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Abstract. We propose a new fully homomorphic cryptosystem called
Symmetric Polly Cracker (SymPC) and we prove its security in the in-
formation theoretical settings. Namely, we prove that SymPC approaches
perfect secrecy in bounded CPA model as its security parameter grows
(which we call approximate perfect secrecy).

In our construction, we use a Gröbner basis to generate a polyno-
mial factor ring of ciphertexts and use the underlying field as the plain-
text space. The Gröbner basis equips the ciphertext factor ring with
a multiplicative structure that is easily algorithmized, thus providing an
environment for a fully homomorphic cryptosystem.
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1 Introduction

In 1994 Fellows and Koblitz presented a general outline for a construction of
a public-key cryptosystems based on NP-hard problems in [1]. As an exam-
ple, they described a cryptosystem based on the ideal membership problem and
named it Polly Cracker. A whole family of cryptosystems based on this con-
struction has been developed over the following years ([2],[3]). Polly Cracker has
also played a critical role in the development of homomorphic encryption theory,
mostly serving as a base stone on which more sophisticated systems were built.
For instance, Craig Gentry’s seminal work on fully homomorphic encryption
system [4] was inspired by Polly Cracker. Ever since Gentry’s paper has been
published, there has been an extensive research in the area, e.g. [5], [6]. Majority
of the schemes that followed the outbreak of fully homomorphic encryption have
its security based on problems over lattices, such as Learning with Errors (LWE)
[7] and most of the research focuses on the public key encryption.

In 2011, Albrecht et al. published a paper “Polly Cracker Revisited” [8]. It for-
mally treats the security of certain classes of Polly Cracker-based cryptosystems
and suggests particular transitions between public-key and symmetric versions
of Polly Cracker-based systems. In the same paper, Albrecht et al. introduce the
Polly Cracker with Noise (CPN) cryptosystem. Only recently, Herold has shown
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in [9] that the CPN with zero-degree noise from [8] is either insecure or does not
offer any security benefit compared to Regev’s LWE-based scheme [7].

Our Contribution. In our work, we take a different approach. We propose
a new fully homomorphic cryptosystem called Symmetric Polly Cracker (SymPC)
and we prove its security in information theoretical settings - we prove that
SymPC approaches perfect secrecy in bounded CPA model as its security pa-
rameter grows. More precisely, we define approximate perfect secrecy as the se-
curity of a cryptosystem CS(t) = (P , C,K, E ,D) with security parameter t for
which the probability Pr[P = p | C = c] approaches Pr[P = p] for all p ∈ P , all
probability distributions on P and almost all c as t grows to infinity. Then we
prove that SymPC has approximate perfect secrecy in bounded CPA model.

In our construction, unlike in the previous classical Polly Cracker construc-
tions, we use a Gröbner basis G to generate a zero-dimensional ideal 〈G〉 of a
polynomial ring IF[x1, . . . , xn] over a finite field IF. Then we use the factor ring
IF[x1, . . . , xn]/〈G〉 as the ciphertext space and the field IF as the plaintext space.
The Gröbner basis G equips the ciphertext factor ring with a multiplicative
structure that is easily algorithmized, thus providing an environment for a fully
homomorphic cryptosystem. The fully homomorphic property of our cryptosys-
tem is achieved by a simple decryption operation - evaluation homomorphism.

This paper is organized as follows. In Sect. 2 we introduce our notation and
state some known facts. In Sect. 3 we describe one instantiation of Polly Cracker
cryptosystem. Then we describe our cryptosystem SymPC in Sect. 4 where we
also prove that it is fully homomorphic. This is followed by the complexity
analysis in Sect. 5. Finally, in Sect. 6, we define the approximate perfect secrecy,
give the security proof of SymPC in bounded CPA model and briefly analyze
SymPC in other attack scenarios.

