
Fair Exchange of Short Signatures

without Trusted Third Party

Philippe Camacho

Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 4to piso, Santiago, Chile

pcamacho@dcc.uchile.cl

Abstract. We propose a protocol to exchange Boneh-Boyen short sig-
natures in a fair way and without relying on a trusted third party. Our
protocol is quite practical and is the first of the sort to the best of our
knowledge. Our construction uses a new non-interactive zero-knowledge
(NIZK) argument to prove that a commitment is the encryption of a bit
vector. We also design a NIZK argument to prove that a commitment
to a bit vector v = (b1, b2, ..., bκ) is such that

∑
i∈[κ] bi2

i−1 = θ where θ

is the discrete logarithm of some public value D = gθ. These arguments
may be of independent interest.

Keywords: Fair exchange, short signatures, gradual release of a secret.

1 Introduction

Nowadays it is more and more common to trade digital goods on the web: E-
books, software licenses, avatar-games currencies like Ultima Online1 to cite a
few. Whether these goods are exchanged on E-bay through Paypal or bought
directly to their provider Amazon or Microsoft, the transaction to be secure
requires a trusted third party (TTP). Though it works quite well in practice,
enabling totally distributed and at the same time secure transaction systems is
of clear interest: It would avoid some security issues due to the presence of single
points of failure, and also allow smoother electronic commercial transactions that
would not rely on some intermediary. A lot of these transactions may be captured
by the exchange of digital signatures. Suppose for example you want to buy a
software license to some independent developer: Indeed exchanging the software
license as well as the money transfer (digital check) can be modeled by signed
messages. However we face a non-trivial problem. Given that the transaction is
made on-line, a malicious participant may fool his counterpart by not sending his
signature or sending some garbage information. A protocol that prevents such
a behavior from a corrupted party is called fair : This means that at the end of
the execution of protocol either both parties obtain the signature they expected
or none does.

1 http://en.wikipedia.org/wiki/Ultima_Online

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 34–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://en.wikipedia.org/wiki/Ultima_Online

Fair Exchange of Short Signatures without Trusted Third Party 35

There are two main approaches to solve this problem. On the one hand, one
can assume that both players interact through a TTP. Though this solution does
not fit our goal, it is important to note that an important line of research has
focused on designing protocols where the TTP is only required when “something
goes wrong”. These protocols are said to be optimistically fair : See [1,25] and
[22] for some recent work.

On the other hand, if no TTP exists and we assume that both participants
have exactly the same computational resources, then it is impossible in general to
achieve complete fairness [10]. In [2,14] was proposed a way to relax the notion of
fairness in order to overcome Cleve’s impossibility result. The idea is to assume
that both players have roughly the same amount of time, so we can achieve
partial fairness. Several secure multi-party computations and specific protocols,
like [6,11,12,5,16], were built on top of this security notion. The recurrent idea
behind these constructions consists in enabling each player to release their secret
bit by bit in alternation. Thus, if a player aborts, the other participant will have
“only one bit of disadvantage”. Formalizing this idea is not an easy task though,
in particular because it is hard to reason on the specific amount of time for the
players. This issue was noticed in [19] where authors point out that (1) assigning
more time to the honest party in order to allow him recover his value is somehow
artificial as it does not depend on the participant himself, and (2) implementing
such definitions seems to imply the use of strong assumptions related to the
exact time required to solve some computational problem.

In this work we propose a new security definition that still captures the in-
tuition of partial fairness for the exchange of digital signatures, but without
forcing the participants to have access to almost equal computational resources
as proposed in [16]. The idea of our definition is to compare the probabilities of
computing valid signatures on the agreed messages at the end of the protocol.
More precisely, if the adversary aborts the protocol, the honest participant2 will
compute the expected signature by choosing randomly a value from the space
of signature candidates, which is defined by the remaining bits to be obtained.
The adversary will keep running its own algorithm and also output a signature
candidate. We say the protocol is secure if the probabilities that each participant
output a valid signature only differ by a polynomial factor. Note that this defini-
tion, like previous ones that circumvent Cleve’s impossibility result [10], allows
the adversary to get some advantage, but it guarantees that this advantage is
polynomially bounded. With that definition in hand we can prove the security of
our protocol without having to rely on the strong assumptions mentioned above.
Our protocol is designed to exchange short signatures [4] without the presence
of a TTP. We use bilinear maps as the underlying signature scheme, and also the
idea of releasing gradually each bit of some secret θ that will enable to recover
the signature. The security of our construction relies on complexity assumptions
for bilinear maps, namely the κ-Strong Diffie-Hellman [4], and the κ-Bilinear

2 Note that we need to consider that at least one participant is honest, as otherwise we
cannot really avoid that one of the two adversaries, which are arbitrary polynomial
time algorithms, wins.

36 P. Camacho

Diffie-Hellman assumptions [3] and holds in the common reference string model.
As we use non-interactive zero-knowledge proofs of knowledge (ZKPoK) in order
to make the protocol simpler and more efficient, we require the use of random
oracle [15] or some non-black box assumptions [20]. If we like, we can use inter-
active ZKPoK at a minor expense of round efficiency.

