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Preface

This book results from the 32th International Summer School in Automatic that
held in Grenoble, France, September, 12-16, 2011. 15 speakers have merged to give
presentations, about Linear Parameter Varying methods and vehicle control, to an
audience of more than 50 people (researchers and PhD students), from different
european contries (Italy, Hungary, Austria, Czech Republic and France). The objec-
tive of this school was to provide recent methods (based on robust control and LPV
technics) to the control of vehicle dynamics (mainly road vehicles).

Indeed, due to the rapidly changing techniques and technologies for information
and communication, the last decade has seen increasing improvements of the per-
formance of active systems for road vehicles. Then embedded control is becoming
more prevalent in vehicles (intelligent electric actuators, sensors, etc..). Neverthe-
less, the possibilities offered by new approaches to improve the safety of passengers
and pedestrians, are still largely underused. Furthermore the vehicle systems (non-
linear, multi-variable) become now more complex systems where the abundance of
onboard functions should ensure better security.

On the other hand LPV methods whose theoretical developments in the context
of robust control are very recent (less than a decade), and are still the topic of an in-
tensive research, have shown their advantage in various applications [1]. They allow
the application of linear methods to perform robust control of nonlinear systems and
/ or time-varying parameters. These methods need to understand some theoretical
concepts related to modeling, analysis, observation and control. It is then particu-
larly interesting to evaluate the potential of methods such as LPV ones within the
framework of vehicle dynamics. Indeed such a type of LPV methods can help to:

• proposed control-oriented model, complex enough to handle some system non
linearities but still simple for control or observer design,

• take into account the adaptability of the vehicle’s response to situations encoun-
tered (normal, critical, dangerous ...) and under the conditions of operations,

• incorporate a model of actuators whose parameters are adjustable,
• manage interactions between various actuators to optimize the dynamic behavior

of vehicles.



VI Preface

The main objective of the book is to demonstrate the value of this approach for con-
trolling the dynamic behavior of vehicles. After some theoretical background and
a view on some recent works on LPV approaches (for modelling, analysis, control,
observation and diagnosis), the main emphasis is put on road vehicles but some illus-
trations are concerned with railway, aerospace and underwater vehicles. It presents,
in a firm way, background and new results on LPV methods and their application to
vehicle dynamics.

The content of the book is as follows, and it is divided in 3 parts.
In the first part some backgrounds on LPV systems are presented. Marco Lovera

introduces first the concept of LPV systems in Chapter 1. József Bokor and Zoltán
Szabó then presents in Chapter 2 some important features of the geometric approach
for LPV systems analysis, and in Chapter 3, they introduce a specific class of LPV
systems, namely the bimodal switching systems, where the switch from one mode
to the other one depends on the state (closed-loop switching). In Chapter 4, Di-
dier Henrion presents some recent results on LPV systems with positive polynomial
matrices. Chapter 5, from Meriem Halimi, Gilles Millerioux and Jamal Daafouz,
is dedicated to polytopic observers for LPV discrete-time systems. Chapter 6 tack-
les the fault diagnosis issue, and David Henry introduces the Fault Detection and
Isolation LPV filters with some aerospace application.

The second part concerns the application of LPV methods to road vehicles. First
Anh-Lam Do, Charles Poussot-Vassal, Olivier Sename and Luc Dugard present
some LPV control approaches in view of comfort improvement of automotive sus-
pensions equipped with MR dampers.In Chapter 8 Péter Gáspár proposes some de-
sign methods of integrated control (of suspension, braking and steering actuators)
for road vehicles. In Chapter 9, a coordinated control of braking/steering actuators
through LPV technics is proposed by Charles Poussot-Vassal, Olivier Sename, So-
heib Fergani, Moustapha Doumiati and Luc Dugard. In Chapter 10, John J. Martinez
and Sébastien Varrier present some new results on Multisensor Fault-Tolerant Auto-
motive Control in the LPV framework. In Chapter 11, some theory and application
to braking control of the Virtual Reference Feedback Tuning approach for LPV sys-
tems, are presented by Simone Formentin, Giulio Panzani and Sergio M. Savaresi.
This part is concluded by Péter Gáspár and Zoltán Szabó in Chapter 12, with the
design of a hierarchical LPV controller of an active suspension system for a full-car
vehicle.

The third and final part is an opening to other vehicles such as railway, aerospace
and underwater applications, for which the LPV approaches can be very attractive.
First Péter Gáspár and Zoltán Szabó present in Chapter 13 an observer-based brake
control for railways. Then Jean-Marc Biannic gives, in Chapter 14, a large overview
of LPV control strategies for aerospace applications. Finally Chapter 15 by Em-
ilie Roche, Olivier Sename and Daniel Simon, concludes the book with the de-
sign of LPV controllers with varying sampling for the altitude control of an AUV
(Autonomous Underwater Vehicle), where depth measurements are asynchronously
supplied by acoustic sensors.



Preface VII

We also would like to mention that this book is also part of the results of the 3-
years bilateral collaboration project between the CNRS and the Hungarian Academy
of Sciences: Robust and fault tolerant multivariable control for Automotive Vehicle.

We would like to thank all the contributors for providing very nice and high level
chapters in this book.

We hope that this book will interest various researchers and graduate students in
control of vehicle dynamics as wall as in robust control and LPV systems.
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Chapter 1
LPV Modelling and Identification:
An Overview

Marco Lovera, Marco Bergamasco, and Francesco Casella

Abstract. The current state-of-the-art in the fields of control-oriented LPV mod-
elling and LPV system identification is surveyed and the potential synergies between
the two research areas are highlighted and discussed. Indeed, a number of methods
and tools for the development of LPV models from nonlinear systems and for the
identification of black-box LPV models from input/output data have been derived,
in a rather independent way, in different research communities. The relative merits
of analytical and experimental methods for the derivation of LPV models, as well as
possible combinations of the two approaches, are analysed and eventually evaluated
on a case study based on the modelling of a thermo-fluid system.

1.1 Introduction

In the practice of control engineering there is a significant number of applications in
which a single control system must be designed to guarantee the satisfactory closed-
loop operation of a plant in many operating conditions. The most common control
approach used in these applications is gain scheduling, see, e.g., [11, 24, 26, 27, 30,
41, 46, 49, 69]. The gain scheduling approach, which has been common practice
in control engineering for decades, can be briefly summarised as follows: find one
or more scheduling variables which parameterise the operating space of interest for
the system to be controlled; define a parametric family of linearised models for the
plant covering the set of operating points of interest; design a parametric controller
ensuring that both the desired control objectives in each operating point and an
acceptable behaviour during (slow) transients between one operating condition and
the other are guaranteed. As is well known, a wide variety of design methods and
tools is now available for this problem (see, e.g., the survey papers [32, 53], the

Marco Lovera · Marco Bergamasco · Francesco Casella
Dipartimento di Elettronica e Informazione, Politecnico di Milano
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DOI: 10.1007/978-3-642-36110-4_1 c© Springer-Verlag Berlin Heidelberg 2013
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references therein and the recent book [43]), which can be reliably solved, provided
that a suitable model in parameter-dependent form has been derived.

This modelling problem can be formulated along many different lines, which
lead to a number of different approaches. More precisely, it is possible to iden-
tify two broad classes of methods: analytical methods based on the availability of
(relatively) reliable nonlinear equations for the dynamics of the plant, from which
suitable control-oriented representations can be derived (see, again [32, 53] and
[39]); experimental methods based entirely on identification, i.e., aiming at deriving
LPV models for the plant directly from input/output data (see, among many others,
[31, 63, 34] and the recent books [61, 33]).

The methods belonging to the first class aim at developing LPV models for the
plant to be controlled by resorting to suitable extensions of the familiar notion of
linearisation, possibly taking into account off-equilibrium operation of the system.

For the second class, many algorithms have been proposed in the literature in the
last ten years or so, aiming at the estimation of the parameters for both input/output
and state space models. While most LPV identification techniques are based on the
assumption that the identification procedure can rely on one global identification
experiment in which both the control input and the scheduling variables are (persis-
tently) excited in a simultaneous way, this assumption may not be a reasonable one
in many applications, in which it would be desirable to try and derive a parameter-
dependent model on the basis of local experiments only, i.e., experiments in which
the scheduling variable is held constant and only the control input is excited. Such
a viewpoint has been considered in, e.g., [58, 47, 34], where numerical procedures
for the construction of parametric models for gain scheduling on the basis of local
experiments and for the interpolation of local controllers have been proposed.

In spite of the extensive (and increasing) research effort in this area, however, a
number of issues are still open, both in terms of the development of suitable method-
ologies and in terms of proving their actual applicability to real life problems. In
this respect, there is a strongly felt need to investigate new approaches for dealing,
in a systematic way, with the complexity and the increasingly stringent requirement
specifications arising in advanced applications.

In particular, both analytical and experimental methods suffer from some restric-
tions and limitations, which will be described in the following, and which might
be mitigated by combining techniques originating from the former and the latter
approach. Surprisingly enough, taking advantage of the potential synergies which
might arise from the cross-fertilization of these two research areas seems to be a
currently unexplored approach. In this respect, a third approach to LPV model iden-
tification has been proposed in a few recent contributions dealing with modelling
of mechanical systems ([42]) and corresponds to a glocal perspective in which data
collected in local experiments are used to estimate system’s parameters based on a
global parameterisation.

Finally, from the standpoint of application, many real systems exhibit dynamics
which can be reasonably described by LPV models (see the recent special issue [35])
and there is an increasing interest for this modelling and identification framework in
such diverse areas as, e.g., aeronautics [14, 39, 37, 38, 30], space [45, 28, 40, 18],
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automotive [11, 16, 24, 25, 26, 27, 46, 59, 69], mechanics [19], mechatronics [47,
58], robotics [23, 6, 22, 7], bio-engineering [49], semiconductor manufacturing [68]
and computing systems [52, 51, 60].

In the light of the above discussion, the aim of this chapter can be summarised
in the following points: to provide an overview of the state-of-the art in the neigh-
boring fields of analytical and experimental methods for LPV modelling, with an
emphasis on state space modelling; to propose possible combined developments for
new techniques which might make the most of analytical and experimental meth-
ods; to discuss the relative merits of the two classes of methods with reference to a
simple case study.

The chapter is organised as follows. The considered LPV model classes are first
defined in Section 1.2, while Sections 1.3, 1.4 provide an overview of analytical and
experimental methods for LPV modelling, respectively. Finally, some simulation
results related to the control-oriented modelling of a superheated steam generator
are presented in Section 1.5.

1.2 Continuous- and Discrete-Time LPV Models

We define LPV systems as finite-dimensional linear time-varying plants whose state
space matrices are fixed functions of some vector of varying, measurable parame-
ters. In the following both continuous-time and discrete-time LPV models will be
considered. In this Section, the main definitions and the relevant notation are pro-
vided. The focus will be on state space representations of LPV systems, see [61] for
an in-depth treatment of input-output models and issues in LPV realisation theory.

Continuous-time state space LPV models are usually defined as
[

ẋ
y

]
=

[
A(ρ) B(ρ)
C(ρ) D(ρ)

][
x
u

]
, (1.1)

where ρ is the external scheduling parameter vector. A particular case of the above
is the one of quasi-LPV (qLPV) systems,

⎡
⎣ ż

ẇ
y

⎤
⎦=

⎡
⎣A11(ρ) A12(ρ) B1(ρ)

A21(ρ) A22(ρ) B2(ρ)
C1(ρ) C2(ρ) D(ρ)

⎤
⎦
⎡
⎣ z

w
u

⎤
⎦ , (1.2)

where the state variables are divided in two separate parts, i.e., z are the scheduling
states and w the nonscheduling ones. The scheduling vector ρ is composed, for the
sake of generality, of both scheduling states z and exogenous scheduling variables
ω , i.e.,

ρ =

[
z
ω

]
. (1.3)
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Discrete-time state space LPV models, on the other hand, are usually defined as

xk+1 = A(δk)xk +B(δk)uk

yk =C(δt)xk +D(δk)uk,
(1.4)

where δ ∈ R
s is the parameter vector and x ∈ R

n, u ∈ R
m, y ∈ R

l . In the LPV
identification literature, additional assumptions are usually introduced regarding the
way in which δk enters the system matrices. The most common assumptions are

1. Affine parameter dependence (LPV-A):

A(δk) = A0 +A1δ1,k + . . .+Asδs,k (1.5)

and similarly for B, C and D, and where by δi,k, i = 1, . . . ,s we denote the i-th
component of vector δk. This form can be immediately generalised to polynomial
parameter dependence.

2. Input-affine parameter dependence (LPV-IA): this is a particular case of the LPV-
A parameter dependence in which only the B and D matrices are considered
as parametrically-varying, while A and C are assumed to be constant: A = A0,
C =C0.

3. LFT parameter dependence (LPV-LFT): the plant is constituted by the feedback
interconnection of an LTI system

xk+1 = A xk +B0wk +B1uk

zk = C0xk +D00wk +D01uk

yk = C1xk +D10wk +D11uk

(1.6)

with a time-varying block which depends on the parameter vector

wk = Δkzk, Δk = diag(δ1,kIr1 . . .δs,kIrs), (1.7)

and w,z ∈R
r, r = r1+ . . .+rs. The elements of the system matrices turn out to be

first order rational functions of the elements of the parameter vector if D00 �= 0
and linear functions of the parameter vector if D00 = 0.

As is well known in the robust control literature and also pointed out in [31] with
respect to LPV-IA and LPV-LFT models, affine and linear-fractional representations
for LPV systems are related to each other. Focusing, e.g., on discrete-time systems
and denoting the composition of the system matrices

M(δk) =

[
A B(δk)
C D(δk)

]
= M0 +M1δ1,k + . . .+Msδs,k

by expressing each of the M′
i s by means of a rank ri decomposition as Mi =UiVi one

can write M(δk) as M(δk) = M0 +UΔkV where

U = [U1 . . .Us],V = [V T
1 . . .V T

s ]T (1.8)
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and Δk is given by equation (1.7). The obtained form for the system matrices coin-
cides with that of the special case of a linear fractional transformation characterised
by having D00 = 0, hence the transformation between the two forms.

1.3 Analytical LPV Modelling

In this Section an overview of the available methods for the analytical derivation of
LPV models for nonlinear systems is provided. The interested reader is referred to
the survey papers [32, 53, 39] for additional details. The underlying assumption for
the development of analytical methods is that a nonlinear state-space model for the
considered plant is available

ẋ = f (x,u) (1.9)

y = g(x,u), (1.10)

for which a set of equilibria (x̄, ū) is known, and parameterised by a scheduling
vector defined as in equation (1.3).

1.3.1 Jacobian Linearisation

The Jacobian linearization approach is the simplest methodology used to obtain
LPV models. In terms of applicability, it can be reliably adopted for any nonlinear
system which admits a linearisation at its equilibrium points of interest.

The idea is to obtain an LPV system based on a family of linearized models
obtained with respect to a set of equilibrium points that represents the operational
space of interest for the system. The resulting model is a local approximation to the
dynamics of the nonlinear plant around this set of equilibrium points. For practical
purposes, the implementation of a Jacobian linearisation for the plant also calls for
a suitable interpolation scheme, to be applied both the state space matrices of the
system and to the equilibrium curve, if the latter is not available in analytical form.
More details on the interpolation problem will be provided in Section 1.4.1.

1.3.2 State Transformation

The state transformation approach is based on the idea of performing a coordinate
change in the nonlinear equations of the system, the aim of which is the elimination
of all the nonlinear terms which do not depend on the scheduling parameter. This
technique can effectively lead to a qLPV representation for the given system, but it
is restricted to nonlinear systems in the form

[
ż
ẇ

]
= A(ρ)

[
z
w

]
+B(ρ)u+K(ρ), (1.11)
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where z are the scheduling states and w the nonscheduling ones, and such that the
number of scheduling states equals the number of control inputs u. Assume, further,
that there exist continuously differentiable functions weq(ρ) and ueq(ρ) such that

[
0
0

]
=

[
K1(ρ)
K2(ρ)

]
+

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

][
z

weq(ρ)

]
+

[
B1(ρ)
B2(ρ)

]
ueq(ρ). (1.12)

Subtracting (1.12) from (1.11) and recalling that ẇeq(ρ) =
∂weq(ρ)

∂ρ ż one obtains the
qLPV model for the plant, in the form

[
ż

ẇ− ẇeq(ρ)

]
=

[
0 A12(ρ)
0 A22(ρ)− ∂weq(ρ)

∂ z |ρA12(ρ)

]
×

[
z

w−weq(ρ)

]
+

[
B1(ρ)

B2(ρ)− ∂weq(ρ)
∂ z |ρB1(ρ)

]
(u− ueq(ρ)). (1.13)

The application of the Jacobian linearisation and of the state transformation methods
to a case study will be considered in Section 1.5.

1.3.3 Function Substitution

In [39] a novel approach to the derivation of qLPV models was proposed, named
function substitution. This approach applies to qLPV systems with nonlinearities in
the control input and is based on the substitution of a so-called decomposition func-
tion by (scheduling parameter-dependent) functions linear in the scheduling vector.
The decomposition function is defined as the combination of all the terms of the
nonlinear system that are not both, affine with respect to the nonscheduling states
and control inputs, and function of the scheduling vector alone (after a coordinate
change with respect to a single equilibrium point has been performed). The decom-
position is carried out through a minimization procedure, which leads to a series of
numerical optimisation problems.

1.4 Experimental LPV Modelling

LPV model identification algorithms can be divided in two classes, according to the
assumptions they rely on from the experimental point of view. Global approaches
assume that the input/output data are collected in a single experiment in which the
parameter is also excited and lead to an LPV model in a single step. Local ap-
proaches, on the other hand, rely on multiple experiments performed with constant
parameter values and lead to many LTI models which have to be interpolated in
order to arrive at the complete LPV representation for the system. Global methods
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for LPV identification provide a very general way of dealing with the problem, at
the cost of critical requirements on the experimental conditions which might not
be easily realisable in many applications. On the other hand, local techniques have
the advantage of being much closer to the actual practice of linear time-invariant
system identification but suffer from the additional complexity associated with the
interpolation of local models. In this Section a brief overview of local and global
methods will be provided.

1.4.1 Local Methods

The local approach to LPV model identification can be briefly formalised as follows.
Consider the MIMO linear parametrically-varying system given by

ẋ = A(ρ)x+B(ρ)u (1.14)

y =C(ρ)x+D(ρ)u (1.15)

where u ∈ R
m, y ∈ R

l , x ∈ R
n and ρ ∈ R

r and assume that the results of a number
of P identification experiments are available, associated with the operation of the
system near P different values of the parameter vector ρ . Then, the aim of the local
LPV identification procedure is to determine a set of parameter dependent matrices
Â(ρ), B̂(ρ), Ĉ(ρ) and D̂(ρ) (usually in affine or LFT form) which can provide a
good approximation of the system (1.14)-(1.15) over the considered range of oper-
ating points.

Focusing on the algorithm first presented in [34], which is representative of the
results currently available in the literature, we have that a typical state space local
approach can be summarised in the following steps.

• Linear state-space models are estimated for each operating point (using, e.g., a
subspace model identification algorithm).

• The identified models are brought (as close as possible to) a common state space
representation (e.g., in [34] the internally balanced form was used).

• Finally, the parameter-dependent model is obtained by direct interpolation of the
state-space matrices of the local models.

A few comments for each of the above steps follow.

Local Model Identification

The identification of the local linear time-invariant models can be carried out us-
ing any technique for LTI model identification. A convenient choice for the iden-
tification of the local models in state space form is to resort to subspace model
identification (SMI) algorithms - particularly so when dealing with multivariable
problems. The only, well known, downside of the SMI approach to state space
model identification is the impossibility to impose a fixed basis to the state space
representation. This, in turn, implies that it is hard to impose a parameterisation to
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the state space matrices in this framework, and therefore difficulties in recovering
physically-motivated models arise. This, to date, prevents the successful application
of SMI methods to some specific problems, including, e.g., the initialisation of iter-
ative methods for the identification of structured state space representations and the
identification of local models for LPV interpolation.

Consistency of the State Space Basis

Once P local models have been obtained, the problem of recovering the whole
parameter-dependent system has to be faced. To this purpose, it is first essential
to guarantee that the local state space models are represented in a consistent state
space basis, so that the subsequent interpolation can be carried out in a meaningful
way.

The problem has been initially addressed in [58], where the canonical controlla-
bility form was proposed for the case of SISO systems, while in [34] it was proposed
to fix the state space basis of the estimated matrices by using the algorithm first de-
rived in [29] to find a similarity transformation T such that

{
T−1ÂT,T−1B̂,ĈT, D̂

}
is in internally balanced form. Balanced realisations have an interesting and relevant
property in this framework, i.e., under suitable assumptions (see [29] and [44] for
details), the balancing transformation T is essentially unique. This, in turn, implies
that if the true LPV system exhibits a smooth dependence from the scheduling pa-
rameter δ , then the overall parameter dependent model can be directly reconstructed
from the identified local models.

More recently, in [50], the state space identification of a general black-box model
of the same order as the physical system is assumed as a starting point and the
physical and identified models are related to each other via a similarity transfor-
mation. The bilinear equations resulting from the definition of the transformation
are then converted into a null-space problem, the solution of which leads to a non-
convex optimization problem, for which uniqueness of the solution can be guar-
anteed by assuming that the user-defined physical state space form is identifiable
and the identified black-box model is consistent. Even more recently, in [5] the
problem is addressed in a different perspective, with the aim of reducing the com-
plexity of the non-convex optimisation problem to be addressed in order to match
the structured and the unstructured state space representations. More precisely, the
problem is formulated as an input-output model matching one, in terms of the H∞
norm of the difference between the two models. The solution of the problem is
subsequently computed using recent results in non-smooth optimisation techniques,
see [1], which yield effective computational tools (see [17]). The main advantage
of this approach is that no explicit construction of the similarity transformation is
needed, so the complexity of the non-convex optimisation task remains related to
the number of uncertain parameter and is independent of the dimension of the model
class. Furthermore, it can be applied to all instances of the problem corresponding
to model classes for which the H∞ norm (or, rather, the L2 gain) can be computed, as
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illustrated in the case of linear time-periodic (LTP) models and linear parameter-
varying (LPV) models identified using a periodic scheduling sequence (see also [15]).

Interpolation of the Local Models

The problem of interpolating local models has been studied by many authors in re-
cent years. Indeed, this problem arises not only when interpolating local black-box
models but also when dealing with multiple models derived from Jacobian lineari-
sation of a nonlinear simulator. For some recent references on this topic see for
example [20, 48]. In the following reference will be made to the interpolation ap-
proach used in [4].

Once the elements of the state-space matrices of the system have been estimated
following the above steps, and set of Nθ local linear time-invariant state space mod-
els has been obtained, a number of options are available as far as the derivation of
the actual parameter dependent model is concerned. The first, and simplest, would
be to directly fit to the system matrices of the local models using suitable regres-
sors formed from the scheduling parameter θ ∈ R

np . This would directly yield a
parameter dependent model in so-called affine form, i.e.,

ẋ = A(γ)x+B(γ)u
y =C(γ)x+D(γ)u (1.16)

where γ ∈ R
nγ is the vector of regressors (formed from linear or nonlinear combi-

nations of the elements of θ ) such that the parameter dependent matrices can be
written as

A(γ) = A0 +A1γ1 +A2γ2 + ...+Anγ γnγ

and similarly for B(γ), C(γ) and D(γ). The state space matrices are represented as
transfer function

Gk(s) =C(γ(k))(sI −A(γ(k)))−1B(γ(k))+D(γ(k)), k = 1, . . . ,Nθ

where k is the scheduling index of the kth identified local model. The matrices are
also aggregated in the following form

F(γ(k)) =
[

A(γ(k)) B(γ(k))
C(γ(k)) D(γ(k))

]
, k = 1, . . . ,Nθ . (1.17)

The polynomial interpolation of the elements of the matrix F is performed by solv-
ing a least squares problem as Y = ΦΘ , where Y contains the elements fi j of F ,
Φ contains the regressors γ , and Θ contains the polynomial coefficients. The root
means square error (RMSe) is defined as

RMSe =
‖Y −ΦΘ̂‖2

‖Y‖2
, (1.18)

and it expresses the fitting error.
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In order to reduce the model complexity, as suggested in [48] and reported here
for the sake of completeness, the fitting procedure is divided in two steps: the sensi-
tivity analysis and the polynomial fitting.

The H∞-norm sensitivity (note that in [48] the ν-gap metric is instead used as a
measure of sensitivity) is computed for each element fi j of the matrix F(γ(k)) and
it is defined as

Si j = max
k

‖Gk −Gki j‖∞
‖Gk‖∞ , (1.19)

where Gki j is equal to Gk except for the element fi j that is substituted with the
mean of the Nθ values fi j(γ(k)). If the influence of an element fi j on the transfer
functions is lower than a (user-defined) bound S ∈ [0,1], its mean value is used
instead of performing a polynomial fitting. It is also possible to define an upper
bound S beyond which the maximum polynomial degree is used. If Si j is in the
interval [S,S] a linear function of the influence is considered in order to obtain the
most reasonable trade-off between model complexity, i.e., polynomial degree, and
fitting error. In other words, the coefficient ζi j is defined for each (i, j) as a function
of the sensitivity Si j as follows

ζi j =

⎧⎪⎨
⎪⎩

∞ Si j < S
Ke−1
S−S

Si j +
S−KeS

S−S
S ≤ Si j ≤ S

1 Si j > S,

(1.20)

where Ke > 1 is the value of ζi j when Si j is equal to S. The value for this parame-
ter suggested in [48] is 2, which corresponds to twice the absolute and the relative
tolerances than their original values, and in this way the low sensitivity of the pa-
rameter (i, j) is taken into account. The absolute and the relative tolerances of the
mean square error are respectively ζi jεa and ζi jεr.

The algorithm increases the polynomial degree of the approximation and com-
putes the new polynomial coefficients by solving the least squares problem until
the RMSe drops below the absolute tolerance ζi jεa or the improvement in the RMSe

becomes less than the relative tolerance ζi jεr.
Finally, it is interesting to point out that a different viewpoint for the local ap-

proach has been proposed in a series of papers (see [12, 13] and the references
therein), in which the interpolation is carried out at the level of poles and zeros of
the identified local models. Clearly, as poles and zeros are invariant with respect to
the choice of coordinates in the state space, the issue of the state space basis is cir-
cumvented. This benefit however comes with a price, namely that the construction
of parametric maps for the singularities of the input-output representations of the lo-
cal models is a critical process which is hard to carry out in a fully automated way.

1.4.2 Global Methods

Global methods for state space models have been first proposed in [36, 31]. In the
first paper the case of measurable state was addressed and a subspace identification
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algorithm was first proposed. In the second paper, on the other hand, an iterative
maximum-likelihood approach to the identification of LPV models in LFT form has
been derived. Indeed, the classical way to perform linear system identification is by
minimizing the error between the real output and the predicted output of the model.
A similar approach can be used for LPV state-space systems of the form (1.4). Let
the system matrices of (1.4) be completely described by a set of parameters θ , then
identification can be carried out by minimizing the cost function

VN(θ ) :=
N

∑
k=1

||yk − ŷk(θ )||22 = ET
N (θ )EN(θ ),

with respect to θ , where

ET
N (θ ) =

[(
y1 − ŷ1(θ )

)T · · ·
(

yN − ŷN(θ )
)T ]

,

and yk denotes the measured output and ŷk(θ ) denotes the output of the LPV model
to be identified. In general, the minimization of VN(θ ) is a nonlinear, nonconvex
optimization problem. Different algorithms can be used to numerically search for
a solution to such an optimization problem; typically, the Levenberg-Marquardt al-
gorithm is employed. An important question that arises is how to choose the pa-
rameters θ to describe the system matrices in (1.4), as its choice may give rise to
structural identifiability issues. A state space parameterisation in general implies
that the minimization of VN(θ ) does not have a unique solution, because there exist
different systems, corresponding to different values of Θ , that have the same in-
put/output behavior. In order to deal with the nonuniqueness of the optimal θ , in
[31] a solution has been proposed in which, at each iteration, the directions that do
not change the value of the cost function are identified and are projected out of the
search direction used in the update rule. This solution can be interpreted as letting
the algorithm decide the parameterization that is used at each iteration.

The approach is very effective provided that the available data meet the stringent
persistency of excitation requirements, which call for the simultaneous excitation
of the control inputs and of the parameters of the system and, furthermore, that a
reliable initial estimate for the iterative optimisation procedure is available. To this
purpose, in the cited reference it was proposed to start by estimating the parameters
of a model in LPV-IA form, as its parameters can be retrieved by using conventional
algorithms for LTI systems (such as, e.g., subspace identification algorithms) by
suitably extending the input vector. As is well known (see also Section 1.2), LPV-
IA models can be converted exactly into LPV-LFT form, so they provide a useful
initial guess for iterative methods.

The search for effective means for the initialisation of interative methods such
as the above described one led over the last decade to the development of subspace
model identification algorithms for LPV systems. Such methods stemmed from re-
search on the identification of bilinear models (see [63, 67] and has since led to the
development of relatively mature methods such as the ones in [65, 64, 66, 15, 62].
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Finally, an alternative approach leading to successive approximation techniques
was developed in a series of paper, again stemming from research work on the iden-
tification of bilinear systems, see [54, 55, 56, 57] and the edited book [33].

1.4.3 Glocal Methods

Analytical methods for LPV and qLPV modelling generally provide simple and re-
liable ways to derive control-oriented representations even for relatively complex
nonlinear systems. Apart from the specific requirements of each of the methods
available in the literature, however, the general assumption is that a fully deter-
mined, reliable set of nonlinear equations for the system is available. This, in partic-
ular, leaves open the issue of dealing with the rather frequent situation in which the
nonlinear equations include unknown parameters and/or functions of the scheduling
variables.

Experimental methods, on the other hand, suffer from a number of limitations.
Local methods can only, to their best, provide the same level of performance as the
Jacobian linearisation approach. Therefore, from a practical point of view, they may
only be considered as a viable alternative in cases in which the additional modelling
effort required to derive a nonlinear model for the system is more expensive than
the set of experiments needed to apply a black-box identification procedure. When
moving from local to global experimental methods the situation becomes even more
critical, in view of the very strong requirements such methods have in terms of
the informative content of the input/output data to be used in the derivation of the
LPV model. Indeed, global methods require very complex persistence of excitation
assumption to be fulfilled (see, e.g., [2, 3], where persistency of excitation condi-
tions for LPV model identification were first characterised), which also involve the
scheduling variables. As such conditions are rarely realistic in practical applications,
it would appear that global methods are restricted to a very limited set of applica-
tions (see, for example, [60]) in which it is feasible to apply excitation signals also
to the scheduling parameter vector. In this respect, current research is aiming at de-
veloping LPV model identification techniques which are less demanding as far as
parameter variation is concerned (see, e.g., [15]).

As an example of potential synergies between analytical and experimental meth-
ods, consider the case of a nonlinear system in the form (1.11), for which a qLPV
representation of the form (1.13) has been derived. Assume now that the state space
matrices of the qLPV form are functions of an unknown parameter vector θ , i.e.,
that letting

v = u− ueq(ρ), t = w−weq(ρ) (1.21)

and x̄ =
[
z t
]T

, equation (1.13) can be equivalently written as

˙̄x = F(ρ ,θ )x̄+G(ρ ,θ )v (1.22)

y = z. (1.23)
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The problem of estimating the elements of the θ vector from measurements of the
input v and the output y can be therefore recast in terms of a local or global model
identification problem not unlike the ones discussed in Section 1.4. Similarly, if the
uncertainty in the state space matrices of the qLPV form is given by an unknown
function θ (ρ) of the parameter vector, one can reduce the problem to the previous
case by defining a suitable parameterisation for the unknown function (such as,
e.g., an affine one θ (ρ)= θ0+θ1ρ1+ . . .+θsρs) and introducing it in the state space
qLPV form. Finally, note that this approach to mixed anaytical/experimental LPV
modelling can be performed directly in continuous-time by resorting to classical
results for state space model identification (see, e.g., [8]).

Inspired by the discussion in [10], the above-described idea has been further
developed in [42, 70], where the knowledge available from the study of the non-
linear equations governing the system behavior are used to fix the structure of the
global LPV model. More precisely, based on local experiments (corresponding to a
constant scheduling parameter value), the following procedure yields a global LPV
model without requiring an interpolation stage. This basic idea of realizing global
functions by local actions is inspired from S. Hara’s work dedicated to the design
of “glocal controllers” [21]. For this reason, the identification procedure described
hereafter will be also called “glocal” in the sequel. This approach is interesting from
a theoretical as well as a practical point of view because

• it circumvents the classical problems related to the interpolation of local models;
• the numerical issues which arise if an ill-conditioned parameterization for the

model class is chosen (e.g., use of canonical forms with coefficients with large
magnitude variations) are avoided;

• the challenge of realizing all the models with respect to the same state variables,
which comes into play when interpolating black-box local state-space models is
circumvented;

• persistency of excitation of the scheduling parameters is not required. Indeed,
persistently exciting the scheduling parameters is sometimes difficult to be sat-
isfied in a number of application domains such as, e.g., in the mechatronics or
aeronautics domains.

The activity in this area, however is fairly recent and has not yet lead to mature,
general purpose, methods and tools.

1.5 A Case Study

1.5.1 Process Description and Simulation

The above-described techniques are tested using a superheated steam generator as
a case study. The plant is composed by a boiler and a steam superheater, feeding a
steam turbine. The drum boiler is fed with slightly subcooled water and produces
saturated steam at the outlet; the superheater receives the saturated steam at the inlet
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and adds more heat to it. The boundary conditions for the system are: a prescribed
flow rate and specific enthalpy for the feed water, a multi-stage turbine at the super-
heater outlet, and a prescribed heat flow entering both the boiler and the superheater,
with a fixed ratio. A process simulator, represented in Figure 1.1, has been set up
using the Modelica library ThermoPower (see [9]). The lumped-parameter boiler
model is based on dynamic mass and energy balances, assuming a uniform temper-
ature for the liquid, the vapour, and the metal wall. The superheater has been split
into three finite volumes, accounting for the mass and energy balance of the steam.
Additional heat storage in the superheater tube walls is modelled by three lumped
thermal capacitances, having the same temperature as the steam in the correspond-
ing volume, which is a reasonable assumption due to the very high heat transfer
coefficient between the steam and the tube walls. The thermodynamic properties of
water and steam are computed using the accurate standard IF97 model.

Fig. 1.1 The simulator for the considered plant

1.5.2 Nonlinear Mathematical Model

It is possible to derive a nonlinear mathematical model of the process by introducing
the following additional assumptions:

• the mass and energy storage of the steam in the superheater is negligible, com-
pared to the mass and energy storage in the boiler and in the superheater walls;

• the specific heat at constant pressure of the superheated steam is constant;
• the mass flow rate through the turbine is proportional to the inlet pressure;
• the derivative of the mass stored in the boiler mainly depends on the void fraction

derivative;
• the derivative of the energy storage in the boiler mainly depends on the pressure

derivative.

Under the above assumptions, the mass and energy balance equations in the boiler,
and the energy balance equations in the superheaters can be written as
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α̇ =
wl

f1(p)
− kv p

f1(p)
, (1.24)

ṗ = kv p
hl − hvs(p)

f2(p,α)
+ ab

Qin

f2(p,α)
, (1.25)

Ṫ2 = n
kvpcp

Cm
Tsat(p)− n

kvpcp

Cm
T2 + as

Qin

Cm
, (1.26)

Ṫ3 = n
kvpcp

Cm
T2 − n

kvpcp

Cm
T3 + as

Qin

Cm
, (1.27)

Ṫ4 = n
kvpcp

Cm
T3 − n

kvpcp

Cm
T4 + as

Qin

Cm
, (1.28)

where α is the void fraction in the boiler, p is the boiler pressure, wl is the feedwater
mass flow rate, kv is the valve flow coefficient, hl is the feedwater specific enthalpy,
hvs is the saturated steam enthalpy, cp is the heat capacity at constant pressure of
the steam, Qin is the total heat flow to the system, ab and as are the fractions of
the total heat flow going to the boiler and to the superheater, f1 and f2 are suitable
functions of the boiler dimensional parameters and of the water/steam saturation
properties, Tsat is the saturation temperature, T2, T3, and T4 are the temperatures of
the superheated steam in the three finite volumes, n is the number of finite volumes,
and Cm is the total heat capacitance of the superheater pipe walls.

1.5.3 Analytical LPV Modelling

On the basis of the above equations, suitable LPV representations can be obtained
analytically by applying both the Jacobian linearisation and the state transformation
methods described in Section 1.3. In particular, the state variables α and p are as-
sumed as scheduling states in the application of the state transformation approach,
so that, in terms of the notation adopted in Section 1.3 we have z =

[
α p

]T
and

w =
[
T1 T2 T3

]T
. While the explicit expression for the Jacobian linearisation repre-

sentation of the system is omitted for brevity, it is however interesting to point out
that for this specific application the state transformation approach leads to a par-
ticularly simple structure. Indeed, note that if the nonlinear mathematical model is
rewritten in the form (1.11), it leads to equation (1.29), from which one can see that

⎡
⎢⎢⎢⎢⎣

α̇
ṗ
Ṫ2

Ṫ3

Ṫ4

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −kv
f1(p) 0 0 0

0 kv(hl−hvs(p))
f2(p,α) 0 0 0

0 nkvcp
Cm

Tsat(p) − nkvcp
Cm

p 0 0

0 0 nkvcp
Cm

p − nkvcp
Cm

p 0

0 0 0 nkvcp
Cm

p − nkvcp
Cm

p

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

α
p
T2

T3

T4

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

1
f1(p) 0
0 ab

f2(p,α)
0 as

Cm

0 as
Cm

0 as
Cm

⎤
⎥⎥⎥⎥⎥⎦
[

wl

Qin,

]

(1.29)
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the A12(ρ) block is zero, so that the eventual LPV model will have a much simpler
structure than the general one presented in Section 1.3. Finally, for simulation pur-
poses the actual LPV model must be complemented with an explicit representation
of the equilibrium curve along which it has been derived.

1.5.4 Experimental LPV Modelling

For the considered process, five representative operating points have been consid-
ered, and the response of the state variables to perturbations applied on the Qin

control input have been collected in simulated experiments. The considered input
sequence is a sum of Schroeder-phased sinusoids, effectively covering the frequency
range from DC to about 10−1 rad/s. Five local models have been identified using the
approach summarised in Section 1.4 and have been subsequently interpolated using
as unique scheduling parameter the pressure p. In the following Figures 1.2-1.4, the
non-parametric frequency responses associated with the input/output data obtained
in the first of the five local experiments for the α , p and T4 variables, respectively,
are compared with the frequency response of the corresponding local model and of
the interpolated LPV model. As can be seen from the Figures, the LPV model con-
structed from data can match very accurately the local behaviour of the real system;
similar results – omitted for brevity – have been obtained for the other operating
points of interest.

Fig. 1.2 Non-parametric (solid), local (o) and interpolated (*) frequency responses from per-
turbations to Qin to perturbations to α , near the first operation point
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Fig. 1.3 Non-parametric (solid), local (o) and interpolated (*) frequency responses from per-
turbations to Qin to perturbations to p, near the first operation point

Fig. 1.4 Non-parametric (solid), local (o) and interpolated (*) frequency responses from per-
turbations to Qin to perturbations to T4, near the first operation point

1.5.5 Comparison of Results

For this specific application the comparison of analytical and experimental LPV
models leads to the following results: as the state transformation method can be
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applied exactly, the performance of the obtained model when compared to the "real
system" in simulation is clearly very satisfactory. On the other hand, the analytical
model obtained from Jacobian linearisation and the experimental one obtained from
local identification lead to results of comparable quality both in near-equilibrium
operation and during transients. However, in the development of this case study a
number of practical issues emerged, which do not seem to have been thoroughly
investigated in the literature.

1.6 Conclusions

The problem of deriving MIMO parameter-dependent models for LPV control de-
sign from analytical and experimental methods has been considered, the relative
merits of the two approaches have been discussed and potential synergies which
ought to be further explored have been analysed.
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Chapter 2
System Analysis: A Geometric Approach

József Bokor and Zoltán Szabó

Abstract. The mathematically dual concepts of (A,B) and (C,A)-invariance play
an important role in the geometric theory of linear time invariant (LTI) systems.
These concepts were used to study some fundamental problems of LTI control the-
ory, such as disturbance decoupling (DDP), unknown input observer design, fault
detection (FPRG). The nonlinear version of this geometrical approach is much more
complex and deals with certain locally controlled or conditioned invariant distribu-
tions and codistributions. The aim of the chapter is to present an extension of these
notions for the parameter-varying systems by introducing the notion of parameter-
varying (A,B)-invariant, parameter-varying (C,A)-invariant, controllability and un-
observability subspaces, and to give some algorithms to compute these subspaces if
certain conditions are fulfilled.

2.1 Introduction

For LTI systems the concept of certain invariant subspaces and the corresponding
global decompositions of the state equations induced by these invariant subspaces
was one of the main thrusts for the development of geometric methods for solutions
to problems of disturbance decoupling or noninteracting control, see [33]. In the so
called geometrical approach to some fundamental problems of LTI control theory,
such as disturbance decoupling, unknown input observer design, fault detection,
a central role is played by the (A,B)-invariant and (C,A)-invariant subspaces and
certain controllability and unobservability subspaces, [25, 33, 22, 23, 14, 2, 9, 5].
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Let us consider the state dynamics of a controlled linear time varying (LTV)
system:

ẋ(t) = A(t)x(t)+B(t)u(t) (2.1)

where x(t) ∈ X ⊂ R
n is the state vector, u(t) ∈ R

m is the control input while the
initial condition is x0 = x(t0). The measured signals are obtained by a linear readout
map y(t) =C(t)x(t), with y ∈R

p.
Our interest in such models is motivated by the fact that nonlinear dynamics can

be often cast as an LTV system

ẋ(t) = A(ρ(y))x(t)+B(ρ(y))u(t) (2.2)

by choosing a suitable set of scheduling functions ρ that depend only on measured
variables y, i.e., its values are available in operational time. These models are called
quasi linear parameter varying (qLPV) systems. A special case is when the depen-
dence from the scheduling variables is affine, i.e.,

A(ρ(t)) = A0 +ρ1(t)A1 + . . .+ρN(t)AN , (2.3)

B(ρ(t)) = B0 +ρ1(t)B1 + . . .+ρN(t)BN .

For the sake of notational simplicity, in what follows, the time dependency of the
matrices will be dropped (A(ρ) := A(ρ(t))) where it is possible.

Linear parameter varying (LPV) modeling techniques have gained a lot of in-
terest, especially those related to vehicle and aerospace control, [6, 15, 3, 21].
LPV systems have recently become popular as they provide a systematic means of
computing gain-scheduled controllers. In this framework the system dynamics are
written as a linear state-space model with the coefficient matrices functions of exter-
nal scheduling variables. Assuming that these scheduling variables remain in some
given range then analytical results can guarantee the level of closed loop perfor-
mance and robustness. The parameters are not uncertain and can often be measured
in real-time during system operation. However, it is generally assumed that the pa-
rameters vary slowly in comparison to the dynamics of the system. LPV based gain-
scheduling approaches are replacing ad-hoc techniques and are becoming widely
used in control design.

A series of control tasks can be solved efficiently by exploiting the inner structure
present in the dynamics, i.e., to make use of specific invariant manifolds of the
controlled system. Nonlinear systems can be studied using tools from differential
geometry, when the central role is played by the concept of invariant distributions.
From the geometric viewpoint results of the classical linear control can be seen as
special cases of more general nonlinear results, for details see [18] and [29]. Due
to the computational complexity involved, these nonlinear methods have limited
applicability in practice.
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Controllability

One of the main questions of system theory is to determine whether the system is
controllable and/or is observable. A state x0 is said to be controllable at time t0 if
there exist a control function u(t) that steers the system into the origin in finite time;
a state x f is said to be reachable if the system can be steered from the origin into x f

in finite time. If the property holds for every state x and every t0 then the system will
be called controllable (reachable). The system (2.1) is called observable on a finite
interval [t0,T ] if any initial state x0 at t0 can be determined from knowledge of the
system output y(t) and input u(t) over the given interval.

The controllability subspace is denoted by C , while the reachability subspace by
R, respectively. For linear systems (complete) controllability and reachability are
equivalent, i.e., the system is completely controllable if and only if C = R = X .

Analogously U (O) denotes the unobservability (observability) subspace; U is
the set of all initial states that cannot be recognized from the output function. The
system is observable if and only if U = 0, i.e., O = X .

A convenient way to study all solutions of a linear equation on the interval [σ ,τ],
for all possible initial values simultaneously, is to introduce the corresponding tran-
sition matrix Φ(τ,σ)1:

x(τ) =Φ(τ,σ)x(σ)+
∫ τ

σ
Φ(τ, t)B(t)u(t)dt =Φ(τ,σ)(x0 +

∫ τ

σ
Φ(σ , t)B(t)u(t)dt).

Applying the time varying coordinate change z = Φ(σ , t)x in the state space, the
dynamic equation transforms into ż =Φ(σ , t)B(t)u(t). Thus in this new coordinate
system controllability reduces to the solvability study of the equation:

z0 =−
∫ τ

σ
Φ(σ , t)B(t)u(t)dt

for a suitable finite τ . If we denote by Cτ the set of states controllable at τ then Cτ is
a (closed) subspace, moreover Cτ1 ⊂ Cτ2 for τ1 < τ2. Since the image space of the
corresponding integral operator is finite dimensional, if the system is controllable
there must be a finite τ̄ > 0 such that Cτ̄ = R

n. Hence, the controllability problem
of an LTV system has been reduced to the question wether the finite rank operator
L : L2([σ , τ̄ ],Rm)→ R

n defined as Lu =
∫ τ̄
σ Φ(σ , t)B(t)u(t)dt is onto. These type

of linear operators have a nice theory: it is immediate that the adjoint operator L∗ :
R

n →L ∗
2 ([σ , τ̄ ],Rm) can be identified with L∗x=B∗(t)Φ∗(σ , t)x and that L is onto

if and only if LL∗ > 0.
So, the fundamental result, see [19], concerning controllability of the LTV system

(2.1) can be stated as the equivalence of the following statements:

Proposition 1. There exist a τ > 0 such that

1. the controllability Grammian W (σ ,τ) =
∫ τ
σ Φ(σ ,s)B(s)B∗(s)Φ∗(σ ,s)ds is pos-

itive definite;

1 Φ(t, t0) is nonsingular and Φ(t, t0) = X(t)X−1(t0) with Ẋ(t) = A(t)X(t), X(t0) = I, X(t)∈
R

n×n.
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2. there is no nonzero vector p ∈ R
n such that 〈p,Φ(σ , t)bi(t)〉 = 0, for t ∈ [σ ,τ],

and i = 1, · · · ,m.

It is a standard result, [31], that one can derive a rank condition that guarantees
controllability while it does not involve integration and it can be obtained directly
from the initial data matrices (A(t),B(t)):

Proposition 2. if (2.1) is analytic on an interval I and t is an arbitrary fixed element
of I, then the system is completely controllable on every nontrivial subinterval of I
if and only if

rank
[

B0(t) B1(t) · · · Bk(t)
]
= n, (2.4)

for some integer k, where

B0(t) := B(t), Bi+1(t) := A(t)Bi(t)− d
dt

Bi(t). (2.5)

If the analyticity condition is dropped, then the rank condition is only sufficient.

The problem is that it is hard to compute the rank of a time varying matrix, and we
have no information about how to compute the controllability decomposition of the
system.

Kalman’s controllability result also reveals a structural property of linear sys-
tems: namely, by applying a suitable – in general time-varying – state transforma-
tion these systems decompose into a controllable an a purely uncontrollable part. To
see this, suppose that there are at most r vectors pi ∈ X , 〈pi,Φ(σ ,s)B(s)〉= 0, s ∈
[σ ,τ]. Choose them such that Π ∗Π = Ir, whereΠ = [X∗(σ)pi]. Consider n−r vec-
tors λi ∈ X orthogonal on pi, such that Λ∗Λ = In−r, where Λ = [X∗(σ)λi]. Then,

the time varying matrix z = Tx with T (t) =

[
Π ∗
Λ∗

]
X−1(t) transforms system (2.1)

into the controllability decomposition form:

ż1(t) = 0, ż2(t) =Λ∗X−1(t)B(t)u. (2.6)

with the uncontrollable mode z1(t) = Π ∗X−1(t)x(t) and with the completely con-
trollable mode z2(t) = Λ∗X−1(t)x(t). In other words, the reachable set is invariant
to the action of the controlled dynamics. The notion of invariance met in this context
plays a central role in the investigations of geometric systems theory and it has been
proven to be very useful in solving a series of control problems.

Controllability of Linear Affine Systems

For affine time dependency A(t)=∑N
i=1ρi(t)Ai the fundamental matrix can be given,

at least locally, in terms of the coordinates of second kind, [32], i.e., the solutions
of the Wei–Norman equation:
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ġ(t) = (
K

∑
i=1

eΓ1g1 · · ·eΓi−1gi−1Eii)
−1ρ(t), g(0) = 0. (2.7)

Here ρ(t) = [ρ1(t), . . . ,ρN(t)]T and {Â1, . . . , ÂK} is a basis of the Lie-algebra
L (A1, . . . ,AN), the structure matrices Γi = [γ l

i, j]l, j=1,··· ,K of the algebra are given

by [Âi, Â j] = ∑K
l=1 γ l

i, jÂl and Eii is the matrix with a single nonzero unitary entry at
the i-th diagonal element.

Locally, the fundamental matrix is given by the expression:

Φ(t) = eg1(t)Â1 eg2(t)Â2 · · ·egn(t)Ân , (2.8)

and generally it is not available in closed form.
Exploiting the affine structure and using the Peano–Baker formula for the transi-

tion matrix one can prove the following result:

Lemma 1. For affine linear systems the points attainable from the origin are those
from the subspace R(A ,B) given by:

R(A ,B) = span{
J

∏
j=1

A
ij
l j

Bk |J ≥ 0, l j ,k ∈ {0, · · · ,N}, i j ∈ {0, · · · ,n− 1}}, (2.9)

i.e., R ⊂ R(A ,B).
Moreover, if one consider the finitely generated Lie-algebra L (A0, . . . ,AN)

which contains the matrices A0, . . . ,AN , and a basis Â1, . . . , ÂK of this algebra, then

R(A ,B) =
N

∑
l=0

n−1

∑
n1=0

. . .
n−1

∑
nK=0

Im(Ân1
1 . . . ÂnK

K Bl).

A direct consequence of this fact is that if the inclusion RA ,B ⊂ R
n is strict, i.e, if

RA ,B is a proper subspace, then the system (2.1) cannot be completely controllable.
The main question is that under which condition is the reachability set equal to

the Lie algebra, i.e., when we have R = RA ,B. In what follows, if this property
holds, then the system will be called c-excited. Characterization of this property by
using only the initial data seems to be difficult. However, from condition (2.) of the
Kalman’s controllability result, one has the following statement:

Proposition 3. A system is c-exciting if and only if the following implication holds:
there exist a nonzero ξ ∈ R

n such that

B(t)∗Φ∗(t0, t)ξ = 0

for all t ∈ [t0,T ] implies that

R∗
A ,BΦ

∗(t0, t)ξ = 0

for all t ∈ [t0,T ].
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It is clear, that for c-excited systems controllability is guaranteed if the relation
RA ,B = R

n, i.e., the multivaraiable Kalman rank condition, holds. Moreover, if
the rank condition does not hold, for this class of sytems one can construct the con-
trollability decomposition by using a time independent state transformation matrix
that depends only on the matrix Lie algebra.

Therefore it would be useful to give a condition that uses the original data only
to decide wether a system is c-exciting or not. Unfortunately, such a condition has
not been available yet.

The following (negative) example illustrates the importance of the c-excitedness
property of the scheduling variables for controllability: let us consider the system

ẋ1 = x1x2 + x2, ẋ2 = u

that can be rewritten as ẋ = A0+ρA1+Bu, where A0 =

[
0 1
0 0

]
, A1 =

[
1 0
0 0

]
, B =

[
0
1

]

and with ρ = x2.

Since A0B =

[
1
0

]
one has dimRA ,B = 2, i.e., the Kalman rank condition holds.

Applying the Silverman Meadows approach, one has B0 = B and B1 = A0B, i.e.,
rank [B0 B1] = 2, that shows that the system is controllable for any ρ(t).

Using the Wei–Normann theory, one has [A0,A1] = −A0, i.e., γ0
01 = −1, γ0

10 = 1
and the rest of the γ l

i j = 0. It follows that

Γ1 =

[
0 −1
0 0

]
, Γ2 =

[
1 0
0 0

]
, i.e., eΓ1t =

[
1 −t
0 1

]
, eΓ2t =

[
et 0
0 1

]
.

From

E11 + eΓ1g1E22 =

[
1 −g1

0 1

]
,

it follows that the Wei–Normann equations are

ġ1 = ρg1 + 1, ġ2 = ρ .

The fundamental solution is given by Φ(t) = eΓ1A0eΓ2A1 , i.e., Φ(t) =

[
eg2 g1

0 1

]
.

If the system is uncontrollable, according to the Kalman condition there should
be a nonzero vector ξ such that B∗Φ−∗(t)ξ = 0 for all t, i.e., a number ν must exists
such that e−g2g1 + ν = 0. But such a number does not exists2, hence the system
should be controllable. However, it is immediate that x1 = −1 is an uncontrollable
manifold of the system.

The reason why these tests fail relays in the fact that the uncontrollable manifold,
i.e., (−1,x2) is not a subspace, while in the linear case the set of uncontrollable
points is always a subspace.

If one shift the system from the equilibria point (−1,0), to (0,0), i.e., ap-
ply a (time-varying) change of coordinates z1 = x1 + 1, z2 = x2, then one has the

2 Otherwise d
dt (e

−g2 g1) = 0, i. e., −ġ2g1 + ġ1 = 0; but the left hand side is 1.
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system ż1 = z1z2, ż2 = u, with Ā(ρ) =
[
ρ 0
0 0

]
, and ρ = z2 = x2, that is clearly

uncontrollable.
One of the main motivation doing this "tour de force" in this introductory section

along a classical topic of linear control theory was to illustrate that the controllability
problem cannot be tackled in a mathematical completeness and rigor even for linear
systems, if the system is time varying. The situation is even worse if the dynamics is
actually nonlinear, but cast as a qLPV system. This stays in contrast to the familiar
framework of LTI systems where the answer to the fundamental problem concerning
controllability is very accessible and transparent.

The simplicity of the time invariant results might be regained in that of a splitting
of the state space in a surely uncontrollable mode and a mode, that might be con-
trollable. Controllability of this mode cannot be inferred, in general, only if some
additional conditions on the parameters are fulfilled (c-excitedness). Moreover, the
simple example at the end of the chapter warn us on the inherent limitations of the
approach when trying to extend it for nonlinear systems.

Concerning the (q)LPV systems (2.3) with affine parameter dependence the main
issue is the problem of finding a time independent – and global – state transforma-
tion that splits the state space into modes that has specific properties – in these
examples potentially controllable/uncontrollable modes. Concentrating on a rigor-
ous proof of the controllability of the potentially uncontrollable mode is futile: not
only due to the encountered mathematical difficulty of the computations but also
due to the inherent uncertainty present in every practical model used in a nontrivial
engineering application.

This fact motivates our desire in finding certain "robust" invariant subspaces that
often provides acceptable (sufficient) conditions to obtain an engineering solution
for a series of basic control problems. What we apparently miss in these construc-
tions, i.e., the knowledge of controllability/observability, might cause problems at a
different (higher) level of the design: namely, in obtaining stable controllers or fil-
ters. Lacking of a stable design might be a clear indication that our assumptions on
the c-exitedness of the scheduling variables might not hold, or, more likely, our tech-
niques to ensure stability are too conservative. Hence, a different approach should
be used.

The proposed geometric framework based on parameter varying invariant sub-
spaces provides an example for a strategy, in which giving up to get the complete
mathematical solution of the problem but not sacrificing the mathematical correct-
ness in following a more "rough" route to an acceptable result leads to a useful,
engineering design.

2.2 Parameter-Varying Invariant Subspaces

Linear time varying (LTV) case and nonlinear systems can be studied using tools
from differential geometry, when the central role is played by the concept of
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invariant distributions and much more complex mathematical objects given by
the locally controlled or conditioned invariant distribution(or codistribution) algo-
rithms. From a geometric viewpoint results of the classical linear control can be
seen as special cases of these more general nonlinear results, for details see, e.g.,
[18, 29, 11]. Due to the computational complexity involved, these nonlinear meth-
ods have limited applicability in practice. The main problem that arises in practical
situations is that either one cannot perform the computations or one cannot verify
the conditions under the given algorithms provide the desired results.

If certain conditions are fulfilled, e.g., if the parameter functions are differential
algebraically independent, then the parameter invariant subspaces, that will be in-
troduced in this chapter, coincide with the corresponding invariant distribution or
codistribution, respectively. However, to give sufficient conditions for the solution
of certain state feedback and observer filter design problems it is enough that some
decompositions of the state equations could be performed. The parameter–varying
versions of these invariant spaces are suitable objects to define the required decom-
positions, therefore they can play the same role in the solution of the fundamental
problems, such as disturbance decoupling(DDP), unknown input observer design,
fault detection (FPRG), as their counterparts in the time invariant context.

Invariant Subspaces for Time Varying Systems

Before the introduction of the invariance notion that best suits the parameter varying
framework let us recall some the corresponding term used in the general nonlinear
context: a distribution Δ is said to be invariant3 under a vector field f if for τ ∈ Δ
one has [ f ,τ] ∈ Δ , or shortly, [ f ,Δ ] ⊂ Δ . Dealing with codistributions, Ω is said
to be invariant4 under the vector field f if for ω ∈ Ω one has Lfω ∈ Ω or shortly
LfΩ ⊂Ω .

By doing a usual augmentation, see e.g., [17], of the original state space to ξ :=
[t,x]T , an LPV system can be viewed as an affine nonlinear system:

ξ̇ = g0(ξ )+
m

∑
i=1

gi(ξ )ui, y = h(ξ )ξ ,

where g0(ξ ) denotes

[
1

A(ρ)x

]
, gi(ξ ) is the vector

[
0

Bi(ρ)

]
with Bi(ρ) the ith column

of B(ρ) and h(ξ ) = [0 C(ρ)].

3 Let ΔV (x) = V be a constant distribution, where V is a subspace of Rn and fA(x) = Ax be
a linear vector field. Since [ fA,v](x) =−Av for all v ∈ V and x ∈ R

n, we get back the usual
invariance notion for subspaces, i. e., AV ⊂ V .

4 Now let ΩW (x) = Wc be a constant codistribution, where Wc is a subspace of (Rn)∗ and
the vector field fA(x) = Ax is linear then we get back the invariance notion of subspaces in
(Rn)∗, i. e., AT W ⊂ W . Recall that WcA ⊂ Wc and we identify Wc ⊂ (Rn)∗ with W ⊂ R

n

in a usual way, i. e., if W = ImW than Wc = ImW T .
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Restricting the investigations to linear subspaces, as special instances of distribu-

tions, i.e., with some subspace V of Rn Δ(ξ ) =
[

0
V

]
, then Δ will be invariant under

the vector fields gi if and only if ∂ξgiΔ(ξ ) ⊂ Δ(ξ ), for all i and ξ . Performing the
computations one has that Δ is an invariant distribution for the action of the vector
fields gi if and only if A(ρ)V ⊂ V for all ρ ∈ P . Using a similar argument, one
can get the analogous relations for the corresponding codistributions.

These facts motivate the introduction of the following notion:

Definition 1. A subspace V is called parameter-varying invariant subspace (or
shortly A –invariant subspace) for the family of the linear maps A(ρ) if

A(ρ)V ⊂ V for all ρ ∈ P . (2.10)

As for the LTI case an A -invariant subspace V induces a splitting x = x̄+ x̃ of the
state space with x̄ = PV and x̃ = PV ⊥ such that the system ẋ = A(ρ)x will have the
form

˙̄x = Ā(ρ)x̄+ Ã1(ρ)x̃, ˙̃x = Ã2(ρ)x̃. (2.11)

where

Ā(ρ) = A(ρ)|V , (2.12)

is the restriction of A(ρ) to the subspace V .

The main point here is the fact that the state transform x = T

[
x̄
x̃

]
defined by

T =
[
V V ⊥] leads to the splitting

A
TAT−1−−−−→

[
Ā Ã1

]}V
0 Ã2 }V ⊥
︸︷︷︸

V

︸︷︷︸
V ⊥

and this splitting

is independent of the actual values of the parameters ρ , i.e., it can be performed
offline. This fact has a great impact on the applicability of the newly introduced
concept for design problems.

2.2.1 Controlled Invariance

Let us observe, that if V is an A -invariant subspace and ImB(ρ)⊂V for all ρ ∈P
then the system ẋ = A(ρ)x+B(ρ)u can be decomposed as

˙̄x = Ā(ρ)x̄+ Ã1(ρ)x̃+B(ρ)u, ˙̃x = Ã2(ρ)x̃, (2.13)

An involutive distribution Δ is said to be controlled invariant on an open set U if

[gi,Δ ](x)⊂ Δ(x)+G(x), i = 0,1, . . . ,m, x ∈U.
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or shortly [gi,Δ ] ⊂ Δ +G, assuming that Δ , G and Δ +G are nonsingular, where
G denotes the distribution span{g1, . . . ,gm}. For the covectorial version: a codis-
tribution Ω is said to be controlled invariant if Lgi(Ω ∩G⊥) ⊂ Ω , i = 0,1, . . . ,m.
If the intersection may fail to be smooth, then Lgi is only defined on the smooth
codistributions of the intersection.

Using again the augmented state space and the distribution

[
0
V

]
one can show

that when B(ρ) = B then V ⊂ R
n is controlled invariant subspace (distribution) if

and only if A(ρ)V ⊂ V +B for all ρ ∈ P .
These facts motivate the introduction of the following notion:

Definition 2. The subspace V is called a parameter-varying (A,B)–invariant sub-
space (or shortly (A ,B)–invariant subspace) if for all ρ ∈ P any of the following
equivalent conditions holds :

A(ρ)V ⊂ V +B(ρ), (2.14)

and there exists a mapping (a state feedback) F ◦ρ : [0,T ]→ R
m×n such that:

(A(ρ)+B(ρ)F(ρ))V ⊂ V , (2.15)

where B(ρ) denotes ImB(ρ).

Dealing with parametric uncertainties a similar concept was introduced in [4], called
robust controlled invariant subspace. If one sets the gain matrix to be constant then
the resulting subspace will be more restrictive, this approach was used in [7] and
[30], and was termed as generalized controllability (A,B)–invariant subspace.

It is obvious that the subspace R(A ,B) in (3.3) is A(ρ) invariant, i.e.,

A(ρ)R(A ,B) ⊆ R(A ,B), for all ρ ∈ P , (2.16)

moreover, one has that for the induced decomposition R(A ,B) = R( ¯A ,B̄). Actually
R(A ,B) is the minimal A(ρ) invariant subspace containing B.

The set of all A –invariants containing B is a nondistributive lattice with respect
to the set operations ⊆, ∪, ∩. The supremum of the lattice is the entire state space
X , while the infimum is the intersection of all the A –invariants containing B. It
will be called, the minimal A –invariant subspace containing B, which is also an
(A ,B)–invariant subspace, and it will be denoted by 〈A |B〉.

As for the LTI systems (2.15) guarantees that with a suitable state feedback u =
F(ρ)x+ v equation (2.13) can be rendered diagonal, i.e.,

ẋ = A(ρ)x+B(ρ)u TAT−1, T B−−−−−−→
u=F(ρ)x+v

˙̄x = Ā(ρ)x̄+ +B(ρ)v
˙̃x = Ã2(ρ)x̃,

(2.17)

x̃ being an uncontrollable mode. Controllability of x̄ can be asserted only if V =
〈A |B〉 and the c-persistency property holds.
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The set of all (A ,B)–invariant subspaces contained in a given subspace K , is
an upper semilattice with respect to subspace addition. This semilattice admits a
maximum which will be denoted by V ∗.

As far as the LPV case is concerned it was found that the following definition
would be usable for the generalization of the concept of the controllability subspace:

Definition 3. A subspace R is called parameter-varying controllability subspace if
there exists a constant matrix K and a parameter varying matrix F : [0,T ]→ R

m×n

such that R = 〈A +BF |ImBK〉, where the notation A +BF stems for the system
A(ρ)+BF(ρ) with ImB(ρ) = ImB.

Properties analogous with the corresponding LTI results hold for the parameter-
varying controllability subspace.

2.2.2 Conditioned Invariance

The dual notion of controlled invariance is conditioned invariance which can be
defined as follows: a distribution Δ is said to be conditioned invariant on an open
set U if it satisfies [gi,Δ ∩Kerdh](x) ⊂ Δ(x), or shortly [gi,Δ ∩Kerdh] ⊂ Δ for
i = 0,1, . . . ,m, x ∈ U . For the covectorial version: a codistribution Ω is said to be
conditioned invariant if LgiΩ ⊂Ω + spandh} for i = 0,1, . . . ,m.

Considering a subspace W for affine parameter dependence one hast that for any
w ∈ W ∩KerC

∂ (A(ρ)x)v
∂x

= A(ρ)v+
N

∑
i=1

Aix
∂ρi

∂y
Cv = A(ρ)v,

∂Bi(ρ)v
∂x

=
N

∑
i=1

Bi
∂ρi

∂y
Cv = 0.

Using the augmented state space, the distribution

[
0
W

]
and considering the case

C(ρ)=C it follows that for LPV systems with affine parameter dependence W ⊂R
n

is a conditioned invariant subspace if and only if A(ρ)(W ∩KerC) ⊂ W for all
ρ ∈ P . This fact leads us to the introduction of the following notion:

Definition 4. The subspace W is called a parameter-varying (C,A)–invariant sub-
space (or shortly (C ,A )–invariant subspace) if for all ρ ∈ P any of the following
equivalent conditions holds:

A(ρ)(W ∩C (ρ))⊂ W (2.18)

and there exists a mapping G◦ρ : [0,T ]→ R
n×p such that:

(A(ρ)+G(ρ)C(ρ))W ⊂ W , (2.19)

where C (ρ) denotes KerC(ρ).
The set of all A –invariants contained in C is a nondistributive lattice with respect
to to the set operations ⊆, ∪, ∩. The infimum of the lattice is clearly {0}, while the
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supremum is the sum of all the A –invariants contained in C . It will be called the
maximal A –invariant contained in C , which is also a (C ,A )–invariant subspace,
and it will be denoted by 〈C |A 〉.

As for the LTI systems (2.18) guarantees that the following splitting holds:

ẋ = A(ρ)x
y = Cx

TAT−1, CT−1

−−−−−−−−→
˙̄x = Ā(ρ)x̄
˙̃x = Ã21(ρ)x̄+ Ã22(ρ)x̃
y = C̄x̄

(2.20)

x̃ being an unobservable mode. In general, however, observability of x̄ can be as-
serted only if W = 〈C |A 〉 and the c-persistency property holds.

With a suitable output injection G(ρ)y one has Ã21(ρ)x̄ = G(ρ)y = G(ρ)Cx̄:

˙̃x = Ã22(ρ)x̃+G(ρ)y. (2.21)

The dual notion of parameter-varying controllability subspace is the following:

Definition 5. A subspace S is called parameter-varying unobservability subspace
if there exists a constant output mixing matrix H and a parameter varying output
injection gain G : [0,T ]→R

n×p such that S = 〈KerHC|A +GC〉, where A +GC
denotes the system A(ρ)+G(ρ)C.

The family of parameter-varying unobservability subspaces containing a given sub-
space L is closed under subspace intersection. The minimal element of this family
will be denoted by S∗.

2.2.3 Parameter-Varying Invariant Subspace Algorithms

In [4, 8] an algorithm was given to determine the robust controlled invariant sub-
space for arbitrary parameter dependence, however, since the number of conditions
is not finite, the algorithm, in general is not applicable in practice. Therefore, from
a practical point of view it is an important question to characterize these parameter-
varying subspaces by a finite number of conditions.

It turns out that this is possible for the class of LPV systems, where the parameter
dependency is affine. To impose this requirement is not too restrictive: even the true
parameter dependency is more general, e.g., is given by a linear fractional transform,
commonly used relaxation techniques that are used to obtain stability will embed it
in a finitely generated (polytopic) convex set. But this convexified set can be always
associated with an affine parameter dependence.

Affine Parameter Dependency

Assuming an affine parameter dependency of the state matrix, i.e., A(ρ)=∑N
i=1ρiAi,

it is immediate that if the inclusions hold for all Ai, then they hold also for all ρ ∈P .
It is not so straightforward under which conditions the reverse implication is true,
too.
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A sufficient condition that characterizes property can be given as:

Lemma 2. If ρi are linearly independent over R then A(ρ)V ⊂ W ∀ρ ∈ P if and
only if AiV ⊂ W , i = 0, . . . ,N.

In what follows, as otherwise is not stated, an affine parameter dependence is as-
sumed. We are interested in finding supremal A -invariant subspaces in a given sub-
space K or containing a given subspace L .

As far as the first purpose is concerned, by applying Lemma 2, one can formulate
the A -I nvariant S ubspace A lgorithm over L as:

A I S A L : V0 = L , Vk+1 = L +
N

∑
i=0

AiVk, k ≥ 0, (2.22)

V ∗ = lim
k→∞

Vk. (2.23)

Obviously the algorithm will stop after a finite number of steps, i.e., V ∗ = Vn−1.

Proposition 4. The subspace V ∗ is such that L ⊂ V ∗, V ∗ is A -invariant and as-
suming that the parameters are c-excited, it is minimal with these properties.

Similar to the linear case the subspace V ∗ is denoted by 〈A |L 〉.
By duality, one has the A -I nvariant S ubspace A lgorithm in K , i.e.,

A I S A K : W0 = K , Wk+1 = K ∩
N⋂

i=0

A−1
i Wk, k ≥ 0, (2.24)

W ∗ = lim
k→∞

Wk. (2.25)

The subspace W ∗ will be denoted by 〈K |A 〉.
The corresponding version of Proposition 1. follows by duality, and can be stated

as:

Proposition 5. The subspace W ∗ is such that W ∗ ⊂ K , W ∗ is A -invariant and
assuming that the parameters are c-excited, it is maximal with these properties.

The set of all (A ,B)-invariant subspaces contained in a given subspace K , is an
upper semilattice with respect to subspace addition which admits a maximum that
can be computed from the (A ,B)-I nvariant S ubspace A lgorithm:

A BI S A : V0 = K , Vk+1 = K ∩
N⋂

i=0

A−1
i (Vk +B). (2.26)

The limit of this algorithm will be denoted by V ∗ and its calculation needs at most
n steps.

The set of all (C ,A )-invariant subspaces containing a given subspace L , is
a lower semilattice with respect to subspace intersection. This semilattice ad-
mits a minimum which can be computed using the (C ,A )-I nvariant S ubspace
A lgorithm (note that C = KerC):
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CA I S A : W0 = L , Wk+1 = L +
N

∑
i=0

Ai(Wk ∩C ). (2.27)

The limit of this algorithm will be denoted by W ∗. It takes at most n steps to com-
pute.

The family of unobservability subspaces associated to an LPV system containing
a given subspace L is closed under subspace intersection. The minimal element S∗
of this family is the result of the U nobservability S ubspace A lgorithm:

U S A : S0 = X , Sk+1 = W ∗+

(
N⋂

i=0

A−1
i Sk ∩C

)
, S∗ = lim

k→∞
Sk,

(2.28)

where W ∗ is computed by CA I S A .

2.3 Applications

2.3.1 Inversion of LPV Systems

There are two aspects concerning dynamical system inversion: left invertibility,
which is related to unknown input observability – the target application field be-
ing fault detection filter design – and right invertibility, related to the solution of
output tracking control problems. Dynamic inversion based controllers are popular
in aerospace control, see, e.g., [26, 20].

This section provides a geometric view of dynamic inversion of LPV systems. In
contrast to the pseudo-inversion techniques, in the proposed method the availability
of the full state measurements is not assumed, instead, it is supposed that measured
outputs, and possibly some of their derivatives are available, for which the resulting
system is minimum phase and left (right) invertible. For output tracking a two degree
of freedom controller structure is proposed, where the first part is an inversion based
controller making the linearization of the plant while the second controller, using an
error feedback, achieves the required stability properties.

The General Nonlinear Setting

Let us consider the nonlinear input affine system Σ ,

ẋ = f (x)+
m

∑
i=1

gi(x)ui, y = h(x), (2.29)

with y = [y j ] j=1,p and h(x) = [h j(x) ] j=1,p, respectively. It is reasonable to assume
that the rank of g = [gi ]i=1,m is m and that the rank of h is p.
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The problem when the outputs – and possible its derivatives – are measured and
the unknown input is to be determined involves the notion of the left invertibility of
the system. We are going to construct another dynamic system

ζ̇ (t) = ϕ(ζ ,y, ẏ, . . . ,u, u̇, . . .), u(t) = ω(ζ ,y, ẏ, . . . ,u, u̇, . . .)

with outputs u and inputs ϑ = (ỹ, ũ) that contains the measurements of the signals
u,y and possible their time derivatives.

Let us recall, that the system (2.29) is (left)invertible at x0, if the output functions
corresponding to the initial state x0 and distinct admissible controls u are different.
A system is called strongly invertible if there exist an open and dense submanifold
of the state manifold on which the system is invertible. Left invertibility can be char-
acterized more completely by using algebraic techniques, for more details see, e.g.,
[34, 10]. However, for practical purposes design algorithms based on a geometrical
framework are often more suitable.

A dual problem is to find a suitable input signal that produces a desired behavior
of the outputs, i.e., output tracking, is related to the concept of right invertibility. A
dynamical system is right invertible at x0 if the rank of its input-output map at this
point is p, i.e., the number of outputs (to be tracked), see [27].

A Geometrical Framework

Let us recall, first, some elementary definitions and facts from [18] and [28]. A
smooth connected submanifold M which contains the point x0 is said to be locally
controlled invariant at x0 if their is a smooth feedback u(x) and a neighborhood
U0 of x0 such that the vector field f̃ (x) = f (x) + g(x)u(x) is tangent to M for all
x ∈ M∩U0, i.e. M is locally invariant under f̃ .

An output zeroing submanifold of Σ is a smooth connected submanifold M with
contains x0 and satisfy:

1. for all x ∈ M one has h(x) = 0,
2. M is locally controlled invariant at x0.

This means that for some choice of the feedback control u(x) the trajectories of Σ
which start in M stay in M for all t in a neighborhood of t0 = 0 and the corresponding
output is identically zero. Such a submanifold Z∗ can be determined by a "zero
dynamics algorithm", [29].

If in addition

dimspan{gi(x0) | i = 1,m}= m, (2.30)

and dimspan{gi(x) | i = 1,m}∩TxZ∗ is constant for all x ∈ Z∗ then Z∗ is a locally
maximal output zeroing submanifold. Moreover, if

dimspan{gi(x) | i = 1,m}∩TxZ∗ = 0, (2.31)
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then there is a unique smooth feedback u∗ such that f ∗(x) := f (x) + g(x)u∗(x) is
tangent to Z∗. An algorithm for computing Z∗ for a general case can be found in
[18] and [28]. In some cases, however, Z∗ can be determined relative easily relating
it to the maximal controlled invariant distribution Δ∗ contained in Ker dh, given by
the controlled invariant codistribution algorithm (Δ∗ =Ω⊥∗ ), namely Δ∗(x) = TxZ∗,
for details see [18].

An important case when this relation holds is the set of LTI systems and the class
of systems that have a vector relative degree. The concept of relative degree plays a
key role in several control problems both for linear and nonlinear systems. In partic-
ular, the computation of the relative degree and the derivation of consequent normal
forms for nonlinear systems, represents key design step in order to solve success-
fully several control problems, like disturbance decoupling, feedback linearization
and system inversion problems.

A multivariable nonlinear system has a vector relative degree r = {r1, · · · ,rp} at
a point x0 if

i. Lg j L
k
f hi(x) = 0 for j = 1, · · · ,m, i = 1, · · · , p, and k < ri − 1.

ii. the matrix

A(x) :=

⎡
⎢⎣

Lg1Lr1−1
f h1(x) · · · LgmLr1−1

f h1(x)
· · · · · · · · ·

Lg1L
rp−1
f hp(x) · · · LgmL

rp−1
f hp(x)

⎤
⎥⎦ (2.32)

has rank m for left invertibility (p for right invertibility) at x0.

For further usage let us denote by

B(x) :=

⎡
⎢⎣

Lr1
f h1(x)

...
L

rp
f hp(x)

⎤
⎥⎦ . (2.33)

If condition (ii.) does not hold but there exist numbers ri with property (i.) then they
are called relative orders of the system (2.29).

Lemma 3. Let us suppose that the system (2.29) has relative degree. Then the row
vectors {dh1(x0), · · · ,dLr1−1

f h1(x0), · · · ,dhp(x0), · · · ,dL
rp−1
f hp(x0)} are linearly in-

dependent.

Conditions (2.30) and (2.31) can be interpreted as a special property of (left) in-
vertibility of the system Σ . Our interest in the determination of the output zeroing
manifold is motivated by the role played by these notions in the question of invert-
ibility and the construction of the reduced inverse of linear and nonlinear controlled
systems.

The characterization of right invertibility, related to the number of zeros at infin-
ity, is analogous, for details see [27].



2 System Analysis: A Geometric Approach 41

Nonlinear Systems with Vector Relative Degree

If rankA(x) = m then Z∗ = {x |Lk
f hi = 0, i = 1, · · · , p k = 0, · · · ,ri − 1} and the

maximal controlled invariant distribution in Ker dh is V ∗ = Kerspan{dLk
f hi, i =

1, · · · , p k = 0, · · · ,ri − 1}, see also [28]. Moreover the feedback u∗(x) = α(x) is
the solution of an equation A(x)α(x) = B(x).

Let us denote by ξ = (ξ i)i=1,p = Ξ(x) the diffeomorphism defined by ξ i =

(Lk
f hi(x))k=0,ri−1. It is a standard computation, that ξ̇ i = Aiξ i +Biy(ri)

i , where Ai,Bi

are in the Brunowsky form (ξ i
1 = yi).

Let us complete Ξ(x) to a diffeomorphism on X :

[
ξ
η

]
= Φ(x) :=

[
Ξ(x)
Λ(x)

]
.

Since ∂xΞ = [dLk
f hi], one has ξ̇ = [dLk

f hi] f |Φ−1 + [dLk
f hi]g|Φ−1u, i.e., maintaining

the nonzero rows: [ξ̇ i
ri
] = B|Φ−1 + A|Φ−1u, and η̇ = ∂xΛ f |Φ−1 + ∂xΛg|Φ−1u. The

zero dynamics5 can be obtained by η̇ = ∂xΛ f |Φ−1 + ∂xΛgα|Φ−1 , putting ξ = 0.
Finally, the output equations of the dynamic inverse are

u(t) = A−1
[
ξ
η

](
y(r)−Lr

f h

[
ξ
η

])

and one can get the (minimal) inverse dynamics as η̇ = f (ξ ,η), where ξ contains
the corresponding output derivatives. Observe that the inverse does not inherit the
structure of the original system, i.e., it is not necessarily input affine.

The main difficulty in the construction of the dynamical inverse in this general
nonlinear context consists in obtaining and handling the time varying coordinate
transformΦ(x) with its splitting in Ξ(x) andΛ(x). This is a state dependent nonlin-
ear transformation, and the construction of the suitable extension requires, in gen-
eral, solution of partial differential equations, hence, it is necessary to know the full
state vector of the system. The linearized system will be a chain of integrators and
the actual input of the linearizing controller will be the derivative, with order equal
to the relative degree of the system, of the desired output.

Even if all the data required for the implementation of dynamical the inverse is
available the method might be useless in practice. Invertibility does not involve the
knowledge of the initial condition but for the implementation it plays an implicit
role. The zero dynamics should be stable because it cannot be influenced by output
injection since it is not observable for the outputs used in the inversion process.

The next section will provide a method for a class of LPV systems when the
entire construction can be performed based on a suitable parameter varying condi-
tioned invariant subspace.

Dynamic Inverse of LPV Systems

Let us consider the class of LPV systems (2.2) with m inputs and p outputs, i.e.,:

ẋ(t) = A(ρ(t))x(t)+B(ρ(t))u(t), y(t) =Cx(t). (2.34)

5 If g is involutive, then one can choose dΛ ⊂ g⊥, and then η̇ = ∂xΛ f |Φ−1 .
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It is not hard to figure out that in the LTI case TxZ∗ = V ∗, where V ∗ is the maxi-
mal (A,B)-invariant subspace contained in Ker C while for the LPV case if some
technical conditions for the parameter functions (persistency) are fulfilled, then
TxZ∗ = V ∗, where V ∗ is the maximal (A ,B)-invariant subspace contained in
C = Ker C. The minimal (C ,A )-invariant subspace containing B = ImB is de-
noted by S∗.

Left and right invertibility of LPV system can be characterized in geometric
terms as follows:

Proposition 6. The LPV system (2.34) is left-invertible if

V ∗ ∩B = 0. (2.35)

The system is right invertible if

S∗+C = X . (2.36)

Let us observe, that if conditions (2.35) are fulfilled, one can always choose a coor-

dinate transform of the form z = T x,where T =

[
V ∗⊥
Λ

]
,Λ ⊂ B⊥.

Accordingly, the system will be decomposed into:

ξ̇ = A11(t)ξ +A12(t)η+ B̄(t)u

η̇ = A21(t)ξ +A22(t)η , y = C̄ξ . (2.37)

It follows, that applying a suitable feedback

u = F2(t)η+ v, (2.38)

that makes the subspace V ∗ be (A +BF,B) invariant, one can obtain the system:

ξ̇ = A11(t)ξ + B̄v, y = C̄ξ . (2.39)

Maximality of V ∗ ensures that both ξ and v can be expressed as functions of y and
its derivatives.

By introducing the notation ỹ = S ξ , ỹ =
[
y1, · · · ,y(r1−1)

1 , · · · ,yp, · · · ,y(rp−1)
p

]T

one has v = B̄{−1}S −1( ˙̃y− Ṡ S −1ỹ−S A11S
−1ỹ), i.e.,

η̇ = A22η+A21S
−1ỹ (2.40)

u = F2η+ B̄{−1}S −1( ˙̃y− Ṡ S −1ỹ−S A11S
−1ỹ). (2.41)

The coordinate transform S (t) can be obtained by applying the recursive algorithm
defined by: S0

i (t) = ci, Sk+1
i (t) = Ṡk

i (t)+ Sk
i (t)A11(t), see, e.g., [31].

Remark 1. It is clear that the method presented above can be also applied for non-
linear dynamics cast as quasi LPV systems with affine parameter dependence. One
can observe that to compute the matrix S (t) one needs certain derivatives of the
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parameter functions ρi(y), i.e., certain derivatives of the output y, but the order of
these derivatives are bounded by maxi ri.

Inversion Based Output Tracking Controller

Since condition of right-invertibility is V ∗+S∗ = X , one has the dual result as:

Proposition 7. If the the LPV system (2.34) has a relative degree and condition
(2.36) is fulfilled, the system has a well defined right dynamical inverse of the form
(2.40)-(2.41). If the parameter dependence is affine the dynamical inverse, i.e., the
output tracking controller can be computed in finite steps.

The right inverse is realizable in exactly the same way as the (left)inverse system.
The input u corresponding to the desired output is not unique, in general. The dif-
ference between any two admissible input corresponds to a zero-state motion on
RV ∗ = V ∗ ∩S∗ which does not affect the output. A common solution is to set to
zero the input components which, expressed in a suitable basis, correspond to forc-
ing actions belonging to V ∗ ∩B.

Applying the dynamic inversion algorithm, one can obtain a system that real-
izes the tracking if the initial conditions are known. Let us denote the outputs to
be tracked by yd . Due to the effect caused by the unknown initial condition, there
will be an error of the estimated state η . Introducing an outer-loop based on error
feedback, one can obtain the following structure for the tracking controller:

˙̄η = A22η̄+A21S
−1ỹd +Γ1ẽ, ū = F2η̄+λ (ỹd)+Γ2ẽ, (2.42)

with λ (ỹd) = B̄{−1}S −1( ˙̃y−Ṡ S −1ỹ−S A11S
−1ỹ), the tracking error e = ŷ−yd

and the possibly parameter dependent gain matrices Γ1 and Γ2.
Let us denote by eξ = ξ̂ −ξd and eη = η̂− η̄ and recall that ẽ =S ex1 . Then the

error dynamics can be expressed as:

ėξ = (A11 + B̄Γ2S )eξ +A12eη , ėη = (A21 +Γ1S )eξ +A22eη , ẽ = S eξ .

Actually the decay rate of eη cannot be increased – the dynamics determined by A22

should be stable – therefore a convenient choice is Γ1 = −A21S
−1. The gain Γ2 is

tuned to obtain a desired decay rate for eξ , this can be done by solving a suitable set
of LMIs.

In implementing the tracking control a problem might be that ẽ is not available
for the measurement. If a state observer is available, then the inversion scheme can
be replaced by the combination of this observer and the linearization feedback. Such
a state observer can be design if additional measured outputs are available, say:

z =C2x =C21ξ +C22η , (2.43)

that makes the plant fully observable. Then, the inversion is achieved by the follow-
ing dynamical system:
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˙̄w = (A−KC̄+BF)w̄+Kȳ+Bλ (ỹd)+Γ1ẽ, ū = Fw̄+λ (ỹd)+Γ2ẽ.

where C̄T = [CT CT
2 ] and ȳ = [yz]T .

The additional degree of freedom can be used to improve the performance prop-
erties – estimation time, disturbance rejection – of the unknown input observer or
of the output tracking controller, respectively.

Example

As an illustrative example for the LPV inversion scheme let us consider the follow-
ing linearized parameter varying model:

ẋ(t) = A(ρ)x(t)+Bν(t), y(t) =Cx(t),

where A(ρ) = A0 +ρ1A1 +ρ2A2. The state matrices are:

A0 =

⎡
⎢⎢⎢⎣
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎦ , A1 =

⎡
⎢⎢⎢⎣

0 −1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎦ , B=

⎡
⎢⎢⎢⎣

1 0
0 1
0 1
0 0
0 0

⎤
⎥⎥⎥⎦ , C =

⎡
⎣ 0 0 0 0 1

0 1 0 0 0
0 0 0 1 1

⎤
⎦ .

