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Abstract. The MISTY1 block cipher has a 64-bit block length, a 128-
bit user key and a recommended number of 8 rounds. It is a Japanese
CRYPTREC-recommended e-government cipher, a European NESSIE
selected cipher, and an ISO international standard. Despite of consider-
able cryptanalytic efforts during the past fifteen years, there has been
no published cryptanalytic attack on the full MISTY1 cipher algorithm.
In this paper, we present a related-key differential attack on the full
MISTY1 under certain weak key assumptions: We describe 2103.57 weak
keys and a related-key differential attack on the full MISTY1 with a data
complexity of 261 chosen ciphertexts and a time complexity of 290.93 en-
cryptions. For the first time, our result exhibits a cryptographic weakness
in the full MISTY1 cipher (when used with the recommended 8 rounds),
and shows that the MISTY1 cipher is distinguishable from an ideal ci-
pher and thus cannot be regarded to be an ideal cipher.

Keywords: Block cipher, MISTY1, Differential cryptanalysis, Related-
key cryptanalysis, Weak key.

1 Introduction

The MISTY1 block cipher was designed by Matsui [26] and published in 1997.
It has a 64-bit block length, a 128-bit user key, and a variable number of rounds;

� An earlier version of this work appeared in 2012 as part of Cryptology ePrint Archive
Report 2012/066 [25]. This work was partially supported by the Natural Science
Foundation of China (No. 61100185), Guangxi Natural Science Foundation (No.
2011GXNSFB018071), the Foundation of Guangxi Key Lab of Wireless Wideband
Communication and Signal Processing (No. 11101), and China Postdoctoral Science
Foundation Funded Project.
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the officially recommended number of rounds is 8. We consider the version of
MISTY1 that uses the recommended 8 rounds in this paper, which is also the
most widely discussed version so far. MISTY1 has a Feistel structure with a
total of ten key-dependent logical functions FL — two FL functions at the
beginning plus two inserted after every two rounds. It became a CRYPTREC [7]
e-government recommended cipher in 2002, and a NESSIE [27] selected block
cipher in 2003, and was adopted as an ISO [11] international standard in 2005
and 2010.

MISTY1 has attracted extensive attention since its publication, and its secu-
rity has been analysed against a wide range of cryptanalytic techniques [1, 6, 9,
10,18,19,22,24,29–31]. In summary, the main previously published cryptanalytic
results on MISTY1 are as follows. In 2008, Dunkelman and Keller [10] described
impossible differential attacks [3, 16] on 6-round MISTY1 with FL functions
and 7-round MISTY1 without FL functions. In the same year, Lee et al. [22]
gave a related-key amplified boomerang attack [13] on 7-round MISTY1 with
FL functions under a class of 273 weak keys1, and Tsunoo et al. [30] presented
a higher-order differential attack [15, 20] on 6 and 7-round MISTY1 with FL
functions (without making a weak key assumption). In 2009, Sun and Lai [29]
presented an integral attack on 6-round MISTY1 with FL functions, building on
Knudsen and Wagner’s integral attack [17] on 5-round MISTY1. Following Lee
et al.’s work, in 2011 Chen and Dai [6] presented a 7-round related-key amplified
boomerang distinguisher with probability 2−118 under a class of 290 weak keys
and gave a related-key amplified boomerang attack on the 8-round MISTY1 with
only the first 8 FL functions; and subsequently Dai and Chen [8, 9] described
a 7-round related-key differential characteristic with probability 2−60 under a
class of 2105 weak keys and finally presented a related-key differential attack on
the 8-round MISTY1 with only the last 8 FL functions.2 By now, there has been
no published (non-generic) cryptanalytic attack on the full 8 rounds of MISTY1
yet.

Related-key cryptanalysis [2,14] assumes that the attacker knows the relation-
ship between one or more pairs of unknown keys; certain current real-world ap-
plications may allow for practical related-key attacks, for example, key-exchange
protocols [12]. Related-key differential cryptanalysis [12] is a combination of dif-
ferential cryptanalysis [4] and related-key cryptanalysis; it takes advantage of how
a specific difference in a pair of inputs of a cipher or function can affect a differ-
ence in the pair of outputs of the cipher or function, where the pair of outputs are
obtained by encrypting the pair of inputs using two different keys with a specific
difference. Remarkably, under certain weak key assumptions the related-key dif-
ferential cryptanalysis technique was used in 2009 by Biryukov et al. [5] to yield

