
The Low-Call Diet: Authenticated Encryption

for Call Counting HSM Users

Mike Bond1, George French2, Nigel P. Smart3, and Gaven J. Watson3

1 Cryptomathic A/S, Cambridge, UK
2 Barclays Bank Plc, London, UK

3 University of Bristol, UK

Abstract. We present a new mode of operation for obtaining authen-
ticated encryption suited for use in environments, e.g. banking and gov-
ernment, where cryptographic services are only available via a Hardware
Security Module (HSM) which protects the keys but offers a limited API.
The practical problem is that despite the existence of better modes of
operation, modern HSMs still provide nothing but a basic (unauthenti-
cated) CBC mode of encryption, and since they mediate all access to the
key, solutions must work around this. Our mode of operation makes only
a single call to the HSM, yet provides a secure authenticated encryption
scheme; authentication is obtained by manipulation of the plaintext be-
ing passed to the HSM via a call to an unkeyed hash function. The scheme
offers a considerable performance improvement compared to more tradi-
tional authenticated encryption techniques which must be implemented
using multiple calls to the HSM. Our new mode of operation is provided
with a proof of security, on the assumption that the underlying block
cipher used in the CBC mode is a strong pseudorandom permutation,
and that the hash function is modelled as a random oracle.

1 Introduction

Authenticated symmetric encryption, namely an encryption scheme which is
both IND-CPA and INT-CTXT secure [3], is regarded as the goal for symmetric
encryption. There is no shortage of constructions in the literature for such au-
thenticated encryption (AE) schemes. The most famous of these is the Encrypt-
Then-MAC construction, which first encrypts the message using an IND-CPA
encryption scheme and then appends a secure MAC to the ciphertext. Over
the last decade various special modes of operation have been defined which im-
plement authenticated encryption such as OCB [17], CCM [19], EAX [5] and
GCM [12]. However, while these modes have been optimised for modern use and
parallel services, there are some situations in which generic constructions (like
Encrypt-Then-MAC) or special modes cannot be used.

In the financial and government sectors, a common industrial deployment of
cryptography is for keys to reside within a special piece of hardware known as a
Hardware Security Module or HSM. Such HSMs store the keys and manipulate
sensitive data on behalf of applications, and offer a measure of assurance that

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 359–374, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

360 M. Bond et al.

neither a lone corrupt insider manipulating his own systems nor an external
hacker will be able to steal or abuse cryptographic keys. Another benefit of
utilizing HSMs is that they define the point at which any abuse of the key
material may occur; so whilst a given HSM may not be truly secure (e.g. it may
be susceptible to API attacks [6,8]), nor may they require authentication of the
caller, they do from a pragmatic point of view provide the location where any
abuse by an attacker will occur.

In practice the dominant characteristic of HSMs is their compliance and cer-
tification against security standards such as NIST FIPS 140-2, PCI HSM, and in
certain business areas common criteria evaluation (e.g. against the Secure Sig-
nature Creation Device (SSCD) profile). These standards have varying levels of
practical applicability – for instance FIPS 140 has relatively little to say about
software API security but is widely depended upon as a measure of all round
security. The standards are completely entrenched and not just adherence but
certification is required in order to do business. Certification against such stan-
dards is expensive and applies to each version of HSM firmware and hardware
released. Consequently the focus on security compliance and certification has
slowed the rate of software change on HSMs, and it is rarely cost effective for a
supplier to speculatively add new modes of operation in the hope they will be
adopted.

To compound the matter, in a chicken-and-egg situation, the banking industry
has been reluctant to specify authenticated encryption as part of standards for
core HSM activities such as manipulation of customer PINs in banking networks
and EMV1, since in making this demand they will be requiring implementers
to change their HSM firmware or radically increase their HSM load by making
multiple calls per encrypt/decrypt.

Finally, for software vendors implementing softwarewhich use HSMs for crypto,
different HSMs are dominant and are demanded in different regional markets2.
Supporting a variety of vendors is both required by the market and is wise to en-
able price competition, hence the algorithm chosen for crypto must be the lowest
common denominator across all these platforms.

Thus creation of more complex cryptographic construction is usually done
via multiple API calls to the HSM. For example an HSM may provide an API
call to perform CBC Mode with AES. To call this operation the user passes the
plaintext to the HSM and specifies the key to use. The HSM recovers the key
(usually looking it up in an internal store by name, or possibly by unwrapping
a supplied encrypted key via some other internal key), applies CBC Mode to
the message and then passes the ciphertext back to the caller. If Encrypt-then-
MAC is required the whole process is then repeated again to obtain the MAC
on the ciphertext. Thus traditional ways of obtaining authenticated encryption
are computationally expensive.

1 EMV is the major international smartcard based payment scheme named after its
founders Europay Mastercard and Visa.

2 Since the USA reclassification of crypto hardware in 2000 as no longer a munition the
market is consolidating, but this takes time.

