
Fully Secure Attribute-Based Systems

with Short Ciphertexts/Signatures
and Threshold Access Structures

Cheng Chen1, Jie Chen2, Hoon Wei Lim2, Zhenfeng Zhang1, Dengguo Feng1,
San Ling2, and Huaxiong Wang2

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
{chencheng,zfzhang,feng}@is.iscas.ac.cn

2 Division of Mathematical Sciences,
School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore

s080001@e.ntu.edu.sg, {hoonwei,lingsan,hxwang}@ntu.edu.sg

Abstract. It has been an appealing but challenging goal in research on
attribute-based encryption (ABE) and attribute-based signatures (ABS)
to design a secure scheme with short ciphertexts and signatures, respec-
tively. While recent results show that some promising progress has been
made in this direction, they do not always offer a satisfactory level of
security, i.e. achieving selective rather than full security.

In this paper, we aim to achieve both full security and short cipher-
texts/signatures for threshold access structures in the ABE/ABS setting.
Towards achieving this goal, we propose generic property-preserving con-
versions from inner-product systems to attribute-based systems. We first
give concrete constructions of fully secure IPE/IPS with constant-size ci-
phertexts/signatures in the composite order groups. By making use of our
IPE/IPS schemes as building blocks, we then present concrete construc-
tions of fully secure key-policy ABE (KP-ABE) and ciphertext-policy
ABE (CP-ABE) with constant-size ciphertexts, and a fully secure ABS
with constant-size signatures with perfect privacy for threshold access
structures. These results give rise to the first constructions satisfying the
aforementioned requirements. Our schemes reduce the number of pair-
ing evaluations to a constant, a very attractive property for practical
attribute-based systems. Furthermore, we show that our schemes can be
extended to support large attribute universes and more expressive access
structures.

1 Introduction

Attribute-Based Encryption. The notion of attribute-based encryption
(ABE) [14] was initially developed from the fuzzy identity-based encryption
(FIBE) primitive [31], which allows some sort of error-tolerance. That is, iden-
tities are viewed as sets of attributes, and a user can decrypt if she possesses
keys for enough of (but not necessarily all) attributes a ciphertext is encrypted
under. At the same time, colluding users cannot combine their keys to decrypt a
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ciphertext which none of them were able to decrypt independently. Since then,
ABE finds many useful applications in cryptographic access control systems,
and is further categorized into ciphertext-policy ABE (CP-ABE) and key-policy
ABE (KP-ABE). In the former, a secret key is associated with an attribute set;
a user can decrypt a ciphertext if and only if the attribute set satisfies the access
structure associated with the ciphertext. In the latter, on the contrary, a secret
key is associated with an access structure; a user can decrypt a ciphertext as-
sociated with an attribute set if and only if the attribute set satisfies the access
structure associated with the user’s secret key. Recently, the signature analogue
of ABE, i.e. attribute-based signatures (ABS), has been introduced [24] (see also
[12,23,29]). ABS offers an interesting property in that a signature does not reveal
the identity of the signer (hence preserving the privacy of the signer), since it is
generated and can be verified based on only the signer’s attributes.

While it is desirable that an attribute-based system to be as expressive as
possible (in terms of enforcing an access control policy), two major factors to
consider when designing an ABE/ABS scheme are efficiency and security. Major-
ity of existing ABE and ABS schemes have linear-size ciphertexts and signatures,
respectively, in the maximal number of attributes. Indeed, recent proposals, such
as [1,10,11,15,16], have focused on reducing the sizes of ciphertexts and signa-
tures in the attribute-based setting. Of these, Herranz et al. [16] presented a
CP-ABE scheme supporting threshold access policies with constant-size cipher-
texts; while Attrapadung and Libert [1] proposed a KP-ABE scheme supporting
general access structures with constant-size ciphertexts; and Herranz et al. [15]
gave two constructions of ABS with constant-size signatures for threshold predi-
cates. While these works have taken a significant step forward towards improving
the efficiency of ABE/ABS, they have so far not achieved a satisfactory level of
security. In other words, the aforementioned schemes achieve better efficiency
at the expense of weaker security. They are proven to be only selectively secure,
i.e. an adversary is required to announce the target he intends to attack before
seeing the public (system) parameters. The goal of this paper is to offer solu-
tions that achieve both full security and constant-size ABE ciphertexts or ABS
signatures.

Predicate Encryption. Functional encryption (FE) [2,8,22,28] is recently seen
as a new vision of public key encryption. In an FE system, a decryption key al-
lows a user to learn a function of the encrypted data. Given a functionality F (·, ·),
an authority holding a master secret key can generate a decryption key SKk that
is able to compute the function F (k, x) from the encryption of x. The security
of the FE system guarantees that one cannot learn anything more about x.
ABE and predicate encryption are both example primitives that satisfy the
notion of FE.

