
Cryptanalytic Attacks on MIFARE Classic

Protocol

Jovan Dj. Golić

Security Lab, Telecom Italia IT
Via Reiss Romoli 274, 10148 Turin, Italy
{jovan.golic}@it.telecomitalia.it

Abstract. MIFARE Classic is the most widely used contactless smart
card in the world. It implements a proprietary symmetric-key mutual au-
thentication protocol with a dedicated reader and a proprietary stream
cipher algorithm known as CRYPTO1, both of which have been reverse
engineered. The existing attacks in various scenarios proposed in the
literature demonstrate that MIFARE Classic does not offer the desired
48-bit security level. The most practical scenario is the card-only sce-
nario where a fake, emulated reader has a wireless access to a genuine
card in the on-line stage of the attack. The most effective known attack
in the card-only scenario is a differential attack, which is claimed to re-
quire about 10 seconds of average on-line time in order to reconstruct
the secret key from the card. This paper presents a critical comprehen-
sive survey of currently known attacks on MIFARE Classic, puts them
into the right perspective in light of the prior art in cryptanalysis, and
proposes a number of improvements. It is shown that the differential at-
tack is incorrectly analyzed and is optimized accordingly. A new attack
of a similar, differential type is also introduced. In comparison with the
optimized differential attack, it has a higher success probability of about
0.906 and a more than halved on-line time of about 1.8 seconds.

Keywords: RFID, NFC, smart card attacks, key reconstruction at-
tacks, stream ciphers, repeated nonce attacks, inversion atacks, resyn-
chronization attacks, differential attacks.

1 Introduction

There are a number of proprietary algorithms and protocols used for data en-
cryption and device authentication in RFID (Radio Frequency IDentification)
and NFC (Near Field Communication) systems. The MIFARE Classic smart
card, by NXP Semiconductors, is claimed to be the most widely used contact-
less smart card in the world, especially for access control to buildings and public
transport. According to [6,7], this smart card covers more than 70% of the market
share for access control worldwide. It is a memory card with several extra func-
tionalities. It is capable of implementing a proprietary symmetric-key mutual
authentication protocol and a proprietary encryption algorithm (stream cipher)
known as CRYPTO1. They are also implemented on the dedicated contactless

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 239–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



240 J.Dj. Golić

card reader. CRYPTO1 uses a preshared 48-bit secret key for encrypting mes-
sages between a card and a reader, including challenges and responses in the
mutual authentication protocol. Data integrity on the RFID or NFC channel is
not provided for. The protocol and CRYPTO1 are both reverse engineered in
[14,7] and then analyzed in a number of scientific publications [14,12,6,7,4]. The
proposed cryptanalytic attacks in various attack scenarios demonstrate that the
MIFARE Classic smart card does not offer the 48-bit security level. Note that on
a standard CPU, the brute-force attack on the 48-bit key can take several years,
but less than an hour on the FPGA board COPACOBANA [13], at a cost of
about 10000 USD. NXP Semiconductors has also introduced other smart cards
for replacing MIFARE Classic, which use stronger authentication protocols and
encryption algorithms, e.g., MIFARE Plus in 2008, based on 128-bit AES. Ac-
cording to [6], there are more than a billion of MIFARE and about 200 million
of MIFARE Classic smart cards in use worldwide.

Attack scenarios considered include a passive scenario AttP and active sce-
narios AttAT and AttAR or their combinations. In AttP scenario, the attacker
intercepts and records traces of valid transactions between a genuine card/tag
and a genuine reader, and has the objective to decrypt some of the traces by
cryptanalysis. There are a number of active scenarios where the attacker can
initiate fake transactions between a tag and a reader. In AttAT scenario, the
attacker uses a fake, emulated reader to access a genuine tag and, possibly in
combination with AttP scenario, has the objective to perform an illegitimate
transaction on the genuine tag, e.g., reading or modifying the stored data. In
particular, in AttP or AttAT scenarios, the attacker may have the objective to
reconstruct the genuine tag key. In AttAR scenario, the attacker uses a fake,
emulated tag to access a genuine reader and has the objective to reconstruct the
genuine reader key corresponding to the unique ID of the emulated tag. AttAT
is the easiest scenario to implement in practice and is also called the tag-only or
card-only scenario. In all the scenarios, the ProxMark instrument [15], with the
open-source specification, programmed to handle the standard ISO/IEC 14443-
A, can be used to emulate tags and readers and eavesdrop on valid transactions.

The reconstruction of the key totally breaks the system. The attacker can
then perform any transaction on a genuine tag by using a fake reader with the
genuine key. In particular, it can read or modify the stored data (e.g., read
sensitive data or modify valuable data). Alternatively, the attacker can clone a
tag, i.e., produce a fake tag with the genuine key or emulate a genuine tag and
thus force a genuine reader into legitimate transactions or actions (e.g., access
to building or access to any event requiring a ticket).

The main objectives of this paper are to critically analyze all known attacks
on MIFARE Classic protocol in various scenarios and put them into the right
perspective with respect to the prior art in cryptanalysis, propose their improve-
ments, and introduce a novel attack, which appears to be the most effective
currently known attack in the tag-only scenario, where the attacker uses a fake
reader for a contactless access to a targeted genuine tag. For comparison of
tag-only attacks, see Table 1. Note that the main practical limitation factor of



Cryptanalytic Attacks on MIFARE Classic Protocol 241

these attacks is the on-line stage, which requires real-time access to the tag. The
topic and the results are very interesting in practice, due the worldwide usage
of MIFARE Classic smart cards and dedicated readers.

The MIFARE Classic protocol including the authentication protocol, the en-
cryption algorithm CRYPTO1, and the error detection code are described in
Section 2. The attack [12] in the combined AttP and AttAT scenario, which is
independent of the structure of CRYPTO1, is discussed in Section 3. Two at-
tacks [6] that work in AttP or AttAR scenario, namely, the time-memory-data
tradeoff attack and the inversion attack are presented in Section 4 and Appendix
A. Section 5 is dedicated to five attacks in AttAT, i.e., tag-only scenario. Three
of them [7] are only outlined in Appendix B, as they are not very practical.
The practical differential attack [4] is explained, critically analyzed, and opti-
mized in Section 5 and Appendix C. A novel differential attack is proposed in
Section 5 and Appendix C. All these cryptanalytic attacks relate to the mutual
authentication protocol for one sector of the MIFARE Classic smart card. The
attacks [6,7] aiming at reconstructing the keys for multiple sectors are presented
in Section 6 and Appendix D. Conclusions are given in Section 7.

2 Description of MIFARE Classic Protocol

The EEPROMmemory of the MIFARE Classic tag is divided into sectors, which
are further divided into blocks of 16 bytes each. The last block of each sector
contains two 48-bit secret keys and access conditions for the sector. The basic
operations that can be performed on the memory data include read, write, in-
crement, and decrement the stored value. The reader can access data in a given
block only upon successful authentication for the sector containing that block,
where the access conditions determine which of the two keys should be used and
define the operations allowed for the sector. The first block of the first sector is a
read-only block that contains special data including the unique 32-bit identifier
(ID or UID) of the card, the parity byte computed on ID, and the manufacturer
data. Secret keys stored on the tag can be specific to the tag or shared among
a number of tags. In the latter case, a particular tag is identified by its unique
ID stored in the read-only block. In the former case, in order to avoid storing all
the keys in the reader memory, a key specific to the tag can be derived from a
group master key and the unique ID.

