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Abstract. Verifiable secret sharing (VSS) is a vital primitive in secure
distributed computing. It allows an untrusted dealer to verifiably share
a secret among n parties in the presence of an adversary controlling at
most t of them. VSS in the synchronous communication model has re-
ceived tremendous attention in the cryptographic research community.
Nevertheless, recent interest in deploying secure distributed computing
over the Internet requires going beyond the synchronous model and thor-
oughly investigating VSS in the asynchronous communication model.

In this work, we consider the communication complexity of asyn-
chronous VSS in the computational setting for the optimal resilience
of n = 3t+ 1. The best known asynchronous VSS protocol by Cachin et
al. has O(n2) message complexity and O(κn3) communication complex-
ity, where κ is a security parameter. We close the linear complexity gap
between these two measures for asynchronous VSS by presenting two
protocols with O(n2) message complexity and O(κn2) communication
complexity. Our first protocol satisfies the standard VSS definition, and
can be used in stand-alone VSS scenarios as well as in applications such
as Byzantine agreement. Our second and more intricate protocol satisfies
a stronger VSS definition, and is useful in all VSS applications including
multiparty computation and threshold cryptography.

Keywords: Verifiable Secret Sharing, Asynchronous Communication
Model, Communication Complexity, Polynomial Commitments.

1 Introduction

The notion of secret sharing was introduced independently by Shamir [24] and
Blakley [6] in 1979. For integers n and t such that n > t ≥ 0, an (n, t)-secret
sharing scheme is a method used by a dealer to share a secret s among a set of
n parties in such a way that any subset of t+1 or more parties can compute the
secret s, but subsets of size t or fewer cannot.
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In many applications of secret sharing, parties may need to verify the cor-
rectness of the values dealt in order to prevent malicious behavior by the dealer.
To satisfy this requirement, Chor et al. [12] introduced the concept of verifiable
secret sharing (VSS). With its applicability to Byzantine agreement, multiparty
computation (MPC) and threshold cryptography, VSS has remained an impor-
tant area of cryptographic research for the last two decades [9, 13, 15, 16, 21, 22].

Although the literature for VSS is vast, the notion of VSS in the asynchronous
communication setting (no bounds on message transfer delays) has not yet re-
ceived the deserved attention in terms of practical efficiency or theoretical lower
bounds. Asynchronous VSS schemes with unconditional security have been de-
veloped [1, 5, 11, 20]; however, these schemes are prohibitively expensive for any
realistic use as they need Ω(κn5) bits of communication for κ-bit secrets. In
the computational security setting, Cachin et al. [9], Zhou et al. [25], and re-
cently Schultz et al. [23] suggested more practical asynchronous VSS schemes:
asynchronous verifiable secret sharing (AVSS), asynchronous proactive secret
sharing (APSS) and mobile proactive secret sharing (MPSS), respectively. Of
these, AVSS [9] is the most generic and practical asynchronous VSS scheme and
it forms the basis for many practical threshold cryptographic protocols such
as [17]. AVSS assimilates a bivariate polynomial into Bracha’s deterministic re-
liable broadcast protocol [8], which results into its O(n2) message complexity
(number of messages transferred) and O(κn4) communication complexity (num-
ber of bits transferred) for the optimal resiliency condition of n = 3t+1. Cachin et
al. [9] further refined the AVSS protocol to reduce the communication complexity
to O(κn3). Nevertheless, a further reduction in the communication complexity
is not possible using similar techniques, and a linear complexity gap between the
message complexity and the communication complexity still remains.

In this work, we bridge this gap. We present two efficient asynchronous VSS
schemes (eAVSS and eAVSS-SC) with different properties (and correspondingly
different utilities) with O(n2) message complexity and O(κn2) communication
complexity.

1.1 Our Contributions

Kate, Zaverucha and Goldberg [18] define the concept of commitments to polyno-
mials, and devise two schemes PolyCommitDLog and PolyCommitPed that commit
to a univariate polynomial of degree t (or less) using a single element of size
O(κ). Their schemes work in the bilinear pairing setting under the t-strong
Diffie–Hellman (t-SDH) assumption [7]. We use their PolyCommitPed scheme
and a collision-resistant hash function to achieve our goal of asynchronous VSS
with O(κn2) communication complexity. Although we choose the PolyCommitPed
scheme that provides unconditional hiding (secrecy) instead of the much sim-
pler PolyCommitDLog scheme that provides computational hiding against the dis-
crete logarithm (DLog) assumption, our protocols work with the PolyCommitDLog

scheme with no modification.
Nevertheless, the schemes we present are not a straightforward adaptation

of the PolyCommit schemes to the bivariate polynomial-based AVSS scheme [9],
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and not surprisingly, Kate et al. [18] left the applicability of PolyCommit to
asynchronous VSS as an open problem. The reason for that, as we elaborate in
Section 2.4, is that modifying the PolyCommit schemes to a scheme providing
constant-size commitments to bivariate-polynomials used in asynchronous VSS
seems difficult if not impossible.

We achieve our goal by taking an entirely different path, bypassing the open
problem of obtaining constant-size commitments to bivariate polynomials. We
realize asynchronous VSS in two steps: We first present a univariate polynomial-
based asynchronous VSS scheme (eAVSS), which guarantees that at least t + 1
honest parties receive proper shares of the secret, while the remaining honest par-
ties are assured that at least t+1 honest parties have received correct shares and
can reconstruct the shared secret. This construction is sufficient for stand-alone
VSS and for applications such as asynchronous Byzantine agreement (ABA).
For applications such as MPC and threshold cryptographic constructions, we
then design an efficient stronger asynchronous VSS scheme (eAVSS-SC), which
guarantees that every honest party receives its share during the sharing phase.
In principle, this is possible by running n + 1 instances of eAVSS; however, it
asks for a broadcast of commitment vectors of size O(κn) which increases the
communication complexity to O(κn3). In eAVSS-SC, we overcome this barrier
by aptly modifying the AVSS protocol flow and by hashing the commitments in
the vector using a collision-resistant hash function and running a PolyCommit
instance over the hashed values.