1 A class of weak keys is defined as a class of keys under which the concerned cipher
is more vulnerable to be attacked.

2 Our work is based on the version of Dai and Chen’s paper that we requested from
Dai in February 2012 [8]. However, we note that the post-proceedings version [9] of
their paper appeared in the LNCS website a few days ago, acknowledging us, where
the results were modified as given in Table 1.
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Table 1. Main cryptanalytic results on MISTY1 with FL functions

#Rounds #KeysAttack Type Data Memory Time Source

6 (1− 6) 2128 Impossible differential 251CP not specified 2123.4Enc. [10]

6 (1− 6) 2128 Higher-order differential 253.7CPnot specified 264.4Enc. [30]

6 (3− 8) 2128 Integral 232CC not specified 2126.1Enc. [29]

7 (1− 7) 2128 Higher-order differential 254.1CPnot specified 2120.7Enc. [30,31]

7† (2− 8) 273 Related-key amplified boo. 254CP 259Bytes 255.3Enc. [22]

8† (1− 8) 290 Related-key amplified boo. 263CP 265Bytes 270Enc. [6]

8† (1− 8) 2105‡ Related-key differential 263CC 237Bytes 286.6Enc. [8]

2102.57 Related-key differential 261CC 235Bytes 284.6Enc. [9]

full 2103.57 Related-key differential 261CC 299.2Bytes 290.93Enc. Sect. 4§

†: Exclude the first/last two FL functions; ‡: There is a flaw, see Section 3 for detail;
§: Complexity is only for one class of weak keys.

the first cryptanalytic attack on the full version of the AES [28] block cipher with
256 key bits.

In this paper, we show for the very first time that the full MISTY1 cipher can
be distinguished from an ideal cipher (in the related-key model), mainly from a
theoretical perspective: Building on Dai and Chen’s work described in [8, 9], we
present a related-key differential attack on the full MISTY1 cipher under certain
weak key assumptions. First, we spot a flaw in Dai and Chen’s differential crypt-
analysis results from [8], and find that there are only about 2102.57 weak keys in
their weak key class such that their 7-round related-key differential holds, but
with probability 2−58. Then, we use the 7-round related-key differential with
probability 2−58 to break the full MISTY1 under the class of 2102.57 weak keys.
Finally, we observe that there also exists a different class of 2102.57 weak keys un-
der which similar results hold. Table 1 summarises our and previously published
main cryptanalytic results on MISTY1, where CP and CC refer respectively to
the numbers of chosen plaintexts and chosen ciphertexts, and Enc. refers to the
required number of encryption operations of the relevant version of MISTY1.

We would like to mention that the original version of this paper, entitled “weak
keys of the full MISTY1 block cipher for related-key cryptanalysis”, contained a
set of 292 weak keys of the full MISTY1 for a related-key amplified boomerang
attack [25], but we remove it from this proceedings version, because of page
constraints.

The remainder of the paper is organised as follows. In the next section, we give
the notation and describe the MISTY1 cipher. In Section 3 we review Dai and
Chen’s class of weak keys and their 7-round related-key differential characteristic,
and give our corrected class of weak keys and 7-round related-key differential.
We present our attack on MISTY1 in Section 4. In Section 5 we describe another
class of weak keys. Section 6 concludes this paper.
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2 Preliminaries

In this section we give the notation and briefly describe the MISTY1 cipher.

2.1 Notation

The bits of a value are numbered from left to right, starting with 1. We use the
following notation throughout this paper.

⊕ : bitwise logical exclusive OR (XOR) of two bit strings of the same length
∩ : bitwise logical AND of two bit strings of the same length
∪ : bitwise logical OR of two bit strings of the same length
|| : bit string concatenation

2.2 The MISTY1 Block Cipher

MISTY1 [26] employs a complex Feistel structure with a 64-bit block length and
a 128-bit user key. It uses the following three functions FL,FI, FO, which are
respectively depicted in Fig. 1-(a), Fig. 1-(b) and Fig. 1-(c) with their respective
subkeys to be described below.

– FL : {0, 1}32×{0, 1}32 → {0, 1}32 is a key-dependent linear function. If X =
(XL||XR) is a 32-bit block of two 16-bit words XL, XR, and Y = (Y1||Y2) is
a 32-bit block of two 16-bit words Y1, Y2, then

FL(X,Y ) = (XL ⊕ ((XR ⊕ (XL ∩ Y1)) ∪ Y2), XR ⊕ (XL ∩ Y1)).

