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Abstract. Over the past decade bilinear maps have been used to build
a large variety of cryptosystems. In addition to new functionality, we
have concurrently seen the emergence of many strong assumptions. In
this work, we explore how to build bilinear map cryptosystems under
progressively weaker assumptions.

We propose k-BDH, a new family of progressively weaker assumptions
that generalizes the decisional bilinear Diffie-Hellman (DBDH) assump-
tion. We give evidence in the generic group model that each assumption
in our family is strictly weaker than the assumptions before it. DBDH
has been used for proving many schemes secure, notably identity-based
and functional encryption schemes; we expect that our k-BDH will lead
to generalizations of many such schemes.

To illustrate the usefulness of our k-BDH family, we construct a family
of selectively secure Identity-Based Encryption (IBE) systems based on
it. Our system can be viewed as a generalization of the Boneh-Boyen
IBE, however, the construction and proof require new ideas to fit the
family. Our methods can be extended to produce hierarchical IBEs and
CCA security; and give a fully secure variant. In addition, we discuss the
opportunities and challenges of building new systems under our weaker
assumption family.

1 Introduction

Since the introduction of the Boneh-Franklin [1] Identity-Based Encryption (IBE)
system a decade ago, we have seen an explosion of new cryptosystems based on
bilinear maps. These systems have provided a wide range of functionality in-
cluding: new signature systems, functional encryption, e-cash, “slightly” homo-
morphic encryption, broadcast encryption and oblivious transfer to name just
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a few. The focus of many of this work was to develop new (and often not re-
alized before) functionality. While Boneh-Franklin and many first IBE systems
used “core” assumptions such as the Bilinear Diffie-Hellman or decisional vari-
ants, over time there has been a trend in bilinear map based work to employ
stronger assumptions in order to obtain these functionalities. Examples of these
assumptions range from “q-type” [2] assumptions, assumptions in composite or-
der groups [3], interactive assumptions [4] and proofs that appealed directly on
the generic group model [5,6]

Interestingly, even some work that focused on tightening security (versus
achieving new functionality) have had to employ relatively strong assumptions.
For example, Gentry and Halevi [7] and Waters [8] proposed two different ap-
proaches for solving the problem of achieving adaptive security for Hierarchical
Identity-Based encryption. To achieve this the former used a q-type assumption
where the strength of the assumption depends on the number of attacker private
key queries. The latter used the decisional-Linear assumption, where the target
of the assumption is in the source element of the bilinear group versus the tar-
get element. Both of these assumptions are potentially stronger than the classic
decisional-BDH prior IBE and related systems were built upon.

Our Goals. In this work, we move in the opposite direction of this trend. We
will build bilinear map systems that depend on weaker assumptions than the
decisional-BDH assumption. In particular, we want to create a suitable family of
assumptions that becomes progressively weaker as some parameter k is increased.
Therefore one can increase k as a hedge against potential future attacks such as
an n-linear map for n > 2.

A natural starting point for our investigation is the k-Linear family of assump-
tions [9,10], which generalizes the decisional Diffie-Hellman assumption (DDH)
and the decisional Linear assumption of Boneh, Boyen, and Shacham [11]. For
k ≥ 1, a k-Linear problem instance is a tuple (g, g1, . . . , gk, g

r1
1 , . . . , grkk , T ), where

the generators are random in the group G, the exponents in its support Zp, and
the goal is to determine whether T is equal to gr1+···+rk or random. DDH is
1-Linear, and the Linear assumption is 2-Linear.

The k-Linear assumption family has been successfully used to build chosen ci-
phertext secure encryption [9,10]; to construct pseudorandom functions [12,13];
to construct public-key encryption secure in the presence of encryption cy-
cles [14,15] and public-key encryption resilient to key leakage [16,17]; to construct
lossy trapdoor functions [18]; to construct leakage-resilient signatures [19].

While the k-Linear family has been successful in the above contexts, we de-
sire an assumption that can be used in bilinear map cryptosystems in place of
where DBDH has typically been applied. Here using the k-Linear family does
not appear well suited for two reasons. First, since the assumption of the family
operates solely in the source group, the assumption is not even “aware” of bilin-
ear groups. Therefore it is not clear how it might be applied in certain systems
(e.g. an variant of Boneh-Boyen IBE) where we are hiding a message in the tar-
get group. Second, the Linear assumption family has an inconsistent interaction
with the DBDH assumption: the 1, 2-Linear assumptions are actually stronger
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than DBDH, but the the k-Linear assumptions for k > 2 are generically incom-
parable to DBDH. One reason that the (2-)Linear assumption has proved so
useful is that it gives DBDH “for free,” but this is lost as soon as one increases k
beyond 2. If a new IBE system were based on k-Linear and DBDH, it is not
clear that this would provide an improvement in security.1

Our goals, then, are to find an assumption family that meets the following
criteria:

– As we increase the assumption family parameter k, we should become more
confident in the security of our assumption. In particular, we would argue
that our k parameterized assumption is in some sense more secure than both
existing decisional assumptions in bilinear groups and more secure than the
k − 1 instance.

