
2The Arthropoda: A Phylogenetic
Framework

Gonzalo Giribet and Gregory D. Edgecombe

Contents

2.1 Introduction................................................ 17

2.2 Arthropods in the Animal Tree
of Life.......................................................... 18

2.3 The Arthropod Tree of Life..................... 21
2.3.1 Neural Cladistics ......................................... 23
2.3.2 Novel Molecular Approaches ..................... 24

2.4 Advancing Arthropod Phylogenetics ...... 27
2.4.1 Chelicerata ................................................... 27
2.4.2 Myriapoda.................................................... 28
2.4.3 Tetraconata .................................................. 29

2.5 Final Remarks............................................ 31

References ................................................................ 32

2.1 Introduction

Arthropoda, the best-known member of the clade
Ecdysozoa, is a phylum of protostome animals,
its closest relatives being Onychophora (velvet
worms) and Tardigrada (water bears). Arthro-
pods are not only the largest living phylum in
terms of species diversity, with 1,214,295 extant
species, including 1,023,559 Hexapoda, 111,937
Chelicerata, 66,914 Crustacea and 11,885
Myriapoda (Zhang 2011), but they have probably
been so since the Cambrian. The number of fossil
arthropods is even harder to estimate; the
EDNA fossil insect database lists ca. 25,000
species (http://edna/palass-hosting.org/); 1,952
valid species of fossil chelicerates were reported
by Dunlop et al. (2008), and the decapod crus-
taceans include 2,979 fossil species (De Grave
et al. 2009). Trilobites (19,606 species fide
Adrain 2011) and ostracods ([50,000 species)
are two of the best-represented arthropod groups
in the fossil record.

Arthropods are also, together with Mollusca
and Annelida, among the animal phyla with the
greatest body plan disparity. This astonishing
diversity and disparity of extant and extinct
lineages have inspired hundreds of published
research articles discussing different aspects of
their phylogenetic framework, first focusing on
anatomy and embryology, and later being
strongly influenced by functional morphology.
The advent of cladistic techniques in the mid-
twentieth century and the widespread use of
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molecular data in the last 25 years—the first
molecular approach to arthropod phylogeny was
published in 1991 by Turbeville et al. (1991)—
have revolutionized our understanding of the
Arthropod Tree of Life. Given the amount of
effort revisiting and reviewing arthropod phy-
logenetics, this chapter will touch upon some of
the most fundamental questions: (a) the rela-
tionship of arthropods with other key protostome
phyla and (b) the relationships between the
major arthropod lineages (often referred to as
classes, superclasses or subphyla: Pycnogonida,
Euchelicerata, Myriapoda and Tetraconata—
Tetraconata or Pancrustacea is widely accepted
as a clade of arthropods that include the tradi-
tional classes Crustacea and Hexapoda, the for-
mer often found to be paraphyletic with respect
to the latter). Finally, this chapter will provide a
roadmap for future focus in arthropod phyloge-
netic and evolutionary research.

2.2 Arthropods in the Animal
Tree of Life

Arthropods are protostome animals, and like
other protostomes, they have an apical dorsal
brain with a ventral longitudinal paired nerve
cord and a mouth that typically originates from
the embryonic blastopore. They have been tra-
ditionally considered to have a primary body
cavity, or coelom, that has been restricted to the
pericardium, gonoducts and nephridial structures
(coxal glands, antennal/maxillary glands)
(Brusca and Brusca 2003), but the true coelomic
nature of arthropods has been recently called
into question. The only putative coelomic cavi-
ties in Artemia salina, one of the species that
underpinned former ideas about arthropods
having a coelom, are the nephridial sacculus in
the second antennal and second maxillary seg-
ments. However, these have been shown not to
be remnants of any primarily large coelomic
cavity (Bartolomaeus et al. 2009). Similarly,
although many authors at one time considered
arthropods to have a modified spiral cleavage
(Anderson 1969)—as found in annelids,
molluscs, nemerteans and platyhelminths

(Maslakova et al. 2004)—this idea is now
rejected (Scholtz 1998).

The systematic position of arthropods has
changed radically in the past two decades as a
result of refinements in numerical phylogenetic
analysis and even more so by the introduction of
molecular data. Traditionally, arthropods, ony-
chophorans and tardigrades—the three collec-
tively known as Panarthropoda or Aiolopoda—
were grouped with annelids in a clade named
Articulata (Cuvier 1817), in reference to the
segmental body plan in these phyla (Scholtz
2002). The competing Ecdysozoa hypothesis
(Schmidt-Rhaesa et al. 1998; Giribet 2003)
unites arthropods, onychophorans and tardi-
grades with a group of mostly pseudocoelomate
animals with which they share a cuticle that is
moulted at least once during the life cycle and
lacks epidermal ciliation. Ecdysozoa was pro-
posed originally on the basis of 18S rRNA
sequence data (Aguinaldo et al. 1997; Giribet
1997; Giribet and Ribera 1998) but has subse-
quently been shown to have support from
diverse kinds of molecular information (Edge-
combe 2009) (see examples listed below).
Concurrently, support has waned for the putative
clade once thought to unite arthropods with
annelids, despite various morphological phy-
logenies that retrieved Articulata (e.g. Nielsen
et al. 1996; Sørensen et al. 2000; Nielsen 2001;
Brusca and Brusca 2003). Contradictory support
for Articulata was also found early based on
morphological data analyses that explained the
similarities of annelids to molluscs and other
spiral-cleaving phyla without having to force
arthropods to have ‘‘lost’’ spiral cleavage and a
trochophore larva to salvage Articulata and
recovered effectively Ecdysozoa (Eernisse et al.
1992), or has been shown to depend on the
interpretation of certain morphological charac-
ters (Jenner and Scholtz 2005). In some cases,
authors attempted to reconcile both hypotheses
by making Ecdysozoa the sister group of
Annelida, nested within Spiralia (Nielsen 2003),
or by making Annelida paraphyletic to the
inclusion of Ecdysozoa and Enterocoela
(Almeida et al. 2003). Even before the molecular
support for Ecdysozoa was proposed, some
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visionary zoologists had already proposed a
relationship of arthropods with the then known
‘‘aschelminth’’ phyla (Rauther 1909; Colosi
1967), and others had questioned the homology
of segmentation in arthropods and annelids
(Minelli and Bortoletto 1988). Kristensen (1991,
p. 352), discussing the phylogenetic relation-
ships of Loricifera, wrote

Annulation of the flexible buccal tube, telescopic
mouth cone, and the three rows of placoids are
found only in Tardigrada and Loricifera (Kris-
tensen, 1987). Because tardigrades exhibit several
arthropod characters (see Kristensen, 1976, 1978,
1981), this last finding supports a theory about a
relationship between some aschelminth groups
and arthropods (Higgins, 1961). That theory has
recently gained support derived primarily from
new ultrastructural data, e.g., the fine structure of
the chitinous cuticular layer, molting cycle, sense
organs, and muscle attachments.