– FI : {0, 1}16 ×{0, 1}16 → {0, 1}16 is a non-linear function. If X = (XL||XR)
and Y = (Y1||Y2) are 16-bit blocks, here XL, Y2 are 9 bits long and XR, Y1

are 7 bits long, then FI(X,Y ) is computed as follows, where XL0, XR0, · · · ,
XL3, XR3 are 9 or 7-bit variables, S9 is a 9 × 9-bit bijective S-box, S7 is a
7× 7-bit bijective S-box, the function Extnd extends from 7 bits to 9 bits by
concatenating two zeros on the left side, and the function Trunc truncates
two bits from the left side.
1. XL0 = XL, XR0 = XR;
2. XL1 = XR0, XR1 = S9(XL0)⊕ Extnd(XR0);
3. XL2 = XR1 ⊕ Y2, XR2 = S7(XL1)⊕ Trunc(XR1)⊕ Y1;
4. XL3 = XR2, XR3 = S9(XL2)⊕ Extnd(XR2);
5. FI(X,Y ) = (XL3||XR3).

– FO : {0, 1}32×{0, 1}64×{0, 1}48 → {0, 1}32 is a non-linear function. If X =
(XL||XR) is a 32-bit block of two 16-bit words XL, XR, Y = (Y1||Y2||Y3||Y4)
is a 64-bit block of four 16-bit words Y1, Y2, Y3, Y4, and Z = (Z1||Z2||Z3) is
a 48-bit block of three 16-bit words Z1, Z2, Z3, then FO(X,Y, Z) is defined
as follows, where XL0, XR0, · · · , XL3, XR3 are 16-bit variables.
1. XL0 = XL, XR0 = XR;
2. For j = 1, 2, 3:

XLj = XRj−1, XRj = FI(XLj−1 ⊕ Yj , Zj)⊕XRj−1;
3. FO(X,Y, Z) = (XL3 ⊕ Y4)||XR3.
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S9 ⊕ S7 ⊕

⊕
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FL1 FL2
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FL3 FL4
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FL9 FL10

...

(d) : MISTY1

Fig. 1. MISTY1 and its components

MISTY1 uses a total of ten 32-bit subkeys KL1,KL2, · · · ,KL10 for the FL
functions, twenty-four 16-bit subkeys KIij for the FI functions, and thirty-two
16-bit subkeys KOil for the FO functions, (1 � i � 8, 1 � j � 3, 1 � l � 4), all
derived from a 128-bit user key K. The key schedule is as follows.

1. Represent K as eight 16-bit words K = (K1,K2, · · · ,K8).
2. Generate a different set of eight 16-bit words K ′

1,K
′
2, · · · ,K ′

8 by

K ′
i = FI(Ki,Ki+1), for i = 1, 2, · · · , 8,

where the subscript i + 1 is reduced by 8 when it is larger than 8, (similar
for some subkeys in the following step).

3. The subkeys are as follows.

KOi1 = Ki,KOi2 = Ki+2,KOi3 = Ki+7,KOi4 = Ki+4;

KIi1 = K ′
i+5,KIi2 = K ′

i+1,KIi3 = K ′
i+3;

KLi = K i+1
2
||K ′

i+1
2 +6

, for i = 1, 3, 5, 7, 9; otherwise,KLi = K ′
i
2+2||K i

2+4.

MISTY1 takes a 64-bit plaintext P as input, and has a variable number
of rounds; the officially recommended number of rounds is 8. Its encryption
procedure is as follows, where L0, R0, · · · , Li, Ri are 32-bit variables, KOj =
(KOj1||KOj2||KOj3||KOj4), and KIj = (KIj1||KIj2||KIj3), (j = 1, 2, · · · , 8);
see Fig. 1-(d).

1. (L0||R0) = (PL||PR).
2. For i = 1, 3, 5, 7:
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Ri = FL(Li−1,KLi), Li = FL(Ri−1,KLi+1)⊕ FO(Ri,KOi,KIi);
Ri+1 = Li, Li+1 = Ri ⊕ FO(Li,KOi+1,KIi+1).

3. Ciphertext C = FL(R8,KL10)||FL(L8,KL9).

We refer to the 8 rounds in the above description as Rounds 1, 2, · · · , 8, respec-
tively.

3 A Related-Key Differential for 7-Round MISTY1
under a Class of 2102.57 Weak Keys

In this section, we first review Dai and Chen’s class of 2105 weak keys and their
7-round related-key differential characteristic with probability 2−60 under the
class of weak keys. Then, we show that there are actually only 2102.57 weak keys
such that the 7-round related-key differential characteristic holds, and it has a
probability of 2−58.

