pH. The value of pH shows to what extent the statistical evidence supports the null
hypothesis.

In [9] it was proposed to evaluate the null hypothesis H by a fuzzy set H
~

 with the
following membership function

() []
()[] .

112,1min

02,1min





=−
=

=
xp

xp
x

H

H
Hμ (16)

This membership function may be interpreted as a possibility distribution of the truth
of H. If () 11 =Hμ holds, it means that it is quite plausible that the considered

hypothesis is not true. On the other hand, when () 10 =Hμ , we would not be surprised

if H were true.
The same can be done for the alternative hypothesis K. The statistical test of this

hypothesis may be described by another p-value, denoted by pK. When K= not H we
have pK=1-pH. However, in a general setting this equality usually does not hold. The

Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 267

alternative hypothesis K is now represented by a fuzzy set K
~

 with the following
membership function

() []
()[] .

112,1min

02,1min





=−
=

=
xp

xp
x

K

K
Kμ (17)

In order to choose an appropriate decision, i.e. to choose either H or K, Hryniewicz
[9] proposes to use three measures of possibility defined in [6].

For two fuzzy sets A
~

 and B
~

, described by their membership functions ()xAμ and

()yBμ , respectively, the Possibility of Dominance (PD) measure is defined in [6] in

the following way

() () ()[].,minsup
~~

:,
yxBAPD BA

yxyx
μμ

≥
=≥ (18)

The second index is called the Possibility of Strict Dominance (PSD), and for two

fuzzy sets A
~

 and B
~

 is given by the expression

() () ()()[] .1,mininfsup
~~

: 





 −=>

≤
yxBAPSD BA

yxyx
μμ (19)

Positive, but smaller than 1, values of this index indicate certain weak evidence

that A
~

strictly dominates B
~

.
Third measure is named the Necessity of Strict Dominance, and for two fuzzy sets

A
~

 and B
~

 has been defined in [6] as:

() () ()()[].,minsup1
~~

:,
yxBANSD BA

yxyx
μμ

≤
−=> (20)

The NSD index represents a necessity that the fuzzy set A
~

 strictly dominates the

set B
~

.
In the considered statistical problem of testing a hypothesis H against an alternative

K these indices have been calculated in [8], and are given by the following formulae

() () ()[],1,0max
~~

KHKHPD μμ=≥ (21)

() () ()[],01,0min
~~

KHKHPSD μμ −=> (22)

() () ()[].0,1max1
~~

KHKHNSD μμ−=> (23)

The value of PD represents the possibility that according to the observed statistical
data the choice of the null hypothesis is not a worse decision than choosing its
alternative. The value of PSD gives the measure of possibility that the data support

268 O. Hryniewicz

rather the null hypothesis than its alternative. Finally, the value of NSD gives the
measure of necessity that the data support the null hypothesis rather than its
alternative.

It has been proved that

.NSDPSDPD ≥≥ (24)

It means that according to the practical situation we can choose the appropriate
measure of the correctness of our decision. If the choice between H and K leads to
serious consequences we should choose the NSD measure. In such a case pH>0,5 is
required to have NSD>0. When these consequences are not so serious we may choose
the PSD measure. Finally, the PD measure, which is always positive, gives us the
information of the possibility that choosing H over K is not a completely wrong
decision.

In some cases considered in this paper the alternative hypothesis has been
formulated as the complement of the null hypothesis, Thus, we have the equality

HK pp −= 1 . In this case we have

() () (),2,1min0
~~

HH pKHPD ==≥ μ (25)