Applying the A BI S A algorithm one has V ∗ = Im
[

0 0 1 0 0
]T

and the corre-
sponding state transform can be chosen as:

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 1 0 0

⎤
⎥⎥⎥⎥⎦ , i. e., T−1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

Accordingly the the system splits as

[
A0

11 A0
12

A0
21 A0

22

]
=

⎡
⎢⎢⎢⎢⎣

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ ,

[
A1

11 A1
12

A1
21 A1

22

]
=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 1
0 0 0 1 0
0 0 0 0 0
1 0 0 0 0
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦ ,

[
A2

11 A2
12

A2
21 A2

22

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

[
B̄
0

]
=

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦ ,

[
C̄ 0

]
=

⎡
⎣ 0 0 0 1 0

0 1 0 0 0
0 0 1 1 0

⎤
⎦ .

The matrix F(ρ) = F0 +ρ1F1 +ρ2F2, is given by

F0 = 0, F1 =

[
0 0 −1 0 0
0 0 0 0 0

]
, F2 = 0.
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The transformation S (ρ) = S0 +ρ1S1 +ρ2S2, where

S0 =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 −1
0 1 0 0
0 0 1 1

⎤
⎥⎥⎦ , S1 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , S2 =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

maps ξ to ỹ =
[

y1 ẏ1 y2 y3
]T

.
One can figure out that

S −1(t) =

⎡
⎢⎢⎣

1
ρ1

1
ρ1

− ρ2
ρ1

0
0 0 1 0
−1 0 0 1
1 0 0 0

⎤
⎥⎥⎦ and Ṡ (t)S −1(t) =

⎡
⎢⎢⎣

0 0 0 0
ρ̇1
ρ1

ρ̇1
ρ1

− ρ̇1ρ2
ρ1

+ ρ̇2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

It follows, that

S A11S
−1 =

⎡
⎢⎢⎣
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦+ρ1

⎡
⎢⎢⎢⎣

1
ρ1

1
ρ1

− ρ2
ρ1

0

ρ2 −ρ1 − 1
ρ1

− 1
ρ1

ρ2
ρ1

0
1 0 0 0
1
ρ1

1
ρ1

− ρ2
ρ1

0

⎤
⎥⎥⎥⎦+ρ2

⎡
⎢⎢⎣

0 0 1 0
0 0 −1 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ ,

B̄−rS −1 =

[ 1
ρ1

1
ρ1

− ρ2
ρ1

0
0 0 1 0

]
.

Finally, for the unknown input observer, i.e., the left inverse system one has

η̇ =−η+(
ρ2

ρ1
−ρ1)y1 +

ρ2

ρ1
ẏ1 − ρ2

2

ρ1
y2,

and

ν̂ =

[−ρ1
0

]
η+

[ 1
ρ1

1
ρ1

− ρ2
ρ1

0
0 0 1 0

]
(

⎡
⎢⎢⎣

ẏ1
ÿ1
ẏ2
ẏ3

⎤
⎥⎥⎦−
⎡
⎢⎢⎣

0 1 0 0
ρ1ρ2 −ρ2

1 +
ρ̇1−ρ1
ρ1

ρ̇1−ρ1
ρ1

ρ̇2ρ1−ρ̇1ρ2
ρ1

ρ2
1

ρ1 0 −1 0
1 1 0 −1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

y1
ẏ1
y2
y3

⎤
⎥⎥⎦).

During the simulation the parameters vary as on Figure 7.10 and some measurement
noise was also considered. The applied and reconstructed inputs are depicted on
Figure 2.2.

Since S∗ = Im

⎡
⎢⎢⎢⎢⎣

0 1 0 −1
0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 1

⎤
⎥⎥⎥⎥⎦ one has S∗+V ∗ �= X , i.e., the right invertibility

condition is not fulfilled, as it was expected.
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Fig. 2.2 Applied and reconstructed inputs

To make the system right invertible consider the first two outputs only, i.e., yt =

Ctx with Ct =

[
0 0 0 0 1
0 1 0 0 0

]
. With this setting one has V ∗ = Im

[
0 0 0 1 0
0 0 1 0 0

]T

and

S∗ = Im

⎡
⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦, i.e., S∗+V ∗ = X . The corresponding state transform can

be chosen as:

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 −1 1 1 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ , i. e., T−1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1 0 1 −1
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ .
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Accordingly the the system splits as

[
A0

11 A0
12

A0
21 A0

22

]
=

⎡
⎢⎢⎢⎢⎣

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ ,

[
A1

11 A1
12

A1
21 A1

22

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

[
A2

11 A2
12

A2
21 A2

22

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

[
B̄
0

]
=

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦ ,

[
C̄ 0

]
=

[
0 0 1 0 0
0 1 0 0 0

]
.

Fig. 2.3 Desired and actual outputs

One has S (ρ) =

⎡
⎣ 0 0 1
ρ1 ρ2 −1
0 1 0

⎤
⎦ that maps ξ to ỹ =

[
y1 ẏ1 y2

]T
.

One can figure out that

S−1(t) =

⎡
⎣

1
ρ1

1
ρ1

− ρ2
ρ1

0 0 1
1 0 0

⎤
⎦ and Ṡ(t)S−1(t) =

⎡
⎣ 0 0 0

ρ̇1
ρ1

ρ̇1
ρ1

− ρ̇1ρ2
ρ1

+ ρ̇2

0 0 0

⎤
⎦ ,

while

S A11S
−1 =

⎡
⎣ 0 1 0
ρ1ρ2 − 1 −2 0

ρ1 0 −1

⎤
⎦ , B̄−rS −1 =

[ 1
ρ1

1
ρ1

− ρ2
ρ1

0 0 1

]
.
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The output tracking controller has the form:

ζ̇ =−ζ +
[
ρ2
ρ1

−ρ1
ρ2
ρ1

− ρ2ρ2
ρ1

]
ỹ

u =−ρ1ζ +
[ 1
ρ1

1
ρ1

− ρ2
ρ1

0 0 1

]
( ˙̃y−

⎡
⎣ 0 1 0
ρ1ρ2 +

ρ̇1−ρ1
ρ1

ρ̇1−2ρ1
ρ1

ρ̇2ρ1−ρ̇1ρ2
ρ1

ρ1 0 −1

⎤
⎦ ỹ)+Γ ỹ,

with the gain Γ =

[
−100
ρ1

−100
ρ1

100ρ2
ρ1−ρ1 0 −50

]
.

The results of the simulation are depicted on Figure 2.3.

2.3.2 Fundamental Problem of Residual Generation (FPRG)

Let us consider the following LTI system, that has two failure events:

ẋ(t) = Ax(t)+Bu(t)+L1m1(t)+L2m2(t), y(t) =Cx(t),

then the task to design a residual generator that is sensitive to L1 and insensitive to L2

is called the fundamental problem of residual generation (FPRG). More precisely,
one has to design a residual generator with outputs r such that if m1 �= 0 then r �= 0
and if m1 = 0 then limt→∞ ||r(t)||= 0, i.e., a stability condition is required.

In the solution of this problem a central role is played by the (C,A)–invariant
subspaces and certain unobservability subspaces, [23, 24] or observability codistri-
butions, [11, 12], in the nonlinear version of this problem.

As it is well known, for LTI models, a subspace W is (C,A)–invariant if
A(W ∩KerC) ⊂ W that is equivalent with the existence of a matrix G such that
(A+GC)W ⊂ W . A (C,A)–unobservability subspace U is a subspace such that
there exist matrices G and H with the property that (A+GC)U ⊂ U , i.e., U is
(C,A)–invariant, and U ⊂ KerHC. The family of (C,A)–unobservability subspaces
containing a given set L has a minimal element U ∗.

Let us denote by S ∗ the smallest unobservability subspace containing L2, where
Li = ImLi. Then one has the following result, [23]:

Proposition 8. A FPRG has a solution if and only if S ∗ ∩L1 = 0, moreover, if
the problem has a solution, the dynamics of the residual generator can be assigned
arbitrary.

Given the residual generator in the form

ẇ(t) = Nw(t)−Gy(t)+Fu(t) (2.44)

r(t) = Mw(t)−Hy(t), (2.45)

then H is a solution of KerHC = KerC +S ∗, and M is the unique solution of
MP = HC, where P is the projection P : X → X /S ∗. Let us consider a G0 such
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that (A+G0C)S ∗ ⊂ S ∗ and denote by A0 = A+G0C|X /S ∗ . Then there is a G1

such that N = A0 +G1M has prescribed eigenvalues. Then set G = PG0 +G1H and
F = PB.

Extending this result to the case with multiple events one has the extension of
the fundamental problem of residual generation (EFPRG), that has a solution if and
only if S ∗

i ∩Li = 0, where S ∗
i is the smallest unobservability subspace containing

L i := ∑ j �=i L j.
These ideas were also applied to nonlinear systems, and a similar condition was

obtained for the solvability of the FPRG problem in terms of the observability codis-
tributions, see [16, 13].

In what follows, this result will be extended to the LPV systems where the state
matrix depends affinely on the parameter vector and quasi LPV systems, where the
parameters depends on measurable outputs.

FPRG for LPV Systems

Let us consider the class of linear parameter–varying systems of which state matrix
depends affinely on the parameter vector will be considered. This class of systems
can be described as:

ẋ(t) = A(ρ)x(t)+B(ρ)u(t)+
m

∑
j=1

Lj(ρ)v j(t), y(t) =Cx(t), (2.46)

where v j are the failures to be detected, C is right invertible,

A(ρ) = A0 +ρ1A1 + · · ·+ρNAN , (2.47)

B(ρ) = B0 +ρ1B1 + · · ·+ρNBN , (2.48)

Lj(ρ) = Lj,0 +ρ1Lj,1 + · · ·+ρNLj,N , (2.49)

and ρi are time varying parameters. It is assumed that each parameter ρi and its
derivatives ρ̇i ranges between known extremal values ρi(t) ∈ [−ρ i,ρ i] and ρ̇i(t) ∈
[−ρ̇ i, ρ̇ i], respectively. Let us denote this parameter set by P .

For LPV systems (2.46) one has the following result:

Proposition 9. For the LPV systems (2.46) one can design a – not necessarily stable
– residual generator of type

ẇ(t) = N(ρ)w(t)−G(ρ)y(t)+F(ρ)u(t) (2.50)

r(t) = Mw(t)−Hy(t), (2.51)

if and only if for the smallest (parameter varying) unobservability subspace U ∗
containing L2 one has U ∗ ∩L1 = 0, where Li = ∪N

j=0ImLi, j .
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Example

As an illustrative example let us consider the following linearized parameter varying
model of the longitudinal dynamics of an aircraft:

ẋ(t) = A(ρ)x(t)+Bu(t)+L1v1(t)+L2v2(t), y(t) =Cx(t),

where A(ρ) = A0 +ρ1A1 +ρ2A2. It is assumed that the parameter ρ1 and ρ2 vary in
the intervals [−0.3,0.3] and [−0.6,0.6], respectively, see Figure 2.4.
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Fig. 2.4 Scheduling variables for the simulation

The state matrices are:

A0 =

⎡
⎢⎢⎢⎢⎢⎣

−1.05 −2.55 0 0 −169.66 −0.0091
2.55 −1.05 0 0 57.09 0.0017

0 0 −77.53 39.57 0 0
0 0 0 −20.20 0 0
0 0 −8.80 0 −20.20 0
0 0 0 0 0 −0.1000

⎤
⎥⎥⎥⎥⎥⎦
, A1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0
1 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

A2 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0

−4.49
0
0

⎤
⎥⎥⎥⎥⎥⎦

L1 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

1.00
0

⎤
⎥⎥⎥⎥⎥⎦
, L2 =

⎡
⎢⎢⎢⎢⎢⎣

3.55 2.41
−0.55 8.04

0 0
0 0

−0.02 0.56
0 0

⎤
⎥⎥⎥⎥⎥⎦
, C =

⎡
⎢⎣
−0.01 0.1 0.07 0 0.0 −0.000
−0.48 −0.6 0.00 0 −49.5 −0.002
0.03 0.1 −0.06 0 −0.0 0.000
0.26 −0.1 0.01 0 0.0 −0.000

⎤
⎥⎦

The simulation results are depicted on Figure 2.5.

The Question of Stability

In contrast to the LTI case, when stabilizability is guaranteed by certain pole al-
location properties, in the LPV case the problem of stability is more involved. A
common stabilization strategy in these schemes is to suppose a Lyapunov function
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Fig. 2.5 Fault signals and the estimated residuals

of certain type – usually a quadratic Lyapunov function defined by a constant pos-
itive definite matrix – and to find the stabilizing feedback gains starting from the
corresponding analysis equations.

An (q)LPV system is said to be quadratically stable if there exist a matrix P =
PT > 0 such that

A(ρ)T P+PA(ρ)< 0 (2.52)

for all the parameters ρ ∈ P. A necessary and sufficient condition for a system to
be quadratically stable is that the condition (2.52) holds for all the corner points
of the parameter space, i.e., one can obtain a finite system of LMI’s that has to be
fulfilled for A(ρ) with a suitable positive definite matrix P, see [1].

In order to obtain a quadratically stable residual generator one can set N(ρ) =
A0(ρ)+G(ρ)M in (2.50), where G(ρ) = G0 +ρ1G1 + · · ·ρNGN is determined such
that the LMI defined in (2.52), i.e.,

(A0(ρ)+G(ρ)M)T P+P(A0(ρ)+G(ρ)M)< 0

holds for suitable G(ρ) and P = PT > 0. By introducing the auxiliary variable
K(ρ) = G(ρ)P, one has to solve the following set of LMIs on the corner points
of the parameter space:

A0(ρ)T P+PA0(ρ)+MT K(ρ)T +K(ρ)M < 0.

Remark 2. If KerC ⊂ U ∗ then one can choose G(ρ) such that the matrix N(ρ) be
parameter independent with arbitrary eigenvalues, since the equation G(ρ)CU =
UT −A(ρ)U has a solution for arbitrary T, where U is the insertion map of X /U ∗.

This method for quadratic stabilization can be also used for computing the gains Γi

for the inversion based tracking controller (2.42).



52 J. Bokor and Z. Szabó

2.4 Conclusions

This work extends the notions of different LTI invariant subspaces to (quasi)
parameter-varying systems by introducing the notion of parameter-varying (A ,B)-
invariant and parameter-varying (C ,A )-invariant subspaces. In introducing the
various parameter-varying invariant subspaces an important goal was to set notions
that lead to computationally tractable algorithms for the case when the parameter
dependency of the system matrices is affine. These invariant subspaces provides a
viable alternative of the more complex objects such as the corresponding invari-
ant distributions and codistributions of the full nonlinear framework. Efficient algo-
rithms are provided to compute these subspaces.

In general it is a hard task to give an exhaustive characterization for the solution
of the fundamental problems such as the disturbance decoupling problem (DDP)
or the fundamental problem of residual generation (FPRG) even in the LPV case.
However, since the main ingredient in the solution of these problems are certain
local decomposition theorems – in observable and unobservable subsystems, for
example – using suitable invariant subspaces instead of the distributions or codistri-
butions one can get sufficient conditions for solvability that can be useful in practical
engineering applications.
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Chapter 3
Bimodal and Linear Switched Systems

József Bokor and Zoltán Szabó

Abstract. The chapter considers some special topics related to controllability and
stabilizability of linear switching systems. While providing a short overview on the
most important facts related to the topic it is shown how fundamental role is played
by the finite switching property in obtaining the controllability and stabilizability
results. The (closed–loop) stabilizability problem of controlled linear switched sys-
tems is also revisited. It is shown that the completely controllable sampled switch-
ing system can be robustly stabilized (against disturbances and model uncertainties)
with suitable linear feedbacks and a periodic switching strategy. A self contained
treatment of the bimodal LTI problems is also provided pointing to the relevant
structures of the problem. It is shown that for a certain class of bimodal systems
controllability in case of closed–loop switching systems is equivalent with control-
lability of an open–loop switching system using nonnegative controls, i.e., to the
controllability of a constrained open–loop switching system.

3.1 Introduction

Motivated by the need of dealing with physical systems that exhibit a more compli-
cated behavior that those normally described by classical continuous and discrete
time domains, hybrid systems have become very popular nowadays. In particular,
there has been a relevant interest in the analysis and synthesis of so-called switching
systems intended as the simplest class of hybrid systems.

A switching system is composed of a family of different (smooth) dynamic
modes such that the switching pattern gives continuous, piecewise smooth trajec-
tories. Moreover, we assume that one and only one mode is active at each time
instant.
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Controllability of switching systems has been investigated mostly for the case
when arbitrary switching is possible (open–loop switching) and the objective is to
design a proper switching sequence to ensure controllability or stability of (usu-
ally) piecewise linear systems, see [3], [63], [70], [75], or [57], for recurrent neural
networks. In these investigations the control input set for the individual modes is
assumed to be unconstrained.

Bimodal systems are special classes of switching systems, where the switch from
one mode to the other one depends on the state (closed–loop switching). In the
simplest case the switching condition is described by a hypersurface C in the state
space. A fundamental achievement is that for a certain class of bimodal systems
controllability question can be reduced to the problem of controllability of sign
constrained open–loop switching system.

One of the most elementary constrained controllability problems is that of the
single-input-single-output (SISO) linear time invariant (LTI) system, with nonneg-
ative inputs, see [50] for details. The multi-input LTI case, i.e., a special sign con-
strained switching problem, was solved in [11] and [32], for further insights see
[59], [47], [23]. Constrained controllability results for the linear time varying case
with continuous right hand side can be found e.g., in [51].

From practical point of view it is important to know if controllability can be
performed using a finite number of switchings. It is known that for the unconstrained
case and for the constrained case when the small time controllability property holds
or the dynamics is continuous the answer is affirmative, [36], [62], [34], moreover
in all these cases there exist a bound for the number of switchings.

After recalling some fundamental results from geometrical control theory it is
shown that if the system is globally controllable then one can always achieve con-
trollability by applying only a finite number of switchings, moreover, as in the un-
constrained situation, the number of necessary switchings is bounded. Despite the
fact that linear switched systems are time varying nonlinear systems, their controlla-
bility and stabilizability properties can be described entirely in terms of the system
matrices by using matrix algebraic manipulations. This property does not hold for
general LTV systems.

For LTI systems ẋ = Ax+Bu controllability is intimately related to stabilizability
in that the former implies the later, moreover stabilizability can be achieved by ap-
plying a linear state feedback u = Kx, that can be computed relative easily. Similar
result, with a suitable set of linear state feedbacks, is valid for the case when the
inputs are sign constrained, see [52] and [33].

Stability issues of switched systems, especially switched linear systems, have
been of increasing interest in the recent decade, see for example [18], [40], [39],
[37], [44], [62]. In the study of the stability of switched systems one may consider
switched systems governed by given switching signals or one may try to synthe-
size stabilizing switching signals for a given collection of dynamical systems. Con-
cerning the first class a lot of papers focus on the asymptotic stability analysis for
switched homogeneous linear systems under arbitrary switching (strong stability,
robust stabilization), and provide necessary and sufficient conditions, see [8], [1],
[45].
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The requirement of (robust) stability imposes very strict conditions on the dy-
namics, e.g., all the subsystems must be stable or stabilizable. Even under this con-
dition, one has, in general, further restrictions on the allowable switching frequency
(dwell time), determined by the spectrum of the matrices, [67].

For strongly stabilizable linear controlled switching systems the feedback control
always can be chosen as a "patchy", linear variable structure controller, see [8]. The
control is defined by a conic partition R

n =
⋃N

k=1 Ck of the state space while on each
cone Ck the feedback is linear, i.e., it is given by u = Fkx.

In the more general situation, when one has unstable modes, more severe con-
ditions on the switching sequence have to be imposed. In this respect one of the
most elusive problems is the switched stabilizability problem, i.e., under what con-
dition is it possible to stabilize a switched system by properly designing autonomous
(event driven) switching control laws. For autonomous switchings the vector field
changes discontinuously when the state hits certain "boundaries". This problem
corresponds to the weak asymptotic stability notion of the associated differential
inclusions.

Based on the ideas presented in [46] it was proved that the (weak) asymptotic
stabilizability of switched autonomous linear systems by means of an event driven
switching strategy can be formulated in terms of a conic partition of the state space,
see [41], [42]. This result can be seen as a generalization of the corresponding the-
orem for strong stability. However, in contrast to the strong stability results, the
corresponding Lyapunov function is not always convex, see [9].

An extension of the fundamental LTI stabilizability results for the weak stabi-
lizability of the class of completely controllable linear switching systems is given,
where the control inputs might also be sign constrained, i.e., it is shown that a com-
pletely controllable linear switching system is closed–loop stabilizable, moreover,
the stabilization can be performed by using a generalized piecewise linear feedback.

3.2 Linear Switched Systems

A switching system is composed of a family of different (smooth) dynamic modes
such that the switching pattern gives continuous, piecewise smooth trajectories. We
assume that one and only one mode is active at each time instant. During the last
decade there has been a considerably interest in the analysis and synthesis of linear
switched systems, intended as the simplest class of hybrid systems.

A lot of work has been done to address the fundamental questions of control
theory – controllability, observability, stabilizability – that were reported in a series
of papers, [38, 21, 73, 15, 44, 63] and monographs like [37, 62], just to list a few of
them.

Controllability of switched systems has been investigated mostly for the case
when arbitrary switching is possible (open–loop switching) and the objective is
to design a proper switching sequence to ensure controllability or stability of
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(usually) piecewise linear systems, see [3], [63], [70], [75], or [57] for recurrent
neural networks. Usually the input set U is assumed to be unconstrained, i.e., U =
R

m, however for certain systems, e.g., in process engineering applications where the
inputs cannot be negative due to physical reasons, the sign constrained case U=R

m
+

is more relevant.
For LTI systems the controllability question was entirely solved. Moreover there

is a controllability condition that describes both the unconstrained and constrained
problems, [32, 20]. It turns out that a condition of the same type can be also for-
mulated for switching systems. The elaboration of the solution to the controllability
problem gives an opportunity to revise the main tools applied to the investigation
of linear switched systems and to reveal facts and relations that remain hidden in
previous works. In the elaboration of the topic advanced techniques like the geo-
metric control theory of [29, 22, 2], nonsmooth analysis and differential inclusions
of [5, 68, 19, 53] met the more elementary techniques of [69].

General Considerations

Consider the class of (open-loop) linear switched1 systems:

ẋ(t) = A(σ(t))x(t)+B(σ(t))u(t) (3.1)

where x ∈ R
n is the state variable and u ∈ U is the input variable. σ : R+ →S is a

measurable switching function mapping the positive real line into S = {1, · · · ,s},
i.e., the matrices A(σ) and B(σ) are measurable. The input set might be uncon-
strained U= R

m or constrained U= R
m
+.

A solution (Carathéodory) of (3.1) on an interval I is an almost everywhere dif-
ferentiable function ϕ(t) : I → R

n that satisfies (3.1) a.e. on I. A state x ∈ R
n is

controllable at time t0, if there exist a time instant t f > t0, a (measurable) switching
function σ : [t0, t f ] → S, and a bounded measurable input function u : [t0, t f ] → U
such that x(t f ;t0,x,u,σ) = 0. A state x ∈ R

n is reachable at time t0, if there exist a
time instant t f > t0, a switching function σ : [t0, t f ]→S, and a bounded measurable
input function u : [t0, t f ] → U such that x(t f ; t0,0,u,σ) = x. We will term as reach-
ability set the set (R) of points reachable from the origin, and as controllability set
(C ) the set of points from which the origin is reachable.

Following classical lines, (3.1) is said to be completely controllable2 if every
point in the state space is reachable from any other point in the state space by using
bounded measurable controls and a suitable switching function.

1 The fact that the switching signal can be chosen and in particular, can be set to be a specific
one, motivates that the term switched is preferred against switching.

2 In [62] complete observability and reconstructibility are defined along classical lines as
dual notions for complete reachability (controllability). Since these notions guarantees the
possibility to recover the initial state only for some switching trajectories they does not
cover the situation needed in practice. The requirement to reconstruct the state regardless
the switching signal implies the complete observability of the individual modes. Therefore
in this work we does not investigate problems related to this topic.



3 Bimodal and Linear Switched Systems 59

A trajectory of the switching system (3.1) will be defined as follows: let x(t) be
an absolutely continuous function. We say that x(t) is a (admissible) trajectory of
the system (3.1) on [ t0, t f ] if there exists a finite subdivision t0 < t1 < · · · < tN−1 <
tN = t f of the interval [ t0, t f ], such that on each subinterval (tk−1, tk ) there exists an
admissible function uk such that one has ẋ = Akx+Bkuk.

The set of admissible inputs depends on the specific application: usually it is
fixed to be the set of piecewise constant functions, but could be the set of suffi-
ciently smooth functions, too. The notion of the trajectory excludes problematic sit-
uations from open– loop switching, like Zeno behavior, that might appear, however
in closed–loop switching systems. In practical problems besides the left continuity
of the switching signal it is often required that any time interval within which σ is
constant is no less than a proper positive scalar Tδ > 0, which is called the dwell
time. Therefore it is an important issue how complete controllability by trajectories,
i.e., using piecewise constant switching, is related to complete controllability by
measurable switchings.

Switching Systems and Vector Fields

The concept of control system plays a central role in the geometric theory of non-
linear control. A control system is a collection F of smooth vector fields depending
on independent parameters w = [w1, · · · ,wm] ∈W⊂R

m, called control inputs, such
that w(t) belongs to a suitable class of real valued functions, called admissible con-
trols, [2]. Usually it is supposed that the state space M is an n-dimensional real
analytic manifold.

Associated with the control system F denote by AF(x, t) the set of all elements
attainable from x at time t. For each x ∈ M, AF(x) = ∪t≥0AF(x, t). To a controlled
nonlinear system ẋ= f (x,u) can be associated in a natural way the collection of vec-
tor fields Vf = { fu |u ∈ U}, that can be used, e.g., in a Lie algebraic treatment, quite
suitable for unconstrained problems and small time local controllability problems3.

An important object of the controllability study of nonlinear systems is the set
of (positive) orbits4 Φq

τ,x0(ω)(T ) = e fuqtqe fuq−1 tq−1 · · ·e fu2 t2 e fu1t1 x0, where e fut x0 is
the solution of the equation ξ̇ = fu(ξ ), ξ (0) = x0, and τ = (t1, t2, · · · tq), ti ≥ 0 with
T = ∑q

j=1 t j while ω = (u1,u2 · · ·uq) ∈ Uq, fui ∈ F . Observe that an orbit can be
interpreted as a possible trajectory corresponding to a switched system formed by
the modes ẋ= fui(x). Starting from this idea, a switched system can be considered as
a nonlinear polysystem of the form ẋ = f (x(t),w(t)), x(0) = 0 where in general, it
is assumed that x ∈ M and f (.,w), w ∈W is an analytic (smooth) vector field on M.
The benefit of this interpretation is that the controllability study of switched systems
with unconstrained inputs can be placed in the framework of the nonlinear geometric
control theory. The aim of this section is to show that the powerful techniques of

3 A system is small-time locally controllable from the initial state x0 if the reachable set from
x0 in time at most T > 0 contains x0 in its interior for each T > 0, i. e., x0 ∈ intAF(x0, t) for
all t > 0.

4 For the notation and for additional details see, e.g., [29] and the Appendix.
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the general theory provides an elegant and transparent tool which can be applied
efficiently in the controllability study of switched systems.

We would like to decide (global) controllability by just examining the vector
fields that define a control system without the necessity of obtaining solutions of
any kind of the given system. It turns out that it is possible possible to "expand" the
available vector fields, e.g., by convexification, without changing the system itself,
obtaining equivalent descriptions of the same system.

To introduce more and more redundancy in this description – by enlarging the set
of vector fields that describes the system – is very useful in deciding the controlla-
bility question. This goal can be achieved by using the procedure of Lie extension,
sketched in the next section.

Lie Saturate

The Lie bracket of two vector fields f and g is denoted by [ f ,g]. Under the Lie
bracket, and the pointwise addition, the space of all analytic vector fields on M
becomes a Lie algebra; Lie(F) denotes the subalgebra generated by F. For each
q ∈ M, Lieq(F) is a subspace of TqM, the tangent space of M at q. A set of vector
fields F on a connected smooth manifold M is called bracket-generating (full-rank)
if LieqF= TqM for all q ∈ M.

Families of vector fields F and G are said to be (strongly) equivalent if Lie(F) =
Lie(G) and AF(q,T ) =AG(q,T ) for all q ∈ M and for all T > 0, where the overbar
denotes the closure of the sets. The Lie Saturate LS(F) of a family of vector fields F
is the union of families strongly equivalent to F.

In general it is difficult to construct the Lie saturate explicitly, however one can
construct a completely ascending family of compatible vector fields – Lie extension
– starting from a given set F of vector fields. A vector field f is called compatible
with the system F if AF∪ f (q)⊂AF(q) for all q∈ M. Since LS(F) is a closed convex
positive cone in Lie(F), a possibility to obtain compatible vector fields is extension
by convexification, see [29]: for f1, f2 ∈ F and any nonnegative functions α1,α2 ∈
C∞(M) the vector fields α1 f1+α2 f2 is compatible with F. If LS(F) contains a vector
space V , then Lie(V )⊂ LS(F).

The importance of Lie extension is given by the following result, [2]:

Proposition 10. If F is a bracket-generating system such that the positive convex
cone generated by F, i.e.,

cone(F) = {
k

∑
i=1

αi fi | fi ∈ F,αi ∈C∞(M),αi ≥ 0,k ∈N}

is symmetric, i.e., cone(F) = cone(−F), then F is completely controllable.

Let us apply this result to the unconstrained situation: by constructing the Lie ex-
tension of the vector field F = {Aix + Biu |u ∈ U}, one can observe that Biu is
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compatible with F, i.e., Biu ∈ LS(F). Indeed, Biu ∈ co(F), since Biu =
limλ→∞

1
λ (Aix+λBiu). If there is a vector v ∈ LS(F) such that −v ∈ LS(F), then

±Aiv ∈ LS(F), too, see [29].
Then for the unconstrained case a necessary and sufficient condition for control-

lability can be formulated as:

Proposition 11. The unconstrained switching system is controllable if and only if

rank RA ,B = n, (3.2)

i.e., the multivariable Kalman rank condition, holds, where the subspace RA ,B is
defined as

R(A ,B) = span

{
J

∏
j=1

A
ij
l j

Bk |k = 1, · · · ,s
}

(3.3)

where J ≥ 0, l j ∈ {0, · · · ,s}, i j ∈ {0, · · · ,n − 1}. Moreover, if one considers the
finitely generated Lie-algebra L (A0, . . . ,As) which contains A0, . . . ,As, and a basis
Â1, . . . , ÂK of this algebra, then

RA ,B =
s

∑
k=0

n−1

∑
n1=0

. . .
n−1

∑
nK=0

Im (Ân1
1 . . . ÂnK

K Bk). (3.4)

Controllability of unconstrained switched systems can be determined based on the
system matrices only. As an early contribution of the author to the field this con-
trollability result was derived in [60] by using different, matrix Lie algebraic, tech-
niques. In that context it was also stressed that the subspace RA ,B is the minimal
subspace invariant for all of the Ais containing the subspace B = ∪s

i=1ImBi, see
e.g., [6]. Using this fact one can obtain a controllability decomposition analogous
to the corresponding LTV result.

Further results on how linear switched systems can be related to linear time vary-
ing systems are presented in the next section. It is also stressed that for controllable
systems the condition on the finiteness of the switching numbers can be relaxed by
admitting merely measurable switching rules. One of the main technical benefit of
this fact is that it permits the use of nonsmooth analysis (differential inclusions)
without the additional condition of piecewise continuity, required by the concept of
trajectory, of the switching rules. This property will be exploited later, in the study
of controllability with sign constrained control inputs.

3.2.1 Finite Number of Switchings, Sampling

Let us denote by Ft
wx0 the solution of the equation ξ̇ = fw(ξ ), ξ (0) = x0 on the inter-

val [0, t]. Then for a given vector field F one can consider the associated trajectories
(positive orbits), i.e., Φq,T

ω,τ (x0) := F
tq
wqF

tq−1
wq−1 · · ·Ft2

w2Ft1
w1x0 with τ = (t1, t2, · · · tq), ti ≥
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0, T = ∑q
j=1 t j and fwi ∈ F corresponding to the sequence of piecewise constant

controls ω = (w1,w2 · · ·wq) ∈Wq.
For a switched linear system fwi(x) = Asix+ Bsiui, with wi = (si,ui). We will

suppress the switching sequence σ = (s1,s2, · · · ,sq) from the notation and denote
the flow by Φq

τ x0 for fixed μ = (u1,u2, · · · ,uq) and by Φq
μx0 for fixed τ .

A point y ∈ M is called normally reachable from an x ∈ M if there exist a flow
such that Φq

τ̄ x = y and the mapping τ ∈ R
q
+ → Φq

τ (x), which is defined in an open
neighborhood of τ̄ , has rank n = dimM at τ̄ . The system is normally controllable if
y is normally reachable from x for every x,y ∈ M.

Proposition 12. If the switching system (3.1) is globally controllable than it is also
globally controllable by using piecewise constant switching functions, i.e., using
only a finite number of switchings.

Moreover, there exist a bound for the necessary number of switchings, that de-
pends only on the system matrices and U. There exist a universal (finite) switching
sequence σ such that the time varying system ẋ = A(σ)x+B(σ)u is globally con-
trollable.

Remark 3. The content of Proposition 12 is that one can concentrate on the global
controllability problem in general, i.e., admitting measurable controls, which is a
common setting for studying controllability and the existence of nice controls (e.g.
piecewise constant, non–Zeno) is automatically guaranteed.

Note that for a fixed r > 0 by taking sufficiently large but fixed inputs it is possible
to reach all the points of the ball having radius r by controlling the system only with
the individual time length ti of the switching sequence. Actually all Rn is reachable
by having only a finite set of controls and a periodic application of the sequence σ
with suitable time instances τk. (It is a sort of a bang–bang property.)

In the definition of normal reachability the control input sequence μ is fixed while
the switching times may vary in a certain neighborhood of τ . It turns out that the rank
of the analogous map μ ∈ UN →ΦN

μ (x) is also significant and it is closely related to
the controllability of the sampled system, in general, for details see [54, 58, 56]. A
point y ∈ M will be called called full rank reachable from an x ∈ M if there exist a
flow such that ΦN

μ̄ x = y and the mapping μ ∈ UN → ΦN
μ (x), which is defined in an

open neighborhood of μ̄ , has rank n = dimM at μ̄ .

Proposition 13. For the globally controllable linear switching system (3.1) for arbi-
trary point pairs (x,y) one has that y is full rank reachable from x. Moreover, every
point pair can be joined in a full rank reachable way by using the same sequence
(σ and τ fixed).

The next small example illustrates the difference between the concept of “time
topology" related to Φq

τ (x) and the “input topology" related to Φq
μ(x) – see [55]

for the terminology.

Example: Let us consider the switched system defined by the modes A1 =

[
0 1
0 0

]
,

b1 = 0 and A2 = 0, b2 =

[
0
1

]
, respectively.
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x1

x2

0

(I)

(V )

(IV )

(II)

(III)

Fig. 3.1 The flow Φ5
τ (0)

The corresponding flows are Ft
1(x) =

[
1 t
0 1

]
x and Ft

2,u(x) = x+ tu

[
0
1

]
.

It follows that for any u > 0 and t > 0 with the switching sequence σ =
(2,1,2,1,2), input sequence μ = (u,0,−2u,0,u) and time sequence τ̄ = (t, t, t, t, t)
the flow

Φ5
τ (0) = Ft5

2,u ◦Ft4
1 ◦Ft3

2,−2u ◦Ft2
2 ◦Ft1

2,u(0) =

= t1u

[
t2 + t4

1

]
− 2t3u

[
t4
1

]
+ t5u

[
0
1

]

has full rank at τ̄ with Φ5
τ̄ (0) = 0.

For any t > 0 with the switching sequence σ = (2,1,2), input sequence μ =
(u1,0,u2) and time sequence τ = (t, t, t) the flow

Φ3
μ(x) = Ft

2,u2
◦Ft

2 ◦Ft
2,u1

(0) =

[
1 t
0 1

]
x+

[
t2 0
t t

][
u1

u2

]

has full rank at any μ̄ with Φ3
μ̄(x) = y (μ̄ = (0,0) for x=y=0).

Observe that in the input topology, i.e., for the discretized system, the design prob-
lem is linear in the unknown variables. This fact motivates that in the investigations
of linear switched systems the usage of this topology is preponderant.

From Proposition 13 it is immediate that for sufficiently small sampling times
the sampled system is also completely controllable – which is already known from
the general theory – which is quite involved in this respect, see e.g., [54, 48].

In what follows a more constructive proof of Proposition 13 will be presented:
actually the result is a consequence of the similar fact that holds for the LTI systems,
i.e., for the minimal A invariant set containing V (< A,V >) for almost all t ∈ R

one has

< A,V >=< eAt ,V > . (3.5)
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The content of the assertion is that there is a switching sequence σ and times τ such
that one has

N

∏
i=1

Āsixo +C σ
τ u = x f (3.6)

where u = [uT
1 , . . . , uT

N ]
T , the lth column of C σ

τ is ĀsN · · · Āsl+1Bsl with (Āi, B̄i) cor-
responding to the ti sampled linear system (Ai,Bi) and with ĀsN+1 = I such that the
matrix C σ

τ is of full rank. Let us denote by Āσ =∏N
i=1 Āsi .

To obtain the constrained result let us consider a point that is full rank reachable
from the origin. Such a point clearly exists, e.g., z = C σ1

τ1 e from (3.6), the vector
e having ones for its components. However, by controllability, the origin can be
reached from the point z by using a finite switching sequence, say (σ2,τ2, ũ(2)). By
joining these two finite sequences one has that an open neighborhood of the origin is
full rank reachable from the origin. Since the reachability set Rσ is a pointed cone
that contains a ball it follows that Rσ = R

n.
It is instructive to detail these ideas: in the first step one can build a sequence

such that C σ1
τ1 is of full rank and Āσ2C

σ1
τ1 e+C σ2

τ2 ũ(2) = 0. Moreover, the equation
Āσ2 Āσ1x0 + Āσ2C

σ1
τ1 u1 = x f has an unconstrained solution u(1) for arbitrary (x0,x f ).

Then for sufficiently large λ the components of u1
c = u1 +λe are all nonnegative,

e.g., for λ = max{|u1
i | |ui < 0}, hence Āσ2 Āσ1x0 + Āσ2C

σ1
τ1 u1

c +λC σ2
τ2 ũ(2) = x f . As

a consequence, for both cases there is a switching sequence σ and time sequence τ
such that one has (3.6) with u ∈ UN .

The construction is illustrated through the following small example:

Example: Let us consider the switched systems described by the two modes:

A1 =

[
0 1
−1 0

]
, b1 = 0, and A2 = 0, b2 =

[
1
0

]
.

22

1

Fig. 3.2 Time topology

The flow corresponding to the time topology is generated by the switching se-
quence σ = (2,1,2) and fix input sequence w = (u1,0,u2), respectively:

x f =

[
cost2 sint2
−sint2 cos t2

]
x0 +

[
cos t2 sint2
−sin t2 cost2

][
t1
0

]
u1 +

[
t2
0

]
u2
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22

1

2
1

Fig. 3.3 Input topology

The flow corresponding to the input topology is generated by the switching se-
quence σ = (2,1,2,1,2) and fixed switching time sequence τ = (

√
2, π4 ,

√
2,π −

arctan(1/3),
√

10):

x f = Āx0 + Ā

[
1

√
2

−1 0

][
u1

u2

]
+

[√
10
0

]
u3,

where Ā =

[−0.9487 0.3162
−0.3162 0.9487

]
. Accordingly, the full rank matrix C σ

τ is given by

C σ
τ =

[−1.2649 −0.9487
√

2
√

10
−1.2649 −0.3162

√
2 0

]
.

Thus we obtain a generalization of Theorem 1 from [76] derived for positively con-
trolled discrete LTI systems:

Corollary 1. The sign constrained linear switching system (3.1) is completely con-
trollable if and only if there exist σ = (σ1,σ2) and τ = (τ1,τ2)

• C σ1
τ1 has full rank (i.e. the unconstrained linear switching system is completely

controllable)
• equation Āσ2C

σ1
τ1 u1 +C σ2

τ2 u(2) = 0 has a solution such that u1 is positive and u2

is nonnegative.

Corollary 2. For every completely controllable linear switching system (3.1) the
sampled discrete–time system is also completely controllable for suitable sampling
rates.

As a consequence one has the following embedding/restriction, see [60] for further
details:

Corollary 3. For every completely controllable linear switching system (3.1) one
can associate – not necessary a unique – completely controllable periodic linear
time varying system ẋ = A(t)x+B(t).

One can relate this result with c-exitedness. Linear switched systems are c-excited,
i.e., there is a switching sequence and corresponding switching times such that the
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resulting time varying system will be c-excited. This fact explains from another
point of view why controllability of linear switched systems can be decided by a
multivariate rank condition.

The switching sequence of Proposition 13 can be determined relative easily. The
non uniqueness comes from the fact that one has more switching sequences σ such
that Rσ = R

n. For discrete time systems – with nonsingularAi matrices – the core
of the solution is to determine a sequence σ = (s1, . . . ,sN) such that the matrix Cσ
has rank equal to n where

Cσ =
[
AsN · · ·As2Bs1 . . . AsN BsN−1 BsN

]
. (3.7)

For the continuous time case one can use the matrices of the zero-older hold dis-
cretized systems instead. Actually this step can be skipped because the algorithms
instead of doing a blind search based on (3.7) uses the corresponding invariant sub-
spaces. Different techniques exists to determine such sequences, for details see e.g.
[72, 28, 27].

However it is an open question that for a given controllable linear switched sys-
tem what is the sequence σ containing the minimal number of switches (of minimal
length) such that rankCσ = n. It is obvious that performing a search on a finite,
but possible very big, set such a sequence can be obtained. The point is if there
exist a characterization of the "optimal" sequence that would facilitate to find it
efficiently. To illustrate the idea: for the multi input LTI system (A,B) the control-
lability indices shows where the switch in the "input" direction (actuator) should be
performed; these indices can be determined by a suitable ranking of the vectors Akb j

and a basis selection procedure, see [69]. Such a transparent algorithm to determine
the extended "controllability indices" is missing yet. These problems are significant
for the control synthesis problems, e.g., stabilizability, which will be detailed in the
next part of the chapter.

Controllability of linear switched systems was an intensively researched area,
thus, besides our approach, the multivariable Kalman rank condition was obtained
in a series of other papers using algebraic techniques, see e.g. [61, 63, 74, 71].
These papers basically uses the identity formulated in (3.5). The equivalence of the
controllability of the continuous time system and the discrete time system obtained
by sampling, however, was not realized in these works.

A contribution of the chapter to this topic was to observe and exploit this equiv-
alence which, together with the invariance property of RA ,B, provides a common
framework for the study of discrete-time and continuous-time switched systems.
This property was intensively used in the stabilizability study of these systems.

Relation (3.4) can be obtained by using the general differential geometric ap-
proach, see e.g. [65, 14, 48] or equivalently the geometric control theory of [29].
We do not insist further in this direction. The main reason to abandon the technique
based on the vector field description is that it is hard to obtain useful conditions for
complete controllability for switched systems with sign constrained inputs, see e.g.
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[10] for further details. A result that gives a necessary and sufficient condition for
the small time controllability, i.e., controllability in an arbitrary small time, of the
constrained switching system and uses Lie algebraic ideas is [66] and [34]. These
results are quite restrictive, since small time controllability requires that the convex
cone generated by Bi contain a subspace, i.e., co(∪s

i=1Bi)− co(∪s
i=1Bi) �= /0.

These observations motivates the necessity to search for other methods in order
to obtain a useful algorithm that might test controllability in the sign constrained
case. This will be done in the next section.

3.3 Linear Switched Systems with Sign Constrained Inputs

In practical applications there are often constrains that are imposed to the control in-
put of the systems. The most widely studied case is when the inputs are constrained
to a ball of given radius (bounded inputs). The obstruction caused by this type of
constraint to (global) controllability is revealed by the equation (3.6): it is immedi-
ate that we always have both (small time) local reachability and (small time) local
controllability in a neighborhood of the origin, however, in general it is not possi-
ble to extend this property to the entire state space, i.e., the system is not globally
controllable, in general.

The case when the inputs are sign constrained is more difficult. It differs from
the bounded input constraint in that even (small time) local controllability does not
hold, in general, the system might be globally controllable. As an example, consider
the switched system with two modes ẋ = u and ẋ = −u, with u ≥ 0. It is not hard
to figure out that the system is globally controllable, see Figure 3.4 – for illustration
purposes the points x0, x f from the line are slightly misplaced.

�

�

�

�

�

�

x0

xf

xc

u

−u

x x

u

−u

x0

xf

xc,1

xc,2

Fig. 3.4 From the given point the shaded area cannot be reached directly

This fact explains why the usual differential-geometric (Lie algebraic) techniques
fail in obtaining useful controllability conditions. As in the previous chapter our goal
is to decide controllability by just examining the vector fields that define a control
system without the necessity of obtaining solutions of any kind of the given system.
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Differential Inclusions

By the Filippov–Wažewski relaxation theorem the solution set defined by (3.1) is
dense in the set of relaxed solutions, i.e., the solutions of the differential inclusion
whose right hand side is the convex hull of the original set valued map, see e.g.,
[5]. This implies that the corresponding attainable sets coincides. Hence, instead
of (3.1) one can consider the controllability problem associated to the convexified
differential inclusion ẋ ∈ Ac(x), where Ac(x) = ∑s

i=1αi(Aix+Biu) and αi ≥ 0 and
∑s

i=1αi = 1.
Generalization of the LTI systems, which maintains some fundamental properties

of the class, is the concept of convex processes. A closed convex process A is a set-
valued map whose graph is a closed convex cone and that it is strict if its domain
is the whole space. With a strict closed convex process A one can associate the
Cauchy problem for the differential inclusion: ẋ(t) ∈ A(x(t)), x(0) = 0, for details
see [5]. In this framework the class of LTI systems with sign (cone) constrained
inputs: ẋ ∈A (x) = {Ax+C} , with C=R

m
+ can be naturally cast and a fundamental

controllability result was obtained, [20], that contains result of Kalman, [30], for the
unconstrained case and also the results reported in [11] and [32] for the constrained
input case.

Let us consider the differential inclusion ẋ ∈ F(x), x(0) = ξ and the correspond-
ing reachable set RT (ξ ) = {x(T ) |x(0) = ξ , x is a solution}. If F has nonempty,
compact, convex values and is locally Lipschitz then by using the Euler discretiza-
tion of the inclusion one has RT (ξ ) = limN→∞(I + T

N F)N(ξ ) := [ExpF](Tξ ),
where the limit is in the sense of Kuratowski, for definitions and details see [68].

Extending this result, Proposition 2 of [12] shows that for a positively homoge-
neous inclusion, (F(α) = αF(x), α > 0), one has

[ExpF](tξ ) = ξ +
∞

∑
k=1

tk

k!
Fk(ξ ), (3.8)

where Fk = F ◦F ◦· · ·◦F . This exponentiation formula was the main tool in obtain-
ing the controllability result of sign constrained linear switched systems that will be
detailed in the next section.

3.3.1 Controllability Analysis

Even the differential inclusion related to a linear switched system (3.1) does not
define a convex process, a controllability result of the same type still remains valid:

Proposition 14. The following conditions are equivalent:

a) the switching system ẋ = Aix+Biu, i ∈ {1, · · · ,s}, u ∈ U is controllable,
b) for the associated differential inclusion ẋ ∈ Ac(x) one has Ak

c(0) = (−A)k
c(0) =

R
n for some k ≥ 1.
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Introducing the notation co{Vj} for the convex hull of the subsets Vj ⊂ R
n, then

the sets Ak
p := Ak

c(0) and Ak
m := (−A)k

c(0) can be computed using the following
algorithm:

General Controllability Algorithm (GCA):

U = co{BiU | i = 1, · · · ,s} (3.9)

A1
p = U, A1

m =−U, (3.10)

Ak+1
p = co{AiA

k
p +BiU | i = 1, · · · ,s}, (3.11)

Ak+1
m = co{−AiA

k
m −BiU | i = 1, · · · ,s}. (3.12)

Example 1. To illustrate the results let us consider the system

A1 = 0, B1 =

⎡
⎣0

1
1

⎤
⎦ , A2 =

⎡
⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎦ , B2 = 0, A3 =

⎡
⎣ 0 1 0

0 0 0
−1 0 0

⎤
⎦ , B3 = 0.

Applying the algorithm one can find that Ak
p = Ak

m with k = 4, i.e., the system is
globally controllable.

3.4 Stabilizability of Completely Controllable Linear Switched
Systems

The concept of stabilizability is related to the property that there exists a state depen-
dent control law (closed-loop) which, starting from any initial state, asymptotically
drives the system into the equilibrium (the origin). This concept expresses the re-
quirements imposed by practical applications to an automatic control solution and
it is a corner-stone of every control design algorithm.

For controlled LTI and LTV systems controllability is intimately related to sta-
bilizability in that the former implies the later, moreover stabilizability can be
achieved by applying a linear state feedback. Similar result, with a suitable set of
linear state feedbacks, is valid for LTI systems when the inputs are sign constrained,
see [52] and [33].

For general nonlinear systems, however, there is no such result. Controllability
ensures that from every initial state the system can be driven to the origin in fi-
nite time by using a suitable control. It is not known, in general, whether among
these controls there exists at least one which is uniformly bounded by the norm of
the initial condition. If this property holds, the system is called asymptotically con-
trollable, and despite its name the concept is related to stabilizability rather than
controllability, see [17]. Moreover, it turns out that asymptotic controllability is not
only equivalent to stabilizability but also guarantees – under fairly mild conditions
– the existence of a not too pathological feedback and control Lyapunov function,
see [4], [31], [49].
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Unfortunately, these results are hard to be applied in practice to construct di-
rectly the required feedback, i.e., to obtain the closed–loop switching strategy and
necessary control inputs or even to infer that the control inputs are given by linear
feedbacks. Concerning linear switched systems, they are essentially nonlinear, even
the individual dynamics are linear. This fact makes the stabilizability problem of
linear switched systems nontrivial.

Asymptotic Controllability and Weak Stabilizability

The zero solution of the differential inclusion ẋ ∈ Ac(x) is called asymptotically
weakly stable if there exists a solution x(t) such that for any ε > 0 there is a δ > 0
and Δ > 0 such that if ||x(0)||< δ then ||x(t)||< ε holds for all t ≥ 0 and if ||x(0)||<
Δ then limt→∞ x(t) = 0 holds.

In order to prove stabilizability of completely controllable linear switching sys-
tems it is sufficient to show that they are globally asymptotically controllable.

Lemma 4. A completely controllable linear switching system is globally asymptot-
ically controllable.

Proposition 15. The completely controllable linear switching system (3.1) is closed–
loop stabilizable.

3.4.1 Stabilizability by Generalized Piecewise Linear Feedback

Given an autonomous linear switching system

ẋ = Aix, i ∈ S

it is a nontrivial task to decide if the system is (weakly) stabilizable or not, in general.
There are only a few sufficient conditions that guarantee stabilizability and provide
a relatively simple closed-loop switching strategy. One such situation is when the
convex hull of the system matrices contains a stable (Hurwitz) matrix, i.e., when
there are αi > 0, ∑s

i=1αi = 1 such that ∑s
i=1αiAi is stable.

For the non-autonomous case with unconstrained inputs it is known that if the
sum of the individual controllability subspaces gives the whole state space, then
there are linear state feedbacks u = Kix such that the resulting linear switching
system

ẋ = (Ai +BiKi)x, i ∈ S

is stable with a suitable closed–loop switching strategy, see [62]. It is not hard to
figure out that the required condition is sufficient to guarantee that for any convex
combination αi > 0, ∑s

i=1αi = 1 there exist feedbacks Ki such that ∑s
i=1αi(Ai +

BiKi) is stable.
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As it can be concluded through simple examples, see [62], there are completely
controllable switching systems that are not stabilizable by merely applying a single
linear state feedback for the individual subsystems. However, as it will be shown in
this Section, if the number of linear feedbacks is increased, one can obtain a set of
autonomous linear systems that are (weakly) stabilizable.

For a given set of non–autonomous (controlled) linear switched systems (3.1) we
call Generalized Piecewise Linear Feedback Stabilizability (GPLFS) the problem of
finding a closed-loop switching strategy with

• suitable linear feedbacks ui = Kli x, i ∈ S
• a switching law κ(x) ∈ S, x ∈R

n

that (weakly)stabilizes the system.
The reasoning behind introducing the concept of generalized piecewise linear

feedback stabilizability is to separate the task of finding a suitable switching strategy
and that of finding suitable control inputs with low complexity that stabilizes the
system in closed–loop.

The main idea is to substitute the original stabilizable non-autonomous system
by a stabilizable autonomous linear switched system that might contain more modes
then the original one, by applying as control inputs a number of suitable static linear
control feedbacks.

Proposition 16. The completely controllable linear switching system (3.1) is gener-
alized piecewise linear feedback stabilizable.

Remark 4. Complete controllability of the vector field F has a very intuitive geo-
metrical background. Since the solutions of a linear autonomous differential equa-
tions realizes some rotations and dilations/compressions in R

n, it means that for a
given point pair (y,z) it is possible to select a finite set of feedbacks such that the re-
sulting set of autonomous systems transform the point y into z for a suitable (finite)
switching sequence.

Concerning the switching strategy the existence of the suitable closed–loop switch-
ing rule is guaranteed by the general results for nonlinear globally asymptotically
controllable systems, [49]. However, for nonautonomous switching systems with
unconstrained controls slightly more can be asserted.

In [43] it was shown that the existence of an asymptotically stabilizing switching
strategy (without sliding motion) of an autonomous linear switched system implies
the existence of a conic partition based switching law which globally asymptotically
stabilizes the closed–loop switching system. The control is defined by a conic par-
tition R

n =
⋃L

l=1 Cl of the state space while on each cone Cl the system defined by
Ail +Bil Kl with il ∈ S is active.

Remark 5. Since for linear autonomous switching systems asymptotical stability
and exponential stability are equivalent, see [62], Proposition 15 shows that com-
pletely controllable linear switching systems with (unconstrained input) are expo-
nentially stabilizable.
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The sign constrained case is more delicate. The resulting autonomous systems
correspond to certain regions of the state space, i.e., the resulting switching system
is an autonomous state constrained linear switching system. Therefore the result
from [62] is not applicable directly and the case needs further investigation.

Remark 6. Proposition 16 guarantees the generalized piecewise linear feedback
stabilizability but does not give a method to compute such feedbacks. However –
for the unconstrained input case – the property of complete controllability is feed-
back invariant. It is known that any controllable unconstrained multi–input linear
switching system can be changed into a controllable single–input system via suitable
non–regular state feedbacks, see [62]. Moreover, the controllable single–input sys-
tem can be put into the form (A1,b1),A2, · · · ,As. Proposition 15 guarantees that by
these transformations not only controllability but also stabilizability is preserved.
Hence one can obtain a switching system with a reduced complexity for which
one might find suitable stabilizing feedbacks more easily, e.g. the resulting BMI or
LMI equations in finding suitable piecewise quadratic Lyapunov functions will be
simpler.

Besides the fact that stabilization schemes with state depending switching rules
are hard to construct these schemes might not be robust against the quantization
errors introduced by a sampled implementation.

From a more general perspective the difficulties encountered at the feedback stabi-
lization of switching systems are not surprising. For continuous–time control sys-
tems the existence of smooth Lyapunov functions implies that the differential in-
clusion satisfy a certain covering condition – an extension of Brockett’s "covering
condition" from continuous feedback stabilization theory, [16]. However, robustness
of the feedback scheme and the existence of a smooth control Lyapunov function are
closely related, see [35]. Moreover, in general, stabilizable switched linear systems
does not have a convex Lyapunov function, see [9].

In contrast to the pure continuous–time approach, discrete–time asymptotic con-
trollability implies smooth control Lyapunov function. Moreover, robustness can be
induced via a sample–and–hold control. For details see [31].

The results of the previous section gives an opportunity to verify these claims for
the class of unconstrained linear switching systems (3.1).

By choosing a nonsingular Schur-stable matrix Ad , one can explicitly construct
the inputs that stabilize the time–varying systems obtained by a periodic repetition
of the sequence σ defined in Proposition 13 by choosing the sequence of inputs as
follows:

ux0 = (C σ
τ )†(Ad − Āσ )x0, (3.13)

where M† denotes a generalized inverse of M. Considering linear feedbacks, i.e.,
the closed-loop matrix Ac = ∏N

i=1(Āsi + B̄siKi), one has Ad = Ac provided that the
system
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K̃i = Ki

i−1

∏
j=1

(Āsi + B̄siKi) (3.14)

is solvable for K̃i = Pi(C σ
τ )†(Ad − Āσ ) with Pi the projection that gives the ith in-

put from (3.13). This is equivalent with the assertion that the resulting feedback
sequence is such that Āsi + B̄siKi is nonsingular. It is not true, in general, that for an
arbitrary nonsingular Ad (3.14) always has a solution. Despite this fact there always
exist feedback gains such that Ac is a (nonsingular) Schur matrix.

Observe that the number of modes needed for the stabilization is bounded by
the length of the switching sequence σ . This fact motivates the interest in finding
efficiently the shortest sequence.

An LMI condition can be given for the synthesis of the stabilizing feedback gains
of unconstrained controllable discrete–time linear switching systems. Moreover, this
result can be directly applied for the stabilization of sampled unconstrained control-
lable linear switching systems.

This section will be concluded by a slightly extended version of the result, by
setting LMIs that provide robust stabilization for uncertain systems.

Proposition 17. Suppose that the uncertain discrete–time switching system xk+1 =
Ai(Δ)xk +Bi(Δ)uk, uk ∈R

m is controllable and suppose that there exist a switching
sequence σ = (s1, · · · ,sM) such that Rσ = R

n independently of Δ .
Then there exist a positive definite matrix S, nonsingular matrices Vi and matrices

Fi such that the following LMI is feasible.
⎡
⎢⎢⎢⎢⎢⎣

S AsMVM +BsM FM . . . 0 0
(•)T VM +V T

M . . . 0 0
...

...
...

...
...

0 0 . . . V2 +V T
2 As1VM +Bs1 F1

0 0 . . . (•)T V1 +V T
1 −S

⎤
⎥⎥⎥⎥⎥⎦
> 0

The system can be stabilized with the periodic switching signal defined by σ and the state
feedback gains given by Ki = FiV

−1
i , i = 1, · · · ,M.

Remark 7. Having a polytopic uncertainty, i.e., A(Δ) = A0+δ1A1+ · · ·+δkAK, the
LMIs of Proposition 17 form a finite set of conditions that can be easily solved.

Proposition 18. Completely controllable linear switched systems can be piecewise
linear feedback stabilized using a periodic switching sequence.

Example

This chapter will be concluded by an illustrative example, which is based on a prob-
lem setting borrowed from the book of [62].

Let us consider the controlled linear switching system ẋ = Aix+Biu, i ∈ {1,2}
defined by
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A1 =

⎡
⎣0 0 0

1 1 0
0 0 1

⎤
⎦B1 =

⎡
⎣1

0
0

⎤
⎦ , A2 =

⎡
⎣0 0 0

0 1 0
1 0 1

⎤
⎦ ,

which was exposed in [62] as a system which is globally controllable but that is not
trivial to stabilize since < A1,B1 >+< A2,B2 > �=R

3 and the individual dynamics
have a common unstable mode. By applying the methods presented in this chapter,
however, it is possible to construct a homogeneous linear switched system by apply-
ing suitable linear state feedbacks. Moreover, this switched system can be stabilized
by applying a periodic switching law.

One can figure out that Rσ = R
3 for the switching sequence σ = (1,1,1,2,1).
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Solving the LMIs the stabilizing feedback gains are:

k1 = 104 [−0.1086 −8.6083 1.4443
]

k2 = 105 [−0.0112 −1.2846 0.2099
]

k3 = 104 [−0.1081 −6.6929 −7.1136
]

k4 = 103 [−1.0000 0.0000 −0.0000
]

The feedbacks were designed for the Euler discretization corresponding to the sam-
pled time of τ = 0.001 sec, while the simulation was started from the initial point
x0 = [112].

The overshoots are due to the unstability present in the individual modes that acts
as a performance barrier in these type of problems. Even some preliminary results
concerning the LQ control of discrete–time switched systems are reported recently
in [77] and [78], there are no reliable design algorithms for feedback stabilization,
in general. The stabilizability result presented here makes possible to extend the
discrete–time results to continuous–time design problems.
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It is a subject of further research to investigate the optimal performance level
achievable by certain configurations and to determine how it can be imposed addi-
tional performance requirements in the design process.

3.5 Bimodal Systems

Bimodal systems are special classes of switched systems governed by event-driven
switchings, where the switch from one mode to the other is performed in closed-
loop, i.e., in the simplest case the switching condition is described by a hypersurface
in the state space. The controllability study of event-driven switched systems is
very involved, since, in general, not even the well-posedness of the system, i.e.,
the existence and uniqueness of the solutions starting from any initial condition, is
guaranteed.

The study of bimodal systems was motivated by an application representing a
true emerging technology, related to the linearized longitudinal motion of a high
speed supercavitating vehicle. There are more common examples, however, for a
bimodal behavior, e.g., the dynamics of a hydraulic actuator in an active suspension
system. The research revealed that for a wide class of bimodal systems the con-
trollability can be cast in terms of the behavior of an associated open-loop switch
system that has sign constrained control inputs, i.e., the controllability conditions
can be tested in practice by using matrix algebraic tools. In this study the geometric
view and the tools concerning robust invariant subspaces have been proven to be
very useful. In what follows a detailed presentation of the results is provided.

Problem Formulation

Consider a bimodal piecewise linear system, i.e., a division of the state space by a
hyperplane C . The dynamics valid within each region is

ẋ(t) =

{
A1x(t)+B1u(t) if x ∈ C−,
A2x(t)+B2u(t) if x ∈ C+,

(3.15)

where x(t) ∈ R
n is the state vector and u(t) ∈ U ⊂ R

m is the input vector5.
The initial state of the system at time t0 is determined by the initial state x0 = x(t0)

and the initial mode s0 ∈ {1,2} in which the system is found at t0. C denotes the hy-
perplane KerC = {x |Cx = 0} and let C± denote the half spaces C+ = {x |Cx ≥ 0}
and C− = {x |Cx ≤ 0}. The state matrices are constant and of compatible dimen-
sions, B1,B2 having full column rank. ys =Cx defines the decision vector.

5 One can consider a number of different inputs for each mode. For sake of simplicity we
chose m1 = m2 = m but this does not affect the generality of the results.
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Let us suppose that the relative degree corresponding to the output ys and the ith

mode is ri, i.e., y(k)s =CAk
i x, k < ri and y(ri)

s =CAri
i x+CAri−1

i Biu with CAri−1
i Bi �= 0,

see [26]. It is reasonable to assume that ri < n, otherwise it would follows that ys ful-
fills a homogeneous differential equation, defined by the characteristic polynomial
of Ai. In this case the ith mode would not be able to leave the points of the hyper-
surface C , characterized by ys = 0, i.e., such a system would not be well–posed nor
completely controllable.

If ri < n then the system is right invertible. Right invertibility denotes the possi-
bility of imposing any sufficiently smooth output function by a suitable input func-
tion, starting at the zero state. It turns out that this property is related to Si,∗, i.e., the
minimal (Ci,Ai)−invariant subspace containing ImBi. On the other hand left invert-
ibility, i.e., the property that for every admissible ys corresponds uniquely an input
u, is closely related to the subspace V ∗

i , the maximal (Ai,Bi)−invariant subspace
contained in C .

For linear systems the points of V ∗
i are not visible by the output. Only the orthog-

onal projection of the state on the subspace V ∗,⊥
i can be deduced from the output

and its derivatives, moreover this is the largest subspace where the orthogonal pro-
jection of the state can be recognized solely from the output. If the state is known,
the orthogonal projection of the input can be determined modulo B−1,T

i V ∗
i , see [7].

Having a single output, in order to remove the ambiguity in the right inverse, one
can always redefine the inputs of the system. Indeed, define an input transformation

Miu=

[
ũi

wi

]
such that BiM−1

i =
[
B̃i bi

]
with CAri−1

i B̃i = 0 and CAri−1
i bi = 1, e.g., by

considering the basis {bi, b̃i, j = bi, j −CAri−1
i bi, jbi, j = 2, · · · ,m} in ImBi. Then the

single input single output (SISO) subsystem (Ai,bi,C) is left and right invertible,
i.e., Ṽ ∗

i ∩ S̃i,∗ = 0 and Ṽ ∗
i + S̃i,∗ = R

n, where the invariant subspaces correspond
to the SISO system, while the remaining subsystem (Ai, B̃i,C) is not invertible.

The invariant subspace V ∗
i produces a decomposition of the state corresponding

to the ith, i.e., the system can be transformed into:
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[
η̇i

ξ̇i

]
=

[
Piηi +Riys +Qiũi

Ariξi +Brivi

]
, ys =Criξi,

where ηi ∈V ∗
i and the subsystem for ξi is a chain of integrators with Bri = [10 · · ·0]T

and Ci = [0 · · ·01]. The inputs vi and wi are related as vi =CAr
i x+wi.

Since ys is common for both systems, if r1 = r2 = r then ξ1 = ξ2 = ξ . Recall
that the components of ξ are formed by ys and its derivatives up to order r− 1. It
follows that the complementer subspaces (zero dynamics) have the same dimension,
i.e., there exist a basis transformation T such that η2 = Tη1 = Tη . In this case the
bimodal system can be written as

η̇ =

{
P1η+R1ys +Q1ũ1 if ys ≥ 0

P2η+R2ys +Q2ũ2 if ys ≤ 0
(3.16)

ξ̇ =

{
Arξ +Brv1 if ys ≥ 0

Arξ +Brv2 if ys ≤ 0
(3.17)

Remark 8. Observe that the required transformation can be performed by the same

change of base in the state space. e.g.,

[
η
ξ

]
= Tx, where for the last rows of T are

chosen the vectors CAj
2, j = 0, · · · ,r−1. However the feedback to obtain the desired

structure might differ. The input transformations are also different, in general; this
difference is reflected in the notation u1,u2 and v1,v2, respectively.

Since the decomposition – i.e., the transformation T – depends only on C,A and
r, the choice of the input transformation does not play any role in the validity of the
controllability results.

In the case when r1 �= r2 such a splitting is not possible but the system can be
transformed into (suppose that r1 < r2):

η̇ =

{
P1η+R1ys +Q1ũ1 if ys ≥ 0

P2η+R2ys +Q2ũ2 +Q3v2 if ys ≤ 0
(3.18)

ξ̇ =

{
Arξ +Brv1 if ys ≥ 0

Arξ +Brη̄ if ys ≤ 0,
. (3.19)

where η̄ denotes the last component of η .
In contrast to the previous situation, in this case the subsystem ξ , hence the de-

cision variable ys, cannot be controlled independently from the subsystem η in both
modes. Moreover, in the first mode the only way to control the higher order deriva-
tives of ys is through the inputs ũ1. This fact makes the study of the controllability
problem for these systems, in general, more difficult.

Here it is addressed the case when ri = r, for which the system is always well
posed, see [25]. For sake of simplicity the results will be presented for the case when
r = 1, i.e.,
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η̇ =

{
P1η+R1ys +Q1u if ys ≥ 0

P2η+R2ys +Q2u if ys ≤ 0
. (3.20)

ẏs = v, (3.21)

but the assertions remain valid for the general case.

3.5.1 The Controllability Result

The controllability question of the bimodal system can be reduced to the question of
controllability/reachability of the origin through the closed-loop switchings allowed
by the switching surface C . Due to the fact that the bimodal system is not a linear
system, the affirmative answer given on this question is not completely trivial.

The reference [66] deals directly with problems described by (3.20) and (3.21),
while [13] assumes only single input left and right–invertible systems whose dy-
namics are smooth, i.e., continuous along the trajectories. In this case one has
A1x+B1u = A2x+ B2u, for all x ∈ C ,u ∈ U . It follows that A2 = A1 −KC and
B1 = B2 = B for a suitable matrix K, i.e., one has P1 = P2 = P and Q1 = Q2 = 0 in
(3.20).

Note, that in Proposition 11 the subspace RA ,B is the minimal subspace invari-
ant for all of the Ais containing B = ∑s

i=0 ImBi. Thus the bimodal system can be
transformed, via a state transform and suitable feedbacks, to

η̇1 =

{
P1,1η1 + R̃1ys + Q̃1u1 if ys ≥ 0

P2,1η1 + R̃2ys + Q̃2u2 if ys ≤ 0
, (3.22)

η̇2 =

{
P1,2η2 +R1ys if ys ≥ 0

P2,2η2 +R2ys if ys ≤ 0
, (3.23)

ẏs = v, (3.24)

where, by Proposition 11, subsystem (3.22) is controllable on C using open–loop
switchings. It follows that this decomposition can be viewed as a controllability
decomposition of the bimodal LTI system where the study of the controllability of
the original bimodal system reduces to controllability of the bimodal system formed
by (3.23) and (3.24).

Remark 9. When ys = 0, i.e., on C , subsystems (3.22) does not contain ys and
the switching law must be defined externally. However for linear switching systems
there exist a universal switching sequence that provides complete controllability,
hence the switching sequence is fixed and a fundamental solution of (3.22) ( as a
linear time varying system) is well defined. Therefore, by linearity, the controllability
of (3.22) is not affected by the values of ys.

Lemma 5. The bimodal system (3.20), (3.21) is completely controllable if and only
if the subsystem defined by (3.23), (3.24) is completely controllable.
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Having the decomposition (3.23),(3.24) for a bimodal system it is immediate that if
the system is controllable then the input constrained open–loop switching system of
the type

η̇ = Piη+ R̄iw, i ∈ { 1,2 }, w ≥ 0 (3.25)

with R̄i = (−1)i+1Ri is also controllable. Consulting the result of [13], i.e., the case
P1 = P2, it is apparent that the controllability condition of the bimodal system is
equivalent to the input constrained controllability condition of the corresponding
open–loop system given by (3.25). It is less apparent, but this consequence also
holds for the case presented in [66].

A Separation Theorem

The bimodal system (3.23), (3.24) can be seen as a dynamic extension6 of

η̇2 = Pi,2η2 + R̄i,2w, i ∈ { 1,2 }, w ≥ 0. (3.26)

Controllability of the dynamically extended system, provided that the original sys-
tem was controllable, is by far non–trivial issue though for smooth vector fields it
was proved in [64, 57]. For linear systems it is straightforward for unconstrained
input case. This can be verified by checking the Kalman rank condition of the ex-
tended system, however this result cannot be directly applied here, since the input
is signed constrained.

Lemma 6. If the points η0 and η f can be connected by a trajectory of the linear
system η̇ = Pη+Rw using nonnegative control w ≥ 0 then, for a given r, they can
be also connected using a smooth nonnegative control ω ≥ 0 with prescribed end
points, i.e., ω(k)(0) = ω0,k and ω(k)(Tf ) = ωTf ,k for k = 0,1, · · · ,r.

Using this lemma the main controllability result for the given bimodal system can
be formulated as:

Proposition 19. The bimodal system given by (3.23) and (3.24) is controllable if
and only if the input constrained open–loop switching system (3.26) is controllable.

Using this result controllability can be decided by using the result of Proposition 14
and the signed constraint Controllability Algorithm.

Remark 10. The assertion of Proposition 19 remains valid for qLPV systems, too,
and if the dynamics depends affinely on the scheduling variables, the reduction of
the bimodal systems to the form given by (3.22), (3.23), (3.24) can be performed
effectively.

This section is concluded by an example to illustrate the content of the controllabil-
ity result an the role of the separation lemma in the construction.

6 See [26] for details.
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Example 2. Let us consider the system:

ẋ =

{
P1x+R1ys if ys ≥ 0
P2x+R2ys if ys ≤ 0

, ẏs = u,

where P1 =

[
0 1
0 0

]
R1 =

[
0
1

]
, P2 =

[
1 0
0 1

]
R2 =

[
0
1

]
.

According to Proposition 19 controllability of the original system is equivalent
to controllability of the sign constraint switched system:

η̇ = Piη+ R̄iw. w ≥ 0 (3.27)

It is not hard to figure out that the coordinates corresponding to trajectories of the
individual subsystems can be obtained as:

η1,1(t) = η1,1(t0)+η1,2(t0)t +
∫ t

0

∫ τ

0
w(σ)dσdτ, η1,2(t) = η1,2(t0)+

∫ t

0
w(τ)dτ,

and

η2,1(t) = etη2,1(t0), η2,2(t) = etη2,2(t0)− et
∫ t

0
v(τ)dτ,

with w(τ) = eτv(τ).
Let us apply the following control strategy: fix t1 > 0 and steer the second sub-

system with constant control v ≥ 0 then apply the first subsystem for a time t2 with
constant control w ≥ 0.

One has the following system of equations:

η2,1(t1) = et1η2,1(t0), η2,2(t1) = et1η2,2(t0)− t1et1 v,

η1,1(t2)−η2,1(t1) = η2,2(t1)+
1
2

wt2
2 , η1,2(t2)−η2,2(t1) = wt2.

One has

t2 = 2
η1,1(t2)−η2,1(t1)
η1,2(t2)+η2,2(t1)

, w =
η2

1,2(t2)−η2
2,2(t1)

2(η1,1(t2)−η2,1(t1))
,

i.e.,

η̃ f
1 −η0

1 −η0
2 =

1
2

w̃t2, η2,2(t1) = et1η2,2(t0)− t1et1 v, η̃ f
2 −η0

2 = w̃− t1et1 v,

with η̃ f
i = e−t1η fi and w̃ = e−t1wt2. This equation can be solved satisfying the non-

negativity constraint for a suitable choice of t1 and v for any η0 and η f . Therefore
the input constrained open–loop switching system (3.27) is controllable.

In order to prove complete controllability for the original bimodal system,
we have to ensure that (3.27) can be controlled with inputs that has arbitrarily
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prescribed end conditions. By linearity it is sufficient to ensure null end conditions
for the input w.

By replacing the piecewise constant inputs by w→wϕt (τ) and v→ vϕt(τ) where
the function defined as ϕt(τ) = 6

t2 τ(t−τ) is nonnegative on [0, t] and fulfills the end–

point conditions ϕt(0) = ϕt(t) = 0 and has
∫ t

0 ϕt(τ)dτ = t,
∫ t

0

∫ τ
0 ϕt(σ)dσdτ = t2

2 ,
one obtain the same equations for t1, t2,v,w, i.e., it follows that the bimodal system
is also controllable.

3.5.2 Stabilizability of Bimodal Systems

The bimodal system (3.15) is said to be stabilizable if any initial state can be asymp-
totically steered to the origin by a suitable admissible input u, i.e., for all x0 ∈ R

n

there exist a solution x(t) of the bimodal system such that limt→∞ x(t) = 0.
Let us first examine bimodal systems with continuous dynamics. In view of

Proposition 19 these systems are equivalent with an LTI system with two sign con-
strained inputs. Starting from this observation one has the following result:

Proposition 20. If the bimodal system has continuous dynamics, i.e., P1 = P2 = P,
then the bimodal system (3.23), (3.24) is stabilizable if and only if the corresponding
sign constrained open–loop switching system is stabilizable.

In [24] one can find the following characterization of the stabilizability of a sign
constrained LTI system:

Proposition 21. The system ẋ = Px+Rw, w ∈R
2
+ is stabilizable if and only if

• the unconstrained system is stabilizable and
• all real eigenvectors v of PT corresponding to a nonnegative eigenvalue of PT

have the property that RT v has both positive and negative components.

The general case is more difficult. We conclude this section with a result that pro-
vides a sufficient condition for stabilizability:

Proposition 22. If the bimodal system (3.23), (3.24) is globally controllable, then it
is asymptotically stabilizable.

3.6 Conclusions

The target of the research presented by this chapter is placed at the forefront of
modern control theory. The work extends the formulation of basic properties of LTI
control systems originated from R.E. Kalman, such as controllabiliy and stabiliz-
ability, to a special class of switched systems, the bimodal systems. A main result of
the research states that controllability of bimodal systems is equivalent to controlla-
bility of a corresponding open-loop switched system having sign constraint control
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inputs. Moreover, using geometric tools an algebraic condition that describes con-
trollability and extends the Kalman rank test was given.

Since the basic topics of control theory, such as controllability, geometrical sys-
tem theory, are revisited, the provided theoretical methods and practical algorithms
can be used through the educational activity. The results demonstrate directly the
applicability and impact of theoretical concepts to the solution of practical, engi-
neering problems.

There are still a lot of open problems related to this relatively narrow field, mo-
tivated by real world applications, to solve. Considering a quadratic performance
criteria for controlled linear switched systems is a relatively new topic, where only
a few preliminary results for discrete time switched systems are available. An ex-
tension of the bimodal class, the cone-wise systems, i.e., systems with a state space
having a conic partition and on each of the individual partitions the dynamics being
linear, is also a recent topic with some early results for the planar setting.
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Chapter 4
Positive Polynomial Matrices for LPV
Controller Synthesis

Didier Henrion

Abstract. Positive polynomial matrices and linear matrix inequalities (LMI) can
be used to design linear parameter varying (LPV) controllers depending polynomi-
ally on the scheduling parameters, and robust to polynomial parametric uncertainty.
The salient features of the approach are (a) the ability to design a controller of or-
der and structure fixed a priori; (b) the use of a transfer function, or polynomial
modeling framework that bypasses difficulties typically encountered with canonical
state-space representations of LPV controllers; (c) the existence of a user-friendly
Matlab interface to model this class of LMI problems. The main limitation of the
approach is the choice of a nominal, or central characteristic polynomial around
which the design is carried out.

4.1 Introduction

The purpose of this contribution is to survey some achievements of the last decade
in the use of polynomial and linear matrix inequality (LMI) methods for designing
linear parameter varying (LPV) controllers. No new results are reported here, but
various technical statements scattered in the literature are gathered and presented in
a hopefully unified fashion. These results are the outcome of eight-year long collab-
oration (2001-2008) between LAAS-CNRS, an academic research laboratory, and
Safran-Snecma, a company dedicated to design, development and production of en-
gines for civil aircrafts, military aircrafts, launch vehicles and satellites. This col-
laboration resulted in the defense of two PhD theses [20, 8] and several engineering
projects and scientific productions, see e.g. [21, 23], culminating with the paper [9].
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The main objective of the project was the development of computer-aided control
system design tools for designing LPV controllers for aircraft turbofan engines.
Some of these tools have been integrated into the ATOL framework used by Safran-
Snecma to design new engines and improve control laws of existing engines [23].
The main requisites for controller design were as follows:

• both open-loop plant and controller are given in the form of multi-input multi-
output (MIMO) transfer functions, i.e. ratios of numerator and denominator poly-
nomials;

• open-loop plant data (i.e. polynomial coefficients) depend polynomially on the
real parametric uncertainty affecting the system; uncertain parameters are con-
fined to a given compact basic semialgebraic set (e.g. a ball, a box);

• controller data (i.e. polynomial coefficients) depend polynomially on the real
scheduling parameters; scheduling parameters are confined to a given compact
basic semialgebraic set (e.g. a ball, a box);

• controller order and structure are fixed from the outset (e.g. PID controller de-
pending quadratically on two scheduling parameters) independently of the open-
loop system order.

In our opinion, the originality of our approach lies in the choice of polynomials and
rational transfer functions as modeling objects. This bypasses the standard compli-
cations arising from the use of canonical state-space representations in interpolated
scheduling control laws and LPV design, see e.g. [24].

The price one has to pay for the ability of designing controllers of fixed com-
plexity is the use of potentially conservative convex linear matrix inequality (LMI)
conditions. The main tuning parameter of the approach, which results in a convex-
ification of the design problem, has however the physical interpretation of being
a reference, or nominal, or central closed-loop system around which the design is
carried out. Mathematically, a convex LMI inner approximation of the nonconvex
stability domain is built, in coefficient parameter space, around a so-called cen-
tral polynomial. Typically, engineering insight yields a reasonable choice of central
polynomial around which LPV controller design is achieved.

In this contribution, we outline the whole approach, starting from sufficient LMI
conditions for stability of polynomial matrices, and concluding with LMI condi-
tions for robust polynomial LPV controller design. For confidentiality reasons we
cannot reproduce the examples of LPV control laws designed for the Safran-Snecma
aircraft turbofan engine project.

4.2 Stability of Polynomial Matrices

The minimum requirement for a feedback control law is closed-loop system stabil-
ity. Since we follow a polynomial modeling framework, stability amounts to loca-
tion of the roots of the characteristic polynomial in a specific region of the complex
plane.
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We consider regions

S = {s ∈ C :

[
1
s

]∗ [
s11 s∗21
s21 s22

]
︸ ︷︷ ︸

S

[
1
s

]
< 0}

obtained by a conformal mapping of the open unit disk, parametrized by three
complex scalars s11,s21,s22 gathered into a 2-by-2 Hermitian matrix S. As above
and throughout the text, the star denotes transpose conjugation. The case s11 =
0, s21 = 1, s22 = 0 corresponds to the open left half-plane (continuous-time sys-
tems), whereas s11 = −1, s21 = 0, s22 = 1 models the open unit disk (discrete-time
systems). We can also consider intersections of several such stability regions, and
hence model damping cones or more complicated frequency-domain specifications,
see e.g. [11].

A MIMO rational matrix transfer function can be expressed as a left matrix frac-
tion D−1(s)N(s) where D(s) and N(s) are polynomial matrices of the operator s
(the Laplace variable for continuous-time systems, the shift variable for discrete-
time systems) of appropriate dimensions. In the (generic) absence of pole-zero can-
cellations, stability of the transfer function amounts to location of the roots of the
determinant of D(s) into region S .

Given a polynomial matrix D(s) = D0 +D1s+D2s2 + · · ·+Ddsd of degree d, let
us denote by

D =
[

D0 D1 D2 · · · Dd
]

the constant matrix obtained by appending columnwise matrix coefficients of in-
creasing powers of indeterminate s. Let us define

Π1 =

⎡
⎢⎣

0 I
...

. . .
0 I

⎤
⎥⎦ , Π2 =

⎡
⎢⎣

I 0
. . .

...
I 0

⎤
⎥⎦

two matrices of size dn-by-(d+ 1)n with I denoting the identify matrix of size n.
Finally, given a 2-by-2 Hermitian stability matrix S as above, let us define the linear
mapping

F(P) = s11Π ∗
1 PΠ1 + s21Π ∗

2 PΠ1 + s∗21Π
∗
1 PΠ2 + s22Π ∗

2 PΠ2

transforming a Hermitian matrix of size dn into a Hermitian matrix of size (d+1)n.
The following theorem gives a necessary and sufficient condition for stability of

polynomial matrix D(s), that is, for inclusion of the roots of det D(s) into region
S . The notation X � 0 means that X is Hermitian positive semidefinite, i.e. all the
eigenvalues of X are real nonnegative.

Theorem 4.1. Polynomial matrix D(s) is stable if and only if there exists a stable
polynomial matrix C(s) and a Hermitian matrix P such that

C∗D+D∗C−F(P)� 0. (4.1)
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Proof. It can be traced back to [10, 11], see also [13, Lemma 2] and [9, Theorem
1] for alternative proofs. In particular, it must be emphasized that P plays the role
of the Hessian matrix of a quadratic Lyapunov function of the linear system with
transfer function D−1(s)C(s). �
Polynomial matrix C(s) is called the central polynomial. Once it is fixed, inequal-
ity (4.1) becomes linear in D and P. This joint linearity is a key characteristic of
the LMI conditions of Theorem 4.1, shared e.g. with the discrete-time stability con-
ditions of [4]. In particular, if D(s) depends linearly on the controller parameters,
controller design boils down to solving a convex LMI problem. The whole conser-
vatism of the approach is therefore captured by the choice of central polynomial
C(s). Even though this is not developed here, LMI condition (4.1) can also be used
for robustness analysis, see [13, 12].

Geometrically, the condition of Theorem 4.1 can be interpreted as follows. In the
space of polynomial matrix coefficients, a convex region is built around C. It is mod-
eled as a projection of an affine section of the cone of positive semidefinite matrices.
The operation of projection corresponds to elimination of the variable P. This class
of convex regions is called semidefinite representable, cf. [1]. It is a very broad class
of convex regions. Currently it is not known how versatile it is exactly, but it is con-
jectured that all convex semialgebraic sets (i.e. convex sets described by polynomial
inequalities) can be modelled like that [19], and international research programmes
are currently carried out to further investigate these questions at the boarder between
convex analysis, real algebraic geometry and mathematical programming.

Fig. 4.1 Convex LMI inner approximation of the nonconvex stability region for a third-
degree discrete-time polynomial

For illustration, on Figure 4.1 we represent a convex LMI inner approximation of
the nonconvex stability region in the case of scalar (n = 1) discrete-time (s11 =−1,
s21 = 0, s22 = 1) third degree (d = 3) monic (D3 = 1) polynomials with real co-
efficients, for the choice of stable central polynomial C(s) = s3. The exact stability
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domain in the coefficient space x = (D0,D1,D2) ∈R
3 is a nonconvex region delim-

ited by two triangles and a parabolic hyperboloid. The LMI approximation (4.1) is
given by

{x ∈ R
3 : ∃p ∈ R

6 :

⎡
⎢⎢⎣

p0

p1 p3 − p0

p2 p4 − p1 p5 − p3

x0 x1 − p2 x2 − p4 2− p5

⎤
⎥⎥⎦� 0}

where symmetric entries are not reproduced, and vector p of additional variables,
or liftings, correspond to the 6 linearly independent entries of the 3-by-3 symmetric
matrix P.

4.3 Fixed-Order Robust Controller Design

Based on Theorem 4.1, fixed-order robust controller design boils down to convex
LMI optimization, and the main tuning parameter, capturing all degrees of freedom
as well as all the conservatism of the approach, is the central polynomial. The use of
the LMI conditions of Theorem 4.1 for fixed-order controller design was proposed
in [12], and it was used e.g. in [6, 16].