Our schemes have direct implications to the efficiency of all asynchronous VSS
applications. Most prominently, using our eAVSS protocol in the modular ABA
construction by Canetti and Rabin [11] it is possible to obtain the first O(κn3)
communication complexity ABA protocol, which is secure against the adaptive
adversary in the standard model.

Organization. In Section 2, we describe our system model and provide a brief
overview of the concepts of VSS, polynomial commitments and asynchronous
VSS. In Section 3, we define and prove our basic asynchronous VSS protocol
(eAVSS), while in Section 4, we define our main asynchronous VSS protocol
(eAVSS-SC). In Section 5, we discuss a few interesting applications. An in-depth
discussion of the PolyCommitPed scheme and corresponding computational as-
sumptions have been added in Appendix A.

2 Preliminaries

Our schemes work in the computational security setting. The adversary A is a
probabilistic polynomial time (PPT) algorithm with respect to a security pa-
rameter κ unless stated otherwise. A function ε(·) : N → R

+ is called negligible
if for all c > 0 there exists a κ0 such that ε(κ) < 1/κc for all κ > κ0. Throughout
the rest of this paper, ε(·) denotes a negligible function.

We assume that the shared secret s lies over a finite field Fp, where p is a κ-
bit long prime. We use Shamir’s polynomial-based secret sharing approach [24],
where our polynomials belong to Fp[x] or Fp[x, y].



262 M. Backes, A. Datta, and A. Kate

2.1 Asynchronous System Model

Following the adversary and communication model of AVSS given by Cachin et
al. [9], we assume an asynchronous fully-connected network of n parties P =
{P1, P2, . . . , Pn}, where every pair of parties is connected by an authenticated
and private communication link. A special party Pd ∈ P works as a dealer. The
indices for the parties are chosen from Fp. Without loss of generality, we assume
these indices to be {1, . . . , n}.

The adversary A is t-bounded and it can coordinate the actions of up to t
out of n parties. The adversary A is further assumed to be adaptive, and may
corrupt a party of its choice at any instance during a protocol execution as long
as its total number of corruptions is bounded by t. A party is said to be honest
if the adversary has not corrupted it. In our asynchronous setting, the adversary
A controls the network and may delay messages between any two honest parties.
However, it cannot read or modify these messages, and it also has to eventually
deliver all the messages by honest parties.

2.2 Verifiable Secret Sharing—VSS

In many secret sharing applications, a dealer may behave maliciously. This led
to the conception of VSS [12].

Definition 1. An (n, t)-VSS scheme among n parties in P = {P1, P2, . . . , Pn}
with a distinguished party Pd ∈ P consists of two phases: the sharing (Sh) phase
and the reconstruction (Rec) phase.

Sh phase. A dealer Pd distributes a secret s ∈ Fp among parties in P. At the
end of the Sh phase, each honest party Pi holds a share si of the distributed
secret s.

Rec phase. In this phase, each party Pi sends its secret share s
′
i to every party in

P and a reconstruction function is applied in order to compute the secret s =
Rec(s′1, s

′
2, . . . , s

′
n) or output ⊥ indicating that Pd is malicious. For honest

parties s′i = si, while for malicious parties s′i may be different from si or
even absent.

An (n, t)-VSS scheme has the following security requirements:

Secrecy. If the dealer is honest, the adversary who can compromise t parties
does not have any more information about s except what is implied by the
public parameters.

Correctness. If Pd is honest, the reconstructed value should be equal to the
dealer’s secret s.

Commitment. Even if Pd is dishonest, there exists a value s∗ ∈ Fp ∪ {⊥} at
the end of the Sh phase, such that all honest parties output s∗ at the end of
the Rec phase.

In this paper, we consider VSS schemes where any malicious behaviour by Pd
can be identified by the honest parties in the Sh phase itself and the commitment
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property simplifies to the following: the reconstructed value z should be equal
to a shared secret s ∈ Fp that gets fixed at the end of the Sh phase.

Many VSS applications (e.g., threshold cryptography and MPC) avoid par-
ticipation by all parties once the Sh phase is over. It is required that messages
from any t+1 honest parties (or any 2t+1 parties) are sufficient to reconstruct
the shared secret s. For these applications, we require a stronger commitment
property that we refer as the strong commitment requirement.

Strong Commitment. Even if Pd is dishonest, there exists a value s∗ ∈ Fp at
the end of the Sh phase, such that s∗ is reconstructed regardless of the subset
of parties (of size greater than 2t) chosen by the adversary in the Rec phase.

Some VSS schemes achieve a weaker (computational) secrecy guarantee.

Weak Secrecy. A t-limited adversary who can compromise t parties cannot
compute s during the Sh phase.

We also give the following definitions for the complexity measures.

Definition 2 (Message Complexity). The message complexity is defined as
the total number of messages exchanged between the parties participating in a
scheme.

Definition 3 (Communication Complexity). The communication complex-
ity is defined as the total number of bits exchanged between the parties taking into
consideration every message that has been transmitted.

A variant of VSS considers dealer Pd to be an external party (i.e., Pd /∈ P) and
allows the adversary to corrupt Pd and up to t additional parties in P . All our
protocols also work in this stronger setting.

Assuming a broadcast channel, Feldman [15] gave the first non-interactive
and efficient VSS scheme and Pedersen [21, 22] presented a modification to it.
Both protocols obtain the strong commitment property. In terms of secrecy,
Feldman VSS achieves the weak secrecy property, while Pedersen VSS achieves
the stronger form.

2.3 Use of Commitments in VSS

A verification mechanism for a consistent dealing is fundamental to VSS. It is
achieved using distributed computing techniques in the information-theoretic
security setting. In the computational setting that we focus in this paper, the
commitment schemes provide an efficient alternative.