Combined parsimony or Bayesian analyses of
morphology and molecules have consistently
retrieved Ecdysozoa rather than Articulata
(Zrzavý et al. 1998b; Giribet et al. 2000; Peter-
son and Eernisse 2001; Zrzavý et al. 2001;
Zrzavý 2003; Glenner et al. 2004). Likewise,
molecular analyses of metazoan relationships
have repeatedly recovered ecdysozoan mono-
phyly, whether using just a few genes (e.g.
Aguinaldo et al. 1997; Giribet and Ribera 1998;
Giribet and Wheeler 1999; Giribet et al. 2000;
Mallatt and Winchell 2002; Ruiz-Trillo et al.
2002; Mallatt et al. 2004; Telford et al. 2005;
Mallatt and Giribet 2006; Bourlat et al. 2008;
Paps et al. 2009a, b; Mallatt et al. 2010), or large
collections of genes in phylogenomic analyses
(e.g. Dunn et al. 2008; Hejnol et al. 2009; Holton
and Pisani 2010; Philippe et al. 2011). When
Ecdysozoa was rejected in molecular analyses,
as happened in some early genome-scale anal-
yses with depauperate taxonomic sampling, the
rival group was Coelomata (nematodes falling
outside a group that included arthropods and
vertebrates) (Blair et al. 2002; Dopazo et al.
2004; Wolf et al. 2004; Philip et al. 2005), but
Articulata was never tested because no annelid
was represented in those analyses. Further
analyses of these initial whole eukaryotic
genomes, whether using intron conservation

patterns, rare genomic changes or standard
sequence data, rejected Coelomata (Roy and
Gilbert 2005; Irimia et al. 2007; Holton and
Pisani 2010). Nowadays, even authors who once
argued fervently for Articulata have accepted
Ecdysozoa (e.g. Nielsen 2012).

Thus, an alliance between Panarthropoda and
five moulting phyla with collar-shaped, circum-
esophageal brains (i.e. Nematoda, Nematomor-
pha, Kinorhyncha, Priapulida and Loricifera) is
the strongest available hypothesis. The latter five
phyla are collectively named Cycloneuralia
(some authors also include Gastrotricha in this
group) or Introverta. The exact position of the
three panarthropod phyla within this clade has
remained unsettled, often because authors
questioned the monophyly of Panarthropoda.
The jointed appendages of arthropods have been
homologized with the lobopods of onychopho-
rans, a view strengthened by similar genetic
patterning of the proximo-distal axes of both
kinds of appendages (Janssen et al. 2010), as
well as with the limbs of tardigrades. The
homology of these paired ventrolateral seg-
mental appendages, which also share segmen-
tally arranged leg nerves, provides the most
conspicuous apomorphy for Panarthropoda.
Earlier, the appendages were also considered
possible homologues of the annelid parapodia.
Although some arguments from gene expression
have been made in defence of this homology
(Panganiban et al. 1997), they mostly pertain to
general characters of lateral outgrowths of bod-
ies, and even authors arguing in defence of
Articulata have observed that the complexity of
the similarities between panarthropod legs and
parapodia is not great (Scholtz 2002). Their
homology is not generally accepted now.

Under the Panarthropoda hypothesis, each of
the three competing resolutions for the interre-
lationships between the three groups has been
defended in recent studies, that is, either Ony-
chophora, or Tardigrada, or a clade composed of
them both is the candidate sister group of
arthropods (reviewed by Edgecombe et al. 2011;
Giribet and Edgecombe 2012). Phylogenomic
data have repeatedly endorsed the first option, an
onychophoran–arthropod clade (Giribet and
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Edgecombe 2012), but the position of tardi-
grades has been less clear. Two placements for
tardigrades recur in broadly sampled molecular
analyses, being either sister group of Onycho-
phora ? Arthropoda or Nematoda, and in fact
both of these alternatives are resolved for the
same EST (expressed sequence tag) datasets
(Roeding et al. 2007; Dunn et al. 2008; Hejnol
et al. 2009; Meusemann et al. 2010; Campbell
et al. 2011; Rehm et al. 2011) or mitogenomic
data (Rota-Stabelli et al. 2010) under different
analytical conditions. In the latter case, condi-
tions intended to counter certain kinds of sys-
tematic error strengthen the support for
tardigrades grouping with arthropods and ony-
chophorans rather than with nematodes, and the
same pattern has also been found for EST-based
analyses (Campbell et al. 2011). Tardigrades,
onychophorans and arthropods have also been
united as a clade based on a uniquely shared
micro-RNA (non-coding regulatory genes)
(Campbell et al. 2011), with another micro-RNA
grouping onychophorans and arthropods to the
exclusion of tardigrades.

Thus, current evidence favours panarthropod
monophyly with the subgroups (Tardigrada
(Onychophora ? Arthropoda)), but better sam-
pling is required within Ecdysozoa before this
issue is definitely resolved, as ESTs are absent
for loriciferans and scarce for kinorhynchs, ne-
matomorphs and priapulans. A rival clade that
includes Tardigrada, Nematoda and Nemato-
morpha, and even Loricifera, has some mor-
phological (Kristensen 1991) and limited
molecular (Sørensen et al. 2008) support. In
contrast, the alliance of tardigrades with ony-
chophorans and arthropods, along with the fossil
lobopodians and anomalocaridid-like taxa
(‘‘gilled lobopodians’’), is consistent with a
single origin of paired, segmental ventrolateral
appendages in a unique common ancestor (Liu
et al. 2011; Giribet and Edgecombe 2012).

Arthropod monophyly (Lankester 1904;
Snodgrass 1938) is now nearly universally
accepted based on morphological, developmen-
tal and molecular evidence, but this has not
always been the case. The Manton School
strongly advocated for arthropod polyphyly

(Tiegs and Manton 1958; Anderson 1973;
Manton 1973, 1977; Willmer 1990), but this
reasoning was based on differences between
groups and conjectures about whether or not
intermediate forms could be functionally viable;
it did not provide characters that supported
alternative sister group hypotheses with non-
arthropod phyla. In the absence of explicit rival
hypotheses, arthropod monophyly remains
unchallenged and is supported by a suite of
synapomorphies. These include a sclerotized
exoskeleton, and legs that are composed of
sclerotized podomeres separated by arthrodial
membranes, two characters absent in onycho-
phorans and tardigrades (some authors use the
term Arthropoda to include Onychophora and
Tardigrada, but we reject this nomenclature, as
the members of those phyla have not undergone
the arthropodization process). In all arthropods
except pycnogonids, muscles attach at interseg-
mental tendons. Compound eyes across the
Arthropoda share a similar developmental mode,
with new eye elements being added in a
peripheral proliferation zone of the eye field
(Harzsch and Hafner 2006), and the presence of
two optic neuropils in the inferred ancestor is
apomorphic for arthropods as a whole (Harzsch
2006). Segmentation gene characters, such as a
pair-rule function of the Pax protein (Angelini
and Kaufman 2005; Gabriel and Goldstein
2007), and a conserved pattern of how neural
precursors segregate (Eriksson and Stollewerk
2010a) map onto the tree as autapomorphies of
Arthropoda compared with the states in Ony-
chophora and Tardigrada. Under the criterion of
monophyly, the parasitic Pentastomida are
arthropods. This group had a long history of
classification as ‘‘prot(o)arthropods’’ in its own
phylum (Brusca and Brusca 1990), and an early
divergence from the arthropod stem lineage is
still endorsed by some morphologists (Castellani
et al. 2011). The molecular arguments for a
placement as ingroup crustaceans, grouped with
branchiuran fish lice according to the Ichthyo-
straca hypothesis, are strong (Abele et al. 1989;
Giribet et al. 2005; Møller et al. 2008; Regier
et al. 2010; Sanders and Lee 2010), if in con-
flict with some morphological interpretations
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(Waloszek et al. 2006), and are congruent with
synapomorphies from sperm ultrastructure
(reviewed by Giribet et al. 2005).