4.3.1 H∞ Performance

In addition to locating the closed-loop poles into a region S of complex plane, we
may want a control law to ensure some performance requirements. In the case of
H∞ performance, we can readily exploit well-known links with robust stability of
systems with unstructured uncertainty. We assume now that polynomial matrix is
affected by an additive norm-bounded uncertainty

Dδ (s) = D(s)+ δN(s), ‖δ‖∞ ≤ γ−1

where δ is an unknown real (or complex) valued matrix whose maximum singular
value does not exceed a given positive threshold γ−1. Using the small-gain theorem
[26, Theorem 9.1], robust stability of matrix Dδ (s) is equivalent to the H∞ perfor-
mance constraint

‖D−1(s)N(s)‖∞ ≤ γ

where the infinity norm denotes the maximum singular value achieved for s along
the boundary of open set S .

The following result, proved e.g. in [25, Corollary 1] or [9, Theorem 2], is an
extension of Theorem 4.1 to H∞ performance.

Lemma 4.1. Given a stable polynomial matrix C(s), rational matrix D−1(s)N(s) is
stable with H∞ norm less than or equal to γ if there exists a Hermitian matrix P and
a real scalar λ such that
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[
C∗D+D∗C−F(P)−λC∗C N∗

N λγ2I

]
� 0. (4.2)

In particular, in H∞ LMI (4.2) we retrieve the stability LMI (4.1) in the upper-left
block for the choice λ = 0. For examples of lower-order controller design using
Lemma 4.1, see [14, 25].

4.3.2 H2 Performance

The extension of Theorem 4.1 to H2 performance was carried out in [8], but since
this document is not publicly available, we reproduce the main result below.

If u denotes the input signal, y the output signal, and G the transfer function
of a linear plant, the H∞ norm of G can be defined as an energy to energy norm
‖G‖∞ = sup‖y‖2/‖u‖2. Similarly, the H2 norm can be defined as an energy to peak
norm ‖G‖2 = sup‖y‖∞/‖u‖2.

Lemma 4.2. Given a stable polynomial matrix C(s), rational matrix D−1(s)N(s) is
stable with H2 norm less than or equal to γ if there exists a Hermitian matrix P such
that

C∗D+D∗C−C∗C−F(P)� 0,

[
P N∗
N γ2I

]
� 0. (4.3)

4.3.3 Robustness

For notational simplicity, in stability LMI (4.1), H∞ LMI (4.2) or H2 LMI (4.3), let
us gather plant (or controller) parameters N, D into a vector k.

Let us assume that plant parameters are uncertain, that is, coefficients of poly-
nomial matrices N(s) and D(s) depend on parameters δ which belong to a given
compact set Δ but which are otherwise unknown. If the dependence of N and D on
δ is polynomial, LMI (4.1) or (4.2) or (4.3) becomes a so-called parametrized, or
uncertain LMI

Lδ (k,P)� 0, ∀δ ∈ Δ (4.4)

which must be solved for k and P uniformly for all possible values of δ ∈ Δ . If Δ
is not discrete, then LMI (4.4) is semi-infinite, in the sense that an infinite number
of constraints (one for each value of δ in Δ ) must be solved for a finite number of
variables (in k and P). Such robust LMIs are extensively studied in [2] and [22].

In many cases of interest, an equivalent robust LMI condition

L(k,P) � 0 (4.5)

can be derived to remove dependence on uncertain parameter δ , in the sense that
there is a solution to uncertain LMI (4.4) if and only if there is a solution to robust
LMI (4.5). Depending on the class of uncertainty set Δ , robust LMI (4.5) can be
significantly larger than uncertain LMI (4.4), but this is the price to pay to convert a
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semi-infinite LMI into a finite LMI. The simplest example is when N and D depend
affinely on δ and Δ is a polytope, the so-called polytopic uncertain model [7, 3].
Robust LMI (4.5) then corresponds to all the instances of uncertain LMI (4.4) at
vertices of Δ . In the next section, in the context of LPV controller design, we de-
scribe a general technique to deal with parametrized LMIs when the dependence on
the parameters is polynomial.

4.4 LPV Controller Design

In this section we assume that numerator and denominator polynomial matrices now
depend on a vector of parameters

N(s,θ ) = N0(θ )+N1(θ )s+N2(θ )s2 + · · ·+Nd(θ )sd

D(s,θ ) = D0(θ )+D1(θ )s+D2(θ )s2 + · · ·+Dd(θ )sd

which is assumed to belong to a given set

θ ∈Θ .

Such a parameter depends on the operation condition of the open-loop system, and
it can be measured on-line by the controller. For simplicity, we assume first that
parameter θ does not vary in time, even though at the end of the section we will
indicate how to relax this assumption. In this context, the objective of linear param-
eter varying (LPV) controller design is to find a controller depending explicitly on
θ and that ensures closed-loop stability and performance.

4.4.1 A Hierarchy of LMI Problems

Following the approach described in the previous section, the designer comes up
with a parametrized LMI

Lθ (k,P)� 0, ∀θ ∈Θ (4.6)

to be solved for controller coefficients k and Lyapunov coefficients P, where Lθ is
one of the LMI mapping (4.1), (4.2) or (4.3) with an additional explicit dependence
of N and D on θ .

If the dependence on θ is polynomial, i.e.

N(s,θ ) = ∑α∈Nq Nα(s)θα
D(s,θ ) = ∑α∈Nq Dα(s)θα

where in the above sums α ∈ N
q is a vector of indices, θα = θα1

1 θα2
2 · · ·θαq

q , and if
set Θ is basic semi-algebraic, i.e. if it is modeled as
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Θ = {θ ∈ R
q : gi(θ )≥ 0, i = 1, . . . ,r}

for explicitly given polynomials gi(θ ), then we can use recent results on positive
polynomials [17] to solve parametrized LMI (4.6) via a hierarchy of robust LMIs.

In particular, we can use Putinar’s Positivstellensatz under the non-restrictive
assumption that the semialgebraic setΘ is compact and that it is included in a ball of
radius ρ centered around the origin. For example, this is ensured if gi(θ ) =ρ2−θ ∗θ
for some i.

Lemma 4.3. There exists k and P such that Lθ (k,P)� 0 for all θ ∈Θ if and only if
there exists sum-of-squares matrix polynomials Mi(θ ) such that Lθ (k,P) =M0(θ )+
∑r

i=1 gi(θ )Mi(θ ).

Proof. See [22, Theorem 24] and [17, Theorem 2.22], an extension to the matrix
case of scalar result by Putinar used for polynomial optimization. �
Practically speaking, the discrepancy between the strict inequality in Lemma 4.3
and the non-strict inequality in (4.6) is not relevant. In terms of implementation,
the constraint that Lθ (k,P) is a linear combination of sum-of-squares (SOS) ma-
trix polynomials can be expressed as an LMI, as soon as the degree of the SOS
multipliers is fixed. The decision variables are then k and P, but also the Gram ma-
trices of the SOS multipliers, see [17, Chapter 2]. By increasing the degree of the
SOS multipliers, we obtain a hierarchy of robust LMI problems of increasing size
whose solution is guaranteed to be equivalent, asymptotically, to the solution of the
polynomially parametrized LMI (4.6). The Matlab modeling environment YALMIP
[18] allows to model matrix SOS problems and generate the corresponding LMI
problems in a user-friendly way. The LMI problems can then be solved by any
semidefinite programming solver (e.g. SeDuMi, PENSDP, SDPT3, SDPA, CSDP).

4.4.2 Parameter-Dependent Lyapunov Functions

So far we have considered a polynomially parametrized LMI (4.6) which is an in-
stance of stabilization LMI (4.1), H∞ LMI (4.2) or H2 LMI (4.3) in which decision
variable P is the Hessian matrix of a Lyapunov function certifying stability and
performance. The Lyapunov function does not depend on scheduling parameter θ ,
hence we are assessing quadratic stability of the LPV system, i.e. stability for all
possible time variations of θ , including jumps or discontinuities. If we have some
information of the time variation of θ (e.g. bounds on the rate of variation), or if θ
is assumed to be constant, but otherwise unknown, this information can be incor-
porated in parametrized LMI (4.6) by allowing Lyapunov matrix P to depend on θ .
We can use the same robust LMI as in Lemma 4.3 as soon as the dependence of P
on θ is polynomial. The trade-off to be found is between the complexity (degree) of
the dependence of P on θ and the size of LMI problems in the hierarchy.

Finally, we can additionally assume as in paragraph 4.3.3 that the open-loop plant
parameters are uncertain, depending polynomially on a vector or matrix δ of uncer-
tain parameters assumed to belong to a compact basic semialgebraic set Δ . We can
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use the same hierarchy of LMI problems as in Lemma 4.3, the only difference being
that the controller is not allowed to depend polynomially on δ (uncertain parameters
are not measurable). In contrast, Lyapunov matrix P can depend simultaneously on
scheduling parameter θ and uncertain parameter δ .

4.5 Conclusion

We have described in a unified framework the application of recent positive poly-
nomial and LMI techniques to the design of fixed-order robust LPV controllers for
linear systems described by input-output transfer functions whose coefficients de-
pend polynomially on scheduling parameters and uncertain parameters. The main
tuning parameter of the approach is the central polynomial, a reference closed-loop
system around which design is carried out. Once the central polynomial is fixed,
design boils down to solving a hierarchy of LMI problems. These problems can be
modeled easily under Matlab with the YALMIP interface, and they can be solved
with any semidefinite programming solver. These techniques have been succesfully
applied within the scope of a eight-year industrial project with the French aerospace
engine manufacturer Safran-Snecma. Outcomes have been the defense of two PhD
theses [20, 8] and an industrial software environment to assist engineers when de-
veloping advanced control laws for new aircraft engine prototypes [23].
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Chapter 5
Polytopic Observers for LPV Discrete-Time
Systems

Meriem Halimi, Gilles Millerioux, and Jamal Daafouz

Abstract. The main goal of this work is to give a general treatment on observer syn-
thesis for LPV systems in the framework of Linear Matrix Inequalities. A special Pa-
rameter Dependent Lyapunov Function, called poly-quadratic Lyapunov function, is
considered. It incorporates the parameter variations for LPV systems with polytopic
parameter dependence and allows to guarantee a so-called poly-quadratic stability
which is sufficient to ensure Global Asymptotic Stability. The concept of polytopic
observers is introduced. A LMI-based method for the synthesis of this type of ob-
servers is proposed. The case when LPV systems are subjected to disturbances or
when the parameter is known with a bounded level of uncertainty is further ad-
dressed. Conditions to guarantee performances like Input-to-State Stability (ISS),
bounded peak-to-peak gain and L2 gain are given. The design of polytopic Un-
known Input Observers both in the deterministic and in the noisy or uncertain cases
is also presented. Finally, two illustrative examples dealing with polytopic observers
for chaos synchronization and air path management of a turbocharged Spark Igni-
tion engine are detailed.

5.1 Introduction

Linear Parameter Varying (LPV) systems are linear models whose state represen-
tation depends on a parameter vector which can vary in time. Since several years
these systems give rise to more and more attention, both in control [2] [32] [24] [38]
[23] [16] and in observation and filtering [4] [20] [40] [37]. Contrarily to systems
with parametric uncertainties, in this case the current values of the parameters are
assumed to be known. The variation of the parameters within a bounded set might be
arbitrarily fast or restricted by a certain rate of variation. This LPV modeling tech-
niques have gained a lot of interest as they provide a systematic procedure to design
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gain-scheduled controllers, especially those related to aerospace control [36]. The
main goal of this work is to give a general treatment on observer synthesis for LPV
systems in the framework of Linear Matrix Inequalities [22].

A key stage for the synthesis of observer is the search for an adequate Lya-
punov function. A usual approach is to call for a single quadratic Lyapunov function
[5][22]. This approach suffers from conservatism since it does not take into account
the parameter variations of the LPV system. In some cases, it may cause the problem
to be infeasible, meaning that quadratic stabilization cannot be achieved. A signifi-
cant improvement can be obtained by considering Parameter Dependent Lyapunov
Functions (PDLF) which incorporate the parameter variations. A special parameter
dependence is the affine one [18][17] and can be extended to a polynomial one [6].
Unfortunately, affine parameter dependent Lyapunov functions lead to an infinite
number of constraints because all the values of the parameters which continuously
vary in some prescribed range have to be considered. Thus, one must discretize the
range of all admissible values in order to obtain a finite set of constraints. Another
usual dependence is the polytopic one which allows to overpass the discretization
and to turn the problem into the resolution of a finite set of constraints by only con-
sidering the vertices of the polytope. This is precisely the option which is chosen in
the present treatment. A suitable Parameter Dependent Lyapunov function associ-
ated to the polytopic description is the so-called poly-quadratic Lyapunov function
[11]. It allows to guarantee the so-called poly-quadratic stability which is sufficient
to ensure Global Asymptotic Stability.

The layout of the paper is the following. In Section 5.2, some basic definitions
are recalled including the notions of Global Asymptotical Stability and Input-to-
State Stability (ISS). Section 5.3 is devoted to LPV models with special empha-
sis on the polytopic one. In Section 5.4 is introduced the concept of polytopic ob-
servers. A LMI-based method for the synthesis of this type of observers is proposed.
It is based on the notion of poly-quadratic stability. Section 5.5 addresses the case
when the LPV system is subjected to disturbances or when the parameter is known
with a bounded level of uncertainty. Conditions to guarantee performances like ISS,
bounded peak-to-peak gain and L2 gain are given. Section 5.6 deals with the design
of polytopic Unknown Input Observers both in the deterministic and in the noisy or
uncertain cases. Finally, illustrative examples are detailed in Section 5.7.

Notation
R, R+ and N: the field of real numbers, the set of non-negative real numbers and the
set of non-negative integers, respectively.

z(i): the ith component of a real vector z. zT : the transpose for the vector z. ‖z‖=√
zT z: the Euclidean norm of z. ‖z‖∞: the infinity norm of z given by maxi|z(i)|.

{z}: a sequence of samples zk, zk+1, . . . without explicit initial and final discrete-time

k ∈ N. {z}k2
k1

: a sequence of samples zk1 ,. . . ,zk2 . ‖z‖2 =
√
∑∞

k=0 zT
k zk: the Euclidean

norm for a sequence {z}. ‖z‖∞: the supremum norm given by ‖z‖∞ = supk∈N ‖zk‖
for a sequence {z}.

1: the identity matrix of appropriate dimension. 0: the zero matrix of appropriate
dimension. XT : the transpose for the matrix X . X > 0 (X < 0): a positive definite



5 Polytopic Observers for LPV Discrete-Time Systems 99

(negative definite) matrix X . X ≥ 0 (X ≤ 0): a semi-positive definite (semi-negative
definite) matrix X . ‖X‖ =√λmax(XT X): the spectral norm of the matrix X , where
λmax is the largest eigenvalues of XT X . X†: the generalized inverse (Moore-Penrose)
of X satisfying X†X symmetric, XX† symmetric, XX†X = X and X†XX† = X†. If
X is nonsingular then X† = X−1. (•): the blocks of a matrix induced by symmetry.

5.2 Preliminaries

Definition 5.1. A function ϕ : R+ → R+ belongs to class K if it is continuous,
strictly increasing and ϕ(0) = 0, and to class L∞ if additionally ϕ(s)→∞ as s →∞

Definition 5.2. A function β : R+ ×R+ → R+ belongs to class K L if for each
fixed k ∈ R+, β (.,k) ∈ K and for each fixed s ∈ R+, β (s, .) is decreasing and
limk→∞β (s,k) = 0.

Consider the discrete-time nonlinear systems

xk+1 = f (xk) (5.1)
xk+1 = fw(xk,wk) (5.2)

with xk ∈ R
n is the state vector, wk ∈ R

dw is an unknown disturbance input.

Definition 5.3. The system (5.1) is called Globally Asymptotically Stable (GAS) if
there exists a K L -function β such that, for each x0 ∈ R

n, it holds that the corre-
sponding state trajectory satisfies for all k ∈N

‖xk‖ ≤ β (‖x0‖ ,k)

Definition 5.4. The system (5.2) is said to be Input-to-State Stable (ISS) with re-
spect to wk if there exist a K L function β and a K function γ such that, for all
input sequences {w}, for each x0 ∈ R

n, it holds that the corresponding state trajec-
tory satisfies for all k ∈ N

‖xk‖ ≤ β (‖x0‖,k)+ γ(‖w‖∞) (5.3)

If β can be taken of the form β (s,k) = dsζ k for some d ≥ 0 and 0 < ζ < 1, ζ is the
decay factor for (5.1) and the function γ is an ISS gain for (5.2).

5.3 LPV Models

We investigate LPV systems given by the following form:
{

xk+1 = A(ρk)xk +Buk

yk =Cxk +Duk
(5.4)
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where xk ∈R
n is the state vector, uk ∈R

m is the control input, yk ∈R
p is the output

vector, A ∈ R
n×n is the dynamical matrix depending on the possibly time varying

parameter vector ρk =
[
ρ (1)

k ,ρ (2)
k , ...,ρ (L)

k

]
∈ R

L, C ∈ R
p×n is the output matrix,

B ∈ R
n×m is the input matrix.

For obvious practical considerations and as usual in the framework of LPV sys-
tems, we assume that each component ρ (i) (i = 1, . . . ,L) of ρk lies in a bounded

range [ρ (i)
min,ρ

(i)
max]. As a result, ρk lies in a bounded set Ωρ ⊂R

L. The dependence of
A(ρk) with respect to ρk can take many forms. However, some of them are of special
importance when it comes to analysis and synthesis. We focus here on two specific
decompositions, namely, affine and polytopic.

The affine decomposition refers to an affine dependency of A(ρk) with respect to
ρk. A(ρk) is thereby of class C1 with respect to ρk and so, can be rewritten as

A(ρk) = Ā0 +
L

∑
j=1

ρ ( j)
k Ā j (5.5)

where Ā0 and Ā j are constant matrices obtained by separating constant terms and

terms depending on ρ ( j)
k .

The polytopic decomposition refers to a dependence on ρk of A(ρk) which reads

A(ρk) =
N

∑
i=1

ξ (i)
k (ρk)Ai (5.6)

where ξk belongs to the compact set S

S =
{
μk ∈ R

N ,μk =
[
μ (1)

k , . . . ,μ (N)
k

]
,μ (i)

k ≥ 0 ∀ i and ∑N
i=1 μ (i)

k = 1
}

Owing to the convexity of S, the set of matrices {A1, . . . ,AN} defines a polytope
denoted DA and the matrices Ai correspond to the vertices of DA. Hereafter, for the

sake of simplicity and whenever possible, the parameter dependency on ρk of ξ (i)
k

will be omitted, that is the notation ξ (i)
k will be used instead of ξ (i)

k (ρk).
It is noteworthy to mention that the affine decomposition (5.5) can be rewritten

in the polytopic form (5.6). Indeed, since ρk belongs to a bounded set Ωρ , it can be
embedded in a polytope Dρ with vertices θi, . . . ,θN ∈ R

L, such that

ρk =
N

∑
i=1

ξ (i)
k θi, ξk ∈ S (5.7)

Substituting (5.7) into (5.5) yields:

A(ρk) = Ā0 +
L

∑
j=1

(
N

∑
i=1

ξ (i)
k θ ( j)

i )Ā j, ξk ∈ S (5.8)
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Since ∑N
i=1 ξ

(i)
k = 1 and A0 is a constant matrix, it follows that A0 =∑N

i=1 ξ
(i)
k A0 and

therefore (5.8) turns into:

A(ρk) =
N

∑
i=1

ξ (i)
k (Ā0 +

L

∑
j=1

θ ( j)
i Ā j), ξk ∈ S (5.9)

Identifying (5.6) and (5.9) yields

Ai = Ā0 +
L

∑
j=1

θ ( j)
i Ā j (5.10)

The constraint “ξk ∈ S" is equivalent to “ρk ∈ Dρ". Since Ωρ ⊆ Dρ , it should be
pointed out that the polytopic description (5.6) may describe a broader class of sys-
tems than the original one, leading thereby to some conservatism. However, when

the components ρ ( j)
k ( j = 1, . . . ,L) of (5.5) are independent,Ωρ turns into a specific

polytope Dρ called hypercube with N = 2L vertices and in this case Ωρ = Dρ .

5.3.1 Minimal Polytope

It may happen that obtaining analytically the polytope Dρ is either a hard task or
even is not possible. Moreover, we should be concerned, for the sake of conser-
vatism, to get a minimal polytope. Let us assume that we can get, by simulation
or experimentally, a sufficient number of vectors ρk, collected in a finite set Γρ of
cardinality Nρ , to describe the set Ωρ with proper accuracy. The minimal polytope
D∗
ρ wherein Ωρ is embedded can thereby be considered as the convex hull of the set

of points Γρ . We recall that an element of a finite set of points is an extreme point
if it is not a convex combination of other points in this set. Hence, finding out D∗

ρ
amounts to finding out the extreme points of Γρ . It turns out that the computation can
be performed by standard methods. They are briefly recalled below while a detailed
review is provided in [25].

The computation of the convex hull for the dimension L = 2 has been exten-
sively studied and several efficient algorithms are available. The most popular is
the Graham Scan [19]. It is based on the consideration that the angle between two
consecutive faces (formed by three consecutive vertices) of the convex hull is lower
than π . The complexity of the algorithm is O(Nρ logNρ). This algorithm has a main
drawback in that it cannot be extended to dimensions greater than 2. Another effi-
cient algorithm called Quick hull is based on the “divide and conquer” approach. It
has been introduced in slightly different forms by [15] and [35]. Such an algorithm
uses the property which stipulates that given a triangle of three points of the original
set, the points strictly inside this triangle do not belong to the convex hull. Hence,
they can be discarded. The complexity of this algorithm is also O(Nρ logNρ). More-
over it can be easily extended to any dimension (see [1] for the dimension L = 3).
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However, the complexity grows up rapidly and becomes redhibitory for large dimen-
sions. The algorithm Quick hull is incorporated into the built-in function convhull
of the software Matlab. The algorithm Random Sampling presented in [9] is based
on iterative projections on hyperplanes randomly chosen. Finally, a linear program
approach is proposed in [33] which calls for solving an optimization problem.

5.3.2 On Line Polytopic Decomposition

In this subsection, we are concerned with a way of working out on-line the vector

ξk =
[
ξ (1)

k · · ·ξ (N)
k

]T
involved in the polytopic decomposition (5.7) of ρk and (5.6)

of A(ρk). The vector ξk is solution of

Wk = Z ξk

s.t ξ (i)
k ≥ 0, i = 1, . . . ,N

(5.11)

where

Wk = [ρ (1)
k · · ·ρ (L)

k 1]T and Z =

⎡
⎢⎢⎢⎢⎣

θ (1)
1 · · · θ (1)

N
... · · · ...

θ (L)
1 θ (L)

N
1 . . . 1

⎤
⎥⎥⎥⎥⎦

and where the entries θi are given, the matrix Z of dimension (L + 1)×N being
thereby constant and known. Indeed, it is assumed that ρk is on-line available, as
usual in the framework of LPV systems. The matrix Z may be of large dimension
and is likely to be not amenable for an efficient on-line computation of ξk. A method
has been proposed in [25] to circumvent this problem.

5.3.3 LPV Models for the Description of Nonlinear Systems

LPV systems can model nonlinear systems under certain conditions. Standard pro-
cedures call for interpolation of linearized systems but the resulting LPV model
is only an approximation of the actual nonlinear system. As a result, concluding on
stability and performances of the nonlinear system based on the LPV approximation
may be misleading [24]. Hence, we should rather be interested in an exact descrip-
tion. Such a purpose has been investigated in the works reported in [7] or in the
paper [25].

Consider the nonlinear system

xk+1 = g(xk,uk) (5.12)

where xk ∈ X ⊆ R
n is the state vector and uk ∈ R

m is the control input.
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Proposition 1. If the following conditions are fulfilled

• there exists a function ρ : Rn → R
L such that A(ρ(xk))xk +Buk = g(xk,uk)

• ρ(xk) depends only on measured signals
• ρ(xk) is bounded when xk lies in the admissible set X ⊆ R

n

then the nonlinear system (5.12) admits an exact LPV description in the form of the
first equation of (5.4) with ρk = ρ(xk).

It is worth pointing out that, most often, the LPV description is not unique and mul-
tiple functions ρ can be candidates. Furthermore, the resulting LPV model describes
a larger class of systems than the original nonlinear one. Indeed, a trajectory of the
nonlinear system is also a trajectory of the LPV model, among an infinite number of
possibilities, but the converse is not true. More formally, an LPV system is a linear
differential inclusion parameterized in the vector ρk. And yet, there is no unique
linear differential inclusion of a nonlinear system. The choice can be guided by the
objective of reducing the conservatism of the stability conditions or enhancing their
tractability both for analysis of synthesis issues. It can also be interesting to select
an appropriate function ρ so as the domains of attraction of both models are as most
coincident as possible.

In the rest of this work, it will be assumed that the matrix A(ρk) in (5.4) is rewrit-
ten in the polytopic form (5.6).

The extension to LPV systems with time varying matrices B, C and D is possible.
A first option is to merely consider an augmented vector ρ̄k which involves all the
parameter vectors associated to the respective matrices A, B, C and D and to get a
polytopic description of the matrix

[
A(ρ̄k) B(ρ̄k)
C(ρ̄k) D(ρ̄k)

]
=

N

∑
i=1

ξ (i)
k

[
Ai Bi

Ci Di

]
, ξk ∈ S

Another alternative would follow the same line of reasoning as the one provided in
Theorem 1 of [31].

5.4 Polytopic Observers in a Noise-Free Context

5.4.1 Observability and Detectability

5.4.1.1 Observability

As far as the observability of LPV systems is concerned, the following theorem,
borrowed from [40] holds.

Theorem 5.1. System (5.4) is completely observable if rank(On(ρk:k+n−1)) = n for
all k ∈ Z.
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where On(ρk:k+n−1) is the so-called parameter varying state-observability matrix of
(5.4) defined, for n > 1, as

On(ρk:k+n−1) =

⎡
⎢⎢⎢⎣

C
CA(ρk)

...
C∏n−2

l=0 A(ρk+n−2−l)

⎤
⎥⎥⎥⎦ (5.13)

and ρk:k+n−1 = [ρk, · · · ,ρk+n−1]. For n = 1, On(ρk:k+n−1) reduces to O1(ρk:k) =C.
In other words, the concept of observability is defined similarly to the linear

case when considering all possible trajectories of the parameter ρk ∈Ωρ . Actually,
Theorem 5.1 is a straightforward extension of the condition of observability stated
in [34] which deals with linear time-varying systems. Hence, in Theorem 5.1, the
constraint “for all k ∈ Z” can be reinterpreted in the case of LPV systems as “for all
ρk ∈Ωρ”.

The problem lies in that the conditions are much less tractable for LPV systems
than for linear systems since, in the general case, the number of trajectories of ρk ∈
Ωρ , and so the number of vectors ρk:k+n−1 is infinite. And yet, unfortunately, the
observability of the pairs (C,Ai) assigned to the vertices of the polytope DA does
not necessarily induce the observability for all the pairs (C,A(ρk)). As an example,
let us consider the system obeying the form (5.4) with

A(ρk) =

[
0.6+ρk 1

1 0

]
and C =

[
1 0.5

]

The parameter ρk belongs to the range [0 1].
The observability matrix is given by

O2([ρk,ρk+1]) =

[
1 0.5

ρk + 1.1 1

]

The observability matrix for the respective pairs (C,A1) and (C,A2), with A1 = A(0)
and A2 = A(1) numerically reads

O2([0,∗]) =
[

1 0.5
1.1 1

]
and O2([1,∗]) =

[
1 0.5

2.1 1

]

where * stands for an arbitrary value of ρk+1, the observability matrix depending
exclusively on ρk.

It is clear that rank(O2([0,∗])) = rank(O2([1,∗])) = 2. However, for ρk = 0.9,
the observability matrix numerically reads

O2([0.9,∗]) =
[

1 0.5
2 1

]
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and so rank(O2([0.9,∗])) = 1. As a result, the two pairs (C,A1) and (C,A2) are
observable whereas the observability is not satisfied inside the polytope DA when
ρk = 0.9.

A reduction of the computational cost for testing the observability rank condition
of Theorem 5.1 is most often either a hard task or merely infeasible.

5.4.1.2 Detectability

The notion of detectability relies on the notion of stability of the unobservable sub-
space. And yet, similarly to general nonlinear systems, stability of LPV systems
can match different definitions. Hence, despite the resulting conservatism, we must
resort to specific ones. For instance in [41], detectability is defined analogously to
quadratic stability, that is

Theorem 5.2. The LPV system (5.4) is quadratically detectable, if there exists a ma-
trix P = PT > 0 and a matrix function L(ρk) such that

(A(ρk)+L(ρk)C)
T P+P(A(ρk)+L(ρk)C)< 0 ∀ρk ∈Ωρ

It turns out that checking for the conditions of Theorem 5.2 is equally computation-
ally demanding as the actual observer synthesis. Let us also notice that the compu-
tation of related invariant subspaces associated to the notion of detectability is not
trivial (see however a special treatment in [3] for example).

As a conclusion of this section, the practical use of observability and detectability
is often of limited interest and these notions do not deserve in general extensive
investigation.

5.4.2 Synthesis

Let us recall that it is assumed that the matrix A(ρk) in (5.4) is rewritten in the
polytopic form (5.6).

A polytopic observer for (5.4) obeys the following state space description
{

x̂k+1 = A(ρk)x̂k +Buk +L(ρk)(yk − ŷk)
ŷk =Cx̂k +Duk

(5.14)

where L is a time varying gain matrix depending on ρk which reads

L(ρk) =
N

∑
i=1

ξ (i)
k (ρk)Li, ξk ∈ S (5.15)

and where the ξ (i)
k (ρk) in (5.15) coincide, for every discrete time k, with the ones

involved in the polytopic decomposition (5.6) of A(ρk).
It’s a simple matter to see that, from (5.4) and (5.14), the reconstruction error

ek = xk − x̂k is governed by the dynamics
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ek+1 = (A(ρk)−L(ρk)C)ek (5.16)

The dynamics of the state reconstruction is nonlinear since A and L depend on ρk.
However, (5.16) can be viewed as an autonomous LPV polytopic system with state
vector ek ∈ R

n. Indeed, from (5.6) and (5.15), and taking into account the coinci-

dence between the ξ (i)
k s involved in (5.15) and (5.6), we get that

ek+1 =
N

∑
i=1

ξ (i)
k (Ai −LiC)ek, ξk ∈ S (5.17)

Global Asymptotical Stability around the equilibrium point e∗ = 0 can be ensured
by a suitable choice of the gains Li (i = 1, . . . ,N) involved in (5.15). To this end, the
following theorem is central.

Theorem 5.3. If there exist symmetric matrices Pi, matrices Gi and matrices Fi ful-
filling, ∀(i, j) ∈ {1...N}×{1...N}, the Linear Matrix Inequalities

[
Pi (•)T

GiAi −FiC GT
i +Gi −Pj

]
> 0 (5.18)

then the polytopic observer (5.14) with gain L(ρk) =∑N
i=1 ξ

(i)
k (ρk)Li and Li =G−1

i Fi

ensures that the system (5.16) is GAS.

Proof 1. The detailed proof is given in [12]. It is shown that (5.18) ensures the exis-
tence of a Lyapunov function V : Rn ×R

L → R+ defined by V (ek,ρk) = eT
k P(ρk)ek

with P(ρk) = ∑N
i=1 ξ

(i)
k (ρk)Pi and ξk ∈ S, called poly-quadratic Lyapunov function,

fulfilling for all ek ∈ R
n, for all ξk ∈ S

V (ek+1,ρk+1)−V(ek,ρk)< 0 (5.19)

Such a function ensures the poly-quadratic stability of (5.16) which is sufficient for
Global Asymptotical Stability.

5.4.3 Decay Rate

We should be concerned with monitoring the rate of convergence towards e∗ = 0. In
this respect, the decay rate is well suited. The global asymptotical convergence of
(5.16) towards e∗ = 0 with decay rate α > 1 is formalized as follows:

∀e0 ∈ R
n, lim

k→∞
αk ‖ek‖= 0 (5.20)

In other words, ‖ek‖ decreases faster than α−k. A sufficient condition for the global
convergence of (5.16) towards e∗ = 0 with decay rate α is given by the following
theorem.
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Theorem 5.4. If there exist symmetric matrices Pi, matrices Fi and Gi fulfilling, for
a prescribed scalar κ , ∀(i, j) ∈ {1, · · · ,N}×{1, · · · ,N}, the Linear Matrix Inequal-
ities [

κPi (•)T

GiAi −FiC GT
i +Gi −Pj

]
> 0 (5.21)

then the polytopic observer (5.14) with gain L(ρk) =∑N
i=1 ξ

(i)
k (ρk)Li and Li =G−1

i Fi

ensures the global convergence of (5.16) with decay rate α no less than κ− 1
2 (0 <

κ < 1).

Proof 2. The proof is detailled in [26]. It is shown that (5.21) ensures the existence
of a Lyapunov function V : Rn ×R

L → R+, defined by V (ek,ρk) = eT
k P(ρk)ek with

P(ρk) = ∑N
i=1 ξ

(i)
k (ρk)Pi and ξk ∈ S, called poly-quadratic Lyapunov function, ful-

filling for all ek ∈ R
n, for all ξk ∈ S

V (ek+1,ρk+1)−κV(ek,ρk)< 0 (5.22)

which is sufficient to obtain (5.20) with α ≥ κ− 1
2 .

5.5 Polytopic Observers in a Noisy or Uncertain Context

In this section, we are concerned with the situation when the system (5.4) is sub-
jected to disturbances and obeys

{
xk+1 = A(ρk)xk +Buk +Ewd

k
yk =Cxk +Duk +Hwo

k
(5.23)

where wd
k ∈ R

dwd is the disturbance acting on the dynamics through E while wo
k ∈

R
dwo is the disturbance acting on the output through H.
In such a case, Equation (5.16) of the state reconstruction error ek = xk − x̂k turns

into
ek+1 = (A(ρk)−L(ρk)C)ek + vk (5.24)

with vk = Ewd
k −L(ρk)Hwo

k .
Besides, we can also be concerned with the case when ρk is not available but

only an estimated parameter ρ̂k ∈ Ωρ̂ is available. The uncertainty level Δ satisfies
‖ρk − ρ̂k‖∞ < Δ . Then, the polytopic observer (5.14) can take the form

{
x̂k+1 = A(ρ̂k)x̂k +Buk +L(ρ̂k)(yk − ŷk)

ŷk =Cx̂k +Duk
(5.25)

with

L(ρ̂k) =
N

∑
i=1

ξ̂ (i)
k (ρ̂k)Li (5.26)
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In such a case, (5.24) still holds provided that ρk is replaced by ρ̂k and that vk =
ΔA(ρk, ρ̂k)xk with ΔA(ρk, ρ̂k) = A(ρk)−A(ρ̂k).

5.5.1 Input-to-State-Stability (ISS)

Many approaches to derive sufficient conditions to guarantee the ISS are based on
the notion of ISS Lyapunov functions.

Definition 5.5. Let d1,d2 ∈ R+, let a,b,c, l ∈ R+ with a ≤ b and let α1(s) =
asl ,α2(s) = bsl ,α3(s) = csl and τ ∈ K . A function V : Rn ×R

L → R+ which sat-
isfies

α1(‖ek‖)≤V (ek,ρk)≤ α2(‖ek‖) (5.27)

V (ek+1,ρk+1)−V(ek,ρk)≤−α3(‖ek‖)+ τ(‖vk‖) (5.28)

for all ek ∈ R
n, all vk ∈ R

n and all ρk ∈ Ωρ is called an ISS Lyapunov Function for
(5.24).

Theorem 5.5. If the system (5.24) admits an ISS Lyapunov function, then (5.24) is
ISS with respect to vk, that is there exist a K L function β and a K function γ such
that, for all sequences {v}, for each e0 ∈R

n, it holds that, for all k ∈N

‖ek‖ ≤ β (‖e0‖,k)+ γ(‖v‖∞) (5.29)

5.5.1.1 Link between Poly-Quadratic Stability and ISS

Theorem 5.6. If the LMIs (5.18) are feasible, then the system (5.24) is ISS with
respect to vk and

‖ek‖ ≤
√

c2

c1

(
1− c3 − δ

c2

)k/2

‖e0‖+
√

c2 + δ−1c2
4

c1
· c2

c3 − δ
· ‖v‖∞ (5.30)

c1, c2, c3, c4 and δ are some scalars depending on the eigenvalues of the matrices
derived from the solution of (5.18). The quantity (1− c3−δ

c2
)1/2 is called the decay

factor.

In other words, the polytopic observer (5.14) with gain L(ρk) given by (5.15) and
derived from the solution of (5.18), built from the matrices of the noise-free system
(5.4) and from the assumption that ρk is perfectly known, ensures the poly-quadratic
stability of (5.16), also guarantees the ISS of (5.24), that is of the state reconstruction
error derived from the system (5.23) which describes the system (5.4) subjected to
disturbances or/and bounded uncertainties on ρk.

Proof 3. The proof is detailed in [30]. It is shown that (5.18) ensures the existence

of an ISS Lyapunov function V : Rn ×R
L → R+ with P(ρk) = ∑N

i=1 ξ
(i)
k (ρk)Pi and

ξk ∈ S, which is sufficient to derive (5.30).
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5.5.1.2 Minimization of the ISS Gain: A LMI Formulation

The point is that both the decay factor and the ISS gain in (5.30) cannot be prescribed
beforehand. The following theorem is an attempt to handle this problem.

Theorem 5.7. If there exist symmetric matrices Pi, matrices Gi, matrices Fi, fulfill-
ing, for a prescribed scalar σev ≥ 1, ∀(i, j) ∈ (1, . . . ,N)× (1, . . . ,N), the Linear
Matrix Inequalities ⎡

⎢⎢⎣
GT

i +Gi−Pj 0 GiAi −FiC Gi

(•)T 1 1 0
(•)T (•)T Pi 0
(•)T (•)T (•)T σev1

⎤
⎥⎥⎦> 0 (5.31)

then the polytopic observer (5.14) with gain L(ρk) = ∑N
i=1 ξ

(i)
k (ρk)Li and Li =

G−1
i Fi, ensures that the system (5.24) is ISS with respect to vk and

‖ek‖ ≤
√
σev(1− 1

σev
)k/2 ‖e0‖+σev ‖v‖∞ (5.32)

Proof 4. The detailed proof is provided in [13] [20]. It is shown that (5.31) en-
sures the existence of an ISS Lyapunov function V : Rn ×R

L → R+ with P(ρk) =

∑N
i=1 ξ

(i)
k (ρk)Pi and ξk ∈ S which verifies for all ek ∈ R

n, all vk ∈ R
n and all ξk ∈ S

of (5.24), the following conditions

‖ek‖2 ≤V (ek,ρk)≤ σev ‖ek‖2 (5.33)

V (ek+1,ρk+1)−V(ek,ρk)≤−‖ek‖2 +σev ‖vk‖2 (5.34)

And yet, the existence of V is sufficient to obtain (5.32).

Moreover, we should be interested in optimizing the ISS gain by minimizing σev in
(5.32). Insofar as σev appears in a linear way in the Matrix Inequalities (5.31), the
problem

min σev

s.t (5.31)
(5.35)

is still a convex problem.

5.5.1.3 Decoupling of the Decay Rate and the ISS Gain

It is worth pointing out that, in the previous formulation and in particular when
considering (5.32), the quantity σev is both involved in the decay factor and in the
ISS gain. We should be interested in monitoring independently both of them. This
is the purpose of the following theorem.

Theorem 5.8. If there exist symmetric matrices Pi, matrices Gi, matrices Fi and two
real numbers μ > 0 and ν fulfilling, for a prescribed λ ∈]0 1[, ∀(i, j) ∈ {1 · · ·N}×
{1 · · ·N}, the Linear Matrix Inequalities
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⎡
⎣ (1−λ )Pi (•)T (•)T

0 μ1 (•)T

GiAi −FiC Gi GT
i +Gi −Pj

⎤
⎦> 0 (5.36)

and ⎡
⎣λPi (•)T (•)T

0 (ν− μ)1 (•)T

1 0 ν1

⎤
⎦> 0 (5.37)

then the polytopic observer (5.14) with gain L(ρk) = ∑N
i=1 ξ

(i)
k (ρk)Li and Li =

G−1
i Fi, ensures that the system (5.24) is ISS with respect to vk and

‖ek‖ ≤
√
νλμ(1−λ )k/2‖e0‖+ν ‖v‖∞ (5.38)

Proof 5. The proof follows the same lines of reasoning that the ones provided in
[28]. It is shown that (5.36)-(5.37) ensures the existence of an ISS Lyapunov function

V : Rn ×R
L → R+ with P(ρk) = ∑N

i=1 ξ
(i)
k (ρk)Pi and ξk ∈ S which verifies for all

ek ∈ R
n, all vk ∈ R

n and all ξk ∈ S, the following conditions

1
νλ

‖ek‖2 ≤V (ek,ρk)≤ μ ‖ek‖2 (5.39)

V (ek+1,ρk+1)−V(ek,ρk)≤− 1
ν
‖ek‖2 + μ ‖vk‖2 (5.40)

And yet, the existence of V is sufficient to obtain (5.38).

Remark 1. It can be shown that the conditions (5.36)-(5.37) are less conservative
than (5.31) and that (5.31) is a special case of (5.36)-(5.37) when ν = σev,λ = 1

σev
and μ = σev as well.

Remark 2.The Matrix Inequalities (5.36)-(5.37) are not linear because of the prod-
ucts λPi in (5.36). Actually, they turn into LMIs if λ is fixed. Hence, they can be
easily solved due to the fact that λ is a scalar and that the range of λ is bounded
since λ ∈ ]0,1[. As a result, a simple line search can be performed and λ = 1

σev
, that

is the solution of (5.31), may be used as an admissible initial starting value.

Moreover, we should be interested in optimizing the ISS gain by minimizing ν in
(5.38). Insofar as ν appears in a linear way in the Matrix Inequalities (5.37), for a
prescribed λ ∈]0 1[, the problem

min ν
s.t (5.36)− (5.37)

(5.41)

is still a convex problem.
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5.5.2 Peak-to-Peak Gain

The peak-to-peak gain of the state error equation (5.24) is defined as the ratio

sup
0<‖v‖∞<∞, ρk∈Ωρ

‖e‖∞
‖v‖∞

(5.42)

The peak-to-peak gain is defined in the same way as in the linear case, except that,
in addition, all possible trajectories ρk ∈Ωρ have to be considered.

The following theorem holds.

Theorem 5.9. If the Linear Matrix Inequalities (5.31) (resp. (5.36)-(5.37)) are ful-

filled, then the polytopic observer (5.14) with gain L(ρk) = ∑N
i=1 ξ

(i)
k (ρk)Li and

Li = G−1
i Fi, ensures that the error ek of (5.24) admits a peak-to-peak gain smaller

than σev (resp. smaller than ν). One gets respectively

sup
0<‖v‖∞<∞, ρk∈Dρ

‖e‖∞
‖v‖∞

< σev (5.43)

sup
0<‖v‖∞<∞, ρk∈Dρ

‖e‖∞
‖v‖∞

< ν (5.44)

Proof 6. The result can be directly inferred from the inequality (5.32) (resp. (5.38))
by taking the limit of k to infinity and assuming that ‖e0‖= 0.

Let us notice that (5.31) or (5.36)-(5.37) guarantees that the peak-to-peak gain is
bounded for all possible trajectories ρk in Dρ ⊇Ωρ and not in Ωρ .

The minimization of the peak-to-peak gain can be performed through (5.35) or
(5.41).

5.5.3 L2 Gain

Let zk = H̃ek be a linear combination of the state reconstruction error ek obeying the
dynamics (5.24).

Definition 5.6. The L2 gain of the state error equation (5.24) is defined as

sup
‖v‖2 �=0, ρk∈Ωρ

‖z‖2

‖v‖2
(5.45)

Similarly to the peak-to-peak gain, the L2 gain is defined in the same way as in
the linear case, except that, in addition, all possible trajectories ρk ∈Ωρ have to be
considered.

Theorem 5.10. If there exist symmetric matrices Pi, matrices Gi and matrices Fi,
fulfilling, for a prescribed real number σ2, ∀(i, j) ∈ {1 · · ·N}×{1 · · ·N}, the Linear
Matrix Inequalities
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⎡
⎢⎢⎣

Pi (•)T (•)T (•)T

0 σ21 (•)T (•)T

GiAi −FiC GiE −FiH GT
i +Gi −Pj (•)T

H̃ 0 0 σ21

⎤
⎥⎥⎦> 0 (5.46)

then the polytopic observer (5.14) with gain L(ρk) = ∑N
i=1 ξ

(i)
k (ρk)Li and Li =

G−1
i Fi, ensures that the error ek of (5.24) admits a L2 gain smaller than σ2.

Proof 7. The proof follows the same lines of reasoning than the ones provided in
[27]. It is shown that (5.46) ensures the existence of a Lyapunov function V : Rn ×
R

L →R+ defined by V (ek,ρk) = eT
k P(ρk)ek with P(ρk) =∑N

i=1 ξ
(i)
k (ρk)Pi and ξk ∈ S,

fulfilling for all ek ∈ R
n, all ξk ∈ S

V (ek+1,ρk+1)−V(ek,ρk)+σ−1
2 (C̃ek)

T (C̃ek)−σ2vT
k vk < 0

which is sufficient to obtain

sup
‖v‖2 �=0, ρk∈Dρ

‖z‖2

‖v‖2
< σ2

Since σ2 appears in a linear way in (5.46), the minimization problem

min σ2

s.t (5.46)
(5.47)

is still a convex problem.
Let us notice that (5.46) guarantees that the L2 gain is bounded for all possible

trajectories ρk in Dρ ⊇Ωρ and not in Ωρ .

5.6 Unknown Input Observers

This section is devoted to the design of polytopic Unknown Input Observers for
LPV systems. State reconstruction error dynamics and its analysis are investigated
both in the deterministic case (consideration of Equation 5.4)) and in the case when
the system (5.4) is subjected to disturbances (consideration of Equation (5.23)).

5.6.1 Notation and Definitions

In the deterministic case (consideration of Equation (5.4)), when the system (5.4) is
driven by an input sequence {u}∞0 , the output yk+i of (5.4) (i = 0, · · · ,∞) reads

yk+i =C(ρk+i)A
ρk+i−1
ρk

xk +
i

∑
j=0

Ti, j(ρk)uk+ j (5.48)
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with

Ti, j(ρk) =C(ρk+i)A
ρk+i−1
ρk+ j+1

B(ρk+ j) if j ≤ i− 1, Ti,i(ρk) = D(ρk+i)

Stacking up the outputs (5.48) yields

yi
k
= O i(ρk)xk +Mi(ρk)u

i
k (5.49)

with

O i(ρk) =

⎡
⎢⎢⎢⎣

C(ρk)
C(ρk+1)A(ρk)

...
C(ρk+i)A

ρk+i−1
ρk

⎤
⎥⎥⎥⎦ (5.50)

ui
k =

⎡
⎢⎢⎢⎣

uk

uk+1
...

uk+i

⎤
⎥⎥⎥⎦ (5.51)

yi
k
=

⎡
⎢⎢⎢⎣

yk

yk+1
...

yk+i

⎤
⎥⎥⎥⎦ (5.52)

and the Toeplitz-like matrix Mi(ρk) defined as the following.

For i < 0 Mi(ρk) = 0, for i = 0 M0(ρk) = D(ρk) and for i > 0,

Mi(ρk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D(ρk) 0p×m . . . . . . . . .
C(ρk+1)B(ρk) D(ρk+1) 0p×m . . . . . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

C(ρk+i)A
ρk+i−1
ρk+1

B(ρk) C(ρk+i)A
ρk+i−1
ρk+2

B(ρk+1) . . . C(ρk+i)B(ρk+i−1) D(ρk+i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(5.53)

where
A
ρk1
ρk0

= A(ρk1)A(ρk1−1) . . .A(ρk0) if k1 ≥ k0

= 1n if k1 < k0

is the transition matrix.
In the case when the system (5.4) is subjected to disturbances (consideration of

Equation (5.23), when the system (5.23) is driven by an input sequence {u}∞0 , the
output yk+i of (5.23) (i = 0, · · · ,∞) reads
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yk+i =C(ρk+i)A
ρk+i−1
ρk

xk +
i

∑
j=0

Ti, j(ρk)uk+ j +
i

∑
j=0

Si, j(ρk)w
d
k+ j +Hwo

k+i (5.54)

with

Ti, j(ρk) =C(ρk+i)A
ρk+i−1
ρk+ j+1

B(ρk+ j) if j ≤ i− 1, Ti,i(ρk) = D(ρk+i)

Si, j(ρk) =C(ρk+i)A
ρk+i−1
ρk+ j+1

E if j ≤ i− 1, Si,i(ρk) = 0

Stacking up the outputs (5.54) yields

yi
k
= O i(ρk)xk +Mi(ρk)u

i
k +Fi(ρk)w

di
k +Ni woi

k (5.55)

with

wdi
k =

⎡
⎢⎢⎢⎣

wd
k

wd
k+1
...

wd
k+i

⎤
⎥⎥⎥⎦ (5.56)

woi
k =

⎡
⎢⎢⎢⎣

wo
k

wo
k+1
...

wo
k+i

⎤
⎥⎥⎥⎦ (5.57)

The matrix Ni is defined as the following.

N0 = 0, N1 =

[
H 0p×dwo

0p×dwo H

]
(5.58)

and for i > 1, Ni is recursively defined as

Ni+1 =

[
Ni 0(i+1)·p×dwo

0p×dwo ·(i+1) H

]
(5.59)

The matrix Fi(ρk) is defined as the following.
For i ≤ 0 Fi(ρk) = 0 and for i > 0,

Fi(ρk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0p×dwd
0p×dwd

. . . . . . . . .

C(ρk+1)E 0p×dwd
0p×dwd

. . . . . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
C(ρk+i)A

ρk+i−1
ρk+1

E C(ρk+i)A
ρk+i−1
ρk+2

E . . . C(ρk+i)E 0p×dwd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.60)

Central notions for the design of UIO are left invertibility and inherent delay.
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Definition 5.7. The LPV system (5.4) is left invertible if it is possible to recover the
input u0 from a finite number of r+1 measurements yi (i = 0, . . . ,r), the state vector
x0 at time k = 0 and the sequence {ρ}r

0 of the parameter ρk being known. The least
integer r for which (5.4) is left invertible is called the left inherent delay.

Definition 5.7 is an extension of the notion introduced in [39] for linear MIMO
systems. Let us point out that the inherent delay generalizes the notion of relative
degree which only holds for SISO systems.

Theorem 5.11. The LPV system (5.4) is left invertible if there exists a nonnegative
integer r < ∞ such that for all ρk ∈Ωρ ,

rank Mr(ρk)− rank Mr−1(ρk+1) = m (5.61)

Proof 8. The proof follows the same lines of reasoning than the ones provided in
[29].

5.6.2 Deterministic Case

A polytopic unknown input observer for (5.4) obeys the following equations
{

x̂k+r+1 = P̄r(ρk)x̂k+r + Q̄r(ρk)yr
k
+L(ρk)(yk − ŷk+r)

ŷk+r = C(ρk)x̂k+r
(5.62)

with Q̄r(ρk) obeying

Q̄r(ρk) = B(ρk)ĪmMr†
(ρk)+Y(ρk)(1p(r+1)−Mr(ρk)M

r†
(ρk)) (5.63)

with

Īm = (1m 0m×(m·r)) (5.64)

and
P̄r(ρk) = A(ρk)− Q̄r(ρk)O

r(ρk) (5.65)

Let ek = xk − x̂k+r be the state error reconstruction. Assuming that Theorem 5.11 is
fulfilled, it can be shown, from (5.4) and (5.62)-(5.65) that

ek+1 = (A(ρk)−B(ρk)ĪmMr†
(ρk)O

r(ρk)

−Y (ρk)(1p(r+1)−Mr(ρk)Mr†
(ρk))O

r(ρk)
−L(ρk)C(ρk))ek

(5.66)

The matrix Y (ρk) is an arbitrary matrix which plays the role of a parameteriza-
tion. However, it is worth stressing that in some special cases, an arbitrary choice
of Y (ρk) may not be suitable for state reconstruction purposes (see [14] in the
linear case). To overcome this problem, the computation of Y (ρk) should be in-
cluded in the design procedure. From this perspective, we proceed to the change
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of variable Ã(ρk) = A(ρk)−B(ρk)ĪmMr†
(ρk)O

r(ρk), L̃(ρk) = [Y (ρk) L(ρk)] and

C̃(ρk) =

[
(1p(r+1)−Mr(ρk)Mr†

(ρk))O
r(ρk)

C(ρk)

]
.

Consequently, (5.66) turns into:

ek+1 = (Ã(ρk)− L̃(ρk)C̃(ρk))ek (5.67)

The problem of guaranteeing the Global Asymptotical Stability of (5.67) around
e∗ = 0 can be tackled in a similar way than in the previous sections devoted to
polytopic observers, that is resorting to poly-quadratic stability.

5.6.3 Noisy Case

Likewise in Section 5.5 when the inputs were supposed to be known, we are con-
cerned with the situation when the system (5.4) is subjected to disturbances and
obeys (5.23).

Assuming that Theorem 5.11 is fulfilled, it can be shown from (5.4) and the
polytopic UIO (5.62) that, after some heavy but quite basic manipulations, the re-
construction error ek = xk − x̂k+r obeys

ek+1 = (P̄r(ρk)−L(ρk)C(ρk))ek +(Ewd
k −L(ρk)Hwo

k)
−Q̄r(ρk)(Fr(ρk)wdr

k +Nrwor
k )

(5.68)

Replacing the expression (5.63) of Q̄r(ρk) into P̄r(ρk) yields

ek+1 = (A(ρk)−B(ρk)ĪmMr†
(ρk)O

r(ρk)

−Y (ρk)(1p(r+1)−Mr(ρk)Mr†
(ρk))O

r(ρk)

−L(ρk)C(ρk))ek +Ewd
k −L(ρk)Hwo

k

−(B(ρk)ĪmMr†
(ρk)+Y(ρk)(1p(r+1)−Mr(ρk)Mr†

(ρk)))

(Fr(ρk)wdr
k +Nrwor

k )

(5.69)

Similarly to the previous case, Y (ρk) is an arbitrary matrix which plays the role
of a parameterization and we should proceed to the change of variable Ã(ρk) =

A(ρk)−B(ρk)ĪmMr†
(ρk)O

r(ρk), L̃(ρk) = [Y (ρk) L(ρk)],

C̃(ρk) =

[
(1p(r+1)−Mr(ρk)Mr†

(ρk))O
r(ρk)

C(ρk)

]
.

Consequently, (5.69) turns into:

ek+1 = (Ã(ρk)− L̃(ρk)C̃(ρk))ek + vk (5.70)

with:
vk = Ewd

k −L(ρk)Hwo
k

−(B(ρk)ĪmMr†
(ρk)+Y(ρk)(1p(r+1)−Mr(ρk)Mr†

(ρk)))

(Fr(ρk)wdr
k +Nrwor

k )
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Again, the problem of polytopic unknown input observer design for guaranteeing
performances of the convergence behavior around e∗ = 0 of (5.70) can be tackled
in a similar way than in the previous sections devoted to polytopic observers, that is
resorting to poly-quadratic stability.

5.7 Illustrative Examples

5.7.1 Example 1

The purpose of this example is to illustrate both an LPV polytopic description of a
nonlinear system and the search for the minimal polytope D∗

ρ wherein the set Ωρ is

embedded. Let us consider the map, with state vector xk = [x(1)k x(2)k x(3)k x(4)k ]T ,
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1)k+1 = (x(1)k )2 − (x(2)k )2 + ax(1)k + bx(2)k

x(2)k+1 = 2x(1)k x(2)k + cx(1)k + dx(2)k

x(3)k+1 = 0.1bx(2)k − 0.1(x(2)k )2 + 0.1x(3)k

x(4)k+1 = 0.5x(1)k + 0.1x(2)k + 0.3x(4)k

y(1)k = x(1)k

y(2)k = x(2)k

(5.71)

with a = 0.9, b =−0.6013, c = 2, and d = 0.5. For this typical parameters setting,
the system exhibits a chaotic motion. A projection of the corresponding chaotic

attractor in the 3-dimensional space (x(1)k ,x(2)k ,x(3)k ) is depicted in Figure 5.1. We
aim at rewriting (5.71) into the LPV form (5.4). To this end, let us choose ρk as a
parameter vector obeying

ρ (1)
k = a+ x(1)k

ρ (2)
k = b− x(2)k

(5.72)

Then, (5.71) can be written as an LPV system of the form (5.4) with

A(ρk) =

⎡
⎢⎢⎢⎣
ρ (1)

k ρ (2)
k 0 0

c d + 2(ρ (1)
k − a) 0 0

0 0.1ρ (2)
k 0.1 0

0.5 0.1 0 0.3

⎤
⎥⎥⎥⎦

and

C =

[
1 0 0 0
0 1 0 0

]

while B and D are zero since the system (5.71) is autonomous.
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Fig. 5.1 Chaotic attractor in the 3-dimensional space (x(1)k ,x(2)k ,x(3)k )

Let us point out that such a choice for ρk matches the conditions of the Propo-
sition 1 provided in Subsection 5.3.3. In particular, ρk is accessible from the output

yk. Indeed, ρ (1)
k = a+ y(1)k and ρ (2)

k = b− y(2)k .
Now, by simulating (5.71) from an initial condition x0 = [−0.72 −0.64 0.1 0]T

which belongs to the chaotic attractor, we collect 2000 vectors ρk in order to build
up the set Γρ . Then, the Quick hull approach, implemented in the built-in function
convhull of the software Matlab, is performed to find out the minimal polytope D∗

ρ .
It turns out that 108 vertices θi have been found. Both the set Ωρ and the minimal
polytope D∗

ρ are depicted in Figure 2(a). It should be noted that if the number of
the vertices of the polytope is very large, it can be more interesting to minimize the
number of vertices in order to enhance the tractability of the LMIs. This is what
has precisely been done, as shown in Figure 2(b). The number of the vertices has
been reduced to 5 vertices. Let us point out however that the LMIs become more
conservative than the ones derived from the minimal polytope.

5.7.2 Example 2

This section illustrates the synthesis of a polytopic observer both in a noise-free
as well as in a noisy context. The system under consideration is borrowed from
[10] and is called “turbocharged SI engines”. Actually, only a part of the system is
investigated here. It is briefly described and motivated.

From the perspective of reducing fuel consumption and pollutant emissions of
Spark Ignition (SI) engines, new air path management systems have to be pro-
posed. Hence, efficient control of the air actuators is required. For any set point
of the torque intended to move the engine, the ratio between the air mass mair and
the fuel quantity trapped in the cylinder must be kept constant in order to minimize
the pollutant emissions. To this end, the air mass mair trapped in the cylinder must be
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(a)

(b)

Fig. 5.2 Set Ωρ and polytopes D∗
ρ (a) and Dρ (b)

known with optimal accuracy in order to predict the quantity of fuel to be injected.
It turns out that mair is directly linked to the air flow Qcyl captured in the cylinder.

Actually, a compressor produces a flow from the ambient air. The resulting air
flow Qth enters a manifold of which volume is Vman and is characterized by a pres-
sure pman and temperature Tman. Then, two flows leave the manifold: the first flow
which is captured in the cylinder Qcyl and the flow Qsc scavenged from the intake to
the exhaust. Unlike Qsc, Qth and pman which are accessible quantities, Qcyl must be
estimated from an open loop model of the in-cylinder air mass which delivers Q̂cyl .
As a result, Qcyl = Q̂cyl +ΔQcyl and the error ΔQcyl can be assumed to be constant
because slowly time-varying regarding the overall dynamics. The flow balance in
the manifold reads

ṗman =
rTman

Vman
(Qth − Q̂cyl −ΔQcyl −Qsc)

As a conclusion, we must estimate ΔQcyl . However, a direct estimation from the
flow balance equation cannot be directly done since it requires the derivative ṗman

of pman. Thus, the flow balance equation is written in a state space form where the
state vector is composed of pman and ΔQcyl , the input are the accessible variables,
namely, Qth, Q̂cyl and Qsc and finally, the output is pman. An observer is designed to
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reconstruct both pman and ΔQcyl . For implementation reasons, we must discretize
the equations. After discretization, one obtains

{
xk+1 = Ad(ρk)xk +Bd(ρk)uk

yk =Cdxk +Dduk
(5.73)

with:

xk =

[
pman(k)
ΔQcyl(k)

]
, uk =

⎡
⎣ Qth(k)

Qcyl(k)
Qsc(k)

⎤
⎦ , yk = pman(k)

Ad(ρk) =

[
1 ρk

0 1

]
, Bd =

[−ρk ρk ρk

0 0 0

]
, Cd = [1 0] , Dd = 0

and

ρk =−r
Tman(k)

Vman
ttdc(k)

The scalar r is the ideal gas constant and ttdc is the sampling period which is actually
time-varying because it depends on the engine speed. After normalization, ρk lies in
the range [ρmin ρmax] = [− 3.3453 − 0.0174].

We get typically an LPV system which admits a simple polytopic description
since Dρ has clearly only two vertices θ1 = ρmin = −3.3453 and θ2 = ρmax =
−0.0174. The corresponding matrices A1 and A2 are computed according to (5.10)
with L = 2:

A1 =

[
1 ρmin

0 1

]
and A2 =

[
1 ρmax

0 1

]

In our present case, the matrix B is also parameter dependent. Since it also depends
on ρk in a similar way, it admits the same polytopic decomposition with vertices

B1 =

[−ρmin ρmin ρmin

0 0 0

]
and B2 =

[−ρmax ρmax ρmax

0 0 0

]

For the state reconstruction of xk, we resort to a polytopic observer of the form
(5.14). The toolbow Yalmip of Matlab is used to solve the LMIs required to derive
the gain L(ρk) of the observer.

Results
Poly-Quadratic stability
It turns out that the LMIs (5.18) are feasible. The resulting gains are respectively
L1 = [1.9623 −0.2877]T , L2 = [1.0056 −0.2977]T and ensure the Global Asymp-
totical convergence of the observer.

Performances in a noisy context: ISS
We solve the problem (5.35) involving the LMIs (5.31) in order to minimize σev

in the ISS gain of (5.32). The optimal solution is given by σ∗
ev = 1.3401 104 with

observer gains L1 = [2.8856 − 0.5637]T and L2 = [1.0101 − 0.5779]T . Next, in
order to minimize ν in the ISS gain of (5.38), we solve the problem (5.41) involv-
ing the LMIs (5.36)-(5.37) for different values of λ within the admissible range
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Fig. 5.3 variation of ν∗ with respect to λ

[0.0001 − 0.9999]. The variation of the optimal solution ν∗ with respect to λ is
plotted in Figure 5.3. As we can see, this variation is convex. The best ISS gain cor-
responds to ν∗ = 596.2197, λ ∗ = 7.2 10−3 and μ∗ = 595.9576. The gains are given
by L1 = [2.3882 − 0.4150]T and L2 = [1.0073 − 0.4195]T . As expected, one has
σ∗

ev > ν∗ since the LMIs (5.31) are more conservative than (5.36)-(5.37).
It can also be interesting to compare the decay factor obtained respectively from

(5.31) and (5.36)-(5.37) for the same ISS gain. Let us check the conditions for ν =
σ∗

ev = 13401, that is, for the optimal value of σev when considering (5.31). On one

hand, the decay factor is given by:
√

1− 1
σ∗

ev
= 0.99996. On the other hand, the

solution of (5.36)-(5.37) for ν = σ∗
ev = 13401 gives μ∗ = 12207.0353 and λ ∗ =

0.0202 and so a decay factor
√

1−λ ∗ = 0.98985. The corresponding gains are L1 =
[2.7256−0.5158]T and L2 = [1.0103−0.5891]T . As expected by the consideration
on the conservatism, for a same ISS gain, we can also get a better decay rate when
considering the LMIs (5.36)-(5.37) instead of (5.31).

5.8 Conclusion

Observer design for LPV systems has been discussed. It has been shown that a
polytopic approach can be used to take into account not only the classical situation
where the parameters can be perfectly measured but also the more realistic situation
when the measured parameters are affected by a bounded uncertainty and/or when
the system is subjected to disturbances. Both stability of the observation error and
performance (ISS, bounded peak-to-peak gain and L2 gain) have been considered.
The theoretical developements end up with the design of polytopic unknown input
observers both in the deterministic and in the noisy or uncertain cases. These results
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can be extended to take into account constraints related to the parameter rate of
variation. Indeed, motivated by practical issues, taking into account the bounds on
the rate of variation of the parameters has already been discussed for control design
(see [8, 21] and references therein). And yet, it turns out that such a consideration
makes sense for observer design as well. Finally, polytopic LPV observers discussed
here can be used for both control and diagnosis. As an example, a solution based on
polytopic observers for output feedback observer based controllers for LPV systems
with inexact parameter measurement is proposed in [20].
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Chapter 6
Design of Norm Based Fault Detection and
Isolation LPV Filters

David Henry

Abstract. This chapter investigates the design of robust1 fault detection and iso-
lation (FDI) filters for linear parameter varying (LPV) systems. The goal is to ob-
tain structured fault detection filters with enhanced fault transmission H− gain and
large H∞ nuisance attenuation. Both the so-called polytopic and Linear Fractional
Representation (LFR) approaches are considered. With respect to the polytopic ap-
proach, a sufficient condition is established to guarantee sensitivity performance
of the residual signal vector to faults. Robustness constraints against model pertur-
bations and disturbances are also taken into account in the design method. A key
feature of the proposed method is that the residual structuring matrices are opti-
mized as an integral part of the design, together with the dynamic part (i.e. the
filter). The design problem is formulated as a convex optimization problem and
solved using LMI (Linear Matrix Inequalities) techniques. With regards to the LFR
approach, it is shown by means of the scaling matrices technique that the synthesis
of the residual structuring and the filter state space matrices can be performed si-
multaneously using LMI techniques. Computational aspects are discussed and it is
shown that the proposed solution is structurally well-defined. Academic examples
are considered and discussed all along the chapter. A benchmark from the European
FP7 funded ADDSAFE (Advanced Fault Diagnosis for Sustainable Flight Guid-
ance and Control) project is finally considered to demonstrate the potential of the
proposed approaches. The goal is to propose new fault detection and fault diagnosis
techniques that could significantly help developing environmentally-friendlier air-
craft. A LPV)model-based fault detection scheme is presented for robust and early
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detection of faults in aircraft control surfaces servo-loop. A complete MonteCarlo
campaign from a "high-fidelity" simulator provided by AIRBUS, demonstrates the
potential of the proposed technique. It is shown that the proposed fault detection
scheme can be embedded within the structure of in-service monitoring systems as a
part of the Flight Control Computer (FCC) software.

6.1 Introduction

The problem of Fault Detection and Diagnosis (FDD)2 has received consider-
able attention world–wide and been theoretically and experimentally investigated
with different types of approaches, as can be seen from the general survey works
[1, 2, 3, 4, 5, 6, 7, 8, 9]. This development has been mainly stimulated by the
trend in automation toward systems with increasing complexity and the growing
demands for fault tolerance, cost efficiency, reliability, and safety which constitute
fundamental design features in modern control systems, specially in the aeronautic
and aerospace fields. Thus, hardware and software (analytical) redundancy schemes
have been investigated over the last thirty years [2, 6]. Analytical redundancy makes
use of a mathematical model of the monitored process and is therefore often referred
to as the model–based approach to FDI/FDD [1, 2, 10, 11, 6, 7].

A model–based FDI/FDD scheme is normally implemented as a computer soft-
ware algorithm. The main problem of the model–based approach regards the real
complex systems, where modeling uncertainty arises inevitably, because of process
noise, parameter variations and modeling errors. The FDI/FDD of incipient faults
represents a challenge to model–based FDI/FDD techniques due to inseparable mix-
ture between fault effects and modeling uncertainty [6, 2].

To carry out such FDI/FDD objectives, two main approaches have been devel-
oped in last years: the fault estimation techniques and the residual–based methods.

The fault estimation approaches focus on seeking the fault indicating signal to
be an optimal estimate, in some criteria sense, of the fault. This can be a param-
eter estimate or an unknown input signal estimate. It follows that any estimation
technique can be used on an adequate formulated problem, one of the most famous
being the kalman-based techniques [12], see for instance the Extended Kalman Fil-
ter (EKF) technique and its improved versions such as the Unscented Kalman Filter
(UKF) proposed in [13] and further investigated in [14, 15], the Divided Difference
Filter (DDF) initially proposed by [16] (the DDF uses divided-difference approxi-
mations of derivatives based on the Stirling’s interpolation formula) and the particle
filtering approaches, a technique belonging to the class of Monte–Carlo methods for
nonlinear systems with non–gaussian noises [17, 18, 19, 20, 21].

2 The term Fault Detection and Diagnosis (FDD) is a development of the term Fault Detection
and Isolation (FDI). Generally speaking, FDD goes slightly further than FDI by including
the possibility of estimating the effect of the fault and/or diagnosing the effect or severity
of the fault.
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Residual generation is different from fault estimation because it does not only
require the disturbances and model perturbations attenuation. The residual has to
remain sensitive to faults while guaranteeing robustness against unknown inputs. A
number of researchers have developed residual–based methods for dynamic systems
such as (to name a few):

- the parity space approach [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
- the observer based approach through the so-called Unknown Input Observers

(UIO) approaches and the eigenstructure assignment (EA) technique [34, 24, 25,
35, 36, 37, 38, 38, 39, 40, 41, 42, 43].

- the so-called norm-based approaches sometimes referred as the approximate de-
coupling approach. These approaches can be further classified according to the
previous discussion as fault-estimation approaches [44, 45, 46, 47, 48, 49, 50, 51,
52] and residual generation approaches [43, 53, 54, 55, 56, 57, 58, 52, 59, 60, 9].

A crucial issue with any FDI/FDD scheme is its robustness to modelling uncertainty.
The robustness problem in FDD is defined as the maximisation of the detectability
and isolability of faults together with the minimisation of the effects of uncertainty
and disturbances on the FDD procedure [2, 6]. A number of FDD techniques have
been mainly developed for linear systems as it is mentioned above. However, practi-
cal models of real-world systems are mostly nonlinear. Hence, viable procedures for
practical application of FDI/FDD techniques must take into account model-reality
mismatches and hence modelling uncertainty.

To carry out such FDI/FDD objectives, the geometrical concepts for FDI/FDD
initially proposed by [61], were successfully extended in theoretical work to nonlin-
ear systems [62, 63]. Nonlinear geometric approaches can also be found in [64, 65],
in which the fault estimation method relies on the successive derivatives of in-
put/output signals. A drawback of these strategies is a high sensitivity to measure-
ment noise and uncertainty due to dynamical system structure. In [66], an interesting
FDD application of an UIO strategy for Lipschitz-bounded nonlinear systems is pre-
sented. This approach is applicable to a wide class of non-linear systems without
requiring a non-linear geometrical approach. A further approach to FDI/FDD has
been based on state estimation using non-linear stochastic methods such EKF-DDF
and particle filtering as mentioned above. Adaptive methods for fault estimation and
FDI/FDD are applicable to a wide class of nonlinear systems and are becoming pop-
ular as they blend well with fault tolerant Control (FTC) or fault detection, isolation
and recovery (FDIR).

Even if there exist some proofs of optimality and robustness, such advanced tech-
niques have not been used so far in on-board computers, specially for aeronautic and
space missions. One of the main reasons is related to the fact that any new technique
should provide a solution having well-defined real-time characteristics and well-
defined error-rates, and many published works fail to address this important issue.
The selection of an advanced FDI/FDD solution at a local or global level, necessarily
includes a trade-off between the best adequacy of the technique and its implementa-
tion level for covering an expected fault profile, as well as its industrialization pro-
cess with support tools for its design/tuning and validation. Very attractive advanced
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FDI/FDD solutions would not be accepted without such industrial framework capa-
bility. A classical FDI/FDD approach could there be preferred despite its smaller
fault coverage, because well industrially mastered and well characterized, without
risk of false alarm. It follows that a good balance between physical redundancy and
model-based techniques appears to be the right solution, leading to more efficient
health monitoring systems based on less redundant elements [8, 9].

As an alternative to nonlinear approaches, one can consider linear parameter
varying (LPV) methods because

- the LPV theory offers an efficient paradigm to model nonlinear systems with
on-line measurable state depending parameters, see for instance [67, 68] and the
surveys [69, 70],

- it provides stability and performance guarantee over wide range of changing pa-
rameters, see [71, 72, 73, 74, 75, 76, 77].

- it fundamentally relies on linear theory which is very attractive for an on-board
implementation point of view, see the previous discussion.

The goal of this chapter is to address our recent work on robust model-based
FDI/FDD. The considered techniques can be seen as a nice and practically rele-
vant framework in which various design goals and trades-off are formulated and
managed. It is shown that the design problem can be formulated as an optimization
problem that can be solved by numerically powerful LMI-based techniques. The
output of the design is a filter for Fault Detection, or a bank of filters for Fault De-
tection and Isolation. The presented approaches have been developed by the author
at IMS/LAPS, Bordeaux, see the reference section. The developed techniques have
been successfully applied to a number of aeronautic and space applications through
different projects, both at national and European levels, e.g. generic aircrafts from
AIRBUS, satellite, atmospheric re-entry and rendezvous missions.

The chapter is organized as follows.
Section 6.2 is dedicated to some mathematical developments and definitions.

Section 6.3 states the model-based FDD/FDI filter design problem. Two general
approaches are presented to design robust FDI filters for LPV systems under feed-
back control: the so-called "polytopic" and "LFR" approaches. The methods are
a generalization to the fault detection generators design problem for LPV sys-
tems of the H∞/H− method initially proposed in [57] and further considered in
[58, 52, 60, 78, 9]. The approach consists in designing an optimal FDI filter that
maximizes fault sensitivity performance (in the H−–norm sense), and simultane-
ously minimizes the influence of unknown inputs (in the H∞–norm sense). The
design problem is formulated so that all free parameters are optimized via Linear
Matrix Inequality techniques. Section 6.4 is dedicated to the polytopic approach
whereas section 6.5 is dedicated to the LFR approach. Academic examples are pre-
sented to outline the different steps of the methods. Finally, section 6.7 is dedicated
to an industrial (AIRBUS) problem from the aeronautic domain. The work is un-
dertaken within the European FP7 funded ADDSAFE (Advanced Fault Diagnosis
for Sustainable Flight Guidance and Control) project. The goal is to propose new
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fault diagnosis techniques that could significantly help developing environmentally-
friendlier aircraft, by optimizing structural load design objectives.

6.2 Preliminaries

Throughout the chapter, the following notations are used: R and C denote the real
and complex sets respectively. AT , A > 0 means the transpose and the definite posi-
tiveness of A, respectively. A ≥ (>)B means A−B is positive semi-definite (positive
definite). σ(A)/σ(A) denote the maximum/minimum singular values of the matrix
A. ‖w‖2 is used to denote the L2-norm of the signal w. P(s) or simply P, is assumed
to be in RH∞, real rational function with (||P||∞ is also the largest gain of P )

||P||∞ = sup
ω
σ(P( jω))< ∞ (6.1)

Referring to a LPV model P(θ ) so that z(s) = P(s,θ )w(s) (simply denoted z =
P(θ )w), the H∞-norm is defined according to:

||P(θ )||∞ = sup
∀θ

||w||2 �=0

||z||2
||w||2 (6.2)

In accordance with the induced norm, ||P||− is used to denote the smallest gain of a
transfer matrix P. However, this is not a norm. Despite there exist clear definitions
and notations of the H∞ norm, there exists some confusing notations for the H− gain.
For example, the H− gain for LTI systems is defined on a finite frequency range in
[43, 47, 57] whereas it is defined on an infinite frequency horizon in [79, 80]. The
purpose of the following developments is to clearly define the H−-gain for both LTI
and LPV systems. In contrast with other definitions reported in the literature, it is
shown how our definition is related to the L2-norm of signals.

The smallest gain of P(s) is defined according to infω σ (P( jω)). It can be ver-
ified that for some P, e.g. strict proper P, infω σ (P( jω)) = 0 since the frequency
range of interest is infinite. This motivates the introduction of the non-zero smallest
gain of P, i.e. the H− index, as the restriction of infω σ (P( jω)) to a finite frequency
domain Ω , i.e.

||P||− = inf
ω∈Ω

σ (P( jω))< ∞ (6.3)

However, it is not a norm since it does not verify the Schwartz inequality. This H−
index3 is used in the FDI community (and therefore throughout the chapter) as a
criteria for fault sensitivity performance.

3 Note that the H−-index is often called by some authors the H−-norm, even if it is not a
norm, see for instance [43]
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In [81, 53], a signal evaluation function ||w||e, which is a restriction of the L2

signal norm to a finite frequency domain, is defined according to (the time domain
counterpart was too considered by the authors):

||w||e =
(

1
2π

∫ ω2

ω1

||w( jω)||22dω
)1/2

(6.4)

Then, given a transfer P so that z = Pw, it can be verified that the following relations
yields

||Pw||2e =
1

2π

∫ ω2

ω1

||P( jω)w( jω)||22dω (6.5)

=
1

2π

∫ ω2

ω1

∥∥∥∥P( jω)
w( jω)

||w||2

∥∥∥∥
2

2
||w||22dω (6.6)

≥ ||P||2−||w||2e (6.7)

and, then that:

||P||− = inf
ω∈Ω

σ(P( jω))≤ inf
||w||e=1

||Pw||e ≤ ||P||∞ (6.8)

It follows that the quantity inf||w||e=1 ||Pw||e takes sense of the minimum value over
a finite frequency range of a singular value of P( jω) and thus that

||P||− = inf
||w||e=1

||Pw||e = inf
ω∈Ω

σ(P( jω)) (6.9)

yields only if dim(w) = 1 and/or dim(Pw) = 1.
In the context of residual generators design, this means that infω∈Ω σ(P( jω)) =

inf|| f ||e=1 ||r||e = inf|| f ||e=1 ||Tr f f ||e if dim(r) = 1, where Tr f denotes the transfer be-
tween the residuals and faults vectors. In others words, the minimum singular value
based definition and the signal L2-norm based definition of the H− gain coincide.
Thus, similarly to the definition of the H∞-norm for LPV systems given by (6.2), the
following evaluation criteria which is the generalization of the LTI H− gain to LPV
case, is considered. Given r(s) = P(s,θ ) f (s) : dim(r) = 1, the H− gain for LPV
systems is defined according to:

||P(θ )||− = inf
∀θ

||u||e �=0

||r||e
|| f ||e (6.10)

Note that the definition of the Hsens criteria proposed in [82] is strictly equivalent to
the H− gain when dim(r) = 1, but it consists of an upper bound for dim(r) �= 1.

Linear Fractional Representation (LFR) are extensively used in the paper. For

appropriately dimensioned matrices N and M =

(
M11 M12

M21 M22

)
, the lower LFR is

defined according to Fl(M,N) = M11 +M12N(I −M22N)−1M21 and the upper LFR
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according to Fu(M,N) = M22 +M21N(I −M11N)−1M12, under the assumption that
the involved matrix inverses exist. This assumption is discussed in the paper when
it is judged necessary. Otherwise, it is assumed to be satisfied.

6.3 Problem Statement

In this chapter, two general approaches are presented to design robust FDI filters for
LPV systems under feedback control. The method is a generalization to the fault de-
tection generators design problem for LPV systems of the H∞/H− method initially
proposed in [57] and further considered in [58, 52, 60, 78, 9]. The approach con-
sists in designing an optimal FDI filter that maximizes fault sensitivity performance
(in the H−–norm sense), and simultaneously minimizes the influence of unknown
inputs (in the H∞–norm sense). The design problem is formulated so that all free
parameters are optimized via Linear Matrix Inequality techniques.

Consider a LPV dynamical system subject to q f simultaneous faults fi(t), i =
1...q f entering the system via corresponding fault injection matrices K1|i(θ ) and
K2|i(θ ), where θ (t) ∈ R

q is a time varying parameter vector. It is assumed that all
parameters θi(t), i= 1, ...,q are bounded so that θi ∈ [θ i,θ i], i= 1, ...,q, and that θ (t)
is a time–varying parameter vector so that all parameters θi(t), i= 1...q are bounded,
measurable (or estimated if the estimation error can be guaranteed to be bounded).

The fault model
[
K1|1(θ ) f1(t)+ ....+K1|q f

(θ ) fq f (t)
]
= K1(θ ) f (t) refers to actua-

tor and component faults, whereas
[
K2|1(θ ) f1(t)+ ....+K2|q f

(θ ) fq f (t)
]
=K2(θ ) f (t)

refers to sensor faults, see for instance [83, 4, 84, 5, 85].
To focus on the effect of a specific set of faults, say the ith, f is splited into

two parts: fi and f i. Then the robust fault detection and isolation (FDI) problem
concerns the detection of fi �= 0 while rejecting f i and guaranteeing some robustness
performance level to disturbances and model perturbations.

To formulate this problem, consider the effect of the faults fi and f i, the pro-
cess and the measurement noises. Then, the dynamical system can be modeled as
follows:
{

ẋ(t) = A(θ )x(t)+B(θ )u(t)+Ew(θ )w(t)+K1|i(θ ) fi(t)+K1|i(θ ) f i(t)
y(t) =C(θ )x(t)+D(θ )u(t)+Ev(θ )v(t)+K2|i(θ ) fi(t)+K2|i(θ ) f i(t)

(6.11)

In this formulation, x ∈R
n,u ∈R

p, y ∈R
m denote the state, the input and the output

vectors, respectively and w ∈ R
qw and v ∈ R

qv also refer to the state and measure-
ment noise vectors, respectively. A,B,C,D,Ew,Ev,K1|i,K2|i,K1|i and K2|i are known
matrices of adequate dimension that depend on θ (t). For clarity and without loss of
generality, the following developments are done assuming that dim( fi) = 1. Thus,
in (6.16),

K1|i(θ ) =
[
K1|1(θ ), ...,K1|i−1(θ ),K1|i+1(θ ), ...,K1|q f

(θ )
]
∈ R

n×(q f−1) (6.12)
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K2|i(θ ) =
[
K2|1(θ ), ...,K2|i−1(θ ),K2|i+1(θ ), ...,K2|q f

(θ )
]
∈ R

m×(q f −1) (6.13)

and

f i(t) =
[

f1(t), ..., fi−1(t), fi+1(t), ..., fq f (t)
]T ∈ R

q f −1 (6.14)

It follows that the FDI problem concerns the detection of fi(t) �= 0 while rejecting
w(t),v(t) and f i(t).

In order to make the problem well-posed, we assume that:

• (A.1) The system that admits the model (6.11) is detectable and stabilizable;
• (A.2) For any i, K1|i(θ ) satisfies C(θ )K1|i(θ ) �= 0;
• (A.3) For any i, K1|i(θ ) is monic ∀θ , viz. fi(t) �= 0 ⇒ K1|i(θ ) fi(t) �= 0 ∀θ ;

• (A.4) rank
(

C(θ )[K1|1, ...,K1|q f
]
)
= q f .

Condition (A.1) is required for the existence of a controller able to robustly stabilize
the system (6.11). This assumption is done since we consider in the following de-
velopments that the system operates in a closed-loop configuration, see later. Condi-
tions (A.2) and (A.3) assume that the fault fi is observable from the output y, which
is a prior condition for the fault fi to be detected. Condition (A.4) guarantees that
the fault fi can be isolated from the remaining ones, see [86, 87] for more details.

With some abuse of notations, let us denote f the fault fi to be detected and let d
be the augmented vector defined according to:

d =
(

wT vT f
T
i

)T ∈ R
qw+qv+q f −1 (6.15)

Then, introducing adequate matrices E1(θ ),E2(θ ),K1(θ ) and K2(θ ), it follows
from (6.11) that the general state-space model of the system can be written:

{
ẋ(t) = A(θ )x(t)+B(θ )u(t)+E1(θ )d(t)+K1(θ ) f (t)
y(t) =C(θ )x(t)+D(θ )u(t)+E2(θ )d(t)+K2(θ ) f (t)

(6.16)

Now let us consider K(θ ) a LPV (or LTI, i.e. K) controller that robustly stabilizes
the system (6.16) for all parameter trajectories θi(t), i = 1, ...,q taken their values in
the considered range.

The FDI filter design problem we are interested is formulated as follows:

Problem 6.1. Assume that assumptions (A-1)-(A-4) yield. The goal is to find the
(stable) filter realization matrices AF(θ ) ∈ R

nF×nF , BF(θ ) ∈ R
nF×(p+m), CF(θ ) ∈

R
qr×nF and DF(θ ) ∈ R

qr×(p+m) and the matrices My(θ ) ∈ R
qr×p and Mu(θ ) ∈

R
qr×m, such that the residual signal r defined by

r(s) = My(θ )y(s)+Mu(θ )u(s)− ẑ(s), r ∈ R
qr (6.17)

ẑ(s) = F(s,θ )
(

y(s)
u(s)

)
, F(s,θ ) =CF(θ )(sI −AF(θ ))BF(θ )+DF(θ ) (6.18)

u(s) = K(s,θ )y(s) (6.19)
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meets the following specifications:

• (S.1) ||Trd(θ )||∞ < γ1, for all parameter trajectories θ (t) where Trd(θ ) denotes
the closed-loop transfer between r and d.

• (S.2) ||Tr f (θ )||− > γ2 over a specified frequency range Ω , for all parameter tra-
jectories θ (t). Tr f (θ ) denotes the closed-loop transfer between r and f , and Ω is
the frequency range where the energy of the faults is likely to be concentrated.

In (6.17)-(6.18), ẑ is an estimation of z = My(θ )y+Mu(θ )u, a subset of available
input/output signals. My(θ ) and Mu(θ ) are two (static) matrices that are known in
the FDI community as the structuring matrices. The role of My(θ ) and Mu(θ ) is to
merge optimally the available measurement and control signals to build the residual
r. The performance index γ1 guarantees a minimum nuisances attenuation H∞–gain,
whereas the performance index γ2 guarantees a maximum faults amplification H−–
gain, see the preliminary section for the definition of the H∞ and H− gains. Of course
the smaller γ1 and the bigger γ2 will be, the better the FDI performance will be.