A commitment scheme allows an entity, the committer, to publish a value,
called the commitment (say C), which binds her to a message s (binding) without
revealing it (hiding). Later, she may open the commitment C and reveal the
committed message m to a verifier, who can check that the message is consistent
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with the commitment. In particular, the computational VSS schemes utilize the
commitments to the shared polynomials. Kate et al. [18] formalize this concept of
polynomial commitments. Here, we present a refined version of their polynomial
commitment (PolyCommit) definition for polynomial of degree ≤ t.

Definition 4. A PolyCommit scheme consists of the following algorithms:

Setup(1κ, t) generates system parameters SP to commit to a polynomial of de-
gree ≤ t. In these system parameters, let G be an algebraic structure for
commitments. Setup is run by a trusted or distributed authority. SP can also
be standardized for repeated use.

Commit(SP, φ(x)) outputs a commitment C to a polynomial φ(x) for the system
parameters SP, and some associated decommitment information d. (In some
constructions, d can be null.)

Open(SP, C, φ(x), [d]) outputs the polynomial φ(x) used while creating the com-
mitment, with decommitment information d.

VerifyPoly(SP, C, φ(x), [d]) verifies that C is a commitment to φ(x), created with
decommitment information d. If so, the algorithm outputs 1, otherwise it
outputs 0.

CreateWitness(SP, φ(x), i, [d]) outputs 〈i, φ(i), wi, di〉, where wi is a witness and
di is the decommitment information for the evaluation φ(i) of φ(x) at the
index i. This algorithm is optional.

VerifyEval(SP, C, i, φ(i), [di, wi]) verifies that φ(i) is indeed the evaluation at the
index i of the polynomial committed in C. If so, the algorithm outputs 1,
otherwise it outputs 0.

Given SP← Setup(1κ, t), a PolyCommit scheme satisfies the following properties:

Correctness. Let C ← Commit(SP, φ(x)). For C generated by Commit(SP, φ(x)),
and all φ(x) ∈ Zp[x], any 〈i, φ(i), wi, di〉 generated using CreateWitness(SP,
φ(x), i) is correctly verified by VerifyEval(SP, C, i, φ(i), di, , wi).

Strong Correctness. ∀A : Pr{(C, 〈φ(x), d〉)← A(SP) : deg(φ(x)) > t} = ε(κ).
Polynomial Binding. ∀A : Pr{(C, 〈φ(x), d〉, 〈φ′(x), d′〉) ← A(SP)} = ε(κ)

given
[
(VerifyPoly(SP, C, φ(x), d) = 1) ∧ (VerifyPoly(SP, C, φ′(x), d′) = 1) ∧

(φ(x) = φ′(x))
]

Evaluation Binding. ∀A : Pr{(C, 〈i, φ(i), di, wi〉, 〈i, φ(i)′, d′i, w′
i〉)← A(SP)} =

ε(κ) given
[
(VerifyEval(SP, C, i, φ(i), di, wi) = 1)∧(VerifyEval(SP, C, i, φ(i)′, d′i,

w′
i) = 1) ∧ (φ(i) = φ(i)′)

]

(Unconditional) Hiding. For φ(x) ∈R Zp[x], given 〈SP, C〉 and {〈ij , φ(ij), dij ,
wφij 〉 : j ∈ [1, deg(φ)]} such that VerifyEval (SP, C, ij, φ(ij), dij , wφij ) = 1 for

each j, a computationally unbounded adversary Â has no information about
φ(ĵ) for any unqueried index ĵ.

The above strong correctness property is not present in the original PolyCommit
definition. We include it as restricting degree of the committed polynomial by a
threshold t is required for VSS. Further, a weaker form of hiding is also possible,
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where a computationally bounded adversary A cannot compute φ(ĵ) for any
unqueried index ĵ. We consider the unconditional hiding property in the paper.

In literature, VSS protocols utilized commitments to the coefficients or eval-
uations of shared polynomials as polynomial commitments. They used two com-
mitment schemes. Given g and h as two random generators of a multiplicative
group of order p, Feldman VSS and its variants use a commitment scheme of the
form gs with computational hiding under the discrete logarithm (DLog) assump-
tion and unconditional binding. Pedersen [21] presented another commitment of
the form gshr with unconditional hiding but computational binding under the
DLog assumption. The hiding property of the commitment scheme leads to the
secrecy property of VSS, while the binding property leads to the correctness
property of VSS. Both of these commitment schemes also trivially satisfy the
commitment property of VSS by the fact that the size of a commitment to a
polynomial φ(x) ∈ Zp[x] is equal to deg(φ) + 1. In the complexity terms, the
size of commitment is O(n) (since for optimal resiliency, deg(φ) = t = �n−1

2 �).
However, the commitment to a shared polynomial has to be broadcast to all
parties, which results in a linear-size broadcast for Feldman VSS, and a linear
complexity gap between the message and the communication complexities.

Kate et al. [18] close this gap for Feldman VSS and its variants using a com-
mitment that commits to the entire univariate polynomial using a single element.
In particular, they define two polynomial commitment (PolyCommit) schemes:
PolyCommitDLog and PolyCommitPed, both of which works in the bilinear pair-
ing setting with Θ(t) system parameters. PolyCommitDLog attains hiding un-
der the DLog assumption, binding under the t-strong Diffie-Hellman (t-SDH)
assumption [7], and strong correctness under the t-polynomial Diffie-Hellman
assumption (refer to Appendix A for references to any assumption). Using a
technique similar to Pedersen commitments, they also define PolyCommitPed,
which attains unconditional hiding and computational binding under the t-SDH
assumption. These constructions are based on an algebraic property of polyno-
mials φ(x) ∈ Fp[x] that (x − i) perfectly divides the polynomial φ(x) − φ(i) for
any i ∈ Fp.

In this work, we extend the utility of the PolyCommit concept to asynchronous
VSS. We choose the PolyCommitPed scheme for our protocol as it provides un-
conditional hiding and include the PolyCommitPed construction in Appendix A.

