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Abstract. One of the main challenges in leakage-resilient cryptogra-
phy is to obtain proofs of security against side-channel attacks, under
realistic assumptions and for efficient constructions. In a recent work
from CHES 2012, Faust et al. proposed new designs of stream ciphers
and pseudorandom functions for this purpose. Yet, a remaining limita-
tion of these constructions is that they require large amounts of public
randomness to be proven leakage-resilient. In this paper, we show that
tweaked designs with minimum randomness requirements can be proven
leakage-resilient in minicrypt. That is, either these constructions are se-
cure, or we are able to construct public-key cryptographic primitives
from symmetric-key building blocks and their leakage functions (which
is very unlikely). Hence, our results improve the practical relevance of
two important leakage-resilient pseudorandom objects.

1 Introduction

Side-channel attacks are an important threat to the security of embedded devices
like smart cards and RFID tags. Following the first publications on Differential
Power Analysis [19] (DPA) and Electro-Magnetic Analysis [12,29] (EMA), a
large body of work has investigated techniques to improve the security of cryp-
tographic implementations. During the first ten years after the publication of
these attacks, the solutions proposed were mainly taking advantage of hard-
ware/software modifications. For example, it as been proposed to exploit new
circuit technologies or to randomize the time and data in the implementations
(see [3,4,36] for early proposals of these ideas, and many improvements and
analyzes published at CHES). In general, these countermeasures are successful
in the sense that they indeed reduce the amount of information leakage. Yet,
security evaluations considering worst-case (profiled) side-channel attacks such
as [33] usually reveal that reaching high security levels is expensive and highly
dependent of physical assumptions. Taking the example of secret sharing (aka
masking), multiple shares are required for this purpose (i.e. so-called higher-
order security [34]). However, the implementation cost of higher-order masking
schemes is significant [31], and the risk of physical effects leading to exploitable
weaknesses (such as glitches [21]) leads to additional design constraints.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 223–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



224 Y. Yu and F.-X. Standaert

Motivated by the great challenges in physical security, recent works have also
considered the possibility to analyze the effectiveness of countermeasures against
side-channel attacks in a more formal way, and to design new primitives (aimed
to be) inherently more secure against such attacks. Taking the case of symmetric
cryptography building blocks (that are important primitives to design as they are
usual targets of DPA attacks [20]), a variety of models have been introduced for
this purpose, ranging from specialized to general. For example, a PRNG secure
against side-channel key recovery attacks was proposed at ASIACCS 2008 by
Petit et al. [25], and analyzed in front of a class of (realistic yet specific) leakage
functions. Following, a construction of leakage-resilient stream cipher has been
presented by Dziembowski and Pietrzak at FOCS 2008, together with a proof
of security in the standard model [9]. Quite naturally, such “physical security
proofs” raise a number of concerns regarding their relevance to practice, a topic
that has been intensively discussed over the last couple of years. In particular, one
of the fundamental issues raised by leakage-resilient cryptography is to determine
reasonable restrictions of the leakage function, e.g. in terms of informativeness
and computational power. As far as computational power is concerned (which
will be our main concern in this paper), an appealing solution is to consider
the leakage function to be polynomial time computable, as initially proposed
by Micali and Reyzin [24], and leading to contrasted observations. On the one
hand, polynomial time functions are significantly more powerful than actual
leakage functions. For example, they allow so called “precomputation attacks”
(aka future computation attacks) that are arguably unrealistic in practice [35].
On the other hand, meaningful alternatives seem quite challenging to specify.
Furthermore, given that one obtains proofs of security under such strong leakages
without paying too large implementation overheads, polynomial time functions
remain a useful abstraction.

Fig. 1. The Eurocrypt 2009 stream cipher
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In this context, one of the design tweaks used by Dziembowsky and Pietrzak is
the so-called “alternating structure”. Figure 1 depicts such an alternating struc-
ture for a simplified stream cipher proposed by Pietrzak at Eurocrypt 2009 [27],
that can be instantiated only from (AES-based) weak Pseudo-Random Func-
tions (wPRFs)1. If one assumes that the two branches of such an alternating
structure leak independently, no leakage occuring in one of the branches can be
used to compute bits that will be manipulated in future computations of the
other branch, hence ruling out the possibility of precomputation attacks. The
main drawback of this proposal is that a key bit-size of 2n can only guarantee
a security of at most 2n. Hence, as it appears unrealistic that a circuit actu-
ally leaks about something it will only compute during its future iterations, a
following work by Yu et al. investigated the possibility to mitigate the need of
an alternating structure [37]. In a paper from CCS 2010, they first proposed to
design a “natural” (i.e. conform to engineering intuition) leakage-resilient stream
cipher, which could only be proven secure under a (non-standard) random oracle
based assumption. Next, they proposed a variant of the FOCS 2008 (and Eu-
rocrypt 2009) designs, replacing the alternating structure by alternating public
randomness, and under the additional (necessary) assumption that the leakage
function is non adaptive. Eventually, in a recent work of CHES 2012, Faust et
al. showed that large amounts of public randomness (i.e. linear in the number
of stream cipher iterations) were actually required for the proof of Yu et al. to
hold [10]. While it remains an open question to determine whether the exact
construction proposed in [37] (using only two alternating public values) can be
proven secure or attacked in a practical setting, this last result reveals a tension
between the proof requirements and how the best known side-channel attacks
actually proceed against leakage-resilient constructions [23].

