
2

The State of the Art in Code Generation

Some of the requirements for the Genesys approach presented in Sect. 1.1
are a direct result of examining and evaluating the work that has been done
in the field of code generation so far. This chapter provides an overview of
the current state of the art in code generation for MD*. It starts off with
a brief retrospect on classical compiler construction (Sect. 2.1), which de-
veloped ideas and concepts that clearly influence current code generation
techniques. Sect. 2.2 elaborates on the conceptual foundations of MD* and
on how the associated terminology is used in this book. Afterwards, Sect. 2.3
examines the role of code generation in several existing MD* (and related)
approaches, and Sect. 2.4 introduces techniques for actually realizing code
generators. Sect. 2.5 presents the state of the art in verifying and validating
code generators. Finally, Sect. 2.6 compares Genesys with the approaches and
techniques described in the preceding sections.

2.1 Influences of Compiler Construction

Beyond doubt, compiler construction is one of the most well-grounded and
well-proven fields in computer science. Having its seeds in the early 1950s,
compiler construction promoted the evolution of important theoretical topics
such as formal languages, automata theory and program analysis. The intro-
duction of compilers had far-reaching effects on software development, as they
enabled the use of high-level programming languages (such as FORTRAN)
instead of tediously writing software in low-level languages like assembly or
even machine code. By raising the level of abstraction, developers should be
shielded from hardware-specific details.

Code generation approaches for MD* share these ideas. According to Selic,
“most standard techniques used in compiler construction can also be applied
directly to model-based automatic code generation” [Sel03]. However, as mod-
els are by their very nature more abstract than source code (cf. Sect. 2.2),
corresponding code generators work on a much higher level of abstraction

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 11–38, 2013.
© Springer-Verlag Berlin Heidelberg 2013

12 2 The State of the Art in Code Generation

than compilers for source code. The following paragraphs highlight some sim-
ilarities as well as differences between classical compilers and MD* code gen-
erators, focusing on concepts and notions that are important for the Genesys
approach.

General Structure:

In essence, a compiler translates a program written in a given source language
into a program in a given target language. Usually, modern compilers are or-
ganized into consecutive phases, such as lexing, parsing or data flow analysis,
each of them often operating on their own intermediate language or represen-
tation [App98, p. 4]. Depending on whether such a phase is concerned with
analysis (i.e., resolving the source program into its constituent parts, assign-
ing a grammatical structure, etc.) or synthesis (i.e., constructing the desired
target program), the phase is said to be part of the compiler’s front-end or
back-end [Aho+06, p. 4], respectively. One of these phases is called “code gen-
eration”, which is situated in a compiler’s back-end. It usually retrieves some
intermediate form, such as an abstract syntax tree produced by a parser, and
translates it to code in the desired target language, e.g., machine code or
bytecode executable by a virtual machine. This translation typically raises
issues such as instruction selection, register allocation or code optimization.

For MD* code generators, especially issues close to hardware are at most
secondary, and can often even be considered commodity. When generating
code from abstract models, target languages are in most cases high-level
languages (such as Java or C++) with existing compilers, interpreters or
execution engines that further process the generated output. Accordingly,
compilers can be regarded as tasks or services that are incorporated in or
postpositioned to code generators. In a similar fashion, MD* code generators
employ parsers in order to translate models from their serialized form (e.g.,
XML Metadata Interchange, XMI [Obj07]) to an in-memory representation
(e.g., an implementation of the Java Metadata Interface, JMI [Jav02]) prior
to the actual code generation. As there is extensive tool-support for the de-
velopment of compilers and their single components, e.g., parser generators
such as ANTLR [PQ95] or Lex/Yacc [LMB92], code generator developers can
resort to a rich repertoire of mature services.

Bootstrapping:

Apart from source and target language, the compiler’s implementation lan-
guage is relevant to the categorization of the compiler. For instance, a self-
compiling (or self-hosting) compiler [LPT78] is a compiler that is written in
the language it compiles, and a cross-compiler [Hun90, p. 8] targets a ma-
chine other than the host. Especially self-compiling compilers are often used
for bootstrapping [Wat93, p. 44], which is a common technique for evolving
compilers. Typically, this approach aims at decreasing the overall complex-
ity of compiler development by separating the implementation process into
consecutive stages.

2.2 Models, Metamodels and Domain-Specific Languages 13

Fig. 2.1 uses the established notation of T-diagrams [Hun90, p. 11] for vi-
sualizing an example of a very simple bootstrapping process. In this notation,
blocks that look like the letter “T” represent compilers. The three text labels
on the blocks indicate the compiler’s source language (left), target language
(right) and implementation language (bottom). Suppose we want to imple-
ment a native compiler for a fictitious programming language called L. As a
start, we implement version 1 of this compiler using C, an existing program-
ming language with an available native compiler (M is for “machine code”).
Afterwards, we compile the newly written compiler, which results in a native
L-to-M compiler. We could stop at this point, but as the maintenance of our
L-to-M compiler now depends on the existence of a C-compiler, we imple-
ment a second version in L (rebuilding should not be as hard as building
from scratch). Finally, we compile version 2 using version 1 and get a native
L-to-M compiler that is no longer dependent on C.

L M

C C M

M

L M

M

L M

L L M

M

L M

M

Version 1 Version 1 (compiled) Version 2 Version 2 (compiled)

Fig. 2.1. Simple Bootstrapping Example: Getting a Native Compiler for Language
L

The example in Fig. 2.1 is only a very small bootstrapping process. As
mentioned above, bootstrapping is usually organized in stages in order to di-
vide the implementation complexity into small manageable chunks. Instead
of starting with the entire language L, a simple subset L∗ ⊂ L is identified,
so that the first version of the compiler can be developed much easier. After
building an L∗-to-M compiler in the manner described above, the compiler
is enriched with the missing L-features and the procedure is repeated. Us-
ing several sublanguages with small feature additions in each stage further
simplifies the implementation of the final compiler version.

The use of bootstrapping is also very common and desirable in MD* code
generators, and thus an important technique used in the Genesys approach
(see Sect. 1.1, 5.1 and 7.5). Throughout this work, T-diagrams will be used
to visualize bootstrapping and other code generator evolution processes.

2.2 Models, Metamodels and Domain-Specific
Languages

The existence of MD* approaches and numerous corresponding tools (cf.
Sect. 2.3) indicates that there seems to be at least a common intuition of

14 2 The State of the Art in Code Generation

what a model actually is. However, there is still no generally accepted def-
inition of the term “model”. For instance, while Kleppe defines a model as
“a linguistic utterance of a modeling language” [Kle08, p. 187], the Object
Management Group (OMG) focuses on the role of the model as a means of
specification [Obj03b, p. 12]:

“A model of a system is a description or specification of that system
and its environment for some certain purpose. A model is often pre-
sented as a combination of drawings and text. The text may be in a
modeling language or in a natural language.”

Kühne emphasizes the abstraction aspect of models [Küh06]:

“A model is an abstraction of a (real or language-based) system al-
lowing predictions or inferences to be made.”

Another characterization of models that is cited frequently in the literature is
the one of Stachowiak, who identifies three main features of models [Sta73, pp.
131–133]:

1. Mapping feature: A model is always a mapping of some natural or artifi-
cial original, which may in turn be a model.

2. Reduction feature: Generally, a model does not capture all attributes of
the represented original, but only those relevant to the person who creates
or uses the model.

3. Pragmatic feature: A model always serves a particular purpose.

This “fuzziness” or lack of precision can be observed for most of the vocabulary
used in the context of MD*. There is still no established fundamental theory
of modeling and related concepts that would be comparable to the maturity
achieved in other disciplines of computer science, such as compiler construc-
tion (cf. Sect. 2.1). However, several publications (e.g., [BG01;Fav04;Küh06])
try to come up with precise definitions, and thus discuss issues like when it
is appropriate to call a model a metamodel.

As a reflection of this discussion goes far beyond the scope of this mono-
graph, all following chapters and sections resort to the terminology definitions
described by Stahl et al. [Sta+07, pp. 28–32]. Fig. 2.2 uses the Unified Mod-
eling Language (UML) [Obj10b; Obj10a] in order to illustrate the relevant
concepts and their relationships, which are introduced in the following.