– Our family of assumptions should be amenable to building cryptographic
systems. Ideally, for any system built using the DBDH assumption, one could
find a variant built using our family.

The k-BDH Family of Assumptions. Our main contribution is a new family of
assumptions that can serve as a weaker generalization of DBDH.

We propose a family of progressively weaker assumptions, the k-BDH as-
sumptions, that generalizes the DBDH assumption. The 1-BDH assumption is
equivalent to DBDH. More generally, the k-BDH assumption is as follows:

given g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , vrkk in G,

decide whether T = e(g, g)(xy)(r1+···+rk) or random in GT .

Here g and {vi} are random generators of G and x, y, and {ri} are random
elements of its support Zp. We consider only the decisional versions of these
problems; as with k-Linear, the computational versions are all equivalent to
each other. (This is also why we refer to our assumption family as k-BDH and
not k-DBDH; there is no interesting family of computational assumptions from
which our decisional assumptions must be distinguished.)

We remark that discovering and choosing such a family turned out to be chal-
lenging. Initially, we considered the assumption family in which the adversary,
given the same input values in G, must distinguish

∏
i e
(
g, vi

)xyri
from random

in GT . This assumption family is easier to use than our k-BDH because the
values vi and vrii are available to pair with gx or gy, the way that in DBDH
we can use the pairing to compute any of e(g, g)xy, e(g, g)xz, e(g, g)yz. However,
it turns out that every member of this alternative assumption family is equiva-
lent to DBDH.2 The fact that the values {gri} are not supplied in the k-BDH
challenge make constructing an IBE from k-BDH more challenging.

1 Similarly, for attribute-based encryption, if attribute-hiding were established based
on k-Linear, but payload-hiding were established based on DBDH, then one the
assumption for one property would be weakened while the assumption for the other
property would remain strong.

2 The reduction makes use of the DBDH tuple (g,
∏

i v
ri
i , gx, gy, C

?
=

∏
i e

(
g, vi

)xyri).
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We justify our choice by arguing both that the k-BDH assumptions are no
stronger than existing (decisional) assumptions in bilinear groups and that it
is plausible that they are strictly weaker. The former follows in a relatively
straightforward by finding appropriate reductions. We can show that in a given
group the k-BDH assumption is no stronger than DBDH and for a given k the
k-BDH assumption is no stronger than the k-Linear assumption, for all values
of k.

Arguing that the assumptions are weaker is more nuanced. Whether certain
assumptions hold or do not hold might vary with the choice of a group and clearly
if P = NP all assumptions are equally false. We give evidence that, for each k,
the (k+1)-BDH assumption is strictly weaker than the k-BDH assumption (i.e.,
the (k + 1)-BDH problem is strictly harder to solve than the k-BDH problem).
As in previous proofs of this sort for Linear [11] and k-Linear [9], we rely on
an argument in the generic group model [20,21]. We show that the k + 1-BDH
problem is generically hard even in the presence of an oracle that solves k-BDH.

We demonstrate the utility of our assumption family, by constructing a family
of IBEs secure under k-BDH. The size of the public parameters, secret keys, and
ciphertexts are all linear in the parameter k. One can view our family as a
generalization of the Boneh-Boyen selectively secure IBE system [22].

In the full version of the paper [23], we extend our construction family to
a family of hierarchical IBEs. These yield CCA-secure schemes via standard
transformations [24,25]. In addition, we show how to produce a Waters-IBE–
style variant [26] that is fully secure in the standard model.

Looking Ahead. In the future, we expect that one will be able to build cryptosys-
tems from our k-BDH assumption where DBDH was previously used. However,
as our experience with IBE has taught us, this might require new insights or
techniques.

One interesting challenge is whether one can build more complex systems
using the k-BDH assumption where the performance overhead is additive in
k versus a multiplicative factor (which seems more natural). For instance, in
existing (Key-Policy) Attribute-Based Encryption [27,28] systems, the size of a
private key is proportional to a policy expressed as a boolean formula. If, the cost
of using the k-BDH assumption only required adding ≈ k more group elements,
this could be a relatively small key size overhead for reasonably chosen k. This is
in contrast to blowing up the entire key size by a factor of k. A similar argument
holds for other parameters such as ciphertext size and decryption time. In one
datapoint suggesting that this might be possible, Freeman et. al. [18] recently
built Lossy Trapdoor Functions in a novel way from the k-linear assumption
which were rather efficient relative to the “natural” extension of the Peikert and
Waters [29] DDH construction.