2 Preliminaries and Notation

Let q be a prime power. By IF we will denote the finite field GF(q). In this paper,
we will work with the multivariate polynomial ring R = IF[x1, . . . , xn], n ∈ IN
and operations +,− and · on polynomials will always denote operations in R.
Later on, we will define a factor ring C = R/I for an ideal I. We will denote
the operations in this factor ring as +C ,−C and ·C . Furthermore, we endow R
with an admissible monomial ordering <. For f ∈ R, deg(f) will denote the
total degree of f , i.e. degree of the leading term of f with respect to <. The
maximum degree of variable xi in any term of f will be denoted degxi

(f).
Let G be a basis of an ideal I in R, i.e. 〈G〉 = I. Recall that G is a Gröbner

basis, iff for all f ∈ R, the remainder on division of f by G is unique. For
f, g ∈ R define the s-polynomial as spol(f, g) = lcm(lt(f), lt(g)) · f/lm(f) −
lcm(lt(f), lt(g)) · g/lm(g), where lt(f) denotes the leading term of f and lm(f)
the leading monomial of f with respect to <. The following theorem is employed
in Buchberger’s algorithm and we will use it to prove that a given set is a Gröbner
basis. The proof can be found in [10].
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Theorem 1. G ⊂ R is a Gröbner basis of an ideal I = 〈G〉, iff the remainder
on division of spol(f, g) by G equals zero for all f, g ∈ G, f �= g.

A Gröbner basis G is called reduced, iff for all g ∈ G it holds g mod G \ {g} = g
and it is called normed, iff all g ∈ G are monic. A well known theorem states,
that for every ideal I in R, there exists a unique normed reduced Gröbner basis
G of I.

In descriptions of algorithms, we will use x
R←− X to denote that x is chosen

uniformly at random from a finite set X .
In this paper, we propose a fully homomorphic probabilistic cryptosystem.

By fully homomorphic we mean the usual concept where both the plaintext
and the ciphertext sets are equipped with addition and multiplication, they
both form rings and the decryption operation is a ring homomorphism (i.e.
dk(f(c1, . . . , cl)) = f(dk(c1), . . . , dk(cl)) for any polynomial f):

Definition 2. Let (P , C,K, {ek}, {dk}) be a probabilistic cryptosystem, where
P(+,−, ·, 0, 1) is the plaintext ring and C(+,−, ·, 0, 1) is the ciphertext ring. We
call the cryptosystem fully homomorphic, iff for all k ∈ K, the decryption oper-
ation dk : C → P is a ring homomorphism.

3 Polly Cracker

In this section, we will describe one instantiation of Polly Cracker. This scheme
has inspired our cryptosystem, which we present in the next section. We denote
S = 〈xq

1 − x1, . . . , x
q
n − xn〉.

Algorithms 1, 2 and 3 describe the Polly Cracker cryptosystem. The set of
messages is P = IF, the set of ciphertexts is C = R/S and the keys K ∈ K
are pairs (s, PK), where the secret key s is a vector in IFn and the public key
PK = {f1, . . . , fk} is a set of polynomials in R/S of degree at most ν, such that
in s they all evaluate to zero, as described in the SETUP by Algorithm 1.

Algorithm 1. Polly Cracker: SETUP

Input: n, k, q, ν ∈ IN, q prime power, ν < q − 1
Output: (s, PK) , s ∈ IFn, PK ⊂ R

1 set IF := IFq

2 set R := IF[x1, . . . , xn]

3 set the secret key s = (s1, ..., sn)
R←− IFn

4 for j = 1 to k do

5 fj
R←− R s.t. ∀i degxi

(fj) ≤ ν and fj(s) = 0

6 set the public key PK := {f1, ..., fk}
7 set C := R/S
8 return (s, PK)
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Algorithm 2 describes encryption. A random subset of the polynomials from
PK is added to a message m ∈ IF to get a ciphertext polynomial c ∈ R/S.

Algorithm 2. Polly Cracker: ENCRYPT

Input: message m ∈ IF, public key PK = {f1 . . . , fk} ⊂ R
Output: ciphertext c ∈ R

1 select I ⊆ {1, .., k} uniformly at random
2 set the ciphertext c := m+

∑
j∈I fj ∈ R

3 return c

The decryption is given by Alg. 3. It evaluates the ciphertext polynomial c
in the secret key s. It is easy to see, that if c = ePK(m), then c(s) = m, as
f(s) = 0 for all f ∈ PK.

Algorithm 3. Polly Cracker: DECRYPT

Input: ciphertext c ∈ R, secret key s ∈ IFn

Output: message m ∈ IF
1 set m := c (s)
2 return m

Using the Fundamental theorem on homomorphism and the fact that eva-
luation of polynomials is a ring homomorphism, one can show that decryption
operation is a ring homomorphism on R/S. Hence Polly Cracker is a fully ho-
momorphic cryptosystem. A disadvantage is, that the size of a ciphertext grows
rapidly with the number of multiplications, which is not practical. However, we
work with the ring R/S, which is finite, so after about q

ν multiplications the
resulting ciphertexts stop growing.