Problem 6.1 could also be interpreted as a multiobjective optimization problem
whereby the choice of γ1 and γ2 is guided by the Pareto optimal points, see [88] for
a discussion on solving Pareto multi-criteria optimization problems. However, in
practice, γ1 and γ2 are better considered as parameters to be selected by the designer
since finding "optimal" values is highly related to the system under consideration,
see for instance [52, 89, 60, 78].

In the following sections, two solutions to problem 6.1 are proposed depending
on the manner (6.16) is modeled:

• the first one is developed within the so-called polytopic setting. In this case, it
is assumed that all parameters θi(t), i = 1...q take their values in the domain Θ
which is assumed to be a polytope.

• the second one is developed within the so-called LFR (Linear Fractional Repre-
sentation) setting [90, 91, 92, 93, 94], i.e. all parameters θi(t), i = 1, ...,q entering
in equation (6.16) are "pulled out" so that the model appears as a LTI (Linear
Time Invariant) nominal model P(s) subject to a time-varying bounded artificial
feedbackΘ(t).

Remark 6.1. The majority of methods reported in the literature involves the use of an
open-loop model of the monitored system, in spite of that the FDI scheme is placed
in a feedback loop. In such situations, it is well known that faults may be covered
by control actions and the early detection of them, is clearly more difficult. This
motivates the so-called integrated design of control and diagnosis schemes where
robust controllers and fault detectors are designed together by optimizing a set of
mixed control and fault detection objectives [95, 96, 97, 98, 99, 100]. However, this
solution is judged questionable from a practical point of view, since the already in
place controller is validated and certified and, then, can’t be removed. This motivates
the problem formulation previously stated.
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6.4 The Polytopic Approach

In this section, a solution to the problem 6.1 is provided within the so-called poly-
topic setting. A core element of the following developments is that all free param-
eters (i.e. the filter state space matrices AF(θ ),BF(θ ),CF (θ ),DF(θ ) and the struc-
turing matrices My(θ ) and Mu(θ )) are directly optimized via LMI techniques in
order to reach residual optimality. In fact, despite the used formalism seems to be
complex, the idea behind the theory is very simple: using the convex property of
the polytopic models (more precisely, the so–called vertex property), one can re-
produce the LTI approach proposed in [57, 58, 52, 60, 78, 9] by considering the
problem at each vertex of the polytope describing the model set with a common
Lyapunov function, using the definition of the H∞ and H− norms for LPV systems
stated in preliminaries. This, of course, may bring some conservativeness of the so-
lution with respect to a parameter-dependent Lyapunov function and that’s why this
is called the quadratic H∞ approach.

To proceed, consider the state space model (6.16) that we denote in a compact

form M(θ ) =
(

A(θ ) B(θ ) E1(θ ) K1(θ )
C(θ ) D(θ ) E2(θ ) K2(θ )

)
. It is assumed that θ (t) takes their val-

ues in the domainΘ , so thatΘ is a convex polytope.
The LPV system (6.16) admits then a polytopic model if it is possible to deter-

mine a set of matrices Mi, i = 1, ...,N, constituting the vertices of a polytope defined
by

Co{β1, ...,βN}=
{

N

∑
i=1

βiM(Πi),βi ≥ 0,
N

∑
i=1

βi = 1

}
(6.20)

and such that it corresponds to the image by M(θ ) of the domainΘ , i.e.

{M(θ ),θ ∈Θ} ≡Co{M(Π1), ...,M(ΠN)} (6.21)

Then, βi, i = 1, ...,N define the barycentric coordinates ofΘ and the following con-
vex decomposition yields:

θ = β1Π1 + ...+βNΠN = (β1 ... βN)

⎛
⎜⎝

Π1
...

ΠN

⎞
⎟⎠ , βi ≥ 0,

N

∑
i=1

βi = 1 (6.22)

which offers a numerical procedure to compute θ (t) at each time t by means of
linear algebra.

Note that the establishment of a non-conservative polytopic model is of ma-
jor importance since it directly influences the performance of the FDI scheme.
For instance, the Tensor Product (TP) model transformation approach proposed in
[101, 102] is capable of establishing polytopic forms of LPV dynamic models, both
in a theoretical and algorithmic context. Using the TP model transformation, differ-
ent optimization and convexity constraints can be considered, and transformations
can be executed without any analytical interactions, within a reasonable amount of
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time (irrespective of whether the model is given in the form of analytical equations
resulting from physical considerations, as an outcome of soft computing based iden-
tification techniques such as neural networks or fuzzy logic based methods, or as a
result of a black-box identification). The interested reader can refer to [101, 102] for
more details.

6.4.1 The Quasi-standard Form

In this section, a solution is provided to compute simultaneously My(θ ),Mu(θ ) and
F(θ ) so that the requirements (S.1) and (S.2) are satisfied. It is straightforward to
verify that the major difficulty in this problem is related to the fault sensitivity re-
quirement (S.2) since (S.1) can be solved using the techniques developed in the
robust control community. To overcome this problem, a sufficient condition is es-
tablished in terms of a fictitious H∞ problem. It is then shown in the following that
a solution to this fictitious problem is a solution of the original one.

For clarity, it is assumed in the following developments that the structuring ma-
trices My(θ ) and Mu(θ ) do not depend on θ . If this assumption vanishes, it can be
verified that the following theoretical developments still yields. The only difference
in such a case is that, if we consider My(θ ) and Mu(θ ) in the design problem, a set
of structuring matrices My(Πi) and Mu(Πi) for each vertex of the polytopeΘ would
be obtained rather than constant matrices.

To proceed, consider the state space model (6.16) and the controller K(θ ) :
u(s) = K(s,θ )y(s). Including K(θ ) into the state space equations (6.16) leads to
a new model P(θ ) that can be deduced from the linear fractional representation
Fl(M(θ ),K(θ )) so that (see figure 6.1 for easy reference)

(
y(s)
u(s)

)
= P(s,θ )

(
d(s)
f (s)

)
(6.23)

Then the problem 6.1 turns out to be the design of the triplet (My,Mu,F(s,θ )) so
that the robustness requirements (S.1) and the fault sensitivity specifications (S.2)
are satisfied.

With some abuse of notations, let P(θ ) =
(

A(θ ) Bd(θ ) B f (θ )
C(θ ) Dd(θ ) D f (θ )

)
with A(θ ) ∈

R
n×n, Bd(θ ) ∈ R

n×qd ,B f (θ ) ∈ R
n×q f and C(θ ) ∈ R

(p+m)×n . Using some alge-
bra manipulations, the filter design problem illustrated on figure 6.1 can be re-
casted into the setup depicted in the figure 6.2, where P(θ ,My,Mu) is deduced from
P(θ ),My and Mu according to:

P(θ ,My,Mu) =

⎛
⎝ A(θ ) Bd(θ ) B f (θ ) 0n×qr

MC(θ ) MDd(θ ) MD f (θ ) −Iqr

C(θ ) Dd(θ ) D f (θ ) 0(p+m)×qr

⎞
⎠ (6.24)
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Fig. 6.1 The FDI filter design problem

In this equation M= (My Mu) and Iqr and 0i× j denote respectively the identity ma-
trix of dimension qr and the null matrix of dimension i× j.

Fig. 6.2 The equivalent form of the FDI filter design problem

The requirements (S.1) and (S.2) are then expressed in terms of loop shapes,
i.e. of desired gain responses for the appropriate closed-loop transfers. These shap-
ing objectives are then turned into uniform bounds by means of shaping filters. To
proceed, define two shaping filters Wd and Wf such that

||Wd ||∞ ≤ γ1 ||Wf ||− ≥ γ2 (6.25)

Assume that Wd and Wf are invertible (this can be done without loss of generality
because it is always possible to add zeros in Wd and Wf to make them invertible). Wd

and Wf are also defined in order to tune the gain responses for, respectively, Trd(θ )
and Tr f (θ ). Then, if the condition

||Trd(θ )W−1
d ||∞ < 1 ⇔ ||Trd̃(θ )||∞ < 1 (6.26)

is satisfied, the robustness design specification (S.1) yields. In (6.26), d̃ ∈ R
qd̃ is

a fictitious signal generating d through Wd and Trd̃(θ ) denotes the looped transfer
between r and d̃.
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Now, we need the following lemma to transform the fault sensitivity specification
(S.2) into a H∞ constraint.

Lemma 6.1. Consider the robust fault sensitivity specification (S.2) and the shaping-
filter Wf defined by (6.25). Introduce WF , a right invertible transfer matrix so that
||Wf ||− = γ2

λ ||WF ||− and ||WF ||− > λ , where λ = 1+ γ2. Define the signal r̃ such
that r̃(s) = r(s)−WF(s) f (s). Then a sufficient condition for the specification (S.2)
to hold, is

||Tr f (θ )−WF ||∞ < 1 ⇔ ||Tr̃ f (θ )||∞ < 1 (6.27)

Proof
Consider the closed-loop transfer Tr f (θ ) and let WF be any LTI transfer matrix. Due
to the definition of the H− gain for LTI and LPV systems (see the preliminaries if
necessary), it can be verified that the following relation yields:

||Tr f (θ )||− ≥ ||WF ||− − ||Tr f (θ )−WF ||∞ (6.28)

Now, let us consider a fictitious signal r̃ such that r̃(s) = r(s)−WF(s) f (s), it can be
verified that (6.28) can be re-written according to:

||Tr f (θ )||− ≥ ||WF ||− − ||Tr̃ f (θ )||∞ (6.29)

Now consider the weighting function WF and assume that it is invertible. Then, we
get

1
||WF ||− = ||W+

F ||∞Ω (6.30)

where ||W+
F ||∞Ω = supω∈Ω σ

(
W+

F ( jω)
)
. W+

F denotes the inverse of WF which al-
ways exists by assumption (see lemma 6.1). Then, factorizing the right term of
(6.29) by ||WF ||− gives

||Tr f (θ )||− ≥
(

1− ||Tr̃ f (θ )||∞
||WF ||−

)
||WF ||− (6.31)

that can be done since, by definition, ||WF ||− �= 0. With (6.30), it follows that

||Tr f (θ )||− ≥ (1−||Tr̃ f (θ )||∞||W+
F ||∞Ω

) ||WF ||− (6.32)

Now, since by construction ||WF ||− > λ , it is straightforward to verify that the fol-
lowing relation yields:

||W+
F ||∞Ω <

1
λ

(6.33)

Suppose now that the inequality ||Tr̃ f (θ )||∞ < 1 yields. From (6.33), it follows that

||Tr̃ f (θ )||∞||W+
F ||∞Ω <

1
λ

(6.34)
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and with (6.32), we get

||Tr f (θ )||− >
λ − 1
λ

||WF ||− (6.35)

Thus, if ||Wf ||− = γ2
λ ||WF ||− with λ = 1+ γ2, then (6.35) implies that

||Tr f (θ )||− > ||Wf ||− (6.36)

which terminates the proof ��

Following equations (6.26) and (6.27), the design problem can be re-casted accord-
ing to the setup depicted in the figure 6.3.a, where d̃ and r̃ are two signals, so that
d̃ =Wdd and r̃ = r−WF f . Then including W−1

d and WF into P(θ ,My,Mu) leads to
the equivalent block diagram of figure 6.3.b, where the transfer matrix P̃(θ ,My,Mu)

is deduced from W−1
d , WF and P(θ ,My,Mu) using some linear algebra manipula-

tions.

Figure 6.3.a Figure 6.3.b

Fig. 6.3 The equivalent forms of the filter design problem

The residual generation problem can now be formulated in a standard LPV H∞
framework, by combining both requirements (6.26) and (6.27) into a single H∞ con-
straint: a sufficient condition for (6.26) and (6.27) to hold for all parameter trajecto-
ries θ (t) in the polytopeΘ is

∥∥Fl(P̃(θ ,My,Mu),F(θ ))
∥∥
∞ < 1 (6.37)

This equation seems to be similar to a standard H∞ LPV problem. In fact, this is not
the case since the transfer P̃(θ ,My,Mu) depends on My and Mu that are unknown. In
the following section, a procedure is given to overcome this problem.

Remark 6.2. Coming back to the above developments, it is clear that a key feature
in the proposed formulation is the a-priori choice of the shaping filters Wd and Wf .
From a practical point of view, it is required that the residuals r are as "big" and
as "fast" as possible, when a fault occurs. Then, if the considered faults manifest
themselves, e.g., in low frequencies, this leads to select Wf as a low pass filter with
the static gain and the cutting frequency, the highest possible. With regards to the
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robustness objectives, it is required that the effects of the disturbances on the resid-
uals are as "small" as possible. This implies to choose the gain of Wd as small as
possible in the frequency range where the energy content of the disturbances is lo-
cated. In other words, it is required a high attenuation level of the disturbances on
the residuals in the appropriate frequencies. However, both sensitivity to faults and
robustness against disturbances might be not achieved in some cases. Faults having
similar frequency characteristics as those of disturbances might go undetected. In
such cases, the proposed formulation provides a framework to find a good balance
between fault sensitivity and robustness via the construction of the shaping filters
Wd and Wf , see for instance [52, 89, 60, 78] where practical cases are considered.
Furthermore, since the relation

max{||Trd(θ )W−1
d ||∞, ||Tr̃ f (θ )||∞} ≤ ||Fl

(
P̃(θ ,My,Mu),F(θ )

) ||∞ (6.38)

yields, the combination of (6.26) and (6.27) into the single H∞ constraint (6.37)
might be conservative in some cases. As it is explained, the goal is to minimize only
two channels (see equations (6.26) and (6.27)) from the whole objective. Thus, the
selection of proper weights Wd and Wf for such a MIMO objective plays an impor-
tant role. Similarly to the so-called "mixed sensitivity" approach from the H∞ control
community, Wd and Wf should be selected at least, as diagonal transfer functions.

6.4.2 The LMI Solution

In the following developments, a numerical tractable solution to (6.37) is de-
rived in terms of a SDP (Semi Definite Programming) problem. To proceed, let
W−1

d (s) = Cwd (sI −Awd)
−1 Bwd +Dwd and WF(s) = CwF (sI −AwF)

−1 BwF +DwF

be the state-space representations of Wd−1 and WF respectively, and denote nwd

and nwF the associated order, i.e. Awd ∈ R
nwd×nwd and AwF ∈ R

nwF×nwF . Using
some linear algebra manipulations, it can be verified from (6.24) that the matri-
ces Ã(θ ), B̃(θ ),C̃(θ ) and Ã(θ ) of the state-space representation of P̃(θ ,My,Mu) are
defined according to :

Ã(θ ) =

⎛
⎝A(θ ) Bd(θ )Cwd 0

0 Awd 0
0 0 AwF

⎞
⎠ Ã(θ ) ∈ R

(n+nwd+nwF )×(n+nwd+nwF ) (6.39)

B̃(θ ) =
(

B̃1(θ ) B̃2
)
=

⎛
⎝Bd(θ )Dwd B f (θ ) 0

Bwd 0 0
0 BwF 0

⎞
⎠ B̃(θ ) ∈R

(n+nwd+nwF )×(qd̃+q f +qr)

(6.40)

C̃(θ ) =
(

C̃1(θ )
C̃2(θ )

)
=

⎛
⎝MC(θ ) MDd(θ )Cwd 0

MC(θ ) MDd(θ )Cwd −CwF

C(θ ) Dd(θ )Cwd 0

⎞
⎠ (6.41)

C̃(θ ) ∈R
(2qr+m+p)×(n+nwd+nwF )
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D̃(θ ) =
(

D̃11(θ ) D̃12

D̃21(θ ) D̃22

)
=

⎛
⎝MDd(θ )Dwd MD f (θ ) −Iqr

MDd(θ )Dwd MD f (θ )−DwF −Iqr

Dd(θ )Dwd D f (θ ) 0

⎞
⎠ (6.42)

D̃(θ ) ∈ R
(2qr+m+p)×(qd̃+q f +qr)

Note that by construction, B̃2 = 0 and D̃22 = 0 which illustrates that the filter F(θ )
is in open-loop versus the monitored system.

Having in mind the definition of (6.39)-(6.42), it can be noted that the H∞ opti-
mization problem formulated by (6.37) is non-convex since it involves simultane-
ously the residual structuring matrices Mu and My and the filter state-space matrices
AF(θ ),BF(θ ),CF(θ ),DF(θ ). A solution may then consist in choosing heuristically
the residual structuring matrices. However, as it is well known, there is no guarantee
to the optimal solution. The following proposition gives the solution to this problem.

Proposition 6.1. Consider the realization of the transfer P̃(θ ,My,Mu) given by
equations (6.39) - (6.42) and let Ã(Πi), B̃(Πi),C̃(Πi), D̃(Πi) ∀i = 1, ...,N be the
evaluation of Ã(θ ), B̃(θ ),C̃(θ ), D̃(θ ) at each vertex Πi, i = 1, ...N of the poly-
tope Θ . Assume that the parameter dependency in C̃2(θ ) and D̃21(θ ) can be
removed (this can be done without loss of generality, see the following discus-
sion) and let W = (C̃2 D̃21)

⊥. Then there exists a solution of (6.37) if there
exist a matrix H ∈ R

qr×1, γ < 1 and M ∈ R
qr×(m+p) and two symmetric matri-

ces R,S ∈ R
(n+nwd+nwF )×(n+nwd+nwF ) solving the following SDP problem involving

2N + 1 LMI constraints
minγ s.t. :

⎛
⎜⎜⎝

⎛
⎝ In+nwd+nwF 0

0 H
0 −H

⎞
⎠ 0

0 I

⎞
⎟⎟⎠

T ⎛
⎝ Ã(Πi)R+RÃT (Πi) RC̃T

1 (Πi) B̃1(Πi)
C̃1(Πi)R −γI D̃11(Πi)
B̃T

1 (Πi) D̃T
11(Πi) −γI

⎞
⎠ ...

...

⎛
⎜⎜⎝

⎛
⎝ In+nwd+nwF 0

0 H
0 −H

⎞
⎠ 0

0 I

⎞
⎟⎟⎠< 0 i = 1, ...,N (6.43)

(
W 0
0 I

)T
⎛
⎝ ÃT (Πi)S+ SÃ(Πi) SB̃1(Πi) C̃T

1 (Πi)
B̃T

1 (Πi)S −γI D̃T
11(Πi)

C̃1(Πi) D̃11(Πi) −γI

⎞
⎠(W 0

0 I

)
< 0 i = 1, ...,N

(6.44)(
R I
I S

)
≥ 0 (6.45)

Moreover, F(θ ) is of full-order, i.e. nF = n+nwd +nwF. The state space realization
of the LPV filter F(θ ) is then computed using the barycentric coordinates ofΘ given
by (6.22), so that:

(
AF(θ ) BF(θ )
CF(θ ) DF(θ )

)
=

N

∑
i=1

βi

(
AF(Πi) BF(Πi)
CF(Πi) DF(Πi)

)
(6.46)
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In this equation, AF(Πi),BF(Πi),CF(Πi) and DF(Πi) i= 1, ...,N are the state space
matrices of the N LTI filters F(Πi), i = 1, ...,N that are deduced from the unique
solution H,R,S,My,Mu,γ of the SDP problem (6.43)-(6.45), see the following proof
for details. ��
Proof
We first state that, by virtue of the scaled-bounded real lemma [72], (My,Mu,F(θ ))
satisfies the H∞-norm constraint (6.37) (and F(θ ) is stable ∀θ ) if there exists a γ < 1,
M ∈ R

qr×(m+p) and a (unique) Lyapunov matrix Xcl = XT
cl > 0 such that

⎛
⎝AT

cl(θ )Xcl +XclAcl(θ ) XclBcl(θ ) CT
cl(θ )

BT
cl(θ )Xcl −γI DT

cl(θ )
Ccl(θ ) Dcl(θ ) −γI

⎞
⎠< 0 (6.47)

where Fl(P̃(θ ,My,Mu),F(θ )) = Ccl(θ )(sI −Acl(θ ))−1Bcl(θ )+Dcl(θ ). Moreover
F(θ ) is a full-order filter if nF = n+ nwd + nwF . Because of the unique Lyapunov
matrix, the FDI filter (My,Mu,F(θ )) verifies only quadratic performance.

Secondly, we restrict the parameter-dependent inequality (6.47) to a finite set of
inequalities using the so-called vertex property, i.e. (6.47) is satisfied if and only if
there exists a γ < 1, M ∈ R

qr×(m+p) and a (unique) Lyapunov matrix Xcl = XT
cl > 0

such that⎛
⎝AT

cl(Πi)Xcl +XclAcl(Πi) XclBcl(Πi) CT
cl(Πi)

BT
cl(Πi)Xcl −γI DT

cl(Πi)
Ccl(Πi) Dcl(Πi) −γI

⎞
⎠< 0 i = 1, ...,N (6.48)

Let Fi =

(
AF(Πi) BF(Πi)
CF(Πi) DF(Πi)

)
∈ R

(nF+qr)×(nF+p+m). Then, it can be verified using

some linear matrix algebra manipulations, that (6.48) can be written as

Ψ (M,Πi)+QT (Πi)F
T
i P(Πi)+PT (Πi)FiQ(Πi)< 0 i = 1, ...,N (6.49)

where the matrices P(Πi) and Q(Πi) depend only on Xcl and known matrices and
whereΨ(M,Πi) depends on Xcl and M.

Now consider the case of full-order FDI filter, i.e. nF = n+nwd +nwF . Using the
projection lemma [103], it is possible to eliminate Fi in (6.49). To proceed, consider
the realization of the transfer P̃(Πi,My,Mu) given by equations (6.39) - (6.42) and
assume that the parameter dependency in C̃2(θ ) and D̃21(θ ) can be removed. Let
W and W denote orthonormal bases of the null spaces of (B̃T

2 D̃T
12) and (C̃2 D̃21)

respectively and let Xcl and X−1
cl be partitioned as follows

Xcl =

(
S N

NT X1

)
, X−1

cl =

(
R M

MT X2

)
, R,S,M,N ∈ R

(n+nwd+nwF )×(n+nwd+nwF )

(6.50)
where R and S are two symmetric matrices of adequate dimension. By construction,
the following relation yields

MNT = I−RS (6.51)
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By virtue of the projection lemma, there exists a solution of (6.49) if and only if R
and S solves the following system of inequalities [72]

(
W 0
0 I

)T
⎛
⎝ Ã(Πi)R+RÃT (Πi) RC̃T

1 (Πi) B̃1(Πi)
C̃1(Πi)R −γI D̃11(Πi)

B̃T
1 (Πi) D̃T

11(Πi) −γI

⎞
⎠
(

W 0
0 I

)
< 0 i = 1, ...,N

(6.52)(
W 0
0 I

)T
⎛
⎝ ÃT (Πi)S+ SÃ(Πi) SB̃1(Πi) C̃T

1 (Πi)
B̃T

1 (Πi)S −γI D̃T
11(Πi)

C̃1(Πi) D̃11(Πi) −γI

⎞
⎠
(

W 0
0 I

)
< 0 i = 1, ...,N

(6.53)(
R I
I S

)
≥ 0 (6.54)

Because M enters in the terms C̃1(Πi)R and RC̃T
1 (Πi) in (6.52), the inequality (6.52)

is not jointly affine in R and M. Hence solving this system of inequalities is not an
LMI problem. To overcome this problem, consider the expression of B̃2 and D̃12

given by (6.40) and (6.42). It follows that bases of the null space of (B̃T
2 D̃T

12) are
of the form

W =

⎛
⎝ In+nwd+nwF 0

0 H
0 −H

⎞
⎠ H ∈R

qr×1 (6.55)

With this expression of W , it can be verified that the system of inequalities (6.52)-
(6.54) can be written as (6.43)-(6.45) which, for a given H, is now jointly affine in
γ,M,R and S, and therefore is now a LMI problem. ��

Coming back to the statement of the proposition 6.1, it is required that C̃2 and D̃21

do not depend on θ . From the above proof, it can be verified that this assumption is
also done for the basis W to be computed. If, by construction, such an assumption is
not verified, the solution may consist in post-filtering (yT uT )T by a LTI filter with
a high cutting frequency. This solution has already been proposed in [72].

Furthermore, it is clear that the LPV FDI filter is not unique since many fea-
sible solutions γ,H,R,S,My and Mu satisfying (6.43)-(6.45) exist. It is possible to
characterize the family of the solutions and therefore the family of robust FDI fil-
ters corresponding to a γ . However, since γ enters linearly in (6.43) and (6.44), it
can be directly minimized by LMI optimization techniques. So the procedure al-
lows to find the smallest achievable H∞-norm and to determine the optimal solution
My,Mu,F(θ ), which is unique for a given matrix H.

Finally, note that H = 0 can be a viable solution for the LMI problem (6.43)-
(6.45). Thus, from a practical point of view, it could be more efficient to derive the
FDI filter from the following proposition:

Proposition 6.2. Consider the realization of the transfer P̃(θ ,My,Mu) given by
equations (6.39) - (6.42) and let Ã(Πi), B̃(Πi),C̃(Πi), D̃(Πi) ∀i = 1, ...,N be the
evaluation of Ã(θ ), B̃(θ ),C̃(θ ), D̃(θ ) at each vertex Πi, i = 1, ...N of the polytope
Θ . Assume that the parameter dependency in C̃2(θ ) and D̃21(θ ) can be removed
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and let W = (C̃2 D̃21)
⊥. Then there exists a solution of (6.37) if there exist γ < 1

and M ∈ R
qr×(m+p) and two symmetric matrices R,S ∈ R

(n+nwd+nwF )×(n+nwd+nwF )

solving the following SDP problem involving 2N + 1 LMI constraints

minγ s.t. :

(
Ã(Πi)R+RÃT (Πi) B̃1(Πi)

B̃T
1 (Πi) −γI

)
< 0 i = 1, ...,N (6.56)

(
W 0
0 I

)T
⎛
⎝ ÃT (Πi)S+ SÃ(Πi) SB̃1(Πi) C̃T

1 (Πi)
B̃T

1 (Πi)S −γI D̃T
11(Πi)

C̃1(Πi) D̃11(Πi) −γI

⎞
⎠(W 0

0 I

)
< 0 i = 1, ...,N

(6.57)(
R I
I S

)
≥ 0 (6.58)

6.4.3 Computational Issues

To derive a numerical solution from proposition 6.1 or 6.2, a computational proce-
dure is now considered. The computation of My,Mu,AF(Πi),BF(Πi), CF(Πi) and
DF(Πi) can be made using the following procedure:

• First solve the system of LMIs (6.43)-(6.45) minimizing γ to get the optimal
matrices R,S,M= (My Mu).

• Second compute the bounded real lemma matrix Xcl . Inspecting the proof, it
can be seen that Xcl is uniquely determined by (6.50) (remember that Xcl do not
depend on θ by assumption). Specially, Xcl is the unique solution of the linear

equation Xcl

(
R I

MT 0

)
=

(
I S
0 NT

)
where M,N ∈ R

(n+nwd+nwF )×(n+nwd+nwF ) are

two matrices satisfying MNT = I−RS
• Once Xcl , My and Mu have been determined, it is straightforward to verify

that (6.48) is now a LMI problem in AF(Πi),BF(Πi),CF(Πi) and DF(Πi) with
dimensions AF ∈ R

(n+nwd+nwF )×(n+nwd+nwF ), BF ∈ R
(n+nwd+nwF )×(p+m), CF ∈

R
qr×(n+nwd+nwF ) and DF ∈ R

qr×(p+m). Thus, the FDI filter matrices can be de-
duced from any solution of (6.48). LMI optimization algorithms can be used to
derive such numerical solution. This option is most appropriate when additional
constraints restrict the admissible AF(Πi),BF(Πi),CF(Πi) and DF(Πi) (e.g. fil-
ter poles can be restricted in a LMI region). However, as it has been outlined in
[103], when these restrictions are immaterial, a solution can be computed more
efficiently via elementary linear algebra.

Furthermore, because of the need of the computation of MNT = I−RS, one should
keep in mind that I −RS ought to be well conditioned. Unfortunately, I −RS will

be nearly singular if the constraint

(
R I
I S

)
≥ 0 is satured at the optimum. To avoid
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such difficulties, the idea consists in maximizing the minimal eigenvalue of RS,
and hence, to push them away from "1" such that I −RS are expected to be well
conditioned. This can be done, by e.g., changing the SDP optimization problem in
proposition 6.1 according to:

minγ+ ερ s.t
(6.43) and (6.44) ( or (6.56) and (6.57))(

R ρI
ρI S

)
≥ 0

(6.59)

where ε is a negative scalar.

6.4.4 Application to an Academic System

To illustrate the potential of the proposed approach, an illustrative example of aca-
demic nature is considered. Consider the following system definition (see eq. (6.16))

{
ẋ(t) = A(θ )x(t)+B(θ )u(t)+E1(θ )d(t)+K1(θ ) f (t)
y(t) =C(θ )x(t)+D(θ )u(t)+E2(θ )d(t)+K2(θ ) f (t)

(6.60)

where

A(θ ) =
(

0 θ2(t)
−0.1θ1(t) −θ3(t)

)
, B =

(
0

0.1

)
, E1 =

(
1 0
1 0

)
(6.61)

K1 =

(
1
1

)
, C = I2, D = 02×1, E2 =

(
0 1
0 1

)
, K2 = 02×1 (6.62)

The problem dimensions are as follows:

m = 2, p = 1, qd = 2, q f = 1

We assume that the energy content of the state noise (i.e. the term E1d(t)) is located
close to 0.1rd/s and that the energy content of the measurement noise (i.e. the term
E2d(t)) is located at high frequencies. With regards to the faults (the term f (t)), we
assume that they manifest themselves in low frequencies. The time-varying param-
eter vector is assumed to belongs to the polytope Θ of 8 vertices as illustrated in
figure 6.4, so that

Θ = {θ (t) : 5 ≤ θ1(t)≤ 8;0 ≤ θ2(t)≤ 4;2 ≤ θ3(t)≤ 4; θ̇ �< ∞} (6.63)

We assume that the system operates in a closed loop under a controller K so that
for all parameter trajectories, the closed-loop system is stable in both fault-free and
faulty situations (a LQ–based controller was designed for this purpose).

Following the theoretical developments presented in section 6.4, the design prob-
lem is put into the so-called quasi-standard form. This boils down to the following
definition of P(θ ,My,Mu):
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Fig. 6.4 The polytope Θ with N = 8 vertices

P(θ ,My,Mu) =

⎛
⎜⎜⎝

A(θ )+BK E1 K1 0
My(C+DK)+MuK MyE2 MyK2 −1

C+DK E2 K2 0
K 0 0 0

⎞
⎟⎟⎠ (6.64)

Note that here, we are only interesting in the fault detection problem. Thus, only
one filter is designed with qr = 1.

Due to the definition of d, it is natural to choose the shaping filter Wd that manage
the robustness requirements according to

Wd = diag(Ww,Wn) (6.65)

Ww and Wn allow to formulate the robustness objectives against the state and mea-
surement noises, respectively. Because we suppose that the energy content of the
state noise is located close to 0.1rd/s rad/s, Ww is fixed as a selective band-pass
filter at the frequency 0.1rd/s with static gain γw. i.e,

Ww = γw

2z
ω0

s(1+ 0.01s)

s2 + 2z
ω0

s+ 1
ω2

0

z = 0.5,ω0 = 0.1rd/s (6.66)

In others words, it is desired to have a rejecting behavior of Twr(θ , jω) in a fre-
quency range close to 0.1 rad/s.

With regards to the measurement noise, because we suppose that the energy con-
tent of the measurement noise is located in the high frequency range, Wn is fixed as
a low pass filter with static gain γn. i.e,

Wn = γn
1+ 10s

1+ 0.01s
(6.67)
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In others words, it is desired to have a rejecting behavior of Tnr(θ , jω) at high fre-
quencies. In the definition of Ww,Wn the parameters γw and γn have been introduced
in order to manage the robustness level of the fault detection scheme against w and
n separately. The high frequency zero in Ww is introduced to make Ww invertible.

For the purpose of the fault sensitivity objective, we consider that all faults we are
focused on manifest themselves in low frequencies. This boils down to considering
Wf as a low-pass filter defined according to

Wf = γ2
1

1+ 10s
(6.68)

where γ2 is introduced in order to manage the fault sensitivity level of the fault
detection scheme.

The computation of My,Mu,F(Πi), i = 1, ...,8 is next performed using lemma
6.1 and proposition 6.2. The SDP optimization problem is solved using the SDPT3
solver. The parameters γw, γn and γ2 have been (iteratively) tuned in order to ob-
tain the best robustness and fault sensitivity performance. This boils down to the
following results

My ≈ (0.005 0.01), Mu ≈−1.3451, γ2 = 5, γw = 0.1, γn = 2 (6.69)

Figure 6.5 illustrates the frequency behavior of F(Πi), i = 1, ...,8, i.e. the frequency
behavior of F(θ ) evaluated at each vertex of the polytopeΘ . As it can be seen, the
frequency behavior of F(θ ) is, say, scheduled by θ (t).

Fig. 6.5 Behavior of F(Πi, jω), i = 1, ...,8

The FDI unit is next implemented within the simulator of the system. F(θ ) is
also deduced from F(Πi), i = 1, ...,8 by means of the barycentric coordinates ofΘ ,
see figure 6.4 if necessary. The simulations are carried out for 150s. A fault occurs
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at t = 50s. The simulated fault corresponds to a step of magnitude 1. Figure 6.6-left
illustrates the time behavior of θ1(t) used for the simulation (the same behavior is
chosen for θ2(t) and θ3(t)). A zoom is too presented to appreciate the behavior of
θi(t), i = 1, ..,N. Figure 6.6-right illustrates the time behavior of the residual r(t) :

r(s) = Myy(s)+Muu(s)−F(s,θ )
(

y(s)
u(s)

)
for both fault-free and faulty situations.

Note that, as expected, the (static) amplification of the fault f (t) on r(t) is higher
than γ2 = 5.

As it can be seen, the fault can be easily diagnosed from r(t), e.g. using a simple
threshold–based decision making approach.

Fig. 6.6 Behavior of θ1(t) (left) - r(t) (right)

6.5 The LFR Approach

The second approach that is presented in this chapter is developed within the so-
called LFR (Linear Fractional Representation) setting [90, 91, 92, 93, 94]. In this
approach, all parameters θi(t), i = 1, ...,q entering in equation (6.16) are "pulled
out" so that the model appears as a LTI (Linear Time Invariant) nominal model P(s)
subject to a time-varying bounded artificial feedback Θ(t) (see figure 6.7 for easy
reference):

y(s) = Fu (P(s),Θ)

⎛
⎝ d(s)

f (s)
u(s)

⎞
⎠ , u(s) = K(s)y(s) (6.70)

Here, P denotes a LTI model andΘ is a block diagonal time-varying operator spec-
ifying how θ enters P, so that

Θ = blockdiag
(
θ1Ik1 , ....,θqIkq

)
(6.71)

where ki > 1 whenever the parameter θi is repeated. In this formalism, |θi(t)| ≤
1,∀t ⇔ ||Θ ||∞ ≤ 1. This can be assumed without loss of generality since the model
P can always be scaled.
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Fig. 6.7 The FDI filter design problem

Now, let us consider the following general form of a residual vector given by
(6.17)-(6.19), that is (see figure 6.7 for easy reference):

r(s) = Myy(s)+Muu(s)− ẑ(s), ẑ(s) = F(s,θ )
(

y(s)
u(s)

)
, r ∈R

qr (6.72)

Then problem 6.1 can be formulated in a LFR manner as follows:

Problem 6.2. Let f entering in (6.70) be detectable faults. Consider the residual
vector r defined by equation (6.72) and let the dynamical LPV filter F(θ ) be put
into a LFT-form so that F(θ ) = Fl(F,Θ) where the LTI filter F admits the following
representation:

F(s) =

(
CF1

CFθ

)
(sI −AF)

−1 (BF1 BFθ )+

(
DF11 DF1θ
DFθ1 DFθθ

)
(6.73)

Our aim is to derive simultaneously My,Mu and the state space matrices of the LTI
filter F that solve the following optimisation problem:

minMy,Mu,F(θ) γ1

s.t. ||Td→r(θ )||∞ < γ1
(6.74)

maxMy,Mu,F(θ) γ2

s.t. ||Tf→r(θ )||− > γ2
(6.75)

Td→r(θ ) and Tf→r(θ ) denote the LPV transfers between d and r, and f and r
respectively. γ1 and γ2 are respectively the robustness and the fault sensitivity
performance indexes for the residual vector (6.72). θ playing the role of a schedul-
ing variable, F(θ ) = Fl(F,Θ) gives the rule for updating the FDI filter state-space
matrices (6.73) based on the measurements of θ . The problem dimensions are
My ∈R

qr×m, Mu ∈R
qr×p, AF ∈R

nF×nF , DF11 ∈R
qr×(m+p), DFθθ ∈R

qΘ×qΘ , where
qΘ = dim(Θ). Note that if θ enters linearly in (6.16), then qΘ = q. ��
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Remark 6.3. In problem 6.2, it is assumed that the residual structuring matrices My

and Mu do not depend on θ . This assumption will be justified later, see section 6.5.2.

6.5.1 Solution to the Problem

In this section, a solution is provided to compute simultaneously My,Mu and the
state-space matrices of the dynamical LTI filter F. Similarly to the developments
presented in section 6.4, a sufficient condition is established in terms of a fictitious
H∞ LPV problem. It is then shown that a solution to this fictitious problem is a
solution of the original one. Unfortunately, as it will be seen later, this formula-
tion leads to a non-convex problem since it involves simultaneously the residual
structuring matrices My,Mu and the filter state-space matrices (6.73). To solve this
problem, a solution is derived by means of the small gain theory. It is then shown
that the design problem can be formulated in a Semi Definite Programming (SDP)
optimization problem. Computational issues are investigated and it is shown that the
proposed solution is structurally well-defined.

6.5.1.1 The Quasi-standard Setup

To solve problem 6.2, the design objectives are formulated in terms of loop shapes,
i.e. desired gain responses for the appropriate closed-loop transfers. The shaping
objectives are then turned into uniform bounds by means of the shaping filters.

To proceed, consider the setup illustrated on figure 6.7. Including K into P leads
to a new model PK as illustrated on figure 6.8.a . Now let Wd : ||Wd ||∞ ≤ γ1 and Wf :
||Wf ||− ≥ γ2 be the shaping filters associated to Td→r(θ ) and Tf→r(θ ) respectively.
It is assumed that Wd is invertible. This can be done without loss of generality since
it is always possible to add zeros in Wd to make it invertible. Then, there exists a
solution to (6.74) iff :

∃My,Mu,F(s) :
∥∥Td→r(θ )W−1

d

∥∥
∞ < 1 (6.76)

or, equivalently,
∃My,Mu,F(s) :

∥∥Td̃→r(θ )
∥∥
∞ < 1 (6.77)

where d̃ is a fictitious signal generating d through W−1
d (see figure 6.8.a for easy

reference).
The following lemma allows the sensitivity constraint (6.75) to be formulated in

terms of a fictitious H∞ one.

Lemma 6.2. Let WF be an invertible LTI transfer matrix defined such that ||Wf ||− =
γ2/λ ||WF ||− and ||WF ||− > λ where λ = 1+ γ2. Define the (fictitious) signal r̃ such
that r̃(s) = r(s)−WF(s) f (s) (see figure 6.8.a for easy reference). Then a sufficient
condition for (6.75) to hold is

∃My,Mu,F(s) :
∥∥Tf→r̃(θ )

∥∥
∞ < 1 (6.78)
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Fig. 6.8 (a): The weighted design problem, (b) The LPV filter structure, (c) the "quasi-
standard" structure

Proof: The proof is similar to those of lemma 6.1. ��
Following the above developments, the design problem can be re-casted in a frame-
work which looks like a standard H∞ problem for LPV systems, by combining both
requirements (6.77) and (6.78) into a single constraint: a sufficient condition for
My,Mu and F to solve problem 6.2 is

∥∥∥T(d̃T f T )T→(rT r̃T )T (θ )
∥∥∥
∞
< 1 (6.79)

where T(d̃T f T )T→(rT r̃T )T (θ ) denotes the transfer between (d̃T f T )T and (rT r̃T )T that
depends on PK , F, My, Mu, Wd and WF , see figure 6.8.a. This equation shows that
the original problem can be viewed as a gain-scheduling H∞ performance prob-
lem, where the time varying parameter vector θ enters both the plant and the
dynamical filter F. However, a particularity of this problem is that the transfer
T(d̃T f T )T→(rT r̃T )T (θ ) depend on the residual structuring matrices My and Mu that
are unknown.
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To apprehend this problem with the small gain theory, all parameter-dependent
components must be put into a single uncertainty block. To proceed, let us con-
sider the diagram depicted on figure 6.8.a. Including My, Mu, W−1

d and WF into PK

leads to a new model P(My,Mu) that depends on the matrix My and Mu (the mathe-
matical details about this manipulation is omitted here for clarity). Introducing the
augmented plant

P̃(s,My,Mu) =

⎛
⎝ 0 0 IqΘ

0 P(s,My,Mu) 0
IqΘ 0 0

⎞
⎠ (6.80)

it can be verified that the closed-loop mapping from exogenous inputs (d̃T f T )T to
output signals (rT r̃T )T can be expressed as:

(
r
r̃

)
= Fu

(
Fl
(
P̃(My,Mu),F

)
,

(
Θ 0
0 Θ

))(
d̃
f

)
(6.81)

This expression amounts to redrawing the diagram illustrated in figure 6.8.b as in
figure 6.8.c. It follows with (6.79) that a sufficient condition for My,Mu and F to
solve problem 6.2 is:

∥∥∥∥Fu

(
Fl
(
P̃(My,Mu),F

)
,

(
Θ 0
0 Θ

))∥∥∥∥
∞
< 1 (6.82)

This equation shows that the original problem can be viewed as a gain-scheduling
H∞ performance problem, where the time varying parameters θ enter both the plant
and the filter F. In other words, the FDI filter design problem seems to be a standard
LPV H∞ performance problem for the LTI plant P̃(My,Mu) in the face of the norm-

bounded block-repeated uncertainty

(
Θ 0
0 Θ

)
. As already mentioned, this is not the

case since the transfer P̃(My,Mu) depends on the structuring residual matrix My,Mu

that is a part of the FDI filter we are looking for. However, sufficient conditions
for solvability can be provided by means of the small gain theory using adequate
commutable scaling matrices and the projection lemma using a judiciously chosen
basis. This is the purpose of the next section.

6.5.1.2 The SDP Formulation

With some abuse of notation, let us denote the state-space realization of P(My,Mu)
according to

P(s,My,Mu) =

⎛
⎝Cθ

C1

C2

⎞
⎠(sI −A)−1

(
Bθ B1 B2

)
+

⎛
⎝Dθθ Dθ1 Dθ2

D1θ D11 D12

D2θ D21 D22

⎞
⎠ (6.83)

The problem dimensions are A∈R
n×n,Dθθ ∈R

qΘ×qΘ ,D11 ∈R
p1×m1 ,D22 ∈R

p2×m2 .
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From the above section, it can be verified that:

• B2,Dθ2,D22 are null matrices. This shows that the FDI filter does not affect nei-
ther the state, nor the measurements of the system, i.e. the FDI filter operates
obviously in open loop with regard to the system. The interested reader can re-
fer to [57] where details on the computation of B2,Dθ2,D22 are given for a very
similar problem.

• C1,D1θ and D11 depend on My,Mu.
• m1 = qd + q f , p1 = 2qr, m2 = qr and p2 = m+ p.

The following assumption, that greatly simplifies the following developments, is
made:

Assumption 1. We assume that D11 is a square matrix. This can be always fulfilled
by augmenting the problem with columns/rows of zeros. ��
This assumption will be justified later, see theorem 6.2.

Now, let Δ denote the structure set associated with Θ defined by (6.71) and LΔ
be the set of commutable scaling matrices defined so that

LΔ = {L > 0 : LΘ =ΘL,∀Θ ∈ Δ} ⊂ R
qΘ×qΘ (6.84)

The following theorem allows to formulate the design problem in terms of a SDP
optimization one:

Theorem 6.1. Consider Δ , LΔ and the state-space realization of P(My,Mu) defined
by (6.83). Let W be any matrix whose columns form a basis of the null space of
(C2 D2θ D21) and consider a matrix X �= 0 : X ∈R

m2×m2 . The H∞ requirement (6.82)
is satisfied and F(θ ) is internally stable and of full-order (i.e. nF = n) if there ex-
ist γ < 1,M = [My Mu] ∈ R

m2×p2 and pairs of symmetric positive definite matrices
(R,S) ∈ R

n×n and (L3,J3) ∈ LΔ solving the following SDP problem:

minγ subject to:⎛
⎜⎜⎜⎜⎝

AR+RAT RCT
θ RCT

1 HT BθJ3 B1

CθR −J3 0 DθθJ3 Dθ1

HC1R 0 −γdiag
(
2XT X , I j

)
HD1θJ3 HD11

J3BT
θ J3DT

θθ J3DT
1θHT −J3 0

BT
1 DT

θ1 DT
11HT 0 −γI

⎞
⎟⎟⎟⎟⎠< 0 (6.85)

(
W 0
0 I

)T

⎛
⎜⎜⎜⎜⎝

AT S+ SA SBθ SB1 CT
θ L3 CT

1
BT
θ S −L3 0 DT

θθL3 DT
1θ

BT
1 S 0 −γI DT

θ1L3 DT
11

L3Cθ L3Dθθ L3Dθ1 −L3 0
C1 D1θ D11 0 −γI

⎞
⎟⎟⎟⎟⎠
(

W 0
0 I

)
< 0 (6.86)

(
R I
I S

)
≥ 0,

(
L3 I
I J3

)
≥ 0, H = diag

([
XT −XT

]
, I j
)

(6.87)
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where “ j” denotes the number of rows added to D11 in order to verify assumption 1,
i.e. if no rows are added to D11 or if only columns are added, then H=

[
XT −XT

]
. ��

Proof: Consider the structure Δ and the associated set of commutable matrices LΔ

defined in (6.84). It follows that the block-repeated

(
Θ 0
0 Θ

)
admits the following

set of commutable scalings:

LΔ⊕Δ =

{(
L1 L2

LT
2 L3

)
> 0 : L1,L3 ∈ LΔ , L2Θ =ΘL2,∀Θ ∈ Δ

}
⊂ R

2qΘ×2qΘ

(6.88)
Then, from the small gain theory, the following statement yields:

Theorem 6.2. Let LD be the set of commutable scaling matrices defined so that

LD =
{
D > 0 : D Δ̃ = Δ̃D , ∀Δ̃}⊂ R

m1×p1 (6.89)

where Δ̃ is an uncertainty block introduced to close the loop between (d̃T f T )T and
(rT r̃T )T . If there exist γ < 1, My,Mu, scaling matrices L ∈ LΔ⊕Δ , D ∈ LD and a
LTI filter F that satisfies

∥∥∥∥
(

L 1/2 0
0 1√γD

)
Fl
(
P̃(My,Mu),F

)(L −1/2 0
0 1√γ D

−1

)∥∥∥∥
∞
< 1 (6.90)

then Fl(F,Θ) is internally stable and the H∞ performance (6.82) is satisfied. ��
Proof: The proof is a straightforward application of the small gain theory to the
particular structure of P(My,Mu), and specially taking into account the fact that the
FDI filter operates in open loop versus the system. Thus internal stability of the
closed loop ensures internal stability of F(Θ) = Fl(F,Θ). Note that since D11 is a
square matrix, then Δ̃ reduces to a single square block. This greatly simplifies the
definition of LD . Specially, D is a square matrix and this allows numerical facilities,
see [74].

Now, by virtue of the bounded real lemma [104] and the projection lemma [103],
the following theorem can be established:

Theorem 6.3. Consider the scaling matrix L introduced in theorem 6.2 and let

J =

(
J1 J2

JT
2 J3

)
∈ LΔ⊕Δ : L J = I. Consider the state-space realization of

P(My,Mu) defined in (6.83) and let NR and NS be any matrices whose columns form
bases of the null spaces of (BT

2 DT
θ2 DT

12 0) and (C2 D2θ D21 0) respectively. Then,
there exists a solution to (6.90) iff there exist symmetric matrices (R,S)> 0 ∈R

n×n

and M = [My Mu] ∈R
m2×p2 such that
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NT
R

⎛
⎜⎜⎜⎜⎝

AR+RAT RCT
θ RCT

1 BθJ3 B1

CθR −J3 0 Dθθ J3 Dθ1

C1R 0 −γI D1θJ3 D11

J3BT
θ J3DT

θθ J3DT
1θ −J3 0

BT
1 DT

θ1 DT
11 0 −γI

⎞
⎟⎟⎟⎟⎠NR < 0 (6.91)

NT
S

⎛
⎜⎜⎜⎜⎝

AT S+ SA SBθ SB1 CT
θ L3 CT

1
BT
θ S −L3 0 DT

θθL3 DT
1θ

BT
1 S 0 −γI DT

θ1L3 DT
11

L3Cθ L3Dθθ L3Dθ1 −L3 0
C1 D1θ D11 0 −γI

⎞
⎟⎟⎟⎟⎠NS < 0 (6.92)

(
R I
I S

)
≥ 0,

(
L3 I
I J3

)
≥ 0, nF = n (6.93)

Proof: The proof is an immediate application of the results presented in [105].
Because C1,D1θ and D11 depend on My,Mu, it is readily verified that the inequal-

ity (6.91) is not jointly affine in R,My and Mu and thus do not define a LMI problem.
In fact, a deeper investigation into the expression (6.91) reveals a BMI problem. To
overcome this problem, consider the matrices B2,Dθ2 and D12. As already outlined,
a particularity of our problem is that the matrices B2 and Dθ2 are null matrices. Fur-

thermore, it can be verified that D12 = −
⎛
⎝ Im2

Im2

O j

⎞
⎠, where “ j” denotes the number

of added rows in D11 to make it square. It follows that bases NR and NS of the null
spaces of (BT

2 DT
θ2 DT

12 0) and (C2 D2θ D21 0) are respectively of the form

NR = diag

(
In+qΘ ,

[
X
−X

]
, I j+qΘ+m1

)
, X �= 0 (6.94)

NS = diag
(
W, I j+qΘ+p1

)
(6.95)

where W denotes a matrix whose columns form a basis of the null spaces of
(C2 D2θ D21). X ∈ R

m2×m2 also denotes an arbitrary chosen matrix.
Taking into account these expressions of NR and NS, it can be verified that the in-

equalities (6.91)-(6.92) can be written as (6.85)-(6.86). This latest set of inequalities
is now jointly affine in My, Mu, R, S, L3 and J3, and therefore is now a LMI problem.
Finally, noting that γ enters linearly in (6.91)-(6.92) leads to the SDP formulation
stated in theorem 6.1, which terminates the proof. ��
Remark 6.4. Coming back to the statement of theorem 6.1, it can be noted that X is
a user-defined matrix and this may induce some conservativeness. Coming back to
the above developments, it can be verified that any X of full column rank leads NR

to be a basis for (BT
2 DT

θ2 DT
12 0). It follows that the choice of X is only guided by

numerical aspects, see section 6.5.3 where an example is discussed.
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6.5.1.3 Computational Issues

Theorem 6.1 provides sufficient conditions for the existence of My,Mu and the LTI
filter F. However, it does not offer a procedure to compute the state-space matrices
defined by (6.73). To derive these state-space matrices from the unique solution
(γ,R,S,L3,J3) the method discussed in [73, 105] is used. The proposed method also
parallels the algorithm proposed in section 6.4 and thus will not be described here.

However, some computational aspects need to be discussed. Because L J = I
(see theorem 6.3), it can be verified that

I−L3J3 = LT
2 J2 (6.96)

Then, one should keep in mind that I −L3J3 ought to be well conditioned in order
to allow the computation of L2,J2. Unfortunately, I−L3J3 will be nearly singular if

the constraint

(
L3 I
I J3

)
≥ 0 is satured at the optimum. The same remark yields for

I−RS.
To avoid such difficulties, the idea consists in maximizing the minimal eigenvalue

of RS and L3J3, and hence, to push them away from "1" such that I−RS and I−L3J3

are expected to be well conditioned. This can be done, by e.g., changing the SDP
optimisation problem in theorem 6.1 according to:

minγ+ ερ s.t
(6.85) and (6.86)(

R ρI
ρI S

)
≥ 0,

(
L3 ρI
ρI J3

)
≥ 0

where ε is a negative scalar.
Furthermore, since the computation of the residual vector r involves the compu-

tation of F(θ ) = Fl(F,Θ), it is natural to ask about the existence of this lower LFR
for all admissible values θ (t). Taking into account the state-space matrices defined
by (6.73), Fl(F,Θ) exists iff the matrix

I −DFθθΘ (6.97)

is invertible ∀Θ , ||Θ ||∞ ≤ 1. Coming back to the developments given in the previous
section, and specially the small gain theorem used to state (6.90), it is guaranteed

that Fu

(
Fl
(
P̃(My,Mu),F

)
,

(
Θ 0
0 Θ

))
exists ∀Θ , ||Θ ||∞ ≤ 1. It follows that the in-

version of the matrix

I−
(

DFθθ DFθ1D2θ
Dθ2DF1θ Dθθ +Dθ2DF11D2θ

)(
Θ 0
0 Θ

)
(6.98)

is guaranteed ∀Θ : ||Θ ||∞ ≤ 1. Since, by construction Dθ2 = 0, if follows that the
inversion of (6.98) implies that of (6.97). In other words, the existence of F(θ ) =
Fl(F,Θ) is guaranteed for all parameter trajectories.
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Finally, it should be outlined that, because the proposed procedure optimizes
My, Mu and F simultaneously, there may exist no unique solution for the part of
the fault detection filter consisting of M = [My Mu] and the static part of F, as the
final residual filter includes the subtraction of these two parts, see equation (6.72).
More precisely, this problem is concerned by DF11, see eq (6.73). A solution to
this problem consists in adding constraints on M to the LMIs (6.91)-(6.93) and/or
to add an optimization objective on some functional of M. For instance, one useful
constraint consist of the normalization constraint

∑
j

Mi j = 1, ∀i (6.99)

restricting the set of admissible solutions. However we argue that this problem is
not so crucial since γ entering in the SDP optimization problem (6.91)-(6.93) is
minimized, i.e., the fault detection performance are optimized that is fundamentally
the problem we want to solve. Note that in some cases, DF11 may be found to be
zero, thus vanishing the need of additional constraints on M. This fact has already
been observed in e.g., [52, 89, 60, 78]. Note that the same remark yields for the
polytopic approach presented in the section 6.4.

6.5.2 The Case of Parameter-Dependent Residual Structuring
Matrices

Consider now the case of parameter-dependent residual structuring matrices defined
so that:

r(s) = My(θ )y(s)+Mu(θ )u(s)− ẑ(s), ẑ(s) = F(s,θ )
(

y(s)
u(s)

)
, r ∈ R

qr

(6.100)
Our aim is to derive simultaneously My(θ ), Mu(θ ) and the state space matrices of
the LTI filter F defined by (6.73), that solve the optimization problem defined by
equations (6.74)-(6.75).

A particularity of this formulation is that the time varying parameters enter now
both the structuring matrices and the filter F(θ ) = Fl(F,Θ). To apprehend this prob-
lem with the small gain theory, we must first gather all parameter-dependent com-
ponents into a single uncertainty block. To proceed, let M(θ ) =

(
My(θ ) Mu(θ )

)
be

put into a LFT-form so that:

M(θ ) = Fl(M,Θ), M=

(
M11 M1θ
Mθ1 Mθθ

)
, M11 ∈ R

qr×(m+p), Mθθ ∈ R
qΘ×qΘ

(6.101)
θ playing the role of a scheduling variable, equation (6.101) gives the rule for up-
dating My(θ ) and Mu(θ ) based on the measurements of θ .

Following the same developments than those presented in the previous sections,
it can be verified that a sufficient condition for M and F to solve the FDI filter design
problem is (see figures 6.9 for easy references):
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Fig. 6.9 (a): The weighted design problem, (b) The LPV filter structure, (c) the "quasi-
standard" structure

∥∥Fu
(
Fl
(
P̃(M),F

)
,diag(Θ ,Θ ,Θ)

)∥∥
∞ < 1 (6.102)

This equation shows that the original problem can be viewed as a gain-scheduling
H∞ performance problem in the face of the norm-bounded block-repeated uncer-
tainty diag(Θ ,Θ ,Θ).

Applying the small gain theory to the setup illustrated in figure 6.9.b leads to the
set of commutable scaling matrices LΔ defined according to LΔ = {L > 0 : LΘ =
ΘL,∀Θ ∈ Δ} ⊂R

2qΘ×2qΘ . Clearly, the dimension of this new set LΔ is twice bigger
than those defined for constant residual structuring matrices and this drives to con-
servative solutions. The same argument yields for the set LΔ⊕Δ ⊂ R

3qΘ×3qΘ . Thus,
it is preferred constant residual structuring matrices at this stage. Note that some
solutions to this problem may exist by using e.g. the full-block multipliers-based
approach proposed in [75] or the parameter-dependent quadratic Lyapunov function
technique presented in [106].

Finally, as the final residual filter includes the subtraction of My(θ )y+Mu(θ )u
and Fl(F,Θ), another solution to this problem may consist in including M11,M1θ ,
Mθ1, Mθθ into DF11,DF1θ ,DFθ1,DFθθ respectively. Even if this leads to the same
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level of fault detection performance (see the discussion in section 6.5.1.3), it could
be verified that in this case, it is impossible to separate M11,M1θ ,Mθ1,Mθθ from
DF11,DF1θ ,DFθ1,DFθθ and thus to determine the expression of My(θ ) and Mu(θ );
This is thought to be an important aspect of the proposed technique from a practical
point of view since these latest matrices address the structuration of the residual
generator. Note that the same remark yields for the polytopic approach presented in
the section 6.4, but it is less crucial in terms of conservativeness.

6.5.3 Illustrative Example

To illustrate the potential of the proposed approach, an illustrative example of aca-
demic nature is considered. Consider the following system:

G(θ ) :

{
ẋ = A(δ )x+Bu+K1 f
y =Cx+ n

(6.103)

A(δ ) =
(

0 δ2

−0.1δ1 −δ3

)
, B =

(
0

0.1

)
, K1 =

(
1
1

)
, C = I2 (6.104)

f denotes the fault to be detected and n is the measurement noise which is assumed
to be high frequency signals located in the frequency range [100rd/s,+∞[. δi(t), i =
1,2,3 are assumed to vary in the following bounds

5 ≤ δ1(t)≤ 8, −2 ≤ δ2(t)≤−1, 2 ≤ δ3(t)≤ 4

with arbitrary time variations. It is assumed that the system operates in a feedback
control loop so that the closed loop is internally stable (a LQ controller has been
designed for this purpose).

Following the above presented developments (see section 3), the system is
put into a LFR form according to the setup illustrated in figure 6.8.c. This boils
down to the block diagonal time-varying operator Θ defined according to Θ =
diag(θ1,θ2,θ3) which has been normalized so that |θi| ≤ 1, i = 1,2,3. The prob-
lem dimension are q = qΘ = 3, qr = 1, qd = 1, q f = 1, m = 2, p = 1.

The shaping filters Wd and Wf that allow to specify the robustness and the sensi-
tivity objectives have been fixed according to:

Wd = 10
1+ 10−2s
1+ 10s

I2, Wf = 0.1
1

1+ 2s
(6.105)

By this choice, it is required:

• S.1) an attenuation factor of, at least, 40dB of n(t) on the residual r(t) ∀θ (t) and,
• S.2) an amplification factor of, at least, −20dB of f (t) on r(t) in the frequencies

Ω = [0rd/s,0.5rd/s] ∀θ (t).
Lemma 6.2 and theorem 6.1 are then used to derive My, Mu, F(θ ). Since qr = 1,
qd = 2 and q f = 1, one row of zeros is added to C1,D1θ ,D11 and D12 in order
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to satisfy assumption 1. For the purpose of the SDP optimisation problem (6.85)-
(6.87), the SDPT3 solver is used.

Five different values of X are considered for numerical aspects, see remark 6.4.
The obtained results are listed in table 6.1. From this table, it is observed that X
does not influence the optimal value of γ . Furthermore, it is observed that four cases
are ill-conditioned. The cases X = 1,10,20 reveal that, due to numerical difficulties
in the SDP solver, the negative definite constraints for some LMIs can not be nu-
merically guaranteed. The case X = 500 is concerned by the constraint L J = I
which is tested a posteriori, i.e., when the optimization procedure has succeeded.
Specially, it is observed that L1J2 +L2J3 = 0 is not fulfilled.

Table 6.1 Numerical aspects of the optimization problem (6.85)-(6.87)

X γopt Numerical difficulties
1 0.9911 constraintΨ +P′ΩQ+Q′ΩP < 0 beyond the solver precision (λi ≈−8,4.10−13)
10 0.9909 constraint eq. (6.86) beyond the solver precision
15 0.9918 no problem detected
20 0.9908 constraintΨ +P′ΩQ+Q′ΩP < 0 beyond the solver precision(λi ≈−1,15.10−12)
500 0.9890 L1J2 +L2J3 = 0 not fulfilled

Finally, it is observed from table 6.1 that X = 15 yields a better conditioned
problem. The found computed solution is given according to:

Mu = 1.7151 My = [−0.3494 − 0.3657]

AF =

⎛
⎜⎜⎜⎜⎝

−4.3425 −2.3359 4.2194 3.5534 −7.0176
−2.5577 −2.3404 2.9579 3.1445 −9.3983
−0.8242 −0.2675 −0.1067 −0.7127 5.0677
−0.0250 −0.3128 0.0101 −0.7254 0.4713
−0.0077 −0.0092 0.0932 2.5985 −12.0599

⎞
⎟⎟⎟⎟⎠

(
BF1 BFθ

)
=

⎛
⎜⎜⎜⎜⎝

−0.0765 −0.1433 −0.0316 206.8172 401.1529 608.1251
−0.5659 −1.0620 −0.0147 135.0142 −151.9848 396.9957
−0.3733 −0.7007 0.0028 −55.8217 51.6555 −164.1381
0.0020 0.0038 0.0003 2.7347 −1.0040 8.0410
−0.0003 −0.0005 0.0000 −0.0150 0.0068 −0.0442

⎞
⎟⎟⎟⎟⎠

(
CF1

CFθ

)
=

⎛
⎜⎜⎝

0.0000 0.0000 −0.0000 −0.0025 −1.8635
−0.0001 0.0002 −0.0002 −0.0031 0.0152
0.0017 0.0030 −0.0049 −0.0302 0.1374
−0.0003 0.0004 −0.0005 −0.0071 0.0344

⎞
⎟⎟⎠

(
DF11 DF1θ
DFθ1 DFθθ

)
=

⎛
⎝−0.2218 −0.4337 1.7144 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎠
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Fig. 6.10 The principal gains σ (Td→r( jω)) / σ
(
Tf→r( jω)

)
, the objectives |Wd( jω)| /∣∣Wf ( jω)

∣∣ and the poles of F(Θ) for some fixed values of θi(t), i = 1,2,3 - Behaviour of
r(t)

To provide a deeper insight into the solution, the principal gains σ (Td→r( jω))
and σ

(
Tf→r( jω)

)
are plotted versus the required objectives |Wd( jω)| and

∣∣Wf ( jω)
∣∣

for some arbitrary fixed values of θi(t), i = 1,2,3, see Figure 6.10. Note that these
plots only offer necessary conditions since the time-varying aspect of θi(t), i= 1,2,3
is not considered. However, it can be argued that the required objectives speci-
fied by S.1) and S.2) are met since σ (Td→r( jω)) < |Wd( jω)| and σ

(
Tf→r( jω)

)
>∣∣Wf ( jω)

∣∣ ∀ω ∈Ω for all fixed θi(t), i = 1,2,3. Furthermore, the small gap between
the gains and the weighting functions illustrates a not too conservative solution. Fol-
lowing the statements in the theorem 6.1, we can claim that these conclusions still
yield for all θi(t), i = 1,2,3, since the optimal value of γ is found to be ≈ 0.9918.
Finally, the poles of F(Θ) = Fl(F,Θ) are plotted for some arbitrary fixed values of
θi(t), i = 1,2,3, see Figure 6.10. As it can be seen, the poles of F(Θ) lie in the left-
half complex plan for the considered values of θi(t), i = 1,2,3 and, again, following
the statements in the theorem 6.1, we know that it still holds for all θi(t), i = 1,2,3
with arbitrary time variations.
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The behavior of r(t) is illustrated in Figure 6.10. Arbitrary time varying signals
have been considered for the simulation of δi(t), i = 1,2,3. For the purpose of the
fault simulation, a step of magnitude “1" is considered between 50s ≤ t ≤ 100s. As
it can be seen, the required objectives specified by S.1) and S.2) are met. The fault
can be detected using, e.g., a threshold-based decision making algorithm.

6.6 The Case of Non-measured Parameters

In this section, we would like to come back to the assumption about measured pa-
rameters θi(t), i = 1, ...,q. The aim is to provide "good" solutions in the case of
non-measured parameters.

In the case when θ contains non-measured components (say θ1 as opposed to
θ2 that is assumed to be measured), it is possible to use the computed solution
F(s,θ ) ≡ F(s,θ1,θ2) to obtain a suitable approximation F(s,θ2) depending only
of θ2. There are several possibilities to robustly fit F(s,θ2) to F(s,θ1,θ2):

• The first solution aims at preserving the structure of F(s,θ1,θ2). This involves
finding a value θ 1 of θ1 which produces the best approximation F(s,θ2) ≡
F(s,θ1,θ2) by solving the following optimization problem

θ 1 = arg min
ρ∈Θρ

max
θ∈Θ

‖F(s,θ1,θ2)−F(s,ρ ,θ2)‖ (6.106)

where ||.|| is a measure of the quality of the approximated solution, e.g., the H2

or H∞ norms can be used for this problem.
• The second solution assumes for F(s,θ2) a certain parametric form F̃(s,θ2) (e.g.

affine, polynomial, rational..etc..) and fit the free parameters ρ by solving the
following optimization problem

ρ = arg min
ρ∈Θρ

max
θ∈Θ

∥∥F(s,θ1,θ2)− F̃(s,ρ ,θ2)
∥∥ (6.107)

• The third solution consists in fitting by globally minimizing a suitable worst-case
(weighted) system norm, that is:

max
θ∈Θ

∥∥(F(s,θ1,θ2)−F(s,θ2)
)

W (s,θ )
∥∥ (6.108)

where W (s,θ ) is a weighting function.

When using standard optimization tools to solve the above min-max parameter fit-
ting problems, the evaluation of the above criteria involves performing a worst-case
optimization-based search. Thus, function evaluations are potentially expensive, and
therefore an alternative is to replace the semi-infinite optimization problems by com-
putationally tractable finite dimensional optimization problems. A frequently used
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approximation method is to use instead the continuous domainΘ only a discrete set
of points ΘN = {θ (1),θ (2), ...,θ (N))} obtained, for example, by parameter griding.
By using a sufficiently dense grid of points, it is expected to obtain a satisfactory ap-
proximation of the continuous-case worst-case. One advantage of the gridding based
approach is the possibility to perform in parallel all function evaluations necessary
for the determination of worst-case maximum.

6.7 Application for Early Fault Detection in Aircraft Control
Surfaces Servo-Loops

The work presented in this section is undertaken within the European FP7 funded
ADDSAFE4 project. The goal is to propose new fault diagnosis techniques that
could significantly help developing environmentally-friendlier aircraft, by optimiz-
ing structural load design objectives. A Linear Parameter Varying (LPV) model-
based fault detection scheme is proposed for robust and early detection of faults
in aircraft control surfaces servo-loop. The proposed methodology is based on the
H∞/H− LPV technique proposed in the above section for LPV systems modeled in
a linear fractional representation (LFR) fashion.

The state-of-practice applied worldwide by all aircraft manufacturers to diagnose
Electrical Flight Control System (EFCS, a.k.a. Fly-By-Wire (FBW)) faults and ob-
tain full flight envelope protection at all times, consists mainly of hardware redun-
dancy in order to perform consistency tests, cross checks, voting mechanisms and
built in test techniques of varying sophistication [107]. This hardware-redundancy
fault diagnosis approach fits also into current aircraft certification processes for en-
suring the highest level of safety standards. Nevertheless, for the envisioned "sus-
tainable" aircraft of the future (i.e. more affordable, cleaner and quieter as stated by
the European Commission Vision 2020 objectives), the applicability of the current
state of practice is becoming increasingly problematic.

Highlighting the link between aircraft sustainability and fault detection, it can
be demonstrated that improving the performance of fault diagnosis in EFCS allows
to optimize the aircraft structural design (weight saving) and then to improve the
aircraft performance and de facto to decrease its environmental footprint (e.g. less
fuel consumption and noise). EFCS failure cases that may affect structural loads are
for example oscillatory failure cases [108, 109]. Similarly for the specific case of
control surface runaway (a.k.a. hard-over) [110, 111, 112] or jamming [112], the
reaction of the aircraft is a deflection of other control surfaces to compensate the
aircraft attitude leading to an increase of drag proportional to the amplitude and
to the origin of the failure. For instance, for the case of control surface jamming,
if this dissymmetry remains during a significant time it could generate fuel over-
consumption. The stake is the ability to correctly achieve the flight mission: if the
overconsumption remains undetected there is risk to not be compliant with regu-
lations like the ETOPS (an acronym for Extended-range Twin-engine Operational

4 Advanced Fault Diagnosis for Sustainable Flight Guidance and Control.
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Performance Standards, a regulation permitting twin-engined commercial air trans-
porters to fly routes that, at some points, are farther than a given distance flying time
from an emergency or diversion airport with one engine inoperative).

Towards this goal, a consortium of 2 industrial partners (AIRBUS and DEIMOS
SPACE), 6 research establishments and Universities (DLR, SZTAKI, CNRS-IMS,
Univ. of Leicester, Univ. of Hull and Delft University of Technology) has been estab-
lished with funding from the European Union 7th Framework Program (FP7). The
aim of the project, named Advanced Fault Diagnosis for Sustainable Flight Guid-
ance and Control (ADDSAFE), is to research and develop advanced model-based
fault diagnosis methods for aircraft flight control systems faults, predominantly sen-
sor and actuator malfunctions. The aircraft model used in the project has been pro-
vided by AIRBUS. It is equipped by 2 engine throttles, 4 ailerons (2 inboards and 2
outboards), 12 spoilers, 2 elevators, 1 rudder and 1 trimmable horizontal stabilizer.

The work presented in this section is undertaken within this project. The goal is
to propose a model-based fault diagnosis scheme for control surface servo-loops.
The failure scenarios concern an abnormal aircraft behavior caused by an actuator
or sensor failure in control surface servo-loops. More precisely, we investigate the
cases of control surface jamming or being disconnected from its actuator on the roll
axis, i.e. an aileron is stuck at a small deflection or disconnected from its actuator.

The conventional monitoring technique for such faults is industrially well mas-
tered and well characterized (high level of robustness and good performance). The
technique is validated and certified for implementation in the on board Flight Con-
trol Computer (FCC). It follows that any modification to this technique should pro-
vide, first of all, a viable technological solution ensuring good performance while
guaranteeing the same level of robustness. Moreover, the selection of any advanced
model-based monitoring solution necessarily includes a trade-off between the best
adequacy of the technique and its implementation level for covering an expected
fault profile, as well as its industrialization process with support tools for its de-
sign/tuning and validation. Very attractive advanced detection algorithmic solutions
would not be accepted without such industrial framework capability. A classical
monitoring technique may be preferred despite its smaller fault coverage thanks to
its simplicity and robustness, without risk of false alarm. On the other hand, for
future programs it could be necessary to detect earlier faults in control surfaces,
which means e.g. that the control surface has reached a smaller deflection when the
detection is confirmed. It follows that a good balance between conventional and in-
service monitoring solutions and model based techniques could be the right solution
to anticipate the more and more stringent requirements which would come in force
for future environmentally-friendlier programs.

The work presented in this paper should be understood in this context. The objec-
tive is to design a reliable FDI (Fault Detection and Isolation) scheme to diagnose
aileron jamming and disconnections.

Among a large number of possible model-based solutions, we focus on candi-
date methods which offer a reasonable computational burden while offering also
the possibility of reuse (or building around it) with adequate design and tuning
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engineering tools. We believe that the H∞/H− LPV technique proposed in section
6.5 could provide such a framework since:

• it offers an efficient paradigm to model nonlinear systems with on-line measur-
able state depending parameters,

• it provides stability and performance guarantees over a wide range of changing
parameters,

• it offers tunable design parameters through the so-called weighting functions that
allow the designer to specify the fault detection performance and thus to manage
the trade-offs.

6.7.1 Modeling the Aileron Servo-Loop

One of the benchmark problem considered in ADDSAFE is a scenario involving
abnormal aircraft behaviors that lead to the degradation of the aircraft performance.
In this section, we focus on ailerons. Such abnormal configurations are caused by
an actuator or a sensor failure in the control loop of a control surface, between
the Flight Control Computer (FCC) and the moving surface, including these two
elements.

The control surface (CS) servo-loop modeling, from the FCC to the CS, includ-
ing these 2 elements, is illustrated on figure 6.11. Referring to figure 6.11, xre f (in
degree) is the position order delivered by the FCC and y (in mm) is the measured
actuator position. n refers to the measurement noise. V0 is the opening of the valve
(which further controls the pressure and flow through the nonlinear dynamics) which
is considered here to be the control u computed according to a proportional law de-
noted Kc. Kiv refers to the valve model so that V0 = Kivi (with i in mA). Φ(xre f ) also
refers to the (nonlinear) conversion degree → mm. It is assumed that the only avail-
able signals are xre f (coming from the FCC) and y (a Linear Variable Differential
Transducer (LVDT) is used to measure y).

Fig. 6.11 The setup of the aileron servo-loop

The nonlinear model of the actuator (denoted "NL" in figure 6.11) is derived
from physical consideration, i.e. the rod speed is a function of the hydraulic pressure
delivered to the actuator and the forces applying on the control surface and reacted
by the actuator. The two main contributors are aerodynamic forces and the servo-
control load in damping mode of the passive actuator in the case of two actuators
per CS. This results in the following nonlinear state-space model:
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ẋ =−u

√
ΔP− Faero

S sign(u)

ΔPre f +
Ka
S u2

(6.109)

y = x (6.110)

x is the rod position and Faero represents the above mentioned aerodynamic forces.
S is the actuator piston surface area, ΔP is the hydraulic supply pressure really de-
livered to the actuator, ΔPre f is a reference differential pressure, at which the max-
imum rod speed performances are computed and Ka refers to the actuator damp-
ing coefficient (in case of two actuators per control surface in an active/passive
scheme). The minus sign in (6.109) is introduced for simplicity in the following
developments with the convention that Kiv is negative definite. The dimensions are
x ∈R

1,y ∈R
1,u ∈ R

1.

6.7.1.1 Nonlinear Parameter Varying (NLPV) Model

Following the results presented in [109], the main difficulty in eq. (6.109) comes
from the term Faero, so it was proposed in this paper to neglect Faero. In fact and to
be more precise, a complex model with identified aerodynamic databases is known
from AIRBUS, but for computational burden limitation and because of the required
monitoring performances, neglecting Faero was judged acceptable. Here, such an
assumption is not made and it is chosen to schedule Faero by means of the dynamic
pressure Pd , the angle of attack α , the Mach number Mach, the roll velocity p and
the rod position of the actuator x so that:

Faero =
Pd(b0 + b1.(α−αk p)+ b2x)

1+ a1x+ a2x2 + a3x3 (6.111)

with

b0(Mach) =

{
Cte if Mach < 0.7
∑4

i=0 b0iMachi otherwise
(6.112)

b1(Mach) =
3

∑
i=0

b1iMachi, αk(Mach) =
k

Mach
(6.113)

b2(Mach) =

{
Cte if Mach < 0.82
∑2

i=0 b2iMachi otherwise
(6.114)

To derive a suitable expression of Faero, the coefficients b0i,b1i,b2i,k of the polyno-
mial functions b0(Mach), b1(Mach),b2(Mach) and αk(Mach) have been estimated
using the data coming from the nonlinear high fidelity simulator provided by AIR-
BUS for different types of maneuvers, by means of a quadratic optimization proce-
dure. Then from (6.109),(6.110) and (6.111), it follows that the overall model of the
actuator can be written according to

{
ẋ =−u.g(x,u,θ )
y = x

(6.115)
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which results in a NLPV model scheduled by the parameter vector θ defined
according to:

θ = (Pd α Mach p sign(u))T , θ i ≤ θi ≤ θ i, i = 1, ..,5 (6.116)

Note that due to its definition, θ is bounded and measured in real time since the Air
Data Inertial Reference Units (ADIRUs) supply the measurement of Pd,α,Mach
and p. u can be easily computed according to

u = Kiv.Kc.(Φ(xre f ).xre f − y) (6.117)

xre f and y being measured, see above.

6.7.1.2 Modeling the Faults

With regards to the faults and following the ADDSAFE benchmark problem defini-
tion, three main fault profiles are considered:

i) "liquid" faults: the liquid failure adds to the normal signal;
ii) "solid" faults: the solid failure substitutes the normal signal.
iii)"disconnection" faults: the control surface is disconnected from its actuator.

The disconnection can be interpreted as the cancellation of the term Faero in (6.109)
since the control surface is no more connected to the rod, i.e. the disconnection of
the aileron vanishes the contribution of the aileron aerodynamic forces in (6.109).
Such an effect can be modeled according to

ẋ =−u

√√√√ΔP− (Faero+φ1(t))
S sign(u)

ΔPre f +
Ka
S u2

(6.118)

where φ1(t) =−Faero in case of disconnection and φ1(t) = 0 in fault free situations.
Liquid and solid jamming faults can be modeled as an abnormal variation of the rod
position, i.e.

y(t) = x(t)+φ2(t) (6.119)

where φ2(t) is an exogenous signal for liquid fault types and φ2(t) = −x(t)+ χ(t)
with χ(t) being the fault signal that substitutes the normal signal. Of course, φ2(t) =
0 in fault free situations. Using an approximation of the fault models in terms of an
additive fault type one, it follows from (6.115), (6.118) and (6.119) that the NLPV
model of the actuator can be written as

{
ẋ =−u.g(x,u,θ )+∑2

i=1 K1i fi

y = x+∑2
i=1 K2i fi

f = ( f1 f2)
T (6.120)

where (K1i fi,K2i fi) i = 1,2 is the ith fault signature associated to the ith fault mode
φi. Note that by definition, K12 = K21 = 0. This approximation makes sense as long
as the control law of the aileron servo-loop (see figure 6.11) keeps stability in faulty
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situations. The interested reader can refer to [113, 84] for a discussion of such an
approximation.

6.7.1.3 Towards a LPV Formulation

To formulate the model (6.120) in a fashion that is convenient for the H∞/H− LPV
paradigm described in section 6.5, the nonlinear equations (6.120) are approximated
by means of a first-order Taylor series expansion around the time varying reference
position point (x∗(t),u∗(t)). This boils down to the following LPV model:

{
ẋ = A(θ )x+B(θ )u+∑2

i=1 K1i fi

y = x+∑2
i=1 K2i fi

(6.121)

where the expressions of A(θ ) and B(θ ) are given by (6.122)-(6.123). In these
expressions, φ(x) = 1 + a1x + a2x2 + a3x3, θ = (Pd α Mach p x∗ u∗ θu)

T is the
scheduling parameters vector with θu = sign(u∗).

A(θ ) =−1
2

u∗
Pd.θu

φ(x∗).S

(
b2(Mach)
Φ(xre f )

+Faero(θ ) δφ(x)
δx

∣∣∣
x∗

)
√(

ΔP− Faero(θ)
S .θu

)
.
(
ΔPre f +

Ka
S u∗2) (6.122)

B(θ ) =−

√√√√ΔP− Faero(θ)
S .θu

ΔPre f +
Ka
S u∗2 +

Ka
S

u∗
2

(
ΔP− Faero(θ)

S .θu

)
√

ΔP− Faero(θ )
S .θu

ΔPre f +
Ka
S u∗2 .

(
ΔPre f +

Ka
S u∗2)2

(6.123)

Then, the model defined by equations (6.121), (6.122) and (6.123) can put into a
Linear Fractionnal Representation (LFR) such that:

y(s) = Fu(P(s),Θ)( f T (s) u(s))T (6.124)

withΘ(t) = blockdiag
(
θi(t)Iki

)
i = 1,7 (6.125)

In other words, all parameters θi, i = 1,7 entering in (6.122) and (6.123) are "pulled
out" so that equations (6.121) appear as a LTI nominal model P subject to an artifi-
cial block diagonal time-varying operator Θ(t) = blockdiag

(
θ1(t)Ik1 , ....,θ7(t)Ik7

)
specifying how each θi(t), i = 1,7 enters P where ki > 1 whenever the parameter
θi(t) is repeated, see the developments presented in section 6.5.

Unfortunately, it can be verified that θi, i = 1,7 enter A(θ ) and B(θ ) in a nonlin-
ear manner. More precisely, the nonlinearities come from the polynomial functions
introduced to model Faero and the square root function. Despite recent developments
on LFRs allow to consider the polynomial and rational dependencies in θi, i = 1,7,
there is no available technique able to derive from (6.122) and (6.123) an exact LFR
for the model (6.121). Thus, a solution to this problem results in the introduction of
hyper-parameters, leading obviously to a conservative LFR.
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To proceed, let us introduce the following hyper-parameters

ψ1(t) = A(θ ), ψ2(t) = B(θ ) (6.126)

This choice is guided by the fact that dim(x) = 1 and thus, that the conservativeness
introduced by this choice is thought not so important. Then, it could be verified that
(6.121) admits the following LPV LFR which is convenient for the LPV H∞/H−
technique presented in section 6.5.

y(s) = Fu(P(s),Ψ (t))( f T (s) u(s) n(s))T (6.127)

withΨ(t) = blockdiag(ψ1,ψ2) (6.128)

In this formulation, n denotes the measurement noise (those related to the LVDT
sensor).

To validate the LPV model of the actuator, equation (6.127) is implemented in the
AIRBUS nonlinear simulator and simulations are performed for 29 different flight
maneuvers. The estimated position ŷ = x̂ is plotted on figure 6.12 superposed with
the LVDT measurement, for a fault free situation. The (non normalized) behavior

Fig. 6.12 left: The estimated position ŷ = x̂ (black) and the LVDT measurement (blue) in
degrees - right: A(θ ) and B(θ ) - Coordinated turn (top) and Yaw angle mode maneuver
(bottom)
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of A(θ ) and B(θ ) are too presented on figure 6.12. To save place, figure 6.12 only
presents the results obtained for flying maneuvers that correspond to a left coordi-
nated turn maneuver (top) and a "yaw angle mode" maneuver (bottom), the flying
conditions corresponding to a nominal configuration.

Clearly, as it can be seen from figure 6.12, the LPV assumption takes all its sense
and the LPV model (6.127) successfully approximates the nonlinear behavior of the
actuator.

6.7.2 Design of the LPV H∞/H− Filter

The fault detection strategy that is proposed to detect liquid, solid and disconnec-
tion faults in control surface servo-loops consists of a slightly modification of the
fault detection scheme presented in section 6.5. It consists of a LPV H∞/H− filter
that generates a residual signal r robust against the measurement noise n and the
reference actuator position xre f delivered by the FCC while remaining sensitive to
the faults fi, i = 1,2, so that (see figure 6.13 for easy reference):

r(s) = F (s,Ψ )

(
ε(s)

xre f (s)

)
, i = 1,2 (6.129)

In other words, we do not consider the residual matrices My and Mu since dim(xre f )=
dim(ε) = dim(r) = 1 and thus that there is no need to look for a combination of any
kind of signals.

Fig. 6.13 Formulation of the H∞/H− problem (6.129)

Then, following the method described in section 6.5, the robustness and fault
sensitivity requirements are expressed in terms of loop shapes, i.e. of desired gain
responses Wd and Wf for the appropriate closed-loop transfers. These shaping ob-
jectives are then turned into uniform bounds by means of the shaping filters.

Because it is required robustness against the position order xre f and the mea-
surement noise n, it is natural to choose Wd according to Wd = diag(Wx,Wn). Wx

allows to specify robustness requirements against xre f and Wn allows to formulate
robustness objectives against n. An investigation of the energy content of xre f for
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different flight maneuvers reveals that it is located in low frequencies. So Wx is fixed
to a low pass filter with low cutting frequency ωx and static gain γx. With regard to
Wn, because we assume that the energy content of the measurement noise is located
in high frequencies, Wn is fixed to a low pass filter with cutting frequency ωn and
static gain γn. In other words, it is desired to reject the measurement noise n at high
frequencies.

For the fault sensitivity objectives and due to the definition of f , see equation
(6.120), it is natural to define the shaping filter Wf as Wf = diag(Wf 1,Wf 2). Fur-
thermore, because it is required to enforce fault sensitivity in low frequencies, Wf i

are chosen as low pass filters with cutting frequenciesω f i and static gain γ f i, i= 1,2.
The positive constants γx,γn,γ f i, i = 1,2 and ωx,ωn, ω f i, i = 1,2 are introduced

to manage the gain and the frequency behavior of Wx,Wn and Wf i, i = 1,2. By this
parametrization, proper weights Wd and Wf can be adequately tuned in order to
obtain the best achievable robustness and fault sensitivity performance.

The LPV fault detector (6.129) is then computed following Lemma 6.2 and The-
orem 6.1. The parameters γx,γn,γ f i, i = 1,2 and ωx,ωn,ω f i, i = 1,2 are optimized
by performing an iterative refinement. Because the goal is to minimize the effects of
xre f and n on the residual r while maximizing the effects of the faults fi, i = 1,2, a
trade-off between γx,γn,γ f i, i = 1,2 and ωx,ωn,ω f i, i = 1,2 is necessary. Specially,
Wf2 and Wn should be carefully designed since it could be verified that these two
weights address the same transfer. Fortunately, since the frequency characteristics
of f2 differ from those of n, the proposed parametrization provides a framework to
find a good balance between robustness against n and sensitivity against f2. After
some iterations, the obtained numerical values are found to be:

γx ≈ 1, γn ≈ 1, γ f 1 ≈ 0.045 γ f 2 ≈ 0.013
ωx ≈ 10rd/s, ωn ≈ 10rd/s, ω f 1 ≈ 1rd/s, ω f 2 ≈ 1rd/s

(6.130)

6.7.3 The Decision Making Algorithm

The final stage of the fault diagnosis scheme is concerned by the decision making
stage. The use of a simple thresholding strategy will give rise to many of false alarms
if the threshold is set too low, or increased missed detections if the threshold is
set too high. This section describes a solution to this problem. A time-dependent
threshold function is developed that exploits the additional information assumed
about the system.