3.1 A Class of 2105 Weak Keys Owing to Dai and Chen

First define three constants which will be used subsequently: A 7-bit constant a =
0010000, a 16-bit constant b = 0010000000010000, and another 16-bit constant
c = 0010000000000000, all in binary notation. Observe that b = (a||02||a) and
c = (a||09), where 02 represents a binary string of 2 zeros, and so on.

Let KA,KB be two 128-bit user keys defined as follows:

KA = (K1,K2,K3,K4,K5,K6,K7,K8),

KB = (K1,K2,K3,K4,K5,K
∗
6 ,K7,K8).

By the key schedule of MISTY1 we can get the corresponding eight 16-bit words
for KA,KB, which are denoted as follows.

K ′
A = (K ′

1,K
′
2,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

K ′
B = (K ′

1,K
′
2,K

′
3,K

′
4,K

′∗
5 ,K ′∗

6 ,K ′
7,K

′
8).

Then, the class of weak keys is defined to be the set of all possible values for
(KA,KB) that satisfy the following 10 conditions, where K6,12 denotes the 12-th
bit of K6, and similar for K7,3,K7,12,K8,3,K

′
4,3,K

′
4,12, K

′
7,3.

K6 ⊕K∗
6 = c; (1)

K ′
5 ⊕K ′∗

5 = b; (2)

K ′
6 ⊕K ′∗

6 = c; (3)

K6,12 = 0; (4)

K7,3 = 1; (5)

K7,12 = 0; (6)

K8,3 = 1; (7)

K ′
4,3 = 1; (8)

K ′
4,12 = 1; (9)

K ′
7,3 = 0. (10)
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Now let us analyse the number of the weak keys. First observe that when Con-
dition (1) holds, then Condition (2) holds with certainty.

Note that K ′
4 = FI(K4,K5),K

′
6 = FI(K6,K7), K

′∗
6 = FI(K∗

6 ,K7),K
′
7 =

FI(K7,K8). By performing a computer search, we get

|{(K4,K5)|Conditions (8) and (9)}| = 230;

|{(K6,K7,K8)|Conditions (1), (3), (4), (5), (6), (7) and (10)}| = 227.

Therefore, Dai and Chen [8] concluded that there are a total of 2105 possible values
for KA satisfying the above 10 conditions, and thus there are 2105 weak keys.

3.2 Dai and Chen’s 7-Round Related-Key Differential
Characteristic

Under the class of 2105 weak keys (KA,KB) described in Section 3.1, Dai and
Chen described the following 7-round related-key differential characteristicΔα →
Δβ: (b||032||c) → (032||c||016) with probability 2−60 for Rounds 2–8. In Fig. 3
in the Appendix we illustrate the related-key differential characteristic in detail,
where R4,3 denotes the 3-rd bit of R4 (the right half of the output of Round 4),
and R4,12 denotes the 12-th bit of R4.

As a result, Dai and Chen presented a related-key differential attack on 8-
round MISTY1 without the first two FL functions, by conducting a key recovery
on FO1 (in a way similar to the early abort technique for impossible differential
cryptanalysis introduced in [24] as well as in Chapter 4.2 of [23]).

3.3 A Corrected Class of Weak Keys and Improved 7-Round
Related-Key Differential

We first focus on the FI73 function in Dai and Chen’s 7-round related-key dif-
ferential characteristic, where the probability is 2−16. Observe that KI73 = K ′

2.
Dai and Chen assumed a random distribution when calculating the probability of
the differential Δc → Δc for FI73, and thus obtained a probability value of 2−16,
(An alternative explanation is to consider the two S9 S-boxes, each having a prob-
ability value of 2−8). However, intuitively we should make sure that a weak key
(KA,KB) should also satisfy the condition that the differentialΔc → Δc is a pos-
sible differential for FI73; otherwise, the differential Δc → Δc would have a zero
probability, and the 7-round differential characteristic would be flawed. Thus, we
should put the following additional condition when defining a set of weak keys:

PrFI(·,K′
2)
(Δc → Δc) > 0. (11)

Motivated by this, we perform a computer program to test the number of K ′
2

satisfying Condition (11), and we find that the number ofK ′
2 satisfying Condition

(11) is equal to 215. As a consequence, we know that the number of (K2,K3)
satisfying Condition (11) is 231, thus not all 232 possible values for (K2,K3) meet
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Condition (11), so this is really a flaw in Dai and Chen’s results.3 Furthermore,
we find that for each satisfying K ′

2, there are exactly two pairs of inputs to
FI73 which follow the differential Δc → Δc, that is to say, the probability
PrFI(·,K′