() () ().0,12max
~~~~ −=>=> HpKHNSDKHPSD  (26) 

Let us apply these results for the comparison of different algorithms using the test 
result presented in Table 6 for the comparison of the LDA and CRT algorithms used 
for the classification of the Iris data. For this statistical test we have pH=0,375, and 
pK=0,625. Hence, we have PD=0,750, and PSD=NSD=0. Therefore, there is only a 
certain possibility that these two algorithms are equivalent, but the measure of the 
necessity of such claim is equal to zero. 

The possiblilistic comparisons are not necessary when null and alternative 
hypotheses are, as in the cases considered above, complementary. In such case strong 
evidence in favor of the null hypothesis means automatically weak support of its 
complementary alternative. 

4 Conclusions 

In the paper we have considered the problem of the evaluation and comparison of 
different classification algorithms. For this purpose we have applied the methodology 
of statistical tests for the multinomial distribution. We restricted our attention to the 
case of the supervised classification when an external ‘expert’ evaluates the 
correctness of classification. The results of the proposed statistical tests are 
interpreted using the possibilistic approach introduced in [9]. The results presented in 
this paper can be extended to the case of imprecise data. In this case the applicability 
of the proposed possibilistic measures is even much stronger when we omit, for 
example, the assumption that there exists an ‘expert’ who indicates only one ‘true’ 
class. In such cases we have to use the methodology of fuzzy statistics, whose 



Statistical and Possibilistic Methodology for the Evaluation of Classification Algorithms 269 

overview can be found e.g. in [7]. We will face such problems, for example, when we 
will adapt the methodology presented in this paper for the case of the evaluation of 
fuzzy classifiers. 

Acknowledgements. The author expresses his thanks to Dr. P. A. Kowalski and Dr. 
S. Łukasik for providing solutions for some practical examples of classification 
problems. 

References 

1. Agresti, A.: Categorical Data Analysis, 2nd edn. J. Wiley, Hoboken (2006) 
2. Berthold, M., Hand, D.J. (eds.): Intelligent Data Analysis. An Introduction, 2nd edn. 

Springer, Berlin (2007) 
3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. 

CRC Press, Boca Raton (1984) 
4. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: 

Complete Gradient Clustering Algorithm for Features Analysis of X-Ray Images. In: 
Piȩtka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. AISC, vol. 69, pp. 
15–24. Springer, Heidelberg (2010) 

5. Desu, M.M., Raghavarao, D.: Nonparametric Statistical Methods for Complete and 
Censored Data. Chapman & Hall, Boca Raton (2004) 

6. Dubois, D., Prade, H.: Ranking Fuzzy Numbers in the Setting of Possibility Theory. 
Information Science 30, 183–224 (1983) 

7. Gil, M.A., Hryniewicz, O.: Statistics with Imprecise Data. In: Meyers, R.A. (ed.) 
Encyclopedia of Complexity and Systems Science, pp. 8679–8690. Springer, Heidelberg 
(2009) 

8. Hryniewicz, O.: Possibilistic Interpretation of the Results of Statistical Tests. In: 
Proceedings of Eight International Conference on Information Processing and 
Management of Uncertainty in Knowledge-based Systems, IPMU 2000, Madrid, pp. 215–
219 (2000) 

9. Hryniewicz, O.: Possibilistic decisions and fuzzy statistical tests. Fuzzy Sets and 
Systems 157, 2665–2673 (2006) 

10. Hryniewicz, O.: Possibilistic methodology for the evaluation of classification algorithms. 
In: Proceedings of the 6th International Conference on Software and data Technology, 
ICSOFT 2011, Seville (July 2011) 

11. Krzanowski, W.J.: Principles of Multivariate Analysis: A User’s Perspective. Oxford 
University Press, New York (1988) 

12. Kulczycki, P., Kowalski, P.A.: Bayes classification of imprecise information of interval 
type. Control and Cybernetics 40, 101–123 (2011) 

13. Mehta, C.R., Patel, N.R.: Network algorithm for performing Fisher’s exact test in r × c 
contingency tables. Journ. Amer. Stat. Assoc. 78, 427–434 (1983) 

14. Mehta, C.R., Patel, N.R.: ALGORITHM 643: FEXACT: a FORTRAN subroutine for 
Fisher’s exact test on unordered r × c contingency tables. ACM Transactions on 
Mathematical Software (TOMS) 12, 154–161 (1986) 

15. Nisbet, R., Elder, J., Miner, G.: Statistical Analysis and Data Mining. Applications. 
Elsevier Inc., Amsterdam (2009) 

16. Yarnold, J.K.: The Minimum Expectation in X2 Goodness of fit test and the Accuracy of 
Approximations for the Null Distribution. Journ. Amer. Stat. Assoc. 70, 864–886 (1970) 



What Else Can Be Extracted from Ontologies?
Influence Rules

Barbara Furletti and Franco Turini

Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
{furletti,turini}@di.unipi.it

Abstract. A method for extracting new implicit knowledge from ontologies by
using an inductive/deductive approach is presented. The new extracted knowl-
edge takes the form of If-Then rules annotated with a weight. Such rules, termed
Influence Rules, specify how the values of the properties bound to a collection
of concepts may influence the values of the properties of another concept.The
technique, that combines data mining and link analysis, is completely general and
applicable to whatever domain. The paper reports the methods and the algorithms
supporting the process of mining the rules out of the ontology, and discusses its
application to real data from the economic field.

Keywords: Ontology mining, Knowledge discovery, If-Then rules.

1 Introduction

Knowledge extraction from databases is a consolidated practice that continues to evolve
in parallel with the new data management systems. It is based not only on querying sys-
tems, but above all, on complex reasoning tools. Today, with the coming of the Web
2.0 and the semantic web, new methods for representing, storing and sharing informa-
tion are going to replace the traditional systems. Roughly speaking, ontologies “could
substitute” in many applications the Data Bases (DBs). Consequently, the interest is
moving toward the research of new methods for handling these structures and to effi-
ciently obtain information from them besides what is obtained by using the traditional
reasoning systems.

In this paper we aim at contributing to this topic by handling the problem of extract-
ing interesting and implicit knowledge from ontologies, in a novel way with respect
to the traditional reasoners methods. By getting hints from the semantic web and data
mining environments, we give a Bayesian interpretation to the relationships that already
exist in an ontology in order to return a set of weighted If-Then rules, that we refer to
as Influence Rules (IRs).

The idea is to split the extraction process in two separate phases by exploiting the
ontology peculiarity of keeping metadata (the schema) and data (the instances) sepa-
rate. The deductive process draws inference from the ontology structure, both concepts
and properties, by applying link analysis techniques and producing a sort of implica-
tions (rules schemas) in which only the most important concepts are involved. Then
an inductive process, implemented by a data mining algorithm, explores the ontology
instances for enriching the implications and building the final rules.

M.J. Escalona, J. Cordeiro, and B. Shishkov (Eds.): ICSOFT 2011, CCIS 303, pp. 270–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



What Else Can Be Extracted from Ontologies? Influence Rules 271

Fig. 1. Fragment of an ontology schema and its instances

For example, let us suppose we have a fragment of ontology as depicted in Fig. 1 that
describes companies and the business environment. Company, Manager and Project