Our Contributions

1. We propose a practical protocol for exchanging short signatures [4] without
relying on a TTP. To the best of our knowledge this is the first construction
that meets such a goal. The number of rounds of our protocol is κ+1, where
κ is the security parameter. The communication complexity is 16κ2 + 12κ
bits. The protocol requires a linear number of group exponentiations, group
multiplications, bilinear map applications, hash computations and also a
constant number of group divisions.

2. We introduce a new non-interactive zero-knowledge (NIZK) argument to
prove that a commitment is the encryption of a bit vector. This protocol
may be of independent interest.

3. We introduce another NIZK argument to prove that a commitment to a
bit vector corresponds to the binary decomposition of some value θ which
is hidden as the discrete logarithm of some group element. We think this
argument may lead to other interesting applications.

4. As stated earlier, we propose a new security definition for partial fairness in
the context of the exchange of digital signatures. This definition is simple
and avoids the issue of involving the exact running time of the participants.

Our Approach. Let κ ∈ N be the security parameter. Let (p,G,GT , e, g) ←
BMGen(1κ) be the public parameter where p = |G| = |GT | is prime, G,GT are
cyclic groups, e : G×G→ GT is the bilinear map and g is a random generator.
Let s be a random element in Zp, we consider the following common reference

string: (g, gs, gs
2

, ..., gs
κ

) = (g0, g1, g2, ..., gκ). In practice this common reference
string can be computed using generic multi-party computation techniques (see
[9] for an efficient implementation) so that the secret s is randomly generated
and remains unknown to all the participants. Another alternative is to rely on a
TTP that would “securely delete” the secret after the generation of the common
reference string. Obviously the intention of this work is to avoid the use of a
TTP, but note however that even in this case, the TTP would be required only
once.

Our construction can be summarized as follows. The prover chooses a secret
θ ∈ Zp, then commits each bit of this secret into a Pedersen [28]
commitment, where the bit bi in position i with randomness ri ∈ Zp will be

committed with respect to the base (g, gi): That is Commit(bi, ri, i) = grigbii .
Then we use a NIZK argument 3 to prove this commitment really encrypts a
bit. The next step is to publish D = gθ and show, using another NIZK argument,

3 The reader can refer to the full version of this paper [7] for standard definitions
related to NIZK protocols.

Fair Exchange of Short Signatures without Trusted Third Party 37

that θ, the discrete logarithm of D, is “equivalent” to the bit vector commit-
ted in C = (Commit(bi, ri, i))i∈[κ]. More precisely, the argument proves that
θ =

∑
i∈[κ] bi2

i−1. Now if we consider some signature σ, the prover will blind it

using θ to obtain σ̃ = σθ. Using bilinear maps it is straightforward to verify that
σ̃ contains a valid signature σ which is blinded in the exponent by θ, the discrete
logarithm of D. The other verifications will consist simply in checking the NIZK
arguments. Finally, we need to provide zero-knowledge proofs of knowledge for
the representation of each bit commitment in order to be able to simulate the
execution of the protocol even if the adversary aborts. By releasing each bit in
turn, both players will reconstruct their own blinding factor θ and obtain the
signature.

Related Work. Among the abundant literature on the topic of gradual release
and fair exchange for digital signatures, [12] is probably the work that is the
most similar to ours: It describes a practical fair exchange protocol for digital
signatures based on gradual release of a secret. The protocol described in [12]
works for Rabin, RSA and El Gamal signatures. The number of rounds of the
protocol described in [12] is roughly 2κ for RSA and Rabin signatures and κ for
El Gamal signatures.

Due to Cleve’s impossibility result [10], the question of building complete fair
protocols with dishonest majority seemed to be closed. However, Gordon et al.
showed that non-trivial functions can be computed fairly in the two-party model
[18], and left the question of finding a tight characterization of these functions
open. In particular it is not known whether functions with a non-polynomial size
domain and that return multiple bits as output (like computing a signature) can
be computed fairly in Cleve’s setting.

In [19] is proposed a definition for partial fairness that may exhibit some
similarities with ours (both definitions involve a Q(κ) factor where Q is a poly-
nomial). However our definition and approach differs quite from [19]. First, the
setting in [19] is more general than our specific construction to exchange digital
signatures. Secondly, in their protocol, the number of rounds is variable and de-
fines the level of fairness, whereas in our construction fairness only depends on
the computational power of the participants.

Our NIZK argument to prove that a commitment encrypts a bit vector is
inspired by [21,20]. We remark that, though [16] uses the idea of gradual release,
the construction proposed is not practical as it requires to code the functionality
(signing in our case) as an arithmetic circuit.

Organization of the Paper. In Section 2 we introduce notations and recall
some definitions and standard techniques we use in this work. In Section 3 we
describe the bit vector commitment scheme. The argument for proving the equiv-
alence between a bit vector commitment (Ci)i∈[κ] and the discrete logarithm θ

of gθ is introduced in Section 4. The fair exchange protocol is shown in Section
5. We conclude in Section 6.