The concept of predicate encryption (PE) was proposed by Katz, Sahai and
Waters [19]. Particularly, they devised a PE scheme for inner products: a ci-
phertext encrypted for the attribute vector y can only be opened by a key x
that gives an inner-product x · y = 0. They showed that the inner-product
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encryption (IPE) suffices to give functional encryption associated with the
evaluation of polynomials or formulae in conjunctive/disjunctive normal form
(CNF/DNF). Attrapadung and Libert [2] proposed a fully secure IPE scheme
with constant-size ciphertexts based on Waters’ tag-based IBE scheme [34]; while
Okamoto and Takashima [30] also proposed an IPE scheme with analogous prop-
erties on dual pairing vector spaces. We note that it seems possible to construct
fully secure ABE with constant-size ciphertexts directly from these two IPE
schemes. However, the resulting ABE schemes have two notable shortcomings:
(i) the ABE schemes are rather complex1 and it is not always clear how full
security can be proven; and (ii) the access structures are restricted to a single
AND/OR-gate.

Our Approach. In this paper, we consider how PE can be used to construct
fully secure ABE and ABS with constant-size ciphertexts and signatures, re-
spectively. Moreover, we would like our constructions to support threshold access
structures. (Henceforth, we use a prefix ‘t’ to indicate that an attribute-based
system supports threshold access structures, for example tKP-ABE and tCP-
ABE.)

Our general idea is to construct attribute-based systems from inner-product
systems by extending the technique from [19]: we treat a vector space as an
attribute universe, where each coordinate corresponds to an attribute; for an
attribute subset S, a coordinate is equal to 1 if its corresponding attribute is an
element of S, otherwise, the coordinate equals to 0. If two subsets have t common
attributes, the corresponding vectors overlap in exactly t coordinates, and the
inner-product of them equals to t. In addition, we require some coordinates
to express threshold values and to allow an inner-product between the vector
associated with the attribute subset S and the vector associated with an access
structure (if S satisfies the access structure).

One major advantage of such a conversion technique is that the resulting
attribute-based construction preserves the sizes of ciphertexts/signatures and
the security of the corresponding inner-product scheme. This implies that we
can obtain fully (or adaptively) secure tABE with constant-size ciphertexts and
fully secure tABS (in terms of unforgeability and perfect privacy) with constant-
size signatures, so long as the IPE and the signature analogue (IPS) used in the
conversion comply to these properties. We also note that there currently seems
to be no suitable IPS candidate for our purpose. For the sake of simplicity, we
construct IPE and IPS schemes with the required properties in the composite
order group setting as an intermediate step towards achieving fully secure and
efficient tABE and tABS. Although it is possible to construct the schemes under
the prime order groups (as we will discuss in Section 5), our IPE/IPS schemes
are more compact in the composite order groups setting since they do not employ
additional tags as with the schemes in [2,30].

1 Current constructions [2,21,28,29,30] under the prime order groups and proven secure
using the dual encryption system proof methodology typically have a multitude of
parameters and intricate compositions, in comparisons to those under the composite
order groups [20,22].
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Moreover, since the secret key components (of IPE/IPS) used in our conver-
sion are independent from each other, it becomes more natural to derive the
required security proof using the dual system proof technique as compared to
those in [15], for example. We can now make an (ABE/ABS) secret key semi-
functional by turning the secret key components sequentially in a hybrid security
manner.

Our Contributions. We first give appropriate formal definitions and secu-
rity models for predicate signatures. We then specify three generic property-
preserving conversions: (i) IPE to tKP-ABE, (ii) IPE to tCP-ABE, and (iii)
IPS to tABS. Further, we give concrete constructions of IPE and IPS in the
composite order group setting. Our IPE scheme is fully secure with constant-
size ciphertexts and our IPS scheme is fully unforgeable and perfectly private,
and has constant-size signatures. They are proven secure under the complexity
assumptions used by Lewko and Waters [22].

Using our IPE scheme as a building block, we present concrete constructions
of fully secure tKP-ABE and tCP-ABE with constant-size ciphertexts. The ci-
phertexts of both the tKP-ABE and the tCP-ABE schemes consist of 3 group
elements. The security of our tKP-ABE and tCP-ABE inherits the security of the
underlying IPE scheme. We also give a fully secure tABS construction that relies
on our IPS scheme with constant-size signatures. Our tABS produces signatures
that each also consists of 3 group elements. The full unforgeability and prefect
privacy properties are preserved from the underlying IPS scheme. To the best of
our knowledge, there are no previous schemes that satisfy these properties. In
addition, our schemes reduce the number of pairing evaluations to a constant;
this appears to be a very attractive property for attribute-based systems. Table
1 shows that in comparisons with previous work, our attribute-based schemes
have better efficiency and higher security. Here, PP denotes public parameters,
SK denotes secret keys, CT denotes ciphertexts, Sig denotes signatures, all in the
attribute-based setting. Pai denotes the number of paring computations required
in the scheme.