The three-pass symmetric-key authentication protocol is of the challenge-
response type, where the 32-bit challenge nonces nT and nR used by the tag
and the reader are generated by the respective pseudorandom number genera-
tors. The tag nonce, nT , is generated by a 16-bit linear feedback shift register
(LFSR), which implies that it contains only 16 bits of entropy if the LFSR state
is assumed to be uniformly random. The LFSR starts from the same state after
powering up, has period 65535, and shifting its state every 9.44μs it repeats its
state after about 618ms. The only randomness factor is thus a variable time
when the tag nonce is produced. On the other hand, the reader pseudorandom
number generator starts from the same state after every restart and produces a



242 J.Dj. Golić

nonce nR only upon invocation by the authentication protocol. In this case, the
only randomness factor is a variable number of invocations after the restart. In
principle, fresh nonces are important in order to avoid fake authentication by
the replay attacks. However, if the nonces are treated as random in the protocol,
but are in fact easily repeatable or predictable, then cryptanalytic attacks with
a fake reader or a fake tag may be possible.

The tag and reader nonces serve for mutual authentication as well as for the
initialization of CRYPTO1 for encrypting the data to be exchanged. CRYPTO1
is a stream cipher (keystream generator) with a structure of a nonlinear filter
generator using a 48-bit LFSR and a nonlinear 20-bit Boolean function applied to
the LFSR state to produce the keystream bits. The ciphertext bits are produced
by XORing the plaintext and keystream bits. CRYPTO1 is initialized during
the authentication process by using the challenge nonces nT and nR, which are
bitwise XORed into the feedback path of the LFSR. Fresh nonces are important
to ensure that the keystream is not repeated for the same sector key.

The main steps of the three-pass mutual authentication protocol are depicted
in Fig. 1. In the preliminary two steps (which in reality include more auxiliary
steps), the tag sends its unique ID and the reader sends back the index of the
block (including that of the corresponding sector) to which it wishes to com-
municate to. The tag and the reader then select the key to be used for that
sector, according to the access conditions. In the first pass, the tag sends nT

in the clear form. In the second pass, the reader sends back its response con-
taining nR and the answer aR encrypted with two successive 32-bit keystream
segments ks1 and ks2, respectively. In the third pass, the tag sends its answer
aT encrypted with the subsequent 32-bit keystream segment ks3. We use the
notation as in [7], i.e., {nR} = nR⊕ks1, {aR} = aR⊕ks2, and {aT } = aT ⊕ks3.
The answers to the challenges are defined by aR = suc2(nT ) and aT = suc3(nT ),
where “suc” denotes the successor function associated with the 16-bit LFSR used
for generating nT , which maps 32 successive LFSR sequence bits into the next
(non-overlapping) 32 successive LFSR sequence bits.

ID

Block
nT

nR ks1, aR ks2

aT ks3

Tag Reader 

Fig. 1. MIFARE Classic authentication protocol

In the process, the same keystream is generated both by the tag and the
reader, with the only difference that the reader uses nR directly, whereas the
tag first decrypts {nR} into nR. This is achieved in the bitwise manner since
ks1 also depends on nR, but in a specific way. Namely, as the current bit of ks1



Cryptanalytic Attacks on MIFARE Classic Protocol 243

used to encrypt the current bit of nR depends only on the previous bits of nR,
where the first bit of ks1 does not depend on nR at all, the bits of nR can be
recovered by the tag one at a time and then XORed into the feedback path of
the LFSR. The LFSR in CRYPTO1 is first initialized with the 48-bit key as the
initial state. Then, the LFSR is clocked 32 times during which nT ⊕ID is XORed
in the feedback loop of the LFSR, one bit at a time. Then, the LFSR is clocked
another 32 times during which nR is XORed in the feedback loop of the LFSR,
one bit at a time. The first bit of ks1 is generated after the insertion of the last
bit of nT ⊕ ID and before the insertion of the first bit of nR, whereas the last
bit of ks1 is generated before the insertion of the 32nd bit of nR. The keystream
segments ks2 and ks3, which are successively generated after ks1, as well as the
subsequent keystream bits are generated by clocking the LFSR autonomously,
and thus depend on the key and all the bits of nT ⊕ ID and nR.

Let k = k0k1 . . . k47, nT = nT,0nT,1 . . . nT,31, nR = nR,0nR,1 . . . nR,31, and
u = u0u1 . . . u31 denote the 48-bit key and 32-bit tag and reader nonces and
unique tag ID, respectively. Let s = s0s1s2 . . . denote the LFSR sequence and
let Si = sisi+1 . . . si+47 and L(Si) denote the LFSR state and the feedback bit
at time i ≥ 0, respectively. The keystream sequence z = z0z1z2 . . . is defined by

si = ki, 0 ≤ i ≤ 47, (1)

s48+i = L(Si)⊕ nT,i ⊕ ui, 0 ≤ i ≤ 31, (2)

s80+i = L(S32+i)⊕ nR,i, 0 ≤ i ≤ 31, (3)

s112+i = L(S64+i), i ≥ 0, (4)

zi = f(Si), i ≥ 0, (5)

where f denotes the filter function applied to the LFSR state as a whole.
The three keystream segments used in the protocol are ks1 = z32z33 . . . z63,
ks2 = z64z65 . . . z95, and ks3 = z96z97 . . . z127. Effectively, f is defined as a bal-
anced 20-bit Boolean function being a composition of five 4-bit Boolean func-
tions and a 5-bit Boolean function. The tap positions forming inputs to f are
taken from odd-indexed LFSR stages 9, 11, . . . , 47, so that we can write f(S0) as
f(s9, s11, . . . , s47). It effectively depends on all 20 input bits and is linear neither
in the first not the last input bit, i.e., it does not satisfy the sufficient condition
[8] for the output sequence to preserve pure randomness of the input sequence
to the filter function. In Section 5, it will be shown that this weakness opens a
door for the most effective known attacks in the tag-only scenario.

If the additive inputs to the LFSR, nT ⊕u and nR, are known, then it follows
that the LFSR can also be clocked backwards, i.e., starting from the LFSR state
at any time, one can determine all previous LFSR states, including the initial
state defined by the key. As shown in [6,7], this so-called LFSR rollback also
holds if the encryption {nR} is known instead of nR, as a simple consequence of
the fact that the filter function f(S0) does not effectively depend on the first, i.e.,
leftmost input bit s0. We note that even when f(S0) effectively depends on s0, the
LFSR rollback is still feasible by the branching inversion/reversion attack [8,10].
Accordingly, the key can be easily recovered from any reconstructed internal
state of CRYPTO1 and known transcripts of the authentication protocol.



244 J.Dj. Golić

The rationale for the mutual authentication is as follows. The correct en-
crypted answer {aR ⊕ ks2} can be produced by a genuine reader knowing the
key and the nonces nT and nR. The correct encrypted answer {aT ⊕ks3} can be
produced by a genuine tag knowing the key and the nonces nT and nR, by first
recovering nR by decryption. The tag recovers aR by decryption and verifies if
it is equal to suc2(nT ), thus authenticating the reader. The reader recovers aT
by decryption and verifies if it is equal to suc3(nT ), thus authenticating the tag.