Considering the previous observations, this paper tackles the fundamental
question of how much public randomness is actually needed to obtain proofs of
leakage-resilience in symmetric cryptography. For this purpose, we investigate
(yet another) variant of stream cipher, where only a single public random value
is picked up prior to (independent of) the selection of the leakage functions, and
then expanded thanks to a PRNG. Quite naturally, a strong requirement for this
approach to be interesting is that the seed of the PRNG should not be secret
(or we would need a leakage-resilient PRNG to process it, i.e. essentially the
problem we are trying to solve). Surprisingly, we show that this approach can
be proven secure in minicrypt [17] (i.e. the hypothetical world introduced by Im-
pagliazzo, where one-way functions exist, but public-key cryptography does not).
More precisely, using the technique of [1] (see also similar ones in earlier litera-
ture [7,8,26,28]), we show that either the proposed solution is leakage-resilient,

1 Besides their possible implementation costs, additional components in leakage-
resilient constructions can also become a better target for a side-channel adversary,
e.g. as discussed with the case of randomness extractors in the FOCS 2008 stream
cipher [22,32]. In this respect, relying only on AES-based primitives (for which the
security against side-channel attacks has been carefully analyzed) is an interesting
feature of the Eurocrypt 2009 proposal in Figure 1.
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or we are able to construct black-box constructions of public-key encryption
schemes from symmetric primitives and their leakage functions. When using
block ciphers such as the AES to instantiate the stream cipher, the latter is
very unlikely due to known separation results between one-way functions and
PKE [18]. We then conclude this work by illustrating that this observation also
applies to PRFs for which various designs were already proposed [5,10,23,35].

Summarizing, proofs of leakage-resilience require to restrict the leakage func-
tion both in terms of informativeness and computing power. As finding useful
and realistic restrictions is hard with state-of-the-art techniques, we consider an
alternative approach, trying to limit the implementation overheads due to unre-
alistic models. Admittedly, our analysis is based on the same assumptions as the
previously mentioned works (i.e. polynomial time, bounded and non-adaptive
leakage functions). The quest for more realistic models remains a very impor-
tant research direction. Meanwhile, we believe that our intermediate conclusion
is important, as it highlights that leakage-resilient (symmetric) cryptography can
be obtained with minimum public randomness (i.e. the public seed of a PRNG).

2 Background

2.1 The CCS 2010 Stream Cipher

The CCS 2010 construction, depicted in Figure 2, is based on the observation
from the practice of side-channel attacks that leakage functions are more a prop-
erty of the target device and measurement equipment than something that is
adaptively chosen by the adversary. It therefore considers a weaker security
model, in which the polynomial time (and bounded) leakage functions are fixed
before the stream cipher execution starts. By considering those non-adaptively
chosen leakage functions, the construction can be made more efficient and easier
to implement in a secure way. This stream cipher is initialized with a secret
key k0 and two values p0 and p1 that can be public. Those two values are then
used in an alternating way: at round i, one computes ki and xi by applying the

Fig. 2. The CCS 2010 stream cipher
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wPRF to inputs ki−1 and pi−1 mod 2. Thanks to the removal of the alternating
structure, the complexity of a brute-force attack on this construction becomes
directly related to the full length of the key material, which is now exploited in
each round.

2.2 The CHES 2012 Stream Cipher

In a paper from CHES 2012, Faust et al. observed that the technical tools used
to prove the CCS 2010 construction actually require to use independent public
values in all the stream cipher rounds (rather than only two alternating ones).
Therefore, only the slightly modified the construction suggested in Figure 3,
assuming a common random string p0, p1, p2, . . ., can be proven secure with these
tools. The practical advantages of this construction compared to the FOCS 2008
/ Eurocrypt 2009 ones naturally become more contrasted. On the positive side,
the fact that the values p0, p1, p2, . . . are public can still make it easier to ensure
that rounds leak independently of each other (which is implicitly required by
the arguments of the leakage function): for example, a number of public pi’s
can be stored in non-volatile memories for this purpose. On the other hand, this
amount of public randomness required is linear in the number of stream cipher
rounds, which is hardly realistic (hence leading the authors of [10] to pay more
attention to leakage-resilient PRFs for which this penalty is less damaging - see
Section 4 for a brief discussion).