2.3 The Arthropod Tree of Life

The diversity of arthropods traditionally has
included the classes (or comparatively higher-
rank taxa) Chelicerata, Myriapoda, Hexapoda
and Crustacea, with Pycnogonida sometimes
considered part of Chelicerata (hence divided
into Pycnogonida, Xiphosura and Arachnida), or
their own class, due to their unique morphology
and uncertain phylogenetic affinities. Recent
developments have provided strong endorsement
for paraphyly of Crustacea with respect to
Hexapoda, and hence, we consider the extant
arthropod phylogenetic conundrum as a four-
taxon problem—Pycnogonida, Euchelicerata
(=Xiphosura ? Arachnida), Myriapoda and
Tetraconata (=Pancrustacea)—with three alter-
native rootings (Fig. 2.1a–c).

Relationships between these groups have
been debated for decades. Through much of the
twentieth century, the only nearly universally
accepted result was the monophyly of Ateloc-
erata (also known as Tracheata)—a clade com-
posed of hexapods and myriapods (e.g.
Snodgrass 1938; Wheeler et al. 1993)
(Fig. 2.1d). However, the addition of molecular
and novel anatomical and developmental data
has helped to reinterpret arthropod relationships,
with the result that Atelocerata has been over-
turned. In most contemporary studies, hexapods
are associated with crustaceans instead of with
myriapods (e.g. Friedrich and Tautz 1995;
Giribet et al. 1996, 2001, 2005; Regier and
Shultz 1997; Giribet and Ribera 1998, 2000;
Zrzavý et al. 1998a; Hwang et al. 2001; Regier
et al. 2005a, 2008, 2010; Mallatt and Giribet
2006; Meusemann et al. 2010; von Reumont and
Burmester 2010; Campbell et al. 2011; Regier
and Zwick 2011; Rota-Stabelli et al. 2011; von
Reumont et al. 2012) in a clade named Tetrac-
onata in reference to the shared presence of four
crystalline cone cells in the compound eye
ommatidia in both groups (Richter 2002). A few

groups of morphologists still argue in support of
Atelocerata (Bitsch and Bitsch 2004; Bäcker
et al. 2008), though this follows as a conse-
quence of either examining a single character
system (e.g. pleurites around the leg base in the
case of Bäcker et al. 2008) or not including the
rival characters for Tetraconata in the analysis.
Morphologists who recognize Tetraconata have
reinterpreted the putative apomorphies of Ate-
locerata as likely being convergences due to
terrestrial habits (Harzsch 2006), and numerical
cladistic analyses that incorporate the neuro-
anatomical evidence for Tetraconata retrieve
that group in favour of Atelocerata (Giribet et al.
2005; Rota-Stabelli et al. 2011). Perhaps, the
only novel argument in support of Atelocerata in
modern times is a similar expression pattern of
the Drosophila collier gene (col) in the limbless
intercalary segment of the head in a few studied
myriapods and insects (Janssen et al. 2011). This
conserved function of col in insects and myria-
pods as a putative synapomorphy is
overwhelmed by a much larger body of neuro-
anatomical and molecular data that speak in
favour of a crustacean–hexapod clade. Thus, the
col function could have been lost in early head
development in crustaceans or may indeed have
evolved convergently in insects and myriapods.

A perfectly resolved Arthropod Tree of Life is
still elusive, but the notion that arthropod phy-
logeny can be depicted as ‘‘chaos’’ (Bäcker et al.
2008) is obsolete. Several patterns, including a
basic unrooted topology, are congruent among
nearly all new sources of data, and today, most
authors interpret the arthropod phylogeny prob-
lem as a rooting problem (Giribet et al. 2005;
Caravas and Friedrich 2010; Giribet and Edge-
combe 2012) and not as alternative conflicting
topologies. These three alternative rootings
result in (a) Pycnogonida as sister to all other
arthropods (=Cormogonida) (Zrzavý et al.
1998a; Giribet et al. 2001); (b) Chelicerata
monophyletic and sister group to Mandibulata
(Regier et al. 2008, 2010; Rota-Stabelli and
Telford 2008; Regier and Zwick 2011; Rota-
Stabelli et al. 2011), or those arthropods with
true mandibles (Edgecombe et al. 2003), as
opposed to cheliceres or chelifores; and (c) a
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clade named Paradoxopoda (=Myriochelata) that
joins myriapods with the chelicerate groups
(Friedrich and Tautz 1995; Hwang et al. 2001;
Mallatt et al. 2004; Pisani et al. 2004; Mallatt
and Giribet 2006; Dunn et al. 2008; von
Reumont et al. 2009; Rehm et al. 2011)
(Fig. 2.1a–c). Whereas the choice between these
hypotheses involves the placement of the root, a
few traditional morphological hypotheses pres-
ent more fundamental topological conflict.
Among the conflicting hypotheses are

Atelocerata and Schizoramia (Fig. 2.1d), the
latter uniting Crustaceomorpha and Arachno-
morpha (Bergström 1979; Hessler 1992).

In this chapter, we focus on developments in
two key areas, comparative anatomy and novel
molecular approaches, each of which has
advanced greatly since the publication of the
first arthropod phylogenies combining mor-
phology and multiple molecular markers
(Wheeler et al. 1993; Zrzavý et al. 1998a;
Giribet et al. 2001). Since then, the quantity of

Fig. 2.1 Alternative hypotheses of arthropod relation-
ships, including the three currently recognized rooting
options. a Cormogonida. b Chelicerata versus Mandibulata.

c Paradoxopoda/Myriochelata. d A traditional view of
arthropod relationships with the putative clades Schizor-
amia and Atelocerata/Tracheata
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molecular data devoted to this problem has
increased exponentially with recent genomic
approaches. The techniques used to analyse
developmental and anatomical data have also
improved considerably as a result of new tech-
nological advances. For example, a classical
technique for studying internal anatomy, histo-
logical sectioning, is now aided by computer
reconstruction (e.g. Stegner and Richter 2011 for
cephalocarids). Non-invasive, non-destructive
techniques for anatomical imaging are continu-
ally being refined. Among these are confocal
laser microscopy, micro-computed tomography
and magnetic resonance imaging (Hörnsche-
meyer et al. 2002; Friedrich and Beutel 2010).
Other new techniques have been developed to
focus on particular organ systems, for example,
studies on the circulatory system that apply
micro-CT techniques and 3D reconstruction
with corrosion casting are a source of new
characters for several arthropod groups (Wirkner
and Richter 2004; Wirkner and Prendini 2007;
Huckstorf and Wirkner 2011). While these
techniques have had an impact, they have still
been applied to a limited (yet valuable) number
of taxa, both fossil and extant.