The mutual authentication protocol described above relates to the authenti-
cation for one sector. For authenticating access to multiple sectors of the same
tag, the protocol is repeated by using new nonces nT and nR, with the only
difference that, for each new sector, the new authentication command (Block) is
encrypted with the previous sector key and the new nT is bitwise encrypted by
using the new key while it is bitwise inserted into the feedback path of the LFSR
in the same way as nR. The encrypted tag nonce sent by the tag is thus nT ⊕ks0,
where ks0 = z0z1 . . . z31 denotes the preceding 32-bit keystream segment. The
attacker thus knows nT only for the first sector.

According to the standard ISO/IEC 14443-A, every plaintext byte sent is fol-
lowed by the parity bit for error detection, computed as the binary complement
of the XOR of all 8 bits in the byte. The parity bits in MIFARE Classic commu-
nication protocol are thus computed over the plaintext and, importantly, each
parity bit is then encrypted with the same keystream bit subsequently reused to
encrypt the next bit of the plaintext. The fact that the parity bits are computed
over the plaintext instead of the ciphertext implies that the ciphertext itself
reveals linear relations among the keystream bits (one relation per 8+1 cipher-
text bits), which may be useful for ciphertext-only cryptanalytic attacks. The
fact that the keystream bits are repeatedly used implies that the ciphertext also
reveals linear relations among the plaintext bits other than those determined
by the parity bits (one relation per pair of ciphertext bits corresponding to the
parity bit of the current byte and the first bit of the next byte). In particular,
this weakness can be used for reducing the uncertainty of new tag nonces used
for authenticating access to multiple sectors, because such nonces are sent in the
encrypted form and need to be guessed, as pointed out above. For example, the
entropy of nT given nT ⊕ ks0 is thus reduced to 13=16-3 bits.

3 Attacks on Genuine Session and Genuine Tag

The attack [12] works in the combined AttP and AttAT scenario which requires
access to a genuine authentication session and a genuine tag, by a fake reader.
It neither uses knowledge of the encryption algorithm CRYPTO1 nor aims at
reconstructing the key. It only aims at reconstructing portions of the keystream,
which are repeatedly used for encrypting data in fake sessions initiated by a fake
reader, on the condition that the tag can be forced to use the same tag nonce nT

as the one from the intercepted genuine session. This can be achieved by using
either the periodic query or the reset query technique, due to the weakness of
the tag pseudorandom number generator, where the only randomness factor is a



Cryptanalytic Attacks on MIFARE Classic Protocol 245

variable time when the tag nonce is produced. Both techniques are also important
for other attacks with fake readers or fake tags considered in this paper.

The periodic query technique is made possible by the short period of the tag
pseudorandom number generator, which repeats its state roughly every 680ms.
Accordingly, the same value of nT can be verifiably obtained (since nT is trans-
mitted in the clear), by forcing the genuine tag into several fake authentication
sessions, called queries to the tag. The attacker can thus initiate fake authenti-
cation sessions periodically, with a precise timing, and thus ideally get the same
nT every 680ms. In practice, it would take several attempts to get the same nT

each time. Alternatively, the reset query technique [14,6] is based on the fact that
the tag pseudorandom number generator always starts shifting from the same
initial state, after resetting, which can be achieved by switching-off the field and
powering-up the passive tag by the fake reader. The attacker thus initiates the
queries at a fixed time after resetting the tag and repeats this operation as fast
as possible until the same value of nT is obtained. According to [6], the required
number of attempts to get the same nT does not exceed ten each time. The reset
query technique is significantly faster than the periodic query technique.

In fake sessions with repeated nT , it is also needed to repeat the same reader
nonce nR, which is unknown to the fake reader. To this end, the fake reader
simply replays the second pass of the authentication protocol from the recorded
transcripts of the intercepted genuine session, in each fake session with the re-
peated nT . The reader will thus be successfully authenticated to the tag and the
tag will reproduce the same nR and automatically generate the same keystream.

Since the repeated tag nonce enables the fake reader to successfully authen-
ticate itself in the fake session by replaying the corresponding transcripts of the
genuine session, the genuine tag will then proceed with the session as it were au-
thentic. The desired keystream portions can be recovered from known plaintext
portions obtained either from the genuine session or fake sessions, e.g., from the
tag ID and manufacturer data, access conditions for the sector, and known tag
responses to modified encrypted reader commands enabled by malleable bitwise
XOR encryption. The recovered keystream portions, for a fixed value of the tag
nonce and a fixed response of the fake reader in a genuine session, can then be
used to perform illegitimate transactions on the tag, such as reading and modify-
ing data stored in memory blocks. More precisely, any known or partially known
16-byte keystream block for any sector enables the attacker to read and modify
the data at the same bit positions in any other block from the same sector.

4 Attacks on Genuine Session or Genuine Reader

The attacks [6] work in AttP scenario requiring interception of a genuine authen-
tication session or in AttAR scenario requiring access to a genuine reader by a
fake tag. In the latter case, the authentication session cannot be terminated, be-
cause the fake tag cannot be successfully authenticated to the reader as it does
not know the key. The objective is to reconstruct the key for a single sector from
the known keystream segments obtained from the recorded transcripts of the au-
thentication protocol by using the known tag nonces nT and the derived values



246 J.Dj. Golić

aR = suc2(nT ) and aT = suc3(nT ). Each known nT gives rise to 64 keystream
bits in AttP scenario and 32 or 64 keystream bits in AttAR scenario, where 64
bits correspond to ks2 and ks3 and 32 bits to ks2. The keystream segment ks3
can be recovered also in AttAR scenario, regardless of the fact that the fake tag
does not send anything in the third pass of the protocol, if the reader proceeds
by sending back either an encrypted “halt” command (because the tag authen-
tication failed) or an encrypted “read” command (as if the tag authentication
were successful). According to [6], this happens for most readers in practical use.

The structure of the stream cipher CRYPTO1 is needed in the attacks. The
attacks first recover an internal state of CRYPTO1, e.g., the 48-bit LFSR state
S64 at a time immediately after all the bits of nT and nR have been fed into
the LFSR. This is the state from which the first bit of ks2 is produced. The
secret key is then reconstructed by the LFSR rollback, as explained in Section 2.
The two attacks proposed in [6] include a time-memory-data tradeoff (TMDT)
attack and an inversion attack. The former works in AttAR scenario and uses
keystream segments from multiple (fake) authentication sessions with a genuine
reader, while the latter works in AttP or AttAR scenario and uses the keystream
segments from one or two authentication sessions.

Both the attacks are essentially known from previous publications, which is
not mentioned in [6]. The TMDT attack can be regarded as an adaptation of the
generic TMDT attack [1,9], for a stream cipher with 248 states. More precisely,
if the stored states correspond to a special form of tag nonces chosen by the
fake tag, then the attack succeeds with probability 1 instead of a high probabil-
ity typical of TMDT attacks. The required number of keystream segments are
obtained from fake authentication sessions using variable nT and random nR

produced by the genuine reader. We point out that the number of authentica-
tion sessions can be reduced at the expense of increasing the precomputation
time, while keeping the same computation time and memory, by applying the
TMDT attack [2]. The inversion attack can be regarded as an adaptation of the
inversion attack with the decimation technique [8,10] to decimated keystream
segments shorter than the LFSR length. Recall that the generic inversion attack
on a nonlinear filter generator with the input memory size M and the greatest
common divisor of the pairwise differences between the tap positions to the filter
function being equal to d takes about 2M/d steps (in CRYPTO1, M = 38 and
d = 2). The adapted attack takes about 0.05 seconds and 8MByte of memory on
a standard CPU to recover the key. For comparison, it is claimed in [3] that the
key can be reconstructed in about 12 seconds on the same CPU by an algebraic
attack. More detailed descriptions of the attacks are given in Appendix A.