Fig. 3. The CHES 2012 stream cipher

3 Natural PRNG with Minimum Public Randomness

3.1 A New Proposal

As mentioned in introduction, it in unclear whether the need of large public
randomness in leakage-resilient stream ciphers is due to proof artifacts or if the
lack of such randomness can be exploited in realistic side-channel attacks. This
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Fig. 4. Leakage-resilient stream cipher with minimum randomness

question is important as such attacks would most likely reveal an issue in the
most natural construction of [37], where no public randomness is used at all and
the proof is based on a random oracle assumption. In order to answer it, we
propose an alternative stream cipher depicted in Figure 4.

The Proposed Stream Cipher. We denote our stream cipher with SC, let
n be the security parameter, and (k0,s) be the initial state of SC, where k0 ∈
{0, 1}n is a secret key and s ∈ {0, 1}n a public seed, both randomly chosen. SC
expands s into p0, p1, p2, . . . on-the-fly by running a PRF G : {0, 1}n×{0, 1}n →
{0, 1}n in counter mode2, i.e., pi := G(s, i). Then, SC uses the generated public
strings p0, p1, p2, . . . to randomize another PRF F : {0, 1}n×{0, 1}n → {0, 1}2n,
which updates the secret state ki and produces the output xi, i.e. (ki, xi) :=
F(ki−1, pi−1). That is, the stream cipher SC in Figure 4 is essentially similar to
the previous ones, excepted that any public string pi is obtained by running a
PRF on a counter value, using the public seed s.

Instantiation and Efficiency. Following [27], we instantiate F and G with
a block cipher BC : {0, 1}n×{0, 1}n → {0, 1}n, e.g. the AES. As will be shown
in Lemma 4, it is sufficient to produce log(1/ε) bits of fresh pseudo-randomness
for every pi (and pad the rest with zero’s), with ε a security parameter of the
PRF F (see Definition 1). This further improves efficiency, as we only need to
run G once every �n/ log(1/ε)� iterations of F.
Leakage Models of the CCS 2010/CHES 2012 stream ciphers. For
every ith iteration, let Li : {0, 1}n×{0, 1}n → {0, 1}λ be a function (on ki−1
2 Alternatively, we can also expand s by iterating a length-doubling PRNG in a
forward-secure way, but this would lead to less efficient designs and is not needed
(since s is public).
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and pi−1) that outputs the leakage incurred during the computation of F on
(ki−1,pi−1). The CCS 2010/CHES 2012 constructions model the leakages as
follows [10,37]:

1. (Efficient computability). Li can be computed by polynomial-size circuits.
2. (Bounded leakage per iteration). The leakage function has bounded range

given by λ ∈ O(log (1/ε)), where ε is a security parameter of the PRF F (see
Definition 1).

3. (Non-adaptivity). The selection of the leakage functions Li is made prior to
(or independent of) s, and thus only depends on ki−1 and pi−1.

Note that strictly speaking, the leakage models needed to prove the security
of the CCS 2012 and CHES 2012 stream ciphers are not exactly equivalent.
Namely, the CHES 2012 stream cipher can further tolerate that each Li not
only depends on the current state (ki−1,pi−1), but also on the past transcript

Ti−1
def
=(x1, · · · , xi−1, p0,· · · , pi−2, L1(k0, p0), · · · , Li−1(ki−2, pi−2)). This is nat-

urally impossible if only two pi’s are used.

Leakage models of FOCS 2008/Eurocrypt 2009 stream ciphers. The
FOCS 2008/Eurocrypt 2009 constructions consider a model similar to the above
one, but they do not require condition #3 and allow the adaptive selection of
the leakage functions. That is, at the beginning of each round, the adversary
adaptively chooses a function Li based on his current view. As previously men-
tioned, this leads to unrealistic attacks as the adversary can simply recover a
future secret state, say k100, by letting each Li leak some different λ bits about
it. The authors of [9,27] deal with this issue by tweaking their stream cipher
design with an alternating structure (as in Figure 1).