Nevertheless, the size of a random polynomial in R/S is O (qn) bits. (The size
of a random polynomial in R/S is log2(|R/S|) = log2

(
qq

n)
.) Hence one needs to

keep the number of variables very low in order to get a reasonable ciphertext size.
Unfortunately, the Polly Cracker cryptosystem can be attacked by calculating

the Gröbner basis of the ideal generated by PK. If an adversary has a set
{g1, . . . , gl}, the Gröbner basis of 〈PK〉, then for any c ∈ C he can calculate
c mod {g1, . . . , gl} and as a result he will get ds(c) = c(s), i.e. the plaintext.

4 Symmetric Polly Cracker (SymPC)

In this section, we propose a new fully homomorphic probabilistic symmetric
cryptosystem called Symmetric Polly Cracker - SymPC.

The cryptosystem SymPC is described by Algorithms 4, 5, 6, 7 and 8. Algo-
rithm 4 describes SETUP, which takes security parameters n, q, ν and returns a
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pair (s, G), where s ∈ IFn is the secret key and G = {g1, . . . , gn} ⊂ R is the
multiplication key. This is a special kind of key, that is only used in the mul-
tiplication of ciphertexts. It provides information about the ring of ciphertexts
R/〈G〉 and we will assume that it is public. Furthermore SETUP defines the set
(field) of plaintexts as IF and the set (ring) of ciphertexts C as the factor ring
R/〈G〉. The choice of polynomials gi in Step 8 has some important consequences.
First, as we shall see in Sect. 6, this choice maximizes the size of V (G), the al-
gebraic set of G. This leads to optimal security for a given security parameter.
Second, G is the reduced normed Gröbner basis of 〈G〉 (the proof can be found
in Appendix A):

Theorem 3. Let R and G be defined by Alg. 4. Then G is the reduced normed
Gröbner basis of the ideal 〈G〉.

Algorithm 4. SETUP

Input: n, ν, q ∈ IN, ν < q − 1, q a prime power
Output: s ∈ IFn, G ⊂ R

1 set IF := IFq

2 set R := IF[x1, . . . , xn]

3 set the secret key s := (s1, ..., sn)
R←− IFn

4 for i = 1 to n do
5 for l = 1 to ν do

6 t
(i)
l

R←− IF \
{
t
(i)
1 , . . . , t

(i)
l−1

}

7 for i = 1 to n do

8 set gi := (xi − si) ·∏ν
l=1

(
xi − t

(i)
l

)

9 set the multiplication key G := {g1, . . . , gn}
10 set C := R/〈G〉
11 return (s, G)

Finally, the special choice of polynomials gi allows us to use the set {f ∈
R | degxi

(f) ≤ ν, i = 1, . . . , n} as the support set of C.
Algorithm 5 describes the encryption procedure. In Step 1, we choose a poly-

nomial f ∈ R uniformly at random, s.t. degxi
(f) ≤ ν for all i, hence f ∈ C and

also c ∈ C. Note, that according the our notation the operations used in Step 2
are the operations in R and not in C. We will comment on this later on.

Decryption is described by Alg. 6. Let s be a secret key and m ∈ IF a message.
Then, by Step 2 of Alg. 5, es(m) = c = f − f(s) +m for some random f and
ds(es(m)) = ds(c) = c(s) = f(s)− f(s) +m = m.

Algorithm 7 describes the addition operation +C in C. From the definition of
polynomials gi in Alg. 4 it follows, that the addition in the factor ring C = R/〈G〉
is the same as the addition in the polynomial ring R used in Step 1 of Alg. 7.
This also clarifies the operations used in Step 2 of Alg. 5.
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Algorithm 5. ENCRYPT

Input: message m ∈ IF, secret key s ∈ IFn

Output: ciphertext c ∈ C
1 f

R←− {h ∈ R | degxi
(h) ≤ ν, ∀i = 1, . . . , n}

2 set c := f − f(s) +m ∈ C
3 return c

Algorithm 6. DECRYPT

Input: ciphertext c ∈ C, secret key s ∈ IFn

Output: message m ∈ IF
1 set m := c(s)
2 return m

Finally, Alg. 8 describes multiplication in C. It follows from Theorem 3, that
for c1, c2 ∈ C, c1 · c2 mod G is uniquely determined.