We remark that all our schemes in Section 4 are for small universes. Thus as a
further contribution, we show that the schemes can be extended to support large
universes2 by borrowing the tricks from [31] in the standard model. Moreover,
we show that our constructions can deal with more general access structures, as
discussed in Section 5.

2 Predicate Encryption and Signatures

We give the definitions and security models for predicate encryption and pred-
icate signature. We also show how these definitions capture the notions of
ABE/ABS and IPE/IPS and provide example instantiations of these primitives.

2 The attribute universe is a set containing all the attributes defined for an attribute-
based system. In the small universe case, the size of the attribute universe is defined
at system setup. In the large universe case, the number of attributes is unlimited.
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Table 1. Comparisons between existing and our ABE/ABS systems

scheme security size of PP size of SK size of CT or Sig expressiveness Pai

CP-ABE

EM+09 [11] selective O(n) O(n) O(1) (n,n)-threshold 2
CZF11 [10] selective O(n) O(n) O(1) and-gate 2
HLR10 [16] selective O(n) O(n) O(1) threshold 3
GZC12 [18] selective O(n) O(n)2 O(1) threshold 3
OT10 [28] full O(n)2 O(n) O(n) general O(n)
Our CP-ABE full O(n) O(n)2 O(1) threshold 2

KP-ABE
ABP11 [1] selective O(n) O(n)2 O(1) general 3
OT10 [28] full O(n)2 O(n) O(n) general O(n)
Our KP-ABE full O(n) O(n)2 O(1) threshold 2

ABS

HLLR12a [15] selective O(n) O(n) O(1) threshold 12
HLLR12b [15] selective O(n) O(n)2 O(1) threshold 3
OT11 [29] full O(n)2 O(n) O(n) general O(n)
Our ABS full O(n) O(n)2 O(1) threshold 3

2.1 Predicate Encryption

Predicate encryption (PE) is a variant of functional encryption, which was for-
mally defined in [8]. We now define the syntax of predicate encryption and its
security model. (Our definitions follow the general framework of those given in
[2,19].3)

Let R : K × X → {0, 1} be a predicate, where K and X de-
note “role” and “policy” spaces. A predicate encryption scheme ΠPE =
(PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) for R consists of four probabilistic
polynomial-time (PPT) algorithms that are described as follows:

– PE.Setup(κ, des): The algorithm takes a security parameter κ and a scheme
description des as input. It outputs some public parameters PP and a master
secret key MSK.

– PE.KeyGen(PP,MSK,y): The algorithm takes as input the public parameters
PP, a master key MSK and a role y ∈ K . It returns a secret key SKy

associated with y.
– PE.Enc(PP,x,M): The algorithm takes as input a messageM , an encrypting

policy x ∈ X and public parameters PP. It outputs a ciphertext CT.
– PE.Dec(PP,x, SKy,CT): The algorithm takes as input a secret key SKy,

a ciphertext CT with a policy x and public parameters PP. It outputs a
message M or ⊥.

For correctness, we require that, for all y ∈ K and x ∈ X , if R(x,y) = 1, then

PE.Dec(PP,x,PE.KeyGen(PP,MSK,y),PE.Enc(PP,x,M)) = M,

3 Our definition of predicate encryption here and throughout the paper refers to the
class of PE with public index (as with [8]), in which the decryption algorithm should
input the index component, as well as the bit length, of the plaintext. This type of
PE has also been informally referred to as “payload hiding” in the literature [19].
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where PP and MSK have been obtained by properly executing the PE.Setup
algorithm.

Security Model. In this paper, we consider only the payload-hiding security,
which requires that ciphertexts hide the encrypted messages from an adversary
but they do not hide their underlying encrypting policies. Let κ be a security pa-
rameter. We describe the security model against chosen plaintext attacks (CPA)
for a PE scheme ΠPE by considering the following security game between an
adversary A and its challenger.

– Setup. The challenger runs the PE.Setup(κ, des) algorithm and gives the
public parameters PP to the adversary.

– Phase 1. The adversary adaptively submits a role y ∈ K and the challenger
answers with a secret key SKy to the adversary.

– Challenge. The adversary submits two messagesM0 andM1 of equal length
and a challenge policy x ∈ X . The challenger chooses μ ∈ {0, 1} at random
and encrypts Mμ under x. The resulting ciphertext CT is given to the ad-
versary.

– Phase 2. The adversary is allowed to continue to make queries as Phase 1.
– Guess. Finally, the adversary outputs a guess μ′ of μ. We say that A is

successful if none of the role y in Phases 1 & 2 that satisfies R(x,y) = 1 has
been queried and μ′ = μ. The success probability is defined as SuccCPA

A,ΠPE
(κ).