38 P. Camacho

2 Preliminaries

2.1 Notations

For m,n ∈ N with m < n, [m..n] means the set of integers {m,m+1, ..., n−1, n}
and [n] means the set of integers {1, ..., n}. If κ ∈ N is the security parameter
then 1κ denotes the unary string with κ ones. We will use p to denote a prime
number of κ bits. A function ν : N → [0, 1] is said to be negligible in κ if for
every polynomial q(·) there exists κ0 such that ∀κ > κ0 : ν(κ) < 1/q(κ). In the
following, neg will denote some negligible function in κ. An algorithm is called

PPT if it is probabilistic and runs in polynomial time in κ. We write x
R← X to

denote an element x chosen uniformly at random from a set X . x ← v means
that the variable x is assigned the value v.

A vector of n components and values vi is denoted v = (vi)i∈[n]. If the vector
contains elements of Zp we may also write B[·] = (B[1], B[2], ..., B[n]). Let θ ∈
Zp, we denote by θ[·] the binary decomposition (vector) of θ. That is θ[·] =
(θ[1], ..., θ[κ]) and in particular θ =

∑
i∈[κ] θ[i]2

i−1. P (·) will stand for a formal

polynomial with coefficients in Zp, and P [·] for the vector of its coefficients:
Thus if d = deg(P) is the degree of polynomial P (·) then we have: P (X) =∑

i∈[d+1] P [i]X i−1.

2.2 Non-interactive Zero-Knowledge Proofs of Knowledge

Our protocol for fair exchange uses zero-knowledge proofs of knowledge relative
to bit commitments. In order to simplify the description of the fair exchange
protocol we will use non-interactive zero-knowledge proofs of knowledge. We note
however that interactive ZKPoK would work as well, though adding 2 rounds to
our protocol and loosing possibly security guarantees in case the protocol is run
in parallel or involves more than 2 players. The most popular way to implement
such protocols is by using the Fiat-Shamir heuristic [15], trading non-interaction
for a security proof relying on the random oracle model. We mention that our
scheme could also be adapted to fit Groth’s short non-interactive argument proof
system [20]. In this case the security of non-interactive proofs of knowledge would
depend on a non-black box assumption and we would get shorter arguments4.

Let G be a cyclic group of prime order p where the discrete logarithm is hard.
Let H : G → Zp be a randomly chosen function from a CRHF. Let g, h be
two random generators of G such that the discrete logarithm of h in base g is
unknown.

We will need a ZKPoK of the discrete logarithm θ of some public valueD = gθ.
Following the notation of [8], we have that PK{θ : gθ} = (c = H(gr), z =

r − cθ) where r
R← Zp. The verifier checks that c = H(Dcgz). We will also

use the following ZKPoK that convinces a verifier that the prover knows the
representation of a commitment C = gαhβ in base (g, h) where α, β ∈ Zp.

4 Note however that the common reference string would need to be of quadratic size
in the size of the statements.

Fair Exchange of Short Signatures without Trusted Third Party 39

PK{(α, β) : C = gαhβ} = (c = H(gr1hr2), z1 = r1 − cα, z2 = r2 − cβ) where

r1, r2
R← Zp. The verifier checks that c = H(Ccgz1hz2).

2.3 Bilinear Maps

In this paper we consider bilinear maps which are defined as following:
Let G,GT , be cyclic groups of prime order p. We consider a map

e : G×G→ GT which is

– bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(ax, by) = e(a, b)xy.
– non-degenerate: let g be a generator of G then e(g, g) also generates GT .
– efficiently computable: There exists a polynomial time algorithm BMGen with

parameter 1κ that outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT is the representation
of the corresponding groups of size p (p being a prime number of κ bits), g is
a generator of G, and ê is an efficient algorithm to compute the map. For the
sake of simplicity, we will not distinguish between G,GT , e, and Ĝ, ĜT , ê.

2.4 Assumptions

Let N ∈ N. For the following assumptions, the common public parameter is
PP =< (p,G,GT , e, g), (g0, g1, g2, · · · , gN) > where s is chosen randomly in Zp

and gi = gs
i

for i ∈ [0..N].

Definition 1. N-Diffie-Hellman Inversion (N-DHI) assumption, [26].

The N -Diffie-Hellman Inversion problem consists in computing g
1
s given PP. We

say the N -DHI assumption holds if for any PPT adversary A we have

AdvN-DHI(A, κ,N) = Pr
[
g

1
s ← A(1κ, PP)

]
= neg(κ)

The bilinear variant of the previous assumption was introduced in [3].

Definition 2. N-Bilinear Diffie-Hellman Inversion assumption
(N-BDHI). The N - Bilinear Diffie-Hellman Inversion problem consists in com-

puting e(g, g)
1
s given PP. We say the N -BDHI assumption holds if for any PPT

adversary A we have

AdvN-BDHI(A, κ,N) = Pr
[
e(g, g)

1
s ← A(1κ, PP)

]
= neg(κ)

Definition 3. N-Strong Diffie-Hellman assumption (N-SDH), [4]. The

N -Strong Diffie-Hellman (N -SDH) problem consists in computing (c, g
1

s+c) given
PP. We say the N -SDH assumption holds if for any PPT adversary A we have

AdvN-SDH(A, κ,N) = Pr
[
(c, g

1
s+c)← A(1κ, PP)

]
= neg(κ)

As mentioned in [4], the N -SDH assumption is equivalent to the N -DHI assump-
tion when c is fixed. The following assumption can be considered as a particular
case of the poly-Diffie-Hellman assumption [23], or a generalization of the N+1-
Exponent assumption introduced in [30].