Algorithm 7. ADD, +C
Input: ciphertexts c1, c2 ∈ C
Output: ciphertext c ∈ C

1 set c := c1 + c2
2 return c

From the random choice of f in Step 1 of Alg. 5 it follows, that SymPC is
a probabilistic cryptosystem. Now we prove that it is fully homomorphic.

Theorem 4. The cryptosystem SymPC is fully homomorphic.

Proof. Let s be a secret key. Let ϕ : R → IF be the evaluation homomorphism
defined as ϕ(f) = f(s). By definition, Ker(ϕ) = {f | f(s) = 0}. Since gi(s) = 0
for all i = 1, . . . , n, we get that 〈G〉 ⊆ Ker(ϕ). By the Fundamental theorem on
homomorphisms, ds : C → IF, ds(c) = c(s) is a ring homomorphism. ��
From now on, we will use SymPC(n, ν, q) to denote the cryptosystem SymPC
with security parameters n, ν, q.

Algorithm 8. MULTIPLY, ·C
Input: ciphertexts c1, c2 ∈ C, multiplication key G
Output: ciphertext c ∈ C

1 set c := c1 · c2 mod G
2 return c
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5 Complexity

We evaluate the complexity of each function of SymPC(n, ν, q). We denote α the
number of terms in C, α = (ν + 1)n.

SETUP The most complex operation is generation of the polynomials gi. For
each gi we need to perform ν multiplications of a polynomial of degree one
with a polynomial of degree at most ν in IF[xi]. The complexity is O(n · ν2)
operations in IF.

ENCRYPT The most complex operation is the evaluation of f in s ∈ IFn. The
algorithm performs log2 q · α assignments of random bits to coefficients of
f and α evaluations of monomials in C. Each of these evaluations consists
of at most deg(f) ≤ ν · n multiplications in IF. Then it adds evaluations in
the monomials. The overall complexity is O

(
n · (ν + 1)n+1

)
operations in

IF. We calculated the complexity of a naive evaluation algorithm. We can
see, that the complexity of this algorithm could be optimized by the use of
sparse polynomials. We will comment on that later.

DECRYPT The complexity is the same as the complexity of ENCRYPT, that is
O
(
n · (ν + 1)n+1

)
operations in IF.

ADD The function performs α additions in IF, so the complexity is O ((ν + 1)n)
operations in IF.

MULTIPLY The function consists of two parts: multiplication and reduction. The
first part is more complex and involves α2 multiplications in IF. The overall
complexity is O

(
(ν + 1)2n

)
operations in IF.

6 Security

We start the section with a few simple observations.

Proposition 5. The cryptosystem SymPC(n, ν, q) is not CCA secure.

Proof. If an attacker can use the SymPC decryption oracle, he can ask for the
decryption of the ciphertexts c1 = x1, c2 = x2, . . . , cn = xn and he will obtain
the points of the secret key s1, s2, . . . , sn. ��
Proposition 6. For the SymPC(n, ν, q) cryptosystem, the CPA security is
equivalent to the KPA security.

Proof. CPA-security implies KPA-security in general. To prove the other impli-
cation we need to realize, that if an attacker has a known plaintext-ciphertext
pair (m, c), he can get a valid plaintext-ciphertext pair (m′, c′) for any m′ by
setting c′ = c −m +m′, as ds(c

′) = c′(s) = c(s) −m +m′ = m′. Hence, from
any known plaintext-ciphertext pair, he can devise a chosen plaintext-ciphertext
pair, so SymPC needs to be CPA-secure to achieve the KPA-security. ��
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6.1 Approximate Perfect Secrecy in Bounded CPA Model

In this section, we will prove that SymPC has approximate perfect secrecy (Defi-
nition 7) in the so-called k-bounded chosen plaintext attack (k-bounded CPA)
model. In k-bounded CPA, an attacker can obtain at most k plaintext-ciphertext
pairs for some given k ∈ IN. This can be ensured by allowing at most k plaintexts
to be encrypted with a single key. As we will see, this limitation corresponds to
the limitation that the size of the keyspace has to be larger or equal to the size
of the plaintext space in order to reach perfect secrecy.

Similarly to perfect secrecy, we also assume that the attacker has unbounded
computational power.