2.3.1 Neural Cladistics

Comparative anatomy was the traditional source
of data for inferring arthropod phylogeny, cou-
pled with evidence from embryonic and post-
embryonic development (Anderson 1973).
Among anatomical systems that are currently
receiving intensive study for their phylogenetic
signal, the nervous system is perhaps prevalent,
an approach that has come to be called neuro-
phylogeny (Richter et al. 2010) or neural cla-
distics (Strausfeld and Andrew 2011). Nervous
system characters had already played an
important role in arthropod phylogenetics in the
early twentieth century (Strausfeld 2012).
Indeed, one of the major insights of this early
neuroanatomical research was the ancestry of
hexapods from crustaceans rather than from
myriapods, a hypothesis that drew its support
from characters that have returned to the

forefront of debate, such as eye ultrastructure
and configurations of the optic neuropils (Han-
ström 1926). A crustacean ancestry of hexapods
laid dormant through the decades in which
myriapods were upheld as the closest relatives of
hexapods, until the mid-1990s. Since then,
neuroanatomists have provided compelling cor-
roboration for crustacean paraphyly as well as
many other key nodes in the arthropod tree by
applying new staining/immunoreactivity and
imaging techniques, coupled with analysis of the
data by cladistic methods.

Character matrices based on the nervous
system (Harzsch 2006; Strausfeld 2009; Straus-
feld and Andrew 2011) consistently resolve
Malacostraca and Hexapoda as more closely
related to each other than either is to Branchio-
poda or is to Maxillopoda, as upheld earlier by
Hanström. Character support for a malacostra-
can–hexapod clade to the exclusion of branchi-
opods is provided by such shared features as
optic neuropils that have a nesting of the lamina,
medulla, lobula and lobula plate and their con-
nections by crossed axons (chiasmata). To
explain the distribution of character states on a
tree in which cephalocarids and remipedes are
positioned stemward of branchiopods within
Tetraconata, branchiopod brains have been
interpreted as secondarily simplified from an
ancestor that shared traits seen in the brains of
malacostracans and remipedes (Strausfeld and
Andrew 2011). Character polarities are, how-
ever, very much dependent upon the exact pat-
tern of relationships between these crustacean
groups and Hexapoda, an area that is subject to
instability between different analyses (notably
for the relationship between remipedes and
cephalocarids).

The mode of development of neural tissue
has played a major role in recent discussion
about where the root should be placed between
the main extant arthropod groups, which corre-
sponds to the controversy over Mandibulata
versus Paradoxopoda. Detailed similarities in
chelicerate and myriapod neurogenesis have
been recognized for nearly a decade (Dove and
Stollewerk 2003; Kadner and Stollewerk 2004;
Mayer and Whitington 2009) and present a
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contrast with the stem cell–like division of
neural precursors in insects and crustaceans
(Ungerer et al. 2011). The question becomes one
of polarity—whether the chelicerate–myriapod
characters are symplesiomorphies, inherited
from the ancestor of all arthropods, or are
potential synapomorphies that provide anatomi-
cal support for Paradoxopoda. To resolve this
matter, neurogenesis in the arthropod sister
group, Onychophora, has been examined using
immunohistochemistry and confocal laser
microscopy (Mayer and Whitington 2009;
Whitington and Mayer 2011), supplemented by
new data from gene expression of Delta, Notch
and ASH (Eriksson and Stollewerk 2010a, b).
The results remain open to interpretation, the
onychophorans being argued to share characters
with insects and crustaceans, being thus a ple-
siomorphic state, which would make the condi-
tion in myriapods and chelicerates apomorphic,
providing positive support for Paradoxopoda
(Mayer and Whitington 2009; Whitington and
Mayer 2011). Other authors instead suggest that
onychophorans possess unique and divergent
character states that cannot be homologized with
those of insects and crustaceans and that myri-
apods have characters of neural precursor cells
that are consistent with Mandibulata rather than
with Paradoxopoda (Eriksson and Stollewerk
2010a). Knowledge on the neurogenesis of
pycnogonids at this level is entirely lacking, but
would constitute an obvious starting point to
look into in order to possibly settle this debate.

The most recent neural cladistic analysis
(Strausfeld and Andrew 2011) has retrieved
Mandibulata as a monophyletic group, but it has
also exposed the ongoing problem of correctly
rooting Arthropoda, for example, Onychophora
unite with Chelicerata as a putative clade for the
same data. The latter grouping is contradicted by
many other kinds of data and signals an incorrect
root position, possibly resulting from a distant
outgroup (annelids were used as an outgroup
rather than as tardigrades and/or cycloneura-
lians). Though Mandibulata is depicted as the
‘‘state of play’’ in some recent studies (as in
Regier et al. 2010; Rota-Stabelli et al. 2011), it
need be cautioned that anatomical and gene

expression data supporting Paradoxopoda con-
tinue to emerge. As an example, we note
expression patterns along the proximo-distal axis
of the limb, specifically the expression domains
of homothorax (hth) and extradenticle (exd).
These are comparable with chelicerates (spiders
and harvestmen) and millipedes (Abzhanov and
Kaufman 2000; Prpic et al. 2003; Prpic and
Damen 2004; Pechmann and Prpic 2009; Sharma
et al. 2012). hth is expressed broadly in much of
the developing appendage, whereas exd is
restricted to the proximal podomeres. Taken
together with the inverse spatial relationship
between hth and exd in onychophorans and
pancrustaceans (Prpic et al. 2003; Prpic and
Telford 2008; Janssen et al. 2010), the expression
data are consistent with a sister group relation-
ship between chelicerates and myriapods.