5 Attacks on Genuine Tag

The easiest attacks to implement are the tag-only or card-only attacks in AttAT
scenario, with a fake reader having access to a targeted genuine tag. The fake
reader forces the tag into multiple fake partial authentication sessions, called
queries, in which it cannot be successfully authenticated to the tag. The objective



Cryptanalytic Attacks on MIFARE Classic Protocol 247

is to reconstruct the key stored in the tag by using the transcripts of the partial
authentication sessions and the known structure of CRYPTO1.

It would be impossible to obtain needed portions of known keystream from
the tag, if it were not for a peculiar property of the authentication protocol,
which can rightfully be called a bug or even a deliberately inserted weakness
[7,4]. Namely, in the protocol, upon receiving a tag nonce in the clear, the fake
reader sends two 32-bit ciphertexts, one standing for the encrypted reader nonce,
{nR} = nR ⊕ ks1, and the other for the encrypted answer to the tag nonce,
{aR} = aR ⊕ ks2. The fake reader also sends 8 encrypted parity bits {p}, corre-
sponding to the 8 bytes sent. The attacker produces all the ciphertext directly,
in a random or chosen manner depending on the attack to be conducted, with-
out knowing the secret key. The reader’s answer, nR, decrypted by the tag will
be wrong and the authentication will fail. The bug is that in this case, if all 8
decrypted parity bits in p happen to be correct, then the tag sends back to the
reader a 4-bit ciphertext of a fixed 4-bit error message, encrypted with the first
four bits of ks3. This is a serious weakness, because it reveals to the attacker
that the 8 parity bits are all correct and discloses 4 keystream bits. Moreover,
the correct parity bits disclose to the attacker 8 independent linear combina-
tions of keystream bits, which are here referred to as the keystream parity bits.
Altogether, in the case of a successful query, the attacker thus gets 12 bits of
information or entropy regarding the key, in the form of 4 keystream bits and
8 keystream parity bits. This can then be used for mounting key reconstruction
attacks in the tag-only scenario, which are described in the sequel. Surprisingly,
according to [4], unlicensed clone MIFARE Classic cards used in some countries
always send out the encrypted error message, regardless of the values of the
parity bits. This then greatly facilitates the attacks.

In the on-line stage of the attacks, the fake reader makes a number of queries
to the genuine tag, in order to achieve a sufficient number of successful queries
(with all 8 parity bits correct). The queries can use random or fixed tag nonces,
where the latter, realized by the reset query technique, take about 50 times more
time than the former. It is thus claimed in [7] that the attacker can perform
about 1500 queries per second with a random tag nonce and about 30 queries
per second with a fixed tag nonce realized by the reset query technique. In the
off-line stage of the attacks, the collected keystream data is analyzed in order
to reconstruct the key. The on-line stage is thus a practical bottleneck of the
attacks and the required numbers of queries of one or the other type, together
with some auxiliary, simple computations, determine the on-line complexity of
the attacks. In addition, the attacks may also require significant precomputation
time and storage in the setup stage.

For random tag nonces, the keystream is also random and cannot be controlled
by the fake reader. Therefore, the best strategy for the fake reader to get a
successful query is to choose randomly {nR}, {aR}, and {p} until a successful
query occurs, i.e., until all 8 parity bits in p are correct. On average, this requires
256 queries with random nT . For fixed tag nonces, if {nR} is kept fixed by the
fake reader, then the keystream and nR will also be fixed. Further, if {aR} is also



248 J.Dj. Golić

kept fixed, then aR will be fixed and, hence, all 8 parity bits in p will be fixed
too. To get a successful query, the best strategy for the fake reader is then to
choose different instead of random values of {p}. The average number of queries
is thus reduced to 128=256/2.

Each of the three attacks proposed in [7] has serious practical limitations,
as shown in Table 1. Namely, the first attack has huge off-line time, the second
attack has very large on-line time, and the third attack has huge precomputation
time. Concise descriptions of the attacks, denoted as Attack 1, 2, and 3, are
given in Appendix B, where it is shown that by using the queries with random
tag nonces to obtain different tag nonces, the on-line time of Attack 3 can be
reduced from about 2 minutes to about 7 seconds. We now concentrate on the
fourth attack, proposed in [4] and denoted here as Attack 4. It overcomes all the
limitations of the three attacks from [7]. In spirit, this attack is similar to Attack
2 from [7], but takes better advantage of differential properties of the nonlinear
filter function f applied to the LFSR sequence. As a consequence, it requires a
significantly smaller number of queries in the on-line stage and has a significantly
smaller off-line time complexity. However, it is shown below that the analysis of
the attack given in [4] is incorrect and that the attack can be simply improved
by better usage of the queries with random and fixed tag nonces. As a result, the
optimized attack, denoted as Attack 4∗ in Table 1, has a better performance.

The main idea of the differential attack [4] is for the fake reader to first get
one successful query for some {nT }, {nR}, {aR}, and {p}. Then, the fake reader
performs a number of modifications of {nR} and, for each modification, performs
further queries with fixed {nT }, {nR}, and {aR} and different {p} in order to
get a new successful query. The 32-bit encrypted reader nonce {nR} is modified
by changing its last 3 bits and then fixed. For each of 7 possible changes, {aR}
is randomly chosen and then fixed, and only the last 5 bits of {p}, which are
(randomly) affected by the change of {nR} and {aR}, are varied. On average,
16=32/2 such queries with a fixed nonce tag are needed for a successful query
to occur. As a result of the on-line stage, the attacker thus obtains 8 successful
queries yielding the known keystream data. The problem is that this keystream
depends on unknown values of nR. This can be overcome with a high probability,
by using differential properties of f when shifted along the LFSR sequence.

Namely, it is claimed in [4] that with probability about 0.75, the 3 keystream
bits used for the decryption of the last 3 bits of {nR} are independent of these
3 bits. As a consequence, each nonzero 3-bit change δ3 of {nR} will result in the
same change of the last 3 bits of nR itself. Since the LFSR sequence depends
linearly on nR, this implies that for each value of δ3, the subsequent LFSR se-
quence will change linearly in a way that depends only on this value. This means
that it can be expressed as the bitwise XOR of the LFSR sequence correspond-
ing to {nR} and a binary sequence that depends only on the known value of
δ3. For each of 8 values of δ3, including the all-zero value, the attacker can use
the 4 keystream bits resulting from the corresponding successful query. Then,
in the off-line stage, an adapted variant [4] of the well-known resynchronization
attack [5,11], where the IV corresponds to δ3, can be used to obtain about 216



Cryptanalytic Attacks on MIFARE Classic Protocol 249

candidates for the LFSR state at the time when the last of the 4 keystream bits
is generated. The relation with the resynchronization attack is not noticed in [4].
A detailed description is given in Appendix C. The 216 candidate keys resulting
from the LFSR rollback are then tested on other keystream data already col-
lected in the on-line stage (i.e., 64 keystream parity bits), to produce the correct
key. The total off-line time complexity of about 216 steps takes practically zero
time on a standard CPU. According to [4], the attack succeeds with probability
about 0.75. In order to reconstruct the key, both on-line and off-line stages of
the attack need to be repeated about 4/3 ≈ 1.33 times on average.