There also exist currently exist several functionalities where there are no known
systems that reduce to DBDH. These include systems that appear to inherently on
assumption related to source group elements such as Decision Linear. Examples
of these include Groth-Sahai NIZKs [30], dual system encryption proofs [8], and
the Boneh-Goh-Nissim [3] slightly 2-homomorphic encryption system.
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Finally, an interesting question is which k values one might use in practice.
For very large k, it might turn out that bit by bit encryption systems built from
using hard core bits [31] and Computational Diffie-Hellman or Computational
Bilinear Diffie-Hellman have comparable efficiency. When proposing systems,
it is important to keep in mind where these lines cross. However, we believe
for most practical choices of k the k-BDH assumption will yield more efficient
systems.

2 The k-BDH Assumption and Relationships

Throughout this paper we work in a cyclic group G of order p where p is a large
prime. g is a generator of G. e : G × G → GT denotes an admissible bilinear
map where GT is another cyclic group of order p. The standard definitions of
bilinear maps and well known complexity assumptions BDH, DBDH, Linear [11]
and k-Linear [10] are used.

Definition 1. The k-BDH problem in 〈G,GT , e〉 asks given (g, gx, gy, v1, . . . ,
vk, v

r1
1 , . . . , vrkk , T ) for x, y, r1, . . . , rk, c ∈ Z∗

p, g, v1, . . . , vk ∈ G and T ∈ GT

does T = e(g, g)xy(r1+···+rk) or is it the case that T = e(g, g)c. An adversary,
B outputs 1 if T = e(g, g)xy(r1+···+rk) and 0 otherwise. B has advantage ε in
solving k-BDH if

|Pr[B(g, gx, gy, v1, . . . , vk, vr11 , . . . , vrkk , e(g, g)xy(r1+···+rk)) = 1]−
Pr[B((g, gx, gy, v1, . . . , vk, vr11 , . . . , vrkk , e(g, g)c) = 1]| ≥ 2ε.

Where the probability is taken over the random choice of x, y, r1, . . . , rk, c ∈ Z∗
p,

g, v1, . . . , vk ∈ G and the random bits consumed by B.

The k-BDH Assumption is that if no t-time algorithm can achieve advantage
at least ε in deciding the k-BDH problem in G and GT .

This is only a decisional problem. We show that, as a corollary of Theorem 4,
the computational version is equivalent to the computational BDH problem.

2.1 k-BDH’s Relationship to Standard Assumptions

In this subsection we state k-BDH’s relationship to standard cryptographic as-
sumptions; the proofs are straightforward and given in the full version [23].We
also note that k-BDH is a member of the (R,S,T ,f)-Diffie Hellman uber- assump-
tion family [6]. Namely: R = S = {1, x, y, a1, . . . , ak, a1r1, . . . , akrk}, T = {1}
and f = xy(r1 + · · · + rk) where vi = gai for 1 ≤ i ≤ k. Being part of this
family tells us that it is generically secure, however, the focus on our work is to
understand the relative strengths of assumptions (discussed in Section 4).
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k-BDH’s Relationship to k-Linear. We will use the notation Lk to denote
the k-Linear problem. If we wish to specify the k-Linear assumption in a specific
group G we write LG

k , and similarly for GT .

Theorem 1. If the LG

k assumption holds, then so does the k-BDH assumption.

Theorem 2. If the k-BDH assumption holds, then so does the LGT

k assumption.

Evidence that k-BDH is not equivalent to either LG

k or LGT

k . From the above the-
orems, the natural question arises: Is k-BDH equivalent to the linear assumption
in either G or GT ? Such an equivalence would imply that k-BDH assumption is
neither a new assumption nor a new tool to construct a family of IBEs. Fortu-
nately, separation of the assumptions appears to be related to the hard problem
of inverting a bilinear map [32,33]. We show separation results for these assump-
tions in the full version of this paper [23] in the generic group model.

k-BDH’s Relationship to BDH

Theorem 3. If the DBDH assumption holds, then so does the k-BDH assump-
tion.

Theorem 4. If the Computational k-BDH assumption holds, then so does the
Computational BDH assumption.

Corollary 1. The Computational k-BDH assumption is equivalent to the BDH
assumption.

Corollary 2. The DBDH assumption is equivalent to the 1-BDH assumption.