2)
(Δc → Δc) = 2−15, twice as large as the probability value 2−16 used

by Dai and Chen.
Next we focus on the FI21 function in Dai and Chen’s 7-round related-key dif-

ferential characteristic, where the probability is 2−16, and KI21 = K ′
7. Likewise,

we should make sure that a weak key (KA,KB) should also satisfy the condition
that the differential Δb → Δc is a possible differential for FI21; otherwise, the
differential Δb → Δc would have a zero probability, and the 7-round differential
characteristic would be flawed. Similarly, we should put another condition when
defining a set of weak keys:

PrFI(·,K′
7)
(Δb → Δc) > 0. (12)

By performing a computer program we find that the number of K ′
7 satisfying

Condition (12) is 24320 ≈ 214.57; on the other hand, the number of K ′
7 satisfying

Conditions (1), (3), (4), (5), (6), (7) and (10) is 215 (and for each satisfying K ′
7

there are 212 possible values for (K ′
6,K8)), so not all the possible values of K ′

7

satisfying Conditions (1), (3), (4), (5), (6), (7) and (10) satisfy Condition (12).
After a further test, we get that the number of K ′

7 satisfying Conditions (1),
(3), (4), (5), (6), (7), (10) and (12) is 12160 ≈ 213.57. As a result, we know
that the number of (K6,K7,K8) satisfying Conditions (1), (3), (4), (5), (6), (7),
(10) and (12) is 213.57 × 212 = 225.57, so this is another flaw in Dai and Chen’s
results. Furthermore, we have that PrFI(·,K′

7)
(Δb → Δc) is 2−15 for each of 9600

satisfying values for K ′
7, 2

−14 for each of 2432 satisfying values for K ′
7, and

6
216 ≈ 2−13.42 for each of 128 satisfying values for K ′

7.
In summary, there are approximately 2102.57 weak keys satisfying Conditions

(1)–(12), and the 7-round related-key differential Δα → Δβ has a minimum
probability of 2−58 under a weak key (KA,KB). In particular, we have the
following result.

Proposition 1. In the class of 2102.57 weak keys satisfying Conditions (1)–(12),

1. there are 216 possible values for K1, 216 possible values for K3, and 216

possible values for K5;

2. there are 225.57 possible values for (K6,K7,K8); in particular there are a
total of 213.57 possible values for K ′

7, and for every possible value of K ′
7

there are 212 possible values for (K ′
6,K8);

3. there are a total of 28 possible values for K ′
2,8−16, 2

16 possible values for K ′
3,

and 28 possible values for K ′
4,8−16, where K ′

2,8−16 denotes bits (8, · · · , 16) of
K ′

2 and K ′
4,8−16 denotes bits (8, · · · , 16) of K ′

4;

4. PrFI(·,∀K′
7)
(Δb → Δc) ≥ 2−15,PrFI(·,∀K′

2)
(Δc → Δc) = 2−15.

3 Note that this is not a mistake under the stochastic equivalence hypothesis for dif-
ferential cryptanalysis given in [21], although it contradicts the fact.
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4 Related-Key Differential Attack on the Full MISTY1
under the Class of 2102.57 Weak Keys

In this section, we devise a related-key differential attack on the full MISTY1
under a weak key from the class of 2102.57 weak keys, basing it on the 7-round
related-key differential with probability 2−58.

4.1 Preliminary Results

We first concentrate on the propagation of the input difference α(= b||032||c) of
the 7-round differential through the preceding Round 1, including the FL1 and
FL2 functions, under (KA,KB); see Fig. 2.

Under (KA,KB), by the key schedule of MISTY1 we have

ΔKO11 = ΔK1 = 0, ΔKO12 = ΔK3 = 0,

ΔKO13 = ΔK8 = 0, ΔKO14 = ΔK5 = 0,

ΔKI11 = ΔK ′
6 = c,ΔKI12 = ΔK ′

2 = 0, ΔKI13 = ΔK ′
4 = 0,

ΔKL1 = Δ(K1||K ′
7) = 0, ΔKL2 = Δ(K ′

3||K5) = 0.