2.3.2 Novel Molecular Approaches

Understanding of arthropod relationships has
been transformed by molecular data, with vast
refinements in both sampling and techniques
since an initial wave of analyses was conducted
in the early 1990s (Abele et al. 1989; Wheeler
1989; Kim and Abele 1990; Turbeville et al.
1991; Carmean et al. 1992; Spears et al. 1992;
Pashley et al. 1993; Wheeler et al. 1993). Until
the past few years, molecular phylogenies relied
on direct sequencing of a few selected genes that
were amplified with specific primers—an
approach now called a ‘‘target-gene approach’’.
Arthropod phylogenies were often inferred from
nuclear ribosomal genes (Friedrich and Tautz
1995; Giribet et al. 1996; Giribet and Ribera
2000; Mallatt and Giribet 2006; von Reumont
et al. 2009), nuclear protein-encoding genes
(Regier and Shultz 1997; Shultz and Regier
2000; Regier and Shultz 2001; Regier et al.
2004, 2005a), or a combination of these with
mitochondrial genes (Giribet et al. 2001, 2005;
Giribet and Edgecombe 2006). These studies
typically used just a few genes to build trees.
Other analyses instead focused on mitogenomics
(Boore et al. 1995; Hwang et al. 2001; Lavrov
et al. 2002; Masta and Boore 2008; Rota-Stabelli
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et al. 2010), the analysis of complete mito-
chondrial genomes. Although the early analyses
of mitochondrial genes from the 1990s some-
times yielded contradictory and/or morphologi-
cally anomalous results (Ballard et al. 1992),
many of these problems have now been identi-
fied as resulting from a deficient taxon sampling,
too few molecular data, systematic error or
combinations of these defects.

The target-gene approach still forms the basis
for some modern work on arthropod phyloge-
netics. The number of markers has substantially
increased, drawing on as many as 62 nuclear
protein-encoding genes (Regier et al. 2008; Re-
gier and Zwick 2011), as has the taxon sampling,
up to 75 taxa (Regier et al. 2010). The use of
large numbers of markers obtained through
standard PCR approaches has been an important
advance, and in the case of the arthropod dataset,
it permits a clear choice of Mandibulata over
Paradoxopoda and injects new hypotheses for
crustacean interrelationships (though some of
these have been questioned because they do not
account for serine codon usage bias and are
contradicted under alternative analytical condi-
tions: Rota-Stabelli et al. 2013). The downsides
of this method are that it is time-consuming, it is
difficult to consistently amplify large numbers of
genes for many taxa, and many of the selected
genes may present problems of paralogy that are
difficult to detect by PCR approaches alone
(Clouse et al. submitted).

Developments in sequencing technology and
shotgun approaches following the sequencing of
the first complete eukaryotic genomes of Cae-
norhabditis elegans, Drosophila melanogaster
and Homo sapiens ushered in a new era in the
production of DNA sequence data. ‘‘Next-gen-
eration sequencing’’ uses random sequencing
strategies and automated processes to collect
hundreds or thousands of genes from cDNA
libraries obtained from mRNA, for a fraction of
the effort required to amplify multiple markers.
The genes are processed automatically in phy-
logenetic analyses (Dunn et al. 2008; Edge-
combe et al. 2011) that have come to be known
as ‘‘phylogenomic’’—based on a sizeable frac-
tion of a transcriptome or a genome (Morozova

et al. 2009). The random sequencing of clones
from a cDNA library generates large numbers of
ESTs, and soon, studies combined the data from
full genomes with novel ESTs generated for a
diverse sampling of protostomes (Dunn et al.
2008; Hejnol et al. 2009) or arthropods in par-
ticular (Roeding et al. 2009; Meusemann et al.
2010; Campbell et al. 2011; Rehm et al. 2011;
Rota-Stabelli et al. 2011; von Reumont et al.
2012).

With respect to the basal split in Arthropoda,
EST-based studies to date have come down in
favour of either Paradoxopoda (Fig. 2.1b) or
Mandibulata (Fig. 2.1c), generally observing the
choice between the two to be sensitive to taxon
sampling, but also to gene sampling. The first
EST analyses supported the Paradoxopoda
hypothesis (Dunn et al. 2008; Hejnol et al. 2009;
Roeding et al. 2009; Meusemann et al. 2010),
whereas others support a split between Chelic-
erata and Mandibulata (Campbell et al. 2011;
Rota-Stabelli et al. 2011). The most densely
sampled analysis, which added some crustacean
lineages missing from earlier studies (von Reu-
mont et al. 2012), retrieved Mandibulata when
their entire taxon/character sample was used, but
support shifted to Paradoxopoda when the
matrix was reduced according to criteria that the
authors believed would lessen ‘‘noise’’. The two
hypotheses were likewise found to be variably
supported for different taxonomic samples in
EST analyses by Andrew (2011).

Most EST libraries until 2010 were obtained
using standard Sanger capillary sequencers.
High-throughput sequencing with next-genera-
tion sequence technologies such as Roche 454
(Margulies et al. 2005) and more recently Solexa
Illumina (Illumina_Inc 2007) can produce up to
hundreds of thousands or millions of sequences
per sample, at a fraction of the cost of the earlier
Sanger technology sequencing. These techno-
logical developments will radically increase the
amount of data available for analysis, especially
for non-model organisms (Riesgo et al. 2012).

Molecular data have also made an important
contribution towards producing reliable chron-
ograms of arthropod cladogenesis and diversifi-
cation (Murienne et al. 2010; Sanders and Lee
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2010; Rehm et al. 2011). Palaeontology contin-
ues contributing most of the data to the age of
lineages because minimum ages from fossils
(Fig. 2.2) calibrate the molecular estimates for
divergences. Modern molecular estimates of the
splits between the deep arthropod clades such as
Chelicerata versus Mandibulata (or the rival split
of Paradoxopoda versus Tetraconata) date these
events to the Ediacaran Period (635–542 My)
(Pisani 2009; Erwin et al. 2011; Rehm et al.
2011). This is more consistent with the fossil

record than were earlier analyses that used more
immature clock models, which retrieved diver-
gences between onychophorans and arthropods
and basal splits in Arthropoda dating to the
Cryogenian (reviewed by Pisani 2009). Even so,
the Ediacaran has not yet yielded credible body
or trace fossils of arthropods, and an Ediacaran
‘‘fuse’’ of some tens of millions of years sepa-
rates the latest molecular divergence of arthro-
pods from the first appearance of arthropod
trackways in the early Cambrian.

Fig. 2.2 Relationships between living arthropod lin-
eages with palaeontological calibration. Solid bars indi-
cate the presence of unambiguous fossils assigned to the
crown group, and empty bars indicate the presence of
fossils assigned to the stem group. Fossil data obtained
from original sources and reviews, including Dunlop

(2010) for Chelicerata, Edgecombe (2010) and Rehm
et al. (2011). Relationships within Tetraconata mostly
based on Regier et al. (2010). As a convention, diver-
gences are depicted as shallow as warranted by fossils;
deeper divergences are inferred from molecular dating;
see Sanders and Lee (2010) and Rehm et al. (2011)
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2.4 Advancing Arthropod
Phylogenetics

While many of the new developments discussed
above have contributed to stabilize the arthropod
tree (Fig. 2.2), there are several areas in need of
refinement. In this section, we navigate the main
arthropod clades and suggest possible areas of
inquiry.