are concepts, continuous arrows represent properties of the ontologies while the dotted
ones are used for connecting instances to the classes they belong to. Starting from this
ontology and the corresponding instances we are able, at the end of the process, to
produce IRs as the following one:

Manager.hasAge < 45
w=0.80−→ Project.hasInnovationDegree = good

Both the premise (Manager.hasAge < 45) and the consequence
(Project.hasInnovationDegree = good) are expressions binding the data-
type property of a class to a specific value, while the weight (w) measures the strength
of the influence. This rule must be read as:

“In 80% of the cases, whenever a manager of a company is less then 45 years old, then
the project he manages has a good degree of innovation”.

What we want to prove, besides the correctness and feasibility1 of the project, is that the
approach allows us to extract “higher level” rules w.r.t. classical knowledge discovery
techniques. In fact, ontology metadata gives a general view of the domain of interest and
supplies information about all the elements apart from the fact that they are included
as instances in the collected data. The technique is completely general and applicable
to every domain. Since the output is a set of “standard” If-Then rules, it can be used to
integrate existing knowledge or for supporting any other data mining process.

The paper includes the following sections:

Sect. 2 proposes some related works that try to combine ontologies and data mining in
different ways.
Sect. 3 gives a short overview of the technical background about theories and algorithms
used in the rest of the paper.
Sect. 4 is the core section in which the Ontology Miner strategy is described.
Sect. 5 shows a case study where our strategy is applied to an actual problem.

1 The term feasibility has to be intended as the “capability of being done”.



272 B. Furletti and F. Turini

Before concluding this paper, in Sect. 6 we present the new version of the system and
some comments about an experiment. Sect. 7 contains the conclusions and discusses
some future promising work.

2 Ontologies and Data Mining

When speaking about ontologies and data mining (DM), we enter into a domain in
which DM techniques and domain ontologies are either combined for improving exist-
ing knowledge discovery tools and processes or for supporting decision systems. On-
tologies and DM are related in different ways depending on the perspective from which
the two field are viewed: is the ontology that improves DM or is DM that operates on
ontologies?

Actually, both the perspectives are interesting and three significant research lines can
be identified: 1) using ontologies for driving DM; 2) using DM for building ontologies;
3) using ontologies for describing DM processes.

Great efforts are currently spent by researchers in these fields, for example Geller and
colleagues [12] describe the use of taxonomies for improving the results of association
rule mining. The goal is to produce association rules with higher support from a large
set of tuples about demographic and personal interest information. Since the collection
of people interests tends to be too abstract for actual applications, they use a hierarchy of
concepts for raising data instances to higher levels during a pre-processing step, before
running the DM algorithm.

A similar approach has been described in [3] where an ontology in the domain of
super market products is used for extracting constraint-based multi-level association
rules. In this case the use of an actual ontology (instead of a simple taxonomy) permits
the definition of constraints and the use of concepts at different levels of abstraction. In
this case the objective is to drive the extraction of rules that fit the user request and need
and identify possible target items for seasonal promotions.

On the other hand, since the construction of an ontology is a complex and creative
work for the domain experts, DM techniques are often of great help. See for example
[9], where the Quinlan’s C4.5 algorithm is used for building an ontology starting from
the generated decision tree. The ontology is constructed by means of a mapping func-
tion from the tree elements: root node, internal nodes and decision branches are mapped
into OWL classes, while the leaves (which permit the identification of the association
rules) are coded as individuals.

A more structured work is presented in [15], where the authors describe how to en-
rich an existing seed ontology by using text mining techniques, especially by mining
the domain specific texts and glossaries/dictionaries in order to find groups of con-
cepts/terms which are related to each other. Even if the extraction of new concepts or
instances from text is automatic, the enrichment of the seed ontology is manually done
by the experts. The advantage here is the discovering of many important concepts and
interesting relationships directly from the data in an automatic way.

Other contributions in this field are described in [8] and [20].
In [8], the authors describe the implementation of an unsupervised system that com-

bines a syntactic parsing, collocation extraction and selectional restriction learning.



What Else Can Be Extracted from Ontologies? Influence Rules 273

The system, applied to a set of data (in this case to a molecular biology corpus of data),
generates a list of labeled binary relations between pairs of ontology concepts. They
demonstrate that the system can be easily applied in text mining and ontology building
applications.

In [8] a method is sketched for extending existing domain ontologies (or for semi-
automatic generating ontologies) on the basis of heuristic rules applied to the result of a
multi-layered processing of textual documents. The rules, extracted by using essentially
statistical methods, are used for deriving ontology classes from linguistic annotation.
The new classes can be added to already existing ontologies or can be used as starting
point for a new ontology.

Ontologies are frequently employed also in context-aware systems. As for example
in [18], they are used for describing both contexts and the DM process in a dynamic way.
In particular the authors split the context aware DM into two parts: the representation of
the contexts through the ontology and a framework which is able to query the ontology,
invoke the mining processes and coordinate them according to the ontology design.

In the light of the above classification, our work can only partially be seen as a
contribution to the line one, because what we do is to move from Knowledge Discovery
in Databases to Knowledge Discovery in Ontologies by using a combination of DM
and Link analysis methods. Indeed, the analysis of the T-Box of an ontology is used to
prepare the process of actual mining out of the A-Box (the instances).

3 Technical Background

Our methods combines in a novel way link analysis and DM techniques in order to ex-
tract knowledge from ontologies. In this section we introduce the link analysis method
we customized and the corresponding extension to the ontology domain. For what it
concerns the DM, we used PATTERNIST, a pattern discovery algorithm developed by
colleagues at the CNR in Pisa. PATTERNIST is the result of a research activity that has
now come to the implementation of a more sophisticated (and documented) system:
ConQueSt [7].

3.1 Link Analysis

In this paper we exploit the peculiarities of HITS (Hypertext Induced Topic Selection)
[13], the Kleinberg’s algorithm for ranking web pages, to provide a sort of “authority
measure” to the ontology concepts. HITS rates web pages based on two evaluation