40 P. Camacho

Definition 4. N+i-Diffie-Hellman Exponent(N+i-DHE) assumption.

The N+i-Diffie-Hellman Exponent problem consists in computing gs
N+i

, for
1 ≤ i ≤ N given PP. We say the N+i-DHE assumption holds if for any PPT
adversary A we have

AdvN+i-DHE(A, κ,N) = Pr
[
gs

N+i ← A(1κ, PP)
]
= neg(κ)

In [30], the N -DHI assumption was shown to be equivalent to the N+1-Exponent
assumption (N+1-DHE). We state 5 here the following implication.

Proposition 1. N -BDHI ⇒ N+i-DHE.

2.5 Digital Signatures

Standard Digital Signatures. We denote by SSig = (SKG, SSig, SVf) a
standard signature scheme. A pair of private / public keys (sk, pk) is created
by running SKG(1κ). Given a message m ∈ {0, 1}∗, a signature on m under
pk is σm = SSig(sk,m). A signature σ on m is deemed valid if and only if
SVf(pk,m, σ) returns valid. Regarding security, we use the standard notion of
existential unforgeability under chosen message attack [17].

Boneh and Boyen Signature Scheme [4]. We recall here briefly the short
signature scheme [4] introduced by Boneh and Boyen. The setup algorithm
BMGen(1κ) generates the public parameters of the scheme (p,G,GT , e, g)

6. The

key generation algorithm SKG(1κ) selects random integers x, y
R← Zp and sets

u = gx and v = gy. The secret key is sk = (g, x, y) and the public key is
pk = (g, u, v). Given a message m and sk, the signing algorithm SSig(sk,m)

works as follows. It selects rσ
R← Zp such that rσ − (x+m)/y �= 0 mod p and re-

turn the (randomized) signature σ = (g
1

x+m+yrσ , rσ) = (σ′, rσ). Finally, in order
to verify a signature σ on message m relative to the public key pk, the algorithm
SVf(pk,m, σ) consists in checking that e(σ′, ugmvrσ) = e(g, g). The scheme is
secure in the standard model under the N -SDH assumption.

2.6 Simultaneous Hardness of Bits for Discrete Logarithm

Our construction relies on the idea of releasing gradually the bits of θ ∈ Zp,
the discrete logarithm in base g of D = gθ. A problem that could arise in this
situation would be that some θ values are somehow easier to find than others,
especially when some of the bits are released. This might help an adversary to
retrieve θ much faster (by a factor greater than a polynomial) and thus break the
security of our protocol. To overcome this issue we need to introduce the Simul-
taneous hardness of bits of the discrete logarithm assumption which states that

5 The proof is very similar to the one introduced in [30] and can be found in the full
version [7].

6 We use symmetric bilinear map for the sake of exposition.

Fair Exchange of Short Signatures without Trusted Third Party 41

a polynomial time adversary cannot distinguish7 between a random sequence of
l = κ− ω(log κ) bits and the first l bits of θ when given D = gθ.

Definition 5. (Simultaneous hardness of bits for discrete logarithm) Let G be
a cyclic group of prime order p. We say that the Simultaneous hardness of bits
for discrete logarithm (SHDL) assumption holds, if for every PPT adversary A
and for any l = ω(log κ), we have that the following quantity is negligible in κ:

AdvSHDL(A, κ) = |Pr
[

θ
R← Zp :

1← A(gθ, θ[1..κ− l])

]

− Pr

[
θ, α

R← Zp :
1← A(gθ, α[1..κ− l])

]

|

where the probability is taken over the random choices of A.
Schnorr [29] showed that the SHDL holds in the generic group model by com-
puting the following upper bound on the advantage of the adversary:

AdvSHDL(A, κ) = O(κ(κ− l)
√
t(
2κ−l

2κ
)1/4)

where t is the number of generic group operations of the adversary. Thus,
if we set l = ω(log κ), we obtain that AdvSHDL(A, κ) = O(κ(κ − ω(log κ))√
t(2−ω(log κ))1/4), which is negligible.
The recent work [13] by Duc and Jetchev suggests that results applying to

groups of integers modulo a safe prime [27,24] can be extended to elliptic curves
so to reduce the SHDL assumption to more standard ones.

3 A New Argument to Prove a Commitment Encrypts
a Bit

In this section we describe a commitment scheme to encrypt a vector of values
in Zp and then provide a NIZK proof that each component of this vector is a
bit. Our technique borrows from [21] in the sense we use the idea that if the
value b encrypted is a bit then b(b − 1) must be equal to 0, and also from [20]
by implementing a basic form of the restriction argument.