The persistent controversy over whether the
root of the arthropod tree identifies Mandibulata
or Paradoxopoda as clades would best be tested
by additional genomic data on Pycnogonida, the
currently unsampled orders of Arachnida, and
Myriapoda. Taxon sampling in those groups is
sparse (e.g. only one myriapod was used in the
currently best-sampled EST analyses; von Reu-
mont et al. 2012), and the EST libraries avail-
able to date for these groups are shallow when
compared to those of other arthropod groups, for
which whole genomes or extensive genetic
resources are at hand (Clark et al. 2007). The
recent sequencing of several pancrustacean
genomes, as well as the first myriapod genome
for the centipede Strigamia maritima and the
genome of the horseshoe crab Limulus poly-
phemus, should be key in resolving some of the
most fundamental questions about deep arthro-
pod phylogeny. Fossil data are also important for
establishing an accurate position of the root
(Edgecombe 2010), but the methodological dif-
ficulties in combining morphology with geno-
mic-level data remain largely unexplored
(Giribet 2010). New kinds of molecular char-
acters should also be more broadly sampled to
include arthropod lineages that have thus far
been unexplored. For example, the hypothesis
that myriapods share two novel micro-RNAs
with crustaceans and hexapods that are not
shared with chelicerates (Campbell et al. 2011;
Rota-Stabelli et al. 2011) has been tabled as a
new argument in favour of a monophyletic
Mandibulata. The presence of these micro-
RNAs should be determined in more myriapods
(e.g. symphylans and pauropods), crustaceans
and arachnids.

2.4.1 Chelicerata

Euchelicerata is nearly always identified as
monophyletic, apart from in some mitogenomic
analyses (e.g. Masta et al. 2009), which have
repeatedly placed pycnogonids within Arach-
nida, often attracted to Acari, and in some trees
that were not based on explicit data analysis
(Simonetta 2004). Beyond the relatively
straightforward question of euchelicerate
monophyly, though, molecular datasets to date
(Wheeler and Hayashi 1998; Giribet et al. 2002;
Masta et al. 2009; Pepato et al. 2010; Regier
et al. 2010) have mostly conflicted with mor-
phology (Shultz 1990; Wheeler and Hayashi
1998; Giribet et al. 2002; Shultz 2007), apart
from identifying the clade Tetrapulmonata (and
in some cases recovering its internal phylogeny
congruently with morphology; Regier et al.
2010). In many analyses, the molecules have not
even recovered the basal dichotomy between
Xiphosura (horseshoe crabs) and Arachnida.
Possible causes for the difficulty in recovering
these relationships are the old history of the
group, the extinction of key lineages (arachnids
include several high-ranking extinct groups such
as the orders Trigonotarbida, Haptopoda and
Phalangiotarbida, as well as stem-group arach-
nid taxa such as Eurypterida and Chasmataspi-
dida; Dunlop 2010) or intrinsic problems of the
molecular data. The monophyly and phyloge-
netic affinities of Acari (Dunlop and Alberti
2008; Pepato et al. 2010) and the precise posi-
tion of Palpigradi and Ricinulei remain as some
of the most puzzling issues. Likewise, chal-
lenging are the relationships between a set of
arachnid orders that have been regarded as sol-
idly placed from the perspective of morphol-
ogy—Scorpiones, Opiliones, Pseudoscorpiones
and Solifugae. The currently favoured morpho-
logical hypothesis in which scorpions and
harvestmen form the clade Stomothecata (Shultz
2007) conflicts with the largest available
molecular datasets for arachnids (Regier et al.
2010). The latter unite scorpions with the tetra-
pulmonates, but that group (Pulmonata in Regier
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et al. 2010) is not strongly supported. A similar
situation pertains to pseudoscorpions and soli-
fuges. Their grouping as a clade, Haplocnemata,
is widely endorsed by arachnologists because of
numerous shared derived morphological char-
acters (Weygoldt and Paulus 1979; Shultz 2007).
Alternative sister groups based on nuclear genes
(Solifugae ? Ricinulei; Pseudoscorpiones ?

parasitiform Acari) have weak support (Regier
et al. 2010). Figure 2.2 depicts the relationships
between these groups as resolved by
morphology.

A sister group relationship between Pycno-
gonida and Euchelicerata has a long tradition
among morphologists, though few strong syna-
pomorphies have been identified (Dunlop and
Arango 2005). The main alternative placement
for Pycnogonida, as sister group to all other
arthropods according to the Cormogonida
hypothesis (Fig. 2.1a), has been based on
absences of certain morphological characters
shared by other arthropods, such as interseg-
mental tendons and a labrum or labral anlagen,
being interpreted as primitively absent. Recent
electron microscopic study of pycnogonid
embryos in search of potential labral homo-
logues has failed to identify a plausibly homol-
ogous structure (Machner and Scholtz 2010),
which is consistent with a position of Pycno-
gonida outside Euchelicerata ? Mandibulata.
Additional characters that have been tabled as
potentially plesiomorphic in pycnogonids refer to
the presence of a terminal mouth at the end of a
proboscis and a Y-shaped pharynx (Miyazaki
2002), both characters widely found in the in-
trovertan ecdysozoans and in some tardigrades
(Schmidt-Rhaesa et al. 1998; Giribet 2003). The
choice between Chelicerata (i.e. Pycnogon-
ida ? Euchelicerata) and Cormogonida is not
decisively settled with current molecular data-
sets, although the former seems to be preferred.
The sister group relationship between pycnogo-
nids and euchelicerates was retrieved by Regier
et al. (2010) in their analyses of nuclear coding
genes, though they observed a ‘‘more basal
placement of Pycnogonida’’ (i.e. Cormogonida)
to provide only a marginally poorer fit to the data.

2.4.2 Myriapoda

The rediscovery of myriapod monophyly has
been identified as one of the successes of
arthropod molecular phylogenetics (Regier et al.
2008). A long tradition of postulating that
Myriapoda was non-monophyletic resulted from
the Atelocerata hypothesis. In that framework,
myriapods were identified as a grade from which
hexapods evolved (Dohle 1980; Kraus and
Kraus 1994, 1996). From the mid-1960s through
the mid-1990s, myriapod paraphyly often took
the form of Progoneata (symphylans, pauropods
and diplopods) being sister group of Hexapoda
in a putative clade called Labiophora, with
Chilopoda being sister group to that assemblage.
Intriguingly, key proponents of arthropod poly-
phyly through that era were strong defenders of
the monophyly of Myriapoda (e.g. Anderson
1973). Sidnie Manton (1964) perceptively
observed that myriapods share a unique structure
of the tentorial endoskeleton which has come to
be known as the ‘‘swinging tentorium’’.
Throughout Myriapoda, the posterior process of
the tentorium is fused to a transverse bar that
extends to the lateral cranial wall (Koch 2003a);
downward and outward movements of these
tentorial apodemes provide the abductor force
that opens the mandibles. This character system
remains an autapomorphy of Myriapoda.

The rediscovery of Myriapoda is linked to the
demise of Atelocerata. The unambiguous
molecular and very strong neuroanatomical
support for a hexapod–crustacean clade that
excludes Myriapoda effectively solves the
question of myriapod paraphyly; if the shared
characters of Myriapoda no longer have to be
seen as atelocerate symplesiomorphies, then the
only parsimonious solution is to identify them as
myriapod autapomorphies (Shear and Edge-
combe 2010). Recent analyses that used a broad
sampling of genes and taxa (Regier et al. 2010;
Regier and Zwick 2011) have resolved Myria-
poda as monophyletic, with strong support,
corroborating previous molecular phylogenetic
analyses.