2.4 Asynchronous VSS

The asynchronous communication setting places no bounds on message delays.
Consequently, there is no trivially available broadcast channel, and Feldman
VSS and its variants do not guarantee a correct completion. This gives rise to
the concept of asynchronous VSS for optimal resilience of n = 3t+ 1.

An asynchronous VSS protocol requires the liveness and agreement proper-
ties along with the secrecy, correctness and commitment properties defined in
Section 2.2

Definition 5. An asynchronous VSS protocol having n ≥ 3t+ 1 parties with a
t-limited Byzantine adversary satisfies the following conditions:
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Liveness. If the dealer Pd is honest in the Sh phase, then all honest parties
complete the Sh phase.

Agreement. If some honest party completes the Sh phase, then all honest par-
ties will eventually complete the Sh phase. If all honest parties subsequently
start the Rec phase, then all honest parties will complete the Rec phase.

Correctness, Commitment and Secrecy. as defined in Section 2.2.

For VSS applications such as MPC, we need VSS that has identical secrecy,
correctness, liveness and agreement properties as in Definition 5, but a stronger
commitment property as defined in Section 2.2. In other words, there exists a
t-degree polynomial f(x) such that a share si held by every honest party Pi at
the end of the sharing phase is equal to f(i).

As discussed in the introduction, three computational VSS schemes have been
suggested for the asynchronous setting: AVSS [9], APSS [25], and MPSS [23].
Of these, AVSS [9] provides the first and the most practical asynchronous VSS
scheme. In the AVSS methodology, secret sharing is integrated into a reliable
broadcast primitive [8]. This results into its O(n2) messages complexity. Here,
the commitments to the secret and its shares are broadcast, and the shares
themselves are appropriately appended to the broadcast commitments so that
parties receive their shares while maintaining their secrecy. To overcome an ad-
versarial dealer that does not provide some honest party with its correct share,
parties send sub-shares to each other along with the broadcasted commitment.
The victim party then computes its share from the received sub-shares. AVSS
implements this using bivariate polynomial-based secret sharing, which leads to
a commitment (or broadcast) of size Θ(κn2) and correspondingly O(κn4) bits of
communication. In the same paper, Cachin et al. improve their AVSS scheme by
reducing the commitment-size to Θ(κn), which results in O(κn3) bits of commu-
nication. A linear gap between the message complexity and the communication
complexity still remains.

A Mismatch between AVSS and PolyCommit. It is tempting to consider filling
this gap for AVSS using a bivariate PolyCommit scheme that commits to an entire
bivariate polynomial using a constant-size commitment; however, this does not
seem to be possible with the existing PolyCommit methodology. PolyCommit
schemes use the algebraic property that, for φ(x) ∈ Fp[x], (x − i) perfectly
divides the polynomial φ(x) − φ(i) for any i ∈ Fp. However, such a perfect
and direct relation is not known between a bivariate polynomial φ(x, y) and its
evaluations φ(i, j) for any i, j ∈ Fp.

1 Therefore, we will have to use two-stage
properties involving univariate polynomials (e.g., (x− i)(y− j) perfectly divides
the polynomial φ(x, y)−φ(i, y)−φ(x, j)+φ(i, j) for any i, j ∈ Fp). However, this

does not work either because even though the t-SDH problem to find 〈c, g 1
α+c 〉

for any value of c ∈ Zp given 〈g, gα, gα2

, . . . , gα
t〉 is conjectured to be hard, its

exponential version to find a pair 〈gc, g 1
α+c 〉 is easy.

1 This is equivalent to derivatives in calculus, where complete derivation of a multi-
variable equation is not possible and partial derivatives are employed.
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A closer look at AVSS reveals that further reducing the commitment-size in
the hash-based approach of Cachin et al. using a univariate PolyCommit scheme
also does not work: Cachin et al. hash the shares (or the univariate polynomials)
for n parties and the secret. These n+ 1 hashed values sent to each party con-
stitute a polynomial of degree n instead of degree t of the underlying bivariate
polynomial. This requires an honest party to wait for (constant-size) messages
from all n parties in AVSS, which is impossible in the asynchronous setting.

As a result, we have to work towards our goal of asynchronous VSS with
O(κn2) in a different way. In the next section, we provide an asynchronous VSS
that satisfies the basic VSS definition, and extend it to a stronger version with
applicability in all known VSS applications in Section 4.

3 eAVSS: Asynchronous VSS Protocol

In this section, we present a protocol (eAVSS) with O(n2) message complexity
and O(κn2) communication complexity and that satisfies Definition 5 of asyn-
chronous VSS. The eAVSS protocol guarantees that at least t+1 honest parties
receive proper shares of the secret committed using a t-degree univariate poly-
nomial during the Sh phase, while the remaining honest parties are assured that
there are at least t+ 1 honest parties that have received correct shares and can
complete the Rec phase. The protocol is sufficient for applications such as Byzan-
tine agreement and stand-alone VSS. The protocol construction is significantly
simpler than the AVSS protocol [9] and it has a protocol flow similar to a VSS
protocol for non-homomorphic commitments [4].

3.1 Construction

We assume a PolyCommitPed commitment Setup instance SP← Setup(1κ, t). We
choose PolyCommitPed due to its unconditional hiding property and the con-
stant size of the commitments. It can, however, be replaced by any polynomial
commitment scheme.

The dealer Pd starts off the protocol by choosing a univariate polynomial
φ(x) with φ(0) = s, and computing a commitment 〈C, d〉 ← Commit(SP, φ(x))
and corresponding witnesses wj ← CreateWitness(SP, φ(x), d, j) for j ∈ [1, n]. In
PolyCommitPed, the decommitment information d is a t-degree polynomial, which

is represented as φ̂(x) in the rest of the paper. Pd then sends (send, C, φ(j), φ̂(j),
wj) messages to all parties and the parties verify their shares against the received
commitment C. In the rest of the protocol, the parties try to agree on C. Unlike
AVSS, the parties in eAVSS do not exchange their common evaluations of a
bivariate polynomial; they only verify consistency of the received shares (if any)
with C locally. If the dealer is dishonest, some honest parties may not receive
shares consistent with C; however, they still help to reach an agreement on C
once they are assured that at least t+1 honest parties have received shares and
witnesses consistent with C. We describe the protocol in Figure 1. Note that
commitment C is set to ⊥ initially. An honest party accepts only one message
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Sh Phase
Dealer Pd with the secret s

– Select a polynomial φ(x) of degree t such that φ(0) = s.