3 A Selectively Secure IBE System from the k-BDH
Assumption

The standard definitions of IBE [1] and the selective-ID model [34] are used.
Using the k-BDH assumption in to create an IBE system is not straight-

forward. The main technical difficulty arises because the target in the k-BDH

assumption, (e(g, g)xy
∑k

i=1 ri), is naturally an embedding of k Computational
BDH problems: Given (g, gx, gy, gri) find e(g, g)xyri. However, we do not have
the value gri for each i. Instead, we have the pair (vi, v

ri
i ), where vi is a generator

not used elsewhere.
We use a cancellation trick to effectively switch the base of the vrii . The setup

algorithm will provide the values e(gx, vrii ) and vi which are both taken to the
same power in the encryption algorithm, namely yi. The challenge needs to be
crafted so that it takes e(gx, gri) to the power y instead of taking e(gx, vrii ) to the
power yi. To do this, we provide gy in place of vyi

i . Since vi = gsi for some value
of si we implicitly set yi = y/si. Using the bilinear property of e, this effectively

changes the value of the other term to e(gx, vrii )yi = e(g, g)
xrisi

y
si = e(gx, gri)y .

The product of these values is exactly the target of the k-BDH assumption.
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To ensure the challenge has the proper distribution in the view of the adver-
sary it is required to randomize gy for every value of k.

Our IBE construction is related to the Boneh-Boyen scheme in the selective-
ID model [22], which is proven secure under the DBDH assumption. To prove
our scheme is secure under the k-BDH assumption requires an alteration to the
“Boneh-Boyen trick” for generating the private key for identities other than the
target identity.

The “Boneh-Boyen trick” raises elements of the DBDH instance to cleverly
selected random values to obtain a valid private key. However, constructing the
same private key with the KeyGen(ID) algorithm is impossible as the random
selections are unknown. Our construction uses the same idea but using multiple
bases (g, vi) requires three components instead of two for the first term of the
private key.

Specifically, we use (vr̂ii )−ti/dvtimi

i (gx)dmi for the first term. vr̂ii is the random-
ization of vrii that permits the challenge have the proper distribution. The value
d is a function of the target identity and the identity associated with the private
key; ti is used to randomize a public parameter; and mi randomizes the private
key. The first term is dependent on both gx and vrii from the k-BDH assumption.

The IBE system works as follows:
Setup : The public parameters are (g, u = gx, v1 = gs1 , . . . , vk = gsk , vr̂11 , . . . ,

vr̂kk , w1, . . . , wk). The values s1, . . . , sk, r̂1, . . . , r̂k, x (chosen uniformly and inde-
pendently at random) are kept as the master-key.

KeyGen(ID) : Select random n1, . . . , nk ∈ Z∗
p. For each 1 ≤ i ≤ k output

(KA,i,KB,i)=((gxr̂i(wiu
ID)ni , vni

i ).

Encrypt(m, ID) : Select random y1, . . . , yk ∈ Z∗
p. Output C0 = m

∏

1≤i≤k

e(gx, vr̂ii )yi

and for each 1 ≤ i ≤ k output (CA,i, CB,i)=(vyi

i , (wiu
ID)yi) for a total of 2k + 1

values.

Decrypt(c) : Output

C0 ·
∏

1≤i≤k

e(KB,i, CB,i)

∏

1≤i≤k

e(KA,i, CA,i)
=

m
∏

1≤i≤k

e(gx, vr̂ii )yi ·
∏

1≤i≤k

e(vni

i , (wiu
ID)yi)

∏

1≤i≤k

e(gxr̂i(wiu
ID)ni , vyi

i )
= m

3.1 Proof of Security

Theorem 5. Suppose the k-BDH assumption holds in G and GT (precisely, no
t-time algorithm has advantage at least ε in solving the k-BDH problem in G and
GT ). Then the previously defined IBE system is (t − Θ(τkq), q, ε)-Selective-ID
IND-CPA secure where τ is the maximum time for an exponentiation in G.
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Proof. Suppose A has advantage ε in attacking the IBE system. We build algo-
rithm B to solve a decisional k-BDH instance (g, gx, gy, v1, . . . , vk, v

r1
1 , . . . , vrkk ,

T
?
= e(g, g)xy(r1+···+rk)). Algorithm B works by interacting with A in a selective

identity game as follows: Init: The selective identity games begins with A out-
putting an identity to attacked ID∗.

Setup: Algorithm B first selects random ai, ti for 1 ≤ i ≤ k. It then sets the public
parameters to: (g, u = gx, v1, . . . , vk, v

r̂1
1 = (vr11 )1/a1 , . . . , vr̂kk = (vrkk )1/ak , w1 =

vt11 (gx)−ID∗
, . . . , wk = vtkk (gx)−ID∗

). These parameters are are all independent
of ID∗ in the view of A. The ai terms will serve as the way to randomize the
challenge.