Domain:

A domain is a delimited field of interest or knowledge which consists of “real”
things and concepts. It may also be divided into an arbitrary number of sub-
domains. For instance, the domain “hospital” contains, among other things,
the subdomains “intensive care unit” and “coronary care unit”, each capturing
specific parts of the superordinate domain.

2.2 Models, Metamodels and Domain-Specific Languages 15

respects

«instanceOf»

expressed by means of

Formal Model

describes
relevant

concepts of

MetamodelDomain

0..*

Subdomain

Modeling
Language

«synonymous»

Semantics

DSL

Abstract
Syntax

Static
Semantics

expressed by
means of

Concrete
Syntax

obtains meaning through

is specific to

Fig. 2.2. Basic MD* terminology (by Stahl et al. [Sta+07, p. 28], translated into
English)

Metamodel:

A metamodel is a formal description of a domain’s relevant concepts. It spec-
ifies how formal models (or programs), that are specific to the given domain,
can be composed. For this purpose, a metamodel comprises two important
parts: the abstract syntax and the static semantics.

The abstract syntax defines the elements of the metamodel and their re-
lationships, independent of the concrete representation of any corresponding
formal model. For instance, the abstract syntax of an object-oriented lan-
guage might define concepts like classes and interfaces, which have attributes
such as a name and which are associated via relationships such as inheritance.

The static semantics specifies constraints for the well-formedness of a for-
mal model. Accordingly, it is defined relative to an abstract syntax, i.e., it
uses the contained terminology and concepts in order to describe the con-
straints. For instance, the static semantics of a metamodel for control flow
graphs could specify constraints that demand the existence of exactly one
start node.

Domain-Specific Language:

According to Fowler, the notion domain-specific language (DSL) refers to
“a computer programming language of limited expressiveness focused on a
particular domain” [Fow10, p. 27]. Stahl et al. [Sta+07] as well as this book
use the notion synonymously with the term modeling language. As visible in
Fig. 2.2, a DSL is based on a metamodel that comprises the abstract syntax
and static semantics as described above.

Furthermore, a DSL provides a concrete syntax , which describes a par-
ticular representation of the elements and concepts specified by the abstract
syntax. The concrete syntax can thus be considered an instance of the ab-
stract syntax, and it is possible to define multiple concrete syntaxes for one

16 2 The State of the Art in Code Generation

abstract syntax. For instance, a UML class diagram [Obj10b] can be repre-
sented using at least three concrete syntaxes: the graphical UML notation
itself, the Human-Usable Textual Notation (HUTN) [Obj04] and the XML-
based interchange format XMI. In particular, this example illustrates that a
concrete syntax – and thus the DSL and any formal model that follows the
concrete syntax – can be textual or graphical.

The beginning of Chap. 1 presented several arguments that highlight ad-
vantages of graphical notations over purely textual notations (better cogni-
tive accessibility, higher expressiveness, flatter learning curves etc.). However,
there are also publications that argue in favor of textual notations. For in-
stance, from the tool perspective, Völter [Völ09] points out that it requires
more effort to build usable editors for graphical languages as opposed to tex-
tual editors. Stahl et al. [Sta+07, p. 103] exemplify this by means of the
support for collaborative development: Whereas the synchronization of tex-
tual development artifacts is supported by a variety of tools (such as Sub-
version [Apa11e]), graphical notations often require the implementation of
specific solutions.

Further positions advocate that graphical and textual notations are not
mutually exclusive. Van Deursen et al. [DVW07] observe complementary
strengths and thus propose a unification of both notations. Kleppe exem-
plifies UML class diagrams as such a hybrid concrete syntax, as they provide
“a textual syntax embedded in a graphical one” [Kle08, p. 5]. Finally, Kelly
and Pohjonen point out that the choice of a suitable concrete syntax “de-
pends on the audience, the data’s structure, and how users will work with
the data” [KP09].

As the third component besides the metamodel and the concrete syntax,
a DSL also provides semantics that assigns a meaning to any well-formed
model written in the DSL. In practice, this semantics is often described by
means of natural language as for instance performed in the UML specifica-
tion [Obj10b]. However, in order to avoid the ambiguity and imprecision of
natural languages, semantics can also be described formally, e.g., using a de-
notational [Sch86], operational [Plo81;Kah87], axiomatic [Hoa69] or transla-
tional approach [Kle08, p. 136f]. In the context of this book, the latter is most
interesting: Following the translational approach, the semantics of a language
is given by a translation into another language with well-known semantics. In
MD*, such a translation can be provided by a model transformation, which
may, e.g., be realized by a code generator. Sect. 2.3.5 elaborates on this role
of code generation.

Fowler [Fow10, p. 15] distinguishes between internal and external DSLs.
An internal DSL (also known as embedded DSL) forms a real subset of an
existing (general-purpose) language, its “host language”. It employs the syn-
tactic constructs of the host language and maybe also parts of its available
tooling support. Several languages like Lisp [McC60] or Ruby [FM08] support
the creation of such internal DSLs. In contrast to this, an external DSL uses
a separate custom syntax that is not directly derived from an existing host

2.2 Models, Metamodels and Domain-Specific Languages 17

language. Consequently, with an external DSL it is usually not possible to
resort to existing tools, so that, e.g., a specific parser for the language has to
be implemented.

Formal Model:

The box labeled formal model in Fig. 2.2 represents a program or model
written in a particular DSL. Consequently,

• it describes something from the domain for which the DSL is tailored,
• it is an instance of the metamodel contained in the DSL and in particular

respects the metamodel’s static semantics,
• it is written using the concrete syntax of the DSL, and
• its meaning is given by the DSL’s semantics.

Due to its “formal” nature, such a model is a suitable basis for activities like
verification, interpretation or code generation. For the sake of simplicity, this
book uses the notion “model” in place of “formal model”, implicitly including
textual as well as graphical incarnations.

Metamodeling and Metalevels:

The notions and concepts depicted in Fig. 2.2 can be applied to arbitrary
metalevels . For instance, considering “modeling” itself as a possible domain,
one could create a “meta-DSL” for describing DSLs. Accordingly, when us-
ing the meta-DSL to specify a particular DSL myDSL, this new DSL is an
instance of (i.e., a formal model conforming to) the metamodel given by
the meta-DSL, or in other words: The meta-DSL provides the metamodel of
myDSL. Continuing the example, myDSL can now in turn be used to create a
particular model M, i.e., following the same argumentation as above, myDSL
provides the metamodel of M. However, given the fact that myDSL itself is
formally described by means of the meta-DSL, the meta-DSL provides the
metametamodel of M. Thus the role of the meta-DSL is determined relative
to the metalevel from which it is observed. Accordingly, the “metaness” of a
model arises from its relations to other models (being its instances) rather
than being an intrinsic model property [Sta+07, p. 63].

A well-known example of a metamodeling architecture which employs met-
alevels is the Model Driven Architecture (MDA) [Obj03b] (cf. Sect. 2.3.3)
proposed by the OMG. MDA enables model-driven software development on
the technological basis of standards that are also created by the OMG, such
as the Meta-Object Facility (MOF) [Obj11d] and UML. Fig. 2.3 is a slightly
extended version of an illustration from [Obj10a, p. 19], showing an example
of metalevels in MDA. The single metalevels are typically labeled M0, M1,
M2 and so on, with M0 designating the lowest level. M0 usually represents
the actual system (existing or non-existing) that is to be modeled, or more
precisely its runtime objects and user data. The models that represent this
system are situated on level M1, e.g., concrete diagrams (class diagrams etc.)

18 2 The State of the Art in Code Generation

modeled in UML. Level M2 holds the modeling language that is used for de-
scribing the models on M1, i.e., their metamodel. For instance, in the MDA
context, this might be the UML along with its associated concepts. Finally,
the metamodel on M2 is again formally described by a model which is situ-
ated on level M3, the metametamodel. In MDA, this role is played by MOF,
and thus in order to be MDA-compliant, a modeling language has to be an
instance of (i.e., it has to conform to) MOF. Please note that only levels
M1–M3 (and maybe above) are actual modeling levels, as M0 represents the
“real” system (which is why, e.g., Bézivin refers to the four-level example as
a “3+1 architecture” [Béz05]).

name : String
Customer

name = "Jane Doe"
:Customer

Attribute Class Instance

Class

aCustomer

«snapshot»

classifier

«instanceOf»

«instanceOf»
«instanceOf» «instanceOf»

«instanceOf»

«instanceOf»«instanceOf»«instanceOf»

M0
(Model Instance)

M3
(Metametamodel)

M2
(Metamodel)

M1
(Model)

Meta-Object
Facility (MOF)

Unified
Modeling
Language

(UML)

Concrete
Diagram

Concrete
Runtime
Objects

«instanceOf»

Fig. 2.3. Four-Level Example of MDA’s Metamodel Hierarchy (based on [Obj10a,
p. 19])

Except for the topmost metalevel, the elements of each level are instances
of elements in the level above. Conceptually, there is no need for such a
“hierarchy top” at all – the number of metalevels can be arbitrary [Obj10a,
p. 19]. However, in practice, this potentially indefinite layering is usually
avoided by means of a reflexive model, i.e., a model that is able to describe
itself [Sei03; Sel09]. As indicated in Fig. 2.3, MOF is such a model that is
defined in terms of itself, so that effectively no more metalevels are required.
Another example of a reflexive model is Ecore from EMF (see Chap. 7).