concepts: authority and hub. The authority estimates the content value of the page,
while the hub estimates the value of its links to other pages. In other words, a hub
is a page with outgoing links and authority is a page with incoming links. Kleinberg
observed that there exists a certain natural type of balance between hubs and authorities
in the web graph defined by the hyperlinks, and that this fact could be exploited for
discovering both types of pages simultaneously.

As shown in the Pseudocode 1, HITS works as an iterative algorithm applied to the
subgraph Gσ of the web graph, derived from a sort of text matching procedure (for
further details see the procedure Subgraph in [13]) of the query terms σ in the search



274 B. Furletti and F. Turini

topic. For this reason it is query-dependent. The core of the algorithm starts from Gσ

and computes hub (y<p>) and authority (x<p>) weights by using an iterative procedure
qualified to mutually reinforce the values. It becomes natural to express the mutually
reinforcing relationship between hubs and authorities, as: “If p points to many pages
with high x-values, then it should receive a large y-value, and if p is pointed to by many
pages with large y-values, then it should receive a large x-value”. I and O operations
have been defined for updating the weights.

I updates the authority x-weights as:

I : x<p> ←
∑

q:(q,p)∈E

y<q>

O updates the hub y-weights as:

O : y<p> ←
∑

q:(p,q)∈E

x<q>

Since the two operations are mutually recursive, a fixed point is needed for guaranteeing
the termination of the computation. Even if the number k of iterations is a parameter
of the algorithm, it is proven that, with arbitrarily large values of k, the sequences
of vectors x1, x2, . . . , xk and y1, y2, . . . , yk converge to the fixed points x∗ and y∗

(Theorem 3.1 in [13]).
As one can guess, and as it happens for the main information retrieval methods, lin-

ear algebra supplies “tools” of support for formalizations and proofs.

Pseudocode 1: HITS
Iterate(Gσ,k)

Gσ: a collection of n linked pages.

k: a natural number.

z: the vector (1, 1, 1, ..., 1) ∈ �n.

Set x0 := z; Set y0 := z;

For i = 1, 2, . . . , k

Apply the I operation to (xi−1, yi−1), obtaining new x-weights x′
i.

Apply the O operation to (x′
i, yi−1), obtaining new y-weights y′

i.

Normalize x′
i, obtaining xi. Normalize y′

i, obtaining yi.

End

Return (xk, yk).

First, it is possible to represent the graph Gσ in matrix form with the help of an adja-
cency matrix A. Then, one can easily observe that the iterative and mutual call of I and
O can be (re)written as:

xi = AT yi−1

yi = Axi
(1)

Stated that, it is easy to trace the computation of x∗ and y∗ back to the mathematical
computation of the principal eigenvectors of a matrix ATA and AAT , respectively.
From 1, after k iterations, we obtain



What Else Can Be Extracted from Ontologies? Influence Rules 275

x(k) = (ATA)(k−1)AT u
y(k) = (AAT )(k)u

(2)

where u is the initial seed vector for x and y. Equation 2 is the recursive formula for
computing the authority and hub vectors at a certain iteration.

For our purposes we customized the HITS algorithm. A short description of HITSx-
ONTO algorithm is presented in following Sect. 3.2.

3.2 HITSxONTO Algorithm

HITSxONTO [10,11], the core algorithm, is the customized version of HITS for han-
dling ontologies. Like HITS, it is based on the concepts of authority and hubness, and
its purpose is to measure the importance of the ontology concepts, basing only on the
ontology structure (the TBox). In other words, it tries to deduce which concepts can be
considered particularly “important” (authorities) and which ones give a particular im-
portance to other concepts (hubs). In this context we are interested in concepts, object
properties and in the isA relation. This last element is used for constructing the matrix
associated to the ontology that points out direct, indirect and hidden connections. The
datatype properties, instead, are not relevant in the ranking procedure.

The main algorithm variant w.r.t. HITS concerns the pre-processing phase, that is
the preparation of the input and the general adaptation to the ontology. Passing from the
web to the ontology environment we adopt the following association: an ontology con-
cept is seen as a web page, and an object property is seen as a hyperlink. HITSxONTO
is iterative as HITS, and follows the same core steps.

4 Ontology Mining Strategy

As introduced in Sect. 1, the objective of this method is to extract hidden information
from an ontology by operating on the structure and on the instances, separately. The
strategy (sketched in Fig. 2 and detailed below) is composed by four main steps, each
one dedicated to a particular phase of the extraction.

[Step 1] Identification of the Concepts
This step consists in the analysis of the ontology schema and the extraction of the
most relevant concepts.

For the extraction, we exploit the possibility of representing the ontology as a
graph with its associated Adjacency Matrix (AM). The AM points out the existence
of a direct link between two concepts. Starting from the AM and exploiting the on-
tology hierarchical structure (defined by the isA property) we compute a Weighted
Adjacency Matrix (WAM). It is an nxn matrix where each entry wij has the fol-
lowing meaning:

wij =

{
k if k edges from i to j exist
0 otherwise



276 B. Furletti and F. Turini

Fig. 2. Steps of analysis

In this matrix we store multiple and hidden connections between concepts that is,
the connections among sub-concepts, or parent concepts and sub-concepts that are
not directly defined by an explicit link. In other words, we refer to the connections
that exist but that are not explicitly represented by an arc in the ontology-graph.
The following Example 1 shows a typical case, while the other cases of inheritance
are described in [10,11].

Example 1. Hidden Connections
Consider the fragment of ontology depicted in Fig. 3: A and B are main concepts,
while A1 and B1 are sub-concepts of A and B, respectively. r1 and r3 are object
properties and the arrows labelled with isA identify the hierarchy. Thanks to these
last connections, A1 inherits from A the status of being domain of the properties r1
and r3, while B1 inherits from B the status of range of the property r1.

It is easy to see that A is connected to B and B1 thanks to direct links (r1 and
r3), but A has actually a “double” connection with B1: one thanks to the direct link
r3 and the other induced by r1 and the inheritance property.A1 has no physical con-
nections with other concepts, nevertheless it inherits from A a simple connection to
B and a double connection to B1. Instead, B does not inherit the range status of B1

induced by r3. In fact, given instances inst A ∈ A and inst B ∈ B, they cannot
be connected by means of r3. The associated WAM W highlights, for each concept,
the number of direct and hidden connections. Since isA is a hierarchic relation and
not an object property, both the [A1,A] and [B1, B] matrix entries are set to 0. As
stated before, the contribution of this relation is used for the identification of the
hidden connections. �

In order to extract the relevant concepts, we analyse only the schema of the ontol-
ogy. The idea is to adopt a link analysis method as the one used in the semantic web
environment. While HITS works with web pages and hyperlinks, HITSxONTO
works on concepts and object properties. Running HITSxONTO with the WAM
as input, we obtain two lists of concepts, ranked on authority and hub principles.



What Else Can Be Extracted from Ontologies? Influence Rules 277

Fig. 3. Hidden connections

The most relevant concepts are those that exceed the thresholds for acceptance