Phase 1: A issues queries for the private key of an identity, ID. It must be the case
that ID 	= ID∗. B’s response is generated as follows for each value of 1 ≤ i ≤ k:

Select random mi. Let d = ID− ID∗. Output (KA,i, = (vr̂ii )−ti/dvtimi

i (gx)dmi ,

KB,i = (vr̂ii )(−1/d)vmi

i . For ni = −r̂i/d+mi, which implies mi = r̂i/d+ ni, this
is the expected value:

((vr̂ii )−ti/dvtimi

i (gx)dmi , (vr̂ii )(−1/d)vmi

i )

= ((vr̂ii )−ti/dv
ti(r̂i/d+ni)
i (gx)d(r̂i/d+ni), (vr̂ii )(−1/d)v

(r̂i/d)+ni)
i )

= (vtini

i (gx)r̂i+dni , vni

i ) = (gxr̂i(vtii g
xd)ni , vni

i )

= (gxr̂i(vtii g
x(ID−ID∗))ni , vni

i ) = (gxr̂i(wig
xID)ni , vni

i )

The second term is uniformly distributed among all elements in Z∗
p due to the

selection of mi. Private keys can be generated for all identities except ID∗.

Challenge(m0,m1) : B picks random bit b ∈ {0, 1}. The response is: (C0, (CA,1,
CB,1), . . . ,(CA,k, CB,k)). B sets C0 = mbT and for each i from 1 to k it sets:

CA,i = (gy)ai , CB,i = (gy)ai·ti .

We observe that (gy)ai = vyi

i and that (gy)aiti = vtiyi

i = (w1u
ID∗

)yi from which
correctness follows. The simulator’s ability to construct the second term in this
manner follows directly from the fact that the encrypted identity is ID∗ and no
gx term appears in w1u

ID∗
.

For each value of i, this implicitly sets yai = siyi or yi = yai/si. If the input
is a valid k-BDH tuple then the response is drawn from a uniform distribution
and mbT is the expected value:

mbT = mb

∏

1≤i≤k

e(g, g)xyri = mb

∏

1≤i≤k

e(gx, gsiri/ai)yai/si

= mb

∏

1≤i≤k

e(gx, v
ri/ai

i )yi = mb

∏

1≤i≤k

e(gx, vr̂ii )yi

If T is not a valid k-BDH tuple then the distribution is uniform and independent
of b.
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Phase 2: A issues more private key queries. It is exactly the same as Phase 1.

Guess: A outputs a guess of b′ ∈ {0, 1}. If b = b′ then B outputs 1 meaning T is
a valid k-BDH tuple. Otherwise, it is not a valid k-BDH tuple and the output
is 0.

When the input is a valid k-BDH instance, A must satisfy |Pr[b = b′]− 1
2 | ≥

ε. When the input is not a valid k-BDH instance, the input is uniform and
independent and Pr[b = b′] = 1

2 . Therefore, we have, as required:

|Pr[B(valid k-BDH) = 1]− Pr[B(not valid k-BDH) = 1]| ≥ |(1
2
+ ε)− 1

2
| ≥ ε.

3.2 Efficiency

Assume that the value e(gx, vrii ) is precomputed for all values 1 ≤ i ≤ k. Each
encryption takes k exponentiations and k group operations in GT , 2k + 1 ex-
ponentiations and k group operation in G. Decryption requires 2k bilinear map
computations, one inversion and 2k + 2 group operations in GT .

3.3 Extensions

This construction fits in Boneh-Boyen framework. We give the natural extension
to a hierarchical IBE and to a fully secure IND-CPA scheme in the style of [26]
in the full version of the paper [23].

4 Relationship between k-BDH Problems

In this section we prove that the k-BDH family of problems becomes progres-
sively weaker. Informally, this means that an oracle for k-BDH does not help in
solving a (k + 1)-BDH instance.

The proof uses the generic group model [35,20,21]. This idealized version of a
group retains the important properties of the group while facilitating reasoning
about its minimal possible assumptions. If a statement cannot be proven in the
generic group model then it is impossible to find a group for which the state-
ment holds. The generic group model has been used to reason about complexity
assumptions both with bilinear maps [5,6] and without bilinear maps [21].

The closely related proof for the separation of k-Linear family of assump-
tions [10] could not be used directly. This stems from the fact that a standard
multilinear map [36] cannot be used to solve k-BDH. We create a modified k-
multilinear map that takes as input k elements in G and 1 element in GT (which
is the result of a bilinear map on two elements in G) and produces an output
in a third group GM (the target group of the k-multilinear map). The modified
k-multilinear map acts as an oracle for k-BDH. The main technical difficulty is
showing that all inputs to the k-multilinear map fail to produce a multiple of
the target element in the (k + 1)-BDH instance.
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Theorem 6. If the k-BDH assumption holds, then so does the (k + 1)-BDH
assumption.