Our criticism of the differential attack [4] concerns the probability of the
exploited differential property of f and the way the queries with random or
fixed tag nonces are performed in the on-line stage.

Consider a general case where the last m, m ≤ 32, bits of {nR} are changed.
Then the lastm bits of nR obtained by the bitwise decryption of {nR} will change
in the same way if the corresponding m keystream bits used for the decryption
do not change. The fact overlooked in [4] is that the first (leftmost) of these
m keystream bits does not change necessarily, because it depends only on the
previous bits of {nR}, which are not changed. The remaining m− 1 keystream
bits are generated as m − 1 successive output bits of the filter function shifted
along the LFSR sequence, i.e., by the (m−1)-bit augmented filter function of all
the bits contained in m−1 (overlapping) successive LFSR states, which form the
input to the augmented filter function. Therefore, any change of the last m bits
of {nR} will result in the same change of the last m bits of nR if and only if the
(m−1)-bit output of the (m−1)-bit augmented filter function is independent of
the last m− 1 input bits. Let πm−1 denote this probability, over the uniformly
distributed inputs. In the attack [4], m = 3 and the relevant probability is then
π2. In [7], it is proved that π1 = 29/32 ≈ 0.906, where the 1-bit augmented filter
function is f expressed as a function of all 48 LFSR state bits. Since the input
bits to f that are effectively used for generating two successive output bits are
distinct, it follows that π2 = (29/32)2 ≈ 0.821. This is the correct probability
for the differential attack [4], not 0.75.

It is interesting to note that πm = 0 would hold for all m if f were linear in the
first or the last input variable, i.e., it f satisfied the sufficient condition [8] for
pure randomness of the output sequence. In other words, if f had satisfied this
condition, then the considered differential attack would have been impossible.
On the other hand, πm = 1 would hold if f did not effectively depend on the
last m LFSR state bits. It is fair to say that in CRYPTO1, f effectively depends
on the last LFSR state bit and, hence, πm < 1 holds for all m.

In the first phase of the on-line stage of the attack, to get one successful query,
the fake reader can perform queries with a fixed or random tag nonce, where,
on average, 128 queries are required in the former case and 256 in the latter.
However, as mentioned above, the difference in the timings is significant. If qr
and qf denote the timings of the queries using random and fixed tag nonces,
respectively, then, according to [7], qf ≈ 50qr, 1500qr ≈ 1 sec, and 30qf ≈ 1 sec.
Accordingly, 256qr ≈ 5.12qf � 128qf . Surprisingly, in [4], it is proposed to use



250 J.Dj. Golić

queries with a fixed tag nonce. Moreover, if the attack fails in the first run,
then, in order to reduce the number of queries in repeated runs, it is suggested
in [4] to keep nT and the first two bytes of {nR} the same as in the first run,
which implies that the first two bits of {p} will also be the same. In this case,
on average, 32=64/2 instead of 128 queries with a fixed tag nonce are required
in the repeated runs. The average on-line time of the attack is thus estimated to
be about 256qf in the first run and 160qf in the repeated runs. Since the off-line
time is negligible, the average time required for the success is estimated to be
(128 + 32/3 + (4/3)(8 · 16))qf ≈ 310qf ≈ 10.33 sec.

It follows that this differential attack can be simply optimized by using the
queries with a random tag nonce in the first phase of all the runs. Also, in
other phases of the attack, further 16 queries with a fixed tag nonce need to be
performed not 8 times, as proposed in [4], but only 7 times, for each nonzero
3-bit modification δ3 of {nR}. The average on-line time of each run then becomes
256qr+(7 ·16)qf ≈ 117.12qf ≈ 3.9 sec. The average time required for the success
of the optimized attack Attack 4∗ is then about 117.12qf/π2 ≈ 4.75 sec, since
the attack needs to be repeated 1/π2 times on average.

We now propose a novel key reconstruction attack, denoted as Attack 5 in
Table 1. It is in spirit similar to the differential Attack 4∗, but requires a con-
siderably smaller number of queries in the on-line stage, which is a bottleneck
of tag-only attacks, and has a considerably higher probability of success. This is
achieved at the cost of increasing the off-line time complexity, which nevertheless
remains practically low. Our main insight making the tradeoff possible is that
m can be reduced from 3 to 2 bits, according to the general considerations given
above. The success probability then increases from π2 ≈ 0.821 to π1 ≈ 0.906.

The first phase of the on-line stage of the attack is the same as in Attack 4∗.
The fake reader on average makes 256 queries with random {nT }, {nR}, {aR},
and {p}, in order to get one successful query. The fake reader then proceeds by
making new queries using fixed nT , modified and then fixed {nR}, randomly
chosen and then fixed {aR}, and different {p}, where the first 3 bits of {p}
are kept the same and only the last 5 bits are varied. The modification of {nR}
consists in changing its last m = 2 bits. On average, 16=32/2 such queries with a
fixed nT are needed for a successful query to occur. Since this has to be repeated
3 times, for all 3 nonzero 2-bit changes δ2 of {nR}, a total of 48 = 3 · 16 queries
with a fixed nT are needed on average. The average on-line time of the attack
is then 256qr + (3 · 16)qf ≈ 53.12qf ≈ 1.77 sec ≈ 1.8 sec, which is more than 2
times smaller than in Attack 4∗. Each of the 4 successful queries achieved in the
on-line stage provides 12 bits of information about the 48-bit key in the form of
4 keystream bits and 8 keystream parity bits, to be used in the off-line stage.

With probability π1 ≈ 0.906, each nonzero 2-bit change δ2 of {nR} will re-
sult in the same change of the last 2 bits of nR. This means that the subsequent
LFSR sequence can then be expressed as the bitwise XOR of the LFSR sequence
corresponding to {nR} and a binary sequence that depends only on the known
value of δ2. Then, in the off-line stage, about 232 candidates for the LFSR state
at the time when the last of the 4 keystream bits resulting from each successful



Cryptanalytic Attacks on MIFARE Classic Protocol 251

query is generated can be obtained by a variant of the resynchronization attack
[5,11], where the IV corresponds to δ2. A detailed description is given in Ap-
pendix C. The 232 candidate keys resulting from the LFSR rollback are then
tested on the 32 = 4 · 8 keystream parity bits collected in the on-line stage, to
produce the correct key or a very small number of candidates. The total off-line
time complexity of about 232 steps takes about 5 minutes on a standard CPU.
The attack thus succeeds with probability about π1 ≈ 0.906.

For reducing the number of candidate keys to only 1, the attacker may also
make a small number of additional queries in the on-line stage in order to collect
more bits of information about the key. For example, to obtain additional 12
bits of information, the attacker needs another successful query, which may be
achieved in the random nT scenario with an average of 256 additional queries.
This effectively increases the on-line time to 58.24qf ≈ 1.94 sec and is still about
2 times smaller than in Attack 4∗. Alternatively, the attacker can find the unique
key at any later time in AttAR scenario, by accessing a genuine reader and then
testing the candidate keys on the keystream segment ks2 reconstructed from nT

and {aR}. More precisely, for each assumed key, the attacker generates a 32-bit
keystream segment by using nT and {nR} and then compares it with ks2.