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 361

The whole process is also very expensive in terms of latency; nowadays HSMs
are network attached remote computers and thus are often orders of magnitude
slower than using local crypto in the CPU of the calling machine. In addition
HSMs are also rate-limited and price differentiated by supported number of
transactions per second. Thus minimizing calls to an HSM is a major application
requirement.

Note that considering the lowest common denominator across HSMs, CBC
Mode may only be available with the all-zero IV, thus the HSM does not even
provide an IND-CPA encryption scheme. This can be fixed by using the HSMs
ability to generate random numbers, or using some other random number source,
to produce a random IV and then xor-ing the first block of the plaintext with
the IV before calling the HSM, but with a naive implementation this introduces
an extra call to acquire randomness - yet again incurring a performance penalty.

Fundamentally HSM APIs were designed before the need for authenticated
encryption was properly understood. Yet the cryptographic community has de-
veloped new modes for authenticated encryption which focus on squeezing all
data fields including randomisation into a single blockcipher block; as well as
obtaining authentication with only a single pass of the data. In particular, the
specific new modes of operation for authenticated encryption (such as Galois
Counter Mode) are not supported by such HSMs; and are unlikely to be so
universally in the near future.

As the financial industry and local and national government come under
greater pressure to protect data such as Personally Identifying Information (PII),
there is a problem using existing HSM approaches, since this new data is much
larger than the size of a single blockcipher block (unlike bank card PINs or
cryptographic keys). The generic construction such as Encrypt-Then-MAC, uti-
lizing two keys within the HSM (one for the encryption algorithm and one for
the MAC), are not suitable for the reasons already described, so an efficient
mode is required which operates on larger data, but within the constraints of
lowest-common-denominator HSM support.

It is to solve this real world cryptographic issue that we turn our attention. The
summary requirement is therefore to design a mode of operation which provides
a service of authenticated encryption which has the following properties:

– All secret keys used by the mode should reside on the HSM.
– Only one call to the HSM is allowed, i.e. only one application of key material

is allowed.
– The only modes of operation available are ECB or CBC-Encrypt with zero

IV.

The mode of operation described in this paper has been deployed in several
scenarios;

– By major European banks to protect sensitive customer data in transit and
storage that does not fall under the existing frameworks for banking PINs
or crypto keys.

– By vendors of customised HSM firmware that need a way of offloading cryp-
tographic keys under a master key, held together with access control and

362 M. Bond et al.

usage information. Code which runs internally within an HSM is often sub-
ject to the same limitations of crypto primitive availability as that which
make external calls.

Yet this paper represents the first time it has been described publicly and has
been provided with a full security analysis:

The main idea is to “authenticate” the message using a “MAC-like” function
and then encrypt the result; i.e. to apply a MAC-Then-Encrypt methodology.
The encryption is performed using CBC Mode with a zero IV, but a random
first block (to achieve probabilistic encryption). This is equivalent to CBC Mode
with a random IV given by the first block of ciphertext. However, our MAC-like
function must be key-less (to avoid another call to the HSM). So we use a hash
function on the message sent to the CBC Mode encryption, this is like applying
the hash function as a “MAC” with key given by the initial random plaintext
block we added before encryption. However, such a MAC on its own is not secure
as it suffers from length extension attacks. Amazingly, despite the use of MAC-
Then-Encrypt with an insecure keyless MAC and an insecure encryption scheme
(zero-IV CBC mode is not even IND-CPA) the whole construction can be proved
secure, assuming the hash function is modelled as a random oracle.

2 Preliminaries

Notation We let x‖y denote the concatenation of two strings x and y. |x| denotes
the length of the string x. We use x

r← X to denote the random selection of an

element x from the set X . We denote the addition of x to the set X by X ∪← x.

Pseudorandom Functions and Permutations We define pseudorandom functions
and permutations as follows. We also provide a definition for strong PRPs.

Definition 1. [Pseudorandom Function/Permutation (PRF/PRP)]
Let F = {FK : K ∈ {0, 1}k} where FK : {0, 1}l → {0, 1}l′ for each K ∈ {0, 1}k.
Let P = {PK : K ∈ {0, 1}k} where for each K ∈ {0, 1}k, PK : {0, 1}l → {0, 1}l
is a permutation. Let Rand be the set of all functions mapping l-bit strings to
l′-bit strings. Let Perm be the set of all permutations mapping l-bit strings to
l-bit strings. The prf and prp advantage of an adversary A are defined as:

Advprf
F (A) = Pr[K

r← {0, 1}k : AFK ⇒ 1]− Pr[f
r← Rand : Af ⇒ 1]

Advprp
P (A) = Pr[K

r← {0, 1}k : APK ⇒ 1]− Pr[π
r← Perm : Aπ ⇒ 1]

A function family F (permutation family P resp.) is said a prf (prp resp.) if

Advprf
F (A) (Advprp

F (A) resp.) is “small” for all adversaries A running in time
t making at most qf queries.