Proof. Informally, this means that if (k + 1)-BDH is easy, then k-BDH is also
easy. Suppose we have an oracle A for (k + 1)-BDH. A can be used to solve an
k-BDH instance (g, gx, gy, v1, . . ., vk, v

r1
1 , . . ., vrkk , T ). Select random vk+1 ∈ G

and rk+1 ∈ Z∗
p and run A on input (g, gx, gy, v1, . . ., vk, vk+1, v

r1
1 , . . ., vrkk ,

v
rk+1

k+1 , T · e(gx, gy)rk+1). By returning the same value as A, the simulation is
perfect.

As in the k-Linear generic group separation proof [10], we prove a stronger re-
sult by means of a multilinear map [36,37] in Theorem 7. A k multilinear map
is an efficiently computable map ek : Gk → GM such that ek(g

a1
1 , . . . , gak

k ) =

ek(g1, . . . , gk)
∏k

i=1 ai for all g1, . . . , gk ∈ G and a1, . . . , ak ∈ Zp; and ek(g, . . . , g) 	=
1. Here, we consider a modified k-multilinear map: êk : GT × Gk → GM where
GT is the group resulting from a bilinear map e : G × G → GT . We define

êk : (e(gx, gy)
aT , ga1

1 , . . . , gak

k ) = êk(e(gx, gy), g1, . . . , gk)
aT

∏k
i=1 ai .

Lemma 1. Given a modified k-multilinear map there is an efficient algorithm
to solve k-BDH.

Proof. On input a k-BDH instance (g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , vrkk , T ) output

“yes” if êk(T, v1, . . . , vk)
?
=

k∏

i=1

êk(e(g
x, gy), v1, . . . , vi−1, v

ri
i , vi+1, vk) and “no”

otherwise. This is correct because

k∏

i=1

êk(e(g
x, gy), v1, . . . , vi−1, v

ri
i , vi+1, vk) =

k∏

i=1

êk(e(g, g), v1, . . . , vk)
xyri

= êk(e(g, g), v1, . . . , vk)
xy

∑k
i=1 ri

and when T = e(g, g)xy
∑k

i=1 ri equality holds as required.

In the generic group model, elements of G, GT and GM are encoded as opaque
strings such that only equality can be tested by the adversary. To perform op-
erations in the group the adversary queries oracles. The oracles map the opaque
string representations to elements of G, GT and GM using ξG,ξT and ξM re-
spectively. In our case, we provide the adversary with oracles to perform Group
Action in each group, Inversion in each group, Bilinear Map for G × G → GT

and Modified k-Multilinear Map for GT ×Gk.

Theorem 7. Let A be an algorithm that solves (k+1)-BDH in the generic group
model making a total of q queries to the oracles computing the group action in
G, GT and GM , the oracles computing inversion in G, GT and GM , the bilinear
map oracle and an oracle for modified k-multilinear map. Then A’s probability
of success is bounded by

ε ≤ (k + 5)(q + 2k + 5)2

p
.
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Proof. Consider an algorithm B that interacts with A as follows.
Let g be a randomly selected generator of G. Select random x, y, v1, . . ., vk+1,

r1, . . . , rk+1, c ∈ Zp as well as random bit d ∈ {0, 1}. Set Td = e(gx, gy)
∑k+1

i=1 ri

and T1−d = e(g, g)c. A is given (ξG(g), ξG(g
x), ξG(g

y), ξG(g
v1), . . ., ξG(g

vk+1),
ξG(g

v1r1), . . ., ξG(g
vk+1rk+1), ξT (T0), ξT (T1)) with the goal of guessing d.

B keeps track of the elements known to A as three lists: LG = {(FG,i, ξG,i)},
LT = {(FT,i, ξT,i)} and LM = {(FM,i, ξM,i)}. The first element of each list
is the internal representation kept by B- represented as a polynomial in the
ring Zp[1, x, y, v1, . . . , vk+1, r1, . . . , rk+1, c]. The set of all elements in these rings
are denoted FG, FT and FM . The second element is the opaque representation
known to A. B handles oracle queries from A by calculating the correct value
and checking to see if a the corresponding external representation already exists.
If so, the corresponding known representation is returned; otherwise B generates
a distinct random string to serve as the external representation and adds it to
the respective list. We assume that the domains of ξG, ξT and ξM are sufficiently
large so that the probability that algorithmAmakes queries for an element other
than one obtained through B is negligible.