Definition 1. For a PE scheme ΠPE, the advantage of an adversary A in the
game is defined as AdvCPA

A,ΠPE
(κ) = |SuccCPA

A,ΠPE
(κ) − 1

2 |. A PE scheme ΠPE is

secure if AdvCPA
A,ΠPE

(κ) is negligible with respect to the security parameter κ, for
any PPT adversary A.
Note that a weaker model that considers selective security can be defined as with
the above security game with the exception that the adversary A is allowed to
choose the challenge encrypting policy x before the setup phase.

Variants. There exist many public key primitives that can be viewed as special
cases of PE, for example, identity-based encryption (IBE) [4,9], hierarchical IBE
(HIBE) [13], broadcast encryption [6], ABE [31,14], IPE [2,30], and spatial en-
cryption (SE) [5]. We provide the definitions of ABE and IPE using the syntax
of PE in the full version of this paper.

2.2 Predicate Signatures

We now define predicate signatures using the syntax of PE. In predicate sig-
natures, the signing and verification algorithms are parameterized by a role
y and a policy predicate x, respectively. A predicate signature generated by
a signer with role y is said to be correctly verified by the public param-
eters and a policy predicate x if R(x,y) = 1 holds. No other informa-
tion is revealed by the signature. A predicate signature (PS) scheme ΠPS =
(PS.Setup,PS.KeyGen,PS.Sign,PS.Verify) for R then consists of four probabilis-
tic PPT algorithms that are described as follows:
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– PS.Setup(κ, des): The algorithm takes a security parameter κ and a scheme
description des as input. It outputs some public parameters PP and a master
secret key MSK.

– PS.KeyGen(PP,MSK,y): The algorithm takes as input the public parameters
PP, a master key MSK and a role y ∈ K . It returns a secret key SKy

associated with y.
– PS.Sign(PP, SKy,x,M): The algorithm takes as input a message M , a secret

key SKy, a signing policy x ∈ X and public parameters PP. It outputs a
signature σ.

– PS.Verify(PP,x, σ,M): The algorithm takes as input a message M , a signa-
ture σ with a policy x and public parameters PP. It outputs 1 if the signature
is deemed valid and 0 otherwise.

For correctness, for all y ∈ K and x ∈ X , if R(x,y) = 1, it is required that

PS.Verify(PP,x,PS.Sign(PP,PS.KeyGen(PP,MSK,y),x,M),M) = 1

and the values PP,MSK have been obtained by properly executing the algorithms
PS.Setup.

Security Model. We consider two essential security properties for a PS scheme:
unforgeability and signer privacy.

Unforgeability: A PS scheme must provide the typical unforgeability prop-
erty, even against colluding users. Let κ be a security parameter. We then define
unforgeability under chosen message attacks (UF-CMA) for a PS scheme ΠPS

by considering the following security game between an adversary A and its chal-
lenger:

– Setup. The challenger runs PS.Setup(κ, des), and sends the public parame-
ters PP to A.

– Query. A can make secret key and signature queries.

• Secret key queries. A adaptively chooses a role y ∈ K and receives
the secret key SKy = PS.KeyGen(PP,MSK,y) from the challenger.
• Signature queries. A adaptively chooses a pair (x,M) consisting of
a policy x and a message M . The challenger chooses a role y that
R(x,y) = 1, runs SKy = PS.KeyGen(PP,MSK,y) and computes a sig-
nature σ = PS.Sign(PP, SKy,x,M) which is returned to A.

– Forgery. At the end of the game, A outputs a tuple (x∗,M∗, σ∗). A is
successful if:

• A has not made any signature query for the pair (x∗,M∗);
• None of the role y in secret key queries phase satisfies R(x∗,y) = 1;
• PS.Verify(PP,x∗, σ∗,M∗) = 1.

The advantage of the adversaryA in successfully breaking the UF-CMA security
of a PS scheme ΠPS is defined as SuccUF-CMA

A,ΠPS
(κ) = Pr[A wins].
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Definition 2. A PS scheme ΠPS is UF-CMA if SuccUF-CMA
A,ΠPS

(κ) is negligible
with respect to the security parameter κ, for any PPT adversary A.
Similarly, if the adversary A is allowed to choose the challenge signing policy x
before the setup phase, we then have a weaker model called selective unforge-
ability.

Perfect Privacy: This property is required to achieve anonymous ABS in the
sense that PS signatures reveal no information except that the role information
that has been used to generate the signatures. Perfect privacy must hold even
against an unbounded adversary which has knowledge of the master secret key.

Definition 3. A PS scheme ΠPS is perfectly private, if for any message M ,
any two roles y1,y2, any secret keys SK1 = PS.KeyGen(PP,MSK,y1), SK2 =
PS.KeyGen(PP,MSK,y2), and any policy x such that R(x,y1) = 1 and
R(x,y2) = 1, the distribution of PS.Sign(PP, SK1,x,M) is identical to that of
PS.Sign(PP, SK2,x,M).