– Compute a commitment 〈C, ̂φ(x)〉 ← Commit(SP, φ(x)) and witnesses wj ←
CreateWitness (SP, φ(x), ̂φ(x), j) for j ∈ [1, n].

– Send (send, C′ = C, φ(j), ̂φ(j), wj) to every party Pj .

Every party Pi

– On receiving a message (send, C′, φ(i), ̂φ(i), wi) from Pd, run VerifyEval(SP, C′,
i, φ(i), ̂φ(i), wi). If the verification succeeds, set C = C′ and send (echo, C′) to
all parties.

– On receiving (echo, C′) messages from (n− t) parties:
• For C′ = C, send (ready, share, C′) to all parties;

• For C′ �= C, discard 〈φ(j), ̂φ(j), wj〉, set C = C′, and send (ready, no-share, C′)
to all parties.

– If a ready message has not been sent, then on receiving (ready, ∗, C′) messages
from t+ 1 parties:
• For C′ = C, send (ready, share, C′) to all parties;

• For C′ �= C, discard 〈φ(j), ̂φ(j), wj〉, set C = C′, and send (ready, no-share, C′)
to all parties.

– On receiving (ready, ∗, C′) messages from at least (n−t) parties such that share
flags are set in at least t+1 of those, complete the Sh phase with commitment
C = C′ (and 〈φ(i), ̂φ(i), wi〉 if present).

Rec Phase
Every party Pi

– Send (rec-share, φ(i), ̂φ(i), wi) to all parties, if it has sent a (ready, share, C)
message in the Sh phase.

– On receiving t + 1 rec-share messages verified using VerifyEval(SP,C, j, φ(j),
̂φ(j), wj), interpolate the secret as s = φ(0).

Fig. 1. Protocol eAVSS for Asynchronous VSS (n ≥ 3t+ 1)

of a kind from any other party, and without loss of generality, we assume that
every party chooses only the first message.

The protocol requires O(n2) messages as decided by its echo and ready mes-
sages. Use of PolyCommit ensures that all messages are of a constant size, and
results in O(κn2) communication complexity.

3.2 Analysis

Theorem 1. Given a PolyCommit scheme that satisfies Definition 4, eAVSS is
an asynchronous VSS protocol that satisfies Definition 5.

Proof. To prove the theorem, we show that protocol eAVSS satisfies liveness,
agreement, correctness, commitment, secrecy properties of asynchronous VSS
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according to Definition 5. Our analysis is based on the properties of the polyno-
mial commitment scheme used.

We start by proving the following two claims.

Claim. If some honest party has agrees on C, then every honest party will even-
tually agree on C.
Proof. We first prove by contradiction that if Pi be the first honest party to send
ready message containing C, then a ready message sent by every other honest
party Pj will contain C. Assume an honest party Pj sends a ready message with
C such that C = C. Being first honest party to send a ready message with C party
Pi must have received (echo, C) from at least n− t parties of which at least n−2t
were honest. Pj can send C only after one of the following two events and in both
cases we arrive at a contradiction:

1. Pj can send (ready, C) after receiving (echo, C) from at least n− t parties. As
n ≥ 3t+1, (n− t) + (n− t)−n = n− 2t ≥ t+1 parties must have sent echo
with both C and C. This implies that at least one honest party sent echo
messages of two types, which is impossible.

2. Pj can also send (ready, C) after receiving n − 2t (ready, ∗, C) messages. For
n ≥ 3t+ 1, n− 2t ≥ t+ 1. Therefore, there is at least one honest party (say
Pk), who sent C in its ready message to Pj . This means that one of the events
(1) or (2) must have occurred with the honest party Pk. If we argue in a
recursive manner, we reach some honest party who must have experienced
event (1), which is a contradiction.

Therefore, no two honest parties will send ready messages containing different
commitments.

A honest party agrees on C only after receiving at least n− t ready messages
such that at least t + 1 contain share. Therefore, n − 2t ≥ t + 1 honest parties
must have sent ready message and at least one honest party must have sent a
ready message containing share. ready messages from t + 1 or more parties will
eventually reach all remaining honest parties and they will send ready messages
with the same C, as discussed above. As the number of honest parties is at least
n− t, every honest party will receive at least n− t ready messages.

It, however, remains to be shown that every honest party will eventually re-
ceive at least t+1 ready messages with the share flag. From the above paragraph,
we know that at least one honest party must have sent a ready message for C
after receiving n− t echo messages for C and, out of those, at least n− 2t ≥ t+1
are sent by honest parties. As an honest party sends an echo message only after
receiving a verified send message from the dealer, at least t + 1 honest parties
must have received their shares from the dealer. As every honest party eventually
sends a ready message, these t+1 parties will also certainly send ready messages
and importantly, they will contain the share flag. Therefore, every honest party
will eventually receive n− t ready messages for C and at least t+1 among them
will have share flags and thereby agree on C.
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Claim. If some honest party agrees on C, then there exists a subset of at least
n − 2t ≥ t + 1 honest parties such that each of those holds an evaluation of a
degree-t polynomial consistent with C.
Proof. From the proof of Claim 3.2, n − 2t honest parties will eventually send
out ready messages for C with share; these n − 2t honest parties have received
verifiable send messages for C from the dealer Pd. Note that these honest parties
never update C, and eventually agree on the same C by Claim 3.2. Due to the
strong correctness and polynomial binding properties of PolyCommitPed, there
is a unique t-degree of polynomial φ(x) committed by C. Therefore, evaluations
available with these n−2t ≥ t+1 parties implicitly defines φ(x) that is consistent
with C.
Liveness. If the dealer Pd is honest, then every honest party will eventually
receive verifiable send message sent by Pd and will send an echo message and
then a ready message. As there are n− t ≥ 2t+1 honest parties, they will finally
agree on C and complete the Sh phase.