Definition 2. [Strong Pseudorandom Permutation (SPRP)] Let P =
{PK : K ∈ {0, 1}k} where for each K ∈ {0, 1}k, PK : {0, 1}l → {0, 1}l is a
permutation with corresponding inverse permutation P−1

K : {0, 1}l → {0, 1}l. Let

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 363

Perm be the set of all permutations mapping l-bit strings to l-bit strings. The
sprp advantage of an adversary A is defined as:

Advsprp
P (A) = Pr[K

r← {0, 1}k : APK ,P−1
K ⇒ 1]− Pr[π

r← Perm : Aπ,π−1 ⇒ 1]

A permutation family P is said to be an sprp if Advsprp
F (A) is “small” for all

adversaries A running in time t making at most qf queries to both oracles.

In our analysis we will use PRP/PRFs and SPRPs to represent the block cipher
used in our scheme. We will also make use the following lemma to relate PRF
to PRP.

Lemma 1. [PRF→ PRP, [2, Proposition 8]] For any permutation family
P = {PK : K ∈ {0, 1}k} over l-bit strings.

Advprf
P (A) ≤ Advprp

P (B) + q2f
2l+1

Hash function. Let hash : {0, 1}∗ → {0, 1}l be a hash function with outputs
truncated to l-bits (where l is the blocksize of the block cipher used in the
scheme). When we denote the hash function with input as hash(X,Y, Z) we
simply compute the hash on the concatenation of the input i.e. hash(X‖Y ‖Z).

CBC mode. An HSM allows us an API call to CBC mode with a zero IV.
We therefore define CBC mode accordingly. Let E-CBC0[F](K,M) denote the
CBC encryption of message M (with all zero IV) using the function family F
under key K, i.e. E-CBC0[F] : {0, 1}k × {0, 1}ln → {0, 1}ln, (n ∈ N), where for
M = M [1]M [2]...M [n] we have that C[i] = FK(M [i]⊕C[i−1]) and C[0] = 0l. Let
D-CBC0[F](K,C) denote the CBC decryption of ciphertext C using the function
family F under key K, i.e. D-CBC0[F] : {0, 1}k × {0, 1}ln → {0, 1}ln, (n ∈ N),
where for C = C[1]C[2]...C[n] and C[0] = 0l we haveM [i] = F−1

K (C[i])⊕C[i−1].
It is very important to note that CBC mode with a zero IV is not secure. To

achieve even IND-CPA security we need to use a random initialisation vector
(IV). CBC mode with random IVs was proven secure by Bellare et al. [2]. The
scheme that we present will prepend a random block to the plaintext before the
CBC call to achieve security. This random block will effectively replace the zero
IV of the API encrypt call to make a random IV. The choice of this random block
is internal to the scheme and so the adversary should/will not have control over
it (this fact is crucial to the schemes security). The random block will either be
generated by the HSM or will be prepended to (or xored with) the first plaintext
block prior to being called to the HSM.

Padding scheme. When working with arbitrary length messages we need to pad
the message before sending it to the blockcipher/CBC mode. Let pad : {0, 1}∗ →
{0, 1}ln be the padding function which pads the message to a multiple of the
blocksize. Let dpad : {0, 1}ln → {0, 1}<ln ∪ {⊥} be the associated depadding
function which depads the message, if the message is invalid it returns the symbol

364 M. Bond et al.

⊥. The padding scheme used with the Managed Encryption Format is PKCS#7
padding [11] (add p bytes each of value p). Note that in our analysis we assume
that uniform error reported is used so that no padding oracle attacks exist.
This is the case in the implementation of the scheme in all known deployed
instantiations.

2.1 Security Models

An authenticated encryption scheme is secure if it achieves both the IND-
CPA and INT-CTXT notions of security [16,3]. As padding should only pad
to the next block boundary and is not variable in length (i.e. we cannot have
multiple blocks of padding) we do not consider length-hiding to be a security
goal [14]. In implementations of the scheme we stress that uniform error re-
porting must be used. This will be vital for the scheme’s security otherwise a
padding oracle attack similar to that against SSL/TLS by Canvel et al. [7] may
be possible. As a result our analysis we only considers one error type, ⊥. Let
Π = (KeyGen,Encrypt,Decrypt) be an encryption scheme and A be an adversary.