If the attack fails, then the strategy of repeating the whole attack (on-line and
off-line stages) as many times as needed until the key is reconstructed may not
be practical, due to the off-line time of about 5 minutes. In any case, the attack
would need to be repeated only about π1 ≈ 1.1 times on average. It is hence
preferable for the attacker to decide in advance on the success probability, repeat
the on-line stage a number of times that guarantees this probability, and only
then perform the off-line stage using all the collected data. To obtain the success
probability of at least 0.99, the on-line stage needs to be performed only twice,
which takes about 3.5 seconds. In this case, additional successful queries are
not needed for testing the candidate keys, because the on-line stage performed
twice already provides the sufficient keystream. The off-line stage takes about
5 minutes with probability 0.906 or about 10 minutes otherwise, which is still
about 5 minutes on average and thus remains very practical. For comparison, to
achieve the success probability of at least 0.99, Attack 4∗ needs to be repeated
three times, which takes about 11.7 seconds, whereas the off-line stage can be
done practically instantly. The on-line stage in the new Attack 5, with m = 2,
is thus more than 3 times faster than in the optimized Attack 4∗, with m = 3.

Properties of the five presented tag-only attacks are summarized in Table 1.
Times are given both in appropriate steps (clear from the context) and in time
units, where off-line times relate to a standard CPU. TLU denotes a table lookup
operation and fev denotes one evaluation of f .

6 Multiple Sector Attacks

The cryptanalytic attacks described in previous sections relate to the mutual
authentication protocol for one sector. In this case, the tag nonce nT is sent



252 J.Dj. Golić

Table 1. Summary of tag-only attacks

Attack 1 Attack 2 Attack 3 Attack 4∗ Attack 5

[7] [7] [7] [4] this paper

Setup time 0 0 248 0 0

Setup memory 0 0 48 · 236 bit 0 0
384GByte

On-line time 1280qr 28500qf 4230qr + 128qf 3(256qr + 112qf ) 2(256qr + 48qf )
1 sec 15min 7 sec 11.7 sec 3.5 sec

Off-line time 5 · 248 232.8 224 TLU 216 + 226fev 232 + 225fev
3 year 10min 20 sec ≈ 0 5min

Off-line memory ≈ 0 ≈ 0 ≈ 0 168Byte 42KByte

Success rate 100% 100% 100% 99.4% 99.1%

in the clear form, which can be used for known keystream attacks (except in
the tag-only scenario). As explained in Section 2, for authenticating access to
multiple sectors of the tag in the same session, the same protocol is repeated with
a difference that, for each new sector, the new authentication command (Block)
is encrypted with the previous sector key and the new nT is encrypted with the
preceding keystream segment ks0 generated from the new key. Therefore, nT has
to be guessed by the attacker.

Assume that the key for the first sector has been recovered by the attacker
by one of the attacks described in Sessions 4 and 5, in AttP, AttAR, or AttAT
scenario. The objective of the attacker is then to reconstruct the secret keys for
other sectors. To this end, it is required to gather data from an authentication
session for multiple sectors. This is possible in AttP and AttAT scenarios. AttAR
scenario is not useful for the attacker, because a fake tag cannot encrypt a new
nT with the correct key for the next sector and the attacker cannot then obtain
any correct keystream segment generated from the key for the next sector.

In AttP scenario [6], the attacker intercepts and records a genuine authenti-
cation session for multiple sectors, between a genuine tag and a genuine reader.
Since the key for the first sector is already reconstructed, the attacker determines
the next sector by decrypting the new authentication command. In AttAT sce-
nario [7], a fake reader initiates a fake authentication session for multiple sectors
with a genuine tag and repeatedly uses the previously reconstructed key for the
first sector. The attacker is then successfully authenticated for the first sector
and then proceeds with the authentication for the next sector. This is achieved
by sending the authentication command (Block) encrypted with the key for
the first sector, which is then successfully decrypted by the tag. In either case,
the attacker obtains a correct keystream segment generated from the key for
the next sector, on the condition that nT can be effectively guessed. In AttAT
scenario, the keystream segment length is 32 bits, from nT ⊕ ks0, while in AttP
scenario, the keystream segment length is 96 bits, from nT ⊕ ks0, aR ⊕ ks2, and
aT ⊕ ks3. The key for the next sector can then be easily reconstructed by using



Cryptanalytic Attacks on MIFARE Classic Protocol 253

the techniques described in Section 4. The keys of other sectors can be recon-
structed analogously, by proceeding one sector at a time. In [6], this attack is
called the nested authentication attack.

The tag nonce can be guessed easily not only because it contains at most
16 bits of entropy and its effective entropy depends only on the imprecision of
timing, but also because of the way the parity bits are encrypted, as pointed
out in Section 2. Namely, any pair of ciphertext bits, one bit corresponding to
the parity bit of the current byte and the other to the first bit of the next byte,
reveals a linear relation among the plaintext bits due to the fact that the two
keystream bits are the same. Each such relation reduces the plaintext uncertainty
by 1 bit. More details can be found in Appendix D.

7 Conclusions

Attacks on the MIFARE Classic protocol are made possible by repeatable and
predictable tag nonces, the weak structure of the nonlinear filter generator in
CRYPTO1, the way the parity bits for error detection are genarated, and the
fact that the tag can sent out an encrypted response even if the authentication
of the reader fails. It is shown that the TMDT attack [6] in AttAR scenario can
be regarded as an adaptation of the generic TMDT attack [1,9], whereas the
inversion attack [6] in AttP or AttAR scenario can be regarded as an adaptation
of the inversion attack with the decimation technique proposed in [8,10] for
attacking nonlinear filter generators. The easiest attacks to implement are the
tag-only attacks, in AttAT scenario, where a fake, emulated reader has a wireless
access to a genuine tag in the on-line stage of the attack. Their main limitation
factor in practice is the on-line time required. It is pointed out that each of the
three attacks from [7] has serious practical limitations, namely, Attack 1 has
huge off-line time, Attack 2 has very large on-line time of about 15min, and
Attack 3 has huge precomputation time. It is shown that by using the queries
with random tag nonces to obtain different tag nonces, the on-line time of Attack
3 can be reduced from about 2 minutes to about 7 seconds.

The best known attack in the tag-only scenario is the differential attack [4],
Attack 4, which is claimed to take about 10 seconds of average on-line time in
order to reconstruct the secret key for one sector of the card. A correct analysis
of this attack demonstrates that it can be optimized into Attack 4∗, to reduce
the average on-line time to about 4.75 seconds. On the basis of the conducted
analysis, a new attack of a similar, differential type, denoted as Attack 5, is also
proposed. It achieves a success probability of about 0.906 with the on-line time
of about 1.8 seconds, whereas the optimized differential attack, Attack 4∗, has
the success probability of about 0.821 with the on-line time of about 3.9 sec-
onds. The success probability and the on-line time of two independent runs of
Attack 5 are about 0.991 and 3.5 seconds, respectively. For three independent
runs of Attack 4∗, they are about 0.994 and 11.7 seconds, respectively. This
significant improvement is achieved at the cost of increasing the off-line time



254 J.Dj. Golić

to about 5 minutes, which still remains very practical. It is explained that the
off-line stage of both differential attacks can be regarded as an adaptation of the
resynchronization attack [5,11].