Agreement. A party completes its Sh phase as soon as it agrees on a com-
mitment C. Claim 3.2 suggests that if an honest party agrees on C, then every
honest party will eventually agree on C. Therefore, if one honest party completes
the Sh phase, then every honest party will complete its Sh phase.

For agreement in the Rec phase, Claim 3.2 shows that there is a subset of at
least t + 1 honest parties each holding an evaluation of a degree-t polynomial
φ(x) that is consistent with C. As every honest party participates in the Rec
phase, t + 1 correct evaluations of φ(x) associated with C are available in the
Rec phase, and the secret s = φ(0) can be interpolated by every honest party.

Correctness. Assume that the dealer has shared a secret s using a polyno-
mial φ(x), and has remained honest throughout the execution of the Sh phase.
Let C be the commitment to φ(x) sent by the dealer. Given correctness of the
polynomial commitment scheme, all honest parties will receive correct shares
of the secret s that is consistent with C. Therefore, as we discussed above for
agreement, the same secret s will be reconstructed by the parties.

Commitment. We prove the commitment by contradiction. Assume that two
different honest parties Pi and Pj reconstruct different s

′ and s′′ such that s′ =
s′′, The maximum possible degree of the committed polynomial is t due to strong
correctness of PolyCommitPed. Therefore, each of them must have agreed upon
different commitments (say) C′ and C′′ in the Sh phase. However, this contradicts
with Claim 3.2. Therefore, a unique value s∗ ∈ Fp will be reconstructed by all
honest parties.

Secrecy. To prove secrecy, we need to show that if dealer Pd is honest, then
the adversary A gains no information about the secret s. A t-limited adversary
will be able to obtain t messages of the form (send, C, wi, φ(i)). Due to the
hiding property for polynomial commitments, given only t such messages it is
impossible to reconstruct polynomial φ(x) (of degree t) and correspondingly the
dealer’s secret s = φ(0).
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4 eAVSS-SC: AVSS Protocol with Strong Commitment

Although protocol eAVSS in Section 3 does not attain the strong commitment
property, it can be used as a component of a VSS protocol that satisfies it.
The most intuitive way to realize such a VSS scheme is to make Pd execute
(n + 1) correlated instances of eAVSS, where the secret s is shared using the
first instance (say) eAVSS0 and the associated shares or polynomial evaluations
for all n parties in eAVSS0 are themselves shared using n instances eAVSSj for
j ∈ [1, n]. Once all eAVSSj instances complete their Sh phases, a subset of t+ 1
or more honest parties provide every Pj its share in eAVSS0 by running the Rec
phase of eAVSSj , and by sending their verifiable shares of eAVSSj to only Pj .
It is possible to combine send, echo and ready messages for all n + 1 instances
to keep the message complexity the same as that of AVSS and eAVSS, i.e.,
O(n2). However, to broadcast all associated commitments, the communication
complexity becomes O(κn3), which is no better than that of AVSS [9]. In protocol
eAVSS-SC, we overcome this drawback using a collision-resistant hash function.

4.1 Construction

Here, the dealer Pd shares the secret s using a symmetric bivariate polynomial
φ(x, y) such thatφ(0, 0) = s. The dealer commits to this bivariate polynomial using
the univariatePolyCommit scheme twice. In Section 2.4,we observed that constant-
size commitments to bivariate polynomials seem difficult, if not impossible. Here,
we overcome this hurdle using PolyCommit over the hashed univariate PolyCommit
values.2 We provide an expository description of protocol eAVSS-SC in Figure 2.
Notice that although we use send, echo, and ready messages similar to AVSS, our
message structures and their utilities are significantly different from those ofAVSS.
These message structures are crucial to adopt a univariate PolyCommitPed scheme
to our asynchronous VSS scheme, which uses bivariate polynomials.

The protocol requires two PolyCommitPed instances: SP1 ← Setup(1κ, t) and
SP2 ← Setup(1κ, n). Pd runs n + 1 eAVSS instances with polynomials φ(x, 0),
φ(x, 1) , . . . , φ(x, n). Let C0, C1, . . . , Cn be the commitments for these n+ 1 in-
stances. Pd also computes an n-degree polynomial hC(x) from H(C0), H(C1), . . . ,
H(Cn), where H : G → Fp is a collision-resistant hash function and broad-
casts a commitment ζ to hC(x). The dealer cannot cheat with φ(x, y) as the
PolyCommitPed scheme is binding and the hash function is collision-resistant.
When all honest parties agree on ζ, they implicitly agree on C0, C1, . . . , Cn. As
t+1 or more honest parties have received all required shares φi(x) = φ(x, i) and

φ̂i(x) = φ̂(x, i), and commitments C, they can provide all parties their required
shares, commitments and witnesses in a verifiable manner using the homomor-
phic property of PolyCommitPed. We optimize this final step by attaching the
required shares, witnesses and commitments to the ready messages.