Our commitment scheme requires to generate a common reference string

CRS = (g, gs, gs
2

, ..., gs
N

) = (g0, g1, ..., gN) where s
R← Zp is the trapdoor. To

commit a bit bi in position i using randomness ri ∈ Zp, we compute the follow-

ing slight variation of the Pedersen commitment Commit(bi, ri, i) = Ci = grigbii .
The commitment to the vector B = (b1, b2, ..., bN) using the randomness r =
(ri)i∈[N] will simply be the vector formed by the commitments for each
bit in position i: C = (Ci)i∈[N]. Abusing a bit our notation, we will write
C = Commit(B, r).

7 Note that a PPT adversary can easily distinguish both bit strings if l = κ−O(log κ)
by performing a brute force attack on the remaining bits as 2O(log κ) is a polynomial
in κ.

42 P. Camacho

We still need a NIZK that each commitment Ci is the encryption of a bit. The
prover proceeds as follows: He computes the “translation” of the commitment
by N − i positions to the right, by providing the value Ai = griN−ig

bi
N . If we

compute e(Ai, Cig
−1) and try to express this quantity as e(Bi, g), we realize by

simple inspection (see correctness proof of Theorem 1) that a factor g
bi(bi−1)
N+i

will appear. Obviously the prover does not know gN+i so in case bi /∈ {0, 1} he
will not be able to provide the second part of the proof, Bi. If bi is indeed a bit
then the prover will compute the proof πi = (Ai, Bi) in order to convince the
verifier that Ci is the encryption of a bit relative to position i. The proofs for
the following proposition and theorem can be found in the full version [7].

Proposition 2. The vector commitment scheme described above is perfectly hid-
ing and computationally binding under the N -BDHI assumption.

Common reference string: Input (1κ, N)

1. (p,G,GT , e, g)← BMGen(1κ)

2. s
R← Zp

3. Return CRS =< (p,G,GT , g), (g0, g1, g2, ..., gN) > where for all i ∈ [0..N] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (C1, C2, ..., CN). The

claim is that for each i ∈ [N] there exists ri, bi such that Ci = grig
bi
i where bi ∈ {0, 1}.

Proof: Input (CRS,B, r)

1. Check that B = (b1, ..., bN) ∈ {0, 1}N . Return ⊥ if this is not the case.

2. Check that r = (r1, ..., rN) ∈ Z
N
p . Return ⊥ if this is not the case.

3. For each i ∈ [N] compute an argument πi that Ci is the commitment to a bit in base

gi: πi = (Ai, Bi) where Ai = CsN−i

i and Bi is such that e(Ai, Cig
−1
i) = e(Bi, g).

4. Return π = (πi)i∈[N].

Verification: Input (CRS,C, π)

1. Parse C as (Ci)i∈[N]. Check that C ∈ G
N .

2. Parse π as ((Ai, Bi))i∈[N]. Check that π ∈ (G× G)N .

3. For each i ∈ [N] check that:
(a) e(Ci, gN−i) = e(Ai, g).

(b) e(Ai, Cig
−1
i) = e(Bi, g).

4. Return valid if and only if all check pass, otherwise return ⊥.

Fig. 1. NIZK proof of a commitment being the encryption of a binary vector

Theorem 1. The protocol of Fig. 1 is a NIZK proof that the statement C =
(Ci)i∈[N] is such that for every i ∈ [N] there exists (ri, bi) ∈ (Zp × {0, 1}) with
Ci = grigbii . The NIZK proof has perfect completeness, perfect zero-knowledge
and computational soundness under the N -BDHI assumption.

Fair Exchange of Short Signatures without Trusted Third Party 43

4 Base Equivalence Argument

Let θ
R← Zp. Consider the commitment to the bit vector C = (Ci)i∈[κ] =

(grig
θ[i]
i)i∈[κ] where ri ∈ Zp for each i ∈ [κ] and also D = gθ. In this sec-

tion we introduce a NIZK proof to show that indeed each bit commitment in
position i, Ci, encrypts the ith bit of θ, which is hidden as the discrete log-
arithm of D. This argument will allow us to blind the signature with some
random factor θ (in the exponent) and then reveal each bit of this exponent
gradually without leaking any additional information. The idea is the follow-

ing. Given θ ∈ Zp and C = (grig
θ[i]
i)i∈[κ], the prover proceeds in two steps.

First he computes D′ =
∏

i∈[κ] g
rig

θ[i]
i

gr where r =
∑

i∈[κ] ri. Here the prover
computes some compressed representation of the bit vector commitment and
removes the randomness. Observe however that as θ is uniformly random, thus
so is D′. The prover will need to convince the verifier that r is indeed the ac-
cumulated randomness of the bit vector commitment. To do so he computes

U = D′
1
s = (

∏
i∈[κ] g

θ[i]
i)

1
s =

∏
i∈[κ] g

θ[i]
i−1 where we recall that g0 = g. Observe

that this value can be computed without knowing s. In order to verify this proof,

the verifier will check that e(
∏

i∈[κ] Ci

gr , g) = e(U, g1). Intuitively, once the ran-
domness of the bit vector is removed one can move the vector to the left by one
position. If r would not be equal to