As the worldwide MIFARE Classic infrastructure cannot be changed easily,
the most effective countermeasure [4] against the tag-only attacks is putting the
cards in electromagnetic-shield covers.

References

1. Babbage, S.:A space/time tradeoff in exhausting search attacks on streamciphers. In:
Proc. European Convention on Security and Detection, IEE Conference Publication
No. 408, pp. 161–166 (May 1995)

2. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

3. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream
cipher in MiFare Classic and Oyster cards. Cryptology ePrint Archive, Report
2008/166 (2008)

4. Courtois, N.T.: The darkside of security by obscurity - and cloning MiFare Classic
rail and building passes, anywhere, anytime. In: Proc. Secrypt 2009, pp. 331–338
(2009)

5. Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization Weaknesses in Syn-
chronous Stream Ciphers. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 159–167. Springer, Heidelberg (1994)

6. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Wichers Schreur, R., Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S.,
Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg
(2008)

7. Garcia, F.D., van Rossum, P., Verdult, R., Wichers Schreur, R.: Wirelessly pick-
pocketing a Mifare Classic card. In: Proc. 30th IEEE Symposium on Security and
Privacy, Oakland, pp. 3–15 (2009)

8. Golić, J.Dj.: On the Security of Nonlinear Filter Generators. In: Gollmann, D. (ed.)
FSE 1996. LNCS, vol. 1039, pp. 173–188. Springer, Heidelberg (1996)

9. Golić, J.Dj.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

10. Golić, J.Dj., Clark, A., Dawson, E.: Generalized inversion attack on nonlinear filter
generators. IEEE Trans. Comput. C-49, 1100–1109 (2000)

11. Golić, J.Dj., Morgari, G.: On the Resynchronization Attack. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 100–110. Springer, Heidelberg (2003)

12. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A Practical Attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

13. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers
with COPACOBANA –A Cost-Optimized Parallel Code Breaker. In: Goubin, L.,
Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

14. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID
tag. In: Proc. USENIX Security 2008, pp. 185–193 (2008)

15. Proxmark III instrument, HW and SW, http://cq.cx/proxmark3.pl

http://cq.cx/proxmark3.pl


Cryptanalytic Attacks on MIFARE Classic Protocol 255

A TMDT Attack and Adapted Inversion Attack from [6]

TMDT attack uses a precomputed table with 248−x entries (S64, ks2, ks3), sorted
by (ks2, ks3), and 2x keystream segments, either (ks2, ks3) or only ks2, obtained
from 2x (partial) authentication sessions with the genuine reader. For x = 12,
the precomputation time and memory complexities are thus both proportional
to 236. In the on-line stage, 4096 authentication sessions are needed for collecting
the keystream data, which takes about 10min. In the off-line stage, the key can
be reconstructed by 4096 table lookup operations, on a hard disk, and by the
LFSR rollback, i.e., almost instantly, provided that 64-bit keystream segments
are used. With 32-bit keystream segments, the 4096 table lookups will, on av-
erage, yield 216 (248/232) candidate states S64, instead of only one. To get the
correct key from the resulting 216 candidate keys, one more authentication ses-
sion is needed. We note that the required number of authentication sessions can
be reduced at the expense of increasing the precomputation time, while keeping
the same computation time and memory, by applying the TMDT attack [2].

Let M be the input memory size of a nonlinear filter generator defined as
the difference between the last and the first tap position to the filter function
(in CRYPTO1, M = 38). Then the time complexity of the generic inversion
attack is 2M steps. Further, let d be the greatest common divisor of the pairwise
differences between the tap positions (in CRYPTO1, d = 2). Then the input
memory size can be reduced d times by looking at d-decimations of d successive
phase shifts of the LFSR sequence.

In order to deal with short keystream segments corresponding to decimated
sequences, which are shorter than the LFSR length, one has to consider different
phase shifts of the LFSR sequence simultaneously. This can be achieved by
the technique [6] based on partitioning the LFSR recursion into d = 2 linear
terms corresponding to 2-decimations of two successive phase shifts of the LFSR
sequence. The values of these terms are computed along the decimated LFSR
segments obtained by the inversion attack and then stored in two sorted tables,
each containing about 219 entries. The matches between the entries in the two
tables then yield the reconstruced LFSR segments by interleaving. For 64-bit
keystream segments, the time complexity is thus at most 217 steps. For 32-bit
keystream segments, the time complexity is at most 220 steps and the number
of candidate keys obtained is about 216, so that one more authentication session
is needed to get the correct key. Altogether, it takes about 0.05 seconds and
8MByte of memory on a standard CPU to recover the key.

B Three Tag-Only Attacks from [7]

Attack 1 is a brute-force attack that exhaustively tests all 248 keys on the
keystream data obtained from 4-5 successful queries with a random tag nonce,
which provide 48-60 bits of entropy for the 48-bit key. To get one successful
query, it is on average needed to perform 256 queries with a random nonce tag.
The on-line stage thus takes less than 1 second to perform about 1280 queries
with a random tag nonce.



256 J.Dj. Golić

Attack 2 uses a relatively large number of queries with a fixed tag nonce, i.e.,
on average, about 28500 such queries. The on-line stage thus takes about 15
minutes. The objective is to find a special value of the 32-bit encrypted reader
nonce by adaptively choosing its values for a given value of the tag nonce. This
is achieved by an iterative process with backtracking, each time changing the
last bit of one byte of the encrypted reader nonce and checking a condition on
the corresponding encrypted correct parity bits, upon obtaining the respective
two successful queries by repeatedly changing the encrypted parity bits. The
special value of the encrypted reader nonce, satisfying the condition on all four
bytes, significantly reduces the number of possible LFSR states at a given time
and thus reduces the number of candidate keys to about 232.8. They are then
checked in the off-line stage by using the keystream data already collected in the
on-line stage, to find the correct key. The off-line stage approximately requires
10 minutes on a standard CPU.

Attack 3 uses a large partitioned table of about 384GByte, stored on a hard
disk, which is precomputed in time equivalent to that of the brute-force attack.
It stores about 236 LFSR states at a given time that result in the all-zero 32-bit
encrypted reader nonce, all-zero 32-bit encrypted answer to the tag nonce, all 8
encrypted parity bits equal to zero, as well as 4 keystream bits encrypting the
error message, all equal to zero. In the on-line stage, the attacker should make
about 4096 queries with different tag nonces in order to satisfy the conditions
for the LFSR state to belong to the precomputed table of 236 entries. In [7], it is
claimed that this requires about 2 minutes of on-line time, which is true if these
queries use a fixed tag nonce. However, in view of the fact that the tag nonce
can take 216 different values, it follows that only 4230 queries with random tag
nonces are on average sufficient to get 4096 different tag nonces. In addition, the
attacker then makes about 128 queries with a fixed tag nonce in order to further
restrict the LFSR state to a subtable of 224 entries. The on-line stage can thus
take only about 7 seconds, not 2 minutes as claimed in [7]. In the off-line stage,
the resulting 224 candidate keys are then tested on the keystream data already
collected in the on-line stage, to produce the correct key. The off-line complexity
of the attack is thus determined by 224 table lookup operations, which takes less
than about 20 seconds on a standard CPU.