2 Note that our scheme is not a generic constant-size commitment scheme for bivariate
polynomials and some care has to be taken before applying it in other applications;
e.g., our scheme cannot be applied to themain as well as the refinedAVSS protocols [9]
without making their computational complexity exponential O

(

n
t

)

.
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Sh Phase
Dealer Pd with the secret s
– Choose a symmetric t-degree bivariate polynomial φ(x, y) such that φ(0, 0) = s

and φ(i, j) = φ(j, i).
– Commit to φ(x, y) using a vector C = {Cj}j∈[0,n], where 〈Cj , φ̂j(x)〉 ←

Commit(SP1, φj(x)), φj(x) = φ(x, j) and φ̂(x, y) is symmetric. Also, compute wit-

ness vectors
−→Wj = {wk

j }k∈[0,n] for every party Pj such that wk
j ← CreateWitness

(SP1, φk(x), φ̂k(x), j).
– Compute an n-degree polynomial hC(x) from H(C0),H(C1), . . . ,H(Cn), where H :

G → Fp is a collision-resistant hash function and commit to it 〈ζ,̂hC(x)〉 ←
Commit(SP2, hC(x))

– Send (send, ζ′ = ζ, C′ = C, ̂hC(x),
−→Wj , φj(x), φ̂j(x)) to every party Pj .

Every party Pi

– On receiving (send, ζ′, C′, ̂hC(x),
−→Wi, φi(x), φ̂i(x)) from Pd, verify its correctness:

• interpolate the complete C′ from any of its t+ 1 elements to assert the degree
t of the polynomial;
• compute hC(x) from C′ and VerifyPoly(SP2, ζ

′, hC(x),̂hC(x));
• VerifyPoly(SP1, C′i, φi(x), φ̂i(x));
• VerifyEval(SP1, C′j , i, φj(i)

[

= φi(j)
]

, φ̂j(i)
[

= φ̂i(j)
]

, wj
i ) for every j ∈ [0, n].

Upon a successful verification, set ζ = ζ′ and C = C′, compute wit-
nesses wi

j ← CreateWitness (SP1, φi(x), φ̂i(x), j) for j ∈ [1, n] and wC
i ←

CreateWitness(SP2, hC(x),̂hC(x), i). Send a message (echo, ζ′) to all parties.
– On receiving (echo, ζ′) from at least (n− t) parties:

• If ζ′ = ζ, send (ready, ζ′, share, φi(j), φ̂i(j), w
i
j , Ci,̂hC(i), wC

i ) to every party Pj ;

• If ζ′ �= ζ, discard 〈C,−→Wi, φi(x), φ̂i(x)〉, set ζ = ζ′, and send (ready, ζ′, no-share)
to all parties.

– If a ready message has not been sent, then on receiving (ready, ζ′, ∗) messages
from (t+ 1) parties:

• If ζ′ = ζ, send (ready, ζ′, share, φi(j), φ̂i(j), w
i
j , Ci,̂hC(i), wC

i ) to every party Pj ;

• If ζ′ �= ζ, discard 〈C,−→Wi, φi(x), φ̂i(x)〉, set ζ = ζ′, and send (ready, ζ′, no-share)
to all parties.

– On receiving (ready, ζ′, ∗) messages from at least (n − t) parties such that
at least (t + 1) of those messages contain 〈share, φj(i), φ̂j(i), w

j
i , Cj , ĥC(j), wj

C〉
successfully verified using VerifyEval(SP1, Cj , i, φj(i), φ̂j(i), w

j
i ) and VerifyE-

val(SP2, ζ
′, j,H(Cj), ĥC(j), w

j
C), interpolate

• shares φ0(i) and φ̂0(i) from respectively (t+ 1) φj(i) and (t+ 1) φ̂j(i) values,
• commitment C0, witness w0

i from respectively (t+ 1) Cj and (t+ 1) wj
i values.

Complete the Sh phase with (ζ = ζ′, C0, φ0(i), φ̂0(i), w
0
i ) as output.

Rec Phase
Every party Pi

– Send a message (rec-share, φ0(i), φ̂0(i), w
0
i ) to every party Pj .

– On receiving t + 1 rec-share messages that have been verified using VerifyE-
val(SP1, C0, φ0(j), φ̂0(j), w

0
j ), interpolate shares φ0(j) to obtain secret s.

Fig. 2. Protocol eAVSS-SC for Asynchronous VSS with Stronger Commitment
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From the protocol description, it is apparent that the message complexity is
O(n2). As we use the PolyCommitPed scheme that commits to univariate polyno-
mials using a single element, the communication complexity is O(κn2). Note that
although the size of send messages is O(κn), only n such messages are delivered;
thus, the communication complexity does not exceed O(κn2).

For simplicity of the description, we define our protocol with a symmetric
bivariate polynomial. It is easily possible to avoid this symmetry requirement in
the protocol without any asymptotic increase in the complexity measures.

4.2 Analysis

Theorem 2. Given a PolyCommit scheme that satisfies Definition 4, eAVSS-SC
is an asynchronous VSS protocol that satisfies Definition 5 with the strong com-
mitment property.

Proof (Proof Outline). We have to prove that protocol eAVSS satisfies the asyn-
chronous VSS properties in Definition 5 along with the strong commitment prop-
erty. Our analysis is based on the following two claims and the properties of the
PolyCommit scheme. We present our proof sketch here, while the complete proof
appears in [3].

Claim. If some honest party agrees on ζ, then every honest party will eventually
agree on ζ.

Claim. All honest servers complete the Sh phase with the same PolyCommit
commitment C0.
Proof. Assume two honest parties terminate with C0′ and C0′′ such that C0′ =
C0′′. From Claim 4.2, we know that all honest parties agree on the same ζ.
As ζ commits to hC(x), an n-degree polynomial interpolated by hashing n + 1
elements of C, the adversary has to break the evaluation binding property of the
polynomial commitment or the collision resistance property of hash function to
obtain two different C0 values that culminate the same ζ. This is not possible
in PPT and there is a contradiction. Therefore, we prove that all honest servers
complete the Sh phase with the same C0.
Liveness follows from the protocol flow and correctness of the PolyCommit scheme.
Agreement in the Sh phase is evident from claims 4.2 and 3.2, while agreement in
reconstruction follows from agreement during the Sh phase. Correctness follows
directly from correctness of the PolyCommit scheme and collision-resistance of
the hash function. Strong Commitment is apparent from agreement of eAVSS-SC
and Claim 3.2. Secrecy follows from the hiding property of PolyCommit.