∑
i∈[κ] ri, this would not be possible with-

out breaking some assumption. The second step consists in checking that the

condensed bit vector commitment U =
∏

i∈[κ] g
θ[i]
i−1 is “equivalent” to the simple

commitment gθ. This is done by noting that U =
∏

i∈[κ] g
θ[i]
i−1 = gP (s) where

P (·) is the polynomial P (X) =
∑

i∈[κ] θ[i]X
i−1. This means in particular that

P (2) =
∑

i∈[κ] θ[i]2
i−1 = θ. Thus, we need to prove that P (s)−P (2) = P (s)− θ

is divisible by s− 2. The prover can compute the coefficients of the formal poly-
nomial W (·) such that P (X)− P (2) = W (X)(X − 2), then using the common
reference string CRS the prover obtains V = gW (s). Verifying the “base equiv-
alence” statement consists in checking that e(UD , g) = e(V, g1g

−2) = e(V, gs−2).
This means that indeed θ = P (2) and thus the coefficients of P (·) correspond
to the binary decomposition of θ. The full protocol is detailed in Fig. 2 and the
proof of the theorem is available in the full version [7].

Theorem 2. The protocol in Fig. 2 is a NIZK proof that the bits of the dis-
crete logarithm of D correspond to the bit vector committed in (Ci)i∈[κ]. The
NIZK proof has perfect completeness, perfect zero-knowledge and computational
soundness under the κ-SDH assumption.

5 Fair Exchange of Short Signatures without TTP

Our fair exchange protocol for digital signatures works as follows. At the begin-
ning a common reference string CRS is generated. Then each participant runs

44 P. Camacho

Common reference string: Input (1κ, κ)

1. (p,G,GT , e, g)← BMGen(1κ).

2. s
R← Zp.

3. Return CRS =< (p,G,GT , e), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (D,C1, C2, ..., Cκ)
where (Ci)i∈[κ] is a commitment to a bit vector as defined in Sect. 3. The claim is that
the vector formed by the binary decomposition of the discrete logarithm of D is equal to
the bit vector committed in (Ci)i∈[κ].

Proof: Input (CRS, θ, r1, ..., rκ)

1. Check that D = gθ . Return ⊥ if this is not the case.

2. Compute for every i ∈ [κ]: Ci = grig
θ[i]
i .

3. Compute r =
∑

i∈[κ] ri.

4. Compute U = (

∏
i∈[κ] Ci

gr)
1
s using the common reference string CRS and the bit vector

θ[·].
5. Compute the formal polynomial W (·) such that P (X)−P (2) = W (X)(X − 2) where

P (X) =
∑

i∈[κ] θ[i]X
i−1, and P (2) =

∑
i∈[κ] θ[i]2

i−1 = θ. Compute V = gW (s)

using the coefficients of the formal polynomial W (·) and the common reference string
CRS.

6. Return π = (r, U, V).

Verification: Input (CRS, C, π)

1. Parse C as (D, (Ci)i∈[κ]).

2. Parse π as (r, U, V).

3. Check that r ∈ Zp.

4. Check that (U, V,D,C1, ..., Cκ) ∈ G
κ+3.

5. Compute D′ =

∏
i∈[κ] Ci

gr .

6. Check that e(D′, g) = e(U, g1).

7. Check that e(U
D , g) = e(V, g1g

−2).

8. Accept if all tests pass in which case return valid otherwise return ⊥.

Fig. 2. NIZK proof that a basic commitment is equivalent to a bit vector commitment

FEKeyGen(1κ) to obtain a pair of (public/private) keys (pk, sk) for the signing
algorithm. At this point each participant executing EncSigGen(CRS, sk,m) will
compute an encrypted signature γ for the message m, using the signature σm

blinded with some factor θ. This value γ will also contain the proofs that relate
the signature σm with some bit vector commitment to θ.

The rest is straightforward: Each participant sends the encrypted signature.
If all the verifications pass, the first participant PA will ask to PB to open the
commitment of the first bit of θA. If the opening is successful, PB will do the
same for its own blinding factor θB. The process is repeated for each bit until all
the bits of the blinding factors are recovered. Finally, each player can compute
the signature by “canceling out” the blinding factor θ. The abstract syntax of
the protocol is described in Fig. 3.

Fair Exchange of Short Signatures without Trusted Third Party 45

We describe now more in detail how the encrypted signature is constructed,
which is the core of our construction. The encrypted signature contains:

1. A commitment C to the bit string formed by the bits of θ as described in
Section 3.

2. σ̃, the signature of the message m blinded by θ.
3. Proofs to guarantee that the bit vector commitment encrypts the binary

decomposition of the blinding factor θ.
4. A proof in order to convince the verifier that γ is the encryption of σm under

some blinding factor θ which is hidden in the basic commitment gθ.
5. A proof of knowledge of the discrete logarithm ofD and a proof of knowledge

of the representation of each bit commitment of the vector C. These proofs
of knowledge will allow us to keep simulating the adversary despite it aborts.

A detailed description of the concrete protocol is given in Fig. 4.