Identity-based signatures (IBS) [17], identity-based ring signatures (IBRS) [37],
and ABS [12,15,23,24,29] are example of special cases of PS. Moreover, as
we define below, the notion of inner-product signatures (IPS) is also a variant
of PS.

Inner-Product Signatures. The notion of inner-product signatures (IPS) can
be defined as with PS, except with the following modification:

– The setup algorithm defines a positive integer N and a dimension n;
– The role space K := {v := (v1, . . . , vn) ∈ Z

n
N};

– The policy space X := {x := (x1, . . . , xn) ∈ Z
n
N};

– The predicate R : K× X → {0, 1} is defined as

R(v,x) :=

{
1 if 〈v,x〉 = 0
0 otherwise.

The detailed description of ABS can refer to [24,29]. In this paper, we are mainly
concerned with the notions of ABS and IPS.

3 Generic Constructions

We describe transformation from inner-product systems to attribute-based sys-
tems supporting threshold access structures. We first recall the definition of an
access structure.

Definition 4. Let U = {att1, att2, . . . , attn} be a set of attributes. An access
structure is a set collection A ⊆ 2{att1,att2,...,attn}\∅. An access structure is mono-
tone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.
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We use (Ω, t) to denote a threshold access structure Γ in U if there exist a
threshold t and a subset Ω ⊆ U such that S ∈ Γ ⇔ |S∩Ω| ≥ t. When the access
structures are restricted to the threshold setting, we call it threshold CP-ABE
(tCP-ABE), threshold KP-ABE (tKP-ABE) and threshold ABS (tABS).

3.1 Generic Construction of tKP-ABE from IPE

To construct a tKP-ABE scheme over an attribute universe U :=
{att1, . . . , attn}, we require an (n + 1)-dimensional IPE scheme. Given an IPE
scheme ΠIPE with four algorithms: (IPE.Setup, IPE.KeyGen, IPE.Enc, IPE.Dec), we
construct a tKP-ABE scheme ΠtKP with the corresponding four algorithms:
(tKP.Setup, tKP.KeyGen, tKP.Enc, tKP.Dec) as follows:

– tKP.Setup(κ,U): It runs IPE.Setup(κ, n+ 1) and outputs public parameters
PP and a master key MSK.

– tKP.Enc(PP, S,M): For a subset S ⊆ U, it first computes a vector x :=
(x1, . . . , xn+1) as follows:

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

Then runs IPE.Enc(PP,x,M) and outputs a ciphertext CT.
– tKP.KeyGen(PP, Γ := (Ω, t),MSK): For a threshold access structure (Ω, t)

(where we denote m := |Ω|), it computes a vector v := (v1, . . . , vn) as
follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ Ω
0 otherwise

Then for 1 ≤ j ≤ m − t + 1 it runs IPE.SKi := IPE.KeyGen(PP,vj ,MSK),
where vj := (t + j − 1, v1, . . . , vn). Outputs the secret key KP.SK(Ω,t) :=
{IPE.SKj}1≤j≤m−t+1.

– tKP.Dec(PP,CT, S,KP.SK(Ω,t)): For a ciphertext CT with the subset S and
a secret key parsed as KP.SK(Ω,t) := {IPE.SK1, . . . , IPE.SKm−t+1}, if k :=
|S∩Ω| ≥ t, it runs IPE.Dec(PP,x,CT, IPE.SKk−t+1) and outputs the message
M , where x := (x1, . . . , xn+1):

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

Correctness. For the vector x := (x1, . . . , xn+1) corresponding to the subset
S in the ciphertext and the vector vk−t+1 := (v1, . . . , vn+1) corresponding to the
secret key component IPE.SKk−t+1 in the tKP-ABE, we have

x1 · v1 = −k,
n+1∑
i=2

xi · vi = k

So we have 〈x,vk−t+1〉 = 0. This implies that the resulting tKP-ABE scheme
inherits the decryptability from the underlying IPE scheme, i.e.,
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IPE.Dec(PP,x, IPE.Enc(PP,x,M), IPE.KeyGen(PP,v,MSK)) = M

iff 〈x,v〉 = 0.

Theorem 1. The resulting tKP-ABE scheme is (selectively) secure if the un-
derlying IPE is (selectively) secure.

3.2 Generic Construction of tCP-ABE from IPE

To construct a tCP-ABE scheme over an attribute universeU := {att1, . . . , attn},
we require an (n + 2)-dimensional IPE scheme. Given an IPE scheme
ΠIPE with four algorithms: (IPE.Setup, IPE.KeyGen, IPE.Enc, IPE.Dec), we con-
struct a tCP-ABE scheme ΠtCP with the corresponding four algorithms:
(tCP.Setup, tCP.KeyGen, tCP.Enc, tCP.Dec) as follows:

– tCP.Setup(κ,U): It runs IPE.Setup(κ, n + 2) and outputs public parameters
PP and a master key MSK.