IND-CPAA(Π)
K ← KeyGen
b

r← {0, 1}
b′ ← AEnc

return (b′ = b)

Enc(A,M0,M1)
C0 ← Encrypt(K,A,M0)
C1 ← Encrypt(K,A,M1)

C ∪← Cb

return Cb

INT-CTXTA(Π)
K ← KeyGen
win← false
(A∗, C∗)← AEnc,Test

return win

Enc(A,M)
C ← Encrypt(K,A,M)

C ∪← (A,C)
return C

Test(A∗, C∗)
M∗ ← Decrypt(K,A∗, C∗)
if M∗ �=⊥ and (A∗, C∗) �∈ C then

win← true
return (M∗ �=⊥)

Fig. 1. The IND-CPA and INT-CTXT experiments

The security experiment for IND-CPA is found in Figure 1. Note, that the
encryption scheme semantics are defined to encrypt messages M as well as (pos-
sibly public) associated data A. We define the advantage of an adversary A
against the IND-CPA security of Π as:

Advind−cpa
Π (A) = 2Pr[IND-CPAA(Π)⇒ true]− 1,

We say that the scheme Π is IND-CPA secure if for all adversaries A the ad-
vantage Advind−cpa

Π (A) is “small”, where the adversary A makes qe queries to
the encryption oracle Enc(A,M0,M1), totaling at most μe bits in each of the
left M0 and right M1 inputs.

The security experiment for INT-CTXT, is found in Figure 1. We define the
advantage of an adversary A against the INT-CTXT security of Π as:

Advint−ctxt
Π (A) = Pr[INT-CTXTA(Π)⇒ true]

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 365

We say that Π is INT-CTXT secure if for all adversaries A the advantage
Advint−ctxt

Π (A) is “small”, where A makes qe queries to the encryption ora-
cle Enc(A,M), totaling at most μe bits in the M input and qt queries to the
test oracle Test(A,C) totaling at most μt of ciphertext bits.

3 Description of the Scheme

The Managed Encryption Format combines CBC mode encryption and a hash
function in a MAC-then-Encrypt style configuration. We shall denote the Man-
age Encryption Format scheme by Π [F]. The scheme Π [F] consists of three
algorithms: key-generation KeyGen, encryption Encrypt and decryption Decrypt.
The function F signifies the underlying blockcipher (i.e. the permutation fam-
ily). We use the following notation: K is a key, N denotes a random IV, A
is the header (associated data which is always the same fixed length), M is a
(unpadded) message and C is a ciphertext.

To encrypt a message M with associated data A, a random N is first chosen.
Then a hash is calculated over N,A,M . Following this CBC encryption (using
the block cipher FK and zero IV) is performed on the (padded) message M ,
prepended with N and the hash value. Effectively, N ensures that we will have
a random IV despite our API crypto call being to CBC mode with a zero IV.

N

C[0] = FK(N)

FK FK FK

hash(N,A,M)

hash

M [1]

C[1] C[2]

A

FK

M [2]

C[3]

FK

M [n]

C[n+ 1]

KeyGen(k)

K
r← {0, 1}k

return K

Encrypt(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[F](K,N‖h‖pad(M))
return C

Decrypt(K,A,C)

N‖h‖M ′ ← D-CBC0[F](K,C)
M ← dpad(M ′)
if M �=⊥ then

h← hash(N,A,M)
if h �= h then M =⊥
return M

Fig. 2. Managed Encryption Format Π [F] = (KeyGen,Encrypt,Decrypt)

366 M. Bond et al.

Decryption is the obvious inverse operation of encryption. The diagram and
description in Figure 2 are given for aid of analysis.

4 Links with Prior Constructions

4.1 Analysis of the Underlying Message Authentication Code

If we look at the underlying MAC we see that it is of the Wegman-Carter style
[18] and is particularly similar to VMAC [9,10]. The VMAC algorithm uses a
keyed hash function hash and a prf F . Tags are constructed on a message M
together with a nonce N and keys K1 and K2 as follows:

τ = hashK1(M) + FK2(N)

Notice that when K1 = N this is almost exactly the MAC we have in the above
mode of operation, i.e.

τ = hashN (M)⊕ FK(N)

In VMAC we return the nonce N , message M and tag τ but in our MAC we
cannot return N since this would break the schemes security instead we must
return FK(N), message M and tag τ . Effectively this means we simply return
the message M and hashN (M). We now require unforgeability properties from
hashN (M) but since key N is simply a secret-prefix of the hash function input
this falls to extension attacks when used with an iterated hash function [15]. The
underlying MAC is therefore not secure on its own.

4.2 Encryption with Redundancy

Bellare and Rogaway [4] and An and Bellare [1] have previously study the prob-
lem of how to achieve a secure AE scheme by appending some redundancy to
the data before encryption. We shall review the results of An and Bellare [1]
here and discuss how to relate these to our work.

A redundancy function may simple take the form of a hash function, as in our
scheme. An and Bellare consider two types of redundancy function; one with
a secret key and the other where any keying material is public. Perhaps the
most important result that they show from our perspective, is that an IND-CPA
scheme when combined with either a secret or a public redundancy function is
not secure in general. Further to this, they describe an attack on the generic
construction which combines CBC mode with a public redundancy function.