Oracle queries from A are handled by B as follows:
Group Action: Given elements in G with internal representations FG,i and FG,j

compute F ′ = FG,i + FG,j . If there does not already exist an external repre-
sentation of the value F ′ then generate ξG(F

′) and add (F ′, ξG(F ′)) to LG .
Return ξG(F

′). Group Action for GT and GM are handled analogously. Denote
the number of Group Action queries made in G as qGg , the number of Group
Action queries made in GT as qTg and the number of Group Action queries made
in GM as qMg .
Inversion: Given an element in G with internal representation FG,i set F ′ =
−FG,i. If there does not already exist an external representation of the value F ′

generate ξG(F
′) and add (F ′, ξG(F ′)) to LG . Return ξG(F

′). Inversion for GT

and GM are handled analogously. Denote the number of Group Action queries
made in G as qGi , the number of Group Action queries made in GT as qTi and
the number of Group Action queries made in GM as qMi .
Bilinear Map (e): Given elements in G with internal representations FG,i and
FG,j calculate F ′ = FG,i · FG,j . If there does not already exist an external rep-
resentation of the value F ′ generate ξT (F ′) and add (F ′, ξT (F ′)) to LT . Return
ξT (F

′). Let qB denote the number of bilinear map queries made.
Modified k-Multilinear Map (êk): Given elements in G with internal representa-
tions FG,v1, . . ., FG,vk, and an element in GT with internal representation FT,j .

Compute F ′ = FT,j

∏k
i=1 FG,vi. If there does not already exist an external repre-

sentation of the value F ′ generate ξM (F ′) and add (F ′, ξM (F ′)) to LM . Return
ξM (F ′).

Elements in FG have at most degree 2; elements of FT have at most degree 4;
elements in FM have degree at most 2k + 4. The input elements that are in G

have corresponding elements in FG with degree at most 2 and the elements in
GT have corresponding elements in FT with degree at most 3. The group action
and inversion operations cannot increase the degree of the polynomials in FG,FT
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or FM . The Bilinear Map operation uses elements in G to produce elements of at
most degree 2 + 2 = 4 in FT . The Modified Multilinear Map produces elements
of at most degree 4 + k(2) in FM .

Finally, A halts and outputs a guess of d′ for d. B now selects random g∗ ∈ G

and x∗, y∗, v∗1 , . . ., v∗k+1, r
∗
1 , . . ., r

∗
k+1, c

∗ ∈ Zp. Tb is set to e(g∗, g∗)x
∗y∗ ∑k+1

i=1 r∗i

and T1−b = e(g∗, g∗)c
∗
. All elements besides Tb are independent of each other.

Therefore the simulation engineered by B is consistent with these values unless
one of the following events occur:

– Two values in FG have the same representation in G

– Two values in FT have the same representation in GT

– Two values in FM have the same representation in GM

– Using a bilinear map on values in FG, it is possible to find a multiple of

e(gx, gy)
∑k+1

i=1 ri in FT .
– Using a modified k-multilinear map on values in FG, it is possible to find a

multiple of e(gx, gy)
∑k+1

i=1 ri in FM .

The input elements are all chosen independently. Since A makes qGg +qGi group
actions or inversion queries for group G the corresponding elements in FG are

at most degree 2 and the probability of a collision is
(qGg+qGi

+2(k+1)+3
2

)
2
p . For

the elements in GT there qTg + qTi + qB group actions or inversion or bilinear
map queries are made resulting in elements in GT . Since elements in GT have
corresponding polynomials in FT with degree at most 4 the probability of a
collision is

(qTg+qTi
+qB+2

2

)
4
p . For each of the group actions in GM , inversion in

GM and k-Modified Multilinear Map queries the probability of a collision is(qMg+qMi
+qK

2

)
2k+4

p .

Next, we show the probability of finding a multiple of e(gx, gy)
∑k+1

i=1 ri from
the terms in FG is zero. If a multiple exists, it must be formed using at least
one bilinear map operation. Since x, y, ri all appear in Tb then the product of at
least two of these values must appear in the same element in FG for each value
of i, 1 ≤ i ≤ k + 1. This is impossible by the following claim:

Claim: It is impossible for any two of x, y, ri to appear in the same monomial
in FG:

Proof. We show that each way to choose two of the three values to appear in
the same term is impossible:

– x and y appear in the same term. This requires creating a multiple of the
polynomial xy. We are initially given the polynomials x and y each of degree
1 (and polynomials that are independent of x and y). This means from
polynomial of degree 1 we must create a polynomial of degree 2 also in
FG. Only the group action and inversion oracles result in new elements in
FG. However, the output of these oracles cannot increase the degree of a
monomial. Thus we cannot create monomials of degree greater than 1 from
x and y. In particular, xy cannot be created by the adversary.
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– x and ri appear in the same term. This requires creating a multiple of xri
namely axri. Since the term ri never appears without vi it follows that vi | a
and we can rewrite axri as a′xrivi. This is a polynomial of degree 3. It is
impossible to create a polynomial of degree greater than 2 in FG. So x and
ri cannot appear in the same term.