fixed by the user. Since the threshold strongly depends on the ontology size and
connectivity, it has to be empirically fixed.

[Step 2] Influence Rule Schema Building
In this step we construct the schemas of the rules, that is we identify the implicant
and the implicated concepts, and the direction of the implication. Each rule schema
is created by using the potential implicant concepts, and connecting them with the
potential implicated concepts reachable directly or indirectly via object properties.
An IR Schemas has the following format:

<Implicant>−→ <Implicated>

where, Implicant is a concept belonging to the hub-set of concepts and
Implicated is a concept belonging to the authority-set of concepts. The follow-
ing Example 2 clarifies the point.

Example 2. Building the IRs Schema
Suppose to have an ontology that describes companies and the economic environ-
ment, and suppose to obtain, from Step 1, the following two lists of candidates
concepts:

Implicant Set = {ManagementTeam, Company, ...}
Implicated Set ={CapitalizationStrategy,

DiversificationOfProduction, LevelOfCompetition, ...}
The Implicant and the Implicated sets are composed by concepts that obtained a
hub value and an authority value greater than the fixed thresholds respectively. Let
us also suppose that in the ontology a connection (a direct object property, an in-
herited object property or an indirect path of object properties) from Company to
LevelOfCompetition exists. Under these hypothesis the following new schema can
be built:

Company → LevelOfCompetition

This schema is the starting point for the construction of IRs where the concept
LevelOfCompetition depends on the concept Company. The characterization of the
schema is realized by associating the appropriate2 attributes defined as datatype
properties of the concept in the ontology. �

2 The appropriate attributes are determined by adopting a particular strategy that uses a DM
method on the ontology instances, as described in step 3.



278 B. Furletti and F. Turini

[Step 3] Characterization of the Influence Rules Schemas
In this step we create the IRs starting from the schemas built in the previous step.
In particular we associate the appropriate attributes to the concepts that form the
schema, and a weight for the implication that identifies the strength of the rules.

To do that, we analyse the ontology instances associated to the set of concepts
which the domain of interest is composed of, and we extract the frequent items by
using the algorithm PATTERNIST cited at the beginning of Sect. 3. The frequent
items give us three important information:

1. The pairs of <concept.attribute> that appear together more frequently in the
set of instances.

2. The values associated to the attributes.
3. The support of the frequent item sets, that corresponds to the percentage of the

instances that include all items in the premise and consequence in the rule.

We then collect, from the frequent itemsets, the values and the weights for the
Influence Rules schemas.

It is important to notice that we consider the support as the appropriate measure
for weighting the rules. Other measures, like the confidence, could be a refinement
in specific fields, although the support remains the more intuitive measure. Example
3 clarifies the point.

Example 3. Characterizing the IRs Schema
Starting from the result of the previous example 2, let us suppose that the concepts
involved in the schema have the datatype properties reported in Tab. 1. In this step 3,
we run PATTERNIST on the set of instances of the ontology under analysis.

Table 1. Description of the datatype properties associated to the concepts of the example

Concept Datatype Prop. Type Options

hasName String −
Company hasDimention Enumerated {Small, Medium, Big}

hasFoundationYear Integer −
hasLevel Enumerated {Low, Medium, High}

LevelOfCompetition hasDescription String −
hasType Enumerated {TypeA, TypeB}

The result is a set of frequent items. Let us suppose that the frequent items are the
following two:
FI1. {LevelOfCompetition.hasType = TypeA,

Company.hasFoundationYear = 1989} (supp=0.6)
FI2. {LevelOfCompetition.hasLevel = High,

Company.hasDimension = Big} (supp=0.8)

Merging FI1 and FI2 according to the schemas extracted in step 2 we obtain the
following two influence rules.
IR1. Company.hasFoundationYear = 1989

w=0.6→
LevelOfCompetition.hasType = TypeA



What Else Can Be Extracted from Ontologies? Influence Rules 279

IR2. Company.hasDimension = Big
w=0.8→

LevelOfCompetition.hasLevel = High
The rules can be read respectively as:
“In 60% of the cases, if the company has been founded in 1989 than its level of
competition is of TypeA”, and
“In 80% of the cases, if the company is big than its level of competition is high”. �

[Step 4] Validation
The Validation is needed to guarantee that the IRs are consistent and do not conflict
with each other. The best way for validating the rules is to ask a domain expert,
nevertheless some ad-hoc procedures can be implemented with reference to the
domain under analysis and the foreseeable use.

The first two steps are essentially deductive, they are a sort of “top-down” approach that
starts from the theory and tries to find a model. The third one is an inductive step, a sort
of “bottom-up” approach; we move from the observations (the instances) to the results
(the IRs).

The methodology we propose can be employed in different DM or non-DM appli-
cations that make use of additional information in the form of rules, or for enriching
pre-existing knowledge repository and structures [1].

To complete the discussion, in the next section we show an actual application that
uses the IRs in another DM process.

5 Case Study

The IRs extraction process described in Sect. 4 has been used on both real data and on-
tologies in the European project MUSING [14]. MUSING, “MUlti-industry, Semantic-
based next generation business INtelliGence” aims at developing a new generation of
Business Intelligence (BI) tools and modules based on semantic knowledge and content
systems. It integrates Semantic Web and Human Language technologies and combines
declarative rule-based methods and statistical approaches for enhancing the technolog-
ical foundations of knowledge acquisition and reasoning in BI applications.

One of the services developed during the project is the Online Self Assessment. By
analysing the answers to a questionnaire that describes the economic plan of a company,
the tool supplies an evaluation of the quality of the company and of the credit worthi-
ness. The system is based on a predictive model that uses both historical and external
knowledge provided by an expert in the domain. The predictive model is implemented
by using YaDT-DRb [4], a variant of the famous Quinlan’s C4.5 [17] algorithm, mod-
ified for using the external knowledge. As usual for this kind of algorithms, the histor-
ical data are used for constructing and training the classification models. The external
knowledge instead, is new data-independent knowledge provided by an expert and used
for integrating the training set and for driving the construction of the models. This tech-
nique is documented in our previous works [2,1]. The new information is provided in
form of If-Then rules that we call Expert Rules (ERs).

In the project, data and metadata are described and stored by using a set of
ontologies.



280 B. Furletti and F. Turini

Starting from this scenario, the extraction of IRs out of an ontology is applied to the
MUSING ontology (in particular to the subset of ontology that describes the qualitative
questionnaire), and the IRs are used to enrich the set of Expert Rules (ERs) provided by
an expert in economics.