Despite this, An and Bellare are able to provide a construction for an en-
cryption scheme which when combined with a secret key redundancy function
would achieve INT-CTXT [1, Theorem 6.5]. This construction is called Nested
CBC or NCBC. The encryption procedure followed for this scheme is to proceed
with CBC encryption as normal until the last block. When encrypting the last
block a different key shall be used for the block cipher. This means that NCBC

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 367

requires two keys and therefore, in the setting of HSMs, would require two key
unwrap operations. As a result this construction would not meet the single key
requirement of our setting.

The Managed Encryption Format can be viewed within the context of the
Encryption with Redundancy paradigm with one main difference. Due to the
encryption algorithm’s selection of a new N upon each encryption call, this ef-
fectively means we are choosing a new random “key” for each hash function
call. As a result we can view the Managed Encryption Format as an encryp-
tion scheme with secret redundancy, where the redundancy function is chosen
anew upon each encryption call. Looking at a general construction of any IND-
CPA secure encryption scheme and one time redundancy functions, we would
still not necessarily achieve INT-CTXT security. An IND-CPA secure encryp-
tion scheme can be constructed, as in the attack presented by An and Bel-
lare in the normal setting [1, Theorem 5.1], that when combined with one time
secret redundancy functions, would not achieve INT-CTXT security. Despite
this, in the next section we show that when we use a construction based on
CBC mode (as in the Managed Encryption Format) we will obtain a secure AE
scheme.

5 Security Analysis

In this section we shall prove that the Managed Encryption Format does achieve
both IND-CPA security and INT-CTXT security and is therefore a secure au-
thenticated encryption scheme. Note that to simplify our analysis we do not
formally discuss the padding which is added to messages. This will not affect
our security analysis since uniform-error reporting is used. We will therefore
assume that all messages are already padded and omit the padding procedure
from our proofs. In practice however the scheme could fall to a padding oracle
attack of the style in [7] if uniform-error reporting is not present. Our proof is
in the random oracle model (although this is only necessary for the proof of
INT-CTXT). We denote by qh the number of queries the adversary makes to
the random oracle (not including those made through encryption, decryption or
test queries).

Theorem 1. [IND-CPA] Let F = {FK : K ∈ {0, 1}k} be a permutation fam-
ily. Let Π [F] be the encryption scheme for the Managed Encryption Format
using the permutation family F . Let A be an adversary against the IND-CPA
security which runs in time t; making qe encryption queries totalling at most μe

bits. Then there exists an adversary B such that:

Advind−cpa
Π[F] (A) ≤ 2Advprp

F (B) + q2f
2l

+
1

2l

((μe

l
+ 2qe

)2

−
(μe

l
+ 2qe

))

where B runs in time t+O(μe) asking at most qf = μe

l + 2qe queries.

368 M. Bond et al.

Encrypt0(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[F](K,N‖h‖M)
return C

Encrypt1(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[F](K,N‖h‖M)
return N‖C

Encrypt1rand(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[R](K,N‖h‖M)
return N‖C

Fig. 3. Encryption Algorithm Hops in Proof of Lemma 1

Proof. This can be proven by extension to the existing proof of security for
CBC mode by Bellare et al. [2]. Since N is chosen uniformly at random by the
encryption algorithm this gives us the necessary randomness for the existing
CBC mode proof to still hold. Our proof follows a series of game hops. The
different encryption algorithms used in each hop are shown in Figure 3.

Let Game0 be the normal IND-CPA game where A has access to a left-or-right
oracle that uses algorithm Encrypt0(K,A,M) to encrypt Mb.

Let Game1 be the same as Game0 but replace the encryption algorithm
Encrypt0(K,A,M) used by the left-or-right oracle with Encrypt1(K,A,M). In
Encrypt1(K,A,M) the value of N is now returned with the ciphertext. Knowl-
edge of N allows the adversary to recalculate any hash values hash(N,A,M).
This means that in the left-or-right indistinguishability game the adversary now
has retrospective knowledge of his query, i.e. his left-or-right encryption is effec-
tively (0l‖hash(N,A,M0)‖M0, 0

l‖hash(N,A,M1)‖M1), which will be encrypted
by CBC mode with random IV N . Since N is chosen at random for each call, giv-
ing the adversary knowledge of a previously used N will not allow the adversary
to predict any future N ′. We therefore have that

Pr[Game1⇒ true] = Pr[Game0⇒ true].

Now we effectively have normal CBC encryption with a random IV given by N ,
plus an encryption query of the form 0l‖h‖M (note that in Figure 3 we have
already xored on the IV N to the first block, as the internal algorithm called is
CBC mode with zero-IV).