PA(CRS,mA,mB) PB(CRS,mA,mB)

1 (skA, pkA)← FEKeyGen(1κ)
2 pkA −→
3 (skB , pkB)← FEKeyGen(1κ)
4 ←− pkB

5 (θA, rA, γA)← EncSigGen(CRS, skA,mA)
6 γA −→
7 (θB , rB , γB)← EncSigGen(CRS, skB ,mB)
8 ←− γB

10 v ← EncSigCheck(CRS, pkB ,mB , γB)
11 if v = 0 then ABORT
12 v ← EncSigCheck(CRS, pkA,mA, γA)
13 if v = 0 then ABORT
for i = 1 to κ:
14 openA,i ← KeyBitProofGen(CRS, rA, θA, i)
15 openA,i −→
16 openB,i ← KeyBitProofGen(CRS, rB , θB, i)
17 ←− openB,i

19 vi ← KeyBitCheck(CRS, openB,i, i)
20 if vi = 0 then ABORT
21 vi ← KeyBitCheck(CRS, openA,i, i)
22 if vi = 0 then ABORT
end for
23 σmB

← EncSigDecrypt(γB , θB)
24 σmA

← EncSigDecrypt(γA, θA)

Fig. 3. Abstract fair exchange protocol

We say that the protocol is perfectly complete8 if, and only if, both players
PA and PB that follow the protocol obtain respectively σA = SSig(skB,mB),
the signature of message mB and σB = SSig(skA,mA), the signature of message
mA, with probability 1.

8 Here complete does not refer to fairness.

46 P. Camacho

We say that the protocol is (partially) fair if, at the end of the execution of
the protocol (be it normal or anticipated by the abortion of the adversary), the
probability of both players to recover their corresponding signature differs at
most by a polynomial factor in the security parameter κ. As mentioned in the
introduction, the advantage of this approach is that it avoids trying to compare
the exact running time of the participants and thus allows to capture in a simple,
but precise manner, the intuition of partial fairness.

Definition 6. (Partial fairness) We define the partial fairness of the protocol
through the following experiment: The adversary A plays the role of the corrupted
player say w.l.o.g. PA. Thus, PB is honest and follows the protocol. OSSig(·) is
the signing oracle for the signature scheme SSig relative to the public key pkB
of PB.

1. A asks for signature computations for arbitrary messages to OSSig(·).
2. A chooses the messages mA and mB on which the fair exchange protocol will

be run, with the restriction that mB must not have been requested before to
OSSig(·).
A computes also its public key pkA and sends it to PB.

3. A then interacts in arbitrary way with PB.
4. If A has aborted before ending the protocol, then let θ∗A[1..i] (0 ≤ i ≤ κ) be

the partial blinding obtained by PB. At this point we assume that PB will
try to compute SSig(skA,mA) by choosing at random some element in the
remaining space of size 2κ−i. We call this tentative signature σB.

5. A keeps running its own algorithm and finally outputs a tentative signature
σA on mB relative to public key pkB .

The protocol is said to be partially fair if and only if there exists some polynomial
Q(·) such that

Pr [SVf(pkB ,mB, σA) = valid]

Pr [SVf(pkA,mA, σB) = valid]
≤ Q(κ)

where the probability is taken over the random choices of A and PB.

As the signature scheme presented in [4] is secure under the κ-SDH assumption,
we have the following result (see the full version [7] for the proof).

Theorem 3. The protocol described in Fig. 4 is complete. Moreover if the κ-
SDH assumption, the κ-BDHI assumption and the SHDL assumption hold, and
a securely precomputed common reference string is available, then it is secure in
the random oracle model according to definition 6.

Fair Exchange of Short Signatures without Trusted Third Party 47

FESetup(1κ)
1. (p,G,GT , e, g)← BMGen(1κ)

2. s
R
← Zp

3. Return CRS =< (p,G,GT , e, g), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

FEKeyGen(1κ)

1. (sk, pk) ← SKG(1κ) where sk = (g, x, y) and pk = (g, u, v) with u = gx and v = gy ,
like described in section 2.5.

2. Return (sk, pk).

EncSigGen(CRS, sk,m)

1. Compute θ
R
← Zp.

2. Compute D = gθ .

3. Compute C = (Ci)i∈[κ] = (grig
θ[i]
i)i∈[κ].

4. Compute π1 that shows that C is the encryption of a binary vector as described in
figure 1.

5. Compute π2 that shows that C is the encryption of the bits of the binary decompo-
sition of the blinding factor θ as described in figure 2.

6. Compute PKθ = PK{θ : gθ} as described in section 2.2.

7. Compute PK, a vector where each component at position i is ZKPoK for the repre-

sentation of Ci in base (g, gi). PK = (PK{(ri, θ[i]) : grig
θ[i]
i })i∈[κ] as described in

section 2.2.

8. Parse sk as (g, x, y).

9. Set rσ
R
← Zp.

10. Compute σ = (σ′, rσ)← SSig(sk,m) where σ′ = g
1

x+m+yrσ .

11. Set σ̃ ← (σ′θ = g
θ

x+m+yrσ , rσ) = (σ̃′, rσ).