It should be noted that the one-dimensional view on metalevels shown in
Fig. 2.3 is subject to controversy. For instance, Atkinson and Kühne [AK02]
pointed out that it fails to distinguish different types of “instance of” relation-
ships and thus proposed a two-dimensional framework. However, a detailed
discussion of those issues goes beyond the scope of this book.

2.3 The Role of Code Generation 19

Users of MD* tools usually only deal with a restricted view on the available
metalevels. For instance, in typical UML tools like ArgoUML [Tig11], any
modeling activity happens exclusively on level M1, i.e., the levels M2 and M3
are “hard-wired”. Other tools such as language workbenches (see Sect. 2.3.5)
also allow the user to define his own modeling languages and thus hard-wire
only level M3 or above.

2.3 The Role of Code Generation

As pointed out in Chap. 1, code generation is key to any MD* approach to
software development. It bridges the gap that arises when models are used to
abstract from the technical details of a concrete software system. Code gener-
ation is thus an enabling factor for allowing real model-driven software devel-
opment which treats models as primary development artifacts [Sei03;Béz05],
as opposed to the approach termed model-based software development in
Chap. 1 that is limited to using models for documentation purposes [Sta+07,
p. 3].

Apart from the notion MD*, which is used in this book (following Völ-
ter [Völ09]) as a generic term for referring to the variety of existing ap-
proaches to model-driven development, there are several further notions that
are used in a similar way. Examples that can be frequently found in publi-
cations are Model-Driven Development (MDD) [Sel03;AK03], Model-Driven
Engineering (MDE) [Sch06; Béz05; Fav04; DVW07] and Model-Driven Soft-
ware Development (MDSD) [Sta+07], which are largely used synonymously.
Among MD* approaches, code generation is usually considered a specific form
of model transformation and thus often referred to as model-to-text trans-
formation [CH06; Old+05] or model-to-code transformation [Sel03; Sta+07;
Hem+10].

The following sections (2.3.1–2.3.5) provide examples of existing MD* and
related approaches, with a particular focus on the respective role of code
generation. Afterwards, Sect. 2.3.6 briefly sketches MD* approaches that do
not resort to code generation.

2.3.1 Computer-Aided Software Engineering

The idea of automatically generating an implementation from high-level spec-
ifications is not really new. For instance, in the 1980s, the Computer-Aided
Software Engineering (CASE) approach [CNW89] had very similar objec-
tives, including the design of software systems by means of graphical general-
purpose languages and the use of code generators for automatically producing
suitable implementations [Sch06].

However, the CASE approach has not asserted itself in practice. As one rea-
son for this, Schmidt [Sch06] especially designates the deficient translation of

20 2 The State of the Art in Code Generation

CASE’s graphical general-purpose languages to code for desired target plat-
forms. The creation of corresponding code generators was very difficult as
the produced code had to compensate the lack of important features, such
as fault tolerance or security, in operating systems at that time. As a result,
the code generators were very complex and thus hard to maintain. Moreover,
CASE tools focused on proprietary execution environments, which resulted
in low reusability and integrability of the generated code. Schmidt also names
further problems of CASE, such as the lack of support for collaborative devel-
opment and the fact that the employed graphical languages were too generic
and too static to be applicable in a large variety of domains. Especially as
a result of the insufficient code generation facilities, CASE tools were often
used for model-based software development only [Sch06].

Today’s MD* approaches benefit from the fact that programming lan-
guages and platforms significantly evolved since that time. Apart from the
fact that code generation technologies have matured [Sel03], code generation
has become much more feasible, as generators “can synthesize artifacts that
map onto higher-level, often standardized, middleware platform APIs and
frameworks, rather than lower-level OS APIs” [Sch06], which decreases their
complexity significantly.

Moreover, as another lesson learned from CASE, lots of MD* approaches
advocate the use of DSLs rather than general-purpose languages, thus turning
away from CASE’s “one size fits all” idea [Sta+07, p. 44]. The focus on DSLs
further increases the significance of code generation, as the specification of
a DSL often entails the demand for a corresponding code generator – or
multiple ones if several target platforms are used –, the creation of which
also needs to be supported by appropriate frameworks and tools.

2.3.2 Generative Programming

Generative Programming (GP) [CE00], also known as Generative Software
Development, is an approach that “aims at modeling and implementing sys-
tem families in such a way that a given system can be automatically generated
from a specification written in one or more textual or graphical domain-
specific languages” [Cza04].

Accordingly, it puts particular emphasis on two main aspects. First, GP
focuses on developing families of systems instead of only single systems. A
system family is a set of systems based on a common set of assets [CE00, p.
31], which are used for building the single family members. Among other
things, such a system family might form the basis for creating product
lines [Sta+07, p. 35]. Second, GP involves the automatic assembly of the
final system via generators. Inspired by industrial manufacturing, the gener-
ated system should resemble a complete, “highly customized and optimized
intermediate or end-product” [CE00, p. 5].

The common model that is used for generating the single members of a
system family is called the generative domain model. This model essentially

2.3 The Role of Code Generation 21

describes three components: the problem space, the solution space as well as a
mapping between both. The problem space can be considered the domain, and
it contains one or more domain-specific languages that provide the concepts
and terminology for specifying system family members. For instance, feature
models [CHE04] are frequently used in connection with GP as a means for
describing the common features of system family members along with those
features that are variable. Feature models also capture how variable features
depend on each other. The solution space consists of elementary implementa-
tion components which are used to assemble a system. The mapping between
problem space and solution space is given by configuration knowledge, which
includes illegal combinations of features, default settings and dependencies as
well as construction rules and combinations [CE00, p. 6]. This configuration
knowledge is implemented by means of one or more generators.

Based on this generative domain model, a system is essentially specified
via configuration: An application programmer creates such a configuration
by selecting desired features in the problem space, and the generator uses the
configuration knowledge for automatically mapping it to a configuration of
implementation components in the solution space. Besides this configuration
view [Cza04] further describes a transformational view on the generative do-
main model. In this view, the problem space is resembled by a domain-specific
language which is transformed into an implementation language situated in
the solution space. Independent of the particular view, GP does not dictate
which technologies are used for actually implementing the single elements of
the generative domain model [CØV02].

GP is strongly related to MD* approaches as both advocate the use of
DSLs for creating high-level specifications along with corresponding genera-
tors that automatically produce a system from those specifications. However,
GP’s strong focus on the development of software system families distin-
guishes it from several MD* approaches such as MDA (see the following
section). Whereas MDA mainly addresses technical variability by aiming at
portability, GP also takes application domain variability into account [Cza04].
Furthermore, Stahl et al. [Sta+07, p. 39] point out that GP traditionally fo-
cuses more on textual DSLs rather than on graphical notations.

In particular, lots of research in the realm of software product line engineer-
ing [CN01;PBL05] relates to GP’s mindset. A recent example is the HATS
project [Cla+11], which employs Abstract Behavioral Specification (ABS) in
order to model system families. To this end, ABS consists of five textual
languages for specifying

1. core modules of the system in a behavioral fashion,
2. the system’s features and their attributes via feature modeling,
3. variability of the system by means of delta modeling [Sch+10],
4. product line configurations that link features with delta modules, and
5. concrete product selections.

22 2 The State of the Art in Code Generation

From the GP perspective, those specifications provide the required concepts
in the problem space as well as the configuration knowledge required for the
mapping into the solution space. Finally, a concrete product is generated via
a dedicated compiler, which, for instance, is able to translate an ABS model
into Java code.