28 G. Giribet and G. D. Edgecombe



A challenge to myriapod monophyly had
been raised in neural cladistic analyses, specifi-
cally a possibility that Diplopoda could be
basally positioned in Arthropoda, falling outside
a group that united other myriapods with Tetr-
aconata and that ‘‘partial Mandibulata’’ clade
with Chelicerata (Loesel et al. 2002; Strausfeld
et al. 2006). This hypothesis is derived from the
absence of a specific midline neuropil in the
brain in spirostreptid millipedes that is shared by
other arthropods (as well as onychophorans).
Expanded character and taxonomic sampling in
neural cladistic datasets have corrected this
anomalous placement of millipedes: Diplopoda
and Chilopoda are sister groups in current
cladograms (Strausfeld and Andrew 2011). The
addition of comparable data for Symphyla and
Pauropoda is an obvious target for future work.

Shifting attention from myriapod monophyly
to the basal split within the group, the 75-taxon,
62-gene dataset (Regier et al. 2010; Regier and
Zwick 2011) yielded a division that corresponds
to the standard morphological tree, that is, Chi-
lopoda as sister group to Progoneata. Within
Progoneata, however, conflict with morphology
emerges, and this presents the most pressing
issue in Myriapoda as a whole. The union of
diplopods and pauropods as a clade named
Dignatha has not been seriously challenged from
the perspectives of morphology and develop-
ment (Dohle 1980; Shear and Edgecombe 2010).
These putative sister groups share many detailed
characters, including a limbless post-maxillary
segment, the vas deferens opening on conical
penes on the same trunk segment, spiracles at
the bases of the walking legs that open to tra-
cheal pouches, a motionless post-hatching
(‘‘pupoid’’) stage and three leg pairs in the first
free-living stage. Because of the strength of
support for Dignatha from these similarities, it
was unexpected when sequence-based analyses
instead retrieved a grouping of Pauropoda with
Symphyla rather than with Diplopoda (Regier
et al. 2005b; Gai et al. 2008; Regier et al. 2010;
Dong et al. 2012). However, pauropods and
symphylans have been seen to attract in anom-
alous positions (sometimes even falling outside
Arthropoda) in analyses of nuclear ribosomal

genes (Giribet and Ribera 2000; von Reumont
et al. 2009). Their grouping with nuclear coding
genes thus needs to be critically evaluated as a
possible artefact of systematic error.

2.4.3 Tetraconata

Monophyly of Tetraconata has long been rec-
ognized from diverse molecular datasets (see
citations above) and indeed has never been
challenged by Atelocerata in any sequence-
based analysis. Tetraconata is in no sense a
‘‘molecular grouping’’, though, as explained
above, it reflects a hypothesis put forward by
neurobiologists in the early twentieth century,
and in its contemporary form, it is reinforced by
important morphological characters of eye
ultrastructure (Richter 2002), brain and optic
lobe anatomy (Harzsch and Hafner 2006;
Strausfeld 2009; Strausfeld and Andrew 2011),
serotonin reactivity in the nerve cord (Harzsch
2004) and similarities in neurogenesis (Ungerer
and Scholtz 2008).

Whether crustaceans are monophyletic or pa-
raphyletic with respect to hexapods (Schram and
Koenemann 2004; Giribet et al. 2005; Richter
et al. 2009) and if the latter, precisely which
crustacean lineage constitutes the sister group of
hexapods, remain labile (Grimaldi 2010). The
case for crustacean paraphyly has mostly come
from molecular datasets, but morphologists have
been far from universal in endorsing the tradi-
tional hypothesis of a monophyletic Crustacea.
Schram and Koenemann (2004) and Richter et al.
(2009) evaluated most of the traditionally diag-
nostic or putatively autapomorphic characters of
Crustacea and found that they are often ambigu-
ous or likely symplesiomorphic. Cladistic
analyses of neural characters, either manually
computed (Harzsch 2006) or analysed using
parsimony programs (Strausfeld et al. 2006;
Strausfeld and Andrew 2011), resolve Crustacea
as paraphyletic with respect to Hexapoda.

The alternative sister group hypotheses for
each major crustacean clade have been summa-
rized (Jenner 2010), so we focus on develop-
ments in the latest molecular analyses using
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large numbers of genes. Among these are some
new hypotheses not anticipated based on other
data sources. For example, an analysis of 62
markers suggests that a putative clade composed
of Cephalocarida ? Remipedia (named as
Xenocarida) is sister to Hexapoda, while Bran-
chiopoda forms a clade with Malacostraca,
Thecostraca and Copepoda (Regier et al. 2010).
The latter grouping, named Multicrustacea by
Regier et al. (2010), has also been retrieved
using different kinds of molecular data, notably
the EST analyses of Meusemann et al. (2010)
and Andrew (2011) and compilations of molec-
ular and morphological data by Oakley et al.
(2013). The branchiopod–malacostracan–hexa-
pod three-taxon statement lies at the heart of
current conflict between various datasets and
analyses. Rather than grouping branchiopods
and malacostracans together (as in Regier et al.
2010), neural cladistics instead identifies Mala-
costraca as the likely sister group of hexapods
(Strausfeld 2009; Strausfeld and Andrew 2011).
In contrast to both of these resolutions, larger
gene samples in EST analyses repeatedly resolve
Branchiopoda as sister group to Hexapoda
(Roeding et al. 2009; Meusemann et al. 2010;
Campbell et al. 2011; Rota-Stabelli et al. 2011),
although Cephalocarida and Remipedia were not
sampled in those studies. The first ESTs of
remipedes suggest that they are indeed the sister
group of Hexapoda (von Reumont et al. 2012),
but an alliance with Cephalocarida has not yet
been tested, and these data reflect the signal of
earlier EST analyses in resolving branchiopods
as more closely related to remipedes and hexa-
pods than are malacostracans. A comparable
clade composed of branchiopods ? cephalocar-
ids and remipedes ? hexapods was named Al-
lotriocarida by Oakley et al. (2013). Denser
taxon sampling of key crustacean lineages (e.g.
Mystacocarida) is still needed in phylogenomic
analyses before a definitive solution can be
proposed. In particular, the attraction of remi-
pedes and cephalocarids warrants close scrutiny
because this relationship has not been antici-
pated from the perspective of morphology,
though it has been detected for some time in

molecular datasets (Giribet et al. 2001; Regier
et al. 2005a). Reanalysis of the Regier et al.
(2010) 62-gene dataset by Rota-Stabelli et al.
(2013) found the remipede–cephalocarid
grouping to be model dependent and sensitive to
the analysis of either nucleotides or amino acids.
Irrespective of the eventual placement of
Cephalocarida, the congruent signal from large
samples of nuclear coding genes (Regier et al.
2010) and ESTs (von Reumont et al. 2012),
together with the discovery of hexapod-type
haemocyanins in remipedes (Ertas et al. 2009),
makes a strong case for Remipedia being closely
allied to hexapods.