It therefore remains to analyse A’s success probability in Game1. This can be
proven by extension to the existing proof of security for CBC mode by Bellare et
al. [2]. Note that we cannot perform a direct reduction because prior knowledge of
N is necessary to calculate the hash. We begin the proof of security by switching
to consider F as a random function. Let Game1rand be exactly the same as Game1
but we now replace FK with a function drawn uniformly at random from the set

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 369

of all functions mapping l-bit strings to l′ = l-bit strings (i.e. f
r← Rand = R).

We can then construct a distinguisher B as in [2] such that:

Pr[Game1⇒ true]− Pr[Game1rand ⇒ true] ≤ 2Advprf
F (B)

We shall later use Lemma 1 to consider the prp advantage.
We now examine Pr[Game1rand ⇒ true]. Game1 proceeds as in the original

proof for CBC mode by Bellare et al. [2], the encryption algorithm randomly
chooses the IV N , and then proceeds with CBC encryption. Bellare et al.’s proof
shall therefore remain almost as is and we just give a brief summary here. Note
now that we simply treat the hash h like an additional plaintext block.

We denote the left and right encryption queries as follows:

Let M̃L = 0l‖hash(N,A,M0)‖M0 denote the left query and let M̃R =
0l‖hash(N,A,M1)‖M1 denote the right query. We also let Cj [k] denote the k-th

block of the j-th ciphertext, M̃L
j [k] denote the k-th block of the j-th left query

and M̃R
j [k] denote the k-th block of the j-th right query. For a fixed adversary

A we define the event Di,u, where i ∈ [qe] and u ∈ [ni + 2], to be when the
following two events occur:

Cj [k − 1]⊕ M̃L
j [k] �= Cj′ [k

′ − 1]⊕ M̃L
j′ [k

′]

Cj [k − 1]⊕ M̃R
j [k] �= Cj′ [k

′ − 1]⊕ M̃R
j′ [k

′]

for all (j, k), (j′, k′) ∈ {(j, k) : j ∈ [qe] and k ∈ [nj + 2]} satisfying (j′, k′) ≺
(j, k) (i, u), where nj denotes the number of blocks in the j-th encryption
query, note the addition of 2 here due to the extra all-zero block and hash block.
Here ≺ denotes an ordering on the blocks queried to the encryption oracle. With
(j′, k′) ≺ (j, k) implying that the k′-th block of the j′-th ciphertext was queried
before the k-th block of the j-th ciphertext.

We now wish to study the probability of the event D = Dq,nq , i.e. that a
collision occurs at some point in the output ciphertexts. Bellare et al. prove that
Pr[D|b = 0] = Pr[D|b = 1], i.e. this probability is independent of whether we are
observing left queries or right queries, the analysis is therefore the same for both
b = 0 and b = 1. This probability is then denoted p = Pr[D|b = 0] = Pr[D|b = 1]
and was proved to be bounded as follows.

p =

qe∑
i=1

ni∑
j=1

Pr[Di,u|Di,u−1]

≤ 1

2l

((μe

l
+ 2qe

)2

−
(μe

l
+ 2qe

))

Note that we adjust slightly from the original bound since we must account
for the additional plaintext blocks caused by the hash and the initial all-zero
block.

370 M. Bond et al.

Combining the above and following similar arguments to the original CBC
proof by Bellare et al. (along with Lemma 1) we obtain the following:

Advind−cpa
Π[F] (A) = Pr[Game0⇒ true]

≤ Pr[Game1⇒ true]

≤ 2Advprf
F (B) + Pr[Game1rand ⇒ true]

≤ 2Advprf
F (B) + 1

2l

((μe

l
+ 2qe

)2

−
(μe

l
+ 2qe

))

≤ 2Advprp
F (B) + q2f

2l
+

1

2l

((μe

l
+ 2qe

)2

−
(μe

l
+ 2qe

))
.

Theorem 2. [INT-CTXT] Let F = {FK : K ∈ {0, 1}k} be a permutation
family. Let Π [F] be the encryption scheme for the Managed Encryption Format
using the permutation family F . Let A be an adversary against the INT-CTXT
security which runs in time t; making qe encryption queries totalling at most μe

bits, qt test queries totalling at most μt bits and qh random oracle queries. Then
there exists an adversary B such that:

Advint−ctxt
Π[F] (A) ≤ Advsprp

F (B) + qt
2l

+
qhμe

l2l

where B makes qf = μe

l + 2qe +
μt

l queries and runs in time t+O(μe + μt).

Proof. We assume we have an adversary A against INT-CTXT and we use it to
construct an adversary B against SPRP. This is done as follows:

– When A makes an encryption query A,M , the algorithm B chooses N at
random and calls the random oracle on N,A,M . Following this B makes
calls to its π oracle for the appropriate CBC encryption (making a total of
μe/l+2qe queries (where 2qe accounts for the queries π(N) and π(h⊕π(N))).
Finally B returns the ciphertext to A.