2.3.3 Model Driven Architecture

As mentioned in Sect. 2.2, Model Driven Architecture (MDA) [Obj03b] is an
initiative of the OMG. It has been introduced in 2001 and primarily aims at
“portability, interoperability and reusability through architectural separation
of concerns” [Obj03b, p. 12]. Conceptually, MDA defines three models that
represent different viewpoints on a system:

• Computation-Independent Model (CIM): Also termed “domain model”
or “business model” [Fra02, p. 192], the CIM describes the pure business
functionality including the requirements of and rules for the system. Any
technical aspects of the system are ignored. CIMs are supposed to be
created and used by business experts (or “domain practitioners” [Obj03b,
p. 15]) and thus use familiar terminology of the respective domain. They
are intended as a bridge between business experts who are versed with
a particular domain, and IT experts who have the technical knowledge
for realizing a system. CIMs provide a very broad view as they also may
contain aspects of a domain that are not automated at all [Fra02, p. 194].

• Platform-Independent Model (PIM): In contrast to CIMs, PIMs also
consider technical aspects of a system, but only those which are inde-
pendent of a concrete platform. This platform-independence is key to
achieving the goal of portability, however it should be noted that it is
a relative notion. Frankel [Fra02, p. 48f] exemplifies this by means of
OMG’s middleware standard, the Common Object Request Broker Ar-
chitecture (CORBA) [Obj11b], which can be considered platform-inde-
pendent as it does not depend on particular programming languages or
operating systems. However, when viewing CORBA as one among many
existing middleware technologies, it also can be considered a specific plat-
form. From this perspective, platform-independence is only achieved by
not depending on a concrete middleware technology. Accordingly, a PIM
“exhibits a specified degree of platform-independence so as to be suitable
for use with a number of different platforms of similar type” [Obj03b, p.
16].

• Platform-Specific Model (PSM): A PSM augments a PIM by further
technical details that are specific to a particular platform. Please note
that the above comments on the relativity of platform-independence can
be similarly applied to platform-specificity.

Further OMG standards provide the technological basis for creating such
models: Any modeling language that conforms to MOF (see Sect. 2.2) can be
used, such as UML or the Common Warehouse Metamodel (CWM) [Obj03a].

2.3 The Role of Code Generation 23

PIMs, PSMs and the actual implementation code of the system are con-
nected by means of transformations. For instance, a PIM could be succes-
sively refined by one or several consecutive model transformations producing
either further PIMs or PSMs, the last of which being the most concrete or spe-
cific model that is used as the basis of a final code generation step. However,
the creation of intermediate models is not mandatory, as it might also be pos-
sible (e.g., depending on the abstractness of the employed PIM) to produce
code directly from a PIM [Obj03b, p. 25]. The exact nature of the trans-
formation is not dictated by MDA: A transformation may, e.g., be entirely
manual, semi-automatic by marking the models with additional information,
or fully automatic [Obj03b, pp. 34–36].

Model transformations (PIM to PIM, PIM to PSM, PSM to PSM) can,
e.g., be realized by using any implementation of OMG’s Query/View/Trans-
formation (QVT) [Obj11c] specification. Another example for a language that
supports such model transformations is the Atlas Transformation Language
(ATL) [JK06]. Both QVT and ATL are, e.g., implemented in the context
of the Model 2 Model (M2M) project which is part of the Eclipse Modeling
Project (EMP) [Gro09].

For code generation (PIM to code, PSM to code), there exists a plethora
of tools and frameworks such as AndroMDA (which has been used for a case
study in the context of this monograph and thus will be described in more
detail in Sect 8.1), MOFScript [Old+05], Fujaba [GSR05] or XCoder [Car11].
Moreover, there are implementations of OMG’s MOF Model to Text Trans-
formation Language (MOFM2T) [Obj08] like Acceleo [Obe11], and integrated
code generation facilities in tools that support UML modeling, such as Altova
UModel [Alt11] and Together [Bor11].

Although the MDA has gained lots of attention and is, in the author’s as-
sessment, perhaps the most widely known MD* approach, some of its related
standards are subject to criticism. For instance, Sect. 2.2 already pointed out
that the one-dimensional metamodeling architecture specified by MOF was
controversial – however, the situation improved significantly with the intro-
duction of UML 2.0 and MOF 2.0 (though still some issues remain [AK03]).

Maybe the most contentious part of MDA is UML. A major point of crit-
icism is its lack of a clearly and formally described semantics [Tho04;BC11].
Furthermore, Kelly and Tolvanen point out the low abstraction provided by
UML models, which “are at substantially the same level of abstraction as
the programming languages supported” [KT08, p. 19f], because “the mod-
eling constructs originate from the code constructs” [KT08, p. 14] instead
of deriving them from the domain of the modeled system. Another problem
arises from the practical difficulty of synchronizing the various UML models
that describe different aspects of a system: When changes to a model are
not propagated to dependent models, this may lead to inconsistencies that
hamper the system’s evolution [Hör+08]. In particular, this issue also con-
cerns round-tripping, i.e., the synchronization of UML models and the code
generated from them – Sect. 2.4.4 further elaborates on this.

24 2 The State of the Art in Code Generation

2.3.4 Domain-Specific Modeling

Domain-Specific Modeling (DSM) [KT08] explicitly focuses on the creation
of solutions that are entirely tailored to a particular domain. According to
Kelly and Tolvanen, DSM typically includes three components: a domain-
specific modeling language, a domain-specific code generator and a domain
framework [KT08, p. xiii f]. Once those components are in place, develop-
ers use the domain-specific modeling language for creating models which are
automatically translated into code. The use of the term “domain-specific mod-
eling language” (instead of just DSL) can be considered to reflect a tendency
of DSM towards visual notations “such as graphical diagrams, matrices and
tables” [KT08, p. 50], that are used along with text (i.e., hybrid concrete
syntaxes as described in Sect. 2.2). Furthermore, DSM clearly aims at full
code generation (cf. Sect. 2.4.4), so that the generated code is complete and
does not have to be touched [KT08, p. 49f]. In order to reduce the complexity
of code generators, the produced code often is executed on top of a dedicated
domain framework. Such a domain framework provides elementary imple-
mentations that do not have to be generated and thus relieve and simplify
the code generator.

Kelly and Tolvanen point out that full code generation is achievable, be-
cause the language and the generator employed in DSM “need [to] fit the
requirements of only one company and domain” [KT08, p. 3], thus strictly
following the tenet that “Customized [sic] solutions fit better than generic
ones” [KT08, p. xiv]. As a consequence of this orientation, DSM typically
does not involve shipping of ready-made DSLs or code generators, because
both are developed in-house as a part of implementing a DSM solution for a
particular domain. In [TK09], Tolvanen and Kelly state that based on their
industry experiences, this implementation phase is usually very short, with
the time required for implementing the generator often outweighing the time
for realizing the language.

In order to enable this modus operandi, proper tooling is required that sup-
ports both the definition and the usage of a DSM environment for creating a
particular domain-specific solution. Consequently, tools for DSM usually have
a hard-wired metametamodel (i.e., level M3, see Sect. 2.2), thus allowing the
definition of new metamodels, ergo new domain-specific modeling languages.
In this respect, DSM tools contrast with CASE or UML tools [KT08, p. 60],
which usually dictate the use of a particular modeling language.

Perhaps the most prominent DSM tool is MetaEdit+ [TK09;KLR96]. As
further tools that can be considered realizations of the approach, Kelly and
Tolvanen [KT08, p. 390–396] mention the Generic Modeling Environment
(GME) [Led+01] (originally developed in the context of Model-Integrated
Computing [SK97]), Microsoft’s DSL Tools [Coo+07] (a part of the Soft-
ware Factories [Gre+04] initiative) and the EMF-based Graphical Modeling
Framework (GMF) [Ecl11a;Gro09].

2.3 The Role of Code Generation 25

2.3.5 Language Workbenches

In 2005, Martin Fowler coined the term language workbench [Fow05] for refer-
ring to a class of tools that specifically focus on DSLs. This is not restricted
to providing an IDE for creating a DSL (e.g., features for creating a meta-
model or generating a parser): Language workbenches also support building
a specialized IDE that is equipped with, e.g., custom editors and views for
using the created DSL. Consequently, similar to tools for DSM mentioned in
Sect. 2.3.4, language workbenches significantly differ from CASE and UML
tools, which usually are based on a fixed metamodel [KT08, p. 60]. Alto-
gether, a language workbench enables the definition of a DSL environment
by specifying the metamodel, an editing environment and the semantics of the
DSL ([Fow10, p. 130], adapted to the terminology introduced in Sect. 2.2).