C Adapted Resynchronization Attacks

The resynchronization attack [5,11] is applicable to stream ciphers with a linear
next-state function, a nonlinear Boolean output function f depending on a rel-
atively small or moderately large number of bits, n, and a linear reinitialization
algorithm combining a k-bit secret key with an IV (initialization vector). Due
to the linearity, the input to the output function at any given time can be lin-
early decomposed into two components, one depending on the key and the other
depending on the IV. The attack then essentially consists in solving the corre-
sponding equations of the form zit = f(Xt ⊕ Ci

t), for a number of time instants
t, where Xt is a linear function of the key and Ci

t is a linear function of the IVi.



Cryptanalytic Attacks on MIFARE Classic Protocol 257

For each t, the solution is found by the exhaustive search. Accordingly, the key
can be reconstructed from about n different IVs, by observing the outputs of f
at about k/n time instants, and by evaluating f about k2n times.

Consider first the off-line stage of the differential Attack 4 [4] or Attack 4∗.
The 4 keystream bits resulting from each of 8 successful queries are the first 4
keystream bits of ks3, i.e., zi, 96 ≤ i ≤ 99. Accordingly, for each such keystream
bit zi, the following 8 equations hold simultaneously with probability π2: zi(δ3) =
f(Si ⊕Δ3,i), where δ3 is varied over all 8 possible values, Δ3,i is a 48-bit vector
depending only on i and δ3 (Δ3,i = 0 if δ3 = 0), and Si is the LFSR state at
time i for δ3 = 0, for given nT and {nR}. Due to the fact [4] that f depends
only on 20 bits of the state and that after 2 steps, f depends on the same 19
bits and 1 new bit, z96 and z98 (as well as z97 and z99) depend on 21 LFSR
bits and we have 16=8+8 nonlinear equations involving these 21 bits. As in the
resynhcronization attack, by the exhaustive search over these 21 bits, each time
evaluating f 16 times, the attacker finds and stores all 21-bit inputs that are
consistent with these 16 equations. On average, the number of possible values
for the 21 bits is thus 25 = 221−16. In the same way, the attacker gets and stores
about 25 possibilities for the other 21 LFSR sequence bits determining z97 and
z99. The two tables of 25 entries are thus computed in 222 steps, each consisting
of 16 evaluations of f , that is, almost instantly on a standard CPU.

Altogether, the attacker thus obtains about 210 possibilities for the corre-
sponding 42 successive bits of the LFSR sequence. By guessing the remaining
6 bits, the attacker thus obtains 216 possibilities for the LFSR state S99. By
exhaustively examining all 216 found states S99, for given nT and {nR}, 216
candidate keys are thus recovered via the LFSR rollback. The 216 candidate
keys are then tested on 64 = 8 · 8 keystream parity bits already collected in the
on-line stage of the attack to yield the correct key. In fact, only 24 keystream
parity bits obtained from 3 successful queries are sufficient. This can be done
almost instantly on a standard CPU. The total off-line time of the attack is thus
practically zero. The attack succeeds with probability π2 ≈ 0.821, and fails if no
candidate key survives the testing.

Consider now the off-line stage of the new differential Attack 5. For each such
keystream bit zi, 96 ≤ i ≤ 99, the following 4 equations hold simultaneously with
probability π1: zi(δ2) = f(Si⊕Δ2,i), where δ2 is varied over all 4 possible values,
Δ2,i is a 48-bit vector depending only on i and δ2 (Δ2,i = 0 if δ2 = 0), and Si

is the LFSR state at time i for δ2 = 0, for given nT and {nR}. Now, similarly
as in Attack 4, since there are 4 instead of 8 linear equations for each of these
4 keystream bits, the attacker then finds and stores 213 = 221−8 possibilities for
each of the two interleaved 21-bit parts of the state S99, in 222 steps, each step
consisting of 8 evaluations of f . The total memory required is then 42KByte. The
off-line time of this part of the attack, requiring 225 evaluations of f , is practically
zero. The attacker then exhaustively examines 232 = 226+6 possibilities for the
LFSR state S99, for given nT and {nR}, by recovering 232 candidate keys via the
LFSR rollback. The 232 candidate keys are then tested on 32 = 4 · 8 keystream
parity bits already collected in the on-line stage of the attack. This should suffice



258 J.Dj. Golić

to reduce the number of candidate keys to only 1 or a very small number. The
required 232 steps of the off-line stage can be performed in about 5 minutes or
less on a standard CPU. The attack succeeds with probability π1 ≈ 0.906, and
fails if no candidate key survives the testing.

D Nested Authentication Attacks from [6,7]

It is here explained how the attacker can effectively guess a correct value of nT

used in the authentication protocol for the next sector, in the nested authen-
tication attacks [6,7], where [6] deals with AttP scenario and [7] with AttAT
scenario. There are only 216 values of nT to start with, due to the 16-bit LFSR
used for generating 32-bit tag nonces. In fact, as pointed out in [6], the uncer-
tainty is much smaller, because nT is generated almost deterministically from
the previously reconstructed value of the tag nonce, where the only residual un-
certainty relates to the imprecision of timing. Another weakness which further
reduces the uncertainty is that any pair of ciphertext bits encrypting the parity
bit of the current byte and the first bit of the next byte reveals a linear relation
among the plaintext bits due to the fact that the two keystream bits are the
same. Each such relation reduces the plaintext uncertainty by 1 bit. Therefore,
the initial uncertainty of nT given nT ⊕ ks0 is 13 (16-3) bits.

In AttP scenario, the uncertainty of nT , given nT ⊕ks0, aR⊕ks2, and aT ⊕ks3
is only 6 (16-10) bits, so that the attacker needs to check at most 64 values of nT .
This number is effectively much smaller in practice, as pointed out above. For
any guessed value of nT , the key for the next sector can be reconstructed from the
corresponding 96-bit keystream segment (ks0, ks2, ks3) by the techniques from
Section 4, provided that the guess is correct. If the guess is incorrect, no 48-bit
key can be reconstructed, because the corresponding 96-bit keystream segment
will be incorrect. The keys of other sectors can be reconstructed analogously
from already recovered keys of the previous sectors.

In AttAT scenario, as pointed out in [7], the attack proceeds along similar
lines, with a difference that only the encryption nT⊕ks0 can be used. This implies
that at most 213 values of nT need to be checked, which may be significantly
reduced by using the measured timing between two successive authentication
rounds. For each guessed value of nT , about 216 candidate keys for the next
sector can be reconstructed from the corresponding 32-bit keystream segment
ks0 by the techniques described in Section 4. More precisely, the techniques need
to be slightly adapted to the fact that during the generation of ks0, nT ⊕ ID is
shifted in the LFSR. The correct key for the next sector is then found by using
another fake authentication session for multiple sectors initiated by the fake
reader (or at most two such sessions), by computing the intersections between
the obtained sets of candidate keys. With a high probability, only the correct
guesses of the tag nonces will result in a unique value of the key, whereas for
incorrect guesses, the intersections will be empty. The keys of other sectors can
be reconstructed analogously. This means that in AttAT scenario, the keys of
other sectors can be reconstructed much easier than for the first sector.


	Cryptanalytic Attacks on MIFARE ClassicProtocol
	Introduction
	Description of MIFARE Classic Protocol
	Attacks on Genuine Session and Genuine Tag
	Attacks on Genuine Session or Genuine Reader
	Attacks on Genuine Tag
	Multiple Sector Attacks
	Conclusions
	References