Considering the definition of the residual r given by (6.129), it can be partitioned
as

r(s) = F1(s,Ψ )ε(s)+F2(s,Ψ )xre f (s) (6.131)

It follows that r can be written in fault free situation as (the Laplace variable is
omitted for clarity)

r =
F1(ψ)+F2(ψ)(1+KcKivFu(Pu,Ψ))

1+KcKivFu(Pu,Ψ )
xre f − F1(ψ)

1+KcKivFu(Pu,Ψ )
n (6.132)
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where Pu refers to P considering f = 0. Direct application of the H∞-norm definition
for LPV systems gives

∃ψ : ||r||22 ≤
∥∥∥∥F1(ψ)+F2(ψ)(1+KcKivFu(Pu,ψ))

1+KcKivFu(Pu,ψ)

∥∥∥∥
2

∞

...||xre f ||22 +
∥∥∥∥ F1(ψ)

1+KcKivFu(Pu,ψ)

∥∥∥∥
2

∞
||n||22 (6.133)

that is, there exists a parameter combination ψ that leads to the maximum amplifi-
cation of the reference signal xre f and the measurement noise n on the residual r in
terms of energy.

Because the preceding H∞ norms are constant and under the condition of energy
bounded measurement noise, condition (6.133) can be rewritten as

||r||22 ≤ κ2
1 ||xre f ||22 + τ2.κ2

2 (6.134)

where κ1 =
∥∥∥F1(ψ)+F2(ψ)(1+KcKivFu(Pu,ψ))

1+KcKivFu(Pu,ψ)

∥∥∥
∞

and κ2 =
∥∥∥ F1(ψ)

1+KcKivFu(Pu,ψ)

∥∥∥
∞

, τ being

an upper bound of ||n||2.
Equation (6.134) can then be used for fault detection in real-time. Indeed, we can

compute the threshold signal

G (t) = κ2
1 ||xre f ||22 + τ2.κ2

2 (6.135)

for each time t and declare a fault if ||r||22 > G (t) at some time t. However, the
use of the triangular inequality and the norm-bounding properties make condition
(6.134) a sufficient, but far from necessary for equation (6.132). Therefore, con-
dition (6.134) must be relaxed to make the decision strategy useful in practice. In
addition to bridging the gap between equations (6.132) and (6.134), there are other
reasons that motivate the modification of the threshold function (6.135). One reason
is that the fault detection filter F (s,ψ) and the threshold function G (t) are ill suited
(because H∞ is part of a worst-case criteria) for the critical fault detector design task
of trading off false alarm and missed detection rates. Thus, based on the structure
given by equation (6.135), the following reference-dependent threshold upper and
lower functions are computed for each time t in an attempt to compensate for these
difficulties:

Gu(t) = κ1xre f (t −ϕ)+κu
2 ,

Gl(t) = κ1xre f (t −ϕ)+κ l
2

(6.136)

A fault is then declared if r(t) > Gu(t) or r(t) < Gl(t). In (6.136), ϕ ,κ1,κu
2 ,κ

l
2 are

user-defined parameters that are tuned by analyzing [r(t) xre f (t)]T data records com-
ing from the simulator provided by AIRBUS, under a large flying conditions.
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6.7.4 Nonlinear Simulation Results

The LPV filter F (s,ψ) is next converted to discrete-time using a Tustin approxi-
mation and implemented within the nonlinear simulator provided by AIRBUS. To
make a final decision about the fault, the reference-dependent threshold functions
Gu(t) and Gl(t) are too implemented.

Fig. 6.14 Behavior of r(kTs), Gu(kTs) and Gl(kTs) - Fault free situations. From top left to
bottom right: i) a maneuver with engaged angle of attack protection, ii) a cruise flight, iii) a
left coordinated turn, iv) a yaw angle mode maneuver.

Fig. 6.15 Behavior of r(kTs), Gu(kTs) and Gl(kTs) - Fault free situations. pitch maneuver
with engaged protection (left) and nose up maneuver (right).
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Figures 6.14-6.165 illustrate the behavior of the residual r(kTs) (Ts being the sam-
pling period) and the decision test for a Monte-Carlo campaign of 2400 runs. The
operation range considered in the simulations corresponds to variations of mass,
altitude, position of center of gravity and Mach number defined by AIRBUS6. Fig-
ures 6.14-6.15 illustrate the behavior of the residual r(kTs), the reference-dependent
threshold functions Gu(kTs) and Gl(kTs) and the behavior of the decision test for
some fault free situations. The flight maneuvers done by the aircraft correspond to:

i) a maneuver with engaged angle of attack protection,
ii) a cruise flight,
iii)a left coordinated turn,
iv)a yaw angle mode maneuver,
v) a pitch maneuver with engaged protection and
vi)a nose up maneuver.

Figures 6.16 are concerned by the faulty cases, i.e. disconnection, liquid and solid
faults occur during the flight. A zoom is presented to better appreciate the detection
delay. As it can be seen, the proposed method is able to successfully diagnose the
considered faults with a very small detection delay.

Fig. 6.16 Behavior of r(kTs), Gu(kTs) and Gl(kTs) - Faulty situations. From top left to bottom:
disconnection, liquid and solid faults

5 For confidential reasons, the plots have been normalized.
6 For confidential reasons, the numerical values of these variations are not given.
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6.8 Conclusion

This chapter investigated the problem of model–based Fault Detection and Isolation
(FDI). A model–based FDI/FDD scheme is normally implemented as a computer
software algorithm. The main problem of the model–based approach regards the
real complex systems, where modeling uncertainty arises inevitably because of pro-
cess noise, parameter variations and modeling errors. The FDI/FDD of incipient
faults represents a challenge to model–based FDI/FDD techniques due to insepara-
ble mixture between fault effects and modeling uncertainty.

To carry out such FDI/FDD objectives, a general framework to design robust
FDD/FDI filters for LPV systems has been proposed. The procedure aims to gen-
erate a structured residual vector with guaranteed robustness and fault sensitivity
performance. The robustness objectives are expressed in terms of a minimization
problem using the H∞ norm for LPV systems, and the sensitivity requirement is for-
mulated in terms of a maximization constraint using the H− index for LPV systems.

Two solutions have been proposed depending on the manner the LPV system is
modeled:

• The first one is developed within the so-called polytopic setting. In this case,
it is assumed that all parameters θi(t), i = 1...q take their values in the domain
Θ which is assumed to be a convex polytope. Using jointly the vertex property
(convexity of the parametric polytope and its image by the system model state-
space matrices), the bounded real lemma and the projection lemma, a sufficient
condition is established in terms of a LMI optimization problem.

• The second approach is developed within the so-called LFR (Linear Fractional
Representation) setting [90, 91, 92, 93, 94], i.e. all parameters θi(t), i = 1, ...,q
entering in equation (6.16) are "pulled out" so that the model appears as a LTI
(Linear Time Invariant) nominal model P(s) subject to a time-varying bounded
artificial feedback Θ(t). Using jointly the small gain theory, the bounded real
lemma and the projection lemma, a sufficient condition is established in terms
of a LMI optimization problem. Computational aspects are discussed and it is
shown that the proposed solution is well-defined.

It is shown that the proposed methods offer a reasonable computational burden while
offering also the possibility of reuse (or building around it) with adequate design and
tuning engineering tools, since:

• it offers an efficient paradigm to model nonlinear systems with on-line measur-
able state depending parameters,

• it provides stability and performance guarantees over a wide range of changing
parameters,

• it offers tunable design parameters through the so-called weighting functions that
allow the designer to specify the fault detection performance and thus to manage
the trade-offs.

Both academic examples and simulated results coming from the high-fidelity simu-
lator provided by industrials demonstrate the benefit of the proposed approach.
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It should be pointed out that the proposed methods are based on a parameter-
independent Lyapunov matrix. The solution may then be conservative in some cases.
A solution to this problem may consist in using the full-block multipliers-based
approach proposed in [75]. Another approach may consist in using the parameter-
dependent quadratic Lyapunov function (PDQLF) technique presented in [106].

Finally, we would like to come back to the combination of (6.26) and (6.27) and
(6.77) and (6.78) into a single H∞ constraint. As explained, the proposed formula-
tion may yield conservative solutions since the minimized performance objective
includes two other channels (i.e. Td̃→r̃(θ ) and Tf→r(θ )) that are disturbing. A solu-
tion to this problem may consist in establishing two sets of LMIs for each constraints
using similar developments than those presented. This boils down to a set of 2× 3
LMIs, each set of 3 LMIs being dedicated to a H∞ constraint. Basically, this means
that two Lyapunov matrices (say X∞ and X−) are involved in the overall optimiza-
tion problem. We have already performed some designs using this philosophy but,
unfortunately, for LMI feasibility reasons, it is required to fix X∞ = X−. This obvi-
ously leads to conservative solutions and the overall gain in terms of fault detection
performance is not so clear and well defined. Following our experience, we argue
that it is preferred to carefully select the design objectives Wd and Wf for a given
fault detection problem.
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Chapter 7
LPV Control Approaches in View of Comfort
Improvement of Automotive Suspensions
Equipped with MR Dampers

Anh-Lam Do, Charles Poussot-Vassal, Olivier Sename, and Luc Dugard

Abstract. Many studies have shown the importance of automotive suspension sys-
tems in vehicle dynamics, see for instance [10], [26], [33] and references therein.
Except for passive suspensions whose characteristics are invariant, the semi-active
and active suspensions can change their properties by using controlled external sig-
nals (voltage, current...). This is why the latter suspensions have been studied in-
tensively in recent years. However, up to now, only the semi-active suspensions are
used widely in automotive industry. Indeed, compared with fully active suspensions,
semi-active ones can achieve the main performance objectives (see [17], [27]) while
they are smaller in weight and volume, cheaper in price, more robust and less energy
consuming (see also [9], [10], [16], [19]).

So far, the control problem for semi-active suspensions has been tackled with
many approaches during the last three decades. One of the first comfort-oriented
control methods, successfully applied in commercial vehicles, is the Skyhook con-
trol proposed by Karnopp et al. [18]. Then, optimal control [12], [34], clipped op-
timal control [24], [36], [11], H∞ control [30], [31] or Model Predictive Control
[4], [28] have been considered. Recently, two new control design methods for semi-
active suspensions using the LPV techniques have been presented. The first one,
proposed in [29], can be applied for all kinds of semi-active dampers where only
the bounds on damping coefficients and on the damper forces are necessary for
the controller design. In the other one, proposed in [7], the nonlinearities of the
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semi-active damper (the bi-viscosity and the hysteresis) are taken into consider-
ation. The comparison of these two recent LPV-based techniques on a nonlinear
Magneto-Rheological (MR) damper model is proposed this chapter.

The chapter is organized as follows: In section I, a brief bibliography concerning
the modelling of semi-active dampers is given and two specific control-oriented
models are detailed and will be used for the synthesis of the LPV controllers. In
section II, the control problem of automotive suspension control is formulated in a
common way so that the methods proposed in [29] (section III) and [7] (section IV)
can be applied. Section V is devoted to numerical simulations on a nonlinear quarter
car model. Some remarks and conclusions end this chapter.

7.1 Control-Oriented Models of MR Dampers

Recently, the Magneto-Rheological (MR) dampers have appeared to be one of the
most investigated devices in both industrial and academic studies on semi-active
suspension control. They use MR fluids whose characteristics can be changed
through the application of a magnetic field. Compared with other kinds of semi-
active dampers (like ER, friction dampers), they have great advantages like fast
time response as well as a stable hysteretic behavior over a broad range of temper-
ature, and a low battery voltage consumption. They represent a new generation of
semi-active dampers and are used in many applications like shock absorbers and
damping devices, clutches, breaks, actuators or artificial joints, operational earth-
quake dampers to reduce motion in buildings and of course in automotive systems.
Fig. 7.1 shows the schematic layout of an MR damper.

Fig. 7.1 Schematic layout of an MR damper
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7.1.1 Damper Modeling

The modeling of semi-active dampers is a challenging problem because of their
highly nonlinear behavior such as the bi-viscosity, the temperature dependency and
specially the hysteresis. Many modeling methods have been proposed and generally
they can be classified into two kinds: static model and dynamic model. Let us denote
Fdamper the damper force [N], xmr the damper deflection [m] and ẋmr the damper
deflection velocity [m/s], I is the current [A]. In the following, some well-known
damper models are briefly introduced.

• Dynamic Bouc-Wen model [3], [37]
{

Fdamper = c0ẋmr + k0(xmr − xmr0)+ γz
ż =−β |ẋmr|z|z|n−1 − δ ẋmr|z|n +Aẋmr

(7.1)

where c0, k0, A, γ , β , δ , n are the model parameters, x0mr is the critical deflec-
tion and z is the internal state that introduces some dynamics in the model and
accounts for the hysteresis phenomenon.

• Static model with Coulomb friction [33]:

Fdamper = cẋmr − csym|ẋmr|+ cnl
√
|ẋmr|sgn(ẋmr) (7.2)

where c, csym and cnl are the model parameters. This model describes the pres-
ence of the static friction as a constant term, function of the deflection speed
sign.

• Static Guo model [15]
The behavior of the semi-active damper is represented by the following nonlinear
equation:

Fdamper = a2

(
ẋmr +

v0

x0
xmr

)
+ a1 tanh

(
a3

(
ẋmr +

v0

x0
xmr

))
(7.3)

where a1 is the dynamic yield force of the MR fluid, a2 and a3 are related to the
post-yield and pre-yield viscous damping coefficients, v0 and x0 denote the ab-
solute value of hysteretic critical velocity ẋ0 and hysteretic critical deflection x0,
where ẋ0 and x0 are defined as the velocity and deflection when the MR damper
force is zero. The model is of semi-phenomenological type and based on a tan-
gent hyperbolic function that models the hysteresis and bi-viscous characteristic
of a damper.

• Non-linear black-box model (static or dynamic) [32]:
This kind of description is not based on a physical description of the device,
but aims at representing the non-linear input-output dynamical relationship. An
example of black box model for an electronic shock absorber is the following:

Fdamper = f (xmr ; ẋmr; ẍmr; ...;x(k)mr ; I; İ; Ï; ...; I(k)) (7.4)

where x(k)mr is the kth derivative of xmr and I(i) is the ith derivative of I.
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Remark 7.1. Note that, due to the high nonlinearity, one of the main difficulties is to
obtain accurate parameter identification results. Usually, the model validation will
require that all (or part of) the model parameters are current dependent.

Fig. 7.2 Realistic MR
damper force with bi-
viscosity (pre-yield and
post-yield viscous damping)
and hysteresis

Among these models presented above, the one (7.3) proposed by Guo is of interest.
Not only it fits with real dampers’ behaviors, but it has also a simple and elegant
formulation which can be extended for controller design purposes.

In [23], the authors have shown that if each coefficient in (7.3) is defined as a
polynomial function of the electric current, the obtained model will better approach
the real data. Below and in this chapter, a simpler version that includes only one
current dependent parameter, is considered as follows:

Fdamper =C1 tanh(C2ẋmr +C3xmr)+C4ẋmr +C5xmr +C6ẍmr (7.5)

+C7I tanh(C8ẋmr +C9xmr)

The parameters of the model (7.5) have been identified (see [21] and [22]) on the
test-rig at Metalsa 1 and are given in Tab. 7.1. It is worth noticing that the coefficients
in compression (ẋmr < 0) and extension (ẋmr ≥ 0) modes are different to better model
the non-symmetric characteristics.

With the presence of the current I in the MR damper force’s formulation, the
model (7.5) can be obviously used for controller design. However, the complexity
of this model is still high and can cause difficulties for the control problem. This
is why, in the following, two simpler formulations which have been used in the
controller design, are introduced.

1 www.metalsa.com.mx
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Table 7.1 Parameter values of MR damper (Model 7.5 - for simulation)

Parameter ẋmr ≥ 0 ẋmr < 0 Unit
C1 128.5 −128.6 [Ns/m]
C2 412.2 −489 [N/m]
C3 83.5 −204 [N]
C4 608.8 611.5 [N]
C5 5457.6 −2855.4 [s/m]
C6 3.9 4.2 [1/m]
C7 484.3 484.3 [1/m]
C8 6.5 6.5 [1/m]
C9 3.4 3.4 [1/m]

7.1.2 Controlled-Oriented Model 1

Though the nonlinearity of the damper should be taken into account in the controller
design, many studies have been based on a linear model of the damper:

Fdamper = cżde f (7.6)

where c is the varying damping coefficient and limited by [cmin,cmax]. Moreover,
the damper force must be limited by a maximal value, i.e |Fdamper| ≤ Fmax where
Fmax > 0.

The great advantage of the model is that it is very good for preliminary designs.
It means that many control methods can be used, many complex (multi-objective,
constrained...) problems can be formulated from this simple model and the design
performance optimality can be obtained (this point is interesting in terms of compar-
isons among different design methods, even though the optimal performances may
be not guaranteed in the implementation step).

In Tab. 7.2, the parameters of the semi-active damper used in this method are
given. The values cmin, cmax and Fmax are identified from the bounds of the real MR
damper used in Metalsa.

Table 7.2 Parameter values of damper

Parameter Value Unit
cmin 881 [Ns/m]
cmax 7282 [Ns/m]
Fmax 1400 [N]
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7.1.3 Controlled-Oriented Model 2

As mentioned previously, the model (7.5) approaches very well the behavior of a
real MR damper, in particular the hysteresis and the non-symmetric characteristics
(in compression and extension modes) are very well modeled. But it is unnecessarily
complex for control design. In [6] and [8], a simpler control-oriented model where
a single parameter depends on the input signal has been proposed and first studied.
According to the authors, a control-oriented model for semi-active damper can be
given by

Fdamper = c0ẋmr + k0xmr + fI tanh(c1ẋmr + k1xmr) (7.7)

where fI is the controllable force coefficient which varies according to the electrical
current I in the coil (0 ≤ fImin < fI ≤ fImax). In general, fI can be any positive and
invertible function of I. In the reference [5], fI is simply the described by

fI = ymrI (7.8)

where ymr is also a constant parameter.
Compared with the model (7.3) whose characteristics are static and uncontrol-

lable, the model (7.7) reflects the realistic behavior of an MR damper and ap-
proaches better the realistic MR damper model (7.5). This model (7.7) allows to
fulfill the passivity constraint of the semi-active damper and introduces a control
input fI (or I). Fig. 7.3 presents the dependency of the damper force to the input
current. Changing the current in the coil of an MR damper changes its characteris-
tics. Here, the bi-viscous and the hysteresis characteristics are clearly observed.
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Fig. 7.3 MR damper characteristics with different current values I: Force vs Deflection (Left)
and Force vs Velocity (Right) (Model 7.7)
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Table 7.3 Parameter values of an MR damper (Model 7.7 - for controller synthesis)

Parameter Value Unit
c0 810.78 [Ns/m]
k0 620.79 [N/m]
fImin 0 [N]
fImax 800 [N]
c1 13.76 [s/m]
k1 10.54 [1/m]
ymr 457.04 [N/A]

The parameters of the model (7.7) are given in Tab. 7.3 (see [5]).
In what follows, two control methods will be proposed according to the consid-

ered model (7.6) or (7.7). The validation of the control method will then be assessed
in simulation using the realistic nonlinear model (7.5).

7.2 Control Problem: Application in Automotive Suspension
Systems

7.2.1 Quarter Car Model and Performance Criteria

One of the most well-known applications of semi-active dampers in industry is the
automotive suspension system. To study the vertical dynamics of a car, i.e comfort
and road holding, the simple quarter vehicle, depicted in Fig. 7.4, is considered.

The model is simple and suitable for a preliminary design. It represents a single
corner of a vehicle. In this model, the quarter vehicle body is represented by the

�

zs

zus

zr

ms

mus

ks Semi-active
damper

kt

Fig. 7.4 Model of quarter vehicle with a semi-active damper
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sprung mass (ms) and the wheel and tire are represented by the unsprung mass (mus).
They are connected by a spring with the stiffness coefficient ks and a semi-active
damper. The tire is modeled by a spring with the constant stiffness coefficient kt .
As seen in the figure, zs (respectively zus) is the vertical displacement around the
equilibrium point of ms (respectively mus) and zr is the variation of the road profile.
It is assumed that the wheel-road contact is ensured.

By applying the second law of Newton, the dynamical equations of a quarter
vehicle are given by

{
msz̈s =−Fspring−Fdamper

musz̈us = Fspring +Fdamper −Ftire
(7.9)

where Fspring is the dynamical spring force, Ftire = kt(zus − zr) is the dynamical tire
force and Fdamper is the damper force. Let us denote zde f = zs − zus the damper
deflection, żde f = żs − żus the damper deflection velocity.

In this study, the model parameters correspond to the 1/4 Renault Mégane Coupé
(1/4 RMC) test car available in MIPS Laboratory (Mulhouse, France) (see in [39]),
as given in Tab. 7.4. It is important to notice that two spring models will be used:

• For controller design, the spring force is given by

Fspring = kszde f (7.10)

• For simulation, the spring has a nonlinear characteristic (see Fig. 7.5).
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Fig. 7.5 Nonlinear RMC Spring

In the following, the criteria used to evaluate the performances of the semi-active
suspension systems are given. By abuse of language, let denote z̈s/zr (respectively
(zus − zr)/zr)) the “frequency response" from the road disturbance zr to the vehicle
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Table 7.4 Parameter values of the Renault Mégane Coupé quarter car model

Parameter ms [kg] mus [kg] kt [N/m] ks [N/m]
Value 315 37.5 29500 210000

body acceleration z̈s (respectively the dynamic tire deflection zus − zr), i.e. the gain
of the transfer function for LTI systems or the gain computed using the “variance
gain” algorithm in [34] for nonlinear systems.

In general, the vehicle body acceleration between 0-20 Hz should be filtered to
guarantee a good ride comfort, although it is worth noting again that the human
is the most sensible to vertical acceleration around 4-8 Hz (ISO 2631). Besides, to
maintain the road-wheel contact, it is necessary that the dynamic tire force is smaller
than g(ms+mus) (where g is the gravity). Hence, for the road holding improvement,
the dynamic tire force kt(zus−zr), in other words the dynamic tire deflection zus−zr,
should be small in the frequency range 0-30 Hz. Note also that the road holding is
improved by limiting the up and down bouncing of the wheel zus around its res-
onance 10-20 Hz. With these remarks, the performance criteria in the frequency
domain are explicitly described as follows

• Comfort

JCF = min
∫ 20

0
z̈s/zr( f )d f (7.11)

• Road holding

JRH = min
∫ 30

0
(zus − zr)/zr( f )d f (7.12)

The objectives of the control design are to minimize the two criteria that are consis-
tent with the ones given in [31] and [33].

7.2.2 H∞ Problem

In this chapter, both proposed control methodologies in Sections 7.3 and 7.4 will
be designed in the H∞ framework for polytopic systems. Indeed some schedul-
ing parameters will be used later, representing, in some sense, the damper non-
linearities. In order to allow for the comparison of these approaches, the same
control configuration is used, i.e corresponding to a set of measurements and con-
trolled outputs.

The control configuration for semi-active suspensions is given in Fig. 7.6. The
controlled outputs are the vehicle body acceleration z̈s (for the ride comfort im-
provement) and the wheel displacement zus (for the road holding improvement)
(see the performance criteria (7.11) and (7.12)). The measurement outputs are the
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Fig. 7.6 LPV control scheme

suspension deflection zde f and suspension deflection velocity żde f . To obtain the
desired closed-loop performances, the weighting functions on controlled outputs
{Wz̈s ,Wzus} and disturbance input Wzr are used.

In order to optimize the weighting functions presented in the next section, Wzr

is kept constant and the weighting functions on the controlled outputs are second
order transfer functions:

Wzr = 3× 10−2 (7.13)

Wz̈s = kz̈s

s2+ 2ξ11Ω11s+Ω112
s2+ 2ξ12Ω12s+Ω122

(7.14)

Wzus = kzus

s2+ 2ξ21Ω21s+Ω212
s2+ 2ξ22Ω22s+Ω222

(7.15)

Let us define the set of parameters

ν = [Ω f Ω11 Ω12 ξ11 ξ12 kz̈s Ω21 Ω22 ξ21 ξ22 kzus ]
T (7.16)

which, in the sense of the optimization problem, is the decision vector.
Consider the generalized plant made of the quarter vehicle model (supposed to

be formulated in the LPV framework, as explained later in Sections 7.3 and 7.4) and
of the weighting functions, represented as:
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ξ̇ = A ν(ρ)ξ +Bν
1 (ρ)w̄+Bν

2 u

z̄ = C ν
1 (ρ)ξ +Dν

11(ρ)w̄+Dν
12u (7.17)

y = C2ξ +D21w̄

where ξ =
(

xT xw
T
)T

with x the state of the quarter vehicle model and xw the state
vector of the weighting functions, ρ the vector of scheduling parameters, w̄ is the
vector of input disturbances, z̄ is the vector of controlled outputs. The LPV controller
is defined as follows

K(ρ̄) :

(
ẋc

u

)
=

(
Aν

c (ρ) Bν
c (ρ)

Cν
c (ρ) Dν

c (ρ)

)(
xc

y

)
(7.18)

where xc, y and u are respectively the state, the input and output of the controller
associated with the system (7.17). All matrices have appropriate dimensions.

Remark 7.2. Since ν represents the vector of the weighting function parameters, it
is used as an exponent in the notation of equations (7.17)-(7.18) to emphasize the
dependence of the generalized plant, and then of the controller, on the parameters
of the weighting functions.

H∞/LPV problem - The objective of the synthesis is to find an LPV controller K(ρ)
of the form (7.18) such that the closed-loop system is quadratically stable and that,
for a given vector of weighting function parameters ν , a given positive real γ , the
L2-induced norm of the operator mapping w̄ into z̄ is bounded by γ i.e

∀ρ̄ ∈Θ ,
‖z̄‖2

‖w̄‖2
≤ γ (7.19)

Here the polytopic approach with a quadratic Lyapunov function is used. It is stated
that for known weighting functions and a suitable pre-defined real positive scalar
γ , the sufficient condition that solves the H∞/LPV problem is given by Eq. (7.20)-
(7.21) where the decision variables are X , Y , Â, B̂, Ĉ and D̂ (see the detail of the
solution in [41]). Note that the weighting function parameter set ν appears in the
LMIs problem to optimize the controller.

⎡
⎢⎢⎣

Mν
11 (ρi) ∗ ∗ ∗

Mν
21 (ρi) Mν

22 (ρi) ∗ ∗
Mν

31 (ρi) Mν
32 (ρi) −γIm ∗

Mν
41 (ρi) Mν

42 (ρi) Mν
43 (ρi) −γIp

⎤
⎥⎥⎦≺ 0 (7.20)

[
X I
I Y

]
� 0 (7.21)

for i = 1 : 4
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where

Mν
11(ρi) = A ν(ρi)X +XA ν (ρi)

T +B2Ĉ(ρi)+ Ĉ(ρi)
T BT

2

Mν
21(ρi) = Â(ρi)+A ν (ρi)

T +C T
2 D̂(ρi)

T BT
2

Mν
22(ρi) = YA ν (ρi)+A ν(ρi)

TY + B̂(ρi)C2 +C T
2 B̂(ρi)

T

Mν
31(ρi) = Bν

1 (ρi)
T +DT

21D̂(ρi)
T BT

2

Mν
32(ρi) = Bν

1 (ρi)
TY +DT

21B̂(ρi)
T

Mν
41(ρi) = C ν

1 (ρi)X +D12Ĉ(ρi)

Mν
42(ρi) = C ν

1 (ρi)+D12D̂(ρi)C2

Mν
43(ρi) = Dν

11(ρi)+D12D̂(ρi)D21

The controller Kci at vertex i is then reconstructed as

Dν
c (ρi) = D̂(ρi)

Cν
c (ρi) =

(
Ĉ(ρi)−Dν

c (ρi)C2X
)

M−T

Bν
c (ρi) = N−1

(
B̂(ρi)−YB2Dν

c (ρi)
)

Aν
c (ρi) = N−1

(
Â(ρi)−YA(ρi)X −YB2Dν

c (ρi)C2X
)

M−T

−Bν
c (ρi)C2XM−T −N−1YB2Cν

c (ρi)

(7.22)

where M, N are defined such that MNT = In −XY which can be solved through
a singular value decomposition and a Cholesky factorization. The global H∞/LPV
controller is then the convex combination of these local controllers.

7.2.3 Controller Optimization for Semi-active Suspensions

It is well-known that the key step of the H∞ control design depends on the selec-
tion of the weighting functions, which is linked to the engineer skill and experience.
In this section, one applies the optimization procedure for the H∞/LPV controller
optimization of the semi-active suspension control presented in [7]. Let us remark
that the control objective is to minimize the frequency-dependent performance cri-
teria (7.11)-(7.12) for closed-loop suspension systems, rather than to minimize its
induced L2-L2 gain. For this reason, in the following, an LPV controller is sought
that solves the following problem:

minimize JD (7.23)

subject to LMIs (7.20)-(7.21)

where

JD =

[
JD

Comfort
JD

RoadHolding

]
(7.24)
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JD
Comfort

=
Nv

∑
i=1

αi

∫ 12

0
(z̈s/zr( f )i)d f (7.25)

JD
RoadHolding =

Nv

∑
i=1

αi

∫ 20

10
(zus/zr( f )i)d f (7.26)

Note that the bounds of the integrals are chosen to emphasize the frequency ranges
where the comfort and road holding are the most significant. Note also that, in the
equations above, “D" is used to differentiate these design objective functions with
the ones in Section 7.2.1 and the index “i" stands for the ith vertex of the polytope
Θ (see Fig. 7.10). The number of elements in each sum is Nv the number of vertices
of the considered polytope of the LPV system (7.17) (supposed that the polytopic
approach is used). The scalars αi are weighting parameters satisfying αi ≥ 0 and
Nv

∑
i=1

αi = 1.

It can be seen that the cost function (7.24) is not convex, so (7.23) is a nonconvex
optimization problem. Following [7], the purpose is to get the set of parameters
ν (described in Eq. 7.16) by using the genetic algorithms (GAs) such that JD is
minimized.

Remark 7.3. In many cases, to preserve the performance of the closed-loop system
in the presence of input saturation and nonlinearities (for e.g in this study, in the
simulation step, the nonlinear quarter vehicle model will be used), a stable stabi-
lizing controller is required. Other advantages for the use of stable controllers con-
cern the practical aspects. The stable controllers are better implemented than the
unstable ones and the closed-loop system (provided that the open-loop system is
already stable, e.g open-loop semi-active suspension systems) remains stable even
when the feedback sensors fail. In this study, the theoretical solution for the exis-
tence of a stable LPV controller is not given. However, a stable LPV controller can
be obtained by eliminating the “unstable solutions" corresponding to at least, one
unstable local controller during the synthesis. It can be accomplished with genetic
algorithms (GAs) by simply choosing JD = ∞ for “unstable solutions". Due t o the
“survival of the fittest" property, these “unstable solutions" will disappear after some
generations.

To conclude, the optimization procedure in this section is summarized in Fig. 7.7.
The next two sections present two recent control design methods for nonlinear
semi-active suspensions using the LPV technique. The methodology in [29] can be
applied for all kinds of semi-active dampers where only the bounds on damping
coefficients and the damper forces are necessary for the controller design. In the
other one [6], the nonlinearities of the semi-active damper, i.e the bi-viscous and
hysteretic behaviors, have been taken into consideration. It is worth noticing that
the optimization procedure above will be applied in each case in order to enhance
the controller performances of these two design methods.
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Fig. 7.7 Main idea for controller optimization for semi-active suspension systems using Ge-
netic Optimization

7.3 LPV Controller Design: Method 1

As in [29], the linear model of damper (7.6) is used for the controller design. First,
the damper force (7.6) is decomposed as follows

Fdamper = c0żde f +Fd (7.27)

where c0 is the nominal damping coefficient, e.g c0 = (cmin + cmax)/2 and Fd is the
additional force. With this decomposition, the control design will be based on the
following quarter car model, denoted as (Σc),

Σc(c0) :=

⎧⎨
⎩

msz̈s = −ks(zs − zus)− c0(żs− żus)−Fd

musz̈us = k(zs − zus)+ c0(żs− żus)+Fd − kt(zus − zr)
Ḟd = 2πβ (Fdin −Fd)

(7.28)

where β represents the bandwidth of the damper. In the next section, the H∞ control
method will be used, which means that

Fdin = uH∞ (7.29)

where uH∞ is the additional force provided by an H∞ controller. Before presenting
the method to get the H∞ controller, let us consider the following definition.

Definition 7.1. Clipping function
Due to the controlled damper limitations (i.e. the effective force provided by the
damper Fdamper should lie in the dissipative domain D), the following Clipping
function D(Fdamper, żde f ) is defined (see also illustration in Fig. 7.8) as:
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D(Fdamper, żde f )  → Fdamper =

{
Fdamper if Fdamper ∈ D
F⊥

damper if Fdamper /∈ D
(7.30)

where Fdamper is the required force (given by the controller) and F⊥
damper is the or-

thogonal projection of Fdamper on D .

This definition will inspire the form of the considered scheduling parameter used in
the LPV control.

Fig. 7.8 Clipping function illustration

7.3.1 Generalized LPV Plant

The H∞ control method for the semi-active suspension system (7.28) referred to as
Method 1, is given as in Fig. 7.9. This is a particular case of the control scheme
given in Fig. 7.6. Besides, due to the fact that the damper force Fdamper must be
limited in the dissipative domain D (see Definition 7.1), the amplitude of Fd or uH∞

must be limited as well. To deal with this problem, a weighting function Wu(ρ) on
the controller output signal uH∞ is introduced:

Wu(ρ) = ρWu (7.31)

where ρ ∈ [ρ;ρ ] ⊆ R+ and Wu is a strictly proper LTI filter. The scheduling
parameter ρ is used here to mitigate the semi-activeness violation of the damper
force (i.e the damper force must be limited in D). The next section is dedicated to
designing ρ .
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Fig. 7.9 Block diagram for semi-active suspension control: Method 1

7.3.2 Scheduling Strategy for the Parameter ρ

The underlying idea of the "LPV semi-active" control design is to increase the con-
trol gain Fdin = uH∞ when the required force belongs to the allowed dissipative do-
main D , and otherwise to rely on the nominal damping when the forces are outside
the allowable space. To satisfy the dissipative damper constraints (see next subsec-
tion), the ρ parameter is adjusted in a particular way:

• when ρ is high, Wu(ρ) is large, then, it tends to attenuate the uH∞ signal.
• when ρ is low, Wu(ρ) is small, then, it does not attenuate the uH∞ signal.

Therefore, from a general point of view, ρ may be viewed as an anti-windup sig-
nal, computed on the actuator model (controlled damper model), and is similar to
a variable saturation. For that purpose, the following scheduling strategy ρ(ε) is
introduced:

ρ(ε) :=

⎧⎪⎨
⎪⎩
ρ if ε < μ
ρ+

ρ−ρ
μ (ε− μ) if μ ≤ ε ≤ 2μ

ρ if ε > 2μ
(7.32)

ε = ||Fdamper −F⊥
damper||2 (7.33)
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where ε is the distance between the required force and the force projected on domain
D (according to the function D(Fdamper, żde f )). μ is a design parameter that modifies
the dead-zone of the ρ(ε) function.

Remark 3 (About the scheduling parameters ρ(ε))

• In (7.32), ρ(ε) belongs to a closed set [ρ,ρ ] which is essential in the LPV frame-
work.

• ε �= 0(⇔ Fdamper �= F⊥
damper) means that the required force is outside the allowed

range. Conversely, ε = 0(⇔ Fdamper = F⊥
damper) means that the force required by

the controller is reachable for the considered semi-active actuator.
• Note that the scheduling parameter is very similar to what is done in the anti-

windup compensator synthesis literature, i.e. it represents the saturation as a
dead-zone function. Here, since the saturation depends on the system states, the
dead-zone is time varying.

7.3.3 Design Configuration

The controller design and optimization procedure presented in Section 7.2.3 can be
established for Method 1 with the following parameter specifications:

• Wu =
2π50

s+2π50• β = 100π
• ρ = 0.1, ρ = 1, μ = 100
• α1 = 0 (corresponding to the vertex ρ = ρ) and α2 = 1 (corresponding to the

vertex ρ = ρ). This means that only the performance of the closed-loop system
associated with the more active controller (Wu is small) is taken into account in
the performance objective. This is coherent with the idea that the more active
controller (Wu is small) provides a better performance (in terms of comfort) than
the more passive one (Wu is small).

7.4 Model-Based Controller Design: Method 2

In this section, the LPV formulation and the controller synthesis based on the model
(7.7) presented in [6] and [7] are recalled.

7.4.1 LPV Model for Semi-active Suspension Control

Let consider the 1/4 Renault Mégane Coupé (1/4 RMC) depicted in Fig. 7.4. As
mentioned previously, the control-oriented model of the MR damper given in (7.7)
is used for controller synthesis. The dynamical equations are then written as follows
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⎧⎪⎪⎨
⎪⎪⎩

msz̈s =−ks (zs − zus)− c0 (żs − żus)− k0 (zs − zus)
− fI tanh(c1 (żs − żus)+ k1 (zs − zus))

musz̈us = ks (zs − zus)+ c0 (żs − żus)+ k0 (zs − zus)
+ fI tanh(c1 (żs − żus)+ k1 (zs − zus))− kt (zus − zr)

(7.34)

With the system and the performance objectives defined in the previous section, a
control oriented LPV model is formulated for further analysis and control in the
sequel. Denote:

• cp = c0

• kp = ks + k0

• zde f = zs − zus

• żde f = żs − żus

• ρ̂ = tanh(c0 (żs − żus)+ k0 (zs − zus))

The state-space representation of the quarter vehicle model can be deduced from
(7.34) as follows:

⎧⎨
⎩

ẋs = Asxs +Bsρ̂ fI +Bsww
z =Cszxs +Dszρ̂ fI

y =Csxs

(7.35)

where xs=(zs, żs, zus, żus)
T , w=zr, y = (zs − zus, żs − żus)

T , z = (z̈s zus)
T .

As =

⎛
⎜⎜⎜⎝

0 1 0 0

− kp
ms

− cp
ms

kp
ms

cp
ms

0 0 0 1
kp

mus

cp
mus

− kp+kt
mus

− cp
mus

⎞
⎟⎟⎟⎠, Bs =

⎛
⎜⎜⎝

0
− 1

ms

0
1

mus

⎞
⎟⎟⎠ , Bsw =

⎛
⎜⎜⎝

0
0
0
kt

mus

⎞
⎟⎟⎠,

Cs =

(
1 0 −1 0
0 1 0 −1

)T

Csz =

( −kp
ms

−cp
ms

kp
ms

cp
ms

0 0 1 0

)
, Dsz=

( −1
ms

0

)

Remark 7.4. The considered measurement outputs are the suspension deflection and
suspension deflection velocity, which allows to state that ρ̂ can be known in real-
time.

To satisfy the passivity constraint of a semi-active damper, fI must be constrained
by

0 < fImin < fI ≤ fImax (7.36)

This positivity constraint on the control input fI is in fact very difficult to handle.
By defining

uI = fI − f0 (7.37)

where f0 = ( fImin + fImax)/2, the dissipativity constraint on fI is recast as a satura-
tion constraint on uI , i.e.

− ū ≤ uI ≤ ū (7.38)

where ū = ( fImax − fImin)/2.
With this modification, the state-space representation of the quarter vehicle is

given as follows:
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P :

⎧⎪⎨
⎪⎩

ẋs = (As +Bs1
ρ̂

Cs1xs
Cs1)xs +Bsρ̂uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂uI

y =Csxs

(7.39)

where Bs1 =
(

0 − f0
ms

0 f0
mus

)T
, Cs1 =

(
k1 c1 −k1 −c1

)
, Ds1=

(
− f0
ms

0
)T

.

In this study, the LPV model (7.39) can be used to design an LPV controller.
However, such a controller may not ensure the closed-loop stability and per-
formances since the saturation constraint (i.e the dissipativity constraint) is not
accounted for during the design. A possible method is to add, in the closed-loop
system, an AWBT (Anti Wind-up Bumpless Transfer) compensation to minimize
the adverse effects of the control input saturation on the closed-loop performance
[13], [14], [20], [25]. In the next section, a simple method is presented to solve
the problem by considering the input saturation as a scheduling parameter. This
approach is related to that of [38].

Define the saturation function sat() as follows

sat(uI) =

⎧⎨
⎩

ū if uI > ū
uI if − ū ≤ uI ≤ ū
−ū if uI <−ū

(7.40)

The state-space representation of the system (7.39) subject to the input saturation
constraint (7.38) is rewritten as

P :

⎧⎪⎨
⎪⎩

ẋs = (As +Bs1
ρ̂

Cs1xs
Cs1)xs +Bsρ̂ sat(uI)

uI
uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂ sat(uI)

uI
uI

y =Csxs

(7.41)

Denote ρ1 = ρ̂ sat(uI)
uI

and ρ2 =
ρ̂

Cs1xs
. From (7.41), the following LPV system is now

obtained

P :

⎧⎨
⎩

ẋs = (As +Bs1Cs1ρ2)xs +Bsρ1uI +Bsww
z = (Csz +Ds1Cs1ρ2)xs +Dszρ1uI

y =Csxs

(7.42)

In (7.42) the control input matrix Bsρ1 is parameter dependent, which is not con-
sistent with the solution of the H∞ design problem for polytopic systems [5]. This
problem can be overcome by adding the following filter into (7.42) to make the
control input matrix independent of the scheduling parameter:

Wf :

(
ẋ f

uI

)
=

(
A f B f

Cf 0

)(
x f

u

)
(7.43)

with
‖Wf ‖∞ ≤ 1 (7.44)

where A f , B f , Cf are constant matrices.
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Remark 7.5. The condition (7.44) ensures that the saturation constraint on uI is kept
for the new control input u. It means that the following implies (7.38)

− ū ≤ u ≤ ū (7.45)

From Eq. (7.42) and Eq. (7.43), the control oriented model is now represented by
an LPV system with two scheduling parameters ρ1 and ρ2:

⎧⎨
⎩

ẋ = A(ρ1,ρ2)x+Bu+B1w
z =Cz (ρ1,ρ2)x
y =Cx

(7.46)

where
x =

(
xs

T x f
T
)T

A(ρ1,ρ2) =

(
As +ρ2Bs1Cs1 ρ1BsCf

0 A f

)
, B =

(
0

B f

)
, B1 =

(
Bs1

0

)
,

C =

(
Cs

0

)T

, Cz (ρ1,ρ2) =
(

Csz +ρ2Ds1Cs1 ρ1DszCf
)

ρ1 = tanh(Cs1xs)
sat(c f x f )

c f x f
, ρ2 =

tanh(Cs1xs)
Cs1xs

Fig. 7.10 Set of scheduling
parameters (ρ1,ρ2) (shaded
area)
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The control configuration for semi-active suspensions is given in Fig. 7.11. This
configuration is very similar to the one used by Method 1 (in this case Wu is set to 0).

7.4.2 Design Configuration

The controller design and optimization procedure presented in Section 7.2.3 is once
again applied for Method 2. The complete results for Method 2 are given in [7].
Notice that, due to the self-dependence between ρ1 and ρ2, the set of all ρ̄ = (ρ1,
ρ2) is not a polytope, as seen in Fig. 7.10. In this study, a polytopic approach is
developed for the LPV control design (which leads to some conservatism). As a
consequence, ρ1 and ρ2 are considered as independent parameters and ρ̄ belongs to
a polytopeΘ whose vertices are ρ̄1 = (−1,0), ρ̄2 = (1,0), ρ̄3 = (1,1), ρ̄4 = (−1,1).



7 LPV Control of MR Damper Based Automotive Suspensions 203

z̈s

zus

Wz̈s

Wzus

zr

sat(uI)

zde f
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Fig. 7.11 Block diagram for semi-active suspension control: Method 2

7.5 Numerical Analysis and Results

In this part, some design analysis and some simulation results are presented to em-
phasize the interest and the possible limitations of both methodologies. Following
the optimization method previously presented, the solution of the multi-objective
problem (7.23) is given by a Pareto front in Fig. 7.12 for Method 1 and in Fig.
7.13 for Method 2. The conflicting relation between comfort and road holding cri-
teria can be observed clearly from the figure. In this chapter, for simplification, the
analysis will concern only the best comfort-oriented controller of each method. The
road-holding comparison can be done similarly (see also the performance analysis
in [7]). The best comfort-oriented controller can be chosen by comparing the perfor-
mances (see the performance analysis in the sequel) among some solutions which
are close to the Y-axis. Here they are the ones closest to the Y-axis in the Fig. 7.12
and Fig. 7.13.

Let us recall that the nonlinear Renault Mégane Coupé (RMC) model used in
simulation incorporates the nonlinear spring (see Fig. 7.5) and the nonlinear MR
damper whose force is of the form (7.5). The implementation scheme is depicted
in Fig. 7.14. As seen in this figure, there is a Signal converter block. This block is
needed since the current is the control input signal of the damper while the outputs
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Fig. 7.12 Pareto front obtained for Method 1
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Fig. 7.13 Pareto front obtained for Method 2

of the controllers obtained in Method 1 and Method 2 are forces. In the following,
the desired current I is reconstructed for each method:

• Method 1: Since the damper model is not included in the controller design, an
inverse damper model is needed to regenerate the input current. In this study,
with the good approximation to real data, the model (7.7) is used as the inverse
model, i.e the input current will be recovered by the following equation:
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I =
uH∞ + c0żde f − c0żde f − k0zde f

ymr tanh
(
c1żde f + k1zde f

) (7.47)

• Method 2: Since the damper model is taken into consideration in the controller
design, the input current is simply computed from the controller output uI by
using the equations (7.8) and (7.37):

I =
uI +F0

ymr
(7.48)

Remark 7.6. Note that the input current must be limited in [0, fImax/ymr] (see Section
7.1.3).

LPV Controller

 1/4 RMC Model
 

  Nonlinear MR damper

  Nonlinear spring

Signal converter
u I [A]

Measurement (suspension deflection,  
     suspension deflection velocity)  

Road disturbance

Fig. 7.14 Implementation scheme

In the remaining parts, both comfort-oriented controllers obtained with Method
1 and Method 2 are compared to the following passive MR dampers:

• Soft MR damper where the controllable input fI = fImin

• Hard MR damper where the controllable input fI = fImax

• Nominal MR damper where the controllable input fI = ( fImin + fImax)/2 (i.e.
when the controller output is equal to zero)

7.5.1 Frequency Domain Analysis

In this section, the evaluation in the frequency domain is performed via the nonlinear
frequency response of z̈s that is computed by the “Variance Gain" algorithm [32]
(where the input zr is chosen to be a sinusoidal signal with magnitude of 1.5 cm and
frequency varying in [0.1-30] Hz). This algorithm is simple and provides a good
approximation to the nonlinear frequency response.
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Some general remarks can be drawn for passive MR dampers (see [7]):

• Between 0− 2 Hz, the Hard MRD is the best strategy for ride comfort.
• Between 2− 30 Hz, the Soft MRD is the best strategy for ride comfort.

As seen in Fig. 7.15, both LPV controllers largely improve the passenger com-
fort w.r.t passive cases. When compared between each other, the LPV Method 1
is slightly better in medium frequencies and lightly worse in high frequencies and
low frequencies than the LPV Method 2.
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Fig. 7.15 Frequency responses comparison

7.5.2 Time Domain Analysis

Test 1: Step road profile
In this test, the road profile is a step signal (the amplitude is 10 cm and the

starting time is t0 = 1 s) filtered beyond 30 Hz. The car body acceleration responses
are depicted in Fig. 7.16. The results are coherent with the frequency responses
analysis presented previously:

• The peak values around the starting time (1s) are small for the cases of Soft MRD,
Method 1 and Method 2 while they are larger for Nominal MRD and Hard MRD.
This phenomenon corresponds to the responses in high frequencies [2− 20] Hz
(see also Fig. 7.15).

• The damping behavior (the convergence to zero) is the best in the case of Hard
MRD. The Method 2 and Nominal MRD provide a good damping behavior as
well. The Method 1 is a little worse compared to the Method 2 and the Soft MRD
give the worst damping capacity. This is linked to the frequency responses of all
strategies in low frequencies [0− 2] Hz.
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Fig. 7.16 Step responses comparison

The results obtained with a step road profile are summarized in Tab. 7.5. The use of
LPV controllers reduce the peak values as well as the RMS values of the car body
acceleration. They provide a better comfort improvement w.r.t passive dampers.

Table 7.5 RMS and peak values of car body acceleration obtained in a test with step road
profile

Methods Peak value [m/s2] RMS value [m/s2]
Soft Damper 10.4893 2.0158
Hard Damper 12.4847 1.4584
Nominal Damper 11.4790 1.5875
LPV Method 1 10.4893 1.6365
LPV Method 2 10.5118 1.5664

Test 2: Random road profile
The road profile can also be viewed as a random signal, because it is not predicted by
the vehicle. However, in practice, its bandwidth is limited. In this test, a road profile
is represented by an integrated white noise, band-limited within the frequency range
[0-30] Hz (see Fig. 7.17).

In what follows, the comfort is evaluated using the RMS value of the car body
acceleration z̈s:

RMSComfort =

√∫ T
0 z̈s2(t)dt

T
(7.49)

where T is the simulation time [s].
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Fig. 7.18 RMS values of car body acceleration z̈s

The comparison of the RMS values is depicted in Fig. 7.18. It confirms again the
efficiency of the LPV approaches to improve the comfort of automotive suspension
systems equipped with an MR damper. In this case, the LPV controllers give the
same results. This is interesting and coherent with all previous analyses: the con-
troller obtained with Method 1 behaves slightly better in medium frequencies but
slightly worse in low and high frequencies than the one obtained with Method 2.
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7.6 Conclusion

In this chapter, the comparison of two LPV control methods for automotive suspen-
sion systems equipped with MR dampers has been done. The three main contribu-
tions of the chapter may be summarized as follows:

• The proposed control schemes are homogenous to ensure a fair comparison be-
tween two methods.

• The application (synthesis and implementation) of the LPV approach proposed
by [29] on nonlinear MR dampers.

• A multi-objective optimization procedure for the LPV semi-active controller op-
timization proposed by [7] has been also applied to the control algorithm [29].
The results showed again the efficiency of this optimization procedure in semi-
active suspension control.

From a design point of view, both methods are general for other semi-active actu-
ation technologies. With Method 1, only the bounds of the dissipative domain (i.e
cmin, cmax and Fmax) are needed. With Method 2, the design is based on the MR
damper model (7.7) which can be extended for other semi-active dampers (i.e for
ER damper, the current dependent control signal fI can be replaced by the voltage
dependent one, fV ).

From a practical point of view, the two LPV control methods are simple and
easy to implement: a single relative displacement sensor to measure the suspension
deflection (the deflection velocity can be deduced numerically from the deflection)
is needed and the LPV controllers are stable.

The simulations on the nonlinear quarter vehicle model equipped with a validated
MR damper (in both frequency and time domains) have shown that similar results
have been obtained with the two methods. It is seen that, in terms of design, com-
pared to Method 2, Method 1 is preferred because only the bounds on the damping
capacity of a damper is needed. However, the practical implementation of Method 1
needs further discussions. Indeed, while with Method 2 the current (needed by a real
MR damper) is easy to get by dividing the controller output by a scalar, it is more
difficult to obtain with Method 1. A simple solution is to convert the controller out-
put of Method 1 in current using the equation (7.47). However, this model is actually
not numerically good because some problem could arise when c1żde f + k1zde f ap-
proaches zero and when the measurements of zde f and żde f are nois y. Further work
could then concern the design of a local controller of the damper force in order to
avoid to use such an inverse model (as proposed in the PhD thesis [2]).
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Chapter 8
Design of Integrated Control for Road Vehicles

Péter Gáspár

Abstract. This chapter presents a model-based control design for an integrated ve-
hicle system in which several active components are operated simultaneously. In
control-oriented modeling vehicle dynamics is augmented with the performance
specifications. The performance specifications must be formulated in such a way
that the performance demands are guaranteed, conflicts between performances are
achieved and a priority between different actuators is created and various fault in-
formation is taken into consideration. A supervisory decentralized control structure
is also proposed. The performance specifications are guaranteed by the local con-
trollers, while the coordination of these components is provided by the supervisor.
Monitoring components provide the supervisor with information needed to make
decisions about the necessary interventions into the vehicle motion and guarantee
the robust operation of the vehicle. The operation of the integrated system is illus-
trated through simulation examples.

Keywords: integrated vehicle control, reconfigurable, performance specifications,
robust control, distributed control.

8.1 Introduction and Motivation

Conventionally, the control systems of vehicle functions to be controlled are de-
signed separately by the suppliers and the vehicle companies. One of the problems
of independent design is that the performance demands, which are met by inde-
pendent controllers, are sometimes in conflict with each other in terms of the full
vehicle. The braking action affects the longitudinal dynamics of the vehicle, the
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velocity and the pitch angle. However, due to the geometry of the vehicle, the brak-
ing action causes changes in both the yaw and roll dynamics, see Figure 8.1. Simi-
larly, the steering angle also modifies the yaw angle of the vehicle. Since the center
of gravity is high the consequence of the steering maneuver is that the roll angle
and the pitch angle of the sprung mass will also change. Moreover, the second prob-
lem in the independent control design is that control hardware can be grouped into
discrete subsets with sensor information and control demands operating in parallel
processes and these solutions can lead to unnecessary hardware redundancy.

Fig. 8.1 The effect of braking on vehicle dynamics

The purpose of the integrated vehicle control is to combine and supervise all con-
trollable subsystems affecting vehicle dynamic responses. In more details it means
that multiple-objective performance from available actuators must be improved,
sensors must be used in several control tasks, the number of independent control
systems must be reduced, at the same time the flexibility of control systems must
be enhanced. An integrated control system is designed in such a way that the ef-
fects of a control system on other vehicle functions are taken into consideration
in the design process by selecting the various performance specifications. In line
with the requirements of the vehicle industry several performance specifications are
in the focus of the research, e.g. improving road holding, enhancing passenger com-
fort and improving roll and pitch stability, proposing fault-tolerant solutions, see
e.g. [4, 29].

The demand for vehicle control methodologies including several control com-
ponents arises at several research centers and automotive suppliers. Here are a few
examples for illustration. A vehicle control with four-wheel-distributed steering and
four-wheel-distributed traction/braking systems is proposed by [18]. A process to
design the control strategy for a vehicle with throttle control and automatic trans-
mission is proposed by [13]. A yaw stability control system in which an active
torque distribution and differential braking systems are used is proposed by [30]. An
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integrated control that involves both four-wheel steering and yaw moment control is
proposed by [10, 25]. Active steering and suspension controllers are also integrated
to improve yaw and roll stability [16]. A global chassis control involving an active
suspension and ABS is proposed by [22, 31]. The driveline system and the brake are
integrated in [23]. An important solution to the roll stability control is based on the
ESC brake control, see [15, 21]. A possible integration of the brake, steering and
suspension system is presented by [2, 8, 24].

A centralized controller has several advantages: the designed controller guaran-
tees performance specifications and robustness against uncertainties; the solution
reduces the number of necessary sensors; it improves the flexibility of the actu-
ators and avoids unnecessary duplications. The high-complexity control problem,
however, is often difficult to handle, i.e. the more complex the vehicle model is the
more numerical problems must be handled. Moreover, this centralized approach is
not suitable for the partial design tasks carried out by vehicle component suppliers.
Furthermore, if a new component is added to the system the entire system must be
re-designed.

Thus, decentralized controllers which operate simultaneously are applied for the
vehicle. The advantage of this architecture is that the complexity of the vehicle
model can be divided into several parts. In this decentralized control structure there
is a logical relationship between the supervisor and the local control components.
The communication within local controls is performed by using the CAN bus. The
role of the supervisor is to meet performance specifications, create a cooperation be-
tween components and prevent the interference and conflict between them. The su-
pervisor has information about the current operational mode of the vehicle, i.e., the
various vehicle maneuvers or the different fault operations gathered from monitor-
ing components and fault-detection and identification (FDI) filters. The supervisor
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is able to make decisions about the necessary interventions into the vehicle compo-
nents and guarantee the reconfigurable and fault-tolerant operation of the vehicle.
These decisions are propagated to the lower layers through predefined interfaces
encoded as suitable scheduling signals. As some examples for the topic of fault
detection methods in industrial mechatronic products, see [3, 11, 17].

The structure of the chapter is as follows. In Section 8.2 the control-oriented
modeling of vehicle dynamics is constructed and the performance specifications
in a closed-loop interconnection structure are formulated. In Section 8.3 the design
principles of the brake, the steering, the suspension system and the actuator selection
method are presented and, moreover, the fault information is also discussed. In Sec-
tion 8.4 the global stability and performances of the reconfigurable control are dis-
cussed. In Section 8.5 the reconfigurable integrated control is demonstrated through
simulation examples. Finally, Section 8.6 contains some concluding remarks.

8.2 Control-Oriented Modeling of Vehicle Dynamics

8.2.1 Vehicle Modeling

The vehicle has six degrees of freedom, translations in the x, y, and z directions, as
well as rotations round each of these axes. Rotation round the z-axis is called roll
φ , rotation about the y-axis is pitch θ , and rotation about the z-axis is yaw ψ . Since
the driver inputs considered in this analysis are the braking and steering, two force
types are considered, i.e. the longitudinal forces Fx and lateral forces Fy. The vehicle
is steered by the front tires and the steering angle δ f . The vehicle motions also
result in vertical accelerations, which cause the suspension springs and dampers to
generate reaction forces.The forces generated by the active suspension are denoted
by Fzi j.

The chassis vertical (zs), longitudinal (x), lateral (y), roll, pitch and yaw dynamics
are given by the following equations. Here vx and vy are the velocities of the chassis
in x and y-directions, zs and zu are the displacement of the sprung mass and the
unsprung masses in z-direction. Using the local coordinate system the following
force and moment relations are defined, see e.g.,[12].

mv̇x =−Fx f cosδ f −Fxr −Fy f sinδ f −mψ̇vy, (8.1a)

mv̇y =−Fx f sinδ f +Fyr +Fy f cosδ f +mψ̇vx, (8.1b)

msz̈s =−Fz f −Fzr −Fdz, (8.1c)

musi j z̈usi j = Fzi j −Ftzi j, (8.1d)

Ixθ̈ = tr(Fzrl −Fzrr)+ t f (Fz f l −Fz f r)+mhv̇y, (8.1e)

Iyφ̈ = � f Fz f − �rFzr −mhv̇x, (8.1f)

Izψ̈ = � f (−Fx f sinδ f +Fy f cosδ f )− �rFyr+ (8.1g)

+ t f (Fx f r −Fx f l)cosδ f − tr(Fxrr −Fxrl)+Mdz.
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The relationship between the yaw dynamics ψ̇ and the dynamics of the side slip
angle of the center of gravity β̇ is β̇ = ψ̇ +Fty f /vx/m+Ftyr/vx/m. Using small
steering angle the following approximations are applied: sinδ f = δ f and cosδ f = 1.

The objective of the control design is to track a predefined path, guarantee road
holding and increase yaw, roll and pitch stability. Several control components are
applied in the system: the active brake, steering and the suspension system. The
tracking problem is solved by using active steering. In this system the control input
is the steering angle: ud = δ f . Road holding and passenger comfort are improved
by applying an active suspension system. The suspension system is also able to
improve pitch and roll stability by generating pitch moment during abrupt braking
and roll moments during emergency maneuver. The control inputs are generated by
the suspension actuators: us =

[
f f l , f f r , frl , frr

]T
. In the control system the brake is

able to modify the yaw angle of the vehicle during a cornering and reduce the effect
of lateral acceleration. When a rollover is imminent and this emergency persists
the brake system is activated to reduce the rollover risk. It is also able to generate
unilateral brake forces at the front and the rear wheels at either of the two sides
ub = ΔFb.

The local controllers are designed based on vehicle models with different com-
plexity. Figure 8.3 illustrates a multi-body vehicle system with its the longitudinal,
lateral and vertical dynamics. Their design is based on state space representation
form

ẋ = A(ρ)x+B1(ρ)w+B2(ρ)u, (8.2)
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where x, w and u are the state, disturbance and input, respectively, vector ρ includes
the scheduling variables and A(ρ) = A0 + ∑n

i=1ρiAi, B1(ρ) = B10 +∑n
i=1ρiB1i,

B2(ρ) = B20 +∑n
i=1ρiB2i, in which n is the number of the scheduling variables ρi.

First the state equation is defined and then the performances and measured output
are selected considering the control tasks.

The nonlinear effects of the forward velocity v, the adhesion coefficient of the
vehicle in the lateral direction μ or the nonlinear characteristics in the suspension
damper components ρbi j are taken into consideration ρ = [v,μ ,ρbi j]

T in the de-
sign.For example the adhesion coefficients depend on the type of road surface. It is
difficult to accurately quantify and measure the effect of all of the external factors on
μ , which is a nonlinear and time varying function. An adaptive observer-based grey-
box identification method has been proposed for its estimation, [7]. It is assumed
that with suitably-selected scheduling variables ρ these nonlinear components can
be transformed into affine parameter-dependent forms. Then the nonlinear models
are transformed into LPV models in which nonlinear terms are hidden with suitably
selected scheduling variables.

8.2.2 Performance Specifications and the Control Design

The local components also include units for monitoring vehicle operations. These
components are able to detect emergency vehicle operations, various fault opera-
tions or performance degradations in controllers. They also send messages to the
supervisor. In the reconfigurable and fault-tolerant control of the local controller
several signals must be monitored and scheduling variables are added to the schedul-
ing vector in order to improve the safety of the vehicle, e.g., variables are needed to
encode the rollover risk, represent the harmful effects of abrupt braking and take a
detected failure of an active component into consideration.

The efficient operation of the supervisor and the local controllers require reliable
and highly accurate signals from the system. To meet this requirement redundant
sensors, diverse calculations and fault detection filters are needed. To achieve the ef-
ficient and optimal intervention the detections of faulty sensors are important since
they must be substituted for in operations based on these sensors. Low cost solu-
tions are preferred in the vehicle industry, thus simple sensors and software-based
redundancy must be applied.

The closed-loop system applied in the design of a local control includes the feed-
back structure of the model G(ρ), the compensator and elements associated with
the performance objectives:

z =C(ρ)x+D1(ρ)w+D2(ρ)u, (8.3)

where w = [d n]T includes both the external disturbances and the sensor noise. A
typical interconnection structure is shown in Figure 8.4. These elements define the
parameter dependent augmented plant P(ρ). Using the controller K the closed-loop
system M(ρ) is given by a LFT (Linear Fractional Transformation) structure.
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In this framework performance requirements z are imposed by a suitable choice
of the weighting functions Wp. Usually the purpose of weighting functions Wp is
to define penalty functions, i.e., weights should be large where small signals are
desired and small where large performance outputs can be tolerated. The proposed
approach realizes the reconfiguration of the performance objectives by an appropri-
ate scheduling of these weighting functions. Δm block contains the uncertainties of
the system, such as unmodelled dynamics and parameter uncertainty. In this aug-
mented plant unmodelled dynamics is represented by a weighting function Wr and
a block Δm. The purpose of the weighting functions Wd and Wn is to reflect the
disturbance and sensor noises.
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�
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Fig. 8.4 The closed-loop interconnection structure

In the proposed solution the design of local control components is based on
LPV methods. LPV methods are well elaborated and successfully applied to var-
ious industrial problems. The LPV approaches allow us to take into consideration
the highly nonlinear effects in the state space description, [1, 20]. The main point of
the approach is that in the control design of the local components scheduling vari-
ables received from the supervisor are used as a key of integration. In this way the
operation of a local controller can be extended to reconfigurable and fault-tolerant
functions.

If parameter-dependent Lyapunov functions are used, the designed controller de-
pends explicitly on ρ̇ . Thus, in order to construct a parameter-dependent controller,
both ρ and ρ̇ must be measured or available. When ρ̇ is not measured in practice, a
suitable extrapolation algorithm must be used to achieve an estimation of the param-
eter ρ̇ . To remove ρ̇ dependence a ρ-dependent change of variables was proposed
in [20].

The quadratic LPV performance problem is to choose the parameter-varying con-
troller K(ρ) in such a way that the resultant closed-loop system M(ρ) is quadrati-
cally stable and the induced L2 norm from w to z is less than γ , i.e.,
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‖M(ρ)‖∞ = inf
K

sup
Δ

sup
‖w‖2 �=0,w∈L2

‖z‖2

‖w‖2
. (8.4)

By assuming an unstructured uncertainty and by applying a weighted small gain
approach the existence of a controller that solves the quadratic LPV γ-performance
problem can be expressed as the feasibility of a set of LMIs, which can be solved
numerically, see [27].

The existence of a controller that solves the quadratic LPV γ-performance prob-
lem can be expressed as the feasibility of a set of Linear Matrix Inequalities (LMIs),
which can be solved numerically. Stability and performance are guaranteed by the
design procedure, see [20, 28]. When the LPV controller has been synthesized, the
relation between the state, or output, and the parameter ρ = σ(x) is used in the LPV
controller, such that a nonlinear controller is obtained.

8.3 Design of the Local and Reconfigurable Control Systems

8.3.1 Design of the Brake System

Roll stability is achieved by limiting the lateral load transfers on both axles to be-
low the levels for wheel lift-off during various vehicle maneuvers. The lateral load
transfers are calculated at both axles: ΔFz,i = Ciφt,i. The tire contact force is guar-
anteed if mg

2 ±ΔFz > 0 for both sides of the vehicle. The normalized values of the
lateral load transfers are the ratio of ΔFz,i and the masses of the vehicle on the axles:
ρR = ΔFz,i/mig. The aim of the control design is to reduce the maximum value of
the normalized lateral load transfer if it exceeds a predefined critical value.

In the design of the brake system the command signal is the difference in brake
forces while the performance signal is the lateral acceleration: zb =

[
ay,ur

]T
. The

weighting function of the lateral acceleration is selected as:

Wp,ay = γa
Tb1s+ 1
Tb2s+ 1

. (8.5)

where Tbi are time constants. Here γa is a gain, which reflects the relative impor-
tance of the lateral acceleration and it is chosen to be parameter-dependent, i.e., the
function of ρR.

γa =

⎧⎨
⎩

1 if |ρR|> Rb
|ρR|−Ra
Rb−Ra

if Ra ≤ |ρR| ≤ Rb

0 if |ρR|< Ra

When ρR is small (|ρR| < Rb), i.e., when the vehicle is not in an emergency, γa is
small, indicating that the LPV control should not focus on minimizing accelera-
tion. When ρR is approaching the critical value, i.e., when |ρR|� Rb, γa is large, it



8 Design of Integrated Control for Road Vehicles 221

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

Φ
a

R
b

(a) Normal case

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a

Φ
a

 

 

R
a,new

R
b

R
b,new

(b) Fault case

Fig. 8.5 Parameter-dependent gain in the brake control

indicates that the control should focus on preventing the rollover. Here Rb defines
the critical status when the vehicle is close to the rollover. Note that the weights
used in the chapter are proportional-differential components. Their time constants
and gains reflect the required steady state and transient behavior of the different
signals that describe the performance specifications.

Remark 11. If a fault concerning roll stability is detected in the suspension system
its role is substituted for by the brake system. The brake system is activated at a
smaller critical value than in a fault-free case, i.e., when |ρDa| > 0. Consequently,
the brake is activated in a modified way and the brake moment is able to assume
the role of the suspension actuator in which the fault has occurred. The modified
critical value is

Ra,new = Ra −α ·ρDa, (8.6)

where α is a predefined constant factor.

8.3.2 Design of the Steering System

Yaw stability is achieved by limiting the effects of the lateral load transfers. The
purpose of the control design is to minimize the lateral acceleration, which is moni-
tored by a performance signal: za = ay. Unilateral braking is one of the solutions, in
which brake forces are generated in order to achieve a stabilizing yaw moment. In
the second solution additional steering angle is generated in order to reduce the ef-
fect of the lateral loads. These solutions, however, require active driver intervention
into the motion of the vehicle to keep the vehicle on the road.

Another control task is to follow a road by using a predefined yaw rate (angle).
In this case the current yaw rate must be monitored and the difference between the
reference and the current yaw rate is calculated. The purpose of the control is to
minimize the tracking error: zψ̇ = ψ̇cmd − ψ̇re f .
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In order to solve the yaw rate tracking problem in the design of the steering
system, the command signal must be fed forward to the controller (ψ̇cmd). The com-
mand signal is a pre-defined reference displacement and the performance signal is
the tracking error: zψ̇ = eψ̇ , which is the difference between the actual yaw rate and
the yaw rate command. The weighting function of the tracking error is selected as:

Wpe = γe
Td1s+ 1
Td2s+ 1

, (8.7)

where Tdi are time constants. Here, it is required that the steady state value of the
tracking error should be below 1/γe in steady-state.

Remark 12. If a fault is detected in the steering system (|ρDs|> 0), the brake must
focus on yaw dynamics in order to reduce the tracking error. Thus, in the control
design of the brake the performance specification concerning the steering system is
also built in:

Wpe = γbe
Tb3s+ 1
Tb4s+ 1

, (8.8)

where γbe depends on |ρDs|

γbe =

⎧⎨
⎩

1 if |ρDs|> ρcrit
|ρR|−ρtol
ρcrit−ρtol

if ρtol ≤ |ρDs| ≤ ρcrit

0 if |ρDs|< ρtol

In this weighting the critical value of the brake intervention is used together with a
tolerance value.

Remark 13. When there is a performance degradation in the operation of the brake
system, it is not able to create sufficient yaw moment to improve roll stability. In
this sense the brake system is substituted for by the steering system. The steering
system receives the fault message from the supervisor and it modifies its operation
in such a way that the effects of the lateral loads are also reduced. The difficulty in
this solution is that a performance degradation concerning the tracking task also
occurs, since the steering system must create a balance between tracking and roll
stability.

8.3.3 Design of the Suspension System

Road holding is achieved by reducing the normalized suspension deflections ρk be-
tween the sprung and unsprung masses at the four corner points of the vehicle. Since
increasing road holding reduces the passenger comfort in the design of the suspen-
sion system its desired level is subject to a design decision.
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The performance signals in the suspension design are: zs =
[
az sd td us

]T
. The

goals are to keep the heave accelerations az = q̈, suspension deflections sd =
x1i j − x2i j, wheel travels td = x2i j −wi j , and control inputs small over the desired
operation range. The performance weighting functions for heave acceleration, sus-
pension deflections and tire deflections are selected as

Wp,az = γaz
Ts1s+ 1
Ts2s+ 1

, (8.9a)

Wp,sd = γsd
Ts3s+ 1
Ts4s+ 1

, (8.9b)

Wp,td = γtd
Ts5s+ 1
Ts6s+ 1

, (8.9c)

where Tsi are time constants while γtd are parameter dependent gains, which depend
on the suspension deflection ρki j.

In normal cruising the suspension system focuses on the conventional perfor-
mances based on the parameter-dependent gain, which is a function of the sus-
pension deflection ρki j. The trade-off between passenger comfort and suspension
deflection is due to the fact that it is not possible to guarantee them together si-
multaneously. A large gain γaz and a small gain γsd correspond to a design that
emphasizes passenger comfort while choosing γaz small and γsd large corresponds
to a design that focuses on suspension deflection. The parameter dependence of the
gains, which is illustrated in Figure 8.6, is characterized by the constants ρ1 and ρ2

in the following way:

γaz =

⎧⎪⎨
⎪⎩

1 if |ρki j|< ρ1,
|ρki j |−ρ2
ρ1−ρ2

if ρ1 ≤ |ρki j| ≤ ρ2,

0 if R ≥ Rs or |ρki j|> ρ2.

γsd =

⎧⎪⎨
⎪⎩

0 if |ρki j|< ρ1,
|ρki j |−ρ1
ρ2−ρ1

if ρ1 ≤ |ρki j| ≤ ρ2,

1 if R ≥ Rs or |ρki j|> ρ2.
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Remark 14. The idea of the reconfigurable suspension system is based on the fact
that active suspension systems are used not only to eliminate the effects of road
irregularities but also to generate roll moments to improve roll stability or generate
pitch moment to improve pitch stability.

Wp,θ = γP
Ts7s+ 1
Ts8s+ 1

,

Wp,γ = γR
Ts9s+ 1

Ts2s+ 10
.

For a reconfigurable suspension system the parameter-dependent gains are selected
as functions of the normalized lateral load transfer ρR and the normalized value of
the pitch angle ρP. If ρP exceeds a predefined critical value, i.e., when |ρP| � RP,
the controller must focus on pitch stability. In an emergency, however, i.e., when
|ρR| ≥ Rs, the suspension system must reduce the rollover risk and guaranteeing
passenger comfort (and pitch angle) is no longer a priority.

8.3.4 Actuator Selection Procedure

In the control design the distribution of the wheel forces must also be taken into
consideration. In a front-wheel-driven vehicle the traction force is distributed be-
tween the front wheels by using a differential gear. The steering angle is limited by
construction (δcrit ), therefore when the maximal steering angle is reached the de-
sired lateral dynamics of the vehicle must be achieved by the brake moment. During
braking the load of wheels is modified due to the pitch dynamics of the vehicle. The
braking of the front wheels must be stronger while the braking of the rear wheels
must be reduced. The wheel forces must be monitored in view of the momentary
friction margin of the tire. It requires the estimation of friction coefficient μ , which
is also necessary for the determination of maximal cornering velocity, see [5, 26].

The maximal longitudinal force of the wheels (Fi,max) is calculated and compared
to the momentary longitudinal wheel forces (Fi). Note that the maximum longitudi-
nal force depends on the maximum adhesion coefficient and the static and dynamic
components of the vertical force at the wheel, i.e., the lateral and pitch dynamics.

Fi,max = μmax{Fz,stat ±mayh/2/L±mψ̇vh/b}.

This calculation must be performed at all wheels and the highest rate of ν =
Fi/Fi,max is selected. If a skidding incident is imminent the actuation of the brake
moment must be reduced and it is replaced by the actuation of front wheel steer-
ing. The variable ν = max{Fi/Fi,max} is the maximal value between the force ratios
considering all the wheels and νcrit is a design parameter.

It is also necessary to consider that the actuations of the different components
have energy requirement. By using differential braking the velocity of the vehicle
is decreased, which must be compensated for by the driveline with additional en-
ergy. Therefore the use of differential braking must be avoided during acceleration
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and front-wheel steering is preferred. During deceleration the brake is already being
used, thus the lateral dynamics is handled by the braking for practical reasons. Thus
differential braking is preferred, but close to the limit of skidding, front-wheel steer-
ing must also be generated. The actuation of differential braking causes increased
strain on the tyres. When the vehicle moves in the lateral direction the position
of each tyre is longitudinal. It also shows that using front-wheel steering is more
efficient.

Fig. 8.7 Illustration of the actuator selection

A weighting factor ρa, which depends on the vehicle operation and the variables
δ and ν is shown in Figure 8.7. In case of traction the front wheel steering angle δ
determines factor ρa. The value is reduced between δ1 and δ2, which represents the
constructional criterion of the steering system. In the case of braking the variable
ν affects the factor ρa. In this interval differential braking is preferred for practical
reasons. It requires an interval to reduce tire skidding and it also requires an inter-
val to prevent chattering between steering and differential braking. Therefore four
parameters are designed: ν1 and ν2 are used to prevent chattering and ν3 and ν4 are
applied to prevent the skidding of tires. This factor may depend on other parameters
such as forward velocity, lateral loads, maneuvers to a certain degree.

Example 1. The generation of the different actuators is based on the following
weighting strategy. The weighting for the front wheel steering and for the brake
yaw-moment are

Wact,δ = (1−ρa)/δmax, (8.10a)

Wact,Mbr = ρa/Mbrmax, (8.10b)

where δmax is determined by the constructional maximum steering angle and Mbrmax

is the maximum of brake yaw-moment. Weighting factor ρa is chosen according to
the relationship between the brake yaw-moment and the front steering angle. This
weighting factor must be chosen according to the the examined criteria.
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8.3.5 Fault Information in the Decentralized Control

The fault-tolerant local controllers also require components for monitoring fault in-
formation. Here the normalized fault information provided by an FDI filter is given
by

ρD =
fact

fmax
, (8.11)

where fact is an estimation of the failure (output of the FDI filter) and fmax is an
estimation of the maximum value of the potential failure (fatal error). The esti-
mated value fact means the measure of the performance degradation of an active
component.

The interconnection structure includes the vehicle model G(ρ), the FDI filter
F(ρ), and elements associated with performance objectives, see Figure 8.8. The
weight Wp f reflects the relative importance of the fault signal. This weight should
be large when small errors are desired and small when large errors can be tolerated.
The weight Wfa defines the size of the possible fault in the actuator channel. The
weight Wfs defines the size of the possible fault in the sensor channel.
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Fig. 8.8 Design of an FDI filter

The design requirement for H∞ residual generation is to maximize the effect of
the fault ( f ) on the residual and simultaneously minimize the effect of exogenous
signals (d, u) on the residual.

||Trd ||∞ = sup
|| f ||2=1,ρ∈P

||r||2, (8.12)

wher the residual can be expressed as r = Truu+Trdd+Tr f f . The FDI filter designed
in the open-loop system can be implemented in the closed-loop system. The filter
receives the measured outputs, the control inputs and the filter provides the fault
residuals. For more details on the main steps of the FDI filter design see [9].
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The fault-tolerant control requires fault information in order to guarantee per-
formances and modify its operation. Thus, FDI filters are also designed for the op-
eration of the actuators. As an example the fault information provided by a fault
detection filter is given by ρD = fact/ fmax, where fact is an estimation of the fail-
ure (output of the FDI filter) and fmax is an estimation of the maximum value of
the potential failure (fatal error). The value of a possible fault is normalized into
the interval ρD = [0, 1]. The estimated value fact means the rate of the performance
degradation of an active component.

The detection of a sensor failure as accurately as possible is crucial since the
controller may generate fault actuator intervention as a result of fault sensor infor-
mation. Sensor failures may also prevent certain actuators from being used; then
handling the sensor failure leads to an actuator reconfiguration problem. Thus com-
plex vehicle systems require various FDI filters both for actuator and sensor failures.

8.4 Towards Supervisory Integrated Control

8.4.1 Global Performances

In the entire system three controllers are used simultaneously. It is necessary to guar-
antee the stability and performances of the entire closed-loop system. This section
focuses on the stability and the performances of the entire system. The open-loop
LPV system considered for control synthesis has the following state space represen-
tation form:

ẋp = A(ρ)xp +B1(ρ)w+∑B2i(ρ)ui (8.13a)

z =C1(ρ)xp +D11(ρ)w+∑D12iui (8.13b)

y =C2(ρ)xp +D21w (8.13c)

where the control signal u is generated by the controllers and some of the matrices
depend affinely on the vector ρ with the scheduling variables. The ith controller is
considered in LPV form:

ẋi = Aci(ρ)xi +Bci(ρ)yi (8.14a)

ui =Cci(ρ)xi +Dci(ρ)yi (8.14b)

where yi =C2ix. Then the closed-loop LPV system in the state space can be obtained
in the following form:

ẋ = Acl(ρ)x+Bcl(ρ)w (8.15a)

z =Ccl(ρ)x+Dclw (8.15b)
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where

[
Acl Bcl

Ccl Dcl

]
=

⎡
⎢⎢⎢⎢⎣

A+∑B2iDciC2i B21Cc1 B22Cc2 B23Cc3 B1

Bc1C21 Ac1 0 0
Bc2C22 0 Ac2 0 0
Bc3C23 0 0 Ac3 0

C1 +∑D12iDciC2i D121Cc1 D122Cc2 D123Cc3 D11

⎤
⎥⎥⎥⎥⎦ .

In the supervisory decentralized method the necessary coupling between control
components is realized through a set of well-defined monitoring signals provided
by the supervisor to the subsystem. The controller modifies its normal operation if a
special condition changes or a fault occurs. On a design level the controller should
change its behavior according to these signals, i.e., the control design method should
enable the incorporation of this type of information in the performance specification.
Thus, in the control design the monitoring components are taken into consideration
as scheduling variables in the performance signals.

In order to provide a formal verification of the achieved control performance on
a global level, the problem must be formulated globally. Only on this extended level
are the performance variables which are relevant for the whole vehicle available.
Once the local controllers have been designed, however, it is possible to perform
an analysis step in the same robust control framework on a global level, for details
see [14]. This might be a highly computation-intensive procedure. Moreover the
presence of competing multi-objective criteria deny the applicability of this global
approach. E.g., in emergency events certain performance components gain absolute
priority over others, thus requiring a given performance level for the ignored per-
formance components is not justified. On the other hand the local design guarantees
the prescribed performance level for the critical components. Therefore in practice
the formal global verification is often omitted and the quality of the overall control
scheme is assessed through simulation experiments.

The relationship between the supervisor and the local controllers guarantee
that the system meets the specified performances. Applying parameter-dependent
weighting a balance between different controllers is achieved. In different critical
cases related to extreme maneuvers or performance degradations/faults in sensors or
actuators the controllers reconfigure their operations. However, situations in which
different critical performances must be achieved simultaneously may occur.

Example 2. For example in a high-speed cornering maneuver the risk of a rollover
increases significantly. The performances are in contradiction: deviating from the
lane might cause the vehicle to run off the road while increasing roll dynamics might
lead to rollover. This maneuver requires an intensive cooperation between the steer-
ing and the brake. The supervisor sends critical signals to the controllers and con-
sequently these control systems are activated. However, reducing the rollover risk
the yaw dynamics is modified and the deviation from the predefined path may in-
crease. In contrast reducing the difference from the path might increase the rollover
risk. Since both interventions are critical the supervisor is not able to resolve the
problem, thus the performances are handled by the actuators with performance
degradation.
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8.4.2 Idea of Plug-and-Play Methods

In the decentralized supervisory control the concept of the plug-and-play method
plays and important role. If a new control component is added, an old control is re-
placed by a new one, or an old component is removed, the structure of the system (or
the control) changes. In these cases the conventional control should be redesigned,
which is expensive and takes a long time. In the supervisory control concept the
supervisory logic must be modified on the highest level. When an old actuator is
replaced by a new one only the actuator control must be redesigned. The goal is to
provide a design method for a plug-and-play control architecture, i.e., the possibility
to use sensors and actuators provided by different vendors interchangeably on a core
system by guaranteeing a performance level and leaving the global controller intact.

In the integrated control systems the characteristics of the drivers’ behavior
should be taken into consideration in the control. The chapter proposes control so-
lutions which create a balance between driving (or road holding) and comfort and
guarantee safety all the time. The principle of the compromise leads to solutions
which may not be suitable for all the drivers. The control solutions in practice are
based on the drivers’ behavior, which is learnt by the system during travelling. In
the other solutions a switching between different modes is ensured, e.g. comfort and
sport modes.

8.4.3 Driver Model in the Closed-Loop System

In the integrated control systems the characteristics of the drivers’ behavior should
be taken into consideration in the control. The control solutions create a balance
between driving (or road holding) and comfort and guarantee safety all the time.
This balance often leads to compromise between vehicle functions, which may not
be suitable for all the drivers. For example a driver who wants to minimize the length
of the trajectory in the bend selects the curvature radius as small as possible, while
the driver who requires comfort select a larger curvature radius. At the same time,
however, the selection of different curvature radiuses is also related to the possible
speed selection, e.g. the larger radius allows the driver to select larger speed. The
control solutions in practice are based on the drivers’ behavior, which is learnt by
the system during travelling.

Example 3. As an example a driver model is combined with the vehicle model as
Figure 8.9 shows. In the trajectory tracking control the lateral dynamics must be
taken into consideration and the vehicle must follow the reference yaw-rate signal.
The control inputs of the vehicle model are the front steering angle and the brake
yaw moment, while its outputs are the measured yaw rate and the realized path. The
input of the driver model is the lateral error ey, while its output is the steering angle
of the driver δd.

During maneuvers the difference between the lateral position of the vehicle and
the reference lateral position is minimized by the driver. Based on δd the yaw rate
ψ̇re f is calculated by using a first order proportional transfer function, see [19]:
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Gψ =
v

l1 + l2 +
η
g v2

· 1
τs+ 1

(8.16)

with an understeer gradient η , the time constant τ , geometric parameters l1, l2 are
geometric and velocity v. Since ψ̇re f is generated by the driver, this signal is con-
sidered as a reference. This signal is used in the design of the steering system and
the braking system. Also note that in the closed-loop interconnection structure ψ̇re f

is used instead of δd, which is compared to the measured yaw rate ψ̇ . In the trajec-
tory tracking control the lateral dynamics must be taken into consideration and the
vehicle must follow the reference yaw-rate signal. This concept was shown in more
details in [6].
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Fig. 8.9 Architecture of the vehicle/driver systemÈ

8.5 Simulation Examples

8.5.1 Illustration of the Fault-Tolerant Control

In the first simulation example the risk of rollover is reduced by using an active
brake and the active suspension system, while passenger comfort and road holding
are guaranteed by the suspension actuators. The cornering maneuver starts at the 1st

second and at the 4th second a 10 cm high bump disturbs the motion of the vehi-
cle. The steering angle is generated with a ramp signal with 3.5 degrees maximum
value and 4 rad/s filtering, which represents the finite bandwidth of the driver. The
velocity of the vehicle is 70 km/h. Figure 8.10 shows that as the lateral acceleration
increases in the cornering, the normalized load transfers also increase. The effect
of bump disturbs the heave acceleration at the 4th second. Dashed line illustrates



8 Design of Integrated Control for Road Vehicles 231

the operation of the conventional suspension system while the solid line illustrates
the operation of the reconfigured suspension system. In the latter case the control
system exploits the ability of the suspension system that it is able to generate roll
moments to improve roll stability.
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Fig. 8.10 Time responses of the cornering maneuver

In the example the operation of a reconfigurable suspension system is compared
with a fault-tolerant suspension system. Figure 8.11 shows the operation of the ac-
tuators, i.e., the braking force and the suspension forces. In the cornering maneuver
the active suspension system is not sufficient to reduce the rollover risk of the ve-
hicle. Consequently, the normalized lateral load transfers reach the critical value Ra

during the cornering maneuver so the brake control is activated. The brake gener-
ates a unilateral braking force (5 kN) at 2 sec to reduce the rollover risk. As a result
the normalized lateral load transfers are below the critical value 1. The brake force
figure also shows that the brake is activated earlier and its duration is longer (1.5
sec) in the faulty cases than in the absence of a fault.