– When A makes a test query, the algorithm B calls its π−1 oracle for the
appropriate CBC decryption (μt/l queries). Then B verifies whether M is
new or not. Next B calls the random oracle to verify the hash. The result of
the whole verification is returned to A.

– The random oracle maintains a list H of all queries.
– If A outputs a successfully forgery then B guesses it has access to the real

permutation.
– If A is unsuccessful then B guesses it has access to the random permutation.

The following inequality then holds (where Perm is the set of all l-bit permuta-
tions):

Advsprp
F (B) ≥ Pr[Bπ,π−1 ⇒ 1|π r← F]− Pr[Bπ,π−1 ⇒ 1|π r← Perm].

= Pr[INT-CTXTA(Π [F])⇒ true]

− Pr[INT-CTXTA(Π [Perm])⇒ true]

= Advint−ctxt
Π[F] (A)− Pr[INT-CTXTA(Π [Perm])⇒ true].

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 371

If Decrypt(K,A∗, C∗) = M∗ then the probability that this message is a valid
forgery is bounded by the probability that the hash verifies on M∗. The de-
crypted hash value to be verified will be given by h∗ = π−1(C∗[1]) ⊕ C∗[0] =
π−1(C∗[1])⊕ π(N∗). We therefore obtain the following bound:

Pr[INT-CTXTA(Π [Perm])⇒ true] ≤ Pr[hash(N∗, A∗,M∗) = h∗|π r← Perm]

We shall now consider this probability in two parts. First we study the case where
N∗, A∗,M∗ was never a random oracle query, i.e. (N∗, A∗,M∗, h∗) /∈ H. The
actual hash value will now be chosen at random when the random oracle is called
upon decryption. The probability that this hash collides with the decrypted value
h∗ = π−1(C∗[1])⊕ C∗[0] is 1

2l
(for a single test query). We therefore obtain the

following bound:

Pr[(hash(N∗, A∗,M∗) = h∗) ∧ ((N∗, A∗,M∗, h∗) /∈ H)|π r← Perm] ≤ qt
2l

Next consider the case when N∗, A∗,M∗ has been previously called to the ran-
dom oracle. We shall prove the following bound:

Pr[(hash(N∗, A∗,M∗) = h∗) ∧ ((N∗, A∗,M∗, h∗) ∈ H)|π r← Perm] ≤ qhμe

l2l
.

Since (N∗, A∗,M∗, h∗) ∈ H, the query was already a call to hash but it cannot
have been made by a previous encryption query. This is because a hash called
previously by Encrypt on (N∗, A∗,M∗) would imply that C∗ was already output
by Encrypt, breaking the restrictions of the INT-CTXT game. The query must
have therefore been made by a separate call to hash.

Consider the query N∗, A∗,M∗ which A makes to hash (receiving h∗). A can
choose N∗ such that it has seen its encryption π(N∗) in a previous encryption
query, i.e. N∗ = Ci[j] ⊕Mi[j] for some i ∈ [qe] and j ∈ [ni], where qe is the
total number of encryption queries and ni is the number of blocks in query i.
(Note here that it may look odd that Ci[j] and Mi[j] both have the same block
index j but we stress this is still a normal CBC encryption step. The apparent
difference is due to the hash h shifting the block indices of Mi; to see this more
easily we refer the reader to Figure 2.)

To forge a valid ciphertext A must first ensure that the first ciphertext block
is correct, i.e. C∗[1] = π(h∗ ⊕ π(N∗)). Since π is a random permutation A will
choose C∗[1] correctly only if it has seen π(h∗ ⊕ π(N∗)) before, i.e. there exists
a call to π where Ci[j]⊕Mi[j] = h∗ ⊕ π(N∗) for some i ∈ [qe] and j ∈ [ni].

If A makes qe encryption queries totaling μe bits, then the probability that
h∗ is generated by the random oracle such that Ci[j]⊕Mi[j] is queried to π for

some i ∈ [qe] and j ∈ [ni], is
μe/l
2l . The above probability bound then follows.

Combining all of the above we obtain our result.

Advint−ctxt
Π[F] (A) ≤ Advsprp

F (B) + Pr[INT-CTXTA(Π [Perm)⇒ true]

≤ Advsprp
F (B) + Pr[hash(N∗, A∗,M∗) = h∗|π r← Perm]

≤ Advsprp
F (B) + qt

2l
+

qhμe

l · 2l .