The issue of hexapod monophyly was for a
few years disputed in some mitogenomic anal-
yses (Carapelli et al. 2007), but has since been
resolved in favour of a single origin using larger
molecular datasets (Timmermans et al. 2008;
Meusemann et al. 2010; Regier et al. 2010; von
Reumont et al. 2012; Oakley et al. 2013). At the
base of Hexapoda, the status of Entognatha as a
clade or a grade remains sensitive to taxon
sampling and methods of molecular data analy-
sis (Giribet et al. 2004). Morphologists had, over
the past 20 years, largely abandoned Entog-
natha, arguing that enthognathy in collembolans
and proturans did not have a common origin
with that in diplurans (Koch 1997, 2000), and
the latter instead shared derived characters with
Ectognatha, that is, ‘‘Entognatha’’ was a para-
phyletic group (Bitsch and Bitsch 2004; Giribet
et al. 2005, among others, from numerical cla-
distic analyses; Machida 2006 from embryo-
logical data; Dallai et al. 2011 from sperm
ultrastructure). The resurrection of Entognatha
as a possible clade is a recurring theme in
molecular analyses, which also produced a novel
hypothesis within that group—Nonoculata. The
Nonoculata hypothesis advocates a sister group
relationship between Protura and Diplura to the
exclusion of Collembola. It was originally pro-
posed based on nuclear ribosomal genes (Giribet
et al. 2004; Luan et al. 2005; Gao et al. 2008;
von Reumont et al. 2009), but has found further
support in some phylogenomic analyses (Me-
usemann et al. 2010). Nonoculata was a novel
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solution because it conflicted with the standard
morphological hypothesis of a sister group
relationship between Protura and Collembola, a
group named Ellipura. Morphologists have,
however, observed that Nonoculata is able to
accommodate some anatomical features shared
by proturans and diplurans but not collembolans
(Koch 2009). The situation remains contentious
because denser taxon sampling in EST analyses
yields trees that unite Protura and Collembola as
Ellipura, rather than giving support for Non-
oculata (von Reumont et al. 2012).

A few phylogenetic problems remain unre-
solved at the base of the insect tree. Among
them is the position of the relictual silverfish
Tricholepidion relative to remaining Zygentoma
(Wygodzinsky 1961). In some analyses,
Tricholepidion appears as sister group to
Dicondylia (Zygentoma ? Pterygota) (Beutel
and Gorb 2001; Giribet et al. 2004), whereas
other data speak in favour of it being sister group
to other Zygentoma or within that group (Koch
2003b; Dallai et al. 2004).

Monophyly of the winged insects (Pterygota)
has been recognized since the earliest studies of
insect phylogeny, but the resolution of the basal-
most lineages of winged insects, Odonata and
Ephemeroptera, remains contentious to this date.
Current datasets support either their grouping as
a clade named Palaeoptera or that they comprise
a grade leading to Neoptera in either of the two
possible arrangements, which represent the
Metapterygota and Chiastomyaria hypotheses
(Hovmöller et al. 2002; Ogden and Whiting
2003; Whitfield and Kjer 2008; Simon et al.
2009; Trautwein et al. 2012). This conundrum
has been called ‘‘the Palaeoptera problem’’ and
qualified as presently ‘‘intractable’’ (Trautwein
et al. 2012), although recent morphological work
based on head structure adds support to Palae-
optera (Blanke et al. 2012). Neopteran mono-
phyly is widely accepted, but two of the three
putative lineages nested within it, Polyneoptera
and Paraneoptera (= Acercaria), lack robust
support, and the cladistic structure of the tree
remains poorly understood (Trautwein et al.
2012). Exciting developments within Polyneop-
tera are the discovery and systematic placement

of the order Mantophasmatodea (Klass et al.
2002; Terry and Whiting 2005; Cameron et al.
2006; Eberhard et al. 2011), the inclusion of
Isoptera as a family of Blattodea (Terry and
Whiting 2005; Inward et al. 2007) and the pos-
sible resolution of Zoraptera as the sister group
to the dictyopteran orders (Ishiwata et al. 2011).

Resolution within Holometabola is now
comparatively stable, including the acceptance
that fleas are members of the scorpionfly order
Mecoptera (Whiting 2002; Wiegmann et al.
2009; Friedrich and Beutel 2010). Recent anal-
yses have resolved ‘‘the Strepsiptera problem’’
(Whiting et al. 1997) towards the Coleoptera
side, placing them as the sister group of beetles
(Niehuis et al. 2012). The early divergence of
Hymenoptera, which comprises the sister group
to all other Holometabola, has found recent
support in analyses of both single-copy nuclear
genes (Wiegmann et al. 2009) and morphology
(Friedrich and Beutel 2010).

2.5 Final Remarks

New approaches to studying anatomy and
molecular analyses that are increasingly
becoming phylogenomic in scope have con-
verged on many of the main issues in arthropod
phylogeny. Monophyly of Ecdysozoa, Panar-
thropoda and an Onychophora ? Arthropoda
clade provides a context for evaluating the
internal phylogeny of Arthropoda, which is itself
unambiguously monophyletic. Pycnogonida and
Euchelicerata probably form a clade, Chelicer-
ata, and its most likely sister group is Mandib-
ulata, though various lines of evidence still
signal an alternative alliance between chelicer-
ates and myriapods, or Paradoxopoda. Myria-
poda is monophyletic and in the context of
Mandibulata constitutes the sister group to
Tetraconata, composed of a paraphyletic Crus-
tacea from which a monophyletic Hexapoda
arose, most probably from a shared ancestor
with Remipedia (and doubtfully Cephalocarida).
Key outstanding issues are the interrelationships
between arachnid orders and crustacean classes,
notably whether cephalocarids group with
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remipedes and whether branchiopods or malac-
ostracans are more closely related to remipedes
and hexapods or to each other. The dating of
arthropod diversification needs to be refined by
improved clock methods and careful integration
of fossil constraints. Geologically, Chelicerata
(at least Pycnogonida) have a Cambrian origin,
while Arachnida started diversifying by the
Early Silurian, probably concurrently with
Myriapoda. The deepest splits within Tetraco-
nata demonstrably date to no younger than the
Cambrian, as shown by spectacularly preserved
Late Cambrian fossils that can be identified as
branchiopods, copepods and ostracods (Harvey
et al. 2012), and early Cambrian maxillopodan-
type metanauplius larvae (Zhang et al. 2010; see
Chap. 15). Though molecular dating and pala-
eontologically inferred ghost lineages date the
origins of Hexapoda to the Cambrian, the
clade’s diversification is probably Silurian–
Devonian and has been correlated with the
origin of vascular plants (Kenrick et al. 2012).
We expect that with the current availability and
facilities for generating genomic data of a
diverse selection of arthropods, a broad con-
sensus will be found for the most diverse group
of animals, a group with more than 500 million
years of evolutionary history.
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