– tCP.Enc(PP, Γ := (Ω, t),M): For a threshold access structure (Ω, t), it com-
putes a vector x := (x1, . . . , xn+2) as follows:

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

Then runs IPE.Enc(PP,x,M) and outputs a ciphertext CT.
– tCP.KeyGen(PP, S,MSK): For a subset S ⊆ U, it first computes a vector

v := (v1, . . . , vn) as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ S
0 otherwise

Then for 1 ≤ i ≤ |S| − 1 it runs IPE.SKi := IPE.KeyGen(PP,vi,MSK),
where vi := (1, v1, . . . , vn, 1 − i). Outputs the secret key CP.SKS :=
{IPE.SKi}1≤i≤|S|−1.

– tCP.Dec(PP,CT, Γ := (Ω, t),CP.SKS): For a ciphertext CT with the thresh-
old (Ω, t) and a secret key parsed as KP.SKS := {IPE.SKi}1≤i≤|S|−1, if
k := |S ∩ Ω| ≥ t, it runs IPE.Dec(PP,x,CT, IPE.SKk−t+1) and outputs the
message M , where x := (x1, . . . , xn+2):

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

Correctness. The security reduction can follow closely with that of the generic
construction for the above tKP-ABE and we will not discuss any further here.

Theorem 2. The resulting tCP-ABE scheme is (selectively) secure if the un-
derlying IPE is (selectively) secure.
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3.3 Generic Construction of tABS from IPS

To construct a tABS scheme over an attribute universe U := {att1, . . . , attn}, we
require an (n+2)-dimensional IPS scheme. Given an IPS scheme ΠIPS with four
algorithms: (IPS.Setup, IPS.KeyGen, IPS.Sign, IPS.Verify), we construct a tABS
scheme ΠtABS with the corresponding four algorithms:
(tABS.Setup, tABS.KeyGen, tABS.Sign, tABS.Verify) as follows:

– tABS.Setup(κ,U): It runs IPS.Setup(κ, n+2) and outputs public parameters
PP and a master key MSK.

– tABS.KeyGen(PP, S,MSK): For a subset S ⊆ U, it first computes a vector
v := (v1, . . . , vn) as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ S
0 otherwise

Then for 1 ≤ i ≤ |S| − 1 it runs IPS.SKi := IPS.KeyGen(PP,vi,MSK),
where vi := (1, v1, . . . , vn, 1 − i). Outputs the secret key ABS.SKS :=
{IPS.SKi}1≤i≤|S|−1.

– tABS.Sign(PP,ABS.SKS , Γ := (Ω, t),M): If k := |S ∩Ω| ≥ t, it runs
σ ← IPS.Sign(PP,x, IPS.SKk−t+1, Γ ||M), where x := (x1, . . . , xn+2) as fol-
lows:

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

And it outputs σ as the signature.

– tABS.Verify(PP, σ, Γ := (Ω, t),M): It runs IPS.Verify(PP,x, σ, Γ ||M) where
x := (x1, . . . , xn+2) as follows:

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

And outputs the result.

Correctness. The deduction can follow closely with that of the generic con-
struction of tKP-ABE above. And we omit it here.

Theorem 3. The resulting tABS scheme is (selectively) unforgeable and per-
fectly private if the underlying IPS is (selectively) unforgeable and perfectly
private.

The security proofs of Theorems 1, 2 & 3 can be easily obtained from the def-
initions of ABE/ABS and IPE/IPS. Due to space constraints, we omit them
here.
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4 Concrete Constructions of tABE and tABS

We are now ready to describe how to construct a threshold attribute-based sys-
tem from an inner-product system. For the space considersion, we give concrete
constructions of IPE/IPS which are tailored to our needs in the full version
of this paper. Making use of our IPE/IPS schemes as building blocks, we pro-
pose constructions for fully secure tKP-ABE and tCP-ABE with constant-size
ciphertexts, as well as fully secure and perfectly private tABS with constant-size
signatures. Due to the space limitation, we only give the instances of tKP-ABE
and ABS. The tCP-ABE scheme can be easily obtained from the tKP-ABE
scheme and we omit it here. The correctness and security of our schemes follows
from the generic conversions. Our schemes are for small universes of attributes
U := {att1, . . . , attn} and based on composite order groups. (The definition of
composite order bilinear groups can be found in the full version of this paper
or [22].)