For the custom editing environment, language workbenches usually employ
either source editing or projectional editing [Fow10, p. 136]. Source editing
uses one single representation for editing and for storing, which is usually
text. The creation of such text does not depend on a particular tool but
can be performed with any text editor. In contrast to this, with projectional
editing the primary representation of a program or model is specified and
tightly coupled with the employed tool. The tool provides the user with an
editable projection of this representation, which might follow any concrete
syntax (textual or graphical). Editing the projection then directly modifies
the primary representation. In consequence, in this scenario, the user never
works directly with the primary representation, and the tool is imperatively
required for editing, as it has to perform the projection.

Projectional editing provides several advantages over direct source editing,
such as the possibility to provide multiple (e.g., user-specific) projected rep-
resentations. Graphical modeling tools naturally employ projectional editing,
as the actual model is usually kept separate from its graphical representation.
Thus the differentiation makes most sense for textual DSLs. Language work-
benches that are based on projectional editing are also termed projectional
language workbenches (see, e.g., [VV10]).

Code generation plays a central role for most language workbenches as it
is frequently used for providing the semantics of a created DSL. According
to Fowler, the semantics of the DSL is most commonly specified in a transla-
tional way (cf. Sect. 2.2), i.e., by means of code generation, and more rarely on
the basis of interpretation [Fow10, p. 130]. Consequently, most workbenches
provide means for specifying code generators, some of which will be exempli-
fied in Sect. 2.4.

The rationale behind language workbenches is often associated with lan-
guage-oriented programming (see, e.g., [Fow05;?]). The term has been coined
by Ward [War94] in 1994 and refers to the general approach of solving a
problem with one or more domain-specific languages rather than with general-
purpose languages.

26 2 The State of the Art in Code Generation

Many existing tools meet the characteristics of language workbenches de-
scribed above. For instance, MetaEdit+ (presented in Sect. 2.3.4) can be
considered a language workbench which supports the creation of graphical
(or visual) DSLs along with projectional editing. Other language workbenches
mainly focus on textual DSLs, providing either projectional editing like the
Meta Programming System (MPS) [Jet11] or parser-based source editing like
Xtext [Ecl11h], Spoofax [KV10] or Rascal [KSV09].

2.3.6 Approaches without Code Generation

For the sake of completeness, it should be noted that code generation is not
the only way to obtain a running system from a model. Another common
solution is the use of an interpreter which directly executes a model without
previous translation.

Business Process Modeling (BPM) is an example of a field which pre-
dominantly employs model execution. Such models are usually business pro-
cesses that are described by means of dedicated languages, and that are typ-
ically executed (i.e., interpreted) by a process engine. Examples are Business
Model & Notation (BPMN) [Obj11a] with corresponding process engines
like jBPM [Red11b] or Activiti [Act11b], and the Business Process Execu-
tion Language (BPEL) [OAS07] which can be executed by engines such as
ActiveVOS [Act11a] or Apache ODE [Apa11c]. Typically, process engines
provide features like scalability, long-running transactions (e.g., via persis-
tency of process instances), support for human interactions and monitoring
of running processes.

A major feature of interpreters is late binding. In BPM this is used, among
other things, for running multiple versions of a process. It also allows, e.g., the
realization of multi-tenancy capabilities, or of process adaptations at runtime.
The latter is also a major goal of the “models@run.time” approach [BBF09]
which aims at exploiting the advantages of models not just for software devel-
opment, but also in the running system. For instance, models can be useful
at runtime for realizing (self-)adaptive software systems.

Furthermore, an interpreter may play the role of a reference implementa-
tion that specifies the semantics of a DSL, as an alternative to describing the
semantics in a formal way (cf. Sect. 2.2). Kleppe [Kle08, p. 135] refers to this
as pragmatic semantics.

The choice between code generation and interpretation is not exclusive, as
both approaches can be combined. For instance, the execution of generated
Java code can be considered such a combination, as the Java Virtual Machine
(JVM) [LY99] can be regarded an interpreter for bytecode. This book will
show several further combinations of code generation and interpretation, such
as interpreter-based bootstrapping of a code generator (Sect. 5.1) and the use
of an interpreter via API in order to realize the execution of generated code
(Sect. 5.1.1).

2.4 Code Generation Techniques 27

2.4 Code Generation Techniques

Similar to a compiler, a code generator can be characterized as a “T-shape”
in a T-diagram (cf. Sect. 2.1): It supports a particular source language, trans-
lates to a desired target language and is implemented using a specific imple-
mentation language. Each of these three facets may be based on a different
language. While the source and the target language are usually given by ini-
tial requirements, the implementation language has to be selected advisedly.
For instance, it may be advantageous to use the same language as source and
implementation language in order to enable bootstrapping (cf. Sect. 2.1).

Apart from the selection of an appropriate implementation language, there
are also several approaches for the actual implementation of a code generator.
Generally, each approach covers two aspects of the code generator. First, the
output description specifies the structure and the appearance of the generated
code. Second, the generation logic describes the logic of the code generator,
i.e., how the mapping from the source language to the target language is
actually performed. This may also include further actions such as pretty-
printing, assembling code fragments or writing the code to corresponding
files.

In the literature, different classifications are used for categorizing the exist-
ing approaches to code generation. For instance, Kleppe [Kle08, pp. 151–156]
makes the following interrelated distinctions:

1. Model transformation rules versus hard-coded transformation: In the first
case, the code generator is described by means of a set of transformation
rules. These rules are processed by a corresponding tool which performs
the actual translation from source to target language, and which thus
realizes a large part of the generation logic via a generic transformation
engine. In the second case, the transformation is implemented explicitly,
e.g., using an imperative language.

2. Source-driven versus target-driven transformation: With source-driven
transformation, the structure of the input model in the source language
drives the code generation: The generator processes the input model and
produces corresponding code in the target language for each model el-
ement. For instance, this might result in a set of code fragments that
are assembled in a final step. If the translation is target-driven, the code
generator is oriented towards the structure of the desired output. In such
an approach, the code is, e.g., generated sequentially into some kind of
stream, and each time any information from the input model is required,
the model is specifically queried for it.

3. Concrete form versus abstract form target: A code generator may either
translate into the concrete syntax of the target language or into a repre-
sentation of its abstract syntax. Accordingly, in the latter case, the result
is again a model resembling an abstract form of the code (see Sect. 2.4.3
for more details on this).

28 2 The State of the Art in Code Generation

Czarnecki and Helsen [CH06] employ a much more coarse-grained and tech-
nical categorization as they only distinguish visitor-based and template-based
approaches. The former use a form of the well-known visitor design pat-
tern [Gam+95, pp. 331ff] for realizing the traversal of the input model and
for mapping elements of the source language to elements of the target lan-
guage (see also [Kle08, pp. 158f]). The approaches associated with the second
category describe the code generation by means of templates, a combination
of static text (i.e., the output description) and dynamic portions (which re-
alize parts of the generation logic). In order to produce the actual code, a
template engine evaluates the dynamic portions on the basis of the input
model (see Sect. 2.4.2 for more details).

Fowler [Fow10, p. 124] also introduces two categories, called transformer
generation and templated generation. Basically, templated generation equals
Czarnecki and Helsen’s category of templated-based approaches. With trans-
former generation, Fowler refers to any approach that processes the input
model and emits code in the target language for each model element.

The following sections describe different techniques for realizing code gen-
erators and, where applicable and useful, assign them to the different cat-
egories outlined above. Finally, Sect. 2.4.4 elaborates on different types of
outputs that can be produced with code generation.

2.4.1 Programming the Code Generator

The most minimalistic way to implement a code generator is to write it using
a general-purpose programming language. As in this case the transformation
from source language to target language is explicitly implemented, the result-
ing code generators belong to Kleppe’s “hard-coded transformation” category.
In the sense of Fowler’s classification, those generators are an application of
transformer generation.