Below the details and the results of the IR extraction procedure are given.

Knowledge Repository - Data and metadata reside in the MUSING ontologies. The
questionnaire adopted in the Online Self Assessment service is described by the
so called BPA ontology. A fragment of the integrated ontologies is depicted in
Fig. 4. The concepts that belong to upper or related ontologies are labelled with the
corresponding prefix (i.e. psys, ptop or company), while for the concepts that belong
to the BPA ontology the prefix is missing for saving space. The black continuous
arrows represent the isA relationships, while the blue broken-line arrows represent
the object properties. Not all the relationships nor the object properties and labels
have been drawn for the picture clarity sake.

The Data - The dataset used to train and test the models has been provided by the
Italian bank Monte dei Paschi di Siena (MPS). The data set, composed of 6000
records contains the following information:

– 13 Qualitative Variables representing a subset of the questions included in the
Qualitative Questionnaire performed by MPS to assess the credit worthiness of
a third party, and in particular utilised to calculate the Qualitative Score of a
Company.

– The Qualitative Score (target item of the classification task).
– 80 Financial/Economic indicators calculated from the Balance Sheets and rep-

resenting a part of the information utilised to evaluate the probability of the
default of a company.

Extraction of the Relevant Concepts - The HITSxONTO algorithm has been applied
to the MUSING ontologies yielding a list of 552 ranked concepts. The computation
ends after four iterations, returning a list of 5 concepts with hub score greater than
0 and a list of 14 concepts with authority score greater than 0. This is because the
ontology is large and not strongly connected.

Construction of the IRs Schemas - Considering all the concepts in the lists as candi-
dates, we obtain 2097 IRs Schemas with exactly one implicant and one implicated.

Characterization of the IRs - After a suitable filtering procedure we apply PAT-
TERNIST to a set of 5757 instances of questionnaires. Having set the minimum
support to 20%, PATTERNIST returs a set of 56 frequent itemsets (pairs of con-
cepts). The result of the characterization of the IRs Schemas by using the set of
frequent itemsets, is the following set of 14 IRs:

1. ResearchAndDevelopment.isACompanyInvestment=1
26%−→

PreviousAchievements.hasPrevAchievements=1.

2. ResearchAndDevelopment.isACompanyInvestment=1
30%−→

CapitalizationStrategy.isTheIncreasingForeseen=2.

3. ResearchAndDevelopment.isACompanyInvestment=2
28%−→

PreviousAchievements.hasPrevAchievements=2.

4. StrategicVisionAndQualityManagement.hasRate=2
28%−→

CapitalizationStrategy.isTheIncreasingForeseen=2.



What Else Can Be Extracted from Ontologies? Influence Rules 281

5. CapitalizationStrategy.isTheIncreasingForeseen=2
36%−→

PreviousAchievements.hasPrevAchievements=2.

6. ManagementTeam.hasYearOfExperience=1
32%−→

PreviousAchievements.hasPrevAchievements=2.

7. ResearchAndDevelopment.isACompanyInvestment=2
31%−→

PreviousAchievements.hasPrevAchievements=1.

8. StrategicVisionAndQualityManagement.hasRate=2
42%−→

PreviousAchievements.hasPrevAchievements=1.

9. CapitalizationStrategy.isTheIncreasingForeseen=2
48%−→

PreviousAchievements.hasPrevAchievements=1.

10. ManagementTeam.hasYearOfExperience=1
54%−→

PreviousAchievements.hasPrevAchievements=1.

11. ResearchAndDevelopment.isACompanyInvestment=2
54%−→

CapitalizationStrategy.isTheIncreasingForeseen=2.

12. StrategicVisionAndQualityManagement.hasRate=2
60%−→

CapitalizationStrategy.isTheIncreasingForeseen=2.

13. ManagementTeam.hasYearOfExperience=1
62%−→

StrategicVisionAndQualityManagement.hasRate=2.

14. ManagementTeam.hasYearOfExperience=1
73%−→

CapitalizationStrategy.isTheIncreasingForeseen=2.

To correctly interpret these rules, please refer to the description of the qualitative
questionnaire and its codification, reported in [10].

For example, the meaning of the last IR (IR 14) is:
In 73% of the cases, if the management team has more than 10 years of expe-

rience in the industrial sector, then the company does not foresee to increase its
capital.

This IR 14, in agreement with what we just stated, belongs to the following
schema:

ManagementTeam → CapitalizationStrategy

which is one of the 2097 schemas extracted in the previous phase. Here it is clear
that the schema provides the structure of a set of future IRs; it defines the direc-
tion of the implication and what are the involved concepts. The frequent itemset,
instead, identifies the interesting datatype properties (related to the considered con-
cepts) and assigns the weight (i.e. the support), making one of the possible instances
compatible with that schema.

6 New Developments

The successful results obtained in the MUSING project and in the economic domain
encouraged us to further work on the system and to carry on new experiments. In par-
ticular, the extension covers two aspects:



282 B. Furletti and F. Turini

Fig. 4. A fragment of the whole MUSING ontology

1. The generation of “complex” IRs, i.e. rules composed of more than one implicant
item, such as:

I1, I2, . . . , In
w−→ Ik

where Ik /∈ [I1, . . . , In].

2. The use of a further rule measure: the confidence.

For implementing the first feature we grouped each simple rule with the same conse-
quence, and we construct “super-sets” composed of all the combination of 2, 3, . . . , n
implicants. Then, we maintain only the sets that, together with the consequence, have a
correspondent itemset in the file produced by PATTERNIST. This requirement is nec-
essary to get the right weight to associate to the new complex rule. Then we build the
IRs in the traditional way.

The confidence, as usual for association rules, denotes the conditional probability of
the head of the rule, given the body. This parameter allows to measure the reliability of
a rule and in particular of an outlier, i.e. an IR with low probability of occurring.

As an example we report some interesting results computed by using the MUSING
data and where we set the minimum support to 1%. For each IRs we associate a short
interpretation.

ManagementTeam.hasYearOfExperience=1,

StrategicVisionAndQualityManagement.hasRate=1,

ResearchAndDevelopment.isACompanyInvestment=2
3%−→

CapitalizationStrategy.isTheIncreasingForeseen=2 (c=92%)

“In the 3% of the cases, if the years of experience of the management team are more
than 10, the rate of the strategic vision and quality management is excellent and the
company does not invest in R&D, then the company is not foreseeing to increase its
capitalization”.



What Else Can Be Extracted from Ontologies? Influence Rules 283

PreviousAchievements.hasPrevAchievements=2,

StrategicVisionAndQualityManagement.hasRate=1,

ResearchAndDevelopment.isACompanyInvestment=2
1%−→

CapitalizationStrategy.isTheIncreasingForeseen=2 (c=98%)

“In the 1% of the cases, if the company owner/CEO has no relevant past experiences,
the rate of the strategic vision and quality of management is Excellent and the company
does not invest in R&D, then the company is not foreseeing to increase its capitalisa-
tion.”

These two IRs have a very low probability but an high confidence, and they can be
considered important for an analyst interested in the behavior of a company towards the
strategies of management, the investment in the R&D, and the way to finance them.

ManagementTeam.hasYearOfExperience=3
1%−→

PreviousAchievements.hasPrevAchievements=2 (c=64%)

“In the 1% of the cases, if the years of experience of the management team are less than