8.5.2 Illustration of a Driver Assistance System

In the final example the efficiency of the integrated control is compared to the in-
dividual actuated control systems. A typical E-Class automobile is traveling along
a predefined road, while the suspension system supports the driver to guarantee
trajectory tracking, see Figure 8.12(a). The purpose of the control is to track the
centerline of the road. The velocity of the vehicle changes along its route as Figure
8.12(b) shows. Note that the uncontrolled vehicle is not able to track the trajectory,
i.e., the driver is not able to keep the vehicle on the track without a driver assis-
tance system. At the same time the vehicle which uses supervisory control achieves
trajectory tracking with an acceptable threshold.
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Fig. 8.11 Control forces of the fault-tolerant control system
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Fig. 8.12 Trajectories of vehicles

In the simulation example the supervisory control is compared to systems which
use only one controller, i.e., only an active brake system or only an active steering
system.

When a steering system is used only, it is not able to guarantee trajectory tracking
in the first critical curve. The individual steering actuator is not able to prevent the
skidding of the vehicle on the road. Figure 8.13(a) shows that at the beginning of
the course the lateral error of the individual steering actuator is not acceptable. Note
that the supervisory control ensures trajectory tracking with an acceptable thresh-
old. Figure 8.13(c) shows the difference between the front-wheel steering angles at
the pure steering and the integrated case. When a steering system is used only, the
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Fig. 8.13 Operation of the supervisory control

steering angle is significantly larger than in the integrated system, since the the
turning of the steering-wheel affects the front steering angles.

When a brake system is used only, it generates increased braking pressures to
keep the vehicle in the centerline. However, during braking the slip of the rear tires
increases, which leads to loss of stability in the second critical curve. Figure 8.13(a)
shows that in the last section during the travelling the lateral error increases signif-
icantly when a brake is used only. Note that the supervisory control is able to con-
sider the slips of tires and avoid the saturation of the differential braking. Although
the integrated control also uses a suspension system its activation does not affect
the main feature of the vehicle operation. Figure 8.13(d) shows that when a brake
system is used only, the differential braking torque is larger than in the integrated
system. Note that at the second critical maneuver the torque Mbr sharply increases
because of the skidding effect. When a brake system is used only the longitudinal
slip of rear right wheel exceeds −1, which leads to skidding. In the integrated case
the longitudinal slip does not exceed −1.

The supervisory integrated control gives the smallest lateral error during the op-
eration. In Figure 8.13(b) the yaw-rate tracking of the supervisory integrated control
is shown. Thus, the integrated control provides an acceptable z1 performance. The
simulation example shows that the integration of control components improves the
yaw stability and reduces the lateral error of trajectory tracking.
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8.6 Conclusions

In the chapter a supervisory decentralized control structure has been proposed. The
performance specifications are guaranteed by the local controllers, while the coor-
dination of these components is provided by the supervisor. In the control-oriented
modeling the vehicle dynamics is augmented with the performance specifications
by applying monitoring components. Monitoring components provide the supervi-
sor with information needed to make decisions about the necessary interventions
into the vehicle motion and guarantee the robust operation of the vehicle. In the
control design performance specifications must be formulated in such a way that the
performance demands are guaranteed, conflicts between performances are handled,
priority between different actuators is created and the various fault information is
taken into consideration.
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Chapter 9
Global Chassis Control Using Coordinated
Control of Braking/Steering Actuators

Charles Poussot-Vassal, Olivier Sename, Soheib Fergani,
Moustapha Doumiati, and Luc Dugard

Abstract. Automotive light vehicles are complex systems involving many different
dynamics. On one side, vertical, roll and pitch behaviours are often related to com-
fort performances (indeed, roll is also linked to safety characteristics [23]). On the
other hand, safety performances are mainly characterized by the longitudinal, lat-
eral and yaw dynamics [38, 14]. In practice, these two behaviours are often treated
in a decoupled may (the first dynamics are often related to suspensions systems
while the second one to steering and braking systems). This chapter focuses on
the safety problem, and more specifically, on lateral and yaw dynamics. It presents
two close techniques to design robust gain-scheduled H∞ MIMO VDSC (Vehicle
Dynamic Stability Controller), involving both steering and rear braking actuators.
Both approaches aim at restoring the yaw rate of the vehicle as close as possible to
the nominal motion expected by the driver. The specific framework of each of that
approaches is given below.

• First, a methodology allowing to synthesize such a controller while taking into
account the braking actuator limitations and involving the steering actuator only
if it is necessary, is presented. The proposed solution is coupled with a local
ABS strategy to guarantee slip stability and make the solution complete. The
originality relies on the LPV formulation of the saturation-like function of the
allowable braking force directly during the synthesis step.
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• Secondly, the control design methodology aims at using the steering action to
control the yaw rate and at limiting the use of the braking actuator only when the
vehicle goes toward instability. Judging the vehicle stability region is done from
the phase-plane of the side-slip angle and its time derivative, which is used to
monitor the car dynamical behaviour.

These controllers are both treated in an original way by the synthesis of a parame-
ter dependent controller built in the LPV framework and by the solution of an LMI
problem. Nonlinear time and frequency domain simulations, performed on a com-
plex full vehicle model (which has been validated on a real car), subject to critical
driving situations, show the efficiency and robustness of the proposed solutions.

9.1 Introduction

A trend in modern vehicles is the application of active safety systems to improve
vehicle handling, stability and comfort. Nowadays, many advanced active chassis
control systems have been developed and brought into the market: e.g., ABS (Anti-
lock Braking System) prevents wheel lock-up, and ESC (Electronic Stability Con-
trol) enhances vehicle lateral stability. The development of chassis control systems
is still the object of intense research activities from both industrial and academic
sides. The various vehicle dynamics control systems can be classified into two ar-
eas: (i) on one side, vertical, roll and pitch behaviours are often related to comfort
performances (indeed, roll is also linked to safety characteristics [23]), (ii) on the
other hand, safety performances are mainly characterized by the longitudinal, lateral
and yaw dynamics. In practice, these two behaviours are often treated in a decoupled
may (the first dynamics are often related to suspensions systems while the second
one to steering and braking systems). This chapter focuses on the safety problem,
and more specifically, on lateral and yaw dynamics.

Longitudinal vehicle behaviours have been and still are widely studied trough
the rotational wheel and slip dynamic control, leading to the development of ABS
strategies [13, 29, 40, 44]; concerning the lateral and yaw behaviours, related to
handling and safety performances, many papers involve steering control [2, 17, 47,
27, 32, 39] or braking control [10, 22]. Since the last decade, the tendency is now to
use both actuators [1]. Indeed, collaborative control of different kind of actuators is
an issue in global chassis control and safety improvements [24, 11, 21].

More specifically, in [7, 38], authors show that the join use of the braking and
steering systems highly enhances lateral performances and ground vehicles safety
properties. In this joint perspective, recent developments mostly involve MPC [18,
17, 10] or nonlinear [3] techniques which often result to be highly demanding from a
computational point of view. Within the linear framework, the following limitations
are rarely considered during the synthesis step:
• Braking system, which can only deliver positive torque, is usually treated as a

differential braking system, and thus requires a torque dedicated braking force
repartition. This point, among others, is more specifically treated in the first ap-
proach (Method 1).
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• Even if the braking system greatly enhances the vehicle dynamical behaviour, it
is unlikely for the driver, and quite inefficient due to the induced loss of energy
(i.e. deceleration). As a consequence, braking actuator should act only in emer-
gency cases [16, 14]. This point, among others, is treated in the second approach
(Method 2).

• Additionally, in order to not reduce the impact of the steering action of the driver
feelings, this actuator should act only over a given frequency range (see [27]).
This point is handled in both approaches (Method 1 and Method 2)

This chapter aims to cope with these requirements, introducing two original LPV
formulations, based on very recent results (see [38, 14]). The interest of both pro-
posed VDSC, including controller and monitors, is that they provide a hierarchy to
the local controllers and actuators. Indeed, the VDSC is to be used as a higher level
controller to provide references to local controllers (as illustrated in Figure 9.1).

Vehicle

control references

�

VDSC �

Local Controls

�

measurements

control signals

Fig. 9.1 Simplified control scheme

Throughout the chapter, the following standard notations will be adopted: A+�T

stands for A+AT , the LPV induced L2 to L2 norm will be denoted, with a slight
abuse, as the H∞ norm. The index i = { f ,r} and j = {l,r} are used to identify
vehicle front, rear and left, right vehicle corner positions, respectively. Table 9.1

Table 9.1 Linear bicycle Renault Mégane Coupé parameters

Symbol Value Unit Meaning

m 1535 kg vehicle mass
mr 648.3 kg vehicle rear mass
Iz 2149 kg.m2 vehicle yaw inertia
Cf 40000 N/rd linear lateral tire front cornering stiffness
Cr 40000 N/rd linear lateral tire rear cornering stiffness
l f 1.4 m distance COG - front axle
lr 1 m distance COG - rear axle
tr 1.4 m rear axle length
R 0.3 m tire radius
Tbmax

1200 Nm maximal braking value
g 9.81 m/s2 gravitational constant
μ [2/5;1] − tire/road contact friction interval
v [50;120] km/h vehicle velocity interval
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summarizes the notations and values used to define the linear bicycle model. Pa-
rameters and full description of the complete full nonlinear model are given in [35].

9.2 Simulation Model: Full Vehicle

In this chapter, the full vehicle model presented in [35] is used for simulation and
validation purpose. This model and its parameters have been validated on a real
Renault Mégane vehicle1. For sake of space limitations, the complete model is not
given here but the dynamics are simply recalled. Interested reader should refer to
[35, 16] for more details on parameters and model validation using real experiments.

It is to be kept in mind that the main interest in using the full nonlinear vehicle
model is that is allows to take into consideration load transfer, fast dynamics enter-
ing in the tire force description, and consequently, in the global chassis dynamics, in
a nonlinear fashion. These considerations are of particular interest, especially when
dangerous driving situations are simulated.

This full vehicle model reproduces the longitudinal (xs), lateral (ys), vertical (zs),
roll (θ ), pitch (φ ) and yaw (ψ) dynamics of the chassis. It also models the vertical
and rotational motions of the wheels (zusi j and ωi j, respectively), the slip ratios (λi j)
and the centre of gravity side slip angle (β ) dynamics as a function of the nonlinear
tires and suspensions forces. Then, Tbr j ( j = {l,r} left, right), Mdx, Mdy, Mdz, Fdx,
Fdy and Fdz are the rear braking torques input, the roll, pitch and yaw moments,
longitudinal, lateral and vertical load disturbances respectively. Figure 9.2 recalls
theses dynamics.

Fig. 9.2 Full vehicle dy-
namics

9.3 Synthesis Model: Bicycle and Actuators

The previous model will be used later in Section 9.8 to evaluate the controller per-
formances on a faithful model of the vehicle. In this Section, the model used for both

1 Thanks to M. Basset, G. Pouly and C. Lamy, from the MIAM research team for their kind
help in the validation phase.
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different control synthesis is presented together with the considered actuators. This
model is a modified version of the bicycle model (as the one described in [2, 32]).

9.3.1 Extended Bicycle Model

Since the method presented in this chapter aims at improving vehicle safety prop-
erties in critical situations in order to avoid loss of manoeuvrability, the main non-
linear dynamics under interest are the vehicle side-slip (β ) and yaw (ψ) dynamics,
governed by the following equations:

{
mvβ̇ = Fty f +Ftyr +mvψ̇
Izψ̈ = l f

(−Ftx f sin(δ )+Ftyf
cos(δ )

)− lrFtyr
−ΔFtxr tr +Mdz

(9.1)

where Fty f = Fty f l +Fty f r , Ftyr = Ftyrl +Ftyrr and ΔFtxr = Ftxrl −Ftxrr are the front,
rear tire lateral forces and longitudinal rear differential forces, respectively. In the
real case, these forces are highly nonlinear and depend, among other, on the side-
slip angle (β ) and the slip ratio (λ ) dynamics. v=

√
ẋ2

s + ẏ2
s denotes the longitudinal

vehicle speed, m, the vehicle total mass and Iz, the vehicle inertia along the z-axis.
ΔFtxr , the differential rear braking force, depends on the rear braking torques Tbr j .
δ and Mdz denote the steering angle and the yaw moment disturbance, respectively.
More specifically, δ = δ d +δ+, where δ d is the angle provided by the driver and δ+,
the additive steering angle provided by the controller (to be designed). Assuming
that low slip value are preserved2, ΔFtxr may be rewritten as,

ΔFtxr = Ftxrl −Ftxrr =
μRmrg

2
(Tbrl −Tbrr) (9.2)

where mr is the rear vehicle mass and g is the gravitational constant. Consequently,
(9.1) can be rewritten as follows,
⎧⎨
⎩

mvβ̇ = Fty f +Ftyr +mvψ̇

Izψ̈ = l f
(−Ftx f sin(δ )+Fty f cos(δ )

)− lrFtyr −
μRmrg

2
(Tbrl −Tbrr)tr +Mdz

(9.3)

As long as the proposed design is achieved in the linear control framework, the linear
bicycle model (9.4), denoted Σ , obtained from linearization of (9.3) for nominal
velocity and assuming,

• low sideslip angles: |β |< 7deg
• low longitudinal slip ratios: |λ |< 0.1
• low steering angles: cos(δ )! 1

is given as follows:

2 This assumption is consistent when the vehicle is controlled since the objective is to keep,
as much as possible, the vehicle in the linear stability region.
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[
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⎥⎥⎦

(9.4)

For synthesis purpose, v = 30m/s and μ = 1. In the validation section, other condi-
tions will be considered to show that performances are maintained and emphasize
the inherent robustness of the control schemes.

9.3.2 Actuator Models

In this chapter, two kinds of actuators are considered:

• As braking system, EMB actuators, providing a continuously variable braking
torque, are considered. The corresponding model is given by:

Ṫbr j = 2πϖ(T̃ ∗
br j

−Tbr j) (9.5)

Tb ⊆ {Tb ∈ R : 0 ≤ Tb ≤ Tbmax} (9.6)

where, ϖ = 10Hz is the actuator cut-off frequency, T̃ ∗
br j

and Tbi j are the local
braking controller and actuator outputs, respectively. Tbmax is the maximal torque
allowed by the considered braking actuator. The first relation defines the actuator
linear dynamics while the second one defines the brake nonlinear limitations
(saturation).

• As active steering system (AS), an active actuator providing an additional steer-
ing angle is considered. Such actuator is modeled as:

δ̇+ = 2πκ(δ ∗− δ+) (9.7)

where, κ = 10Hz is the actuator cut-off frequency, δ ∗ and δ+ are the steering
controller and actuator outputs respectively.

9.4 Proposed VDSC Overview and Generalized Plants

9.4.1 Global Control Architecture

In this Section, the problem formulation of the VDSC synthesis of this chapter is
presented. First, the performance objectives and the global control scheme (architec-
ture of the control structure) are given, then, the generalized control scheme together
with the particular controller structure are described. Following the requirements
presented in the introduction section, the general control structure shown in Figure
9.3 aims at:
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1. reducing the yaw rate error w.r.t. a reference provided by a reference model
(which is a bicycle model where parameters may be adjusted in order to obtain
comfort or sport driving performances), without using the side-slip measurement
(practically badly known),

2. ensuring that the braking control signal can always be achieved by the considered
actuators,

3. enhancing the system performances in critical situation (low road adhesion) or in
actuator failure cases,

Note that this scheme will be used later for nonlinear validations in Section 9.8.

Vehicle

ψ̇T̃ ∗
br j

T ∗
br j
/M∗

z

δ ∗

�
�
ψ̇re f (v)

�

VDSC

� �+
�

δd

�

� EMB
Tbr j

δ+
AS

�

Local control

δ

δd
bicycle �

�
external scheduling parameter

Fig. 9.3 Global control scheme

With reference to Figure 9.3 the proposed global control structure includes the
following blocks:

• Vehicle is the full nonlinear vehicle (see Section 9.2).
• Bicycle & Actuators (AS & EMB) are the nonlinear bicycle and actuator mod-

els (see Section 9.3).
• VDSC is the proposed braking and steering controller, synthesized either with

Method 1 or 2, providing the desired braking torque T ∗
br j

(when Method 1) or a

stabilizing moment M∗
dz

(when Method 2) and the additive steering angle δ ∗. It
is fed by eψ̇ = ψ̇re f (v)− ψ̇ and scheduled by:

– (Method 1) ρ1, the steering monitoring parameter, and ρ2, a braking torque
parameter which is calculated based on eψ̇ measurement, ensuring the braking
torque saturation (i.e. positivity of the torque).

– (Method 2) ρ , a braking activation parameter, which allows to activate the
braking system only in emergency situations.

ψ̇re f (v) is obtained by a simple bicycle model similar to the one presented in
Section 9.3, equation (9.3), function of the vehicle velocity, and parametrized as
a neutral vehicle.
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• ABS is the local ABS control, implemented on each of the rear wheels, that is
activated to avoid slipping, providing T̃ ∗

br j
, the braking torque, according to the

set point T ∗
br j

given by the VDSC controller (this design is based on recently
published results, see [44]).

9.4.2 Generalized Control Schemes Σ1
g and Σ2

g

To synthesize the so called gain-scheduled VDSC, the H∞ tuning approach is used.
Figure 9.4 presents in a schematic way the generalized plants Σ1

g and Σ2
g , used for

the synthesis of the gain-scheduled controllers K1(ρ1,ρ2) and K2(ρ), respectively.
Indeed, in this section, two different generalized plants are presented to achieve the
stability performances.

ψ̇re f (v)
+
−

�
�

ψ̇
K1(ρ1,ρ2)� Σ

�
T ∗br j

�

Mdz

�
δ ∗

�

�

EMB

ASeψ̇

� WTbr j
� z2

� Wδ � z3

Σ 1
g

� Weψ̇
�

z1

ψ̇re f (v)
+
−

�
�

ψ̇
K2(ρ)� Σ

�
M∗

z

�

Mdz

�
δ ∗

�

�

EMB

ASeψ̇

� WMz (ρ) � z2

� Wδ � z3

Σ 2
g

� Weψ̇
�

z1

Fig. 9.4 Generalized plant models (left: Method 1, right: Method 2)

According to the standard problem depicted in Figure 9.4 the following systems
and signals are defined, characterizing the performance objectives and actuator fre-
quency limitations:

• Σ , EMB and AS stand for the extended bicycle (9.4), braking (9.5) and steering
(9.7) actuators models, respectively.

• K1(ρ1,ρ2) (left, Method 1) and K2(ρ) (left, Method 2) are the gain-scheduled
controller to be synthesized (see next subsection).

• z1, yaw rate error exogenous output signal, is the output of the tracking error
performance, weighted by:

Weψ̇ =
1

2Ge

sGe/2π f1 + 1
s/2π f1 + 1

(9.8)

where f1 = 1Hz is the cut-off frequency of the high pass filter. Ge = 0.1 is the
attenuation level for low frequencies ( f < f1); in this case 0.1 means that the
static tracking error should be lower than 10%.
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• z2, the exogenous braking (or moment) control signal attenuation, is the output
of the braking control, weighted by:

WTbr j
= GT

s/2π f2 + 1
s/α2π f2 + 1

(Method1)

WMz(ρ) = ρ
s/(2π f2)+ 1

s/(α2π f2)+ 1
(Method2)

(9.9)

where f2 = 10Hz and α = 100 are the braking actuator bandwidth and the roll-off
parameters, respectively. These parameters are chosen to handle the dynamical
braking actuator limitations. GT = 10−4 is the allowed amplification gain of the
control input which is given to avoid high variations in the control signal. WMz(ρ)
is linearly parametrized by the considered varying parameter ρ(.), where ρ ∈{
ρ ≤ ρ ≤ ρ

}
(with ρ = 10−5 and ρ = 10−3). Then, when ρ = ρ , the braking

input is penalized, on the contrary, when ρ = ρ , the braking control signal is
relaxed.

Remark 9.1. This is one of the main differences between both methods, since
the braking action will be used, in the case of Method 2, only to handle critical
situations.

• z3, the exogenous steering control signal attenuation, is the output of the steering
control performance, weighted by:

Wδ = G0
δ
(s/2π f3 + 1)(s/2π f4+ 1)

(s/α2π f4 + 1)2

G0
δ = Gδ

(Δ f /α2π f4 + 1)2

(Δ f /2π f3 + 1)(Δ f/2π f4 + 1)
Δ f = 2π( f4 + f3)/2

(9.10)

where f4 = 10Hz is the steering actuator bandwidth and f3 = 1Hz is lower limit
of the actuator intervention. This filter is designed in order to allow the steering
system to act only in [ f3 f4] frequency range. Outside of this frequency range,
the filter rolls off. Between these frequencies, and more specifically, at Δ f /2, the
steering action is allowed and gain amplification is bounded by Gδ = 5.10−3.
The interest of such a "complex" filter is to limit the steering system action in a
frequency range where the driver cannot act, while handling the actuator limita-
tions. This filter design is inspired from [27, 26] where a filter (Q) of the same
shape was used to limit the steering bandwidth action. But in the latter results, the
filter is added a posteriori and the control law only involves the steering actuator.
Here the filter is directly included in the control design problem formulation.

Remark 9.2. Note that in the generalized scheme Σ1
g (Method 1), the control torque

is controlled, while in Σ2
g (Method 2), the yaw moment is directly controlled. There-

fore Method 2 includes a lower-level controller that distributes the torque between
left/right (see section 9.7.2.2). In the former one, the rear torques are directly con-
trolled, and saturations are handled at the synthesis step.
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9.4.2.1 Method 1: Σ1
g and Rear Braking Saturation-Handling - Active Front

Steering Controller

As rooted in the left frame of Figure 9.4, the generalized plant Σ1
g obtained is thus

given by:

Σ1
g :

⎧⎨
⎩
ξ̇ (t) = Aξ (t)+B1w(t)+B2u(t)
z(t) = C1ξ (t)+D11w(t)+D12u(t)
y(t) = C2ξ (t)+D21w(t)

(9.11)

w(t) = [ψ̇re f (v)(t),Mdz(t)] are the exogenous input signals
u(t) = [δ ∗(t),T ∗

brl
(t),T ∗

brr
(t)] are the control input signals

y(t) = eψ̇(t) are the signal measurement
z(t) = [z1(t),z2(t),z3(t)] are the controlled outputs signals

(9.12)

where ξ (t) is the concatenation of the linearized vehicle model, actuators and
weighting function state variables, which takes its values in Ξ ∈ Rn, z(t) the per-
formance output which takes its values in Z ∈ Rnz , w(t) the weighted input which
takes its values in W ∈ Rnw , y(t) the measured signal which takes its values in
Y ∈Rny , u(t) the control signal which takes its values in U ∈Rnu . Then, A ∈Rn×n,
B1 ∈Rn×nw , B2 ∈Rn×nu , C1 ∈Rnz×n, D11 ∈Rnz×nw , D12 ∈Rnz×nu , C2 ∈Rny×n and
D21 ∈ Rny×nw are known matrices. In this case, n = 8, nw = 2, nu = 3, nz = 3 and
ny = 1.

Based on the generalized system Σ1
g , let us now describe the associated specific

controller structure. Usually, when lateral stability control is considered, the con-
troller is built to get linear closed-loop performances without taking into account
the fact that the braking torque must be positive. It results in a controller which
may provide a negative torque (equivalent to an acceleration), which is practically
impossible (except with other actuators such a motor-in-the-wheel). Therefore the
braking signal is often saturated and performances are validated afterwards. Unfor-
tunately, as illustrated in Section 9.8, this kind of design may lead to high forces and
to undesirable vehicle behavior. Moreover, the steering actuator collaboration would
not be appropriately used. To handle these constraints, a particular LPV controller
structure is considered, as follows.

K(ρ1,ρ2) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋc(t) = Ac(ρ1,ρ2)xc(t)+Bc(ρ1,ρ2)eψ̇(t)⎡
⎣ δ ∗(t)

T ∗
brl
(t)

T ∗
brr
(t)

⎤
⎦ =

⎡
⎣ρ1 0 0

0 ρ2 0
0 0 1−ρ2

⎤
⎦C0

c (ρ1,ρ2)

︸ ︷︷ ︸
Cc(ρ1,ρ2)

xc(t) (9.13)

where xc(t), the controller state, takes its values in Ξc ∈ Rn, u(t) =[
δ ∗(t) T ∗

brl
(t) T ∗

brr
(t)
]T

and y(t) = eψ̇(t). Parameter ρ1 ∈ [0 1] is used to activate the
steering action and parameter ρ2 ∈ {0;1} aims at ensuring positive braking torque.
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Remark 9.3. The specificity of this controller is that the structure is fixed, but a pa-
rameter dependency on the control output matrix is introduced. The matrix,

U(ρ) =

⎡
⎣ρ1 0 0

0 ρ2 0
0 0 1−ρ2

⎤
⎦

that allows for actuator distribution, is in fact connected to the ‘generalized’ plant
(9.11) to get an LPV generalized plant that copes with the design of a polytopic
controller.

9.4.2.2 Method 2: Σ2
g and Coordination of Rear Braking and Active Front

Steering Control

As rooted right frame of Figure 9.4, the generalized plant Σ2
g obtained is thus given

by:

Σ2
g :

⎧⎨
⎩
ξ̇ (t) = Aξ (t)+B1w(t)+B2(ρ)u(t)
z(t) = C1(ρ)ξ (t)+D11w(t)+D12(ρ)u(t)
y(t) = C2ξ (t)+D21w(t)

(9.14)

w(t) = [ψ̇re f (v)(t),Mdz(t)] are the exogenous input signals
u(t) = [δ ∗(t),M∗

z (t)] are the control input signals
y(t) = eψ̇(t) is the signal measurement
z(t) = [z1(t),z2(t),z3(t)] are the controlled outputs signals

(9.15)

where ξ (t) is the concatenation of the linearized vehicle model, actuators and pa-
rameter dependent weighting function state variables, which takes its values in
Ξ ∈ Rn, z(t) the performance output which takes its values in Z ∈ Rnz , w(t) the
weighted input which takes its values in W ∈ Rnw , y(t) the measured signal which
takes its values in Y ∈Rny , u(t) the control signal which takes its values in U ∈Rnu .
Then, A∈Rn×n, B1 ∈Rn×nw , B2 ∈Rn×nu , C1 ∈Rnz×n, D11 ∈Rnz×nw , D12 ∈Rnz×nu ,
C2 ∈ Rny×n and D21 ∈ Rny×nw are known matrices. In this case, n = 8, nw = 2,
nu = 2, nz = 3 and ny = 1.

Remark 9.4. Note that matrices B2, C1 and D12 depend on ρ , which is not compat-
ible with the requirements of the H∞ synthesis for polytopic systems. However, as
mentioned in [35], this assumption can be relaxed using some filter on the control
input, which has been done here.

The LPV controller will be obtained in the following state space representation

Kz(ρ) :

⎧⎨
⎩

ẋc(t) = Ac(ρ)xc(t)+Bc(ρ)eψ̇ (t)[
δ ∗(t)
M∗

z (t)

]
= C0

c (ρ)xc(t)
(9.16)
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where xc(t), the controller state, takes its values in Ξc ∈ Rn, u(t) =

[
δ ∗(t)
M∗

z (t)

]
and

y(t) = eψ̇ (t).

Remark 9.5. It is also notable that Σ1
g (Method 1) is LTI (even if the actual general-

ized plant is LPV due to the controller distribution U(ρ)), while Σ2
g is, because of

the WMdz
(ρ) parameter dependent weighting function, LPV.

9.5 LMI-Based Polytopic H∞ Controller Design

The LMI-based H∞ controller design step is briefly recalled in this section. The
H∞ control synthesis is a disturbance attenuation problem which consists in finding
a stabilizing controller that minimizes the impact of the input disturbances w(t) on
the controlled output z(t). In the case of the LPV H∞ control synthesis, this impact
is measured thanks to the induced L2-L2 norm [5, 41, 20, 8].

• In Method 1, the generalized system Σ1
g is LPV due to the controller structure

K(ρ1,ρ2).
• In Method 2, the generalized plant is itself LPV.

To find a stabilizing controller, ensuring H∞ performances, the following proposi-
tion has to be satisfied. Note that the propositions are given for the Method 1, but
similar procedure can be applied to Method 2 (with ρ1 = ρ2 = ρ).

Proposition 9.1 (Feasibility - (ρ1,ρ2)-H∞ LMI problem). Let consider the system
interconnection on Figure 9.4, where Σg is defined by the state space representation
given in (9.11) and {ρ1,ρ2} ∈ [ρ1 ρ1]× [ρ2 ρ2]. There exists a full order gain-
scheduled dynamical output feedback controller (K(ρ1,ρ2)) of the form (9.13), that
minimizes the LPV polytopic L2-L2 induced norm if there exist symmetric matrices
X ,Y ∈Rn×n, full matrices

Ã(ρ1,ρ2), Ã(ρ1,ρ2), Ã(ρ1,ρ2), Ã(ρ1,ρ2) ∈ Rn×n

B̃(ρ1,ρ2), B̃(ρ1,ρ2), B̃(ρ1,ρ2), B̃(ρ1,ρ2) ∈ Rn×ny

C̃(ρ1,ρ2), C̃(ρ1,ρ2), C̃(ρ1,ρ2), C̃(ρ1,ρ2) ∈ Rnu×n

(9.17)

and γ ∈R+∗ solving the following problem:

γ∗ = min γ
s.t. (9.19) |ρ1,ρ2

s.t. (9.19) |ρ1,ρ2

s.t. (9.19) |ρ1,ρ2

s.t. (9.19) |ρ1,ρ2

(9.18)



9 Global Chassis Control 249

⎡
⎢⎢⎢⎣

AX+B2C̃(ρ1,ρ2)+ (�)T (�)T (�)T (�)T

Ã(ρ1,ρ2)+AT YA+ B̃(ρ1,ρ2)C2 +(�)T (�)T (�)T

BT
1 BT

1 Y+DT
21B̃(ρ1,ρ2)

T −γI (�)T

C1X+D12C̃(ρ1,ρ2) C1 D11 −γI

⎤
⎥⎥⎥⎦≺ 0

[
X I
I Y

]
� 0

(9.19)

Proposition 9.2 (Reconstruction - (ρ1,ρ2)-H∞ LMI problem). If Proposition 9.1
is fulfilled, K(ρ1,ρ2) exists (Feasibility Proposition 9.1), then, the controller recon-
struction is obtained by solving the following system of equations at each vertex of
the polytope, i.e.:

solve (9.21) |ρ1,ρ2

(9.21) |ρ1,ρ2

(9.21) |ρ1,ρ2

(9.21) |ρ1,ρ2

(9.20)

⎧⎪⎪⎨
⎪⎪⎩

Cc(ρ1,ρ2) = C̃(ρ1,ρ2)M−T

Bc(ρ1,ρ2) = N−1B̃(ρ1,ρ2)

Ac(ρ1,ρ2) = N−1
(
Ã(ρ1,ρ2)−YAX −NBc(ρ1,ρ2)C2X

− Y B2Cc(ρ1,ρ2)MT
)
M−T

(9.21)

where M and N are defined such that MNT = I − XY which may be chosen by
applying a singular value decomposition and a Cholesky factorization.

For further details, see the contributive work of [6, 20, 41, 42]. Note that proofs,
numerical issues to improve matrix conditioning are also provided in [35].

Remark 9.6. In the case of a single parameter i.e. for Method 1, the propositions are
similar, but the number of LMI sets to solve is in that case, divided by two.

9.6 Definition of the Scheduling Parameters

9.6.1 Method 1

The controller parameter used is as follows:

• ρ1 ∈ [0 1] allows to continuously (de)activates the steering action. This param-
eter aims at scheduling the VDSC in order to activate the steering system when
required. More specifically:

– when ρ1 = 0, the δ ∗(t) signal is set to zero (no steering action).
– when ρ1 = 1, the δ ∗(t) signal is activated (steering action is allowed).
– in-between values provide an intermediate steering activation. As a conse-

quence, the steering system may be smoothly activated through this
parameter.
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The activating rule is not treated here, but many mechanisms may be used: e.g.
a braking system fault detection (see e.g. [36]), a critical situation monitor (see
e.g. [23]) or vehicle dynamics monitoring (see e.g. [19]).

• ρ2 ∈ {0;1} selects the activated braking actuator. Indeed the controller output
will change according to its value (either 0 or 1). More specifically:

– when ρ2 = 1, the T ∗
brr
(t) signal is set to zero (i.e. deactivated)

– when ρ2 = 0, the T ∗
brl
(t) signal is set to zero (i.e. deactivated)

To cope with the yaw rate tracking performance, the braking selection parameter
ρ2 is chosen as:

ρ2(t) = sat[0 1][sign(eψ̇(t))] (9.22)

Hence,
eψ̇(t)> 0 ⇒ ρ2 = 1 (rear left brake is activated)
eψ̇(t)≤ 0 ⇒ ρ2 = 0 (rear right brake is activated)

(9.23)

As a matter of fact, computing ρ2 with the rule (9.22) always ensure a positive
braking signal, which is consistent with reality. This is due to the specific con-
troller structure (9.13).

On table 9.2, the activated controller output according to the {ρ1,ρ2} values is sum-
marized.

Table 9.2 {ρ1,ρ2}-
parameter configurations
and actuators activation

ρ1 ρ2 Actuators activated

0 0 (eψ̇(t)≤ 0) T ∗
brr
(t)

1 (eψ̇(t)> 0) T ∗
brl
(t)

1 0 (eψ̇(t)≤ 0) δ ∗(t) and T ∗
brr
(t)

1 (eψ̇(t)> 0) δ ∗(t) and T ∗
brl
(t)

Remark 9.7. The interest of this specific LPV structure is that, at the synthesis step,
the controller "knows" that only a single brake is available at each time and that
the steering actuator is not always available, which allows to manage the actuator
activation while guaranteeing robustness.

9.6.2 Method 2

Monitor: coordination LPV strategy of steering and braking actions.
As the brake-based DYC technique is not desirable in normal driving situations

because of its direct influence on the longitudinal dynamics, the aim of the monitor
is to minimize the use of the braking. Consequently, the braking actuators must be
used only when the vehicle goes toward instability. Since vehicle stability is directly
related to the sideslip motion of the vehicle, judging the vehicle stability region is
derived from the phase-plane (β − β̇ ) method. A stability bound defined in [28] is
used here, and is formulated as:
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χ < 1, (9.24)

where χ =
∣∣∣2.49β̇ + 9.55β

∣∣∣ is the "Stability Index". Therefore, when the vehicle

states move beyond the control boundaries and enter the unstable region, braking
actuators will be involved to generate an additive corrective yaw moment, pulling
the vehicle back into the stable region. According to [28], one of the significant
benefits of this stability index is that the reference region defined in (9.24) is largely
independent of the road surface conditions and hence, the accurate estimation of the
road surface coefficient of friction is not required.

Remember that the control task is also supposed to provide a seamless applica-
tion of the direct yaw moment control when it is required. Hence, the scheduling
parameter ρ(χ) can be defined as:

ρ :=

⎧⎪⎪⎨
⎪⎪⎩

ρ if χ ≤ χ (steering control-steerability control task)
χ− χ
χ− χ

ρ+
χ− χ
χ− χ

ρ if χ < χ < χ (steering+braking)

ρ if χ ≥ χ (steering+full braking-stability control task)
(9.25)

where χ = 0.8 (user defined) and χ = 1. The control task selection is illustrated in
Figure 9.5.

Fig. 9.5 Control task selection according to the stability index variation

Remark 9.8. To calculate the actual stability index χ defined in the previous subsec-
tion, a side-slip dynamics observer is used, to evaluate β̇ and β in real-time:

• β̇ can be reconstructed using available sensors, according to the following rela-
tionship:

β̇ =
ay

vx
− ψ̇, (9.26)

where ay is the lateral acceleration and vx is the forward vehicle speed that can
be approximated by the mean of the rear wheel velocities.
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• β is not available using standard sensors, and thus, it must be estimated. The "β -
estimation" is widely discussed in the literature, and many papers are concerned
with that topic (see [34, 30, 25, 33]). Here, the observer developed in [16, 15]
has been used, which is suitable for real-time implementation.

9.7 Frequency-Domain Analysis

9.7.1 Method 1: Rear Braking Saturation-Handling and Active
Front Steering Controller

In all what follows the LTI controller is referred to as the controller designed by
solving the same H∞ problem but choosing a linear constant controller structure, i.e
U = I3 for Method 1. In that case the generalized plant is LTI, therefore the control
is LTI, and no specific rule is considered to schedule the use of the actuators.

9.7.1.1 Upper-Level Controller (LPV/H∞ Controller Synthesis Results)

Applying Proposition 9.1 and 9.2, for {ρ1,ρ2} = [ρ1 ρ1]× [ρ2 ρ2] = [0 1]× [0 1],
with YALMIP parser [12] and SeDuMi solver [28] leads to the following sensitivity
functions (Figures 9.6) for the LTI and LPV problem (for the LTI controller: γ∗ =
0.5945, and for the LPV controller: γ∗ = 0.6820).
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dotted) synthesis results. Weighting functions (black dashed)
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On these Bode diagrams it is interesting to make the following remarks:

• z1/ψ̇re f : the yaw rate error signal for both the LTI and LPV controllers is well
attenuated and a small yaw rate error is guaranteed in low frequencies. Moreover
the maximum peak frequency is well attenuated.

• z2/ψ̇re f : the braking control signal rolls off after frequencies higher than f2 (ac-
tuator bandwidth). Consequently the actuator is preserved from high frequencies.

• z3/ψ̇re f : the steering output signal z3 of the LPV controller is drastically varying
for ρ1 = 0 or ρ1 = 1 configurations. Remember that when ρ1 = 1 the steering
system is used, while ρ1 = 0 means that the steering action is forbidden. As a
consequence, when ρ1 = 0, the steering signal is not used. Nevertheless, when
ρ1 = 1, the z3 signal of the LPV controller is very similar to the LTI one, which
is also consistent with the considered performance objective.

• z1/Mdz: the effects of a moment disturbance around the z axis are mitigated,
ensuring the vehicle stability in critical situations (over and understeering).

• The output performance signals z1 and z2 are very similar between the LTI and
LPV design. This remark shows that the proposed LPV design does not in-
troduce too much conservatism (the attenuation level for the LTI controller is:
γ∗ = 0.5945 while the LPV controller one is: γ∗ = 0.6820).

• For both LTI and LPV (when ρ1 = 1) control strategies, the steering control (z3,
Figure 9.6) acts in the specified frequency range (between f3 and f4) in order to
avoid driver unlikely interaction and preserve the actuator bandwidth.

As long as the polytopic design has been used for synthesis, the controller is imple-
mented in the following form:

[
δ ∗ T ∗

brl
T ∗

brr

]T
= ρ1ρ2K(ρ1,ρ2)+ (1−ρ1)ρ2K(ρ1,ρ2)

+ ρ1(1−ρ2)K(ρ1,ρ2)+ (1−ρ1)(1−ρ2)K(ρ1,ρ2)
(9.27)

where K(ρ1,ρ2) are the solutions of the polytopic problem (Proposition 9.1 and
9.2) evaluated at each vertex. Note that the resulting gain-scheduled controller is a
convex combination of four LTI controllers of dimension n = 8. For implementation
purpose, the discretization of the LPV controller should be applied using specific
technique (see very interesting work of [46]).

9.7.1.2 Lower-Level Controller: Local ABS

Since the previous controller handles the fact that the braking torque must be posi-
tive and the actuator dynamical limits are preserved, it still does not guarantee that
the slip ratio is kept low (to avoid wheel locking, leading to loss of manoeuvrabil-
ity). To propose a complete solution, the local ABS strategy proposed by [40, 44] is
also implemented.

This local ABS control law provides a braking torque ˜T ABS
br j

ensuring the slip
stability (based on sliding mode techniques). To be integrated to the proposed VDSC
structure, this control law is slightly modified as:
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T̃ ∗
br j

= min(T ∗
br j
,˜T ABS

br j
) (9.28)

i.e., the braking torque reference given to the actuator is the one provided by the
VDSC in all situations and the ABS one when T ∗

br j
becomes too high.

9.7.2 Method 2: Coordination of Rear Braking and Active Front
Steering Control

The yaw controller is designed so that the vehicle follows the reference yaw rate
by driving the tracking error between the actual and desired yaw rate to zero. The
control involves 2 layers:

1. The upper-level controller defines the amount of the active steer angle δ ∗, and
the corrective yaw moment M∗

z , needed to achieve a good tracking of the yaw-
rate set-point.

Note that when the vehicle operates within the “linear" region, the controller
ensures steerability and only steering is used to follow the desired response. How-
ever, when the vehicle reaches the handling limits, steering and braking act to-
gether to maintain the vehicle stability.

2. The lower-level controller converts the stabilizing yaw moment generated by the
upper-level controller into an effective braking torque, and decides which wheel
must be braked to counteract the undesired yaw motion.

Remark 9.9. Notice that the main contribution is in the synthesis of the LPV upper-
level controller which ensures the actuator coordination through the use of a pa-
rameter ρ depending on a stability index of the vehicle. The lower-level controller
chosen here is simple and distributes efficiently the braking torque at a single wheel.
However, since the yaw moment is a control input, this lower-lever controller could
be replaced by more advanced strategies including control allocation [45], or some
other structures such as differential braking, could be considered as proposed for
instance in [12, 10, 9].

9.7.2.1 Upper-Level Controller (LPV/H∞ Controller Synthesis Results)

The first step in a control design consists in defining of the control objectives. The
proposed integrated control system is designed to achieve the following goals:

• Improvement of the vehicle handling and stability by:

– making the yaw rate tracking the desired value (given in terms of the response
of a bicycle model with linear tire properties);

– making the side-slip angle small for stability.

• Coordination of Steering/braking control in order to minimize the use of braking
actuators.
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• Activation of steering control in a frequency band where the driver cannot act
(driver comfort as in [38]).

• Rejection of yaw moment disturbances.
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Considering the sensitivity functions Bode diagrams given in Figure 9.7 leads to
the following comments:

• z1/ψ̇re f : the yaw rate error signal, eψ̇ , is well attenuated.
• z2/ψ̇re f : the braking control is activated for ρ = ρ and limited for ρ = ρ . Note

that intermediate values of ρ ∈ [ρ ρ ] give intermediate behaviours.
• z3/ψ̇re f : the steering control is activated especially in the specified frequency

range [1 10]Hz where the driver cannot act.

9.7.2.2 Lower-Level Controller: Braking Scheme

The desired yaw moment command, M∗
z , produced by the upper-level controller can

be generated by applying a torque difference between the two sides of the vehicle.
For simplicity, the quasi-static rotational dynamics of the wheel, at position

{i, j}, is employed and given as:

Tb,i j = RwFxi j, (9.29)

where Rw is the effective tire radius and Fxi j, the longitudinal tire force.
Assuming a symmetric vehicle mass distribution, the corrective yaw moment

demanded by the controller can be expressed as:

M∗
z =

trΔFx

2
(9.30)
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where tr is the vehicle’s rear axle length, ΔFx is the longitudinal force between
the left and right driving wheels of the same axle. Thus, the corresponding torque
difference, between the left and right sides, can be expressed in terms of M∗

z and
takes the form:

ΔT = Tle f t −Tright =
2M∗

z Rw

tr
. (9.31)

In the following, the control law will be designed in order to select the most effective
wheel to apply the brake torque, according to both following situations:

• Understeer condition: the absolute value of the vehicle yaw rate, ψ̇ , is always
smaller than the absolute value of the desired vehicle yaw rate, ψ̇d . Therefore,
the inner wheels will be chosen to generate a pro-cornering yaw moment.

• Oversteer condition: the absolute value of the vehicle yaw rate, ψ̇ , is always
greater than the absolute value of desired vehicle yaw rate, ψ̇d . Hence, the outer
wheels will be selected to generate a contra-cornering yaw moment.

In both dynamic conditions, either both wheels or one wheel (on one side) can be
braked to generate M∗

z . However, from an optimal control point of view, it is recom-
mended to use one wheel only to generate the control moment [4]. Another advan-
tage of the scheme to apply the brake torque only at one wheel at a time, is that the
vehicle is not as much decelerated as when brake torque is applied at more than one
wheel to generate the same amount of yaw moment. In this study, to avoid overlap-
ping with front steering actuators, only rear wheels are involved in the control law.
Based on the above analysis and assuming counterclockwise positive, the lower-
level controller law is described as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ̇ > 0,ξ > 0 → Brake rear left wheel: T ∗
brl =

2RM∗
z

tr

ψ̇ < 0,ξ > 0 → Brake rear right wheel: T ∗
brr =

−2RM∗
z

tr

ψ̇ > 0,ξ < 0 → Brake rear right wheel: T ∗
brr =

−2RM∗
z

tr

ψ̇ > 0,ξ < 0 → Brake rear left wheel: T ∗
brl =

2RM∗
z

tr

(9.32)

where ξ = |ψ̇d |− |ψ̇ |.
Remark 9.10. It is worth noticing that this lower level controller can be completed
by the previously considered local ABS strategy.

9.8 Non Linear Simulation Results

In this section, the proposed gain-scheduled VDSC controller performances are
evaluated and compared through simulations using the full vehicle nonlinear model
presented in Section 9.2.

All simulations are performed on the complete nonlinear vehicle model presented
in Section 9.2 and in details in [35, 16]. The implementation scheme, given on Fig-
ure 9.3, includes the ABS controller.

The scenario is the following: the vehicle runs at 90km/h on a WET road surface
and the driver performs a line change manoeuvre (cf figure 9.8).



9 Global Chassis Control 257

0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Driver steering action (v
0
=90km/h and road type:WET)

time [s]

δd
 [
d
e
g
]

Fig. 9.8 Driver steering input signal (avoidance manoeuvre)

9.8.1 Method 1

In that case, we have chosen to compare the LPV case with ρ1 = 1 (the steering
actuator is active) versus the LTI one (using braking and steering actuators without
coordination).

The vehicle trajectories for both simulations are given on Figure 9.9, showing
that the line change is satisfactory in the LPV case, but less efficient in the LTI one.
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Fig. 9.9 Vehicle trajectory: Uncontrolled ’Mégane’ (black), ’VDSC with steer’ (red)

In Figure 9.10 it can be seen that the gain-scheduled VDSC controller shows to
highly reduce the yaw rate tracking error, even more than the LTI controller.
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It is clear that the vehicle with the integrated control operates in the safety enve-
lope defined in equation (9.24) during the whole test, while the LTI vehicle enters
the critical unsafe zone.

Since the main contribution of this work concerns the controller structure which
handles the brakes limitations (i.e. the brake saturation), the control signals are
more deeply analysed. Figure 9.11 shows the ρ2 parameter illustrating the switching
mechanism, the additive steering signal (generated by the controller and provided
by the actuator) as well as the braking torque signals provided by the controller.

It is also interesting to remark that the gain-scheduled VDSC left and right con-
trol torques are always positive (while the ones provided by the LTI controller do
not satisfy this constraint as shown in [38]). Therefore, the LPV braking actuators
are not always saturating, resulting then in an improved efficiency and avoiding a
classical trial and error approach to validate the control design.

The authors stress that results founded in the literature handle this problem
through a differential mechanism, while here the proposed approach is original
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in the sense that the brakes are treated independently and the saturation effect is
tackled with an original LPV design; this is a real contribution with respect to pre-
vious works, allowing different left / right brake control in complex situations.
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9.8.2 Method 2

The vehicle trajectories for both simulations are given on Figure 9.13, showing that
the line change is satisfactory in the LPV case, but less efficient in the LTI one.

It can be deduced that the uncontrolled vehicle becomes rather unstable as the
amplitude of the steering input becomes larger. Moreover, the controlled output of
the yaw rate is nearly converging to the output of the desired linear model. These
results are confirmed by Figure 9.14, where the yaw rate of the uncontrolled vehicle
significantly lags the desired yaw rate, while the controlled vehicle closely tracks
the desired yaw response.

Comparisons between the side-slip angles and the lateral accelerations of the un-
controlled and controlled vehicles are illustrated in Figure 9.15 (left). The vehicle
with integrated control achieves lower peaks for the lateral acceleration and sideslip
angle in response to the steer input, compared to the uncontrolled vehicle. Conse-
quently, the handling performances are much improved by the proposed controller.
The side-slip dynamic variation is reported in the phase-plane (β − β̇ ) illustrated in
Figure 9.15 (right). It is clear that the vehicle with the integrated control operates
in the safety envelope defined in equation (9.24) during the whole test, while the
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passive vehicle enters the critical unsafe zone. The controlled car is then brought
back to a normal driving situation.

The Figures (9.16-9.17) illustrates the LPV integrated control action on the vehi-
cle behaviour. Figure 9.16 illustrates how the stability index, the dependency param-
eter ρ and the generated corrective yaw moment M∗

z evolve according to the driving
situations. As stated before, when the stability index, χ , is below 0.8, only steer-
ing control is involved to enhance the handling performances. Indeed ρ in that case
equals ρ and the corrective yaw moment is penalized and nearly zero. Conversely,
when χ exceeds 0.8, the braking system acts in addition to the active steering in
order to keep the vehicle stable.

Figure 9.17 shows the generated corrective steering angle and the brake torques
to enhance the lateral vehicle control. It is worth noting that, despite the toughness
of this test, actuators are far from saturation which may lead to instability. Also
as said previously, the simple lower-level control strategy that activates the right
or left braking torques could be replaced by more advanced ones since the second
controller output is the yaw moment M∗

z .
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9.9 Conclusions and Discussions

This chapter has addressed the problem of yaw vehicle dynamical stability control,
which is one of the most critical problems for light vehicles. The proposed MIMO
gain-scheduled VDSC solutions involve an active steering and rear braking actua-
tors. The main contribution and innovation are to propose two different methodolo-
gies to design controllers tacking into consideration actuator limitations and varying
performance requirements, i.e.:

• The steering control only acts over a given frequency range corresponding to an
action non achievable by a normal driver (frequencies> 1Hz), and limited by the
steering actuator bandwidth. Additionally, while Method 2 considers a permanent
use of the steering action, it can be, in the case of Method 1 smoothly activated
by a simple parameter adjustment (ρ1) in order to be used only in emergency
situations (if a critical situation is detected).

• In the case of Method 1, the braking torque control signal is guaranteed to be
always positive thanks to the ρ2 parameter, adjusted according to the sign of the
yaw rate error and a specific controller structure. This approach avoids, in an
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original way, the usual differential braking solution used in the literature. In the
case of Method 2, the considered control input is the (braking) yaw moment, and
is distributed to the left/right rear wheels according to an oversteer/understeer
situation. Moreover this control action is used only during temporary critical
situations, evaluated thanks to a classical stability index.

The proposed design methods have been validated in simulation using a complex
nonlinear vehicle model, with values identified and validated on a real vehicle, over
various driving situations (with both time and frequency domain experiments). The
results show the efficiency of the control approaches and also the interesting robust-
ness properties to low road adherence and vehicle velocity variations.
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Chapter 10
Multisensor Fault-Tolerant Automotive Control

John J. Martinez and Sébastien Varrier

Abstract. This chapter deals with the problem of obtaining fault-tolerant guaran-
tees of a multi-sensor switching strategy for automotive control. It is assumed that
each sensor (or a family of sensors) has an associated observer that performs a good
estimation under normal operation conditions. In presence of sensor failures the re-
lated observer provides an estimation that is biased by signals (that often depend
of the references). Since the automotive vehicle is modeled as a linear parame-
ter varying (LPV) system by taken the vehicle speed as a scheduling parameter,
the main problem concerns the computation of robustly positively invariant-sets
for the state trajectories of the controlled system during fault-free operation. These
invariant-sets could be used as bounds and/or thresholds for the residuals (here the
tracking error estimations for instance) allowing to detect a sensor failure even in
presence of nominal disturbances. The invariant-sets provide a support for fast fault-
detection avoiding selecting faulty-sensors. Then, these invariant-sets together with
a sensor switching mechanism allows to obtain fault-tolerant guarantees of the con-
trolled system. Here, the proposed approach is applied for a vehicle lateral dynamics
control.

10.1 Introduction

Modern automotive control applications require multiple redundance sensors to
keep the driver safety. However, a sensor could fail or operate outside its speci-
fied operating conditions. In longitudinal or lateral dynamics vehicle control the
sensors could be affected by traffic spray, fog, rain and/or a simple dirt on the cover.
A laser scanners, for instance, can miss the object when the vehicle is pitching.
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In heavy rain, standard laser scanners loose measurements because of raindrops
even though the laser beam hits objects behind the rain curtain. Sensors works well
into certain regions and environmental conditions [23]. Using faulty sensors for
feedback-control, even during a few seconds, could be dangerous and the stability
of the faulty system is not guaranteed. Hence, during an abrupt sensor failure, it
is then very important to perform a fast Fault Detection and Isolation (FDI) and
control-reconfiguration actions. The concept of virtual actuators and virtual sensors
(or fault-hiding approach) require a fast reconfiguration mechanism in such a way
that the fault is hidden from the nominal controller and, the fault effects are compen-
sated [20]. In [19] the concept of virtual actuators and virtual sensors is extended
from linear to PWA systems on the basis of the fault-hiding principle. These ap-
proaches suggest that a multisensor switching mechanism, as proposed in [12, 21],
could be more suitable for fault-tolerant control (FTC) schemes.

Most of works in the literature solve the FDI problem by considering additive
faults. However, FTC problems require more accurate faults models. In these terms,
severe faults such as component failure is better represented by multiplicative mod-
els. Additive faults, when considered as pure exogenous signals, can never desta-
bilise a stable linear closed-loop system, whereas actuator or sensor failures can
very well destabilise the control-loop. This consideration shows that additive fault
models do not capture the entire nature of severe faults (see for instance [14] and
[19] for more details).

Recent advances in sensor technology have generated substantial research inter-
est in developing strategies for multisensor fusion, which aim at combining data
supplied by different sensors to provide more accurate and reliable information.
When compared with a system employing a single sensor, a multisensor system
has enhanced properties such as improved reliability and robustness, extended cov-
erage, increased confidence, faster responses and better resolution [24]. Numer-
ous strategies for multisensor fusion have been proposed in the literature; see, e.g.
[4, 8, 10, 11, 22, 24, 25].

The use of sensor fusion estimates in feedback control systems has largely re-
lied on ad-hoc techniques, whereby a multisensor fusion system and a controller are
designed independently prior to their assembling within a feedback loop. Recent
examples of this type of assembly technique have been reported for automotive ap-
plications. For instance, [7] combine a mixture Kalman filter having fault detection
capabilities with an arbitrarily designed stabilising controller in a multisensor strat-
egy for vehicle lateral control. The resulting scheme does not have pre-checkable
fault tolerance guarantees but it performs well in simulations. Because the vehicle
model are often written in terms of the vehicle speed (this is the case when using the
classical bicycle vehicle model), LPV modeling and switched systems theory seems
to be well adapted to tackle the problem of fault-tolerant control under sensors fail-
ures for automotive control applications.

This chapter deals with the problem of obtaining fault-tolerant guarantees of
a multi-sensor switching strategy for automotive control. It is assumed that each
sensor (or a family of sensors) has an associated observer that performs a good
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estimation under normal operation conditions. In presence of sensor failures the
related observer provides an estimation that is biased by signals (that often de-
pend of the references). Since the automotive vehicle is modeled as a Linear
Parameter Varying (LPV) system by taken the vehicle speed as a scheduling pa-
rameter, the main problem concerns the computation of invariant-sets for the state
trajectories of the controlled system during fault-free operation. These invariant-
sets could be used as bounds and/or thresholds for the residuals (here the tracking
error estimations for instance) allowing to detect a sensor failure even in presence of
nominal disturbances. The invariant-sets approach provides a support for fast fault-
detection avoiding selecting faulty-sensors. Then, these invariant-sets together with
a sensor switching mechanism allows to obtain fault-tolerant guarantees of the con-
trolled system. Here, the proposed approach is applied for a vehicle lateral dynamics
control.

10.2 Preliminaries

Consider an LPV model given by :

ΣLPV :

{
x+ = Al(ρ)x+Bl(ρ)u

y = Cl(ρ)x+Dl(ρ)u
(10.1)

where ρ =
[
ρ1 ρ2 · · · ρn

]
stands for the scheduling parameters and where x ∈ R

n

and x+ ∈ R
n are, respectively, the current and successor system states. The system

is supposed to be stable and controllable, whatever the combination of ρ .

10.2.1 Polytopic Modeling

An LPV system as given in (10.1) can be rewritten as a polytopic one in the form :

Σpol :

{
x+ = A(α)x+B(α)u

y = C(α)x+D(α)u (10.2)

where X(α) =
N

∑
i=1

αiX(ωi) =
N

∑
i=1

αiXi, ωi representing the polytope vertices and N =

2n. Moreover, it is required the further conditions :

αi ≥ 0
N

∑
i=1

αi = 1
(10.3)

In this case, there are N vertex systems, defined by constant matrices (A(ωi), B(ωi),
C(ωi), D(ωi)). Polytopic coordinates αi are enough to describe the whole system in
(10.1).
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The state of the system in (10.2) can be developed as :

x+ =
[
α1A1 +α2A2 + · · ·+αNAN

]
x+B(ρ)u (10.4)

From this expression, the system can be viewed as the linear combination of LTI
subsystems with one input u affecting each dynamics in matrices Ai. Notice that,
even if the the global system is stable, each LTI subsystem is not necessary stable.

10.2.2 Stabilization of LTI Subsystems

In the case where the polytopic system (10.2) is not stable, we can stabilize each
subsystem via the input u. Hence, the input u could be considered in the following
form :

u = ustab +w (10.5)

where the input ustab aims to stabilize each subsystems and w is the new control
input of the system. It is considered the following structure for the stabilizing input
ustab :

ustab =
N

∑
i=1

αiÃix (10.6)

Thus, the equation (10.4) becomes :

x+ =
N

∑
i=1

αiAix+B(ρ)u

=
N

∑
i=1

αiAix+B(ρ)
(
ustab +w

)

=
N

∑
i=1

αiAix+B(ρ)
N

∑
i=1

αiÃix+B(ρ)w

=
N

∑
i=1

αi

[
Ai +B(ρ)Ãi

]
︸ ︷︷ ︸

Āi

x+B(ρ)w

=
N

∑
i=1

αiĀix+B(ρ)w (10.7)

where each matrices Āi � Ai +B(ρ)Ãi is stable.
From equation (10.3), as each polytopic coordinates αi is positive and its sum is

lower than 1, each coordinate is almost lower than 1. It yields that each subsystems
defined via the matrix Āi is always stable whatever the parameter is. The stabilizing
input ustab expressed in (10.6) is computed from the polytopic formulation of the
system. It can be afterward rewritten in an LPV form as:
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ustab =
N

∑
i=1

αiÃix

ustab = Ãi(ρ)x (10.8)

to ease its implementation.

10.2.3 Perturbed Polytopic LPV System

In the sequel, the following stable polytopic LPV system will be considered :

x+ = A(α)x+B(α)w (10.9)

with
A(α) = α1A1 +α2A2 + · · ·+αNAN

B(α) = α1B1 +α2B2 + · · ·+αNBN
(10.10)

where α1 +α2 + · · ·+αN = 1 and all αi ≥ 0, i = 1, · · · ,N. We assume that w ∈ Δ is
a bounded exogenous process disturbance.

Definition 10.1. The system (10.9) is robustly stable if the system’s state x remains
bounded in presence of bounded disturbances w.

Polytopic time-varying systems (10.9) are systems where the dynamical matrix
evolves in a polytope defined by its vertices. Switched systems can be viewed as
polytopic systems with the particularity that the allowable values for the dynami-
cal matrix are those corresponding to the vertices of the polytope. Stability analysis
results proposed in [2, 3], allow to find a parameter dependent Lyapunov function
to check stability of polytopic time varying systems and/or linear switched systems.
Nevertheless, finding a quadratic common Lyapunov function (V := xT Px) of the
system (10.9) is always more suitable and probably more simple for a priori sta-
ble matrices Ai, i = 1, · · · ,N. We can make use of results presented in [5] to find a
quadratic common Lyapunov function. The next lemma allow to find a such Lya-
punov function for a certain class of stable LPV systems and for stable arbitrary-
switched linear systems.

Lemma 10.1. The polytopic system (10.9) is robustly stable, in presence of bounded
disturbances, if

AT
i PAi −P < 0 (10.11)

for all i = 1, · · ·N.

Then a single matrix P which satisfies the condition given in Lemma 10.1 may be
found by the use of now standard efficient LMI tools.

Definition 10.2. (Robust positive invariance) The set Ω ∈ R
n is a robustly posi-

tively invariant (RPI) set for the polytopic discrete-time system (10.9) with distur-
bances in Δ , if for any x ∈R

n, k ∈N
+ and any w ∈ Δ it holds that x+ ∈Ω .
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Definition 10.3. (Ultimate boundedness) We define that the polytopic discrete-
time system (10.9) is ultimately bounded (UB) to the set Ω , if for each x0 ∈ R

n

there exists a k∗ > 0 such that any state trajectory of (10.9) with initial condition x0

(and any arbitrary realization of the disturbance w : N  → Δ ) satisfies x(k) ∈ Ω for
all k > k∗.

10.3 Invariant-Sets Computation

10.3.1 Invariant-Sets for Subsystems

We present below a result that will allow us to compute ultimate bounds for the
polytopic system’s states. This result extends results presented in [9] and [21] to a
class of LPV systems with constant perturbation bounds. In the sequel, |M| denotes
the elementwise magnitude of a (possibly complex) matrix M and x " y (x ≺ y)
denotes the set of elementwise (strict) inequalities between the components of the
real vectors x and y.

Assumption 10.1. Considering the matrices Ai, i = 1, · · · ,N, describing the poly-
topic system (10.9). We assume that there exist a common matrix P such that the
condition (10.11) holds.

Theorem 10.2. Consider the robustly stable polytopic system (10.9) together with
Assumption 10.1. Let ViDiV

−1
i be the Jordan matrix decomposition of each Ai. As-

sume that, for all ρ ∈ P, |w(k) | ≺ w̄ for all k ≥ 0, where w̄ ∈R
m, w̄ � 0. In addition,

take ωi := |V−1
i Biw̄|. For ε ∈ R

n, ε ≥ 0, define the set

R � S1 ⊕ S2 ⊕·· ·⊕ SN (10.12)

with

Si �
{

x ∈ R
n :
∣∣V−1

i x
∣∣≺ (I −Di)

−1ωi + ε
}
. (10.13)

for i = 1,2, · · · ,N, and where ⊕ denotes the Minkowski sum of sets.
Then:

1. For any subsystem x+ = Aix+ Biw, the set Si is robustly positively invariant.
That is, if x(0) ∈ Si, then x(k) ∈ Si for all k ≥ 0.

2. The set R is an ultimate bound of trajectories of the polytopic system (10.9).
That is, there exists k∗ ≥ 0 such that x(k) ∈ R for all k ≥ k∗. ◦

Proof. Notice that we can rewrite the original polytopic system (10.9) as follows:

x+ = A(α)x+B(α)w (10.14)

x+ = (α1A1 +α2A2 + · · ·+αNAN)x+(α1B1 +α2B2 + · · ·+αNBN)w (10.15)

x+ = (α1A1x+α1B1w)︸ ︷︷ ︸
subsystem 1

+(α2A2x+α2B2w)︸ ︷︷ ︸
subsystem 2

+ · · ·+(αNANx+αNBNw)︸ ︷︷ ︸
subsystem N

(10.16)
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In this way, it is possible to define a family of N independent subsystems by taken
xi := αix and wi := αiw (with i = 1,2, · · · ,N) as follows:

x+1 = A1x1 +B1w1 (10.17)

x+2 = A2x2 +B2w2 (10.18)

... (10.19)

x+N = ANxN +BNwN (10.20)

x = x1 + x2 + · · ·+ xN (10.21)

Remark that x1 + x2 + · · ·+ xN = (α1 +α2 + · · ·+αN)x = x because (α1 +α2 +
· · ·+αN) = 1 and all αi ≥ 0, i = 1,2, · · · ,N. In addition, |wi| = |αiw| " |w| " w̄
for a given w̄ > 0. We assume that the family of systems (10.17)-(10.20) share a
common Lyapunov function. If this is not the case we can apply the Lemma 10.1 to
assure that an arbitrary switching between subsystems does not affect the stability
of the polytopic system.

Let ViDiV
−1
i be the Jordan matrix decomposition of Ai and taking a vector w̄ � 0

such that |wi| " w̄. Then, any subsystem i, with i = 1,2, · · · ,N verifies:

x+i = Aixi +Biwi (10.22)

V−1
i x+i = V−1

i Aixi +V−1
i Biwi (10.23)

V−1
i x+i = V−1

i ViDiV
−1
i xi +V−1

i Biwi (10.24)

V−1
i x+i = DiV

−1
i xi +V−1

i Biwi (10.25)

|V−1
i x+i | " |Di||V−1

i xi|+ |V−1
i Biw̄| (10.26)

Thus, defining the auxiliary system :

ξ+ " |Di|ξ +ωi (10.27)

with ξ := |V−1
i xi| and ωi := |V−1

i Biw̄|. Taking the fact that, by assumption, Di has
all its eigenvalues inside the unit circle, a final value bound of the state ξ (e.g. by
using the final-value theorem for z-transforms) could be computed as

ξ " (I −|Di|)−1ωi (10.28)

and therefore, an invariant set of the trajectories of xi for system (10.22) could be
obtained as follows:

|V−1
i xi| " (I−|Di|)−1ωi (10.29)

Defining the set Si, for ε ∈ R
n, ε ≥ 0, such that

Si :=
{

xi ∈ R
n :
∣∣V−1

i xi
∣∣" (I−|Di|)−1ωi + ε

}
, (10.30)

and taking the fact that x = x1 +x2+ · · ·+xM , an ultimate bound of the trajectories
of the original system’s state x could be obtained as follows:
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R = S1 ⊕ S2 ⊕·· ·⊕ SN (10.31)

where ⊕ denotes the Minkowski sum of sets. The sets Si are, by definition, convex
sets and then R will be a convex set as well. The result then follows. ��
Remark 10.1. Part 1 of Theorem 10.2 characterises invariant sets for subsystems in
the state space, the smallest being the set Si obtained by taking ε = 0 in (10.13).
Part 2 shows that the state trajectories of the polytopic system asymptotically con-
verge to the ultimate bound R for ε ≥ 0 from any initial condition. In addition, for
ε > 0, the state trajectories enter R in finite time. ◦
Remark 10.2. Using the fact that, for any x, the following is true: |x| " |V ||V−1x|.
Then an ultimate bound for the state xi, for i = 1,2, · · · ,N, could be computed as

|xi| " |Vi|(I −|Di|)−1|V−1
i Biw̄| (10.32)

◦

10.3.2 Refinements of Obtained Invariant-Sets

A refined invariant-set could be obtained by implementing a sequence of ε-outer-
approximations of Robust Positively Invariant (RPI) sets as proposed in [15], that
is, a sequence of sets can be recursively built by considering the Minkowski sum
between the image of an RPI set through the linear transformation Λ and the poly-
hedral set BΔ :

Φ(h+ 1) =ΛΦ(h)⊕BΔ , Φ(0) =Ψ (10.33)

withΛ a stable matrix (all its eigenvalues inside the unit circle) and BΔ a polyhedral
set which includes all the disturbances trajectories. Here Ψ ∈ R

n is a polyhedral
describing an initial ultimate-bound invariant set estimation of the state trajectories
which are computed using (10.13). Hence, [15] states that for any ε > 0 exists h∗ ∈
N
+ such that the following relation is true

Ω ⊆Φ(h∗)⊆Ψ (10.34)

Then, Φ →Ω for h∗ → ∞, that is,

Ω ⊆Φ(h∗)⊆Ω ⊕B
n
p(ε) (10.35)

where B
n
p(ε) denotes a n-dimensional ball with radius ε respect to the p-norm.

Remark 10.3. The initial set Ψ in the set recursion (10.33) can be in fact any RPI
set for the dynamics (10.22). Theorem 10.2 provides a simple and direct way of
obtaining the initial condition using RPI sets (10.13), in view of an algorithmic
implementation. ◦
Remark 10.4. The ultimate bounds of the form (10.29) have polyhedral shape if
the eigenvalues of matrix Ai are real and (possibly degenerate) ellipsoidal shape
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if these eigenvalues are complex (see [6] for details). For the last case, it is prob-
ably more suitable to compute an ε-inner-approximation (instead of an ε-outer-
approximation) of the Robust Positively Invariant (RPI) set for obtaining a polyhe-
dral set which approximates the theoretical ellipsoid. ◦

That is,
Φ(h+ 1) =ΛΦ(h)⊕BΔ , Φ(0) = 0 (10.36)

and then Φ →Ω for h∗ → ∞,

Φ(h∗)⊆Ω ⊆Φ(h∗)⊕B
n
p(ε) (10.37)

In this case the invariant set-inclusion property (10.35) is not more guaranteed [18].
However, after an important number of iterations (10.36), the obtained invariant-
set is in general a good approximation of the theoretical minimal invariant-set Ω .
Conditions to suitable stop the recursive equation (10.36) are presented in [17].

10.3.3 Invariant-Set Computation for Polytopic Systems

The next result allow us to compute invariant-sets for polytopic systems by making
use of individuals invariant-sets Si, i = 1, · · · ,N. The result allow “shrinking" the
ultimate bound computed by using Theorem 10.2, and guarantees that the obtained
set is an invariant-set (probably a mRPI set) of the polytopic system (10.9).

Theorem 10.3. Consider the robustly stable polytopic system (10.9) together with
Assumption 10.1. Let Si be the mRPI sets associated to the subsystem x+ = Aix+
Biw, for i = 1, · · · ,N. Assume that, w ∈ Δ , with Δ a given convex polytope. Define
the set

S � convex.hull
{

S̄1, S̄2, · · · S̄N
}
, (10.38)

with S̄i = S̄i(p), for some value of p ≥ 0, p ∈ N
+, obtained by implemented the

following sequence:

S̄i(p+ 1) = convex.hull

{
N⋃
j �=i

S j,AiS̄i(p)⊕BiΔ

}
, (10.39)

where S̄i(0) := μiSi with μi ≥ 1 a scaling factor (i.e. S̄i(0)⊇ Si), such that

S̄i ⊇
N⋃

j=1

S j. (10.40)

Then:

1. The set S is robustly positively invariant set for the state-trajectories of the sys-
tem (10.9). That is, if x(0) ∈ S, then x(k) ∈ S for all k ≥ 0.
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2. The system (10.9) is ultimately bounded to the set S, i.e. there exists k∗ ≥ 0 such
that x(k) ∈ S for all k ≥ k∗. ◦

Proof. By assumption all sets S j, j = 1, · · · ,N, are (convex) invariant sets of state
trajectories dictated by the dynamics x+ = A jx + B jw. At any time k∗ > 0, for
i = 1, · · · ,N, the state trajectories that belong to the set S j evolves by follow-
ing a new dynamics dictated by x+ = Aix+Biw, then the trajectories starting in-
side S j will converge to the ultimate bound Si, in finite time k f . Therefore, the
whole trajectories of the system from k = 0 to k = k∗ + k f belong to both sets
Si and S j. The whole set, namely S̄i, describes the minimal convex set contain-
ing Si and S j when the state trajectories evolving with dynamics x+ = Aix+Biw.
Equation (10.39) allow us to find this minimal set S̄i. The same analysis could
be done by state trajectories starting in Si and going to S j. Then, the total behav-
ior of the state trajectories can be described by the minimal convex set containing
S̄i and S̄ j. Since the polytopic system is a convex combination of N subsystems,
i.e. x+ = (α1A1 + · · ·+αNAN)x+(α1B1 + · · ·+αNBN)w (for ∑N

i αi = 1, αi ≥ 0,
i = 1, · · · ,N), it can be shown inductively that, the state trajectories belong to the
minimal convex set S = convex.hull

{
S̄1, S̄2, · · · S̄N

}
. The result then follows. ��

Remark 10.5. Part 1 of Theorem 10.3 characterises an invariant set for polytopic
system (10.9) in the state space. Part 2 shows that the state trajectories asymptoti-
cally converge to the invariant set S from any initial condition. In addition, the state
trajectories enter S in finite time. ◦
Remark 10.6. (Set Inclusion Condition) Equation (10.39) characterises an invari-
ant set S̄i for the dynamics x+ = Aix+Biw which includes all the trajectories starting
inside the invariant-set S j. Condition (10.40). ◦

10.4 Application on a Vehicle Lateral Dynamics

The vehicle model under consideration is the well known bicycle system, which
dynamics is given by :

[
β̇ (t)
ψ̈(t)

]
=

⎡
⎣ −(cαV+cαH )

mv(t)
lH cαH−lvcαV

mv2(t)
− 1

lH cαH−lV cαV
Iz

−(l2
v cαV+l2

H cαH )
Iz

⎤
⎦[β (t)

ψ̇(t)

]

+

[
cαV

mv(t)
lV cαV

Iz

]
uL(t)

(10.41)

where β denotes the side slip angle, ψ̇ the yaw rate, uL the relative steering wheel
angle and v(t) the speed of the vehicle. Others symbols in (10.41) represent constant
parameters of the model.

Thus, the model is converted to discrete-time according to the rectangular dis-
cretisation. Other methods should give even better results in terms of matching
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errors. However this method is taken here because it preserves the linearity in the
parameters. It yields a discrete time model sampled by the sampling period Ts:

x(k+ 1) = A x(k)+BuL(k) (10.42)

with

A =

[
1 −Ts

Ts
lH cαH−lV cαV

Iz
1

]

+
1

v(k)

[
Ts

−(cαV+cαH )
m 0

0 −Ts
l2
v cαV+l2

H cαH
Iz

]

+
1

v(k)2

[
0 Ts

lH cαH−lvcαV
m

0 0

]
(10.43a)

B =

[
0

Ts
lV cαV

Iz

]
+

1
v(k)

[
Ts

cαV
m

0

]
. (10.43b)

This model can be considered as an LPV model by defining n = 2 scheduling pa-
rameters ρ1(k) � 1/v(k) and ρ2(k) � 1/v(k)2. Since the vehicle speed is bounded,
the scheduling parameters are also bounded : ρ1 ∈ [ρ

1
ρ̄1] and ρ2 ∈ [ρ

2
ρ̄2].

This LPV model can be turned into a polytopic one by considering the depen-
dency between each parameters ρ1 and ρ2. As a consequence, the parameter set,
which is for instance initially composed of 2n = 4 vertices, can be restricted to 3 ver-
tices as illustrated in figure 10.1. Each vertex coordinates is given by:ω1 :=

[
ρ

1
ρ

2

]
;

ω2 :=
[
ρ̄1 ρ2

]
; ω3 :=

[
ρ̄1 ρ̄2

]
.

Fig. 10.1 Illustration of the schedule-parameters polytope

The polytopic coordinates could be obtained by solving the following matrix
equality : ⎡

⎣ρ1
ρ̄1 ρ̄1

ρ
2
ρ

2
ρ̄2

1 1 1

⎤
⎦

︸ ︷︷ ︸
M

⎡
⎣α1(k)
α2(k)
α3(k)

⎤
⎦=

⎡
⎣ρ1(k)
ρ2(k)

1

⎤
⎦ (10.44)
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yielding: ⎡
⎣α1(k)
α2(k)
α3(k)

⎤
⎦= M−1

⎡
⎣ρ1(k)
ρ2(k)

1

⎤
⎦ (10.45)

Then, polytopic matrices Ai and Bi are obtained by evaluating the LPV matrices at
each vertex of the polytope, that is

Ai = A (ωi)
Bi = B(ωi)

(10.46)

It is then obtained the polytopic vehicle model (Ts = 0.02s) with matrices:

A1 =

[
0.9583 −0.0197
0.5973 0.9207

]
B1 =

[
0.0178
0.9803

]

A2 =

[
0.7914 −0.0197
0.5973 0.6035

]
B2 =

[
0.0891
0.9803

]

A3 =

[
0.7914 −0.0125
0.5973 0.6035

]
B3 =

[
0.0891
0.9803

]

By solving suitable LMIs, it is obtained that the systems x+ = Aix (for i = 1,2,3),
share a quadratic common Lyapunov function P:

P =

[
262.0896 6.2394
6.2394 14.8042

]

Thus, the Assumption 10.1 is verified. The figure 10.2 illustrates the obtained ul-
timated bound by applying Theorem 10.2 (with refinements presented in Section)
and an invariant set by applying Theorem 10.3 (for a normalized disturbance, i.e.
|w(k)|< 1). In figure 10.2 it is depicted an ultimate bound R of the state trajectories,
the invariant set S and simulated state trajectories starting at vertices (trajectories in-
side the set S). The curve E that circumscribes the set S, corresponds to a minimum
volume ellipsoid around the polytope S.

The obtained polytope S has 42 sides (or faces). In order to reduce the complexity
of the obtained invariant sets for real-time applications, for instance, we can make
use of more simple shape approximations, as for example ellipsoidal approxima-
tions of a polytope. Such approximation could be done by finding a matrix M which
solves the following problem:

maximize(logdet(M))
subject to vT

i Mvi ≤ 1
(10.47)

where vi, i = {1, · · ·Nv} stand for the Nv vertices of a given polytope S. This is in
fact the problem of finding the minimum volume ellipsoid around a given poly-
tope defined by the convex hull of vertices vi. This ellipsoid could be described as
follows:
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E � {x : xT Mx ≤ 1}
Thus, by solving the problem (10.47) it is obtained the following shape matrix M:

M =

[
0.2821 0.0052
0.0052 0.0076

]

As a final remark, a less conservative invariant-set could be obtained in practice by
including the actuator dynamics into the model. This fact will constraint the steering
angle dynamics that is taken here as a disturbance, i.e. w(k) = uL(k) in (10.42).
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Fig. 10.2 Ultimate bound R and invariant set S of the polytopic vehicle model system

10.5 Sensor Fault-Detection Principle

Consider a linear parameter varying (LPV) system represented by the following
state-space realization:

x+ = A(ρ)x+B(ρ)u (10.48)

where x ∈ R
n is the state vector and u ∈ R

m is the control input. In the above for-
mulation, the time-varying parameter vector ρ ∈ P is assumed to be unknown a
priori but can be measured or estimated in real-time. We assume that there is a sta-
ble reference dynamics that provides the desired references (as proposed in [13] for
longitudinal dynamics control), i.e.

x+re f = A(ρ)xre f +B(ρ)ure f (10.49)

Assumption 10.4 (Reference bounds). The reference signals ure f and xre f in
(10.49) are bounded. In particular, constant vectors x0

re f ∈ R
n and x̄re f ∈ R

n are

known such that xre f (k) ∈ Xre f � {xre f ∈ R
n : |xre f − x0

re f | ≤ x̄re f }. ◦
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Then, the tracking error dynamics could be obtained as follows

x̃+ = A(ρ)x̃+B(ρ)ũ (10.50)

with x̃ := x− xre f , ũ := u− ure f .
Consider now a family of M sensors (or M combination of sensors) :

yi =Ci(ρ)x+ηi (10.51)

with ηi a bounded sensor noise, and with i ∈ {1, . . . ,M}.
We also assume that the available sensors allow us to estimate the state x̃. That is,

the pairs (A(ρ),Ci(ρ)) are detectable (see [1] for LPV observer design). Therefore,
a healthy sensor will provide

ỹi = yi −Ci(ρ)xre f =Ci(ρ)x̃+ηi (10.52)

Our fault model is described in the following definition. We consider abrupt faults
that lead to sensor outage.

Definition 10.4. A sensor is operational (or “healthy”) when its measured output
is given by (10.51). When a jth sensor fails its measured output during the fault is
given by

y j = ηF , (10.53)

where ηF is a bounded noise and with j ∈ {1, . . . ,M}. ◦
In the following subsections we shall establish closed-loop stability under sensor
fault by providing conditions that guarantee that a switching scheme never selects
faulty sensors to implement the control law.

Remark that a failed sensor will provide an output

ỹF = y j −Cj(ρ)xre f =−CF(ρ)xre f +ηF (10.54)

Consider now a family of M observers

θ+
i = A(ρ)θi +B(ρ)ũ+Li(ρ)(ỹi −Ci(ρ)θi) (10.55)

with i = 1,2, · · ·M (where M is the number of sensors and/or combination of sen-
sors). The dynamics of the estimation error for every "healthy" observer will be:

ε+i = [A(ρ)−Li(ρ)Ci(ρ)]εi +Li(ρ)ηi (10.56)

with bounded noise ηi. The observers are designed to assure that the dynamics
(10.56) will be stable, i.e. the matrices A(ρ)−Li(ρ)Ci(ρ) are Schur matrices for
all i ∈ {1, . . . ,M}. Then, from (10.56) and using Theorem 10.2 we can compute an
invariant set EH for the trajectories of the estimation errors εi.
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Assumption 10.5 (working hypothesis). A switching scheme always selects only
healthy sensors whose estimation errors satisfy (10.56). ◦
The feedback controller will then implemented as follows

ũ =−K(ρ)θσ (10.57)

At each time step, we perform the optimisation

σ = argmin
i

{
J(θi) : θi ∈ {θ1, · · · ,θM}

}
, (10.58)

where the minimization of the cost function J guarantee that only healthy sensors
are chosen. This is actually a working hypothesis that will be assured latter. Thus,
up to now we consider that there is an automatic mechanism that assures that only
healthy sensors are chosen at each time instant. Remark that if only healthy sensors
are chosen the feedback control (10.57) becomes

ũ =−K(ρ)(x̃− εσ ) (10.59)

where εσ stands for the estimation error of the observer using the σ sensor (i.e.
εσ = x̃−θσ ). Then, the system (10.50) in closed-loop with (10.57) will gives

x̃+ = [A(ρ)−B(ρ)K(ρ)]x̃+B(ρ)K(ρ)εσ (10.60)

Hence, the trajectories of x̃ belongs to an invariant set X̃ because the matrix
A(ρ)−B(ρ)K(ρ) has all its eigenvalues inside the unit circle for all ρ ∈ P, and εσ
is assumed to be bounded. Remark that, under the working hypothesis, any healthy
H sensor dynamics will be

θ+
H = [A(ρ)−LH(ρ)CH(ρ)]θH + γσH (10.61)

with γσH := B(ρ)K(ρ)εσ +(−B(ρ)K(ρ)+LH(ρ)CH(ρ))x̃+LH(ρ)ηH .
Because the matrix A(ρ)−LH(ρ)CH(ρ) has all its eigenvalues inside the unit cir-

cle for all ρ ∈ P, an invariant set, namely SH, could be computed for the trajectories
of every healthy sensor H.

10.5.1 Healthy Sensors

Provided only healthy sensors are selected by the switching controller, the closed-
loop dynamics of the estimator tracking errors for each of the ith sensors that remain
healthy continue to obey (10.61), that is, do not change in the event a jth sensor fails.
Moreover, the bounds that define the sets SH, namely |γσH | ≤ γ̄σH , remain valid
while (10.56) holds for the selected sensor. Thus, under Assumption 10.5, if the
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trajectories of healthy sensors (10.61) are evolving in the corresponding invariant
set SH, then they remain in this set.

10.5.2 Faulty Sensors

Assuming that the switching mechanism (10.58) only selects healthy sensors σ ∈
{1, · · · ,M}, σ �= F , then using equations (10.54) and (10.55) together with (10.53),
we have the following closed-loop estimator tracking error subsystems during the
fault:

θ+
F = [A(ρ)−LF(ρ)CF(ρ)]θF + γσF (10.62)

where γσF := B(ρ)K(ρ)εσ −B(ρ)K(ρ)x̃+ LF(ρ)ηF − LF(ρ)CF(ρ)xre f with σ ∈
{1, . . . ,M}, σ �= F .

Remark that (10.62) could be rewritten, using Assumption 10.4, as follows:

θ+
F = [A(ρ)−LF(ρ)CF(ρ)]θF + γ̃σF −LF(ρ)CF(ρ)x0

re f (10.63)

where γ̃σF :=−B(ρ)K(ρ)x̃+B(ρ)K(ρ)εσ +LF(ρ)ηF −LF(ρ)CF(ρ)x̃re f with σ ∈
{1, . . . ,M}, σ �= F .

Comparing (10.63) with (10.61), we observe that some of the inputs to the esti-
mation tracking error subsystems have changed after the fault. However, under As-
sumption 10.5, the signals x̃, εσ , for all operational sensors σ ∈ {1, . . . ,M}, σ �= F ,
satisfy the same bounds as before the fault. In addition, ηF , for F ∈ {1, . . . ,M}, and
xre f are bounded by assumption.

Hence, as before, we can use these different bounds to obtain a bound γ̄σF such
that |γ̃σF | ≤ γ̄σF . Using (10.13) (with ε = 0) we can then compute the “under-fault”
set

SF := S̃F ⊕{θ 0
F}, (10.64)

where⊕ denotes the Minkowski sum of sets, S̃F is an invariant set for the trajectories
(10.63) and where the offset θ 0

F , due to the offset x0
re f of xre f , is computed as:

θ 0
F =−(I−ALF (ρ))

−1LF(ρ)CF(ρ)x0
re f . (10.65)

with ALF (ρ) := A(ρ)−LF(ρ)CF(ρ).
Thus, it follows from Theorem 10.2 and the previous analysis that, under As-

sumption 10.5, the trajectories of (10.62) remain in SF defined in (10.64) if started
inside or will asymptotically converge towards SF if started outside.

We are now ready to establish conditions to ensure that our working hypothesis
(Assumption 10.5) is satisfied.
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10.6 Closed-Loop Stability under Sensor Fault

10.6.1 Conditions for Closed-Loop Stability

The analysis of Section 10.5 motivates us to impose the following assumption,
which describes the less conservative fault scenario that allows us to obtain fault
tolerance guarantees within the proposed framework.