Composite Order Bilinear Groups. We define composite order bilinear
groups as follows: let Gc be a group generator which outputs I := (N =
p1p2p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic groups
of order N = p1p2p3, and e is a bilinear map, e : G × G → GT such that
e(g, g) �= 1 for g and for any u, v ∈ ZN , it holds that e(gu, gv) = e(g, g)uv.
We say that G is a bilinear group if the group operation in G and the bilinear
map e : G × G → GT are both efficiently computable. Notice that the map
e is symmetric since e(gu, gv) = e(g, g)uv = e(gv, gu). We let Gp1 , Gp2 , Gp3

denote the subgroups of order p1, p2, p3 in G, respectively. Furthermore, for
a, b, c ∈ {1, p1, p2, p3} we denote by Gabc the subgroup of order abc. From the
fact that the group is cyclic it is simple to verify that if g and h are group
elements of different order (and thus belonging to different subgroups), then
e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our
constructions.

4.1 Fully Secure tKP-ABE with Constant-Size Ciphertexts

– tKP.Setup(κ,U := {att1, . . . , attn}): The setup algorithm chooses a random
description I := (N = p1p2p3, G,GT , e) with G = Gp1 × Gp2 × Gp3 . It
then randomly picks α, a0, . . . , an+1 ∈ ZN and X3 ∈ Gp3 . It then sets h :=
(h0, . . . , hn+1) = (ga0 , ga1 , . . . , gan+1). It outputs the public parameters and
master key as PP := (I, g,h, e(g, g)α), MSK := (α,X3), respectively.

– tKP.KeyGen(PP, Γ := (Ω, t),MSK): For a threshold access structure (Ω, t)
(where we let m := |Ω|), the algorithm computes a vector v := (v1, . . . , vn)
as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ Ω
0 otherwise

.

Then for 1 ≤ i ≤ m − t + 1, the algorithm randomly picks ri ∈ ZN

and (R0,i, . . . , Rn+1,i) ∈ Gn+2
p3

, and outputs the secret key element SKi

:= (K0,i,K1,i, . . . ,Kn+1,i) by setting
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K0,i := griR0,i, K1,i := gαhri
0 R1,i,

{
Kj,i :=

(
h
− vj,i

v1,i

1 hj

)ri
Rj,i

}
j=2,...,n+1

,

where vi := (v1,i, . . . , vn+1,i) = (t + i − 1, v1, . . . , vn). It also outputs the
secret key KP.SK(Ω,t) := {SKi}1≤i≤m−t+1.

– tKP.Enc(PP, S,M): For a subset S ⊆ U and a message M ∈ GT to encrypt,
the algorithm first computes a vector x := (x1, . . . , xn+1) as follows:

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

.

It then randomly picks s ∈ ZN and computes the ciphertext CT :=

(C,C0, C1) as C := M · e(g, g)αs, C0 := gs, C1 :=
(
h0

∏n+1
j=1 h

xj

j

)s

.

– tKP.Dec(PP,CT, S,KP.SKS): For a ciphertext CT parsed as (C,C0, C1) with
the subset S and a secret key KP.SK(Ω,t) parsed as {SK1, . . . , SKm−t+1}, if
k := |S ∩Ω| ≥ t, the algorithm first computes x := (x1, . . . , xn+1):

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

.

It then uses SKk−t+1 := (K0,K1, . . . ,Kn+1) to decrypt: e(g, g)αs =

e(C0,K1

∏n+1
j=2 K

xj

j )/e(C1,K0) and recovers the message as M :=
C/e(g, g)αs.

4.2 Fully Secure tABS with Constant-Size Signatures

– tABS.Setup(κ,U := {att1, . . . , attn}): The setup algorithm chooses a ran-
dom description I := (N = p1p2p3, G,GT , e) with G = Gp1 × Gp2 × Gp3 .
It then randomly picks α, a0, . . . , an+2, b0, b1, b2 ∈ ZN , X3 ∈ Gp3 and a
collision-resistant hash function H : {0, 1}∗ → ZN . The algorithm sets h :=
(h0, . . . , hn+2) = (ga0 , ga1 , . . . , gan+2), and outputs the public parameters
and master key as PP := (I, g,h, gb0 , gb1 , gb2 , X3, e(g, g)

α), MSK := (α).
– tABS.KeyGen(PP, S,MSK): For a subset S ⊆ U, the algorithm first computes

a vector v := (v1, . . . , vn) as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ S
0 otherwise

.

Then for 1 ≤ i ≤ |S| − 1, the algorithm randomly picks ri ∈ ZN and
(R0,i, . . . , Rn+2,i) ∈ Gn+3

p3
, and outputs the secret key element SKi :=

(K0,i,K1,i,
. . . ,Kn+2,i) by setting

K0,i := griR0,i, K1,i := gαhri
0 R1,i,

{
Kj,i :=

(
h
− vj,i

v1,i

1 hj

)ri
Rj,i

}
j=2,...,n+2

,

where vi := (v1,i, . . . , vn+2,i) = (1, v1, . . . , vn, 1 − i). The algorithm also
outputs the secret key ABS.SKS := {SKi}1≤i≤|S|−1.
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– tABS.Sign(PP,ABS.SKS , Γ := (Ω, t),M): To sign a message M with a
threshold access structure (Ω, t) with a secret key ABS.SKS parsed as
{SKi}1≤i≤|S|−1, if k := |S ∩ Ω| ≥ t, the algorithm uses SKk−t+1 :=
(K0,K1, . . . ,Kn+2). It first computes v := (v1, . . . , vn+2) and x :=
(x1, . . . , xn+2) as follows:

v1 := 1, for 1 ≤ i ≤ n : vi+1 :=

{
1 if atti ∈ S
0 otherwise

, vn+2 := k − t;

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1.