Implementing a code generator this way only requires an API for access-
ing the models programmatically. The actual output is typically assembled
by means of basic string concatenation. Accordingly, output description and
generator logic are usually mixed up in such implementations. Moreover,
depending on the selected programming language, the required handling of
strings may increase the complexity of the implementation: If, e.g., Java is
selected as the implementation language, special characters (such as quota-
tion marks) have to be escaped and explicit operators (e.g., +) have to be
employed for the concatenation of strings [Sta+07, pp. 150f].

In parts, this complexity can be hidden by means of dedicated code genera-
tion APIs. As described by Völter [V03], such an API is designed to resemble
the abstract concepts of the target language. For instance, if Java is the target
language, a corresponding code generation API would provide concepts like
classes, methods, modifiers etc. as manipulable objects. After manipulation,

2.4 Code Generation Techniques 29

each of those objects would be able to produce its own code in the target lan-
guage. Consequently, the generator developer only has to deal with the API,
which relieves him of tedious tasks such as low-level string concatenation.

Additionally, the visitor pattern (see above) can be applied for realizing
the mapping of the API objects to corresponding code non-invasively and
at a central place. Czarnecki and Helsen [CH06] mention the code genera-
tor framework Jamda [Boo03] as an example of an API- and visitor-based
approach.

Code generators which are implemented “per pedes” based on a general-
purpose programming language and APIs are usually sufficient for small
application scenarios, which do not require generating a large amount of
complex code. However, for larger scenarios such code generators usually do
not scale well as in this case they are much harder to write [V03] and to
maintain. Furthermore, Kelly and Tolvanen [KT08, p. 271] point out that
many general-purpose languages do not provide convenient support for the
navigation of complex models and the production of text at once.

A possible solution to the latter problem is the selection of a programming
language which provides facilities that are specifically designed to support
the implementation of code generators. An example of such a language is
Xtend 2 [Ecl11g] which is used in recent versions of Xtext (version 2 at the
time of writing this text). As another solution, Kelly and Tolvanen propose
the use of a dedicated DSL, which allows a more concise description of a code
generator than a general-purpose language. Furthermore, a DSL enables the
specification of the code generator on a higher level of abstraction, thus hiding
low-level issues. An example of such a DSL is MERL [KT08, p. 273] which
is used for creating code generators in MetaEdit+. As a disadvantage of this
solution, it is not possible to resort to existing tool support, which is typically
readily available for general-purpose languages. Consequently, if the DSL is
not an internal DSL, the implementation of specific tools for, e.g., executing
and debugging the code generator may be required. For MERL, MetaEdit+
provides corresponding tools [TK09].

2.4.2 Template-Based Code Generation

This technique is based on the use of templates . Similar to a form let-
ter [Sta+07, p. 146], a template consists of static text with embedded dynamic
portions that are evaluated by a template engine. This approach is especially
common in web development, where it is used by techniques such as Active
Server Pages .NET (ASP.NET) [Mic11] or JavaServer Pages (JSP) [Jav09b]
for dynamic server-side generation of web site contents.

Fig. 2.4 shows an example of a template and the general modus operandi
of the approach. It is visible that apart from the actual template, a template
engine also requires concrete data as an input. In order to generate the actual
output, the dynamic portions of the template are evaluated on the basis of
this data and replaced by corresponding static text.

30 2 The State of the Art in Code Generation

public class $class.name
{
 #foreach ($attribute in $class.attributes)
 private $attribute.typeName $attribute.name;
 #end
}

title : String
author : String

Book

3. Template
Engine

public class Book
{
 private String title;
 private String author;
}

1. Template

2. Data

4. Output

Fig. 2.4. Using a template engine for code generation

The template depicted in Fig. 2.4 describes the translation of a class noted
as a UML class diagram into corresponding Java code. The dynamic portions
of the template (visualized in bold face) are written in a template language.
Such languages typically use dedicated control characters (in the example
$ and #) for distinguishing static from dynamic contents. In the example,
it is visible that the template accesses the elements of the class diagram
via the diagram’s abstract syntax (defined in the corresponding metamodel).
For instance, a class contained in the diagram is referenced by means of
the expression $class, and also the properties of the class are accessed via
suitable expressions such as $class.name or $class.attributes. Moreover,
apart from such facilities for data access, most template languages support
the use of control flow statements like conditionals, loops as well as method-
or macro-calls. The example in Fig. 2.4 shows a foreach loop which iterates
over all attributes of a class. For each attribute, the template describes the
generation of a private member variable in the resulting Java class.

There is a large number of ready-made template engines which can be
used for implementing a template-based code generator, such as StringTem-
plate [Par04], Velocity [Apa10], FreeMarker [Fre11b], Xpand [Ecl11f] and
JET [Ecl11d]. Usually each template engine defines its own template lan-
guage. For some template engines there is also sophisticated IDE support.
For instance, Xpand is supported by an Eclipse-based editor that provides
features such as syntax highlighting and code completion.

Template-based code generators are very common [KT08, p. 272], which
can also be witnessed by the fact that Fowler as well as Czarnecki and
Helsen consider them a category of their own. Examples of tools which em-
ploy template-based code generation are ANTLR (StringTemplate), EMF
(JET), AndroMDA (Velocity, FreeMarker), Fujaba (Velocity), Acceleo (own
template language) and former versions of Xtext (Xpand).

Similar to code generator implementation by means of a programming
language (as described in Sect. 2.4.1), templates mix generation logic and
output description. However, with a template-based approach, the genera-
tor developer is not confronted with issues such as escaping and string con-
catenation. Especially the latter is specified implicitly in the template and
performed automatically and transparently by the template engine. As the

2.4 Code Generation Techniques 31

structure of a template follows the structure of the output, the transforma-
tion is, in Kleppe’s terminology, target-driven. Furthermore, template-based
approaches belong to the category of hard-coded transformations [Kle08, p.
151].

Kelly and Tolvanen [KT08, p. 273] point out that working with templates
can be inefficient if the generated output is distributed among multiple files
(or locations). As a template usually resembles one file, a separate template
is required for each output file and all templates have to be evaluated se-
quentially in order to produce the entire set of resulting files. This may lead
to unnecessarily frequent traversals of the input model, even if information
that is relevant for multiple files is located at the same place in the model.

2.4.3 Rule-Based Transformation

As mentioned above in Kleppe’s categories, an alternative to hard-coding the
transformation performed by a code generator is the use of transformation
rules. In this approach, a set of such rules describes how each element in
the source language is translated to a corresponding element in the target
language. For the actual transformation, a transformation engine processes
those rules and applies them to the input model given in the source language.

A code generator can be realized as a chain of such transformations. For
instance, according to the MDA approach (cf. Sect. 2.3.3), such a chain is
a sequence of model-to-model transformations on several intermediate repre-
sentations, eventually ending with a final model-to-text transformation. Es-
sentially, this idea is based on the classical “divide-and-conquer” paradigm:
A complex transformation is handled by dividing it into smaller, simpler and
thus more manageable steps.

Furthermore, approaches using chains of rule-based transformations often
aim at an abstract form of the target language rather than at its concrete
syntax (see Kleppe’s “abstract form target” category). Instead of directly
translating the original input model or any of the intermediate representa-
tions along the transformation chain to the concrete syntax of the target
language, a structured representation (i.e., a model) of the target language
is produced. The actual code is then produced by means of a final abstract-
form-to-concrete-form transformation within the target language [Kle08, p.
155]. As the major advantage of targeting an abstract form, the abstract rep-
resentation of the code is still available after the code generation. Thus it can
be used for further processing steps and transformations, e.g., for extending
the target language with additional constructs [Hem+10].

An example of rule-based transformations is described by Hemel et al. in
[Hem+10]. They use Stratego/XT [Bra+08] (also employed by the language
workbench Spoofax) for specifying the code generation via rewrite rules in
combination with strategies for applying those rules. Another example is the
language workbench MPS, which also allows rule-based transformation with
abstract form target.

32 2 The State of the Art in Code Generation

2.4.4 Round-Trip Engineering versus Full Code Generation

With regard to their results, code generators can be distinguished by means
of two further categories: those which produce complete code and those which
only generate stubs or skeletons that have to be completed by a developer.