12. Set γ ← (D,C, π1, π2, PKθ,PK, σ̃).

13. Return (θ,r, γ), where r = (ri)i∈[κ] is the randomness vector of the commitment C.

EncSigCheck(CRS, pk,m, γ)

1. Parse γ as γ = (D,C, π1, π2, PKθ,PK, σ̃).

2. Check π1 as described in figure 1.

3. Check π2 as described in figure 2.

4. Check PKθ using D and PKθ as described in section 2.2.

5. Check the zero-knowledge proof of knowledge PK using C and PK as described in
section 2.2.

6. Parse pk as pk = (g, u, v).

7. Check that e(σ̃, ugmvr
σ) = e(D, g).

8. Return valid if all tests pass, ⊥ otherwise.

KeyBitProofGen(CRS, r, θ, i)

1. Opens the ith commitment of C, that is (θ[i], ri) such that Ci = grig
θ[i]
i .

2. Return open← (θ[i], ri).

KeyBitCheck(CRS, open, i)

1. Parse open as open = (b, r)

2. Check that Ci = grgb
i and b ∈ {0, 1}.

EncSigDecrypt(γ, θ)

1. Parse γ as γ = (D,C, π, PKθ,PK, σ̃).

2. Parse σ̃ as σ̃ = (σ̃′, rσ).

3. Compute σ′ = σ̃′
1
θ .

4. Return σ = (σ′, rσ).

Fig. 4. Implementation of the fair exchange protocol

48 P. Camacho

6 Conclusion and Future Work

In this work we introduced a practical protocol to exchange short signatures [4]
fairly without relying on a TTP. It seems our approach can be applicable to
other signature schemes or more generally to the exchange of values which are
computed from a secret and are publicly verifiable using bilinear maps. Thus,
our techniques might be extended in order to obtain a general framework to
build practical fair protocols involving bilinear maps.

Acknowledgments. The author is very grateful to Anna Lysyanskaya for
pointing out a gap in the proof of Theorem 3.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS, pp. 7–17. ACM Press (April 1997)

2. Blum, M.: How to exchange (secret) keys. ACM Transactions on Computer Sys-
tems 1(2), 175–193 (1983)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)

5. Boneh, D., Naor, M.: Timed Commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

6. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and Verifiable
Release of a Secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
156–166. Springer, Heidelberg (1988)

7. Camacho, P.: Fair Exchange of Short Signatures Without Trusted Third Party
(2012), http://eprint.iacr.org/2012/288

8. Camenisch, J., Stadler, M.: Proof Systems for General Statements about Dis-
crete Logarithms (1997), ftp://ftp.inf.ethz.ch/pub/crypto/publications/

CamSta97b.ps

9. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure Multi-
Party Computation of Boolean Circuits with Applications to Privacy in On-
Line Marketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp.
416–432. Springer, Heidelberg (2012)

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC, pp. 364–369. ACM Press (November 1986)

11. Cleve, R.: Controlled Gradual Disclosure Schemes for Random Bits and Their
Applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 573–588.
Springer, Heidelberg (1990)

12. Damg̊ard, I.: Practical and Provably Secure Release of a Secret and Exchange of
Signatures. Journal of Cryptology 8(4), 201–222 (1995)

13. Duc, A., Jetchev, D.: Hardness of Computing Individual Bits for One-Way Func-
tions on Elliptic Curves. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417,
pp. 832–849. Springer, Heidelberg (2012)

14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

http://eprint.iacr.org/2012/288
ftp://ftp.inf.ethz.ch/pub/crypto/publications/CamSta97b.ps
ftp://ftp.inf.ethz.ch/pub/crypto/publications/CamSta97b.ps

Fair Exchange of Short Signatures without Trusted Third Party 49

15. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

16. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource Fairness
and Composability of Cryptographic Protocols. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281 (1988)

18. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-
Party Computation. Journal of the ACM 58(6), 1–37 (2011)

19. Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

20. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer,
Heidelberg (2010)

21. Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-interactive Zero Knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

22. Huang, Q., Wong, D.S., Susilo, W.: The Construction of Ambiguous Optimistic
Fair Exchange from Designated Confirmer Signature without Random Oracles. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
120–137. Springer, Heidelberg (2012)

23. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomi-
als and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

24. MacKenzie, P.D., Patel, S.: Hard Bits of the Discrete Log with Applications to
Password Authentication. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 209–226. Springer, Heidelberg (2005)

25. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC, pp. 12–19. ACM Press, New York (2003)

26. Mitsunari, S., Sakai, R., Kasahara, M.: A New Traitor Tracing. In: EICE, vol. E
85-A, pp. 481–484 (2002)

27. Patel, S., Sundaram, G.S.: An Efficient Discrete Log Pseudo Random Generator.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer,
Heidelberg (1998)

28. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

29. Schnorr, C.P.: Security of Almost ALL Discrete Log Bits. Electronic Colloquium
on Computational Complexity (1998)

30. Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilin-
ear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

	Fair Exchange of Short Signatures
without Trusted Third Party
	Introduction
	Preliminaries
	Notations
	Non-interactive Zero-Knowledge Proofs of Knowledge
	Bilinear Maps
	Assumptions
	Digital Signatures
	Simultaneous Hardness of Bits for Discrete Logarithm

	A New Argument to Prove a Commitment Encrypts a Bit
	Base Equivalence Argument
	Fair Exchange of Short Signatures without TTP
	Conclusion and Future Work
	References