The algorithm then randomly picks r1, r2, α
′ ∈ ZN and R0, . . . , Rn+2,

R′
1, R

′
2, R

′
3 ∈ Gp3 , and computes

K ′
0 := K0 · gr1R0, K ′

1 := K1 · gα′
hr1
0 R1,

{
K ′

i := Ki · (h
− vi

v1
1 hi)

r1Ri

}
i=2,...,n+2

,

K ′
n+1 := gr2R′

1, K ′
n+2 := g−α′

gr2b0R′
2, K ′

n+3 := ((gb1 )H(M||Γ,x)gb2 )r2R′
3.

It outputs the signature σ := (σ1, σ2, σ3, σ4) by setting

σ1 := K ′
1 ·

n∏
i=2

(K ′
i)

xi , σ2 := K ′
0, σ3 := K ′

n+2 ·K ′
n+3, σ4 := K ′

n+1.

– tABS.Verify(PP, σ, Γ := (Ω, t),M): On input a signature σ parsed as
(σ1, σ2, σ3, σ4) and a threshold (Ω, t), the algorithm computes x :=
(x1, . . . , xn+2), where

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1.

The algorithm outputs 1 if

e(g, g)α =
e(g, σ1 · σ3)

e
(
h0

∏n+2
i=1 hxi

i , σ2

) · e(gb0(gb1)H(M||Γ,x)gb2 , σ4

) .
Otherwise, it outputs 0.

5 Extensions

5.1 Constructions in Prime Order Groups

Using groups of prime order can potentially lead to more efficient systems (via
faster group operations) and security under different assumptions. A natural
problem is how to construct the prime order group variants of our systems.
This depends on the constructions of the underlying IPE/IPS. For IPE, [2,30]
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gave two fully secure IPE schemes with constant-size ciphertexts in prime order
groups. For IPS, we present a fully secure and perfectly private IPS scheme with
constant-size signatures in the prime order groups based on the HIPE (Hierar-
chical Inner-product Encryption) scheme of [30]. The detail of the construction
is given in the full version of this paper. With that, we can make use of the above
constructions to obtain the desired attribute-based schemes in the prime order
groups.

5.2 Large Universe Constructions

Our constructions in Section 4 are limited to the small-universe case where the
set of attributes U is defined at system setup and the size of the public parameters
grows with |U|. We now show how to extend them to the large universe setting
where the number of attributes is unlimited and the public parameter size is
constant. In the random oracle model, it is easy to overcome the dimension-
limitation and achieve a “large-dimension” in the inner-product systems.

We now turn to realizing a large universe constructions in the standard model.
From the concrete constructions presented in Section 4, we can apply the tricks
used for the large universe constructions in [31,35]. As in the random oracle
model, we “program” each coordinate parameter element by using a hash func-
tion that has enough degrees of randomness to plug in the same information.
The tradeoff is that we need to define the maximum number of attributes max
that any one key may have in the setup phase. Moreover, the public parameters
grow linearly with max. We stress that this does not limit the number of at-
tributes that may be used in the system. We realize construction in the standard
model by adapting the construction of tKP-ABE in the full version of this paper.
We remark that similar techniques can be used to realize large universe variant
of our ABE/ABS constructions based on composite groups and ABE construc-
tions based on the prime order groups converted from [2] in the standard model,
although we do not provide the details in this paper.

5.3 More General Access Structures

Our generic conversions can be extended to admit weighted threshold access
structures which are more general than threshold. We use Γ := (Ω,ω, t) to
denote a weighted threshold access structure [3] over U if there exist a threshold
t and an assignment of weights ω : U→ ZN such that S ∈ Γ ⇔ Σatt∈Sω(att) ≥ t.
We can make our generic conversion support weighted threshold access structure
by a slight modification. For a weighted threshold access structure Γ := (Ω,ω, t),
we set the vector x := (x1, . . . , xn) as

for 1 ≤ i ≤ n : xi :=

{
ω(atti) if atti ∈ Ω
0 otherwise

and the vector v := (v1, . . . , vn) expressing subset S ⊆ U is unchange.
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We can compute the sum of weights of the attributes in S by computing the
inner-product of the two vectors. This way, we can realize the weighted threshold
access structures.
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