Definition 7. Let CS(t) = (P , C,K, {ek}k, {dk}k) be a cryptosystem with a se-
curity parameter t and P,C random variables on P , C. Let F = {f : C → IR}
be the set of all functions from C to IR and let δ : F × F → IR be a metric
(distance) on F . For m ∈ P, Pr[P = m|C = c], Pr[P = m] ∈ F (the later
one is a constant function in c). We say, that CS(t) has approximate perfect
secrecy, iff for all probability distributions on P and all m ∈ P

lim
t→∞ δ(Pr[P = m | C = c],Pr[P = m]) = 0 . (1)

In other words, CS(t) has approximate perfect secrecy, iff for all m ∈ P the
probability Pr[P = m | C = c] approaches Pr[P = m] for almost all c ∈ C as t
grows.

We will prove the approximate perfect secrecy of our cryptosystem with re-
spect to the following simple metric.

Definition 8. Let f, g ∈ F = {f : C → IR}. Define a metric δ : F × F → IR as

δ(f, g) =
1

|C| ·
∑

c∈C
(f(c)− g(c))

2
.

Theorem 9. Let 1 < ν < q − 1, a = q/(ν + 1) and l > loga(q)/(loga(q) − 1).
Then the cryptosystem SymPC(n, ν, q) achieves approximate perfect secrecy in
k-bounded CPA model for k = n/l− 1.

First, let us comment on the choice of parameters. ν is the restriction on degrees
of polynomials in C so naturally ν < q − 1 otherwise there is no need for ν. We
assume that a is fixed. The number of plaintext-ciphertext pairs is limited by
k = n/l− 1. Clearly, l goes to one as q grows. Hence k goes to n− 1 as q grows.

Note 10. Assume that we allow (at most) k plaintexts to be encrypted with a
single key. Then we can define our plaintext space as P ′ = IFk. Our keyspace
equals to K = IFn. We see that our asymptotical bound k ≤ n− 1 is similar to
the condition |K| ≥ |P| on perfect secrecy.

Consider Alg. 4. The choice of gi’s in Step 8 implies that for the algebraic set
V (G) of the ideal 〈G〉 it holds



A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 383

V (G) = {(a1, . . . , an) | ai ∈ {si, t(i)1 , . . . , t(i)ν } ∀i = 1, . . . , n} , (2)

and thus |V (G)| = (ν +1)n. Set t = |V (G)| and denote the elements of V (G) as
V (G) = {r(1), . . . , r(t)}.
Note 11. Although the multiplication key G is to be known only to the owners
of the secret key and to a computational party, we assume that G is also known
to the attacker. Since gi ∈ IF[xi], he can successively find all the roots of gi, i.e.

{si, t(i)1 , . . . , t
(i)
ν }, i = 1, . . . , n and he can compute V (G). Indeed, the knowledge

of the multiplicative key G is equivalent to the knowledge of V (G).

Note 12. As we will see later on, we would like to maximize the size of the
algebraic set V (G). In the proof of Theorem 13 in Appendix A we show, that
dimIF(R/〈G〉) = (ν+1)n. For any ideal I in R and its algebraic set V (I) it holds

|V (I)| ≤ dimIF(R/I) . (3)

(Proof of a version for polynomial rings over complex numbers can be found in
[10] and it will hold for rings over finite fields as well.) We see that |V (G)| =
(ν + 1)n is the best we can do, hence our choice of gis in Alg. 4 is optimal.

The proof of the following theorem can be found in Appendix A. It implies
that choosing a ciphertext c ∈ C is equivalent to choosing a vector u ∈ IFt.

Theorem 13. The mapping

ϕ : R/〈G〉 −→ IFt (4)

f �−→
(
f(r(1)), . . . , f(r(t))

)

is a ring isomorphism.

Corollary 14. Choose c ∈ C uniformly at random. Then for all u ∈ IFt it holds

Pr[ϕ(c) = u] =
1

|IF|t =
1

qt
, (5)

i.e. ϕ(c) is distributed uniformly over IFt. In particular, for r ∈ V (G) and any
a ∈ IF, it holds

Pr[c(r) = a] =
1

|IF| = q−1 . (6)

Consider the probability distribution Pr[C = c] on C given by Alg. 5. We see,
that the polynomial f in Step 1 of Alg. 5 is chosen uniformly at random from C
and then in Step 2 it is “shifted” by a scalar value m−f(s). Hence Pr[C = c] de-
pends on the probability distribution on P and it is not necessarily the uniform
distribution. However, if we define equivalence ∼ on C by c1 ∼ c2 iff c1− c2 ∈ IF
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and denote the equivalence class of c by [c]∼ (i.e. [c]∼ = {c+ a | a ∈ IF}), then
Pr[C ∈ [c]∼] = 1/qt−1 is the uniform distribution on C/ ∼.