372 M. Bond et al.

KeyGenc(k)

K
r← {0, 1}k

ctr
r← {0, 1}l

return K

Encryptc(K,A,M)
h← hash(ctr, A,M)
C ← E-CBC0[F](K, ctr‖h‖pad(M))
ctr ← ctr + 1
return C

Decryptc(K,A,C)

ctr‖h‖M ′ ← D-CBC0[F](K,C)
M ← dpad(M ′)
if M �=⊥ then

h← hash(ctr,A,M)
if h �= h then M =⊥
return M

Fig. 4. Man Enc Format with Counter, Πc[F] = (KeyGenc,Encryptc,Decryptc)

6 Further Discussions

6.1 Using a Counter

We also introduce a stateful version of the Managed Encryption Format as de-
fined in Figure 4. Here we now replace the value N with a counter ctr. It is
possible to prove CBC mode is IND-CPA secure with a ctr in this way [2], when
a maximum of 2l encryptions are permitted. Security is ensured by the fact that
a collision ctr∗ = Ci[j − 2]⊕Mi[j] which reveals the value of FK(ctr∗) for some
future ctr∗, occurs with small probability. Furthermore, if ctr is initialised as
a random string then an adversary must first determine the current version of
ctr in order to mount an attack based on the above collision. We omit further
details of the proof but it can be seen that we will be able to extend this to prove
that the stateful version of the Managed Encryption Format would be a secure
AE scheme. The application of such a scheme to the setting of HSMs would of
course depend on an HSM’s ability to maintain state.

6.2 Parameter Choices

We note that the security bounds in our Theorems come with error terms of the
order of

q2f
2l

and
qf · qh
2l

.

We recall that l is the block length of the underlying block cipher, qf is the
number of queries to the underlying PRP and qh is the number of hash function
queries. These bounds mean that if we wish to guarantee security against the
probability of an adversary breaking the scheme not exceeding 2−40 (say), and
we assume breaking the underlying PRP F is hard, then the number of queries
made to the hash function and managed encryption scheme needs to be bounded.

If using DES as the underlying block cipher, where l = 64, this means that
we need to ensure that qf � 212 = 4096. Thus use with DES can be deemed to
be insecure, unless underlying block cipher keys are updated relatively quickly.
When used with a block cipher such as AES, where l = 128, the number of
queries to the underlying block cipher needs to be bounded by 244 if one wishes
to make the probability of breaking the scheme be bounded by 2−40; whilst the

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 373

product of the number of block cipher calls multiplied by the number of hash
function calls needs to be bounded by 288 to obtain a similar probability bound.
Thus the scheme can be considered secure in practice when instantiated with
AES, but needs to be used with care when instantiated with DES.

7 Conclusion

We have presented a new provably secure mode of operation for authenticated
encryption. This mode has been designed for use in environments where keys
are protect by an HSM but the API offers limited cryptographic functions. The
scheme is built around an HSM which provides an API call to CBC mode with
zero IV. To minimise expensive HSM calls the scheme uses only one key and
hence makes a single call to the HSM.

Acknowledgements. The first author thanks his colleagues at Cryptomathic
and the Computer Laboratory in Cambridge for useful conversations during
the design process. The second author thanks his employers Barclays PLC for
their support The third and fourth author were supported by Prof Smart’s ERC
Advanced Grant ERC-2010-AdG-267188-CRIPTO. The third author was also
partially supported by a Royal Society Wolfson Merit Award.

The work in this paper arose from a discussion held during eCrypt-2 sponsored
workshop “Is Cryptographic Theory Practically Relevant?” held at the Newton
Institute in January 2012. The authors thank eCrypt-2 and the Newton Institute
for hosting this workshop. The authors also thank Kenny Paterson and Jean Paul
Degabriele for helpful discussions.

References

1. An, J.H., Bellare, M.: Does Encryption with Redundancy Provide Authenticity? In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 512–528. Springer,
Heidelberg (2001)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto [13], pp. 531–545

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto [13], pp. 317–
330

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.K.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

6. Bond, M.: Attacks on Cryptoprocessor Transaction Sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

7. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password Interception in
a SSL/TLS Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

374 M. Bond et al.

8. Focardi, R., Luccio, F.L., Steel, G.: An Introduction to Security API Analysis. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 35–65. Springer,
Heidelberg (2011)

9. Krovetz, T.: Message Authentication on 64-Bit Architectures. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 327–341. Springer, Heidelberg
(2007)

10. Krovetz, T., Dai, W.: Vmac: Message authentication code using universal hashing.
CFRG Working Group INTERNET-DRAFT (April 2007),
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt

11. RSA Laboratories. PKCS #7: Cryptographic message syntax standard, Version
1.5 (November 1993)

12. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

13. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg
(2000)

14. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag Size Does Matter: Attacks and
Proofs for the TLS Record Protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)

15. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

16. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM Conference on Computer and Communications Security, pp. 98–107. ACM
(2002)

17. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

18. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

19. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610 (Informational) (September 2003)

http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt

	The Low-Call Diet: Authenticated Encryptionfor Call Counting HSM Users
	Introduction
	Preliminaries
	Security Models

	Description of the Scheme
	Links with Prior Constructions
	Analysis of the Underlying Message Authentication Code
	Encryption with Redundancy

	Security Analysis
	Further Discussions
	Using a Counter
	Parameter Choices

	Conclusion
	References