Assumption 10.6 (Fault scenario)

1. At any time instant, at least one sensor is operational; in addition, all opera-
tional sensors have estimation errors (10.56) inside the invariant sets EH and
estimation tracking errors (10.61) inside the invariant sets SH.

2. Any time a jth sensor fails, for any j ∈ {1, . . . ,M}, the states of the correspond-
ing estimator tracking error subsystem (10.62), at the following sampling time,
belong to the invariant set SF (10.64).

The above fault scenario allows any sequence of persistent sensor faults, includ-
ing simultaneous faults of several sensors, as long as the first fault occurs after suffi-
ciently long time of operation without fault (such that all variables have entered the
corresponding invariant sets) and at least one sensor remains operational.

From (10.60) we can compute, using the techniques described in Section 10.3.1,
an invariant set, X̃, such that x̃∈ X̃, whenever the chosen sensors are healthy. We can
also construct bounding sets, NF, for the bounded noises, such that ηF ∈ NF, F =
1, ...,M. Then, assuming that the jth sensor has been healthy for sufficiently long
time, so that θ j ∈ SF, we can see from (10.62) that, the instant after the occurrence
of a fault, the variable θ j will be in the following after fault transitional set:

SH→F := ALF SF ⊕ (−B(ρ)K(ρ))X̃⊕ (B(ρ)K(ρ))
M⋃
σ=1

S̃σ ⊕LFNF ⊕ (−LFCF)Xref.

(10.66)

for a given ρ ∈ P. Finally, the following pre-checkable condition guarantees, in
combination with Condition 1) of Assumption 10.6, that Condition 2) of Assump-
tion 10.6 is satisfied.

Assumption 10.7. The sets (10.64) and (10.66) satisfy SH→F ⊆ SF, for all j =
1, ...,M. ◦
The following theorem provides conditions to guarantee closed-loop stability under
sensor fault.

Theorem 10.8. Suppose that bounds on the sensor noises ηi, and on the “fault
noises” ηF for i = 1, . . . ,M, are given in the form ηi ∈ Ni, and ηF ∈ NF, respec-
tively, where Ni and NF are polyhedral sets. Suppose that the following conditions
hold for all j = 1, . . . ,M:

max
i

{Jmax
i : i ∈ {1, . . . ,M}, i �= j}< Jmin

j , (10.67)
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where
Jmax

i := max
{
(θi)

T Pθi : θi ∈ SH
}

(10.68)

Jmin
j := min

{
(θ j)

T Pθ j : θ j ∈ SF
}
. (10.69)

with P a given real matrix1.
Then, under the fault scenario of Assumption 10.6, the closed-loop dynamics of

the multisensor switching scheme described in Section 10.5 remain stable in the
event any sensor fails.

Proof. Suppose that a jth sensor fails. At the sampling instant following the fault,
Condition 1) of Assumption 10.6 guarantees that there exists at least one opera-
tional σ th sensor that has the states of the corresponding estimator tracking error
subsystem (10.61) in the invariant set Sσ . In addition, Assumption 10.7 guarantees
that Condition 2) of Assumption 10.6 is fulfilled at the sampling instant following
the time of the fault, i.e., the states of the estimator tracking error subsystem corre-
sponding to the failed sensor are in SF. Conditions 10.67–10.69 then ensure that the
σ th sensor has smaller cost than the failed jth sensor and thus the latter cannot be
selected by the switching mechanism (10.58). It follows that at the sampling instant
following the time of the fault the controller selects any of the available healthy
sensors (not necessarily the σ th sensor) which, by Condition 1) of Assumption 10.6
have estimation errors inside SH, hence satisfying the bounds (10.56). Thus As-
sumption 10.5 holds at the sampling instant following the time of the fault and the
analysis of Section 10.5 shows that the states of the estimator tracking error sub-
systems corresponding to healthy sensors and to the failed jth sensor remain in SH
and SF, respectively. The previous argument can be repeated inductively for the
duration of the fault, concluding that the switching controller never selects faulty
sensors to implement the control law and that the resulting dynamics remain in the
respective invariant sets. The result then follows. ��
Remark 10.7. Note that Fault Detection and Isolation (FDI), a feature normally
needed in fault tolerant control, is performed implicitly via the switching mechanism
(10.58), through satisfaction of the pre-checkable conditions of Assumption 10.7
and (10.67)–(10.69). (In effect, as was proven in the previous theorem, under those
conditions the switching mechanism exclusively selects healthy sensors.) Necessary
and sufficient conditions for sensor recovery are presented in [16]. ◦

10.6.2 Geometric Interpretation

In this section we give a geometric interpretation of conditions (10.67)–(10.69). We
require the following definitions. If X ⊂ R

n and Y ⊂ R
n are some sets, their sum

is the set X +Y = {z ∈ R
n : z = x+ y, x ∈ X , y ∈ Y}. If T ∈ R

n×m is a matrix and
X ⊂ R

m is a set, the set T X ⊂R
n is defined as T X = {z ∈ R

n : z = T x, x ∈ X}.

1 The matrix P could be computed, for instance, using the method described in Section 10.4.
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Next, introduce the variable si � P1/2θi, where P1/2 is the symmetric square root
of the switching cost matrix P. Using the sets

BH � P1/2SH, (10.70)

BF�P1/2SF, (10.71)

we have that (10.68) and (10.69) have the equivalent form

Jmax
i = max

{‖si‖2 : si ∈ BH
}
, (10.72)

Jmin
j = min

{‖s j‖2 : s j ∈ BF
}
, (10.73)

where ‖·‖ is the vector 2-norm. Thus, Jmax
i is the maximum squared-norm over all

vectors in BH and Jmin
j is the minimum squared-norm over all vectors in BF. Clearly,

for (10.67) to hold for a particular index i, the sets BH and BF must be separated
by a sphere in R

n centred at zero. Figure 10.3 shows an illustration of a case where
condition (10.67) holds for particular indices i and j.

Fig. 10.3 Geometric interpretation of conditions (10.67)–(10.69)

Once the conditions for separation of the sets are fulfilled, then one could, in
principle, perform fault detection and isolation using this information. Here we have
chosen to achieve faulty sensor detection and isolation “implicitly” by guaranteeing
that the switching cost avoids selecting faulty sensors. This feature of the proposed
scheme, we believe, departs from other available techniques to achieve fault detec-
tion and isolation. Notice also that the proposed switching scheme is motivated by
a control performance criterion and has a good performance in the absence of sen-
sor failure. The possibility to provide fault tolerance guarantees with the scheme
without any modification comes as a bonus. Moreover, a nice property of the pro-
posed scheme is the simplicity of its on-line implementation, which requires only
to compare cost values. On the other hand, the use of the separation of the sets
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as a mechanism for fault detection and isolation would result in a relatively more
complex scheme requiring more involved on-line tests.
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Chapter 11
VRFT for LPV Systems: Theory and Braking
Control Application

Simone Formentin, Giulio Panzani, and Sergio M. Savaresi

Abstract. This chapter presents the Virtual Reference Feedback Tuning approach
for linear parameter-varying (LPV) control system design. The method is a noniter-
ative direct data-driven technique, i.e a gain-scheduled fixed order controller can be
derived from a finite number of datasets, without need of identifying a model of the
plant. Therefore, the closed-loop performance cannot be jeopardized by modeling
errors and the design procedure becomes easier and faster, as neither LPV state-
space realization and controller reduction are required. The method employs basic
instrumental variables and optimal data prefiltering to deal with measurement noise
and underparameterization of the controller. As an example in the vehicle dynamics
field, the case of braking control system design for two-wheeled vehicles is consid-
ered. The approach shows effective, when elementary physical knowledge is used to
select the most suited identification experiment, the reference model, the controller
structure and the scheduling variable, whereas no model parameters are needed to
achieve satisfactory results.

11.1 Introduction and Motivation

One of the most straightforward methods to specify the desired behaviour of a con-
trol system is to describe the dynamic relationship between the reference signal and
the controlled output. This design approach is usually known as “model-reference
control" (MRC) or “model-following control" (MFC) and has been widely studied
during the last years, see e.g. [20], [13], [29] and references therein. The objec-
tive of MRC is to design a feedback controller that, when applied to the real plant,
allows the closed-loop system to match the behaviour of a given reference model.
The control engineer has actually more than one choice to fulfil this desired task.
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The first way is to develop a “first-principle" model of the system, by writ-
ing the physical laws describing its working principles. Such a model can also be
used to evaluate the performance specifications for the feedback loop composed by
the feedback controller and the model. The actual performance of the real feed-
back loop are then strongly dependent on model mismatch, typically due to incom-
plete knowledge of model parameters, underparameterization of model structure and
time/economical constraints that might yield loss of accuracy.

In the last decades, big progress in data collection technology and performance
of electronic processing units have provided another way to design suited process
models. As witnessed by the huge number of contributions in the control literature,
system identification theory, i.e. the science of learning models from data, has be-
come more and more important for designing simple and reliable models for control
purposes, see e.g. [15], [16], [18] and references therein. On the other hand, using
“black-box" modeling, information about the plant is completely derived from in-
put/output (I/O) data, therefore appropriate identification experiments and model
structures needs to be chosen from some “a-priori" knowledge or data-driven pro-
cedures. The final closed-loop performance are then still affected by modeling ac-
curacy depending on these factors.

The problem of undermodeling arises in both the above approaches, as the con-
trol design is “model-based", that is the feedback controller is designed using infor-
mation about the model of the plant to control. However, these are not the only ways
to synthesize a control system. When experimental data on the plant are available,
a third choice for the control engineer is to resort to “data-to-controller" algorithms.
In these techniques, the data are directly used to minimize a control criterion and
therefore the modeling step is skipped. Moreover, the overall procedure is much
faster than in the standard case, since, quoting [23]:

“it is widely recognized [. . . ] that obtaining the process model is the single most
time consuming task in the application of model-based control."

The first auto-tuning method dates back to the pioneering work on the design
of industrial PID controllers in [34]. Since then, many more techniques started to
appear, partly as modifications and extensions of the Ziegler and Nichols method,
partly as developments in new directions. All model-reference direct data-driven
methods can be classified in three different categories, as illustrated in Table 11.1:
on-line, off-line iterative and off-line noniterative methods. Among all, off-line non-
iterative methods can be seen as control design techniques reformulated as pure
identification problems. In other words, both CbT and VRFT approaches are identi-
fication methods where the system to identify, starting from one or two datasets, is

Table 11.1 Taxonomy of direct data-driven control design methods

On-line Off-line iterative Off-line noniterative

Adaptive control IFT CbT
Unfalsified control ICbT VRFT



11 VRFT for LPV Systems: Theory and Braking Control Application 291

the ideal controller instead of the plant. The big advantage of this formulation is that
all the results in identification theory can be directly exploited for control design.

In the vehicle dynamics field, many systems that usually need electronic control
systems can be modeled as linear parameter-varying (LPV) systems, see e.g. [26],
[10], [14], [8]. Therefore, the most suited noniterative method in this framework is
the Virtual Reference Feedback Tuning, introduced in [17], fixed in [5] in the linear
time-invariant setting and extended in [12] to LPV systems. The LPV version of
VRFT can be very useful in practice as, being the controller directly derived from
data in input/output (I/O) description, the most tricky phases in LPV fixed-order
control system design, i.e. state-space realization and controller-reduction, can be
avoided.

The other noniterative method, i.e. Correlation-based Tuning, cannot be analo-
gously extended since the development of the controller tuning procedure is based
on the commutation of systems in the block diagram (see [33]) and this passage
would not be allowed in a nonlinear setting.

In this chapter, Virtual Reference Feedback Tuning for noniterative direct design
of gain-scheduled controllers is presented and its effectiveness is tested on a typical
problem in motorcycle dynamics, i.e. rear braking control (see [25]), as braking
is recognized to be one of the most critical and sensitive maneuvers by pilots and
race-engineers.

The motivation for the interest in this application is that standard methods (see
e.g. [21, 31]) typically require an accurate knowledge of model parameters of brak-
ing dynamics and their identification may be very time-consuming. This require-
ment constitutes a big issue, especially when some hardware components change or
when low-cost products are used, as in these situations the control system should be
fast to calibrate and re-tune.

Starting from the observation that the importance of the load transfer effect is the
main difference between four and two-wheeled vehicles, a gain-scheduled fixed-
order controller can be instead synthesized using the VRFT method in [12], in case
the measurement of the rear vertical force is available. The testing platform is the
motorcycle multi-body simulator BikeSimTM, a comprehensive and experimentally
validated simulator for motorcycles, developed according to the works by Prof. R.
Sharp, D. Limebeer and S. Evangelou at the Imperial College of London, see [28].

The remainder of the chapter is as follows. The first part (Sections 11.2 and 11.3)
is dedicated to the presentation of the VRFT method for LPV systems, whereas
the second part (Section 11.4) is devoted to the application of the method to the
rear braking control problem in two-wheeled vehicles. More specifically, Section
11.2 introduces the notation and formally defines the problem, whereas Section 11.3
describes the method in all its features: the main idea is given in the introduction of
Section 11.2, the case of noisy data is discussed in Subsection 11.3.1 and the case
of underparameterized controllers is analyzed in Subsection 11.3.2. In Section 11.4,
the application problem is first formally described from a physical point of view,
then the VRFT solution is adapted to the case study in Subsection 11.4.1 and finally
the simulation results are illustrated in Subsection 11.4.2. The chapter is ended by
some concluding remarks.
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11.2 Problem Statement and Notation

In this work SISO LPV systems will be considered and represented by LPV transfer
operators, according to the following definition.

Definition 1. An LPV transfer operator G(q−1, p(t)), p(t) ∈Π ⊂ R
dim(p) is defined

as

G(q−1, p(t)) =
∞

∑
k=0

gk(p(t))q−k , p(t) ∈Π

where q−1 indicates the backward-shift time operator and gk(p(t)) is the kth impulse
response coefficient.

It is important to stress that the foregoing expression for the LPV system corre-
sponds to the standard LTI transfer function operator only in case of constant p(t).
Nonetheless, such a notation presents many interesting aspects like reading comfort
and it helps with deriving the main results. Therefore it will be employed through-
out the whole chapter, together with the following notion of LPV stability, firstly
introduced in [3].

Definition 2. An LPV transfer operator G(q−1, p(t)), p(t) ∈ Π ⊂ R
dim(p) is LPV

stable if it holds that

|gk(p(t))| ≤ gk ,
∞

∑
k=0

gk < ∞.

Consider now that the system to control is the data-generator G0(q−1, p(t)). The
output of G0(q−1, p(t)) is denoted by

y(t) = G0(q
−1, p(t))u(t)+ v(t),

where p(t) ∈Π ⊂R
dim(p) is a measurable exogenous parameter vector at time t and

v(t) =H0(q−1, p(t))e(t) is a coloured noise generated by the, possibly LPV, transfer
operator H0(q−1, p(t)) from a set of zero-mean random variables e(t).

Assume then that both G0(q−1, p(t)) and H0(q−1, p(t)) are LPV stable for all
possible trajectories of p, according to Definition 2.

Consider the case of scalar p(t) for clarity of presentation and let Cl be the class
of linear-in-parameters controllers with an additional LTI component I(q−1) (e.g.
integral action) in input-output description

Cl =
{

Cθ (q
−1, p(t)) = I(q−1)β T (q−1, p(t))θ , p(t) ∈Π

}
,

β (q−1, p(t)) = [β0(q
−1),β0(q

−1)p(t), . . . ,β0(q
−1)p(t)np ,

β1(q
−1),β1(q

−1)p(t), . . . ,β1(q
−1)p(t)np , . . . ,

βnq(q
−1),βnq(q

−1)p(t), . . . ,βnq(q
−1)p(t)np ].
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The term βi(q−1), i = 0, . . . ,nq, can be any kind of orthonormal basis functions,
e.g. Laguerre or Kautz (see [32]). Without loss of generality, from now on simple
backward-shift operators will be employed, that is βi(q−1) = q−i, i = 0, . . . ,nq. Fur-
ther, consider that the subscript θ attributed to a signal indicates that the signal refers
to the closed-loop system with the controller Cθ (q−1, p(t)) in the loop.

Introduce now the user-defined closed-loop desired behaviour as the LPV ref-
erence transfer operator M(q−1, p(t)). Given G0(q−1, p(t)), Cl and M(q−1, p(t)),
the model-reference control problem for LPV case can be defined as follows, by
extending the LTI concept.

Fig. 11.1 Closed-loop system with controller Cθ and matching error generation

Definition 3. Consider the closed-loop system illustrated in Figure 11.1, where
G0(q−1, p(t)), H0(q−1, p(t)) and M(q−1, p(t)) are defined as above and Cθ (q−1, p(t))
is a fixed-structure gain-scheduled controller parameterized by θ .

The problem of finding the LPV controller Cθ (q−1, p(t)) minimizing

JMR(θ ) = lim
N→∞

1
N

N

∑
t=1

εθ (t)2, (11.1)

εθ (t) = yθ (t)−M(q−1, p(t))r(t) =

= G0(q
−1, p(t))Cθ (q

−1, p(t))(r(t)− yθ (t))−M(q−1, p(t))r(t)+ v(t),

with respect to a specified parameter trajectory p(·), is referred to as LPV model
reference control problem.

The optimal controller C◦(q−1, p(t)) can now be introduced.

Definition 4. In the LPV model reference control framework, the optimal controller
C◦(q−1, p(t)) is the feedback controller such that v = 0 implies JMR = 0.

Notice that the optimal controller might not exist or cannot belong to the set of avail-
able controllers. It might also happen that C◦(q−1, p(t)) depends on future values of
the trajectory of p(t). However, this system will become useful for analysis-purpose.
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11.3 The VRFT Approach for LPV Control System Design

Consider the model-reference setting described in Section 11.2 and illustrated in
Figure 11.1. In a noiseless setting, when the closed-loop system behaves exactly as
M(q−1, p(t)), the reference signal can be expressed by rV (t) = M(q−1, p(t))−1y(t),
where the subscript V stands for “Virtual".

Consider now then the data-dependent cost function

JVR(θ ) = lim
N→∞

1
N

N

∑
t=1

(
u(t)−Cθ (q

−1, p(t))(rV (t)− y(t))
)2
. (11.2)

The criterion (11.2) does not require any knowledge of G(q−1, p(t)), since all in-
formation on the plant is included in the dataset. In general, (11.1) and (11.2) are
different, however the following proposition holds.

Theorem 11.1. Assume that C◦(q−1, p(t)) belongs to the class of considered con-
trollers. C◦(q−1, p(t)) is a minimizer of (11.2) for any trajectory of p.

Proof. See [12].

Corollary to Theorem 11.1. If (11.2) has a unique minimizer, e.g. if the class of
controllers is linearly parameterized, such a minimizer is exactly C◦(q−1, p(t)) and
then it guarantees perfect matching.

The controller parameterization introduced in Section 11.2 is exactly the one con-
sidered in the Corollary above, therefore the data-dependent cost criterion (11.2)
is quadratic in the unknown θ and its (unique) minimizer can be found via least-
squares techniques (see [22]). More specifically, it is possible to compute the mini-
mum of the finite-time approximation of (11.2)

JN
VR(θ ) =

1
N

N

∑
t=1

(
u(t)−ϕT (t, p(t))θ

)2
, (11.3)

where the regressor ϕ(t, p(t)) is expressed by

ϕ(t, p(t)) = Iβ (p(t))(M(p(t))−1y(t)− y(t)),

by means of convex optimazion (notice that t and q−1 arguments are sometimes
omitted for ease of notation). Therefore, the controller parameters θN are given by:

θN = argmin
θ

JN
V R(θ )

As in the LTI case, the VRFT approach converts the design problem into an identi-
fication issue, where the knowledge of the process dynamics is no longer necessary.
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11.3.1 Dealing with Noisy Data

In order to guarantee consistent results in numerical minimization of (11.3), a differ-
ent experimental effort is required depending on the Signal-to-Noise Ratio (SNR),
even if only the complete-parameterization case is considered. The analysis of this
section naturally follows from the (more general) theoretical study in [4] and from
some observations reported in [3].

Consider the case where C◦ ∈ C and disturbance v is identically null, for any
time instant t. The minimum of (11.3) is given by the Gauss-formula

θN =

[
1
N

N

∑
t=1

ϕ(t, p(t))ϕT (t, p(t))

]−1
1
N

N

∑
t=1

ϕ(t, p(t))u(t). (11.4)

Since C◦ ∈ C , the input can be expressed as a function of the regressor and the
optimal value of parameters, i.e. u(t) = ϕ(t, p(t))Tθ ◦. Then, by substituting such
an expression in the Gauss-formula, it is clear that θN = θ ◦ only if the persistency
of excitation condition

1
N

N

∑
t=1

ϕ(t, p(t))ϕT (t, p(t))> 0 (11.5)

holds.

Remark. A sufficient condition such that (11.5) is verified for polynomial-type co-
efficient dependence and ARX noise models is that u(t) is rich enough (as in LTI
case) and the trajectory of p(t) visits np + 1 points infinitely many times (see [1]).
As the noise model is expressed by

H(q−1, p(t)) = H0(q
−1, p(t))

(
1−M(q−1, p(t))

)
(11.6)

persistency of excitation might not be satisfied when (11.6) cannot be well-described
by an ARX model. In this case, more general results on persistency of excitation for
LPV identification would be required (this is not a problem due to use of VRFT). It
should be said that, in authors’ experience, simulations have always shown a good
behaviour with conditions expressed in [1], as will be shown later on in the numeri-
cal examples.

In any real experimental environment, the measured output is always affected by
noise. Moreover, it may happen that also the measurement of the scheduling param-
eter p is contaminated by additional disturbances. In these situations, one solution
is to resort to Instrumental Variable (IV) techniques and repeated-experiment pro-
cedures. Consistency results are explained next.

Consider the IV reformulation of (11.4)

θN =

[
1
N

N

∑
t=1

ζ (t, pζ (t))ϕT (t, p(t))

]−1
1
N

N

∑
t=1

ζ (t, pζ (t))u(t), (11.7)
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where ζ (t, p(t)) is a parameter-varying IV vector. In detail, ζ (t, pζ (t)) is con-
structed as

ζ (t, pζ (t)) = I(q−1)β (q−1, pζ (t))(M(q−1, p(t))−1yζ (t)− yζ (t)),

where yζ (t) is the output of a second open-loop experiment performed by employ-
ing the same input and parameter sequences of the first dataset and pζ (t) is the
parameter sequence with a different realization of noise.

By writing the outputs of the two open-loop experiments as sums of the nominal
signal ynom and the i−th disturbance realization vi, namely

y(t) = ynom(t)+ v1(t) , yζ (t) = ynom(t)+ v2(t),

and by applying the same rationale on p, that is

p(t) = pnom(t)+ dp1(t) , pζ (t) = pnom(t)+ dp2(t),

it is possible to distinguish among four different components inside the regressors,
i.e.

ϕ(t, p(t)) = ψynom(t, pnom(t))+ψv1(t, pnom(t))+ψynom(t,dp1(t))+ψv1(t,dp1(t)),

ζ (t, pζ (t)) = ψynom(t, pnom(t))+ψv2(t, pnom(t))+ψynom(t,dp2(t))+ψv2(t,dp2(t)),

where ψ-terms are defined as

ψynom(pnom) = Iβ (pnom)(M
−1ynom − ynom),

ψynom(dp1) = Iβ (dp1)(M
−1ynom − ynom),

ψynom(dp2) = Iβ (dp2)(M
−1ynom − ynom),

ψd1(pnom) = Iβ (pnom)(M
−1v1 − v1),

ψd1(dp1) = Iβ (dp1)(M
−1v1 − v1),

ψd2(pnom) = Iβ (pnom)(M
−1v2 − v2),

ψd2(dp2) = Iβ (dp2)(M
−1v2 − v2).

By noticing that u(t) = ψynom(t, pnom(t))Tθ ◦ with the representation above, the IV
version of the Gauss formula (11.4) can be rewritten, after some cumbersome com-
putations, as

θN = θ ◦ −
[

1
N

N

∑
t=1

ζ (t, p(t))ϕT (t, p(t))

]−1
1
N

N

∑
t=1

ζ (t, pζ (t))ψd1(t, pnom(t))θ ◦+

+ζ (t, pζ (t))ψynom(t,dp1(t))θ ◦+ ζ (t, pζ (t))ψd1(t,dp1(t))θ ◦.
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It can be concluded that for the IV estimate to be consistent it is required that

1
N

N

∑
t=1

ζ (t, pζ (t))ϕT (t, p(t))> 0

and

lim
N→∞

1
N

N

∑
t=1

ζ (t, pζ (t))ψv1(t, pnom(t))+

+ζ (t, pζ (t))ψynom(t,dp1(t))+ ζ (t, pζ (t))ψv1(t,dp1(t))

is null, with probability 1.
The first condition is a persistency of excitation condition and can be treated like

(11.5).
Concerning the second condition, further reasoning is required. It could be shown

that the expected value of cross-products of any ψ-term with ζ is null, as different
realizations of output and parameter noises are included in the IV vector. There-
fore, the method gives consistent estimate only if ζ and the ψ-terms are ergodic in
correlation, i.e. if as N → ∞,

∥∥∥∥∥
1
N

N

∑
t=1

ζ (t, pζ (t))ψi(t)−E
[
ζ (t, pζ (t))ψi(t)

]∥∥∥∥∥
F

→ 0, (11.8)

where ψi(t) stands for any ψ-term except for ψynom(pnom) and ‖·‖F indicates the
Frobenius norm.

In [3] and [4], it is proved that (11.8) holds in the noiseless parameter case, if

1. the data-generating system is LPV stable;
2. the noise-generating system is LPV stable;
3. trajectories of p and u are bounded.

In the present case, the first requirement is true by hyphotheses and the second
one is easily verified by looking at the expression of H(q−1, p(t)) given in (11.6).
Therefore, only the third requirement is really an additional (but reasonable for most
of LPV applications) requirement for system working conditions.

If the scheduling parameter is noisy, the method also requires that

1. the controller parameterization with respect to p is affine;
2. noises on p and y are uncorrelated.

The latter may constitute a problem in applications where the scheduling parameter
is the output itself and for quasi-LPV systems. In these situations, an additional real-
ization of the parameter trajectory, i.e. another experiment, is required. This “three-
experiment" procedure will be referred to as “double-IV"-identification, whereas the
“two-experiment" method for noiseless parameter measurement will be denoted as
“IV"-identification.



298 S. Formentin, G. Panzani, and S.M. Savaresi

Remark. It should be recalled that the proposed technique is not statistically opti-
mal, since IV methods eliminate the noise bias by increasing the variance of the
parameter estimate. This fact may also compromize the quality of the closed-loop
model-matching because the expected value of the model reference cost depends
on the weighted covariance of the parameter vector. From a practical point of view,
it can then be concluded that the proposed IV method are good and fast way to
overcome the problem of noise, provided N is large.

11.3.2 Underparameterized Controllers

In many practical applications, perfect matching is not possible, mainly because
of control limitations and uncomplete knowledge of the system structure. In this
situation, two critical problems arise:

1. a control problem: when Cθ (q−1, p(t)) cannot match M(q−1, p(t)) for any θ ,
no information is available on stability and performance for different working
conditions.

2. an identification problem: in the underparameterization case, the result in The-
orem 11.1 no longer holds.

The first problem is a general issue of model-reference control of LPV systems
where only low-order controllers are available and it is not directly related to VRFT.
Therefore, the following discussion will focus on the second problem. Far from
being a complete analysis, this Section aims at laying the groundwork of future
research, providing a suitable approach and discussing some (so far) open problems.

11.3.2.1 Optimal Data Prefiltering

Consider the case of underparameterized controller structure. Let the complete pa-
rameterization of the controller be θ+ =

[
θT θ̃

]T
,

C+
θ (q

−1, p(t)) =Cθ (q
−1, p(t))+ θ̃ΔCθ (q

−1, p(t)),

where ΔCθ (q−1, p(t)) is the “residual" of the optimal controller. Notice that if
C+
θ (p) is employed, the perfect matching holds by Definition 3 for any trajectory

of p(t). Notice that the full-order optimal controller C◦+(q−1, p(t)) is obtained for
θ+ = θ+

min =
[
θ ◦T 1

]T and the reduced-order optimal controller C◦
θ (p) is given by

θ+ =
[
θT

min 0
]T . Now let the virtual reference cost with filtered data be

JVR(θ ,L) = lim
N→∞

1
N

N

∑
t=1

(L(p)u(t)−L(p)Cθ (p)(rV (t)− y(t)))2 . (11.9)

where L(q−1, p(t)) is an LPV prefilter to be chosen to shape the bias effect due
to undermodeling. The result presented herein follows the same rationale of [5]
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and [6] and it guarantees an analytical relationship between the real and the virtual
reference cost functions also in case of undermodeling. Notice that prefiltering and
closed-loop behaviour are strictly related to the parameter trajectory of the open-
loop experiment.

Theorem 11.2. If

L(q−1, p(t)) =
(
M(q−1, p(t))− 1

)
G0(q

−1, p(t)), (11.10)

then
∂ 2JVR(θ ,L)

∂θ+2 |θ+min
=

∂ 2JMR(θ )
∂θ+2 |θ+min

(11.11)

Proof. See [12].

Notice that unlike the case of optimal controller (for which the perfect model-
following is achieved for any parameter trajectory), with the underparameterized
controller guarantees can be provided only for a given p(·), i.e. the one corre-
sponding to the identification experiment and employed inside the prefilter. A good
practice is then to choose, among all the persistently exciting trajectories of the pa-
rameter, the one closest to that required in closed-loop operation.

11.3.2.2 Filter Implementation

The optimal filter (11.10) cannot be directly applied as the process dynamics are
unknown. A direct data-driven filter implementation strategy is illustrated next.

First notice that in (11.9) two different terms are required, i.e.

L(p)u(t), L(p)Cθ (p)(rV − y) .

Considering the first term, it should be noted that, in a noiseless setting,

L(p)u(t) = (M(p)− 1)G0(p)u(t) = (M(p)− 1)y(t).

On the other hand, the second term can be rewritten as

L(p)Cθ (p)(rV − y) = θT (M(p)− 1)G0(p)β (p)Ie.

Since each element of β (p) is the composition of a i-step time shift and a j-
powered version of the parameter, i.e. p j(t)q−i, a data-driven estimation of the
quantity above can be inferred from a set of ad-hoc experiments by using the time
series of y(t) and p(t) that characterize the first dataset. Specifically, nexp = dim(θ )
open-loop experiments are required, where G0(p) must be fed by the input signal
ũi, j(t) = p j(t)q−iI(q−i)e(t) during the experiment denoted with the couple (i, j).
The output signals ỹi, j(t) = G0(p)p j(t)q−i(p)I(q−i)e(t) can then be weighted with
θ and filtered off-line by M(p)− 1 to obtain the desired quantity.
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Notice that the data-driven computation of the second term requires an additional
experimental effort, e.g. a PI controller with affine parameterization in p requires 4
ad-hoc experiments. However, the design of experiment procedure is completely
defined and model-free. Moreover, the signals in JVR(θ ) are filtered by the real L
and not with an approximation, unlike the LTI case (see again [5]).

11.4 Active Braking Control via Load Transfer Scheduling

In this second part, the braking control problem for two-wheeled vehicles will be
dealt with from an LPV point of view. More specifically, this note will focus on
wheel slip (λ ) control, due to the successful application of such a control paradigm,
see e.g. [27, 31, 30]. In the following, some physical reasoning will be proposed to
correctly select the identification experiment, the reference model and the controller
structure, whereas the controller parameters will be subsequently derived from I/O
data only.

The most widespread dynamic model in literature is the so called Single Corner
Model: it relates the system input, that is the braking torque T applied to the wheel,
to the wheel slip that has to be regulated. Although very simple, this model is capa-
ble of capturing some of the main features of braking control issues and its analysis
proves useful for a proper comprehension of the braking problem tackled (see also
e.g. [19, 27] for further details). The Single Corner torque-to-slip linearized transfer
function is expressed by

λ (s) =
R/Jẋ

s+

[(
R2

J
+

1

mt

)
μ ′
]

Fz

ẋ

T (s) (11.12)

According to this model, the dynamics between the braking torque and the wheel
slip are expressed as a first order filter and depends on: the wheel radius R, the
moment of inertia of the wheel J, the whole vehicle mass mt , the vehicle speed ẋ,
the vertical load that insists on the wheel center Fz and μ ′

, that is the derivative of
the Pacejka friction curve (see [24]) evaluated in the considered equilibrium point,
namely

μ
′
=

∂μ (λ )
∂λ

∣∣∣∣∣
0

.

It is reasonable to consider that vehicle properties such as vehicle mass, wheel radius
and its moment of inertia keep constant (at least slight variations occur); conversely,
the same assumption cannot be done for the other parameters. The vehicle speed ẋ
by definition changes as the vehicle decelerates; the Pacejka derivative μ ′

cannot be
considered a constant parameter, as it changes with the considered equilibrium point
and mainly when different surfaces are considered (e.g. dry asphalt, snow). Finally,
the vertical load Fz is another fundamental variable, in particular in two-wheeled
vehicles.
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Fig. 11.2 Vehicle pictorial representation

To better understand the latter point, consider Figure 11.2 where a pictorial rep-
resentation of a motorcycle is provided. For the sake of simplicity, the vehicle is as-
sumed to be rigid, i.e. no suspension deflection is considered, and the whole vehicle
mass located in the main frame center of gravity (point B). During a deceleration
phase, the momentum balance with respect to the point H leads to the following
front and rear vertical forces expressions:

Fz f = mt g
lzr

lz f + lzr
−mt

h

lz f + lzr
ẍ = Fz f 0 −mt

h

lz f + lzr
ẍ

Fzr = mt g
lz f

lz f + lzr
+mt

h

lz f + lzr
ẍ = Fzr0 +mt

h

lz f + lzr
ẍ

Thus, the vertical load that insists on the wheels changes when the vehicle deceler-
ates: in particular during braking (ẍ < 0), the front wheel vertical force increases and
the rear wheel vertical force decreases proportionally to the deceleration (accelera-
tion) of the vehicle. The vertical force variation is amplified as the ratio h/(lz f + lzr)
increases: two-wheeled vehicles are usually characterized by a higher center of grav-
ity (COG) position and a moderate wheelbase, which makes the load transfer phe-
nomena outstanding if compared to four-wheeled vehicles.

The wheel slip control problem herein tackled is specialized only on the rear
wheel, since motorcycle brake-by-wire systems are available so far only for the rear
wheel (see e.g. [11]), mainly due to safety and reliability issues. Moreover, among
the mentioned parameters that modify the torque-to-slip dynamics, only the rear
wheel vertical force influence is here taken into account. Actually, the vehicle speed
is not a critical parameter and satisfactory closed loop performances can be achieved
disregarding its variations (when 1-5Hz) closed loop bandwidth is desired); its in-
fluence should be considered in the control system design for very high values (ẋ
> 300 Km/h). The same reasoning does not hold when dealing with surface (μ ′

)
variations; a wheel slip regulation problem that takes into account the mentioned
parameter has been studied in [9], with an LPV model-based approach. Beside the
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Fig. 11.3 Influence of vertical load on the rear wheel slip transfer function: linearized simu-
lator model (dashed line) and Single Corner (solid line)

theoretical interest, the proposed approach is not suitable for practical implementa-
tion, since surface estimation and practical LPV identification of such a system are
still open issues.

To better understand the influence of the load transfer in rear wheel slip control
design, Figure 11.3 shows the Bode plot respectively for different decelerations, i.e.
rear vertical forces (a comparison between the Single Corner model and the lin-
earized BikeSimTMtransfer function is also depicted). Generally speaking, the Sin-
gle Corner model provides a reasonable description of slip dynamics in a bandwidth
limited around [0−−5]Hz; considering that the nowadays brake-by-wire actuators
are capable of a [0−−10]Hz bandwidth, the range in which the Single Corner model
can be considered valid is satisfactory. Beyond this limit, vehicle dynamics mainly
due to suspensions appear in the considered transfer function. It can be seen how
a change in the rear vertical force causes an important modification in the DC gain
(over 20dB) of the torque-to-slip transfer function, along with a wheel pole fre-
quency slowdown.

To take into account these variations, the torque-to-slip dynamics can be con-
sidered as a linear parameter varying (LPV) system. It should be here noticed that,
practically, direct measurements of Fz are possible thanks to load sensing bearings,
see [2], that are becoming an interesting opportunity for on-board force sensing,
even though their actual diffusion are limited to test bench ([7]) or vehicle proto-
types.

In the following sections, it will be shown how rear slip closed loop performances
can be significantly enhanced by designing a control system that explicitly takes into
account the variation of the load transfer.
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11.4.1 Implementation of the VRFT Strategy

Although direct data-driven methods are sometimes referred to as “model-free", this
term might be misleading when dealing with some engineering problems. Strictly
speaking, the model parameters do not really need to be identified however some “a-
priori" knowledge of the structure of the plant to-be-controlled could significantly
guide the selection of the reference model and the controller class. In this section,
this kind of reasoning will be proposed for what concerns the braking application
for two-wheeled vehicles.

Considering the Single Corner model (11.12) it is clear that the LPV VRFT con-
troller could be in general scheduled on Fz, ẋ or μ ′

(when an accurate measurement
is available). Nevertheless, with the proposed VRFT approach the controller can be
scheduled only on the vertical load. This is motivated by the requirements for persis-
tency of excitation of the LPV version of VRFT method. According to Subsection
11.3.1, the identification experiment should be designed such that the vehicle speed
visits ns +1 points infinitely many times, where ns is the maximum power at which
the speed appears in the controller parameters. Since during braking the velocity nat-
urally decreases, the maximum ns allowed is 0, that is the speed must be assumed
constant. Similar reasoning holds for μ ′

that, moreover, cannot be either changed
when needed nor easily measured. On the other side, a sinusoidal trajectory for Fz is
operable, as Fz can be suitably modulated by means of the front brake, and then no
limits are given to the maximum power at which the force appears in the controller
parameters.

In this context, it will be assumed that the reference model is achievable with a
controller in the considered class and that the measurement devices are such that
the noise power is low. It follows that the LPV controller will be tuned only using a
single experiment.

As shown in Figure 11.3, the inclusion of the vertical load Fz allows to well
describe low-frequency vehicle dynamics: accordingly, it is expected that an LPV
controller scheduled only on the vertical force can achieve satisfactory performances
for low-frequency (up to 5Hz) bandwidth. It should be said that closed-loop cutoff
frequencies of 1-2Hz are not undersized with respect to benchmark control systems
(see [27]). At these frequencies, the energy of the measurement noise is typically
low, moreover the intrinsic nature of feedback further attenuates its effect on the
output during closed-loop operation. Therefore, this topic will be here neglected to
focus on the more critical dynamic coupling effect.

Thus, the LPV VRFT controller tuning experiment should follow these guide-
lines:

• the reference model has a sufficiently low cutoff frequency (e.g. 1Hz for the
model illustrated in Figure 11.3),

• the experiment is performed at low velocities (ẋ < 150), where the effect of speed
on the pole is not visible and the unique time-varying effect is due to load transfer.

• the frequency of excitation of Fz is below the minimum pole frequency.
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Fig. 11.4 Open-loop experiment on the Multibody Simulator

The latter requirement is due to the fact that, when Fz is at high frequencies, if
the vehicle speed is high, the estimate of the system gain is biased, because λ is
mitigated by the speed-filtering effect.

Once the range of interesting frequencies is bounded, to select the controller
class it is sufficient to observe that the DC-gain of (11.12) linearly depends on the
inverse of Fz. Then, an integral controller with the gain linearly depending on Fz

allows the gain variations to be compensated and a first order reference model can
be achieved; it can be then considered that the integral controller is not underparam-
eterized (with respect to the controller structure that allows to achieve the desired
closed loop performances) and thus the use of the optimal prefiltering, discussed in
Section 11.3.2.1, is not necessary.

A last remark about the identification experiment is compulsory. Although the
scheduling parameter is Fz, the real manipulable variable to vary it during the iden-
tification experiment is the front brake, that not only affects Fz, but also directly
influences λ as a secondary input, if the whole vehicle dynamics are considered
(obviously, this cannot be seen on the Single Corner model). In order to make the
effect of the rear torque T visible on the slip, the front braking maneuvers to modu-
late Fz must be such that the front torque is much lower than the rear one.

An example of a realistic effective experiment is illustrated in Figure 11.4, where
a white noise rear torque is generated. The same experiment will be used in the
next Subsection to tune the gain-scheduled controller. It should be finally stressed
that information about the model was so far only used to design the identification
experiment and suitably select the reference model. No information about numerical
values of its parameters was instead needed, unlike standard model-based control
design.
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11.4.2 Simulation Results

The VRFT approach has been applied to the fully nonlinear multi-body simula-
tor Bikesim. The integral controller has been tuned to match a first order reference
model with a bandwidth of [0–1]Hz, according to the identification experiment dis-
cussed in the previous section. The optimization procedure has led to the following
discrete-time control law:

u(t) = u(t − 1)+ (θ00+θ01Fz (t))(r(t)− y(t)),

where:
θ00 =−0.0567, θ01 = 0.000471.

The convergence of the controller parameters is illustrated in Figure 11.5, that can
be also interpreted as a sensitivity analysis to the length of the dataset. Notice that
a biased estimate occurs if the excitation frequency is too high, as explained in the
previous Section. Moreover, the bias is bigger when experiments are performed at
high speed, since the filtering effect of the system pushes towards lower frequency
when speed increases.
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The effectiveness of the proposed controller is first showed for different constant
Fz values: the rear wheel slip controller is fed with step setpoint for different values
of vehicle deceleration. Recalling equation (11.13), vehicle deceleration at steady-
state results in a change of the rear wheel vertical force. Figure 11.6 shows a compar-
ison between system response with the LPV controller (top) and a model-based LTI
controller (bottom, see [27]) in which the parameter value has kept constant to the
nominal value (with zero vehicle deceleration). The LPV controller correctly com-
pensate the increasing DC-gain of the rear slip transfer function allowing to keep
the system response always close to the reference one. Indeed, the LTI controller
cannot cope with such a change, proving how such a variable should be really taken
into account in the design of a rear wheel slip controller.
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Fig. 11.6 Comparison between slip step-response of the closed-loop system with the LPV
controller (left) and a standard model-based LTI controller (right) for different values of the
vertical load

To check the proper controller design in a more realistic simulation which in-
volves the complete nonlinear behaviour of the vehicle, two realistic panic brake
maneuvers are considered.

First, a front braking torque step is applied and contemporaneously the rear wheel
slip loop is fed with a step reference. The comparison between LPV and LTI con-
troller is presented in Figure 11.7. Secondly, another panic braking maneuver is
tried: a step reference is applied to the rear slip loop and then a front braking action
(that acts as “load disturbance") is performed when the system is at steady-state. Re-
sults are shown in Figure 11.8, where, the front braking disturbance rejection proves
more effective when the load transfer is measured.
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Fig. 11.8 LPV and LTI slip controller during the second panic brake maneuver described in
the text

11.5 Concluding Remarks

In this chapter, the Virtual Reference Feedback Tuning approach for gain-scheduling
controller design has been presented. The method does not require any model of the
plant and it is based on convex optimization techniques, if the controller is suitably
parameterized. Moreover, under some hypotheses, it guarantees consistency of the
estimate, even in case of both output and parameter noisy measurements.
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The approach has been tested on a braking control application for two-wheeled
vehicles. Qualitative physics-based information about the dynamical structure of the
system can be used to select the scheduling parameter, the reference model and the
controller structure, whereas the control parameters are tuned with a single dataset
collected on an open-loop experiment. The proposed strategy has been tested on
the motorcycle multi-body simulator BikeSimTM, providing satisfactory results also
when tried on critical panic maneuvers.
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Chapter 12
Design of a Hierarchical Controller for
Suspension Systems

Péter Gáspár and Zoltán Szabó

Abstract. The chapter proposes the design of a hierarchical controller of an active
suspension system for a full-car vehicle. The performance specifications are met by
a high-level controller, in which the control input is a demanded virtual force. For
the design of the high-level controller linear parameter varying (LPV) methods, in
which both the performance specifications and the uncertainties of the model are
taken into consideration, are proposed. The generation of the forces is based on the
road disturbances and the measured signals. Once the desired forces are provided
by the high-level, the actuator must track these reference signals by adjusting its
spool valve. The actuator which is designed to carry out force-tracking is modelled
as a nonlinear system. Control design in the low-level is based on the backstepping
method. The modular design of both the high-level controller for the performance
specifications and the low-level controller for the actuator has several advantages:
it results in reduced-complexity models for the control design and changes in the
actuator level do not affect the design of the high-level controller.

Keywords: backstepping design, LPV control, tracking control, performances, ro-
bustness, active suspension.

12.1 Introduction

Suspension systems are used to provide good handling characteristics and improve
ride comfort while harmful vibrations caused by road irregularities and on-board
excitation sources act upon the vehicle. The performance of suspension systems is
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assessed quantitatively in terms of several parameters: passenger comfort, suspen-
sion deflection, tire load variation and energy consumption, see [4, 15]. The suspen-
sion problem is analyzed in fundamental papers such as [3, 7, 9].

One of the difficulties in the control design is that the different control goals are
usually in conflict and a trade-off must be achieved between them. The variance of
the sprung mass acceleration decreases when the variance of suspension or tire de-
flections increases, thus its minimization implies maximum admissible deflections.
The result also indicates that generally the constraints imposed on the suspension
deflection limit the tire deflection simultaneously and vice versa, see [6, 8]. Another
difficulty in the control design is that the suspension model contains components
whose behavior contains uncertainties. The uncertainty is caused by neglected dy-
namics, high-order modes, inadequate knowledge of components or alteration of
their behavior due to changes in operating conditions.

The actuator built in a suspension system might be semi-active or active. An
active solution can introduce energy in the system if necessary while a semiactive
solution can only dissipate energy. A semi-active actuator works according to the
characteristic depicted in Figure 12.1, where the damper force depends on the damp-
ing mechanism and the damper velocity. The active suspension system requires con-
trol forces independently of the relative velocity. The plot in Figure 12.1(b) contains
the force demands provided by an active controller based on the quarter-car model
(points). The lines are the graphs of the damper characteristics corresponding to
different command values (lines). The modelling of vertical dynamics and the for-
malization of various performance specifications result in a high-complexity model
which contains nonlinear suspension components and actuator dynamics. The hy-
draulic actuator which generates the suspension force has an inherently nonlinear
nature. The direct inclusion of the actuator in the state space description of the sus-
pension dynamics leads to a high-complexity model.

In the chapter a hierarchical design of the suspension system is proposed. In
the design of a high-level controller a full-car model containing the suspension dy-
namics is considered where passenger comfort, road holding and tire deflection are
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taken into consideration as performance outputs and the control input designed is
the control force. In this step the uncertainties of the model are also considered.
The designed control force is a required force, which must be created by the hy-
draulic actuator. The required force is tracked by a low-level controller by setting
the valve of the actuator. The backstepping-based nonlinear method is presented for
the design of the low-level controller. This approach explores the possibilities of the
application of classical nonlinear control techniques for the output tracking control
of an actuator subsystem used in active suspensions. Thus, the control design can be
divided into two separate steps. The advantage of the hierarchical design is that the
actuator dynamics and the suspension dynamics are handled in independent control
design steps. The controller allows a modular design. Changes in the design of the
actuator level do not affect the design of the upper level controller.

The structure of the chapter is as follows. In Section 12.2 the design of the sus-
pension control from the modeling to the LPV-based control design is presented.
The model of the hydraulic actuator used in the suspension system is also shown.
In Section 12.3 the design of the actuator control based on the backstepping method
is presented. In Section 12.4 the operation of the hierarchical controller is demon-
strated through simulation examples. Finally, Section 12.5 contains some conclud-
ing remarks.

12.2 Design of the Suspension Control Based on LPV Methods

12.2.1 Modeling of the Suspension Systems

The control design is based on a full-car model of the suspension system. The full-
car model, which is shown in Figure 12.2, comprises five parts: the sprung mass and
four unsprung masses.

Let the sprung and unsprung masses be denoted by ms, mu f , and mur, respec-
tively. All suspensions consist of a spring, a damper and an actuator to generate a
pushing force between the body and the axle. The suspension damping force and the
suspension spring force and the tire force are denoted by Fbi j,Fki j,Fti j , respectively.
The displacement of the sprung mass at the four suspension points is denoted by
x1i j, while the displacement of the unsprung mass is denoted by x2i j. The distur-
bances wi j are caused by road irregularities. The input signals fi j are generated by
the actuators. The system equations correspond to a seven degrees-of-freedom full-
car vehicle model. The sprung mass is assumed to be a rigid body and has freedoms
of motion in the vertical, pitch and roll directions. The x1 is the vertical displace-
ment at the center of gravity, θ is the pitch angle and φ is the roll angle of the sprung
mass, respectively.
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Fig. 12.2 The full car model

msẍ1 =Fk f l +Fk f r +Fkrl +Fkrr +Fb f l +Fb f r +Fbrl +Fbrr−
− f f l − f f r − frl − frr (12.1a)

Iθ θ̈ =l f Fk f l + l f Fk f r − lrFkrl − lrFkrr + l f Fb f l + l f Fb f r − lrFbrl + lrFbrr−
− l f f f l − l f f f r + lr frl + lr frr (12.1b)

Iφ φ̈ =t f Fk f l − t f Fk f r + trFkrl − trFkrr + t f Fb f l − t f Fb f r + trFbrl − trFbrr−
− t f f f l + t f f f r − tr frl + tr frr (12.1c)

mu f ẍ2 f l =−Fk f l −Ft f l −Fb f l + f f l (12.1d)

mu f ẍ2 f r =−Fk f r −Ft f r −Fb f r + f f r (12.1e)

murẍ2rl =−Fkrl −Ftrl −Fbrl + frl (12.1f)

murẍ2rr =−Fkrr −Ftrr −Fbrr + frr (12.1g)

where the following linear approximations are applied: x1 f l = x1+ l fθ + t fφ , x1 f r =
x1 + l fθ − t fφ , x1rl = x1 − lrθ + trφ , and x1rr = x1 − lrθ − trφ .

Figure 12.3 illustrates the nonlinear properties of the suspension spring and
damper components. The suspension damping force and the suspension spring
force, respectively, are as follows, see [5]:

Fbi j = bl
s(ẋ2i j − ẋ1i j)− bsym

s |ẋ2i j − ẋ1i j|+ bnl
s

√
|ẋ2i j − ẋ1i j| sgn(ẋ2i j − ẋ1i j),

(12.2a)

Fki j = kl
s(x2i j − x1i j)+ knl

s (x2i j − x1i j)
3, (12.2b)

and fi j are the forces of the actuator, where i j ∈ { f l, f r,rl,rr}. Here, parts of the
nonlinear suspension damper bs are bl

s, bnl
s and bsym

s . The bl
s coefficient affects the
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Fig. 12.3 Nonlinear properties of the suspension components

damping force linearly while bnl
s has a nonlinear impact on the damping charac-

teristics. bsym
s describes the asymmetric behavior of the characteristics. Parts of the

nonlinear suspension stiffness ks are a linear coefficient kl
s and a nonlinear one, knl

s .
The tire force is approximated by a linear model:

Fti j = kt(x2i j −wi j). (12.3)

Remark 15. The performance signals of the nonlinear model differ from those in
the linear model with respect to their transient behavior. As an example for the front
wheel they are tested by using a bump illustrated in Figure 12.4. The overshoots of
the heave acceleration are larger by about 10 % in the nonlinear case than in the
linear one, however, the transient duration in the nonlinear case is shorter than in
the linear one. At the same time the values of suspension deflections are smaller
in the nonlinear case than in the linear one. These properties are caused by the
nonlinear damping characteristics, which are significantly different from the linear
characteristics around the equilibrium point.
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Fig. 12.4 Time responses of the vehicle to a bump
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The state vector x is selected as follows: x =
[
qT xT

u q̇T ẋT
u

]T
with q =

[
x1 θ φ

]T
and xu =

[
x2 f l x2 f r x2rl x2rr

]T
. In the LPV modeling scheduling variables, which are

directly measured or can be calculated from the measured signals, must be selected.
Variables concerning the front and rear displacement between the sprung mass and
the unsprung mass on the left and right side and their velocities are selected as
scheduling variables:

ρbi j = ẋ2i j − ẋ1i j, (12.4a)

ρki j = x2i j − x1i j (12.4b)

with i j ∈ { f l, f r,rl,rr}. The scheduling variable ρbi j depends on the relative ve-

locity, while the scheduling variable ρki j depends on the relative displacement. In
practice, the relative displacement is a measured signal. The relative velocity is then
determined by numerical differentiation from the measured relative displacement.
Thus, in the LPV model of the active suspension system eight parameters are se-
lected as scheduling variables.

The design of the high-level controller is based on the parameter-dependent LPV
method. The state space representation of the LPV model is as follows:

ẋ = A(ρ)x+B1(ρ)w+B2(ρ)u, (12.5)

where u =
[

f f l f f r frl frr
]T

and w =
[
wf l wf r wrl wrr

]T
.

12.2.2 Performance Specifications of the Suspension System

The performance of a suspension system can be assessed quantitatively in terms of
four parameters: passenger comfort, suspension deflection, tire load variation and
energy consumption, see [4]. Vehicle vibrations excited by road irregularities might
lead to the fatigue of the driver and passengers, as well as damage to the vehicle
and the payload. It is widely accepted that there is a correlation between passenger
comfort (or ride comfort) and the heave, pitch and roll accelerations of the sprung
mass. The suspension working space, which is defined as the relative displacement
between the sprung and unsprung masses and also called suspension deflection, may
affect directional stability because of particular suspension geometries. It is required
that suspension deflection be minimized. The suspension system must guarantee that
the vehicle remains on the track in all maneuvers. The tire load is made up of a static
component due to gravity and a dynamic component due to road unevenness. In
order to reduce variations of the side force during a vehicle maneuver, it is necessary
that the dynamic tire load component be kept as small as possible. The control force
limitation is incorporated into the design procedure in order to avoid large control
forces.

Consider the closed-loop system in Figure 12.5, which includes the feedback
structure of the nominal model G and controller K, and elements associated with
the uncertainty models and performance objectives. In the diagram, u is the control
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input, which is generated by actuators, y is the measured output, n is the measure-
ment noise. The measured outputs are the front and rear displacement between the
sprung mass and the unsprung mass on the left and right side, yi j = x1i j − x2i j,
with i j ∈ { f l, f r,rl,rr}. In the figure, wi j is the disturbance signal, which is caused
by road irregularities. z represents the performance outputs: the passenger com-
fort (heave acceleration) (zai j = ẍ1i j), the suspension deflection (zsi j = x1i j − x2i j)
and the wheel relative displacement (zti j = x2i j − wi j). The control force limita-
tion is incorporated into the design procedure in order to avoid large control re-
quirements (zui j = fi j). The vector of the performance output is the following:

z =
[
zai j zsi j zti j zui j

]T
.

z =C1(ρ)x+C12(ρ)u, (12.6)

The feedback structure also includes the uncertainties caused by neglected dynam-
ics, uncertain components, inadequate knowledge of components, or alteration of
their behavior due to changes in operating conditions. In order to maintain the de-
sign complexity between bounds in this structure uncertainties are represented by
a multiplicative LTI block Δm and a weighting function Wr. It is assumed that the
transfer function Wr is known, and it reflects the uncertainty bound in the model. Δm

is assumed to be stable and unknown with the norm condition ‖Δm‖∞ < 1.

Wr

� �

Wp
�

Δm

�� Wn
�
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�
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Fig. 12.5 The closed-loop interconnection structure

The aim of the control design is to create four control forces f =
[

f f l f f r frl frr
]

in such a way that all the heave accelerations, the suspension deflections, the tire
deflections and the control inputs should be as small as possible over the desired
operation range.

The purpose of weighting functions Wp,az, Wp,sd , Wp,td and Wp, f is to keep the
heave acceleration, suspension deflection, wheel travel, and control input small over
the desired operation range. These weighting functions chosen for performance out-
puts can be considered as penalty functions, i.e., weights should be large in a fre-
quency range where small signals are desired and small where larger performance
outputs can be tolerated. Thus, Wp,az and Wp,sd are selected as
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Wp,az = γaz
Ts1s+ 1
Ts2s+ 1

, (12.7a)

Wp,sd = γsd
Ts3s+ 1
Ts4s+ 1

. (12.7b)

The choice of the actual values of the filter coefficients Tsk are chosen based on the
engineering knowledge on the problem at hand. The parameter dependence of the
gains is characterized by the constants ρ1 and ρ2 in the following way:

γaz =

⎧⎪⎨
⎪⎩

1 if |ρki j|< ρ1,
|ρki j |−ρ2
ρ1−ρ2

if ρ1 ≤ |ρki j| ≤ ρ2,

0 if R ≥ Rs or |ρki j|> ρ2.

γsd =

⎧⎪⎨
⎪⎩

0 if |ρki j|< ρ1,
|ρki j |−ρ1
ρ2−ρ1

if ρ1 ≤ |ρki j| ≤ ρ2,

1 if R ≥ Rs or |ρki j|> ρ2.

Here, it is assumed that in the low frequency domain disturbances at the heave ac-
celerations of the body should be rejected by a parameter-dependent factor of ρki j

and at the suspension deflection by the same factor. The gains are characterized by
the selection of the constants ρ1 and ρ2. This corresponds to an LPV controller that
minimizes only the vertical acceleration when the suspension travel is less than ρ1,
and which gradually begins focusing on the suspension deflection when the travel is
greater than ρ1. Over ρ2 it minimizes only the suspension deflection. During the de-
sign constant weighting factors are selected for the other performances as Wp,ti j = γ3

and Wp, f i j = γ4. Note that although these weighting functions are formalized in the
frequency domain, their state space representation forms are applied in the weight-
ing strategy and in the control design.

The difficulty in formulating the control objectives through the performance sig-
nals z is that there is a conflict between the different performance demands: e.g.,
passengers comfort and suspension deflection cannot be improved simultaneously.
Thus a trade-off between them must be achieved by a suitable choice of the perfor-
mance weights: in (12.7a) and (12.7b) a large gain γaz and a small gain γsd corre-
spond to a design that emphasizes passenger comfort. On the other hand, choosing
γaz small and γsd large correspond to a design that focuses on suspension deflec-
tion. In the LPV controller ρki j is the relative displacement between the sprung and
the unsprung masses according to (12.4a), i.e., ρki j = x1i j − x2i j. The scheduling
variable ρki j is used to focus on minimizing either the vertical acceleration or the
suspension deflection response, depending on the magnitude of the vertical suspen-
sion deflection.

The structure of the augmented plant can be put into the form shown in Figure
12.6 with disturbances w̃ =

[
w n
]T

, uncertainty Δ = Δm and control input u = f .
The robust control framework is formulated using the closed-loop interconnection
structure depicted in Figure 12.6, where GFP

is the generalized plant containing
the nominal plant and all the performance, disturbance and uncertainty weights, w̃
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Fig. 12.6 The closed-loop interconnection structure

contains the disturbances while Δ is the possibly structured normalized diagonal
uncertainty block, for details, see e.g., [17, 19].

12.2.3 Design of a High-Level Controller Based on an LPV
Method

The control design is based on induced L2-norm of the LPV system GFP
, with

zero initial conditions, defined as

∥∥GFP

∥∥
∞ = sup

ρ∈FP

sup
‖Δ‖∞<1

sup
‖w̃‖2 �=0,w̃∈L2

‖z‖2

‖w̃‖2
. (12.8)

The L2-norm level γ =
∥∥GFP

∥∥
∞ for an LPV system represents the largest ratio of

disturbance norm to performance norm over the set of all causal linear operators
described by the LPV system, hence it is the final performance index of the design.
For an appropriate selection of the performance and disturbance weights a success-
ful design means γ < 1. It is noted that the weighting functions must be selected
according to the control goals.

The solution of an LPV problem is based on the set of LMIs being satisfied for
all ρ ∈ FP . In practice, this problem is set up by gridding the parameter space
and solving the set of LMIs that hold on the subset of FP . Weighting functions
are defined in all of the grid points. For details, see [2, 12, 18]. With respect to the
robustness requirement, the same frequency weighting functions are applied in the
whole parameter space and the effect of the scheduling variable is neglected. It is
a reasonable engineering assumption, since unmodelled dynamics does not depend
on the gridding parameters. The required force designed by the high-level controller
must be tracked by a low-level controller by setting the valve of the actuator.
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12.3 Design of the Actuator Control

12.3.1 Modeling of the Actuator Dynamics

The force of the actuator is expressed in the following way:

fi j = APPLi j, (12.9)

where AP is the area of the piston and PLi j (i ∈ f ,r, j ∈ l,r) is the pressure drop
across the piston, see [11]. The derivative of PLi j is given by

ṖLi j =−βPLi j +αAPzi j + γQi j, (12.10)

in which Qi j is the hydraulic load flow, zi j = ẋ2i j − ẋ1i j is the the damper velocity
and α , β , γ are constants. The hydraulic load flow can be expressed

Qi j = sgn [PS − sgn(xvi j)PLi j]Q0i jxvi j, (12.11)

where

Q0i j =
√
|PS − sign(xvi j)PLi j|, (12.12)

sign(xvi j) =

⎧⎨
⎩

1, xvi j > 0
0, xvi j = 0
−1, xvi j < 0

, (12.13)

with the supply pressure PS and the displacement of the spool valve xvi j. The damper
velocity acts as a coupling from the position output of the cylinder to the pressure
differential across the piston. It is considered a feedback term, which has been ana-
lyzed by [1]. It is assumed that during the operation PS > PLi j. Using the assumption
(12.11) reads Qi j =Q0i jxvi j , which defines a state-dependent bimodal switching sys-
tem for the actuator dynamics. Moreover, in order to avoid the technical difficulties
caused by the non-smoothness of the sign function the sign(x) ≈ tanh(x/σ) – with
a very small σ – will be used.

The displacement of the spool valve is controlled by the input to the servo-valve
ui j:

ẋvi j =
1
τi j

(−xvi j + ui j) . (12.14)

where τi j is a time constant.
Each of the four actuator models are formalized separately based on the generic

model which is used for the design of the low-level control as

ξ̇1 =−βξ1 + γQ0(ξ1,ξ2)ξ2 +αAPz, (12.15a)

ξ̇2 =−1
τ
ξ2 +

1
τ

u. (12.15b)
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for the i jth actuator with ξ1 and ξ2 denote PLi j and xvi j, respectively, while Q0 =
Q0i j, z = zi j and τ = τi j . The component Q0(ξ1,ξ2) is expressed in form (12.12).

12.3.2 Design of a Low-Level Controller Based on Backstepping
Method

For the control system this requires that the actuators provide the demanded virtual
inputs given by the high-level controllers. For the application example of this chap-
ter this means that once the desired forces in the front and the rear on the right-hand
and the left-hand sides of the vehicle are provided by the supervisory level, the ac-
tuator must track these reference signals by adjusting its valve. The starting point is
that a force requirement, which is designed by the LPV controller, is given, thus a
demand of a pressure drop PL,dem is given.

The force required by the upper level control (ξ1,dem) must be generated by the
low-level control. The purpose of the tracking control is to follow the force demand,
i.e., the difference between the pressure demand and the actual pressure must be
minimal:

ξ1 → ξ1,dem (12.16)

The pressure demand required by the high-level control will be denoted by ξ1,dem

while ξ2,dem denotes the demand of the spool valve displacement xv,dem. The actual
value of the displacement of the spool valve (xv) is denoted by ξ2. It is assumed that
both ξ1 and ξ2 are available for the measurement. It is assumed that the required
value of the pressure ξ1,dem is at least two times differentiable.

In order to show the principle of the backstepping method the notations of [13,
14] are used. It is assumed that the high level system is modelled by an LPV system
augmented by the four actuator dynamics leading to the cascaded system:

ζ̇ = A(ζ )ζ +B(ζ )[ξ i j
1 ], (12.17a)

ξ̇ i j
1 = a1(ζ ,ξ i j

1 )+ b1(ξ i j
1 ,ξ i j

2 )ξ i j
2 , (12.17b)

ξ̇ i j
2 = a2(ξ i j

2 )+ b2ui j, (12.17c)

that can be put in the strict feedback form, see chapter 6. of [14],

ζ̇ = A(ζ )ζ +B(ζ )[ξ i j
1 ], (12.18a)

ξ̇ i j
1 = a1(ζ ,ξ i j

1 )+ ξ̃ i j
2 , (12.18b)

˙̃ξ i j
2 = ã2(ξ i j

1 , ξ̃ i j
2 )+ b̃2(ξ i j

1 , ξ̃ i j
2 )ui j, (12.18c)

by using the state transform ξ̃ i j
2 = b1(ξ

i j
1 ,ξ i j

2 )ξ i j
2 . Since the nominal system (12.18a)

is globally asymptotically stable by construction the resulting closed–loop system
containing the tracking controllers will be stable, see, e.g., chapter 5 in [13]. Note
that the state transform that leads to the strict feedback form is needed only to
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relate the original system to the already developed passivity based framework of cas-
caded systems and the actual computations can be done on the individual actuator
subsystems.

The backstepping design for the actuator subsystem can be performed in two
steps. In the first step, let us consider ξ2,dem as a virtual input and e1 = ξ1 − ξ1,dem

the realized tracking error. The errors between the pressure demand and the actual
value of the pressure and its dynamics are e1 = ξ1−ξ1,dem and ė1 = ξ̇1− ξ̇1,dem. The
aim is to construct a feedback that guarantees the tracking of the pressure demand
required by the upper level control. A feedback control that guarantees an exponen-
tial tracking of ξ1,dem is constructed. The feedback component k1 is chosen such that
the error dynamics tends to zero exponentially ė1 = −k1e1, k1 > 0. The dynamics
of the pressure is

ξ̇1 = ξ̇1,dem − k1(ξ1 − ξ1,dem). (12.19)

Since ξ1 is not a manipulable input, the aim is to construct the demand of the dis-
placement of the spool valve ξ2,dem as a virtual input. Using the equation

ξ̇1 =−βξ1 + γQ0(ξ1,ξ2,dem)ξ2,dem +αAPz, (12.20)

the displacement demand of the spool valve

ξ2,dem =
ξ̇1,dem − k1(ξ1 − ξ1,dem)+βξ1 −αAPz

γQ0(ξ1,ξ2,dem)
(12.21)

Note that Q0(ξ1,ξ2,dem) =
√|PS − sign(ξ2,dem)ξ1|. It is assumed that sign(ξ2,dem) =

sign(ξ2). A non-smoothness of the sign function is provided by the following ap-
proximation sign(ξ2) = tanh(ξ2/σ) with a very small σ . Consequently, ξ2,dem can
be calculated.

The error between the displacement of the spool valve and the the actual value
of the displacement and its dynamics are e2 = ξ2 − ξ2,dem, ė2 = ξ̇2 − ξ̇2,dem. In the
second step, the aim is to construct a feedback that guarantees the tracking of the
displacement demand of the spool valve. The feedback component k2 is chosen
such that the error dynamics tends to zero exponentially ė2 = −k2e2, k2 > 0. The
dynamics of the displacement demand is

ξ̇2 = ξ̇2,dem − k2(ξ2 − ξ2,dem). (12.22)

Finally, based on the expression udem = τξ̇2 + ξ2 the physical manipulable actuator
input u can be expressed as follows

udem = τξ̇2,dem − τk2(ξ2 − ξ2,dem)+ ξ2. (12.23)

In the calculation of udem both ξ2,dem and ξ̇2,dem are required.
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ξ2,dem =
ψ

γQ0(ξ1,ξ2,dem)
, (12.24)

ξ̇2,dem =
ψ̇

γQ0(ξ1,ξ2,dem)
− ξ2,demQ̇0(ξ1,ξ2,dem)

Q0(ξ1,ξ2,dem)
, (12.25)

where ψ = ξ̇1,dem − k1(ξ1 − ξ1,dem)+βξ1 −αAPz. Using

Q̇0 =− ξ̇2,demξ1

2ξ2,demQ0

ξ2,dem/σ
cosh2(ξ2,dem/σ)

− ξ̇1 tanh(ξ2,dem/σ)ξ2,dem

2ξ2,demQ0

the signal ξ̇2,dem can be computed

ξ̇2,dem =
1

γQ0

(
Ψ̇ + ξ2,demγ

ξ̇1sign(ξ2,dem)

2Q0

)
. (12.26)

The algorithm of the backstepping method is illustrated in Figure 12.7.
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Fig. 12.7 Illustration of the backstepping method

The measured signals required by the algorithm are ξ = PL, x2 = xv and z. The
implementation of the backstepping method requires the computation of the time
derivatives of ξ̇1 = ṖL, ξ̈1 = P̈L, ξ1,dem = PL,dem and ż which can be done in a number
of ways depending on the measurement noise conditions and the required precision.
In this method the controller parameters k1 and k2 determine the convergence speed
of the tracking errors e1 and e2, respectively. As a conclusion in the backstepping
method two parameters, k1 and k2 are chosen to handle the dynamics of the tracking.
By selecting suitable parameters the accuracy of tracking can be improved but the
physical limits of the actuator must be taken into consideration. Failing to do so
may result in discrepancy between the planned and the realized forces, i.e., tracking
error. Possible strategies for numerical differentiation are contained in [10, 16].
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Remark 16. Note that the control design in the actuator level can also be performed
by using LPV methods. In order to reduce the complexity of the control design the
actuator dynamics is built into the quarter-car model, illustrated in Figure 12.8. The
equations of the quarter-car model are:

msẍ1 = Fk f +Fb f − f f (12.27a)

muẍ2 =−Fk f −Fb f −Ft f + f f (12.27b)

ṖL =−βPL+αAP(ẋ2 − ẋ1)+ γQ (12.27c)

ẋv =−1
τ

xv +
1
τ

u. (12.27d)

where f f = APPL, Q = sgn(PS − sgn(xv)PL)Q0xv.

ms

mu �

�

x2

d

ks bs

kt

�
ff

�x1

Fig. 12.8 Quarter-car model

The state space representation of vertical dynamics:

ẋ = A(ρs)x+B(ρs)u, (12.28)

The components of the state vector are the vertical displacement of the sprung mass
x1, the vertical displacement of the unsprung mass x2, their derivatives x3 = ẋ1,
x4 = ẋ2, the pressure drop x5(= PL), and the servo valve displacement x6(= xv).
The input signal is the input to the servo valve. The scheduling vector is selected as
ρs =

[
ρQ ρb ρk

]
where the scheduling variables are assumed to be available:

ρQ = sgn(PS − sgn(xv)PL)Q0,

ρb = ẋ2 − ẋ1,

ρk = x2 − x1.

The advantages of this approach are that in the control-oriented model the nonlinear
behavior of suspension components, the actuator dynamics and the performance
specifications are taken into consideration. Moreover, the control design is based
on LPV methods. However, the disadvantage is that the solution does not provide
modularity in the design. The details can be seen in [5].
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12.4 Simulation Examples

In the simulation example the operation of the hierarchical controller is illustrated.
The nominal parameters of the vehicle model are listed in Table 12.1.

Table 12.1 Parameters of the suspension system

Parameters Value Unit

ms 1400 kg
Iθ 2100 kg.m2

Iφ 460 kg.m2

mu f , mur 40, 40 kg
kl

s 235 ·102 N/m
knl

s 235 ·104 N/m3

kt 190 ·103 N/m
bl

s, bsym
s 200, 400 Ns/m

bnl
s 400 N

√
s/
√

m
α , β , γ , 4.515 ·1013, 1, 4.969 ·1012

AP 3.35 ·10−4 m2

Ps 10342500 Pa
τ 1/30 s

The purpose of the weighting functions is to meet performance specification.
They are chosen Wp,ai j = 0.5γaz

s/350+1
s/10+1 and Wp,si j = γsd

s/350+1
s/10+1 . It is assumed

that in the low frequency domain disturbances on the heave acceleration should
be rejected by a factor of 2 and on the suspension deflection by a factor of 1.
The parameter-dependent gains are characterized by the selection of the constant
ρ1 = 0.05 and ρ2 = 0.07. The weights for the wheel travel, i.e., Wp,ti j = 1 and for
the control input Wp, f i j = 10−3, are selected in order to avoid actuator saturation.
The uncertainty is modelled as a complex full block with multiplicative uncertainty
at the plant output. The weighting function of the unmodelled dynamics is set at
Wr = 0.1 s/20+1

s/450+1 , reflecting a 10% uncertainty level in the low frequency domain.
The upper-level control is designed by the LPV method.

The suspension systems are tested on a fictitious bad-quality road, on which dif-
ferent bumps disturb the motion of the vehicle, see Figure 12.9(a). Between the
bumps there are velocity-dependent stochastic road excitations. The time responses
of the performance signals to the road disturbances depicted in Figure 12.9 show
the superiority of the LPV controller in terms of decay rate and overshoots. Figure
12.9(c) illustrates the force required by the upper level controller.

In the low-level the required force must be realized by the backstepping method.
The parameters of the backstepping method are selected as k1 = 20 and k2 = 20.
In the simulation example the sampling time of the measured signals is selected
Ts = 0.01 sec, which corresponds to practice. The time responses of the low-level
controller are illustrated in Figure 12.10. The illustrated signals are the pressure
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Fig. 12.9 Time responses of the controlled system using an upper-level controller
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Fig. 12.10 Time responses of the controlled system using a low-level controller

drop across the piston, the displacement of the spool valve, the control input, the
achieved force and the force error. The force generated by the actuator follows the
required force with high precision. It is illustrated by the force error and its RMS
values, see Figure 12.10(d) and Figure 12.10(f).
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12.5 Conclusions

In the chapter a hierarchical controller has been proposed for the design of active
suspension systems: one level for the suspension and another for the actuator. An
LPV-based controller is used to compute the required input force, which is tracked
using a nonlinear controller for the actuator subsystem. The performance require-
ments guaranteed by the controller in the upper level can be achieved by solving
the tracking task with the low-level controller. For the actuator level a backstepping
controller has been designed.

This method is advantageous for several reasons. The main advantage of the pro-
posed solution is its ability to meet complex control performance criteria together
with the handling of the nonlinear actuator dynamics. An additional advantage is
that changes in the actuator level do not affect the design of the high-level controller.
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Chapter 13
Observer-Based Brake Control for Railways

Péter Gáspár and Zoltán Szabó

Abstract. Since in a braking operation the shortest possible brake distance is re-
quired at all times an efficient and robust slip prevention control must be devel-
oped. The aim of this chapter is to present a control strategy based on an estimation
method for the actual wheel–rail friction coefficient. A logic-based scheme that es-
timates a set point that prevents wheel slip is proposed. Having this estimation a
conventional control algorithm maintains the system at the prescribed set point. If
the external environment changes a new set point corresponding to the current con-
dition is estimated. The estimation method is based on an adaptive observer design.
The proposed control procedure does not rely on measured values of the slip ratio.
The control algorithm is tested through simulation examples.

13.1 Introduction

During braking, the wheels of the train exert a frictional force on the track, which re-
duces the speed of the train. However, if the braking force at the point of contact be-
tween the wheel and the track is too large, the wheels may lock and wheel-skidding
occurs. This has a detrimental effect over time because the friction and heat pro-
duced can damage both the wheels and the track. Flat surfaces on the wheels caused
by skidding will lead to higher vibration and audible noise. In addition, the lifes-
pan of the wheels and the track will be reduced. Nevertheless, reducing the brake
force to low levels does not efficiently solve the problem of wheel skidding. This
is because the shortest possible brake distance is desired at all times, and thus the
maximum possible braking force is required. The requirement of maximum braking
force is particularly important when the track is slippery.
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Adhesion is the amount of force available between the rail and the wheel as a re-
sult of the frictional forces. The adhesive force is given by Fa = μFn = μmag, where
μ is the wheel-rail adhesion coefficient, Fn is the normal load, ma is the adhesive
mass of the vehicle and g is the gravitational constant. Railway rolling stock wheel
skidding commonly occurs when the adhesion coefficient μ has decreased on a rail.

There are several factors that can affect the value of the wheel-rail adhesion co-
efficient which is a highly nonlinear, time varying and complex function, and has
characteristics that can vary widely during the operation of the train. This is because
the coefficient of friction depends on the actual value of the wheel skid λ and on
several other factors including weather conditions, material used in the railway track
and wheels, the condition of the contact point between the wheel and the track (e.g.
the presence of oil, grease, mud) and slope variations of the rail track. It is very dif-
ficult to accurately quantify and measure the effect on μ of all of the above factors.
The slip ratio (wheel skid) λ is defined as λ = (Rω− v)/v, where v is the velocity
of the train carriage, ω is the angular wheel velocity, i.e., Rω is the velocity of the
wheel. During braking λ ≤ 0 and its magnitude |λ | can take values between 0 (no
braking) and 1 (blocking).

Extended studies have clarified that the tracks and structures on the way-side
such as turnouts, grade crossings, and rail lubricators, as well as fallen leaves in
thickly wooded areas and needles from coniferous trees can cause large, localized
decreases in μ , and that rain, snow, etc., that wet the rails can cause decreases in
μ over wide areas. Concerning velocity, in general it can be said that the adhesive
force is reduced with increasing vehicle velocity.

Normally only the effect on the coefficient of friction corresponding to the
weather conditions and the magnitude of wheel skid are taken into account, for a
given type of track and wheel material. A simplified adhesion characteristic μ(λ )
measured for a given track surface condition is plotted in Figure 13.1, see [3]. Mea-
surements have shown that on the slip curve the magnitude |μ | of adhesion coeffi-
cient has a peak |μ0| at a certain slip λ0 and that the maximum value at this peak
decreases with increasing vehicle velocity. Let us denote by μ∞ the adhesion coeffi-
cient realized when the wheel is blocked. In this model the different characteristics
are determined by the values of the parameters λ0,μ0,μ∞ and all the tribological
conditions are modeled through these parameters. The effect of the velocity and of
the external conditions are modeled through the variation of these parameters during
operational time.

The role of the ideal antiskid controller is to prevent the wheels from locking
whilst providing the maximum possible braking force under all conditions. The
brake torque should be applied in such a manner that the adhesion characteristic
is near its peak μ0, but the actual skid value λ is less than the point of maximum
adhesion λ0. Antiskid control, however, is a difficult problem. It becomes obvious if
one examines the differential equation describing the motion of the train axle wheels
together with the function describing wheel skid.

Several papers on antiskid controller design propose strategies that use compar-
ison of measured signals with predefined thresholds in order to prevent skidding.
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Fig. 13.1 A generic adherence-slack dependence

These algorithms are concerned with the situation when the adhesion characteristic
is unchanged, i.e., the point of maximum adhesion λ0 is unchanged, which is the
major drawback of the approach. An other branch of papers assume that the values
of the slip ratio can be measured. Based on this assumption robust schemes are pro-
posed using sliding mode controllers or adaptive extremum seeking controllers. In
practice, however, it is hard to know the actual velocity of a railway vehicle more-
over when slip occurs the estimation of the forward velocity is extremely inaccurate.
A further problem is that these methods assume ideal actuators while in reality there
is a considerable delay in the actuation determined by the sampling period and the
time constant of the actuator which is comparable with the time in which slipping
occurs. Therefore the applicability of these theoretically appealing methods in prac-
tice are questionable.

Starting from a suitable parametrization of the adhesion curve in [26] and [25]
an adaptive observer scheme is proposed to provide a near optimal braking control
scheme. While the shape depicted in Figure 13.1 reflects the main characteristics of
the adhesion curve, for rail applications considerably less information is available
on the nature of this curve. Compared to road vehicle applications where the perfor-
mance degradation in terms of the magnitude of the friction coefficient is less than
20% this value is usually greater than 50% for rails. Moreover the peak values for
rail applications are significantly smaller than those for road vehicles. It is clear that
the achievable estimation performance provided by these direct adaptive schemes is
not satisfactory in our framework.

The aim of this chapter is to present a method for the estimation of a safe set point
that ensures acceptable performance during operation. Then a control is applied that
maintains the system at the estimated set point while possible changes in the external
conditions are continuously monitored. If significant changes occur in the external
conditions, i.e., in the adhesion characteristic, the set point is re–evaluated.

In the proposed method the actual wheel-rail friction coefficient μ is estimated
using an adaptive observer scheme starting from the values of the measured sig-
nals: the angular velocity of the wheel, the moment generated by the braking force
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(braking pressure) and the moment generated by the wheel load. If a slip occurs
the value of the actual wheel-rail friction coefficient μ does not change or even
decreases considerably whilst the braking pressure remains unchanged or even in-
creases, and there is a large change in the deceleration ofω . This fact makes possible
the detection of the slip without measuring the actual values of the slip ratio. Using
the estimated wheel-rail friction coefficients μ and the corresponding values of the
measured braking pressure p we give an estimate for a suitable set point that makes
antislip braking possible by applying a set point control.

The structure of the chapter is the following: in Section 13.2 a short overview
of previous results is given. Section 13.3 presents a sketch of a model for a railway
vehicle. Section 13.4 gives a comprehensive presentation of the adaptive parameter
estimation scheme used for the wheel–rail friction coefficient estimation. The con-
trol scheme is presented in Section 13.5. The efficiency of the proposed method is
demonstrated in Section 13.6 through a simulation example, followed by the con-
cluding remarks in Section 13.7.

13.2 Overview of Current Approaches

Many of the slip control strategies focus on detecting the adhesive force or the adhe-
sion coefficient. Diagnostic algorithms are often combined with observers of various
kinds or with consistency relations, which provide information about how the sys-
tem is expected to behave according to known physical relations. The advantages
of adhesion observers are that they have a simple structure and are robust against
disturbances and parameter variation.

With this information at hand simple controllers can be derived based on the
partial derivative of the adhesion coefficient, ∂tμ together with a PI-controller, by
choosing a reference slip and using this as a control signal, see [14]. Another way
of using the adhesion observer is to use the time differential of both the adhesion
coefficient and the slip, (∂tμ , ∂tλ ), combined with some adaptive identification al-
gorithm. Theoretically this enables an on-line estimation of the current slope of the
slip curve, [17], and an extremum–seeking control strategy, [4], [7]. A hybrid ap-
proach that also uses conventional methods based on speed difference and vehicle
deceleration compared to a specific threshold shows remarkably better results, [15].

There are several papers that are concerned with the situation, in which the ad-
hesion characteristic is unchanged, i.e., the point of maximum adhesion λ0 is un-
changed, moreover it is assumed that the values of the slip ratio can be measured,
[20], [22]. In practice it is hard to know the actual velocity of a railway vehicle.
The conventional method to compute the velocity of a vehicle v is to multiply the
angular velocity ω of a non-driven wheel with the wheel radius R. However, since
in most railway motor cars all wheels are driven, the use of this method is not reli-
able. Therefore, a direct measurement of the velocity v - hence of the slip ratio λ -
is usually not available.
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Consider the following one–wheel model, [25], which is often used in this type
of applications, see Figure 13.2. Using the force and torque balance equations the
following expressions are formalized:

ω̇ =−α1Fnμ−α2 p, (13.1)

v̇ = α3Fnμ , (13.2)

where p is the braking pressure, Fn is the normal load while αi’s are constants de-
pending on the geometry of the wheel and the braking mechanism. It is assumed
that the braking force Fb is proportional with the braking pressure p.

R

ω

Fb

Fn

v

Fig. 13.2 One-wheel model

If the acceleration a = v̇ is measured, one has

ω̇ =−α1

α3
a−α2p. (13.3)

It is apparent that the system is not observable forω as a measured input. Usually an
estimation of the forward velocity is obtained by “integrating” the forward accelera-
tion. Since this integration is not a numerically stable technique some “black art” is
needed to obtain reliable values for the estimate, see e.g. [10]. Assuming a specific
additional aerodynamical resistance term an estimation algorithm was proposed in
[1]. Computing the relative error of the slip ratio one has the following bound:

∣∣∣∣Δλλ
∣∣∣∣≤
∣∣∣∣1+ 1

λ

∣∣∣∣
(∣∣∣∣Δωω

∣∣∣∣+
∣∣∣∣Δv

v

∣∣∣∣
)
. (13.4)

Since at the desired operational point λ ∼ −0.1, the respective values for the
estimated velocity and slip ratio might be affected by considerable “measure-
ment” errors that make their application in a control algorithm rather questionable.
However, if the external conditions change, the preset value of λ ∗ cannot prevent
wheel slipping.
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To overcome this problem usually a slip velocity vs = ωR− vre f is computed
where vre f is estimated from the minimum of the angular wheel velocities, ωmin,
see [24]. One of the drawbacks of the method is that if the surface provides low
friction for a long time, or if all wheels slip too much simultaneously, this will not
be detected. It may cause uncontrolled slip that may lead to brake locking, which
will cause massive wheel deformation. Therefore, it is important to have an acceler-
ation criterion that reduces the torque when this happens. The acceleration criterion
is triggered when an acceleration threshold determined by the vehicle’s maximum
acceleration is exceeded. Hence conventional antislip braking controllers adjust a
pressure control valve using logics based on the comparison of the actual wheel slip
velocity vs and the deceleration of the wheel with predefined threshold values, see
[9], [18], [19].

There are several other non-classical methodologies like neural networks and
evolutionary algorithms. The disadvantage with these methods is that they rely on
numeric or measured data to form system models, however, the fuzzy algorithms
can include experienced human experts linguistic rules, describing how to design
the slip control system that can be important when the access to measured data
is limited. These rules can be translated into “if–then” rules and in this form be
included in the fuzzy logic algorithm, [6].

A key to a successful optimizing slip control is to be able to tell were the peak of
the slip curve is in order to be on the stable linear side of the slip curve. From the
characteristics of the slip curve it is easy to observe that different slip, depending
on the rail condition, implies different optimums of the adhesive force since the
adhesion coefficient differs between dry, wet and icy rail. Therefore a PID-controller
cannot be used alone.

A further observation is that the performance criterion, i.e., to reduce the braking
distance, imposes conditions on the values of the wheel-rail friction coefficient μ
rather than on the slip ratio λ . Therefore it is much more reasonable to set as a
control objective to track a fairly large fixed value of μ∗ rather than to try to maintain
a prescribed λ ∗ during the operational time.

As a conclusion of this overview antislip braking algorithms might fail or might
have a reduced performance due to inaccurate estimations of the slip ratio λ and due
to the lack of adaptation to the variation in the external parameters, i.e., the different
optimums of the adhesive force.