– y and ri appear in the same term. This follows from a symmetric argument
that x and ri cannot appear in the same term.

Finally, we claim that it is impossible to find a multiple of e(gx, gy)
∑k+1

i=1 ri in
FM . In order to use the modified k-multilinear map to find a multiple of a target

value, Td
?
= e(gx, gy)

∑k+1
i=1 ri , at least one êk operation involving a multiple of Td

is required. The only option is to use Td as the input element in GT . The modified
k-multilinear map produces a multiple of xy

∑k+1
i=1 ri, namely Axy

∑k+1
i=1 ri. A

must then use combination of oracle calls, denoted F , using only values in FG

to form Axy
∑k+1

i=1 ri so that it can test equality.3

All inputs in FG containing ri also contain vi. As a result, any monomial
divisible by ri is also divisible by vi. Every type of oracle call preserves this
property. In particular, consider the polynomial Axy

∑k+1
i=1 ri constructed by

the adversary in F . It is required that each monomial in the expansion of Axyri
must be divisible by vi. It follows that for each of the k+1 values of vi it is the
case that vi|A.4 Specifically, A is divisible by

∏k+1
i=1 vi.

For a given value i, the value Axyri is divisible by k + 4 values: x, y, v1,
. . ., vk+1, and ri. Producing such a term requires taking the product of at least
k + 3 terms available to the adversary (x and y only appear on their own and
it is impossible to produce a multiple of vivj in FG using the group action
and inversion oracles). However, the bilinear map can only take the product of
2 values and the modified k-multilinear map can only take the product from
a bilinear map and k additional values for a total of k + 2. Consequently, we
deduce that the adversary cannot synthesize a multiple of xy

∑k+1
i=1 ri in FM to

cause a collision.
The probability of finding a collision is bounded by

ε ≤
(
qGg + qGi + 2(k + 1) + 3

2

)
2

p
+

(
qTg + qTi + qB + 2

2

)
4

p

+

(
qTm + qTi + qk

2

)
(2k + 4)

p

<
(q + 2k + 5)2 + 2(q + 2)2 + (k + 2)q2

p
<

(k + 5)(q + 2k + 5)2

p

The combination of these two theorems implies: DBDH=1-BDH � 2-BDH �

· · · � k-BDH � (k + 1)-BDH � · · · .
3 A could first perform êk(CTd +D, n1, . . . , nk) for constant C and a polynomial D
that does not contain Td. It would then perform some combination of oracle calls,F ,
to produce a value equal to êk(CTd +D, n1, . . . , nk). However, an equivalent test is
to first perform êk(CTd, n1, . . . , nk) and then test equality with F/êk(D, n1, . . . , nk).

4 For a more detailed argument see [10].
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4.1 Relationship between k and the Group Size

From Theorem 7, we know that increasing k increases security. The generic
attack on k-BDH appears to require O(k) discrete logarithm calculations, and
that solving t discrete logarithm problems on a given curve appears to require
O(t) times solving one problem; assuming that, the generic attack scales linearly
with k.

Another means of increasing security is to increase the group size. An inter-
esting question is, “what is the equivalent increase in group size if we increase
k to k + 1.” We assume finding the discrete log is a function, f , of the order
of the group. Then in the generic attack on k-BDH where G has prime order
p increasing k to k + 1 is approximately equivalent to increasing the group size

from p to f−1( (k+1)f(p)
k ).

5 Conclusions and Future Work

We have proposed k-BDH, a family of assumptions generalizing the DBDH as-
sumption. We have given evidence, using the generic group model, that assump-
tions in the k-BDH family become strictly weaker with increasing values of the
parameter k. Unlike the k-Linear family of assumptions, k-BDH makes a natu-
ral tool for constructing pairing-based cryptosystems, including IBEs. We have
demonstrated this by constructing a family of IBEs in which the kth member
is secure based on k-BDH. Our IBE family fits in the Boneh-Boyen framework.
Our k-BDH family allows IBEs to be instantiated with an assumption safety
buffer for the first time.

We hope that, like k-Linear, our k-BDH assumption family will see widespread
use. We believe that it will be especially well suited for constructing attribute-
based encryption and other forms of functional encryption. In addition, we be-
lieve that dual system encryption techniques could be applied to k-BDH, yielding
more efficient cryptosystems with tighter security reductions.

An important open problem arises from the fact that the k-BDH assumptions
are all no weaker than computational BDH (just as the k-Linear assumptions
are all no weaker than CDH). Because the components of our IBE grow with k,
there may be a crossover point beyond which an IBE based on hard-core bits of
the computational BDH problem is more efficient than one based on k-BDH.
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