Round-Trip Engineering:

Due to the fact that in the latter case models and code are both editable
development artifacts, it is required to keep them mutually consistent. Per-
forming this by hand is error-prone and increases the workload, because the
same information has to be maintained at multiple locations. Consequently, a
technique called round-trip engineering (RTE) [HLR08;SMW10] (also called
round-tripping [KT08, p. 5]) aims at automating the synchronization be-
tween models and code. The both directions of this synchronization are also
referred to as forward engineering (higher level model to lower level model
or code) and reverse engineering (lower level model or code to higher level
model) [MER99]. Accordingly, code generation belongs to the forward engi-
neering techniques.

However, RTE has several problematic aspects. For instance, the forward
engineering part has to ensure that the code can be regenerated safely when
the model has been modified. This task is not trivial, especially when the
code also has been subject to modification: In order to protect the devel-
oper’s work, such changes must not be overwritten or invalidated by the
regeneration.

According to Frankel, one possible solution is partial round-trip engineer-
ing [Fra02, p. 233–235], which restricts the allowed code modifications to
additive changes. In this scenario, it is not allowed to overwrite or delete any
code that has been generated from the model. At the same time, it is forbid-
den to add any code that could have been generated from a corresponding
description in the modeling language. Consequently, the developer and the
code generator only touch code for which they are exclusively responsible.
This form of RTE is partial because it is unidirectional only – it does not
support iterative reverse engineering [Fra02, p. 234].

Protected regions [KT08, p. 295f; Fra02, p.234]are a means for support-
ing such strictly additive code changes. Those regions are specific parts of
the code that are, e.g., marked with dedicated comments. As a general rule,
the developer must not perform any modifications outside of the protected
regions. In turn, the code generator is able to detect the protected regions
and leaves them untouched in case of a regeneration. However, as this fea-
ture needs to be supported by the code generator, this inevitably increases
the complexity of the generator’s implementation. Further problems with
protected regions include modifications to the model which lead to the in-
validation of manually written code (such as renaming of classes, methods
etc.) [KT08, p. 66], or developers who do not stick to the rules and perform
modifications outside of the protected regions [Fra02, p. 234].

2.4 Code Generation Techniques 33

An alternative to protected regions is the use of the generation gap pat-
tern [Vli98, pp. 85ff]. Based on this pattern, manually written code can be
added non-invasively by means of inheritance: The “hand-made” classes sim-
ply extend the generated classes. On regeneration, the code generator can
safely overwrite the superclasses, and the manually written subclasses are
not affected at all. Hence the code generator is less complex than for the
protected regions approach, because it only has to ensure that, e.g., suitable
visibilities in the generated code support the inheritance.

Besides partial RTE, there is also full round-trip engineering [Fra02, pp.
235f] which allows arbitrary changes to model and code along with a bidirec-
tional synchronization of both. However, in practice, full RTE is very hard
to realize due to the fact that “transformations in general are partial and not
injective” [HLR08]. As a consequence, full RTE often only works if model and
code are at the same level of abstraction [Sta+07, p. 45; KT08, pp. 5f]. This
contradicts the very purpose of a model, that is, to be an abstraction of the
code (cf. Sect. 2.2).

MDA is a prominent example of an approach that is frequently realized on
the basis of RTE. Many code generators for UML, such as AndroMDA which
is presented in more detail in Sect. 8.1, mainly produce stubs and skeletons
that have to be completed manually. Hence lots of UML modeling tools like
Together or Altova UModel provide support for RTE. As many UML models
are very close to the code in terms of abstraction, even full RTE is possible –
however, as already pointed out in Sect. 2.3.3, UML is often criticized exactly
for this lack of abstraction.

Full Code Generation:

An alternative approach that aims at avoiding the problems arising from
stub/skeleton generation and RTE is full code generation [KT08, p. 49 f]. This
refers to the generation of fully functional code which does not require any
manual completion. More precisely, the manual modification of the generated
code is explicitly forbidden: Any change to the system has to be performed
at the modeling level, followed by a regeneration of the code. As the code is
never edited, the code generator can overwrite it blindly (similar to the super-
classes of the generation gap pattern, see above) which strongly simplifies the
generation. In this scenario, the generated code is considered a by-product,
analogous to the results of a compiler for a programming language [Sel03].

Please note that full code generation usually is not equivalent to generating
a full application, though in some cases the generated source code may already
resemble a complete application or system. Typically, the generated parts
coexist with other code and software components, such as hand-written code
(e.g., specialized GUIs, legacy code, a domain framework in the sense of
DSM), frameworks (e.g., a web framework like Struts [Apa11d]), libraries
(e.g., a template engine like StringTemplate, see Sect. 2.4.2), or an application
server like JBoss [Red11a].

34 2 The State of the Art in Code Generation

It largely depends on the source language whether full code generation is
possible or not. The challenge is to design the language in such a way that it
contains enough information for the generation of complete code, but at the
same time is not forced to align its abstraction level with the code.

For instance, the latter can be observed with Executable UML [MB02;
Rai+04], which aims at making UML models executable via precisely de-
fined action semantics, using a compliant action language like the Action
Specification Language (ASL) [Ken03]. Although this technique improves the
results of code generation, it comes at the cost of less abstract and more
technical models: Executable UML is virtually using UML itself as a pro-
gramming language. [KT08, pp. 56f]. Similar arguments apply to other ap-
proaches that, e.g., try to generate the dynamic aspects from collaboration
diagrams [Eng+99].

One approach for achieving full code generation is specifically tailoring the
language and the code generator to each domain, as, e.g., advocated by DSM
and MDSD. This book will show that another solution is the combination
of model-driven development and service-orientation that is proposed by the
XMDD paradigm (cf. Chap. 3).

2.5 Quality Assurance of Code Generators

Just like any other software product, code generators have to be the sub-
ject of quality assurance measures such as verification and validation (V&V).
Bugs in code generators may lead to drastic problems such as uncompilable
code or unexpected behavior of the generated system. This is particularly
unacceptable for safety-critical systems that can be found, e.g., in the auto-
motive or aviation industry. In consequence, it is essential that the automated
translation provided by a code generator is dependable and always leads to
the desired results.

In compiler construction, there has been lots of research on V&V, including
compiler verification (e.g., based on techniques like theorem proving [Str02;
Ler06], refinement algebras [MO97], translation validation [PSS98; Nec00],
program checking [GZ99] and proof-carrying code [Nec97]) as well as com-
piler testing [KP05]. In particular, the “verifying compiler”, i.e., one that
proves the correctness of the compilation result, has been the subject of a
grand challenge proposed by Tony Hoare in 2003 [Hoa03]. Moreover, compiler
verification in general is still an active topic (see, e.g., the workshop on “Com-
piler Optimization Meets Compiler Verification”, COCV; or the conference
on “Verified Software: Theories, Tools and Experiments”, VSTTE).

Sect. 2.1 already pointed out that existing tools from the realm of com-
piler construction (e.g., parser generators) can be reused for the construction
of code generators in MD* approaches. Similarly, insights and techniques
from compiler verification often serve as the basis of V&V for such code gen-
erators. For instance, theorem proving is used by Blech et al. [BGL05] to

2.6 Classification of Genesys 35

verify the translation of statecharts to a subset of Java, and in the Gene-
Auto [Rug+08] project for verifying the generation of C code from data-flow
and state models. Ryabtsev and Strichman [RS09] apply translation valida-
tion to a commercial code generator that translates Simulink [The11] models
to optimized C code. Denney and Fischer [DF06] propose an evidence-based
approach to the certification of generated code that is similar to the ideas of
proof-carrying code.

Concerning testing, Stürmer et al. described “a general and tool-indepen-
dent test architecture for code generators” [Stü+07;SC04]. Sect. 6.3 further
elaborates on this testing approach, as parts of it have been realized in the
context of the Genesys framework presented in this book. Beyond the pub-
lications of Stürmer et al., the author could not find any further substantial
research on code generator testing.

Stürmer et al. categorize V&V of code generators as analytical proce-
dures [SWC05]. Apart from this, they also identify further approaches to the
quality assurance of code generators termed constructive procedures. Such ap-
proaches advocate the implementation of code generators along the lines of
systematic development processes. According to Stürmer et al., this includes,
e.g., the adoption of standards like SPICE (Software Process Improvement
and Capability Determination, ISO/IEC 15504).

2.6 Classification of Genesys

This section locates Genesys on the scale of approaches and techniques pre-
sented in the previous sections. For this purpose, it focuses on highlighting
the differences and similarities – for any details on the single aspects of Ge-
nesys there will be cross-references to the corresponding chapters in this
book.