As depicted in Fig. 2, the right half of α is (016||c), so the FI11 function has
a zero input difference; however since ΔKO11 = 0 and ΔKI11 = c, the output
difference ofFI11 is b with probability 1. The input difference of the FI12 function
is c, thus the first S9 function in FI12 has an input difference a||02, and we assume
its output difference is A ∈ {0, 1}9; the S7 function in FI12 has a zero input and
output difference. The second S9 function in FI12 has an input difference A, and
we assume its output difference is B ∈ {0, 1}9. As a result, the FI12 function has
an output difference X = (Trunc(A)||(B⊕ (02||Trunc(A)))). A simple computer
program reveals that Trunc(A) can take all 27 possible values, and thus we
assume that X can take all values in {0, 1}16.

Since the input difference of the FI13 function is 09||a, the first S9 function in
FI13 has a zero input difference. The S7 function in FI13 has an input difference
a, and we assume its output difference is D ∈ {0, 1}7, which can take only 26

possible values. The second S9 function in FI13 has an input difference 02||a, and
we assume its output difference is E ∈ {0, 1}9. Consequently, the FI13 function
has an output difference Y = ((a ⊕ D)||(E ⊕ (02||(a ⊕ D)))), and it can take
about 215 values in {0, 1}16; we denote the set of 215 values by Sd.

The FL1 function has an output difference (016||c), so its input difference

can only be of the form

32 bits
︷ ︸︸ ︷

00?0000000000000||00?0000000000000, which will be
denoted by η = (ηL, ηR) in the following descriptions, where the question marker
“?” represents an indeterminate bit; and when the first question marker takes a
zero value, the second question marker can take only 1, that is η has only three
possible values, (The specific form depends on the values of the two subkey bits
K1,3 and K ′

7,3). The FL2 function has an output difference (X ⊕ c)||(X ⊕ Y ⊕
(09||a)), so its input difference is indeterminate, denoted by “?” in Fig. 2.
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Fig. 2. Propagation of α through the inverse of Round 1 with FL1 and FL2

From the above analysis we can see that the subkeys KI121 and KI131 do
not affect the values of X and Y , and thus they are not required when checking
whether a candidate plaintext pair generates the input difference α = (b||032||c)
of the 7-round related-key differential. Further, as K ′

3 = FI(K3,K4),K
′
4 =

FI(K4,K5), K
′
6 = FI(K6,K7) and K ′

7 = FI(K7,K8), we obtain the following
result.

Proposition 2. Only the subkeys (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) are re-

quired when checking whether a candidate plaintext pair produces the input dif-
ference α = (b||032||c) of the 7-round related-key differential.

4.2 Attack Procedure

We first precompute two hash tables T1 and T2. Observe that from the left halves
of a pair of plaintexts we only need (K1,K3,K

′
2,8−16) when computing the output

difference X of the FI12 function and only need (K1,K
′
6,K

′
7,K8,K

′
4,8−16) when

computing the output difference Y of the FI13 function. To generate T1 and T2,
we do the following procedure under every 32-bit value x = (xL||xR).

1. For every possible K1:
(a) Compute Z = (xL ∩K1) ⊕ ((xL ⊕ ηL) ∩K1) ⊕ ηR, and proceed to the

following steps only when Z = c.
(b) For every possible (K3,K

′
2,8−16), compute the output difference of FI12

as X .
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2. Store all satisfying (K1,K3,K
′
2,8−16) into Table T1 indexed by (x, η,X).

3. For every possible K ′
7:

(a) Compute W = ηL⊕(((xL∩K1)⊕xR)∪K ′
7)⊕(((xL∩K1)⊕xR⊕c)∪K ′

7),
and proceed to the following steps only when W = 0.

(b) For every possible (K ′
6,K8,K

′
4,8−16), compute the output difference of

FI13 as Y .
4. Store the values of (K6,K7,K8) corresponding to all satisfying (K ′

6,K
′
7,K8)

into Table T2 indexed by (x, η, Y,K1,K
′
4,8−16).

There are 216 possible values for K1, 2
16 possible values for K3, 2

8 possible
values for K ′

2,8−16, and 3 possible values for η. For a fixed (x, η,X), on average
there are 216×2−1×216×28×2−16 = 223 satisfying values for (K1,K3,K

′
2,8−16)

in T1. The precomputation for T1 takes about 232 × 3 × 216 × 216 × 28 ≈ 273.59

FI computations, and T1 requires a memory of about 224 × 232 × 3 × 216 ×
16+16+8

8 ≈ 275.91 bytes. There are 213.57 possible values for K ′
7, 2

12 possible
values for (K ′

6,K8), 2
8 possible values for K ′

4,8−16, and 215 possible values for Y .
For a fixed (x, η, Y,K1,K

′
4,8−16), on average there are 213.57×2−1×212×2−15 =

29.57 satisfying values for (K ′
6,K

′
7,K8) in T2. The precomputation for T2 takes

about 232×3×216×213.57×212×28×2 ≈ 284.16 FI computations, and T2 requires
a memory of about 29.57 × 232 × 3× 215 × 216 × 28 × 6 ≈ 284.74 bytes. Note that
we can use several tricks to optimise the procedure to reduce the computational
complexity for generating the two tables, but anyway it is negligible compared
with the computational complexity of the following online attack procedure.