13.3 The Modeling of a Railway Vehicle

In this chapter the estimation of the wheel-rail friction coefficient is based on the
individual wheels. For the purposes of this chapter it is assumed that the angular ve-
locity ω of the wheel, the normal load Fn and the braking pressure pb are measured.
It is assumed that the braking force is proportional with the braking pressure.

The controller design is based on the following one–wheel model (13.1) and
(13.2). Note that the sign of μ is negative during braking. From
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− ω
v
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(13.5)

it follows that

λ̇ =−ϕ(v)
[

p+
(

1+(λ + 1)c2

)
c1μ
]
, (13.6)

where ϕ(v) = Rα2
v , c1 =

α1Fn
α2

and c2 =
α3

Rα1
.

Let us suppose that μ = μ(λ , t), i.e., μ̇ = ∂λ μλ̇ + ∂tμ . We assume that the term
∂tμ can be considered as a disturbance with prescribed norm bound εμ and that for
every fixed t the shape of this function is as in Figure 13.1., i.e., considering the left
half plane (braking situation) it has a single minimum, (λ0(t),μ0(t)). On the stable
side of the μ/λ curve, i.e., if λ > λ0 one has ∂λ μ ≥ 0, moreover, for λ ≥ λ̄ > λ0

the value of ∂λ μ is bounded from below by a constant c > 0. The function ϕ(v)
is a nondecreasing positive function which is bounded in the validity region of the
model, i.e., v ≥ vl > 0.

From the equation

μ̇ =−∂λ μϕ(v)
[

p+
(

1+(λ + 1)c2

)
c1μ
]
+ ∂tμ . (13.7)

follows, that in a stationary point (λs,μs) one has

ps =−
(

1+(λs+ 1)c2

)
c1μs +

v∂tμ |λs

α2R∂λ μ |λs

, (13.8)

the last term being bounded by v εμ
cR . Let us denote by p̄s the pressure defined by

(13.8) assuming ∂tμ = 0.
Figure 13.3 shows the values p̄s for different μ/λ curves. For a given pressure

value one might have a single (stable) stationary point, two stationary points (one
stable and one unstable), or no stationary points. A stable stationary point (λs, ps)
is indicated for a pressure level of 0.3pmax. If |λs| > |λ0| then the corresponding
stationary point is unstable. A pressure value is “admissible” for a given curve if
it has stationary points, i.e., a pressure admissible in given circumstances might
not be admissible for another adhesion characteristics. For example: the pressure
level 0.6pmax is admissible for the dashed curves while it is not admissible for the
continuous characteristics.

Applying the control pressure p̄s to (13.1) one has

ω̇s = (λs + 1)α2c1c2μs − v∂tμ |λs

R∂λ μ |λs

,

i.e., |ω̇s| ≤ α2c1c2|μs| provided that ∂tμ = 0. Let us denote by

η =− ω̇
α2c1c2

, (13.9)
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Fig. 13.3 Admissible pressures

the normalized wheel deceleration then on the set of admissible equilibrium points
its values are

ηa =−(λs + 1)μs +
v

α2Rc1c2

∂tμ |λs

∂λ μ |λs

. (13.10)

It follows that if the actual values of μ were available one could control μ directly
instead of trying to manipulate it through the values of λ . It follows that it is possible
to “measure” μ , i.e., to obtain its estimation with an acceptable accuracy. Moreover,
it is possible to construct a controller that does not need the knowledge of the actual
values of λ . Another advantage of the method is that using a direct estimation of the
μ values it is not necessary to know the actual nonlinear function μ(λ , t).

13.4 The Estimation of the Wheel-Rail Friction Coefficient

The equation that governs the evolution of the dynamics of the angular velocity for
a single wheel can be put in the form

ω̇ = μRFn +αFb, (13.11)

see (13.1), which is a linear system if μ is considered as a given exogenous signal.
For this system an adaptive observer of the form:

˙̂ω = αFb +RFnμ̂+κ(ω− ω̂) (13.12)

˙̂μ =−γ(ω− ω̂). (13.13)
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is constructed. Note that the nonlinearity, uncertainty and time dependence of the
model are hidden within the parameter μ . This parameter is estimated all the time by
using an on-line adaptive observer. The aim of this estimation is that the controller
exploits the value of the estimated friction coefficient during its operation.

Adaptive state estimation, i.e., the simultaneous estimation of state and some
unknown parameters, has several known solutions for linear time invariant (LTI)
systems with the so-called adaptive observers, see [13]. There is not any particu-
lar difficulty in the state estimation problem for multi-input-multi-output (MIMO)
systems, but it is not the case for adaptive state estimation. For linear time varying
(LTV) systems an adaptive scheme was proposed in [27]. For some specific classes
of nonlinear systems adaptive observers with global convergence were proposed in
[8, 11, 12]. For an overview of the problem in the nonlinear context see [2]. It is
also possible to apply extended Kalman filters (EKF) to joint state and parameter
estimation of the resulting nonlinear system by extending the state vector with the
unknown parameters, but in general only local convergence is expected, see [5, 16].

For road vehicles where the tire/road dynamical friction is given by a LuGre
model observer–based estimation was proposed for the adhesion coefficient in [25]
and [21]. The estimation method proposed by this work is based on the approach
presented in [27] and [12], which provides a globally exponentially convergent
adaptive observer scheme in a linear time varying context.

By a suitable choice of κ and γ the scheme is convergent, moreover, since Fn >
0, it is globally exponentially convergent. If the measurements are corrupted by
noise or bounded disturbance, i.e., ω̄ =ω+w, where ||w||< cw, a slightly modified
adaptive observer can be used to ensure global robust adaptivity, for details see [11].
The performance properties of the observer depend heavily on the choice of the gain
κ and the parameter γ , however there has been no theoretically justified method for
their choice yet.

13.5 The Design of an Antislip Braking Control Algorithm

The signals available for measurement are: the angular velocity of the wheel, the
moment generated by the braking force ( braking pressure p) and the moment gen-
erated by the wheel load ( wheel load Fn). A maximal value of the admissible slip
λ̄ is fixed such that it cannot be exceeded during normal operational time without
slipping.

The designed controller performs the following steps:

s1: Estimates a target operational point (λ ∗,μ∗) on the stable side of the current
μ/λ adhesion characteristic curve.

s2: Sets the braking force that corresponds to the estimated set point. If the current
operational point (λ ,μ) leaves a predefined region centered at (λ ∗,μ∗), then

s3: Reruns the s1 cycle.

The detailed logical scheme is depicted in Figure 13.4.
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The heart of the algorithm is the estimation procedure s1, which consists of the
following elements:

Step e1: Increase the brake pressure until slip is detected. In each sampling pe-
riod the value (pm,μm) that corresponds to the maximal values of the adhesion
coefficient until the current time is memorized.

Step e2: If slip is detected reduce the brake pressure until the current operational
point is securely placed on the stable side of the μ/λ curve. This is ensured by
the condition |μ | < |μin f |, where μin f = γ2μm, with γ2 $ 1, e.g., for practical
purposes the value γ2 = 0.2 is satisfactory.

Step e3: Set the target set point to μ∗ = γ3μm, with γ3 < 1. In practice a value
γ3 = 0.8 is satisfactory. One reason for this choice of γ3 is given by the presence of
uncertainties in the adhesion curve. On the other hand, it is not known where the
maximum of the actual curve is attended nor is the exact value of λ ∗. Therefore
the maximum admissible value p∗ of the braking pressure that would maintain
the system in the point (λ ∗,μ∗) is not known. The value pm corresponding to
μm, which can be measured in the s1 step, is only an upper bound for it. By
using (13.8) a lower bound for p∗ is given by p∗ = −(1+(λ̄ + 1)c2)c1μ∗ while
its upper bound is p̄∗ = −(1+ c2)c1μ∗. Therefore in the setting stage the brake
pressure is increased gradually not exceeding the value p̃∗ = γ4 p̄∗, with 0.7 ≤
γ4 ≤ 0.9.

Slip is detected by monitoring the normalized wheel deceleration η , (13.9). When
slip occurs the actual values of η increase considerably, i.e., η >−γ1μ , see (13.10)
with η̄a =−(λs + 1)μs.

Remark 17. Since the value of the desired pressure set by the controller is con-
stant during a sampling period (quantization effect) an unacceptable increase in
the actual pressure during the sampling period may occur. In practice, such an un-
wanted increase in the pressure may drive the system to the unstable side, causing
a chattering effect preventing the controller from setting a stable operational point.
Therefore one has to choose the parameters γi of the algorithm carefully. The choice
of these parameters depends on the actuator dynamics, the sampling time and the
worst-case bound of the estimation error of the adhesion coefficient.

The holding step s2 of the controller is defined as follows:

Step h1: Monitor the values of μ . If the actual value of μ leaves a prescribed
neighborhood of the desired set point, i.e., |μ | �∈ [γ5|μ∗|,γ6|μ∗|] = Nμ∗ , then ei-
ther a slip occurs or a significant (possibly favorable) change occurs in the exter-
nal conditions. In both situations we choose to rerun the s1 cycle. Otherwise we
run a set point controller algorithm h2.

Step h2: Set the braking force that corresponds to the given point μ∗. To do that
the desired control pressure will be set at the value

pc = p∗ − γc(μ∗ − μ) (13.14)

where the value of γc is determined by using a set point control based on a sim-
plified (one–wheel) model.
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Fig. 13.4 Logical scheme of the antislip braking control algorithm
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The local stability of the holding scheme – in the neighborhood Nμ∗ – can be proved
similarly as the convergence of the adaptive observers. Let V (eμ) := 1

2 e2
μ with eμ =

μ∗ − μ . From (13.14) one has pc − p∗ = −γceμ . Applying (13.7) and (13.8) with
∂tμ∗ = 0 it follows that

ėμ =−∂λ μϕ(v)
[
γc +

(
1+(λ + 1)c2

)
c1

]
eμ+

+∂λ μϕ(v)(λ − λ̄)c2c1μ∗ − ∂tμ . (13.15)

Then in the nominal case ( ∂tμ = 0, λ̄ = λ ∗) one has

V̇ (eμ) =−∂λ μϕ(v)
[
γc +

(
1+(λ + 1)c2

)
c1

]
e2
μ+

+∂λ μϕ(v)(λ − λ̄)c2c1μ∗eμ . (13.16)

By using the arguments of [11] it follows that for a suitable choice of γc one has
local stability, i.e., limt→∞eμ = 0, moreover the tracking error remains between ac-
ceptable bounds if ∂tμ < εμ and if the measurements of μ are “noisy”.

Remark 18. In the holding step h2 it is possible to apply more elaborate control
schemes if an acceptable estimate of the slip λ is available. Then the theoretically
appealing methods proposed in [7], [9], [18] are applicable. However for very noisy
estimations of the slip the theoretical background and the practical applicability of
these methods vanish.

Remark 19. At low speeds the relative errors of the μ estimation may be unaccept-
ably high. Moreover the modeling error also increases in this domain. Therefore in
practice an auxiliary control logic must be applied to achieve a complete stop.

13.6 Simulation Examples

In this section the operation of the braking control that is able to adapt to the changes
in set points to prevent wheel slip and provide a suitable control is presented. The
essence of this test is to analyze how the controllers handle different types of slip
curves and sudden changes between these curves. Its objective is to test the adapt-
ability of the controller under unknown rail conditions assuming that the reality is
not what it is expected to be.

The μ(λ ) curve used during the simulation is approximated as:

μ =

⎧⎨
⎩

sign(λ )
(

4μ0
|λ |
2λ0

(1− |λ |
2λ0

)
)

if |λ |< λe

sign(λ )
(
ηe−χ(|λ |−λe) + μ∞

)
if |λ | ≥ λe

(13.17)

where η = 4μ0
λe

2λ0
(1− λe

2λ0
)− μ∞ and χ =− 2μ0

λ0η
(1− λe

λ0
), see [23].
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In our simulation example the initial values of the tribological parameters of the
rail are set at the values λ0 = 0.25,λe = 0.4,μ0 = 0.12,μ∞ = 0.06. These values
are changed to λ0 = 0.2,λe = 0.35,μ0 = 0.04,μ∞ = 0.01 at 3 sec and at 8 sec their
values are reset at λ0 = 0.1,λe = 0.18,μ0 = 0.06,μ∞ = 0.012.

The actual μ = f (λ ) plot in Figure 13.5 reveals that in the first part of the sim-
ulation the vehicle can be maintained at the point π1 till changes in the tribological
parameters result in a slip of the wheel. As a consequence the operational conditions
change from curve A to curve B. Moreover the actual operational point will move to
the uncontrollable, sliding part of the curve B2. When the braking force is reduced
the actual operational point moves to the controllable, sliding part of the curve B1,
where it is possible to maintain a new set point π2. When the tribological parameters
are reset at their final values in part C, a further slip occurs due to the delay in the
actuator dynamics and the quantization generated by the sampling effect in step s1

of the control algorithm. The final set point will be π3.
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Fig. 13.5 The relation between λ and μ

During this operation a braking control determined by the control algorithm de-
scribed in Section 13.5 and (13.14) is applied. For the actuators a realistic behavior
is assumed, i.e., the change of the cylinder pressure is governed by first-order dy-
namics with different time constants for air compression and decompression.

The acquired angular wheel velocity ω is shown in Figure 13.6.a. Using the
estimated wheel-rail friction coefficient μ , depicted in Figure 13.6.b by the solid
line, and the corresponding values of the slip ratio λ (available in the simulation
environment) it is possible to obtain the adherence slack dependence (μ(λ ) curve)
in the operational time. It can be seen that the proposed observer-based method
approximates sufficiently the changes that occur in the values of the real μ shown
by the dotted lines. The applied braking pressure and the achieved velocity v are
depicted in Figure 13.6.c and Figure 13.6.d.
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Fig. 13.6 Simulation results
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Fig. 13.7 Simulation results using the ideal control

In an ideal situation, i.e., with full knowledge of the curve μ(λ ) and of the actual
parameters (λ0(t),μ0(t)) and with ideal actuators the optimal control would be a
piecewise constant function with pressure values that correspond to the maximum
points of the curves depicted in Figure 13.3. In Figure 13.7 the simulation results
are depicted corresponding to the unrealistic situation when the actual parameters
(λ0(t),μ0(t)) are known. The dynamics of the actuators is the same as in the previ-
ous case. The achievable set point was chosen to be at the level μ∗ = 0.95μ0. Even
in an idealistic situation it is unrealistic to assume the knowledge of the changes in
tribological parameters in advance. Therefore in the scenario used in our simulation
a slip will also occur, see Figure 13.6.b.

As there are practical limitations it is not possible to obtain this optimum, how-
ever comparing Figure 13.6.d with the applied braking pressure in Figure 13.7.d one
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can see that the controller finds acceptable set points, hence, realizes reliable brak-
ing distances, performing much better than conventional controllers that use preset
threshold values and(or) only set point controls.

13.7 Conclusions

This chapter proposes a logic-based (hybrid) antislip control strategy that aims to
achieve the shortest possible brake distance using an estimation method for the ac-
tual wheel-rail friction coefficient. Using an observer-based estimation of friction
coefficient μ the proposed scheme estimates a set point that prevents wheel slip and
provides suitable control to maintain the system at the prescribed set point without
using measured values of the slip ratio. If external conditions change a new set point
is estimated corresponding to the current situation. The applicability of the proposed
control algorithm was demonstrated through simulations examples.
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Chapter 14
Linear Parameter-Varying Control Strategies
for Aerospace Applications

Jean-Marc Biannic

Abstract. As is already emphasized in previous chapters of this book, Linear Pa-
rameter Varying (LPV) control techniques have known a large success over the past
15 years. This is easily explained by the convex nature of standard LPV control
problems together with recent progress in convex optimization technique and the
emergence of efficient Linear Matrix Inequalities (LMI) solvers. However, for a
large majority of aerospace systems, controllers have to be scheduled as a function
of many parameters, part of which are slowly varying. In this context, basic (and
convex) LPV control techniques are often too conservative, while more recent al-
gorithms (taking into account bounds on the rate-of-variations of the parameters)
become numerically intractable as soon as the number of parameters increases. Al-
ternative strategies are then discussed in this chapter to cope with such difficulties
and two aerospace control problems (missile and fighter aircraft) are presented.

14.1 Introduction

The design of feedback controllers for aerospace systems still remains today a chal-
lenging and time-consuming task since, in most cases, a large operating domain is to
be considered. These controllers are often designed at various flight conditions using
linearized models and are then scheduled as a function of several parameters such
as the Mach number, the velocity, the aerodynamic configuration, etc... Part of these
parameters are time-varying, while others (such as the configuration for example)
are fixed. Various methods can be used for controller scheduling, among which, the
most popular approach – still widely used by control engineers from the aerospace
community – is the linear interpolation of static gains. The resulting controllers are
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easily implemented but unfortunately no guarantee can be obtained in case of rapid
changes in the scheduling variables [1, 2]. This weakness was the main motivation
for initial research on LPV control techniques in the 1990’s [3, 4, 5, 6, 7, 8, 9, 10].
More recently, during the past decade, many efforts were devoted to various im-
provements in order to reduce the conservatism of standard LPV design approaches
[11, 12, 13, 14, 15, 16, 17]. Unfortunately, most of the proposed extensions in-
troduce many additional variables and lead to (possibly non-convex) optimization
problems which rapidly become intractable beyond three parameters. This certainly
explains why more standard gain-scheduling design approaches are still experienc-
ing a large success in the aerospace industry today. This has also been a strong
motivation for many researchers who explored connections between LPV control
and gain-scheduling methods [2, 18] or provided frameworks [19, 1, 20] thanks to
which the latter can be theoretically justified. Based on such frameworks, the de-
velopment of specific implementation strategies for gain-scheduled controllers was
made possible. A possible strategy uses the concept of velocity-based linearization
[21, 22, 23] but the most popular ones, which will further be discussed in Section
14.3 are certainly stability preserving interpolation methods [24, 25, 26, 27, 28]. In
the specific context of aerospace applications, for which analytical models are of-
ten available, LPV or gain-scheduled control laws can be interestingly replaced by
nonlinear dynamic-inversion (NDI) based controllers. Moreover, as is clarified in
[29, 30, 31] strong links can be established between LPV and NDI control. These
links offer interesting ways to study the stability of nonlinear closed-loop systems
with NDI controllers. They also provide new possibilities for improving the design
of robust NDI controllers as is further clarified in Section 14.5.

The outline of the chapter is as follows. In Section 14.2, the most standard LPV
control technique is applied to a modified design model in order to take into ac-
count bounds on the rate-of-variations of the parameters. The proposed strategy is
applied to a missile autopilot design problem. An alternative scheme is then pre-
sented in Section 14.3. It is based on the interpolation of locally robust controllers.
This method has been applied to the design of subsonic flight control laws for a
fighter aircraft. A similar application is finally considered in Section 14.4 which
combines the LPV framework with dynamic-inversion (DI) based techniques. Brief
conclusions are given in Section 14.5.

14.2 Missile Autopilot Design via a Modified LPV Approach

As is emphasized in the introduction, one of the most critical issues in LPV con-
trol design consists in introducing bounds on the rate-of-variations of the param-
eters while limiting the numerical complexity. Standard approaches are based on
the use of parameter-dependent Lyapunov functions [16]. These methods are the-
oretically sound, but they unfortunately introduce numerous decision variables in
the LMI problems to be solved. An alternative solution is proposed in this section.
The central idea [32, 33] consists in filtering the parameters via low-pass weighting
functions.
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14.2.1 Technical Backgrounds on Standard LPV Control
Techniques

Consider an LPV interconnection plant P(s,θ ):
⎧⎨
⎩

ẋ = A(θ )x + B1(θ )w + B2(θ )u
z = C1(θ )x + D11(θ )w + D12(θ )u
y = C2(θ )x + D21(θ )w + D22(θ )u

(14.1)

where θ is a time-varying vector of parameters. Then, the most standard LPV con-
trol problem consists of finding the best LPV controller K(s,θ ):

{
ẋK = AK(θ )xK + BK(θ )y
u = CK(θ )xK + DK(θ )y

(14.2)

such that the closed-loop LPV plant which is illustrated in the center of Figure
14.1 remains stable for any admissible trajectory θ (t) and for which the induced
L2 norm of the transfer from the exogenous input w to the exogenous output z is
minimized. Many approaches have been developed over the past 15 years to solve
this problem and can be classified according to the chosen representation of the
LPV plant. Two of these are illustrated on Figure 14.1: the polytopic description
and the Linear Fractional Representation (LFR or LFT). In case of affine parametric
dependency, both descriptions are equivalent. When possible, the use of a polytopic
description should be preferred since it leads to a simpler characterization of the
LPV controller.

Fig. 14.1 H∞ Synthesis Structure for LPV systems

Assuming that the LPV interconnection (14.1) can be described by the following
polytope, as illustrated by the left diagram in Figure 14.1:

P(s,θ ) ∈Co

⎧⎨
⎩
⎛
⎝ Ai B1i B2

C1i D11i D12

C2 D21 0

⎞
⎠ , i = 1, . . . ,r

⎫⎬
⎭ (14.3)
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then a polytopic controller can be computed if the existence conditions of Theorem
14.1 are satisfied.

Theorem 14.1 (Existence Conditions for a polytopic LPV controller). [6]
Let NR and NS denote bases of the null spaces of

(
BT

2 ,D
T
12

)
and (C2,D21), respec-

tively and define ÑR = diag(NR,0), ÑS = diag(NS,0). There exists a polytopic LPV
controller ensuring the stability of the polytopic closed-loop such that the L2 gain
of the transfer from w to z is bounded by γ iff there exist two symmetric matrices
(R,S) in R

n×n satisfying the following set of LMIs:

ÑR
T

⎛
⎝ AiR+RAT

i RCT
1i

C1iR −γI
B1i

D11i

BT
1i DT

11i −γI

⎞
⎠ÑR < 0 , i = 1, . . . ,r (14.4)

ÑS
T

⎛
⎝ AT

i S+ SAi SB1i

BT
1iS −γI

CT
1i

DT
11i

C1i D11i −γI

⎞
⎠ ÑS < 0 , i = 1, . . . ,r (14.5)

(
R I
I S

)
≥ 0 (14.6)

This theorem is of high practical interest since it describes a convex characterization
of the controllers which still can be solved efficiently for rather high order plants (up
to 20 or 30 states). Note that the controller is easily derived from a solution (R,S,γ)
of (14.4)-(14.5)-(14.6) by an algebraic approach [5]. Unfortunately, this simple re-
sult may often lead to infeasible characterizations since no possibility is given here
to limit the rate-of-variations of the parameters. This can be easily explained by the
fact that Theorem 14.4 is based on the notion of quadratic stability. Its proof indeed
relies on the use of quadratic Lyapunov functions.

14.2.2 On Bounding the Parameters Rate-of-Variations

A standard approach to relax the aforementioned conservatism consists of using
parameter-dependent Lyapunov functions, but this often leads to numerically in-
tractable conditions when the number of states gets higher than 10. The alternative
below is based on filtering the parameters. For this approach, the LFT description is
used. Let us define a low-pass function:

F(s) =
Iq

1+ τs
(14.7)

where q matches the size of Θ(t) in the LFT description, and the time constant
τ is chosen small enough so that the dynamics of the filter will not interact with
those of the controlled plant. As shown on Figure 14.2, the filter is placed after the
parametric blockΘ(t) in order to avoid non physical rapid changes in the signal wθ
which could be induced by arbitrarily fast variations ofΘ(t). Thus, with the notation
of Figure 14.2, the filtered signal w̃θ verifies the approximation w̃θ ≈ w̃θF , which
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Fig. 14.2 Introduction of a low-pass filter on the parametric block Θ(t)

means that the modified interconnection P̃(s) gives rise to a possible formulation of
a standard LPV control problem in which constraints on the rate-of-variations of the
parameters are included.

Remark 14.1. Since the filter F(s) is a strictly proper function, any potential
feedthrough term in the upper-left block of P(s) is removed so that the upper LFT
interconnection Fu(P̃(s),Θ(t)) affinely depends on Θ . As a result, an equivalent
polytopic description can be obtained.

Remark 14.2. The order ñ of P̃(s) is obviously higher than the order n of the initial
plant (ñ= n+q), which makes the numerical resolution of the control problem more
demanding when the size ofΘ increases.

14.2.3 Application to a Pitch-Axis Missile Autopilot Design

Let us now apply and detail the above strategy to the design of a pitch-axis missile
autopilot. A tail-controlled missile over a large flight envelope detailed in [34] is
considered. The objective is to track the vertical acceleration az of the missile which
admits a quasi-LPV description as follows:

⎧⎪⎨
⎪⎩

[
α̇
q̇

]
=

[
zα(M,α) 1
mα(M,α) 0

][
α
q

]
+

[
zδ (M,α)
mδ (M,α)

]
δ

az = nα(M,α)α + nδ(M,α)δ
(14.8)

where α , q and δ respectively denote the angle-of-attack, the pitch rate and the
control deflection. From the above equations, a standard LPV model can be obtained
by considering the Mach number M ∈ [2 4] and the angle-of-attackα ∈ [−20o ,20o])
(which is also a state here) as external time-varying parameters. But, as is detailed
in [6], a simpler model is derived by choosing θ = mα as a unique parameter and
observing that the other coefficients can be expressed as functions of mα . The LFT
model of the open-loop plant exhibits the structure of Figure 14.3.

As discussed in subsection 14.2.2, the varying parameter θ is filtered so as to re-
move arbitrarily fast variations. The modified LFT model is then inserted in the stan-
dard design diagram of Figure 14.4.a for which, as emphasized in Remark 14.1, an
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Fig. 14.4 Design diagram

equivalent polytopic model can be derived. The latter, visualized on Figure 14.4.b,
is in the appropriate format of equation (14.3) for a direct application of the results
stated by Theorem 14.1.

For this application, the filter time constant is fixed at a maximum value of 0.35
above which the modified model would no longer be representative because of inter-
actions with the dynamics of the plant. A reference model Wre f (s) is used to force

Fig. 14.5 Performance index as a function of τ
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Fig. 14.7 Nonlinear simulation results

a second-order behavior on the acceleration to be tracked. As is usual in H∞ de-
sign approaches, weighting functions Wp(s) and Wδ̇ (s) are tuned so that the output
matches that of the reference model with a limited control activity. Further details
on the selection of such filters can be found in [6]. The LMIs of Theorem 14.1 are
solved for different values of the time constant τ for which the performance index γ
is minimized. As expected and visualized by Figure 14.5, the latter is a decreasing
function of τ .

Note that the LPV controllers which have been obtained for τ > 0.35 are not
realistic since for such cases the modified plant is no longer representative of the
initial one. In the following, we selected the controller obtained for τ = 0.35, for
which γ = 1. This means that the specifications imposed via the weighting functions
are satisfied and that this controller should fulfill all the requirements. The latter is
finally implemented in a nonlinear simulation. The SIMULINKT M diagram is visualized
on Figure 14.6. Nonlinear simulation results are presented on Figure 14.7.

During this nonlinear simulation, a first step command is applied on the vertical
acceleration from 0 to 30g. After 1s a new step is applied to drive it back to −10g,
then to −25g and finally back to 0. During this operations, it can be observed that
the angle-of-attack nearly covers the flight domain of interest. Moreover, as shown
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on Figure 14.8, the Mach number is reduced from 4 to 2. On the lower-left plot
of Figure 14.7 one observes that the control activity is compatible with actuators
constraints. The lower-right plot shows the variations of the coefficient mα which is
also here the scheduling parameter.
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Fig. 14.8 Mach number profile

14.2.4 Conclusion

In this section, a first LPV control strategy has been proposed to cope with limi-
tations on the rate-of-variations of the parameters, without considering parameter-
dependent Lyapunov functions. Interestingly the method is based on the use of stan-
dard design results for polytopic LPV plants and is then applicable to systems of
medium sizes. However, when the number of parameters increases, such an ap-
proach might fail (see remark 14.2).

14.3 Parameter-Varying Aircraft Control Design

As observed above, the design of control laws for parameter-varying systems with
several scheduling variables remains a challenge for standard LMI-based LPV con-
trol techniques. In such a case, gain-scheduling methods are still a widely used
alternative. In the context of aerospace applications, a short discussion on these
techniques is given next and a specific approach is presented with its application to
flight control laws design.

14.3.1 Gain-Scheduling Methods

In the aerospace industry, the preferred approach for designing gain-scheduled con-
trollers consists of interpolating static gains which are computed by standard lin-
ear techniques for various flight conditions. A two-dimensional illustration of this
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Fig. 14.9 Illustration of a static interpolation in (V,H) flight domain

approach is visible on Figure 14.9 where static gains have been obtained as functions
of the airspeed (V ) and altitude (H) and are then linearly interpolated on-line.

This approach, validated many times in practice, raises several theoretical issues
among which stability properties between interpolation points throughout the flight
domain have received a specific attention. For example, in the case of full-order dy-
namic controllers, a specific interpolation formulae has been developed in [24, 25]
with which, stability is preserved throughout the whole operating domain. This re-
quires however, that "neighboring" controllers partially overlap so that a controller
Ki(s) which nominally stabilizes a point Pi will also stabilize its neighbors. In the
case of a single parameter, this principle is illustrated by Figure 14.10. Interestingly,
the interpolation formulae of [24] is based on the existence of Lyapunov functions
which can be computed off-line. However, its implementation remains numerically
demanding and requires powerful on-board computers, more specifically when lo-
cal controllers are not sufficiently robust. A possible approach to alleviate on-line
computations consists in designing robust local controllers with guaranteed stability
domains such that, along predefined trajectories, transitions from one controller to
the next are proved to be stable. Since those domains are computed off-line, the im-
plementation of such a strategy will remain rather cheap. Its efficiency will increase
with the size of the stability domains. An illustration of this strategy [28] is given
on Figure 14.11.

min max

(Computing point for Ki(s))

Validity of Ki(s)

Fig. 14.10 Non uniform grid with guaranteed overlap
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Fig. 14.11 Intersection of ellipsoidal stability domains along a predefined trajectory

14.3.2 Design and Interpolation of Locally Robust Controllers

Based on the above ideas, our proposed strategy consists in computing a family of
locally robust controllers by a polytopic design approach. A family of polytopes is
then generated so as to cover the flight domain of interest with overlaps as shown
on Figure 14.12. Next, polytopic design models are defined for each polytope. This
step is illustrated by Figure 14.13. A PID-like structure with a reference model is
proposed here and a full access to the states of the augmented plant is assumed. In
the context of aerospace applications, this last assumption is not so restrictive since
most of the states are generally available for feedback. When necessary, reliable
estimations can be obtained.

i,j

11i 1i+1

2i

2i+1

1i 1i

2i

2i

2

Fig. 14.12 Illustration of a 2D parametric grid

Assuming that the augmented design plant around point ( j,k), denoted by
Pjk(s,δ ) on Figure 14.13, admits the polytopic description of equation 14.3, then a
robust state-feedback controller K is easily computed thanks to the following propo-
sition adapted from [35]:
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Polytopic design model around point (j,k)

Local controller

P  (s,   )

.

K

Fig. 14.13 A polytopic design model for the synthesis of locally robust controllers

Proposition 14.1. Consider a polytopic system P(s,δ ) as defined by (14.3) and as-
sume that there exist a positive definite matrix X, and any matrix W of appropriate
dimensions, such that:

∀i = 1 . . .N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ AiX +B2iW B1i 0

0 − γ
2 I 0

C1iX +D12iW D11i − γ
2 I

⎞
⎠+(�)< 0

AiX +B2iW +λX +(�)< 0( −ρX AiX +B2iW
(AiX +B2iW )′ −ρX

)
< 0

(
sinα (AiX +B2iW ) −cosα (AiX +B2iW )
cosα (AiX +B2iW ) sinα (AiX +B2iW )

)
+(�)< 0

(14.9)

then, every closed-loop LTI system inside the polytope G(s) =C(sI −A)−1B+D =
Fl(P(s,δ ),K) with K =WX−1 exhibits the following properties :

(i) ‖G(s)‖∞ < γ
(ii)spec(A)⊂ S (λ ,ρ ,α)

where S (λ ,ρ ,α) denotes the truncated sector of complex numbers z such that
R(z)≤−λ , |z| ≤ ρ and ℑ(e− jαz)≤ 0.

The first property is used to specify performance and disturbances attenuation, while
the second is very useful to constrain the closed-loop poles so as to make sure for
example that no interactions will appear with high frequency non modeled dynam-
ics. These constraints can also be interestingly considered if the actuator model A(s)
is omitted in the design model. In such a case, the state feedback controller K will
only use the aircraft outputs and will thus be more easily implemented.
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14.3.3 Design Procedure and Implementation Issues

Thanks to the above proposition, locally robust controllers are easily computed on a
grid of the flight domain. In a next step, a standard linear interpolation can be imple-
mented to generate the global parameter-varying control laws. This step, illustrated
by Figure 14.14 is made simple here thanks to the choice of a static state-feedback
structure for each local controller. Note that the reference model can also be easily
tuned as a function of the flight condition. A common practice consists in using
faster models for high speed flight conditions.

K(  )

Fig. 14.14 Implementation diagram

Remark 14.3. On Figure 14.14, the LTI operator Â(s) denotes an estimator of the
actuator A(s) which states are not systematically available for feedback.

14.3.4 Application to Flight Control Design

Let us now apply the above strategy to a flight control design problem for a generic
fighter aircraft along the longitudinal axis. The nonlinear model is described with
more details in Section 14.4. As is visible on Figure 14.15, a large operating domain
is considered. This domain is gridded as shown on the same figure and for each
point of this 2D grid, the aircraft is linearized about different values of the angle-of-
attack, such that the load factor remains in the interval [−3g 9g]. A set of linearized
models on a 3D grid of the whole subsonic operating range of the aircraft is thus
obtained:[

α̇
q̇

]
=

[
Zα(αi,Vi,Hi) Zq((αi,Vi,Hi)
Mα(αi,Vi,Hi) Mq(αi,Vi,Hi)

][
α
q

]
+

[
Zδ (αi,Vi,Hi)
Mδ (αi,Vi,Hi)

]
δm (14.10)

Following the above procedure, polytopic models are then determined around
each triplet (αi,Vi,Hi) such that a 20% overlap (as illustrated on Figure 14.12) is
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Fig. 14.15 Operating range in (M,H) plane with a lower bound constraint on Vc

guaranteed. Finally, design models are defined according to the structure of Figure
14.13 and the results of Proposition 14.1 are applied to compute a set of static gains
Ki = K(αi,Vi,Hi). The latter are finally implemented as discussed already. The gen-
eral scheme of Figure 14.14 is adapted to the aircraft application as shown on Figure
14.16. For the reference model, a second-order transfer function has been considered
with a fixed damping ratio ξr = 0.7 and a varying pulsation ωr = ωr(Vc) ∈ [4 , 10]
as a linear function of the calibrated airspeed.

Fig. 14.16 Implementation of the parameter-varying controller

The above controller is finally implemented in a nonlinear simulation diagram
which also implements a complete and realistic nonlinear representation of the air-
craft along the longitudinal axis. Further details can be found in [35]. A preliminary
frozen-time analysis is performed by checking the poles of the linearized closed-
loop plants throughout the flight envelope. The results are displayed on Figure
14.17. Then, step responses are also realized throughout the flight envelope. The
plots of Figure 14.18 reveal that the reference model is correctly followed whatever
the mass and center-of-gravity location.
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Fig. 14.17 Poles map throughout the flight envelope

Fig. 14.18 Step responses throughout the flight envelope

14.3.5 Conclusion

As illustrated by the proposed application, the LPV control strategy of this section
has permitted to take into account three parameters without any specific difficulty.
The main drawback of this methodology is a lack of formal guarantee a priori re-
garding the closed-loop stability. As is further discussed in subsection 14.4.6, this
property must be checked a posteriori. One other weak point of the method may also
appear if the number of scheduling variables gets larger than 3. This is a standard
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limitation of gain-scheduling techniques. In such cases indeed, numerous designs
must be performed and it rapidly becomes very time-consuming. Moreover, the on-
line interpolation becomes tricky and might exceed the capacity of the on-board
computers. A third approach is considered in the next section, for which the notion
of scheduling is viewed differently.

14.4 Dynamic-Inversion Based LPV Control

Since the early 1990s, nonlinear dynamic-inversion (NDI) based (or feedback lin-
earization) control techniques have received considerable attention in the literature
regarding their application to the design of flight control systems for missiles and
aircraft. Given a possibly time-varying nonlinear plant:

ẋ = f (x,θ )+ g(x,θ )u (14.11)

a control law that achieves the desired response characteristics may be formulated
as follows

u = g(x,θ )−1 (v− f (x,θ )) (14.12)

where v specifies the desired response and is generally produced as the output of a
linear controller, remarking that – in the ideal case – the closed-loop system now
simply reads:

ẋ = v (14.13)

Interestingly, when an accurate model is available, the control structure (14.12) com-
pensates not only the nonlinearities of the plant but also its parametric variations as
is further clarified below. Unfortunately, an exact compensation is never achieved
in practice because of uncertainties in the model, because of noises on the measure-
ments, because part of the states might not be available and finally because of control
saturations. For these reasons, the elaboration of the desired response v needs a spe-
cial attention. In this section, a strategy is proposed and illustrated by the design of
flight control laws for the same aircraft as the one of Section 14.3.

14.4.1 NDI Control for LPV Systems

Assume that the nonlinear differential equation (14.11) can be rewritten as:
{

ẋ = A(θ )x+B(θ )u
z = Lx

(14.14)

where z denotes the signal to be tracked and B(θ ) is square and non singular matrix
throughout the operating domain of the plant. Then, the "linearizing" control law
(14.12) is adapted as follows:
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u = B(θ )−1 (B0v− (A(θ )−A0)x) (14.15)

so that the LPV plant now becomes LTI:
{

ẋ = A0x+B0v
z = Lx

(14.16)

for which the new control input v in the following format:

v = H(s)zc +K(s)x (14.17)

is easily designed by any standard approach. It is easily verified that the combination
of equations (14.15) and (14.17) defines a standard LPV control law:

u = B(θ )−1[B0H(s)zc +(B0K(s)+A0 −A(θ ))x
]

(14.18)

It is very interesting here to point out that any difficulty related to the size of θ has
been removed. Note that the selection of the "central" matrices A0 and B0 is com-
pletely free. A standard choice consists in setting A0 = A(θ̄) and B0 = B(θ̄) where
θ̄ denotes a mean value of the varying parameter. But in some cases, it might no
be the best. Rather than considering mean values of the parameters, an interesting
alternative, consists in focusing on worst case combinations for which the instability
degree of A0 for example is maximized, or for which the control efficiency is mini-
mized. The central idea is that the LTI system (14.16) should not necessarily capture
the mean behavior of the LPV plant but a worst case behavior. Unfortunately, there
still exits no general rules for the selection of the "central" model. This is still an
open issue and it seems that the best choice will highly depend on the application.
Another difficulty of the proposed approach is related to the assumption on the ma-
trix B(θ ) which must be square and invertible. In practice, these two requirements
are rarely met. But, in the context of aerospace systems, a time scale separation
technique can be used to bypass such difficulties [29]. This point is clarified next.

14.4.2 Back to the Aircraft Control Problem

Let us consider again the longitudinal aircraft control problem which was introduced
in Section 14.3. Using standard notation, the nonlinear short-term dynamics of the
aircraft along its longitudinal axis are given by:

{
α̇ = q+wα(θp)
Jyyq̇ = wq(θp)+λ (θp)δm

(14.19)

with:⎧⎨
⎩

wα (θp) =
g

V cosβ (cosα cosθ cosφ + sinα sinθ + ãz cosα− ãx sinα)− pi tanβ
wq(θp) = qdSL(CMα (Ma)α+ qLCMq/V )+ (Jzz− Jxx)pr+ Jxz(r2 − p2)
λ (θp) = qdSLCMδ (Ma)

(14.20)
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and: ⎧⎨
⎩

pi = pcosα+ r sinα
ãx = gaxm +Lag(q2 + r2)
ãz = gazm +Lag(q̇− pr)

(14.21)

In the above representation, to avoid any confusion with a pitch angle θ , the nota-
tion θp is used to capture all parametric variations of the system (mainly induced by
the variations of velocity). The longitudinal short-term motion of the aircraft is es-
sentially controlled through the second equation in (14.19) via the control input δm

denoting the elevator deflection. The latter also impacts the first equation through
a small effect on the accelerations ãx and ãz. But this one is small enough to be
neglected.

Interestingly, the expressions of the nonlinear inputs (wα and wq) and of the
control efficiency (λ (θp)) given in (14.20) depend on known and on-line measur-
able data. Consequently, these three parameter-varying terms can be used by the
controller. Observing that the control efficiency verifies λ (θp) < 0 (and is then in-
vertible) throughout the whole flight envelope, a standard NDI approach consists
in inverting the moment equation so as to control the pitch rate. Assuming that the
actuators dynamics are much faster than the desired response on q, they are tem-
porarily neglected. It is then readily verified that the following control law:

δc = λ (θp)
−1(Jyyτ−1

q (qc − q)−wq) (14.22)

yields:
q̇ ≈ τ−1

q (qc − q) (14.23)

Since the pitch rate evolves much faster than the angle-of-attack, (this also can be
enforced by choosing τq small enough) one further considers that q ≈ qc, so that the
first equation in (14.19) is now controlled via qc and the following choice for the
commanded pitch rate:

qc = ω2
r

∫ t

0
(αc −α)dτ− 2ξrωrα−wα (14.24)

enforces a second-order behavior on the angle-of-attack:

α
αc

(s)≈ ω2
r

s2 + 2ξrωrs+ω2
r

(14.25)

where the desired closed-loop pulsation ωr is chosen as a function of the cali-
brated airspeed. Combining the above equations, one observes that the nonlinear
parameter-varying control law may be summarized as:

uc = λ (θp)δc = H(s)[αc wα wq]
′+K(s)[α q]′ (14.26)
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with

H(s) =

[
Jyyω2

r

τqs
− Jyy

τq
− 1

]
, K(s) =−Jyy

τq

[
ω2

r

s
+ 2ξrωr 1

]
(14.27)

Note that equation (14.26) can be viewed as an alternative formulation of (14.18).
With this approach, rather sophisticated parameter-varying control laws covering
the whole flight domain of interest are then easily obtained after a very short design
process. However, the efficiency of such control laws relies strongly on the avail-
ability of the nonlinear inputs wα and wq. In practice, uncertainties affect these two
signals and the control efficiency λ (θp) is not precisely known. Moreover, because
of the actuators dynamics, the actual deflection δm may differ sometimes signifi-
cantly from the commanded variable δc. In the context of dynamic inversion, sev-
eral techniques have been proposed to cope with these limitations by improving the
robustness of the controller [29]. The central idea of these techniques consists of
mixing the concept of dynamic inversion with robust control theory. Based on this
idea, in the design procedure which is detailed next, a multi-objective H∞ frame-
work is proposed to generalize the above control structure and better optimize the
gains K(s) and H(s).

14.4.3 Towards a New Design Procedure

As mentioned above, the desired elevator deflection is not produced instantaneously
but is delivered by an actuator of limited capacity. In our context, its dynamics are
accurately described by a linear second-order transfer function. Here, to further sim-
plify the following discussion, let us temporarily reduce it to a first-order system so
that δ̇m = τ−1(δc − δm) and let us define the new variable u = λ (θp)δm. Then, one
obtains:

u̇ = λ (θp)δ̇m + λ̇(θp)δm = λ (θp)δ̇m +wu = τ−1(uc − u)+wu (14.28)

where the commanded input uc is defined in (14.26) and the perturbation term wu

may further be characterized as:

wu =
λ̇ (θp)

λ (θp)
u = μ(θp)u (14.29)

Hence, the nonlinear aircraft model of equation (14.19) including the actuator can
be drawn as shown on Figure 14.19 where the state-space data of the linear system
G(s) =CG(sI −AG)

−1BG are initially given by:

AG =

[
0 1
0 0

]
, BG =

[
1 0 0
0 J−1

yy J−1
yy

]
, CG =

[
1 0
0 1

]
(14.30)

Remark 14.4. As already discussed in subsection 14.4.1, the linear system G(s)
should at least locally capture a realistic behavior of the aircraft, which is definitely
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Fig. 14.19 Description of a nonlinear plant as a linear system with nonlinear inputs

not the case in (14.30) which corresponds to a double-integrator. For given values
θ̄p of the varying parameters, a linearization technique yields:

⎧⎨
⎩

wα = ∂wα
∂α (θ̄p).α + ∂wα

∂q (θ̄p).q + w̃α

wq =
∂wq
∂α (θ̄p).α +

∂wq
∂q (θ̄p).q + w̃q

(14.31)

Then, the nonlinear inputs of G(s) become w̃α and w̃q and its AG matrix is updated
as follows:

AG(θ̄p) =

⎡
⎣ ∂wα

∂α (θ̄p) 1+ ∂wα
∂q (θ̄p)

∂wq
∂α (θ̄p)

∂wq
∂q (θ̄p)

⎤
⎦ (14.32)

14.4.3.1 Formulation as a Multi-channel H∞ Design Problem

Merging the above actuator description and G(s), an augmented linear intercon-
nection model M(s) can be obtained and used to define an H∞ design diagram as
proposed on Figure 14.20.

Fig. 14.20 Design model
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Basically, the general idea consists of computing the best controller K(s) such
that each weighted transfer from wi to zi is minimized. More precisely, the transfer
from w3 to z3 can be associated to the nominal performance since w3 corresponds to
a control input on the angle-of-attack while z3 denotes the error between the actual
output and that of the reference model R(s). Then the problem to be solved take the
form of the following multi-channel H∞ optimization program:

min
K(s)

‖Tw3→z3(s)‖∞ with

⎧⎪⎪⎨
⎪⎪⎩

‖Tw1→z1(s)‖∞ ≤ c11

‖Tw2→z3(s)‖∞ ≤ c23

‖Tw3→z2(s)‖∞ ≤ c32

‖Tw2→z2(s)‖∞ ≤ c22

(14.33)

where constant terms ci j can be tuned to quantify various robustness levels:

• c11: stability robustness against the neglected term wu = μ(θ )u
• c23: performance robustness against perturbations w̃α and w̃q

• c32: bound on the nominal control activity
• c22: bound on the "perturbed" (by w̃α and w̃q) control activity

14.4.4 Interpretation and Controller Structure

As is visible on the diagram of Figure 14.20 and from (14.33), the nonlinear control
design problem has been re-formulated as a rejection problem of on-line estimated
nonlinear input perturbations. Assume that a controller K(s) has been computed,
then the control law to be implemented will read:

δc =
1

λ (θp)
K(s)[w̃α , w̃q,αc −α,y]′ (14.34)

The above expression generalizes (14.26). Here, the unique compensator K(s) in-
cludes both the feedforward (previously denoted H(s)) and feedback (previously
denoted K(s)) paths. Note that the signal wu is not used by the controller, since
its estimation might be very poor (because of possibly fast variations). Moreover,
it has been observed in practice that this signal is often very small. As is clear
from (14.29), its magnitude is directly related to the rate-of-change in the varying
parameters.

14.4.4.1 Weighting Functions Tuning Procedure

In H∞ design approaches, the most challenging task, once the controller structure
has been defined consists of tuning correctly the weighting functions. This step
is often very tricky. Fortunately, the situation is here quite favorable since an ini-
tial solution can be obtained by a standard dynamic inversion approach (see equa-
tions (14.26) and (14.27)). As a result, the weighting functions can be tuned by a
frequency-domain analysis of the design model in feedback loop with this standard
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solution. Then, there only remains to iterate from this starting point to improve the
standard controller.

14.4.4.2 Dealing with Saturations

A key improvement axis in the above procedure consists of minimizing the control
activity by "playing" on the weighting function Wa(s) for example. It is then hoped
that magnitude and rate limits will no longer induce loss of performance or stability.
In a next step, further improvements can be obtained by plugging an anti-windup
compensator J(s) which can also be optimized by H∞ norm minimization together
with the previous feedback gain K(s). Further details on such an approach can be
found in [36] and [37].

14.4.4.3 About the Resolution

Last but not least, the resolution of the multi-channel H∞ optimization problem
(14.33) deserves a few comments. Unlike standard full-order H∞ design problems
the latter is non-convex because of the multi-channel aspect. Moreover, as shown
by Figure 14.20, numerous weighting functions have been introduced in the de-
sign model which contributes to a significant increase of its number of states. As
a result, the optimization of a full-order controller would certainly result in non-
implementable control laws. It is then strongly recommended here to search for
fixed-order and structured controllers which is a second source of non-convexity.
Until recently, these problems were very hard to solve, which certainly explains
why formulations as those stated by (14.33) have rarely been considered. But, dur-
ing the last few years, thanks to very recent progress on non-smooth optimization
techniques [38, 39, 40], new efficient tools dedicated to the local optimization of
fixed-order and fixed structure H∞ controllers have appeared. Let us first cite the
public domain software HIFOO [41, 42, 43] for use with MATLAB, which is backed
up by the theoretical advances described in [40]. Then appeared the the routine
HINFSTRUCT whose theoretical foundations are described in [38]. The latter has
been directly integrated to MATLAB by the Mathworks Inc. and is available with the
Robust Control Toolbox [44].

14.4.5 Results on the Flight Control Problem

The above strategy is now applied to the flight control problem of section 14.3 but
here both the longitudinal and the lateral axes are considered. Baseline controllers
are preliminarily designed for each axis along the lines of subsection 14.4.2. Next
both controllers are plugged into design models as shown on Figure 14.20, where
all weighting functions are first set to identity. A singular value analysis is then
performed in order to initialize the weighting functions and the fixed-order multi-
channel H∞ (14.33) is preliminarily solved for each axis. In each case, the initial
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set of weighting functions is chosen so that all constraints ci j are normalized. The
best achieved H∞ norm of the main transfer associated to the nominal performance
also verifies: ‖Tw3→z3(s)‖∞ < 1. Then, an iterative procedure is applied to decrease
the constants ci j while preserving the nominal performance constraint. During this
procedure, one essentially tries to minimize c23 which reflects the capacity of the
controllers to reject the nonlinear input signals thus extending their operating do-
mains. For each axis, this value is approximately divided by 3.

Both longitudinal and lateral controllers are then implemented in a nonlinear
SIMULINK diagram including a complete description of the aircraft which remains
valid on the whole subsonic flight domain. Ten simulations are then performed to
evaluate both the longitudinal and lateral controllers throughout the flight domain in
which 5 points are selected (see Table 14.1).

Table 14.1 Test points in the flight domain

Point # Mach number Altitude (ft)
1 0.25 5000
2 0.5 20000
3 0.7 10000
4 0.9 36000
5 0.9 5000

For each of these points, the aircraft is preliminarily trimmed and two maneuvers
are performed:

• Longitudinal maneuver: this sequence consists of two steps on the angle-of-
attack. The first one is applied after 1s. Its magnitude is tuned according to the
flight point so that the vertical load factor does not exceed the maximum value
of 9g. Next, after 6s a new step is applied so that the final angle-of-attack is now
between 0 and −10deg. Here again, the magnitude is adapted as a function of
the flight point so that the vertical load factor remains above its minimum value
which is fixed to −3g. The total length of this maneuver is 10s. The simulations
results are visible on Figure 14.21.

• Lateral maneuver: during this sequence, the lateral behavior of the aircraft con-
trol laws is evaluated through their capacity of tracking roll-rate commands. To
this purpose, a series of roll-rate steps is applied as shown on Figure 14.22. Dur-
ing these steps, the objective is to maintain the sideslip angle around 0.

14.4.6 Concluding Remarks

In this section an original control design methodology combining the concepts of
dynamic inversion and LPV control techniques has been described. The proposed
strategy which essentially consists of revisiting NDI control as a linear control
problem with measured (or estimated) nonlinear disturbing inputs is particularly
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Fig. 14.21 Nonlinear simulations for various flight conditions: Longitudinal axis
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Fig. 14.22 Nonlinear simulations for various flight conditions: Lateral axis
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well-suited to aerospace applications. The proposed design approach has been vali-
dated on a realistic and complete aircraft control problem throughout a large flight
envelope. A key advantage of this last parameter-varying control strategy resides in
its capacity of handling many parameters without critical impact during the design
process.

However, when the nonlinear input signals – which in most cases have to be es-
timated on-line – differ significantly from the reality, it becomes difficult to predict
wether the closed-loop properties will be guaranteed or not. A controller validation
phase is then required, as this was also the case with the previous two methodologies
which were developed in Sections 14.2 and 14.3. Such validations generally consist
of extensive nonlinear simulations for many flight conditions, many parametric con-
figurations, many different types of maneuvers. This unavoidable process takes a lot
of time. This is why many efforts have been recently devoted to the development
of numerically cheaper validation techniques for parameter-varying flight control
laws. The interested reader may consult the book [45] and the references therein.

14.5 General Conclusion

In this chapter, a brief overview of LPV control strategies for aerospace systems
has been presented. A special interest has been paid to specific methods for bet-
ter managing the difficult tradeoff between conservatism and numerical complexity
which rapidly increases with the number of scheduling parameters. In the context
of aerospace systems, the combination of dynamic-inversion methods with the LPV
framework appears to be a good compromise. Unlike more standard LPV control
techniques essentially based on the use of parameter-dependent Lyapunov functions,
the control strategies of this chapter generate controllers requiring a post-design val-
idation process. This weak point is unfortunately the price to pay for numerically
cheaper techniques.
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Chapter 15
LPV Approaches for Varying Sampling Control
Design: Application to Autonomous Underwater
Vehicles

Emilie Roche, Olivier Sename, and Daniel Simon

Abstract. This chapter deals with the robust control of an Autonomous Underwa-
ter Vehicle (AUV) subject to computation or communication constraints. The aim
is the design of a gain-scheduled varying sampling controller using non periodic
measurements, where the varying sampling rate is considered as a known param-
eter. First a Linear Parameter Varying (LPV) model of the AUV is developed to
keep some non-linearities of the plant in the model, thus enlarging the model’s do-
main of validity around nominal conditions. The weighting templates are also made
bandwidth dependent to take into account the dependencies between the achievable
control performances and the sampling interval. From this model a LPV controller
is synthesized in continuous time and then discretized over the range of predefined
sampling rates. The approach is applied to the altitude control of an AUV, where
depth measurements are asynchronously supplied by acoustic sensors.

15.1 Introduction

In the context of network-controlled systems the idea of using varying control in-
tervals naturally arises when the available computing power devoted to feedback
control is limited, e.g. in embedded systems. It can be easily shown, e.g. [27], that
decreasing the control frequency directly decreases the amount of computations
needed for control. In that case a feedback scheduler is assumed to compute on-line
new control intervals according to the CPU load and system’s state. Another case is
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when sensing cannot be done at any time. For example, underwater vehicles mainly
sense their environment using acoustic sensors. Due to the slow propagation of the
acoustic signals, measurements are subject to delays increasing with the distance to
the target. Also, to avoid cross-talking between acoustic sensors working in a nar-
row area, these sensors must be scheduled, so that some of the sensors used in the
control laws are triggered only at instants determined by an external manager, e.g.
using a TDMA (Time division multiple access) scheduler [14]. In all these cases the
control intervals are not equidistant, nevertheless they can be accurately measured
by the internal clock of the controller when the control computation is started.

The problem of varying sampling control design have already been study for LTI
systems in [18, 19, 10], where the sampling interval is considered as the unique
varying (and known) parameter of a discrete-time Linear Parameter Varying (LPV)
system under the polytopic representation. Another approach has been presented in
[20, 21] to design sampling varying gain-scheduled discrete-time controller for LPV
systems, based on the Linear Fractional Representation (LFR). The idea here is to
extend the former approach for more complex LPV models accounting for some
non-linearities of the plant.

Indeed LPV systems are increasingly used to deal with the robust control of
non-linear systems. In particular they allow to represent some non-linearities of the
plant as varying parameters, assuming that some knowledge of these parameters
is available from modeling and internal measurements ([6],[3],[13],[26]). From the
LPV model it is then possible to synthesize a gain-scheduled controller according
to some performance criteria. The theoretical background has been often developed
in association with robust control theory, e.g. as in [18], [1], [2], [23], [9], [3] and
[4]. It is able to handle a wide variety of non-linear plants as in [24] for electrostatic
devices, for the control of road vehicles in [7, 16], for the control of Diesel engines
in [30], or for the control of semi-active suspensions as in [17].

This chapter extends these works bringing the design of a robust controller
parametrized both by varying parameters of the plant and by the varying sampling
interval. The method proposed here is based on the LPV polytopic representation of
the plant, as already used in [19] to control discrete-time LTI systems with varying
sampling intervals, where it led to low complexity models and easy control syn-
thesis. However, combining both the plant’s non-linearities and sampling intervals
as varying parameters in the polytopic discrete-time model leads to far more larger
model size, and control synthesis becomes difficult. Therefore it is chosen here to
first synthesize the plant’s parameter dependent controller in continuous time, and
to discretize it for various values of the sampling interval inside predefined bounds.

The proposed LPV approach is applied to the altitude control of an Autonomous
Underwater Vehicle (AUV). The control of AUVs is an active research field since
twenty years, due to their large use for the exploration of the sea and for collect-
ing data. The H∞framework has already been used for the control of this kind of
vehicle, in [5] for example where a reduced order H∞controller is developed. The
control of an AUV in the vertical plane is considered in [25], using a non-linear
gain-scheduling approach (where the cruising speed of the vehicle is the scheduling
parameter). The same approach is applied in [26] for the depth control of the AUV.
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Other control approaches have been developers, as for example sliding mode in [8],
or a PID structure and an anti-windup scheme in [13].

The next section 15.2 presents different models of the AUV, and section 15.3
gives the hierarchical control structure chosen for the altitude control in the vertical
plan, as well as the LPV control-oriented model. Then the polytopic approach to
design a controller, scheduled by both systems parameters and the variation of the
sampling interval, is presented in section 15.4. In section 15.5 simulations results
running on the non-linear model of the AUV show the feasibility of the proposed
approach.

15.2 Underwater Vehicles Models

The Autonomous Underwater Vehicle (AUV) considered in this study is the AsterX ,
presented on Figure 15.1, designed and operated by IFREMER1 (French Research
Institute for Exploitation of the Sea).

Fig. 15.1 The AsterX AUV operated by Ifremer

The complete modeling of this kind of AUV is a classical problem already stud-
ied, e.g. in [6, 22]. In this section the objective is first to give a global non-linear
model of the AUV (used in the sequel for realistic simulations) and then a simpli-
fied model under polytopic formulation, in view of control design and synthesis.

1 http://www.ifremer.fr/fleet/r&dprojets.htm

http://www.ifremer.fr/fleet/r&dprojets.htm
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15.2.1 Non-linear Model

The motions of the autonomous underwater vehicle (AUV) are referenced in two
frames :

• R(C,X ,Y,Z) is the frame linked to the vehicle, whose origin C is the hull’s center
of buoyancy;

• R0(O,X0,Y0,Z0) is the inertial referential, it is considered linked to the earth in
the case of an AUV moving at slow speed.

For the description of the vehicle behavior, we consider a 12 dimensional state vec-
tor : X =

[
η ν

]T .

• η ∈ R
6 is the pose of the vehicle in the inertial referential R0, made of the po-

sition vector η1 and the angular position η2: η =
[
η1 η2

]T
with η1 =

[
x y z

]T
and η2 =

[
φ θ ψ

]T
where x, y and z are the positions of the vehicle in R0, and

φ , and θ and ψ are respectively the roll, pitch and yaw angles.
• ν ∈ R

6 is the velocity vector expressed in the local referential R, it describes
the linear and angular velocities (first derivative of the positions) through the
change of frame (given by eq. (15.2)) : ν =

[
ν1 ν2

]T
with ν1 =

[
u v w

]T
and

ν2 =
[
p q r

]T
The dynamics of the vehicle is deduced from the 2nd Newton law as modeled by the
following equations:

Mν̇ = G(ν)ν+D(ν)ν+Γg +Γp+Γu (15.1)

η̇ = Jc(η2)ν (15.2)

where:

• M is the inertia matrix, it represents the real mass of the vehicle augmented by
the "water-added-mass" part,

• G(ν) represents the action of Coriolis and centrifugal forces,
• D(ν) is the matrix of hydrodynamics damping coefficients,
• Γg correspond to the gravity and hydrostatic forces,
• Γp represents disturbing forces and moments (e.g. due to waves, ocean cur-

rents. . . )
• Jc(η2) is the matrix for the change of frame from R(C,xyz) to R0(O,X0Y0Z0),
• Γu represent the forces and moments applied by the vehicle’s actuators. The con-

sidered AUV has a screw propeller for velocity control in the Ox direction (pro-
viding a forward force Qc) and 5 control surfaces:

– a pair of 2 horizontals fins (“lifting canard”) in the front part of the vehicle,
controlled with angles β1 and β ′

1;
– 1 vertical fin at the tail of the vehicle, controlled with angle δ1
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– a pair of 2 tilted fins (with angle ±π/3 w.r.t the vertical axis of the hull) at the
tail, controlled with angles β2 and β ′

2.

Due to mechanical constraints, the control surfaces have their tilt angle limited to
0.5rad. Note that an allocation module could be used to map the forces/torques
screw components computed by the controllers on the available actuators, to make
the controller adaptive w.r.t. various control surfaces layouts.

The model is non-linear with 12 state variables and 6 controls inputs (β1, β ′
1,

δ1, β2, β ′
2 and Qc). To avoid some unnecessary complexity, a hierarchical control

approach will be used, allowing to reduce the dimension of the control-oriented
model, as presented on figure 15.2 and explained below.

Ku

Kθ(h, ρ)Kz(h)
θref

zref β1, β2 ∑
NL

z

u

θ
+

+

+

−

−

−

uref Qc

Fig. 15.2 Global control structure

15.2.2 Model Partition and Reduction

The full non-linear model of the vehicle involves coupled dynamics between the
translation and rotation motions through many uncertain parameters. Moreover the
system is under-actuated, due to the nature, the limited number and the location of
the actuators. Rather than trying to handle all the degrees of freedom and motion axis
in a single controller, the usual solution is to separate the global model into different
sub-models with reduced size. This allows for a decoupled control synthesis for the
motions in the horizontal and vertical plans and for the forward velocity control.

To control the altitude z, the model is reduced to 4 state variables : z, θ and
the corresponding velocity w and q. For the actuation, only 4 control surfaces are
needed : the 2 horizontal fins in the front part of the vehicle (with angles β1 and
β ′

1) and the 2 tilted fins at the tail (with angles β2 and β ′
2). Since only motions of

the AUV in the vertical plan are considered, both fins in a pair are actuated with the
same angle (as if they were mechanically linked) so the control variables are chosen
such as: β1 = β ′

1 and β2 = β ′
2.

We focus on the control of the altitude z with adaptation to the sampling pe-
riod, where the main goal is bottom referenced altitude control. In this scenario the
forward speed u is controlled using a separated traditional (i.e. constant sampling)
H∞controller to keep the forward velocity constant as detailed in [20]).
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15.3 Depth Cascade Control Structure

Assuming a forward velocity fast enough to provide effective lift forces, the motions
in the vertical plane are controlled by the pairs of front and rear control surfaces
through their angles β1 and β2. Thanks to this set of actuators, a torque around the
pitch axis and a lift force along the z vehicle axis can be theoretically generated
independently, and motions along the vertical axis and around the pitch axis can
be decoupled, e.g. allowing for vertical motions while keeping the vehicle body
horizontal.

However this kind of trajectory generates a lot of drag due to the angle of inci-
dence between the main body and the fluid. As on-board energy storage is a crucial
and limited resource for an AUV, the angle of incidence between the vehicle’s body
and the forward trajectory must be kept as small as possible. In consequence the lift
efforts due to the front and rear tilted fins must be coordinated to keep the vehicle
tangent to its trajectory to minimize the drag forces.

Obviously the AUV’s altitude variations are strongly related to the pitch angle,
and the cost effective way to climb a slope is to keep the AUV parallel to the slope
by using the pitch angle as the control variable of the altitude controller. Therefore
a cascaded control structure is considered, as depicted in Figure 15.3. The altitude
controller Kz computes a reference of pitch angle from the comparison between the
actual altitude and the desired one, then this reference is used by the pitch controller
Kθ to compute the control actions (i.e. fins angles) to be applied to the AUV.

∑
NLKθ(h,Δ)Kz(h)

θrefzref β1, β2

θ

z

+ +
−−

Fig. 15.3 Cascade control configuration for altitude control

Note that the maximum slope that can be tracked by the AUV depends on the
combination between its hydrostatic stability, where the return torque is a function
of the metacentric height (i.e. the distance between the body’s center of buoyancy
and the center of mass), and the maximum lift forces on the control surface which
increases with the square of the forward velocity. Therefore the input of the altitude
controller, which is primitively built from the observed distance to bottom, must be
filtered to generate only physically feasible trajectories.

Similar cascade structures has been already described, e.g. in [11] where the
PD/PI cascaded control structure is assumed to provide a good disturbances rejec-
tion. In this chapter the H∞framework is used for the controller computation, since
it can be naturally associated with LPV models to ensure performances of the closed
loop system.
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Two controllers, each of them being scheduled by varying parameters, are in-
volved in this cascade control structure : the altitude controller Kz(h) only depends
on the sampling interval h and the pitch angle controller Kθ (h,Δ) also depends on
some non-linearities Δ of the model.

15.3.1 The Altitude Control-Oriented Model

Using the geometrical relation between the altitude variations and the pitch angle
(Figure 15.4), it appears that the the pitch angle, combined with the forward velocity,
is in some sense the "actuator" to be used to generate altitude variations with low
drag. Therefore the altitude controller computes the pitch angle set-point needed to
follow the desired path.

Fig. 15.4 Projection of
velocities in the fixed frame

x

z

uz

x

.

.

Θ

Projecting the body velocities in the fixed frame lead to this simple model :

ż = usinθ (15.3)

A Taylor expansion at order 1 of the sinus function is valid for the moderate pitch
angles which are feasible by the AUV, it provides a linearized relation :

ż = u0θ (15.4)

leading to the transfer function :

Gz(s) =
z
θ
=

u0

s
(15.5)

where u0 is the desired cruising speed used for linearization. The internal loop of
the cascade control structure is therefore approximated by a simple integrator.

Remark 15.1. Connected to parameter dependent weighting functions, a LPV gen-
eralized plant will be considered in the H∞ framework. A LPV controller, consid-
ering the sampling interval as varying parameter will then be obtained, as shown in
section 15.4.
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15.3.2 LPV Polytopic Model for the Pitch Control

In the case of the altitude control of an AUV, where only motions in the vertical
plane are considered using the cascade control structure presented before, one of the
most important remaining variable of the system is the pitch angle θ which strongly
influences the return torque acting on the hull and corresponding drag forces. How-
ever this variable appears in the non-linear model through trigonometric functions.
A linear parameter-varying model, depending on a set of parameters inherited from
the non-linearities, is here derived from the physical model. Indeed, to keep the con-
trol design and analysis in the framework of linear systems, the model is chosen to
be linearized around a variable equilibrium point θeq such that the pitch angle θ is
kept in the LPV model as a varying and known parameter.

From the 12 state variables of the original AUV model only 2 of them are needed
here, namely the pitch angle θ and the pitch velocity q. Considering a constant
forward velocity u0, the non-linear equations describing the behavior of the AUV
around the pitch axis are extracted from the full original model :

θ̇ =cos(φ)q− sin(φ)r
M55q̇ =− pr(Ix − Iz)−m[Zg(qw− rv)]− (Zqm−Zf μV)gsin(θ )

− (Xqm−XfμV )gcos(θ )cos(φ)+Mwqw|q|+Mqqq|q|+Ff ins (15.6)

where M55 is a diagonal element of the mass matrix (including water-added mass),
m is the mass of the vehicle, V the volume of the hull and μ the density of the
fluid. Ix, Iz,Zg,Zq,Zf ,Xq,Xf ,Mwq are inertial and hydrodynamics scalar coefficients.
Ff ins is the torque induced by the lift and drag actions on the control surfaces. Note
that for a constant forward velocity the lift forces are considered as approximately
proportional to the angle of incidence, while this angle is far enough from stall
angles.

The pitch angle is kept as a parameter in the LPV model after linearization around
the equilibrium point: Xeq = [. u0 . 0 . 0 0 0 θeq 0 0 0] for which all velocities are
assumed equal to zero except the cruising speed equal to u0 and the pitch angle
equal to θeq. No particular value is assigned to θeq, as it is a variable parameter of
the model measured in real-time during the controller execution.

Finally a LPV representation is derived :

Gθ :

{
˙̃θ = q̃

M55 ˙̃q = [−(Zgm−ZfμV )gcos(θeq)+ (Xgm−XfμV )gsin(θeq)]θ̃ +Ff ins
(15.7)

where the new state variables θ̃ and q̃ are the variations of θ and q around the
equilibrium point.

From these equations a polytopic model is carried out using the 2 parameters
ρ1 = cos(θeq) and ρ2 = sin(θeq). Considering the physicals limits of the AUV (due
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to the hydrostatic equilibrium) the angle θ is bounded by [−30◦,30◦] leading to the
followings bounds for the 2 parameters: ρ1 ∈ [0.86,1] and ρ2 ∈ [−0.5,0.5].

Equations (15.7) are affine w.r.t the 2 parameters, and the vector formed by these
2 parameters evolves inside the polytope (rectangle) defined by the four vertices of
coordinates: ρ1ρ2, ρ1ρ2, ρ1ρ2, ρ1ρ2.

The polytopic representation of the system is defined by equations (15.7) com-
puted at each vertex of the polytope.

Remark: Note that the dependency of the 2 parameters on a single variable θeq

may induce some conservatism. Moreover, as ρ1 = f (ρ2) is a circle, considering
the variations of θ ∈ [−30◦,+30◦] the admissible set of variation for the parameters
is an arc of a circle. Enveloping this arc of a circle by a rectangle leads to some
conservatism, but allows to express the polytope in a simple way.

15.4 A Polytopic LPV Control Approach for Sampling
Dependent Systems

This section presents the methodology considered to get discrete-time LPV con-
troller for the control structure 15.3, depending on the sampling interval, as well as
on some system parameters, from the LPV models presented before.

Among possible LPV representations, the polytopic approach can be used when
the dependency of the plant model matrices w.r.t. the parameters is affine. Each
parameter ρi is assumed to belong to an interval ρi ∈ [ρ

i
,ρ i], so that the vector of

n varying parameters remains inside a polytope P of vertices ω j defined as ω j =
[ν j1, . . . ,ν jn]

T with ν ji taking the extreme values of parameter ρi, i.e. ν ji ∈ {ρi,ρi}.
At each instant t, the current value of the parameter vector ρ(t) is given by the

convex combination of the N vertices of the polytope (N = 2n in the hyper-cubic
case n being the number of varying parameters):

ρ(t) =
N

∑
i=1

αi(t)×ωi, with αi(t)≥ 0,
N

∑
i=1

αi(t) = 1 (15.8)

where αi(t) are the polytopic coordinates of the parameters which can be computed
on-line at low cost, e.g. [15]. Then the matrices of the LPV system are given by
the convex combination of the N vertices matrix (state space matrices taken at each
vertex of the polytope) as:

(
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

)
=

N

∑
i=1

αi(t)

(
A(ωi) B(ωi)
C(ωi) D(ωi)

)
(15.9)

Under mild conditions (as derived in chapter 13.7) a gain-scheduled controller
K(ρ) is computed as the convex combination of controllers synthesized at each
vertex([2]):
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K(ρ) :

(
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

)
=

N

∑
i=1

αi(t)

(
AK(ωi) BK(ωi)
CK(ωi) DK(ωi)

)
(15.10)

with αi(t) such that
N

∑
i=1

αi(t) = 1 (15.11)

The main advantage of this representation is its simplicity which allows for using
convex optimization at the controller design step. However, while the control design
methodology uses (2+1) Linear Matrix Inequalities in the LTI case, the synthesis of
a polytopic controller relying on the polytopic model needs to solve (2N + 1) LMIs
(with the same Lyapunov function for all LMIs). Thus the number of parameters n is
a limiting factor, and this method is usually used only for a small set of parameters.

On the other hand, this chapter aims at obtaining a discrete-time LPV controller
scheduled by the set of parameters ρ(.) and by the sampling interval h. Indeed the
first idea would be using h as a varying parameter as previously done in [19]. How-
ever, this approach would require the discretization of the LPV model containing the
plant’s varying parameters. As shown in [29], the discretization of an LPV model
is not straightforward and the affine dependence on the parameters could not be
longer guaranteed. In particular, when the sampling interval is kept as a parameter,
the use of a Taylor approximation often leads to a polynomial model, vanishing the
affine dependence carried out for the LTI plants. Finally considering both the plant’s
parameters and approximations of the sampling interval as varying parameters in a
polytopic model leads to drastically increase the number n of parameters, and sub-
sequent vertices and LMIs number, potentially involving numerical difficulties.

A simple way to overcome this problem is to design a continuous-time polytopic
controller, dependent on some varying parameters of the continuous plant, and then
to discretize it on-line for the current value of the sampling interval.

The chosen design methodology relies on the H∞ framework. The problem con-
sidered is the classical mixed sensitivity problem, as depicted on Figure 15.5, where
two weighting functions We and Wu are used to specify the desired closed-loop
performances.

K(s, ρ, h̃)

We(s, h̃)

-
+

r(t) ε(t) y(t)
G(s, ρ)

Wu(s)

u(t)

Fig. 15.5 Mixed sensitivity problem

The continuous-time polytopic synthesis is presented on the following steps:

Step 1: Performance specification. The required closed-loop performances are
specified using some weighting functions. The weighting functions used for loop
shaping are defined in continuous-time. To take into account that the control
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performance usually degrades when the sampling rate becomes slower, they are
made dependent on a parameter h̃ which represent the sampling interval further
used for discretization. This parameter makes possible the performance adapta-
tion with respect to the expected sampling interval value, even if the controller is
synthesized in continuous time, as proposed in [19].

For example a first order weighting function depending on parameter h̃ can be
defined as:

W (h̃) =
s

Ms
+wbh̃

s+wbh̃ε
(15.12)

where Ms is the desired module margin, wbh̃ the bandwidth and ε the tracking
error.

For the mixed sensitivity problem considered here, two weighting functions
must be defined. The weight Wu takes into account the actuators saturation. The
weight We on the tracking error is used to specify the closed-loop performances,
with a variable bandwidth depending on h̃ following equation (15.12).

Step 2: Connection of the system and the weighting function. The interconnec-
tion of the LPV polytopic model (depending on the plant’s parameters) and the
weighting functions leads to a continuous-time polytopic model depending on
both the plant’s parameters and on the future sampling interval h̃.

For each vertex of the first polytope ωi = [νi1, . . . ,νin], 2 new vertices are
created following :

ω ′
i = [νi1, . . . ,νin, h̃] and ω ′′

i = [νi1, . . . ,νin, h̃] (15.13)

Step 3: Continuous-time controller synthesis. An LPV continuous-time poly-
topic controller is computed using the methodology presented in [2]. The result
is a set of controllers synthesized at the vertices of the polytope. Considering
the current value of the parameters, a convex combination of the N vertices con-
trollers leads to the continuous-time controller:

(
AK(ρ , h̃) BK(ρ , h̃)
CK(ρ , h̃) DK(ρ , h̃)

)
=

N

∑
i=1

αi(t)

(
AK(ωi) BK(ωi)
CK(ωi) DK(ωi)

)
(15.14)

Step 4: Discretization of the LPV polytopic controller. During this step, the pa-
rameter h̃, who was until now not related to any real variable, is considered iden-
tical to the sampling period h. From the continuous time-controller, computed
on-line as in (15.14), a discrete-time controller is obtained using any usual nu-
merical method, e.g. using the exact exponential of a matrix.

M =

(
AK BK

0 0

)
as: {

xKk+1 = AKd xKk +BKd uk

yK =CKd xKk +DKd uk
(15.15)

(
AKd BKd

0 I

)
:= exp

((
AK BK

0 0

)
h

)
(15.16)

where AK and BK are defined in (15.14).
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Finally this controller is a LPV discrete-time one which depends both on the
plant’s parameters and on the varying sampling interval. The main drawback in this
case remains in the on-line computation of the exponential of a state matrix (to get
the exact representation), which may be too costly to be computed in real-time for
an embedded processor with limited computing power.

To be real-time effective it is possible to approximate the matrix exponential by
a Taylor series of order l as:

Aδ ≈ I +
l

∑
i=1

Ai

i!
δ i (15.17)

where δ is the deviation of the sampling interval h w.r.t. its central value h0, given
by h = h0 + δ with hmin − h0 ≤ δ ≤ hmax − h0. It has been shown in [19] that the
approximation error, measured by

JN = max
hmin<h<hmax

‖ Gde(h)−Gd(h) ‖∞

where Gde and Gd are the discrete-time models using the exact and the approximated
methods, are negligible for l ≥ 2 for useful sampling rates variations, e.g. hmax =
3.hmin.

Other ways to approximate the exact form of the discrete matrices can be found in
[29]. Anyway remind that it is not possible to compute a discretization of the vertices
matrix and then build a convex combination since the convexity is lost during the
discretization step.

15.5 LPV Control of the AUV

The methodology presented in section 15.4 is now applied to the altitude control of
the AUV, considering the cascade structure presented in section 15.3. The design
configuration and frequency-domain analysis is first presented. Then some simula-
tion results, obtained on the full non linear AUV model, are provided.

15.5.1 Design Method and Analysis

Let us recall that, according to the structure 15.3, two controllers are designed fol-
lowing the steps given in section 15.4. It is worth noting that to get the solution of
the control problems the YALMIP parser [12] and SeDuMi solver [28] have been
used.

15.5.1.1 Altitude Controller

The altitude controller is designed using the geometrical model (15.5) of section
15.3. The continuous-time altitude model does not depend on any varying parameter
(this model is LTI). However the controller depends only on the sampling period h.
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Fig. 15.6 S sensitivity function - altitude controller

The mixed sensitivity problem is stated as in section 15.4 using the two following
weighting functions :

• We(h̃) =
s

Ms
+wbh̃

s+wbh̃ε with Ms = 2, wb = 10rad/s and ε = 10−4

• Wu =
1

Msu
with Msu = 5.

The continuous-time polytopic approach is then applied to the altitude controller
synthesis, which in this case is reduced to a two-vertices polytope (since the vary-
ing parameter is the sampling interval only). The sensitivity function obtained is
presented on Figure 15.6. The S function shows that the bandwidth varies w.r.t.
the sampling interval according to the performances specifications defined by the
weighting function We. The KS sensitivity function (Figure 15.7) show limited vari-
ations of the gain w.r.t. the sampling interval, and that the Wu weighting function is
respected everywhere.

15.5.1.2 Pitch Angle Controller

The method described in section 15.4 is applied to the polytopic model obtained in
subsection 15.3.2.
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The mixed sensitivity problem is again considered with the two following weight-
ing functions :

• We(h̃) =
s

Ms
+wbh̃

s+wbh̃ε with Ms = 2, wb = 0.4rad/s and ε = 10−4

• Wθu =

[
0.75 0

0 1.5

]
.

By the connection of the polytopic model of the system and the weighting function,
a new continuous-time LPV polytopic model is built, depending both on the param-
eters ρ1 and ρ2 inherited from the non-linear system and on h̃, the sampling interval
afterward used for discretization. Finally a LPV polytopic model with 8 vertices is
achieved :

ρ1ρ2h̃, ρ1ρ2h̃, ρ1ρ2h̃, ρ1ρ2h̃, ρ1ρ2h̃, ρ1ρ2h̃, ρ1ρ2h̃, ρ1ρ2h̃ (15.18)

This model Gθ (ρ1,ρ2, h̃) can be directly used to compute a LPV polytopic con-
troller. The continuous-time controller synthesis is applied on the polytopic model
build for the pitch angle controller (15.10) over polytope (15.18), depending on the
sampling interval and the two parameters cos(θ ) and sin(θ ). The resulting S sensi-
tivity function is presented on Figure 15.8, which emphasizes again the performance
adaptation w.r.t the sampling interval.

Remark: The cascade structure in this chapter uses different bandwidth for the two
loops (altitude and pitch) which therefore are uncoupled, see the values given to wb
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for the two controllers. However successful simulations have been also carried out
using the same sampling range for the two controllers.

Remark: The geometric model for the altitude controller uses a Taylor expansion
around θ = 0 while the pitch controller uses θeq �= 0 as varying parameter, which
seems conflicting. Indeed, for θmax = 0.5 rads, the linearization error on the integra-
tion gain used for altitude control is about 4%. This is negligible considering others
modeling uncertainties, and it is handled by the robustness of the controller. On the
other hand, a θmax = 0.5 pitch angle induces a return torque around the pitch axis
close to the maximum lift capabilities of the control surfaces. Hence using θeq in the
pitch control design allows for an effective trim of the fins control angle w.r.t. the
current pitch angle.

15.5.2 Simulation Scenario

Let us recall that the full (12 state variables) non-linear model of the AUV is used
for the simulations.

The mission considered here is the sea bottom following at a constant altitude
while keeping constant the forward speed. The global control structure used for the
simulations is presented in Figure 15.9.

To implement the AUV mission three controllers are designed and implemented.
A discrete-time H∞controller Ku with a constant sampling period of 0.1s is used
for the control of the longitudinal speed u0 = 1m/sec. The forward velocity must be
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Ku

Kθ(h, ρ)Kz(h)
θref

zref β1, β2 ∑
NL

z
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−

−

−

uref Qc

Fig. 15.9 Global control structure

large enough to provide lift on the actuators. Moreover most payloads, e.g. side-scan
acoustic sensors used to build maps, actually require a constant forward velocity.
The design of this controller is not detailed here (see in [21]).

Both gain-scheduled feedback loops are now Kz(h) and Kθ (ρ1,ρ2,h). The alti-
tude controller Kz(h) (computed from the model Gz(h̃)) gives the reference pitch
angle θre f , which is used by the pitch angle controller Kθ (ρ1,ρ2,h) using the model
Gθ (ρ1,ρ2, h̃) to compute the actions applied to the AUV.

Remark: The continuous models, based on the expected sampling interval h̃, are
discretized on the fly for the actual value of h

The pitch angle polytopic controller Kθ (ρ1,ρ2,h) is a discrete-time controller,
scheduled by the sampling period h and the two parameters inherited from the LPV
model cos(θeq) and sin(θeq). The measure of the pitch angle θ is used for the com-
putation of the 2 parameters.

For evaluation purpose, the non equidistant control intervals are generated as a si-
nusoidal signal ranging between 0.005s and 0.03s (Figure 15.10). The current value
of the parameters is then used to compute the controller matrices at the working
point, the variations of the parameters are depicted by Figure 15.14.

The design of the altitude controller Kz(h), which depends only on the sampling
interval h), is achieved using the methodology presented in section 15.4 for a param-
eter h̃ = h (sampling interval) varying inside the interval [h̃min; h̃max] = [0.05;0.3]s

Fig. 15.10 Reference of sampling interval h
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To track feasible trajectories, the desired altitude is given through a second order
filter whose tuning avoids excessive solicitations of the control surfaces.

It is worth noting that both other parameters (ρ1, ρ2) depends on the output θ
of the system and therefore change during the simulation. The maximum value of
the pitch angle is here 0.5rad which corresponds with the maximum return torque
that can be achieved by the actuators at the chosen forward velocity. The speed of
variation of the reference θre f is also close to the limits of the vehicle capabilities.
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15.5.3 Simulation Results

Simulations results using Matlab/Simulink are presented on Figures 15.11 to 15.15.
These results show the effective adaptivity of the controller w.r.t. the variations of
the parameters which were considered in the LPV model.

The main achievement is that the stability of the control loops is preserved despite
the variations of the sampling rate during control execution. When controlled by a
classical H∞regulator designed for the nominal sampling period, the same plant
rapidly becomes unstable when variations of the sampling interval are applied [20].

Compared with a previous approach where the only varying parameter in the
LPV model was the sampling rate ([21]), the tracking of the altitude reference (Fig-
ure 15.11) and of the pitch reference (Figure 15.12) are achieved with better per-
formances when the non-linearities involving θ are kept in the LPV model. Indeed
accounting for the value of the actual pitch angle in the controller allows for effi-
ciently increase the control actions to counterbalance the return torque due to the
hydrostatic stability of the hull.

Figure 15.13 shows that the angles applied to the control surfaces are far from
the angle limitations (set at 0.5rad for all actuators), as only 30% of the available
range is used. It is worth noting that the results presented use the best tuning tested
for this control configuration. Considering the under use of the actuators, it should
be physically possible to improve the performances (e.g settling time) but numerical
problem rapidly arise when trying to tune the weighting function in that direction.

0 100 200 300 400 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time (s)

co
nt

ro
l in

pu
ts

Q
c

1

1
'

2
'

2

Fig. 15.13 Actions applied to the vehicle
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15.6 Conclusion

In this chapter the altitude control of an AUV is addressed, considering the varying
sampling control of a LPV system. A continuous-time polytopic approach is pro-
posed to avoid, in the control design step, the non straightforward discretization of
an LPV representation.

Simulation results presented in this chapter show the feasibility of the proposed
approach. Thanks to the adaptation of the controller w.r.t. the current value of the
varying parameters, the polytopic controller leads to good results, considering the
fact that simulations are running on the full (12 state variables) non-linear model
of the AUV, while the controllers design is made considering a reduced-order LPV
model.

The proposed cascade control structure takes into account the strong link exist-
ing between the altitude and the pitch angle, and enables to achieve cost-effective
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control objectives in the vertical plan, since the altitude controler computes the suit-
able pitch angle reference to minimize drag.

Moreover the methodology proposed in this chapter, considering as varying pa-
rameter the sampling interval and parameters inherited from the non-linear model
(cos(θeq) and sin(θeq)) allows to improve the close loop performances compared
to the previously studied case where only the sampling rate was considered as a
parameter.

Note that other representations of LPV systems can be used for solving this prob-
lem. For example, the Linear Fractional Representation (LFR) considers the vary-
ing parameters (including uncertainties and non-linearities) as additional inputs of a
nominal LTI plant. Indeed this approach is appealing since it allows for considering
both the system’s varying parameters and the sampling rate in an unified framework.
Some results are under development following these ideas.
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