5, then company owner/CEO has no relevant past experiences”.

This is a really rare case, but maybe it should be taken into consideration because of its
not negligible confidence value.

7 Conclusions and Future Works

In this paper we have presented how we handled the problem of extracting interesting
and implicit knowledge out of an ontology, presenting the results in form of influence
rules. Our idea was to drive the extraction process by using the ontology structure, and
to exploit the instances only in a second step. The main problem was to understand if
and how to use traditional methods for DM in the context of the ontology. Obviously, the
traditional systems can be used only as models, but they are not directly applicable to the
ontologies. By decomposing the problem into sub-problems, we succeeded in finding a
methodology taking inspiration from consolidated theories and recent developments.

Besides the theoretical results, we tested the system in an concrete setting exploiting
our involvement in a European industrial research project: MUSING. In this way, we
had at our disposal an integrated framework and a real set of data. Our analysis tool
mainly solves, in this domain, the problem of the availability of the expert knowledge.
In fact, in the economic field, obtaining a cognitive net of relationships from experts is
a hard task, either for the complexity of the matter, or for the lack of specific studies
(very often these rules are based on the expert believes or his/her own experience).

In the paper, we focused on the economic domain using the IRs for augmenting a set
of “similar” (for meaning, structure and objective) rules. Nevertheless, it is important
to point out that the system is fully general and can be used in several domains i.e. in
all the domains that can be described by an ontology and where instances are available.

To demonstrate this, we further tested the system in the domain of intrusion de-
tection. For this new case study, that is documented in [11], we used (i) the ontol-
ogy created by Pinkston et all. to detect different attacks [16] (57 classes, 21 object



284 B. Furletti and F. Turini

properties and 47 datatype properties), and (ii) a set of instances regarding intrusion
detection taken from the UCI KDD Archive [19] (27 variables and 311029 records).

Under appropriate system settings, we obtained a set of 70 IRs. Among these rules,
some of them result particular informative because they illustrates how dangerous an
attack can be. See for example the following rules:

IRA: In 52% of the cases, when the attack is classified as a ’smurf’, the number of the
hot indicator is ’0’ (i.e. the attack is not dangerous).
IRB: In 20% of the cases, when the connection status is ’normal’, the number of bytes
from the source to the destination is between 1 and 1032, the number of bytes from the
destination to the source is greater than 100 and there were no connections to the same
host as the current connection in the past two seconds, there were no files created.

We believe that one of the many advantages of our approach is the interpretability of the
rules, thanks to the semantics provided by the ontology. From the ontology we get not
only a list of concepts but also their description and the meaning of their relationships.
The process of interpretation, however, is still not fully automatic and, as happened in
MUSING, the support of the domain expert is valuable. Thus the challenge is to exploit
the information (explicit and hidden) in the ontology and from other sources as much as
possible, in order to automate the interpretation process, especially because the support
of experts is not always available.

Moreover, the new extension further enriches the system, making the IRs much more
informative and interesting than before.

Acknowledgements. This paper was supported by MUSING Project (IP FP-027097)
which provided an useful and convenient framework.

References

1. Baglioni, M., Bellandi, A., Furletti, B., Spinsanti, L., Turini, F.: Ontology-based business
plan classification. In: Proceedings of EDOC 2008, pp. 365–371 (2008)

2. Baglioni, M., Furletti, B., Turini, F.: DrC4.5: Improving C4.5 by means of prior knowledge.
In: Proceedings of SAC 2005, pp. 474–481 (2005)

3. Bellandi, A., Furletti, B., Grossi, V., Romei, A.: Pushing Constraints in Association Rule
Mining: An Ontology-Based Approach. In: Proceedings of the IADIS International Confer-
ence WWW/INTERNET (2007)

4. Bellini, L.: YaDT-DRb: Yet another Decision Tree Domain Rule builder. Master’s Thesis,
University of Pisa, Italy (2007)

5. Berners-Lee, T., Fischetti, M.: Weaving the Web. Harper, San Francisco (1997)
6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: The 7th

International World Wide Web Conference, Brisbane, Australia (1998)
7. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: Conquest: a

constraint-based querying system for exploratory pattern discovery. In: ICDE (2006)
8. Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervides Learning of Se-

mantic Relations for Molecular Biology Ontologies. In: Ontology Learning and Population:
Bridging the Gap between Text and Knowledge (2008)

9. Elsayed, A., El-Beltagy, S.R., Rafea, M., Hegazy, O.: Applying data mining for ontology
building. In: Proceedings of the 42nd Annual Conference on Statistics, Computer Science,
and Operations Research (2007)



What Else Can Be Extracted from Ontologies? Influence Rules 285

10. Furletti, B.: Ontology-Driven Knowledge Discovery. Ph.D. Thesis: IMT-Lucca (2009),
http://www.di.unipi.it/ furletti/papers/
PhDThesisFurletti2009.pdf

11. Furletti, B., Turini, F.: Knowledge Discovery in Ontologies. To Appear in: IDA Journal 16(3)
(2012)

12. Geller, J., Zhou, X., Prathipati, K., Kanigiluppai, S., Chen, X.: Raising data for improved
support in rule mining: How to raise and how far to raise. Intelligent Data Analysis 9(4),
397–415 (2005)

13. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 668–677 (1998)

14. MUSING Project (2006), http://www.musing.eu/
15. Parekh, V., Gwo, J., Finin, T.: Mining Domain Specific Texts and Glossaries to Evaluate and

Enrich Domain Ontologies. In: Proceedings of the International Conference of Information
and Knowledge Engineering (2004)

16. Pinkston, J., Undercoffer, J., Joshi, A., Finin, T.: A Target-Centric Ontology for Intrusion
Detection. In: Proceedings of the Workshop on Ontologies in Distributed Systems (2003)

17. Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann P. (1993)
18. Singh, S., Vajirkar, P., Lee, Y.: Context-Based Data Mining Using Ontologies. In: Song, I.-Y.,

Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 405–418.
Springer, Heidelberg (2003)

19. UCI KDD Archive. Data of The Third International Knowledge Discovery and Data Mining
Tools Competition (KDD CUP 1999) (1999),
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

20. Vela, M., Declerck, T.: Heuristics for Automated Text-Based Shallow Ontology Generation.
In: Proceedings of the International Semantic Web Conference, Posters & Demos (2008)

21. W3C Community, OWL Web Ontology Language Overview (2004),
http://www.w3.org/TR/2004/REC-owl-features-20040210/

22. W3C Community, RDF Vocabulary Description Language 1.0: RDF Schema (2004),
http://www.w3.org/TR/rdf-schema/

http://www.di.unipi.it/~furletti/papers/PhDThesisFurletti2009.pdf
http://www.di.unipi.it/~furletti/papers/PhDThesisFurletti2009.pdf
http://www.musing.eu/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/rdf-schema/


Author Index

Bertolino, Antonia 20
Bugliesi, Michele 151

Calabrò, Antonello 20
Cortesi, Agostino 151
Cuadrado, Félix 166

Dobrica, Liliana 199
Dueñas, Juan C. 166

España, Sergio 56

Fujita, Masahiro 181
Furletti, Barbara 270