In the following, we will assume that Pr[C = c] is the uniform distribution
on C. This assumption will make it easier for us to evaluate the security of our
cryptosystem in the general case. We claim that the security of SymPC can be
proved also without this simplification, but we leave it for the extended version
of the paper.

Proof of Theorem 9

Proof. (Theorem 9) We want to prove security of SymPC(n, ν, q) in k-bounded-
CPA model. Let us assume that the attacker knows the multiplicative key G (or
equivalently its algebraic set V (G)) and polynomials c1, . . . , ck ∈ Es(0) = {c ∈
C | c(s) = 0}, i.e. k encryptions of zero for some unknown s. Recall that by
Proposition 6 for SymPC CPA equals KPA.

We start with evaluation of the conditional probability Pr[P = m | C =
c, c1, . . . , ck] for some fixed k ∈ IN, c, c1, . . . , ck ∈ C, i.e. the probability that the
plaintext equals m if we know that the ciphertext equals c and c1, . . . , ck are
encryptions of zero.

By definition of conditional probability

Pr[P = m | C = c, c1, . . . , ck] =
Pr[P = m,C = c, c1, . . . , ck]

Pr[C = c, c1, . . . , ck]
, (7)

which we can rewrite as

1

Pr[C = c, c1, . . . , ck]

∑

r∈V (G)

Pr[P = m,C = c, c1, . . . , ck | r] · Pr[r] . (8)

First note, that Pr[C = c, c1, . . . , ck] = Pr[C = c] · ∏k
i=1 Pr[ci] as these are

independent events and Pr[C = c] = 1/qt = Pr[ci] for all i by our assumption.
The secret key is chosen uniformly at random and we know it belongs to V (G),
so Pr[r] = 1/|V (G)| = 1/t. Clearly if c(r) �= m or ci(r) �= 0 for some i, then
Pr[P = m,C = c, c1, . . . , ck | r] = 0. Hence we can sum in (8) only over vectors
r from the set A = {r ∈ V (G) | c(r) = m, c1(r) = 0, . . . , ck(r) = 0}. Now for a
fixed r ∈ A the choice of c is equivalent to choice of the equivalence class [c]∼
which is independent of m and uniformly distributed with probability 1/qt−1.
The same is valid for all ci. Finally, we will use the fact that the message and
the secret key are independent to obtain

Pr[P = m | C = c, c1, . . . , ck] =

=
qt(k+1)

t
·
∑

r∈A

Pr[M = m] · Pr[C = c | r] ·
k∏

i=1

Pr[ci | r]

=
qk+1

t
·
∑

r∈A

Pr[M = m] . (9)
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Set γ(m, c, c1, . . . , ck) = |{r ∈ V (G) | c(r) = m, c1(r) = 0, . . . , ck(r) = 0}| = |A|.
Then

Pr[P = m | C = c, c1, . . . , ck] =
qk+1

t
· Pr[P = m] · γ(m, c, c1, . . . , ck) . (10)

For r ∈ V (G) consider a random variable Yr which equals 1 iff r ∈ A and equals
0 otherwise. We get

∑
r∈V (G) Yr = γ(m, c, c1, . . . , ck) and Corollary 14 implies,

that it has the binomial distribution with parameters t and 1/qk+1, which is
denoted by B(t, 1/qk+1). It is well known, that B(t, 1/qk+1) has the expected
value E[γ] = t/qk+1 and variance Var[γ] = t/qk+1 · (qk+1 − 1)/qk+1.

Now we can calculate the distance between Pr[P = m | C = c, c1, . . . , ck]
and Pr[P = m] with respect to δ from Definition 8 to show that SymPC(n, ν, q)
achieves approximate perfect secrecy in k-bounded CPA model.

δ(Pr[P = m | C = c, c1, . . . , ck],Pr[P = m]) =

=
1

|C| ·
∑

c∈C
(Pr[P = m|C = c, , c1, . . . , ck]− Pr[P = m])2

=
1

|C| ·
∑

c∈C

(
qk+1

t
· Pr[P = m] · γ(m, c, c1, . . . , ck)− Pr[P = m]

)2

=Pr[P = m]2 · q
2(k+1)

t2
·
∑

c∈C

1

|C| ·
(
γ(m, c, c1, . . . , ck)− t/qk+1

)2

=Pr[P = m]2 · q
2(k+1)

t2
·
∑

c∈C

1

|C| · (γ(m, c, c1, . . . , ck)− Ec(γ(m, c, c1, . . . , ck)))
2

︸ ︷︷ ︸
Var(γ(m,c,c1,...,ck))=t(qk+1−1)/q2(k+1)

=Pr[P = m]2 · q
k+1 − 1

t
.