We devise the following attack procedure to break the full MISTY1 when a
weak key is used.

1. Initialize zero to an array of 295.57 counters corresponding to all the 295.57

possible values for (K1,K
′
2,8−16, K3,K4,K5,K6,K7,K8).

2. Choose 260 ciphertext pairs (C,C∗ = C⊕(032||c||016)). In a chosen-ciphertext
attack scenario, obtain the plaintexts for the ciphertexts C,C∗ under
KA,KB, respectively, and we denote the plaintext for ciphertext C encrypted
under KA by P = (PLL||PLR, PRL||PRR), and the plaintext for ciphertext
C∗ encrypted under KB by P ∗ = (PL∗

L||PL∗
R, PR∗

L||PR∗
R).

3. Check whether a plaintext pair (P, P ∗) meets the condition (PLL||PLR)⊕
(PL∗

L||PL∗
R) = η by first checking the 30 bit positions with a zero difference

and then checking the remaining two bit positions. Keep only the satisfying
plaintext pairs.

4. For every remaining plaintext pair (P, P ∗), do the following sub-steps.
(a) Guess a possible value for (K ′

3,K5), and compute (X,Y ) such that

(X ⊕ c)||(X ⊕ Y ⊕ (09||a)) = FL(PRL||PRR,K
′
3||K5)⊕

FL(PR∗
L||PR∗

R,K
′
3||K5).

Execute the next steps only if Y ∈ Sd; otherwise, repeat this step with
another subkey guess.

(b) Access Table T1 at entry (PLL||PLR, η,X) to get the satisfying values
for (K1,K3, K

′
2,8−16).
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(c) For each satisfying value for (K1,K3,K
′
2,8−16), retrieve K4 from the

equationK ′
3 = FI(K3,K4), computeK ′

4 = FI(K4,K5), and access Table
T2 at entry (PLL||PLR, η, Y,K1,K

′
4,8−16) to get the satisfying values for

(K6,K7,K8).
(d) Increase 1 to each of the counters corresponding to the obtained values

for (K1, K
′
2,8−16,K3,K4,K5, K6,K7,K8).

5. For a value of (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) whose counter number

is equal to or larger than 3, exhaustively search the remaining 7 key bits
with two known plaintext-ciphertext pairs. If a value of (K1,K2, · · · ,K8) is
suggested, output it as the user key of the full MISTY1.

4.3 Attack Complexity

The attack requires 260 × 2 = 261 chosen ciphertexts. In Step 3, only 260 ×
2−30 × 3

4 ≈ 229.58 plaintext pairs are expected to satisfy the condition, and
it takes about 260 memory accesses to obtain the satisfying plaintext pairs.
Step 4(a) has a time complexity of about 229.58 × 216 × 216 × 2 = 262.58 FL
computations. In Step 4(b), for a plaintext pair and a possible value for (K ′

3,K5),
on average we obtain 223 possible values for (K1,K3,K

′
2,8−16), as discussed in

the precomputation phase; owing to the filtering condition in Step 4(a), Step

4(b) has a time complexity of about 229.58 × 215

216 × 232 × 223 = 283.58 memory
accesses (if conducted on a 64-bit computer). In Step 4(c), for a plaintext pair
and a possible value for (K1,K3,K5,K

′
2,8−16,K

′
3), on average we obtain 29.57

possible values for (K6,K7,K8), (as discussed in the precomputation phase),
thus Step 4(c) has a time complexity of about 228.58 × 232 × 223 × 29.57 = 293.15

memory accesses. Step 4(d) has a time complexity of about 293.15 × 2 = 294.15

memory accesses, where the factor “2” represents that it requires two memory
accesses for a single access to an entry whose length is between 65 and 128 bits
when conducted on a 64-bit computer.