Garćıa-Carmona, Rodrigo 166
Garćıa-Domı́nguez, Antonio 136
Giandomenico, Felicita Di 20
Gottron, Thomas 217
Grambow, Gregor 73

Hermanns, Christian 91
Hryniewicz, Olgierd 255
Huynh, Nguyen T. 108

Inverardi, Paola 20
Ivanov, Ivan I. 3

Jaakola, Marko 199

Kolp, Manuel 121
Kuchen, Herbert 91

Le, Anh D. 108
Le, Nhat-Van 108

Marca, David A. 38
Marcos-Bárcena, Mariano 136
Matthes, Florian 237
Medina-Bulo, Inmaculada 136
Mohammadzadeh, Hadi 217

Nakhaeizadeh, Gholamreza 217
Navas, Álvaro 166
Neubert, Christian 237
Nguyen, Phung H. 108
Nostro, Nicola 20

Oberhauser, Roy 73
Ovaska, Eila 199

Pastor, Óscar 56
Poelmans, Stephan 121
Prasad, Mukul R. 181
Purhonen, Anu 199

Quan, Tho T. 108

Rajan, Sreeranga P. 181
Reichert, Manfred 73
Ruiz, Marcela 56

Schweiggert, Franz 217
Spalazzese, Romina 20
Spanò, Alvise 151
Steinhoff, Alexander 237

Tanida, Hideo 181
Turini, Franco 270

Wautelet, Yves 121


	Title

	Preface
	Organization
	Table of Contents
	Invited Papers
	The Impact of Emerging Computing Models
on Organizational Socio-technical System
	Introduction
	IT in the Organizational Context
	Information Systems as Sociotechnical Systems
	Organizational Information Systems
	IT Transformations and Competitive Advantage
	Aligning IT with Enterprise Architecture

	Emerging Technologies Implications
	The Evolution of Emerging Dynamic Structures
	The Cloud Hype
	Emerging Dynamic Structures Impacts

	References

	On-the-Fly Dependable Mediation between Heterogeneous Networked Systems
	Introduction
	The CONNECT Project
	Case Study
	Terrorist Alert Scenario
	CONNECT in the Case Study

	Automated Mediator Synthesis
	Pre-deployment Analysis to Support CONNECTor Synthesis
	Pre-deployment Analysis in the Terrorist Alert Scenario

	Events Observation through Monitoring
	Continuous Run-Time Adaptation
	Related Work
	Conclusions
	References

	SADT/IDEF0 for Augmenting UML,
Agile and Usability Engineering Methods
	Introduction
	Domain Modeling Is Not the Core of Current Methods
	Domain Modeling Is at the Core of SADT/IDEF0
	The Use of SADT/IDEF0 Produces Holistic Domain Models
	SADT/IDEF0 Can Address any Level of Complexity or Abstraction

	Why Consider SADT/IDEF0?
	Vast Experience in a Wide Variety of Domains
	Strong Conceptual Underpinnings for Modeling
	SADT/IDEF0 Features Are for Domain Modeling
	Preservation of Context

	Augmentation Approach
	Domain Knowledge Required by Other Methods
	Strong Specifications of Domain Knowledge
	Knowledge Specification Using In-Context Supplements
	SADT/IDEF0 Ontology and Model Supplements Enable Augmentation

	Augmentations for UML, Agile and Usability Engineering
	Benefits to UML
	Benefits to Agile
	Benefits to Usability Engineering

	Summary, Conclusions and Future Work
	References

	From Requirements to Code:
A Full Model-Driven Development Perspective
	Introduction
	The OO-Method Framework
	The Conceptual Modelling Core
	Communication Analysis

	Integration
	The Life of Requirements
	Some Open Challenges and Future Work
	References


	Part I
Enterprise Software Technology
	Enabling Automatic Process-Aware Collaboration
Support in Software Engineering Projects
	Introduction
	Problem Scenario
	Automatic Coordination Support
	Active Coordination Support
	Passive Coordination Support

	Application Example
	Modeling Effort
	Related Work
	Conclusions
	References


	Part II
Software Engineering
	Hybrid Debugging of Java Programs
	Introduction
	Hybrid Debugging Technique
	Overview
	Declarative Debugging
	Omniscient Debugging
	Coverage Based Navigation Strategy

	User Interface
	Debugging Session Example
	Implementation
	Test Results
	Related Work
	Conclusions and Future Work
	References

	Combined Constraint-Based Analysis for Efficient
Software Regression Detection in Evolving Programs
	Introduction
	Motivating Example
	Constraint Solving for Regression Bugs Detection
	The CTGE Algorithm
	Experimental Results
	Conclusions
	References

	Requirements-Driven Iterative Project Planning
	Introduction
	Iterative Template
	Core Disciplines
	Support Disciplines
	Process Phases

	Iterative Planning
	Running Example: Coking Process
	Agents for Steel Making
	Engineering Disciplines
	Risk Management
	Quality Management
	Time Management

	Related Work
	Conclusions
	References

	An Approach for Model-Driven Design and Generation
of Performance Test Cases with UML and MARTE
	Introduction
	The MARTE Profile
	Selected Subset
	Usage
	Running Example

	Inference Algorithms
	Throughput Inference
	Time Limit Inference

	Evaluation
	Restrictions
	Theoretical Performance
	Empirical Performance

	Generation of Test Cases
	Related Work
	Conclusions and Future Work
	References

	Typing Legacy COBOL Code
	Introduction
	Overview
	Comparisons and Motivation

	Type System
	Storage Types and Flow-types
	Environments
	Coercion of L-Values
	Loops and Convergence

	Formal Specification
	IL
	Definitions
	Type Rules

	References

	A Repository for Integration of Software Artifacts
with Dependency Resolution and Federation Support
	Introduction
	State of the Art
	The OSGi Component and Service Model
	Software Repository Standards

	Proposed Solution
	Software Component Metamodel
	Repository Architecture
	Faceted Dependency Resolution
	Repository Federation

	Validation
	Conclusions and Future Work
	References

	Automated System Testing
of Dynamic Web Applications
	Introduction
	Related Work
	Background
	Automated Crawling of Ajax Applications
	Model Checking

	Proposed Method
	Model Generation
	Model Validation

	Tool Implementation
	Case Study
	Subject Web Applications
	Model Generation
	Model Checking

	Discussion
	Conclusions and Future Work
	References


	Part III
Distributed Systems
	Technologies for Autonomic Dependable Services
Platform: Achievements and Future Challenges
	Introduction
	Self-adaptation Technologies
	Self-*ilities of Autonomic Systems
	Adaptive Middleware Architectures
	Enhanced Intelligence

	Ontologies
	Service Ontologies
	Context Ontologies
	QoS and Dependability Ontologies

	Modeling Approaches
	Service Modeling
	Context Modeling
	Dependability Modeling

	Smart City Experiment
	Integration of Heterogeneous Platforms
	Semantic Information Interoperability Platform
	Dependability Metrics and Measuring Techniques
	Proactive Adaptation

	Future Challenges
	Conclusions
	References


	Part IV
Data Management
	Extracting the Main Content ofWeb Documents Based
on Character Encoding and a Naive Smoothing Method
	Introduction
	Related Work
	Methods Based on the DOM Tree
	Methods Based on HTML Source Code Elements

	R2L Languages, Unicode, and UTF-8 Encoding Form 
	Languages on the Web
	Unicode Character Set
	UTF-8 Encoding Form

	Algorithms: R2L, DANA, and DANAg
	Algorithm R2L
	Algorithm DANA
	Algorithm DANAg

	Evaluation
	Data Sets
	Evaluation Methodology
	Results

	Conclusions and Future Work
	References

	Facilitating Structuring of Information
for Business Users with Hybrid Wikis
	Motivation and Problem Statement
	Hybrid Wikis
	General Principles and Design Rationale
	Structuring Concepts
	Input Support
	Limitations
	Example Scenario

	Implementing Hybrid Wikis
	Practical Experiences
	Wiki4EAM Community
	InfoAsset Bugtracker

	Related Work
	Summary and Outlook
	References


	Part V
Knowledge-Based Systems
	Statistical and Possibilistic Methodology
for the Evaluation of Classification Algorithms
	Introduction
	Statistical Tests for the Comparison of Classification
Algorithms
	Possibilistic Evaluation of Test Results
	Conclusions
	References

	What Else Can Be Extracted from Ontologies?
Influence Rules
	Introduction
	Ontologies and Data Mining
	Technical Background
	Link Analysis
	HITSxONTO Algorithm

	Ontology Mining Strategy
	Case Study
	New Developments
	Conclusions and Future Works
	References


	Author Index