As pointed out in Chap. 1, the Genesys approach propagates the construc-
tion of code generators on the basis of graphical models and services. This
approach is, to the knowledge of the author, unique in the realm of code
generation.

Generally, the advantages of service orientation are typically not exploited
for building code generators. For instance, this is also true for the field of
BPM, which is traditionally closely connected to the ideas of service ori-
entation. Furthermore, it frequently features the combined use of graphical
models and services (e.g., in BPMN, cf. Sect. 2.3.6). However, those notations
are typically used for higher-level business processes, and not for lower-level
technical domains such as code generation.

If a program written in a DSL is considered a model (cf. Sect. 2.2), one
could argue that some approaches (e.g., MERL in MetaEdit+) indeed employ
modeling for realizing code generators. However, none of the code generation
approaches known to the author of this book uses graphical models for this
purpose: Textual specifications of code generators are the rule.

36 2 The State of the Art in Code Generation

A reason for this might be that code generation generally seems to be
attributed to a lower level of abstraction. Code generators are mainly imple-
mented by developers who are used to textual languages and APIs – so why
bother them with graphical models and services? This book argues that the
use of both can be highly beneficial for the development of code generators.

The previous sections showed that existing approaches are usually re-
stricted to the use of specific code generation techniques (e.g., templates
engines in AndroMDA, rule-based transformations in Spoofax, or the lan-
guage Xtend in Xtext). In contrast to this, Genesys does not dictate which
techniques or tools are used for building a code generator. This is a direct
consequence of service orientation: Any tool or framework can be incorpo-
rated as a service and directly used in Genesys. Modeling on the basis of the
available services is not fixed to any specific procedure, and thus the gener-
ator developer is free to choose any technique and modus operandi for the
code generator.

For instance, most of the Genesys code generators exemplified in this
monograph (cf. Sect. 4.2 and Chap. 5) employ template engines and thus
can be considered template-based. Each template engine is an available ser-
vice, so that the generator developer can freely select which engine should be
used. He could even mix several template engines in one single code generator.

It should be noted that in order to obtain a clean separation of genera-
tion logic and output description (Requirement S4 - Clean Code Generator
Specification), many Genesys code generators employ template engines in
a different manner than typical template-based generators. For instance, as
a convention in Genesys, advanced features of template languages such as
control flow statements or function calls should be avoided: Instead the cor-
responding logic is specified explicitly in the code generator models, so that
it can, e.g., be captured by verification tools (see Sect. 4.2.5). As a result
of this convention, those Genesys code generators typically use rather small
templates that are distributed over the code generator, producing code frag-
ments that need to be assembled at some point of the code generation process.
This is similar to, e.g., the rule-based transformation approach described by
Hemel et al. [Hem+10], which employs a similar fragmentation of the output
description.

Apart from separating generation logic and output description, a further
advantage arising from this different use of template engines in Genesys is
the fact that code generators can be source-driven and template-based at
the same time. As mentioned above in Sect. 2.4.2, code generators employ-
ing template engines are typically restricted to target-driven transformation.
However, because Genesys imposes no restrictions on the order in which the
code fragments have to be produced, the generation of the output can be per-
formed in a source-driven as well as in a target-driven manner, or even with
a combination of both. This flexibility also helps to overcome the typical
problems of template-based code generators that occur when dealing with
multiple files (cf. Sect. 2.4.2). The Documentation Generator described in

2.6 Classification of Genesys 37

Sect. 4.2 is an example which employs templates, is both source-driven and
target-driven, and deals with multiple output files.

This book also shows examples of Genesys code generators which are not
template-based at all. For instance, the FormulaBuilder (cf. Sect. 6.2.1) em-
ploys a rule-based transformation with a concrete form target, and the BPEL
Generator (cf. Sect. 5.4.5) performs a transformation to an abstract form tar-
get and then serializes this to code.

Furthermore, this book illustrates the flexibility arising from service orien-
tation by integrating and using the code generation framework AndroMDA as
a service (in this case even paving the way for full code generation, cf. Chap. 8).
Consequently, Genesys may be considered “a code generator construction kit
whichallows the (re)use andcombinationof existingheterogeneous tools, frame-
works and approaches independent of their complexity” [JS11]. In this role, Ge-
nesys does not complement, but supplement and unify existing approaches.

Additionally, Genesys is not limited to any particular source language (see
Chap. 7) or representation of the source language, like the bulk of language
workbenches which strongly focus on textual source languages. Likewise,
there are no restrictions of supported target languages whatsoever.

The development of code generators in Genesys is characterized by the
reuse of existing components, as it relies on a library of models and services
(cf. Chap. 4). Accordingly, Genesys strives for a balanced approach that aims
at:

1. providing fast creation of code generators via customization and reuse, in
contrast to, e.g., DSM and language workbenches, which usually achieve
their high domain-specificity by developing an entirely new code genera-
tor for each domain (thus repeatedly starting from scratch), and at the
same time

2. being more flexibly adaptable to different domains than, e.g., CASE or
UML tools with their rather fixed and inextensible code generators.

As another major difference in comparison to other approaches, Genesys pro-
vides a holistic view on code generator construction that supports all phases
including the specification, execution, generation, debugging, verification and
testing of a code generator1. While specification, execution and generation
are typically supported, facilities for debugging a code generator are more
rare. Among the examples listed in the previous sections, only MetaEdit+
supports this by means of a dedicated tool [TK09], and in the case of code
generators implemented with a programming language, existing debuggers
can be used. However, for testing and in particular for verification, most
approaches do not provide integrated and dedicated solutions.

Furthermore, Genesys aims at retaining simplicity along all phases of code
generator development. Following Requirement G3 - Simplicity, the goal is
that constructing a code generator demands learning as few languages as
1 For specification, execution, generation and debugging see Chap. 4 and 5, for

verification and testing see Chap. 6

38 2 The State of the Art in Code Generation

possible. In other approaches, the knowledge of multiple languages (or at
least dialects of a language) are required, apart from the actual source and
target language of the code generator. For instance, the language workbench
Xtext has separate languages for specifying grammars, transformations and
workflows of transformations [Ecl11h]. Genesys uses the same simple mod-
eling language (cf. Sect. 3.2.2) for all artifacts required in the single phases.
In consequence, artifacts like test cases, test suites (cf. Sect. 6.3) or con-
straints (cf. Sect. 6.2) are specified by means of the same language employed
for developing the actual code generators. Aside from this, only a (freely se-
lectable) template language might have to be learned, given the case that a
template-based code generator is to be developed.

Concerning verification, Genesys is also unique in that it applies model
checking for proving the correctness of code generators relative to a set of
constraints. Although in particular model checking and another facility called
local checking (i.e., checking of constraints attached locally to single services,
cf. Sect. 6.1) are in the focus of this book, other verification techniques can
be easily incorporated into Genesys (cf. Sect. 10).

The reference implementation of the Genesys approach presented in this
monograph is conceptually and technically based on another MD* approach
called XMDD and its tool incarnation jABC (cf. Chap. 3). Sect. 3.5 evaluates
the feasibility of other MD* approaches and tools with regard to their apti-
tude for realizing the requirements of the Genesys approach (cf. Sect. 1.1),
and in doing so it illustrates why XMDD and jABC are a suitable basis for
reaching those goals.

Finally, the combination of XMDD, jABC and Genesys can be considered
a realization of GP (cf. Sect. 2.3.2). In this combination, services resemble the
elementary implementation components situated in GP’s solution space, and
models provide a particular configuration of services in the problem space.
Those models are a suitable basis for the evolution of system families, as
exemplified with a family of code generators in Chap. 5. Variability can be
specified by means of the variant management features presented in this book
(cf. Sect. 4.1.4 and 10). The code generators provided by Genesys in conjunc-
tion with a library of constraints (cf. Sect. 3.1) embody GP’s configuration
knowledge.

	The State of the Art in Code Generation
	Influences of Compiler Construction
	Models, Metamodels and Domain-Specific Languages
	The Role of Code Generation
	Computer-Aided Software Engineering
	Generative Programming
	Model Driven Architecture
	Domain-Specific Modeling
	Language Workbenches
	Approaches without Code Generation

	Code Generation Techniques
	Programming the Code Generator
	Template-Based Code Generation
	Rule-Based Transformation
	Round-Trip Engineering versus Full Code Generation

	Quality Assurance of Code Generators
	Classification of Genesys