We assumed 1 < ν < q − 1, a = q/(ν + 1) and l > loga(q)/(loga(q) − 1). To
finish the proof, we need to show that for k = n/l − 1 and a fixed a we have
limn→∞(qk+1 − 1)/t = 0. We have

qk+1 − 1

t
=

q
n
l − 1

(ν + 1)n
=

qn · q n
l −n − 1

(ν + 1)n
=

(
q

ν + 1

)n

· qn·( 1
l −1) − 1

(ν + 1)n
=

=

(
a

q1−
1
l

)n

−
(

1

ν + 1

)n

.

Clearly, (1/(ν +1))n goes to zero as n grows (recall that a = q/(ν +1) is fixed).
We assumed l > loga(q)/(loga(q)−1), which implies 1 < (1−1/l)· loga(q). Hence
a < q1−1/l and (a/q1−1/l)n goes to zero as n grows. The speed of convergence is
linear with a rate of convergence μ = a

q1−
1
l
. Altogether, we have shown that

δ(Pr[P = m | C = c, c1, . . . , ck],Pr[P = m])
n−→∞−−−−−−−→ 0 ,
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i.e. SymPC(n, ν, q) achieves approximate perfect secrecy in k-bounded CPA
model. ��

6.2 Security in KPA Model

In this section, we analyze the security of SymPC in the (unbounded) KPA
model. Namely, we present a known plaintext attack that computes the secret
key s and we estimate the required number of plaintext-ciphertext pairs.

Let s ∈ IFn be a secret key and assume that the attacker knows k plaintext-
ciphertext pairs. By Prop. 6, we can assume that he knows c1, c2, . . . , ck ∈ C such
that ci(s) = 0, i = 1, . . . , k. Following Note 11, we also assume that he knows
the algebraic set V (G) (recall that |V (G)| = (ν+1)n), the set of key candidates.

Now for each r ∈ V (G), the attacker can test whether ci(r) = 0 for all
i = 1, . . . , k with complexity O((ν + 1)n). Set

V = {r ∈ V (G) | ci(r) = 0, i = 1, . . . , k} .

We will calculate the expected size of V , i.e. the expected number of secret key
candidates given k know plaintext-ciphertext pairs.

Let ϕ be the mapping from Theorem 13 and assume that s = r(1). Then
by Corrolary 14, the vectors ϕ(c1), . . . , ϕ(ck) are independent and uniformly
distributed over {0}× IFt−1. In particular, the j-th coordinates of vectors ϕ(ci)
are independent uniformly distributed elements of IF. Hence for a random r ∈
V (G), r �= s we have Pr[ci(r) = 0, i = 1, . . . , k] = 1/qk and the random variable
|V | − 1 has the binomial distribution B((ν + 1)n − 1, 1/qk). We get that

E[|V |] = 1 +
(ν + 1)n − 1

qk
.

Set (as in Theorem 9) a = q/(ν + 1). Then E[|V |] < 1 + (ν + 1)n/qk = qn−ka−n

and so if qn−ka−n ≤ 1 then E[|V |] ≤ 2. This implies k ≥ n · (loga(q)−1)/ loga(q)
and we see that the bound for k in Theorem 9 is tight.

6.3 Security in COA Model

Here we briefly analyze the security of SymPC in COA model. Again, let s ∈ IFn

be a secret key and assume that the attacker knows ciphertexts c1, . . . , ck ∈ C but
not the corresponding plaintextsmi = c(s), i = 1, . . . , k. Furthermore we assume
that he knows V (G) = {r(1), . . . , r(t)}, t = (ν+1)n and also Pr[P = m], m ∈ IF
the probability distribution on the plaintext space.