4.3 Lower Bounds

We observe that the Ω(n2) message complexity of our eAVSS and eAVSS-SC
protocols as well as the AVSS protocol is optimal.3 This can be proved in two

3 With the stronger cryptographic assumptions such as PKI or ZK proofs more efficient
schemes can be possible; however, we only assume commitment schemes here.
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steps: first, it is known that a VSS protocol is sufficient to implement reliable
broadcast [19]; next, extending a result by Dolev and Reischuk [14] for Byzantine
agreement to reliable broadcast. The latter proves that if a reliable broadcast
protocol terminates, the number of messages exchanged by honest parties is
lower bounded by max{(n− t), (1+ t/2)2} in presence of a commitment scheme.
The above two claims show that the message complexity of asynchronous VSS
is lower-bounded by Ω(n2) for optimal resiliency condition n = 3t+1 and t > 2.
We thoroughly prove this result in the extended version of this paper [3].

Note that when the shared secret is of size κ (the computational security
parameter), the lower bound of Ω(n2) message complexity intuitively transfers
to a lower bound ofΩ(κn2) on the asynchronous VSS communication complexity.
Nevertheless, proving this thoroughly presents an interesting challenge. If proven,
it will show that our eAVSS and eAVSS-SC protocols are not only optimal in
terms of message complexity but also in terms of communication complexity.

5 Applications

Our eAVSS and eAVSS-SC schemes have direct implications to all asynchronous
VSS applications. We briefly discuss some important applications here.

Using our eAVSS-SC protocol in proactive VSS [9] reduces its communication
complexity by a linear factor to O(κn3). The same reduction also applies to
distributed key generation required for threshold cryptography, and its group
and threshold modification primitives [17]. Using our eAVSS protocol in the
asynchronous Byzantine agreement (ABA) framework of Canetti and Rabin [10,
11], it is possible to obtain the first O(κn3) communication complexity ABA
protocol, which is secure against the adaptive adversary in the standard model
without the random oracle assumption (see [9, Sec. 3.5] for details).

Finally, our commitment methodology may also find applications in some
other bivariate polynomial-based protocols; however, one has to be careful as it
is not a full-fledged bivariate polynomial commitment scheme.
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A Protocol PolyCommitPed

In this section, we instantiate the PolyCommitPed scheme that commits to a
univariate polynomial using a single group element. PolyCommitPed is based on
the algebraic property of polynomials φ(x) ∈ Fp[x]: (x − i) perfectly divides
the polynomial φ(x) − φ(i) for i ∈ Fp. Further, it uses an additional random

polynomial φ̂(x) to achieve unconditional hiding.

Setup(1κ, t) computes two groups G and GT of prime order p (providing κ-bit
security) such that there exists a symmetric bilinear pairing e : G×G→ GT

and for which the t-SDH assumption holds. We denote the generated bilinear
pairing group as G = 〈e,G,Gt〉. Choose two generators g, h ∈R G. Let
α ∈R F

∗
p be SK, generated by a (possibly distributed) trusted authority. Setup

also generates a (2t + 2)-tuple 〈g, gα, . . . , gαt

, h, hα, . . . , hα
t〉 ∈ G

2t+2 and

outputs SP = 〈G, g, gα, . . . , gαt

, h, hα, . . . , hα
t〉. Note that SK is not required

by the other algorithms of the commitment scheme, and it can be discarded
by the authority if t is fixed.

Commit(SP, φ(x)) chooses φ̂(x) ∈R Fp[x] of degree t and computes the com-

mitment C = gφ(α)hφ̂(α) ∈ G for the polynomial φ(x) ∈ Fp[X ] of degree

t or less. For φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =

∑deg(φ̂)
j=0 φ̂jx

j , it outputs

C = ∏deg(φ)
j=0 (gα

j

)φj
∏deg(φ̂)
j=0 (hα

j

)φ̂j as the commitment to φ(x).

Open(SP, C, φ(x), φ̂(x)) outputs the committed polynomials φ(x) and φ̂(x).

VerifyPoly(SP, C, φ(x), φ̂(x)) verifies that C ?
= gφ(α)hφ̂(α).

If C =
∏deg(φ)
j=0 (gα

j

)φj
∏deg(φ̂)
j=0 (hα

j

)φ̂j for φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =

∑deg(φ̂)
j=0 φ̂jx

j , the algorithm outputs 1, else it outputs 0. Note that this only

works when both deg(φ) and deg(φ̂) ≤ t.
CreateWitness(SP, φ(x), φ̂(x), i) computes ψi(x) =

φ(x)−φ(i)
(x−i) , ψ̂i(x) =

φ̂(x)−φ̂(i)
(x−i) ,

and outputs 〈i, φ(i), φ̂(i), wi〉. Here, the witness wi = gψi(α)hψ̂i(α).

VerifyEval(SP, C, i, φ(i), φ̂(i), wi) verifies that φ(i) is the evaluation at the index

i of the polynomial committed to by C. If e(C, g) ?
= e(wi, g

α/gi)e(gφ(i)hφ̂(i), g),
the algorithm outputs 1, else it outputs 0.

Suppose h = gλ for some unknown λ. Then VerifyEval is correct because

e(wi, g
α/gi)e(gφ(i)hφ̂(i), g) = e(gψi(α)+λψ̂i(α), g(α−i))e(g, g)φ(i)+λφ̂(i)

= e(g, g)(ψi(α)(α−i)+φ(i))+λ(ψ̂i(α)(α−i)+φ̂(i))

= e(g, g)φ(α)+λφ̂(α) = e(gφ(α)hφ̂(α), g) = e(C, g)
The hiding property of PolyCommitPed is unconditional. The polynomial binding
property is based on the DLog assumption, while the evaluation binding property
is based on the t-Strong Diffie-Hellman (t-SDH) assumption [7]. The strong
correctness property follows from the t-polynomial Diffie-Hellman (t-polyDH)
assumption [2, 18].
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