The probability that the counter for a wrong (K1,K
′
2,8−16,K3,K4,K5,K6,

K7,K8) has a number equal to or larger than 3 is approximately
∑260

i=3[
(
260

i

)

·
(2−64)i · (1 − 2−64)2

60−i] ≈ 2−14.67. Thus, it is expected that there are a total
of 295.57 × 2−14.67 = 280.9 wrong values of (K1,K

′
2,8−16,K3,K4,K5,K6,K7,K8)

whose counters have a number equal to or larger than 3. Thus it requires 280.9×
27 + 280.9 × 27 × 2−64 ≈ 287.9 trial encryptions to check them in Step 5. In Step
5, a wrong value of (K1,K2, · · · ,K8) is suggested with probability 2−64×2 =
2−128, so the number of suggested values for (K1,K2, · · · ,K8) is expected to be
287.9 × 2−128 = 2−40.1, which is rather low. Thus, the time complexity of the
attack is dominated by Steps 4(c), 4(d) and 5.

The question that how many memory accesses (table lookups) are equiva-
lent to one MISTY1 encryption in terms of time depends closely on the used
platform and MISTY1 implementation as well as the storage location of the
hash table. In theoretical block cipher cryptanalysis, it is usually assumed by
default that a hash table is stored in an ideal place, RAM say, like an S-box
table; and it takes an almost constant time to access an entry in a hash table,
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independently of the number of entries. Thus, an extremely conservative esti-
mate is: 16 memory accesses equal a full MISTY1 encryption in terms of time,
assuming that in every round, Round i say, the FIi1 and FIi2 functions are
implemented in parallel, equivalent to one memory access, and the subsequent
FIi3 function is equivalent to one memory access, (neglecting the computational
complexity for other operations and the key schedule); that is, one round is equiv-
alent to 2 memory accesses. Therefore, the attack has a total time complexity

of about 293.15+294.15

16 + 287.9 ≈ 290.93 MISTY1 encryptions.
The counter for the correct key has an expected number of 260 × 2−58 = 4,

and the probability that the counter for the correct key has a number equal to

or larger than 3 is approximately
∑260

i=3[
(
260

i

)

· (2−58)i · (1 − 2−58)2
60−i] ≈ 0.76.

Therefore, the related-key differential attack has a success probability of 76%.
The memory complexity of the attack is dominated by the space for the array

of 295.57 counters, which is 295.57 × 95.57
8 ≈ 299.2 bytes.

It is worthy to note that there exist time–memory tradeoff versions to the
above attack.

5 Another Class of 2102.57 Weak Keys

We have described a class of 2102.57 weak keys and a related-key differential
attack on the full MISTY1 under a weak key. However, we observe that there
exists another class of 2102.57 weak keys under which similar results hold. The
new weak key class is obtained by setting K ′

7,3 = 1, which is further classified
into two sub-classes by the possible values of the subkey bit K1,3. This will
affect only the FL10 function in the 7-round related-key differential, but the
output difference of FL10 will be fixed once K1,3 is given, that is, the right half
of the output difference of the resulting 7-round related-key differential will be
c||c when K1,3 = 1, and 016||c when K1,3 = 0. Thus, by choosing a number of
ciphertext pairs with a corresponding difference we can conduct a similar attack
on the full MISTY1 under every sub-class of weak keys.

In total, we have 2103.57 weak keys under which a related-key differential
attack can break the full MISTY1 cipher algorithm.

6 Conclusions

The MISTY1 block cipher has received considerable attention and its security
has been thoroughly analysed since its publication, particularly the European
NESSIE project announced that “no weaknesses were found in the selected de-
signs” when making the portfolio of selected cryptographic algorithms including
MISTY1. In this paper, we have described 2103.57 weak keys for a related-key
differential attack on the full MISTY1 cipher algorithm.

For the very first time, our result exhibits a cryptographic weakness in the
full MISTY1 cipher algorithm, mainly from an academic point of view: The
cipher does not behave like an ideal cipher (in the related-key model); thus it
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cannot be regarded to be an ideal cipher. From a practical point of view, our
attack does not pose a significant threat to the security of MISTY1, for it works
under the assumptions of weak-key and related-key scenarios and its complexity
is beyond the power of a general computer of today. But nevertheless our result
means that a large fraction of all possible 2128 keys in the whole key space of
MISTY1 is weak in the sense of related-key differential cryptanalysis, roughly,
one of every twenty-two million keys, and thus the chance of picking such a weak
key at random is not trivial; in this sense, the presence of these weak keys has
an impact on the security of the full MISTY1 cipher.

Acknowledgments. The authors thank Prof. Wenling Wu for her help, Yibin
Dai for providing the final version of their paper at INSCRYPT 2011, and several
anonymous referees for their comments on earlier versions of the paper.
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Fig. 3. Chen and Dai’s related-key differential characteristic for Rounds 2–8
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