By Corrolary 14, the values of ci(r) for r �= s are uniformly distributed over IF.
So the goal of the attacker is to distinguish the plaintext distribution Pr[P = m]
from (ν + 1)n − 1 independent uniform distributions given a sample of size k of
each. Clearly, if Pr[P = m] is also uniform, then the attacker cannot determine
s regardless of k. The other extreme distribution on P is the distribution with
Pr[P = m] = 1 for some m ∈ IF. In this case we get the known plaintext attack.
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7 Sparse Version of SymPC

Back in Sect. 5 we noted, that the complexity of ENCRYPT is O(n · (ν+1)n+1). If
we modify Alg. 5 in such way, that in Step 2 it will choose a sparse polynomial
(say number of non-zero coefficients will be bounded by some fixed ξ ∈ IN),
the complexity of ENCRYPT will go down to O(ξ · n · ν). We believe, that the
distribution of evaluations of these polynomials in V (G) will stay close to the
uniform distribution on IFt and the proof of Theorem 9 will go through even
with this modification.
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A Proofs

Theorem 3. Let R and G be defined by Alg. 4. Then G is the reduced normed
Gröbner basis of the ideal 〈G〉.

Proof. By Alg. 4, G = {g1, . . . , gn}, gi := (xi − si) ·
∏ν

l=1(xi − t
(i)
l ) ∈ IF[xi].

According to Theorem 1, we need to show that for all gi, gj ∈ G, i �= j the
remainder on division of spol(f, g) by G equals zero. Clearly, lt(gi) = xν+1

i and
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lt(gj) = xν+1
j , hence lcm(lt(gi), lt(gj)) = xν+1

i xν+1
j . Define hi = gi − xν+1

i and

hj = gj − xν+1
j . We obtain

spol(gi, gj) = lcm(lt(gi), lt(gj)) · gi/lm(gi)− lcm(lt(gi), lt(gj)) · gj/lm(gj)

= xν+1
j (xν+1

i + hi)− xν+1
i (xν+1

j + hj)

= xν+1
j hi − xν+1

i hj .

Now, if we reduce spol(gi, gj) by gi and gj we get

spol(gi, gj) mod gi = xν+1
j hi + hihj

(spol(gi, gj) mod gi) mod gj = −hihj + hihj = 0 .

��
Theorem 13. The mapping

ϕ : R/〈G〉 −→ IFt

f �−→
(
f(r(1)), . . . , f(r(t))

)

is a ring isomorphism.

Proof. As for all i = 1, . . . , t, r(i) ∈ V (G), each of the mappings f �→ f(r(i)) is
a ring homomorphism. Hence ϕ is also a ring homomorphism.

Let i ∈ {1, . . . , n} and ui = (0, . . . , 1, . . . , 0) ∈ IFt be a vector with a 1 at the
i-th position. We show that we can find f ∈ R/〈G〉, such that ϕ(f) = ui. As i
has been chosen arbitrarily and ϕ is linear, the surjectivity of ϕ will follow.

The desired f needs to satisfy f(r(i)) = 1 and f(r(j)) = 0 for all j �= i.
For j �= i it holds r(j) �= r(i), therefore we can find an l = l(j) ∈ {1, . . . , n},
such that r

(j)
l(j) �= r

(i)
l(j). For j = 1 . . . , i − 1, i + 1, . . . , t we set bj := r

(j)
l(j) and

hj := (xl(j) − bj)/(r
(i)
l(j) − bj). We have hj(r

(i)) = 1 and hj(r
(j)) = 0. Set

f̃ :=
∏t

j=1, j �=i hj ∈ R. We obtain

f̃(r(i)) =

t∏

j=1, j �=i

hj(r
(i)) =

t∏

j=1, j �=i

1 = 1 ,

f̃(r(j)) = hj(r
(j)) ·

t∏

k=1, k �=i,j

hk(r
(j)) = 0, j = 1 . . . , i− 1, i+ 1, . . . , t .

Set f := f̃ +G ∈ R/〈G〉. As r(j) ∈ V (G) for j = 1, . . . , t, we get that f(r(i)) =
f̃(r(i)) = 1 and for all j �= i, f(r(j)) = f̃(r(j)) = 0. So we have found f ∈
R/〈G〉, such that ϕ(f) = ui.

In order to finish the proof, it is sufficient to show that dimIF(R/〈G〉) =
dimIF(IF

t) as both rings are finite. Clearly, dimIF(IF
t) = t = (ν + 1)n. As G

is a Gröbner basis, R/〈G〉 is as a vector space generated by all the terms in R
irreducible by 〈G〉. By our choice of gi in Alg. 4, these are xj1

1 · · ·xjn
n , j1, . . . , jn ∈

{0, . . . , ν} and there are (ν + 1)n such terms. ��
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