In the next sections, we will prove the leakage-resilient security of our stream
cipher in the (non-adaptive) model from CCS 2010/CHES 2012. More precisely,
we will also consider its less restrictive version where the leakage functions can
depend on the past transcript. Yet, for brevity, we will not explicitly put Ti−1 as
an input of each Li, as an adversary can hardwire them into Li. Note also that
we do not need to model leakages on G since the seed s (from which all p0, · · · ,
pi can be efficiently computed) is public.

3.2 Security Analysis

Notations and Definitions. For security parameter n, a function negl : N→
[0, 1] is negligible if for any c > 0 there is a n0 such that negl(n) ≤ 1/nc for
all n ≥ n0. We use uppercase letters (e.g. X) to denote a random variable and
lowercase letters (e.g. x) to denote a specific value, with exceptions being n, t
and q which are reserved for security parameter, circuit-size (or running time)
and query complexity, respectively. We write x ← X to denote the sampling of
a random x according to X . We use Un to denote the uniform distribution over
{0, 1}n. For function f , we denote its circuit-size complexity by size(f) or tf . We
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denote with ΔD(X,Y ) the advantage of a circuit D in distinguishing the random

variables X,Y : ΔD(X,Y )
def
= | Pr[D(X) = 1] − Pr[D(Y ) = 1] |. The computa-

tional distance between two random variables X,Y is defined with CDt(X,Y )
def
=

maxsize(D)≤t ΔD(X,Y ), which takes the maximum over all distinguishers D of size
t. For convenience, we use CDt(X,Y |Z) as shorthand for CDt((X,Z), (Y, Z)).

The min-entropy of X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We

finally define average (aka conditional) min-entropy of a random variable X
conditioned on Z as:

˜H∞(X |Z)
def
= − log ( Ez←Z [ maxx Pr[X = x|Z = z] ] ) ,

where Ez←Z denotes the expected value computed over all z ← Z.

Standard Security Notions. Indistinguishability requires that no efficient
adversary is able to distinguish a real distribution from an idealized one (e.g.
uniform randomness) with non-negligible advantage. In this paper, we will work
in the concrete non-uniform setting3. Yet, we note that the proof can be made
uniform by adapting the technique from [2,38] (see [9] for a discussion). Given
this precision, a standard PRF is defined as:

Definition 1 (PRF). F : {0, 1}n×{0, 1}n → {0, 1}m is a pseudorandom func-
tion (PRF) if for all polynomial-size distinguisher D making up to any polynomial
number of queries, we have:

|Pr[DF(k,·) = 1 | k ← Un]− Pr[DR(·) = 1] | ≤ negl(n),

where R is a random function uniformly drawn from function family {{0, 1}n →
{0, 1}m}. Furthermore, we say that F is a (t,q,ε)-secure PRF if for all distin-
guishers D of size t making q queries, the above advantage is bounded by ε.

Security without Leakages. Without considering side-channel adversaries,
the security of SC is easily proven using a standard hybrid argument, by consid-
ering F (on any fixed input) as a PRG, and without any security requirement
about G (which could just output any constant). This is formalized by the fol-
lowing theorem:

Theorem 1 (Security without Leakages). If F is a (t, 1, ε)-secure PRF, then
SC is (t′, �, ε′)-secure, i.e. CDt′((X1, X2, · · · , X�), Un�|S) ≤ ε′, with t′ ≈ t− �·tF
and ε′ ≤ � · ε.

Leakage-Resilient Security. We first observe that as soon as some leak-
age is given to the adversary, he can easily exploit it to distinguish xi from

3 An efficient uniform adversary can be considered as a Turing-machine which on input
1n (security parameter in unary) terminates in time polynomial in n, whereas its
non-uniform counterpart will, for each n, additionally get some polynomial-length
advice.
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uniform randomness (e.g. Li(ki−1, pi−1) leaking the first bit of xi is enough for
this purpose). Thus, all previous approaches in leakage-resilient cryptography
require that any (computationally bounded) adversary observing the leakages
for as many rounds as he wishes should not be able to distinguish the next x�

without seeing L�(k�−1, p�−1) [9,10,27,37]. Formally, let:

view�(A, SC,K0, S)
def
= (S,X1, · · · , X�−1, L1(K0, P0), · · · , L�−1(K�−2, P�−2)) (1)

denote the view of adversary A after attacking SC (initialized with K0 and S)
for � rounds, for which we use shorthand view� in the rest of the paper. Given
a distinguisher D, we then define its indistinguishability advantage (on uniform
K0 and S) as:

AdvInd(SC,A,D, �)
def
= | Pr

K0,S
[D(view�, X�) = 1]− Pr

K0,S
[D(view�, Un) = 1] |.

We will use size(A)
def
= �(tG + tF) +

∑�−1
i=1 tLi to denote the circuit-size complex-

ity of the physical implementation of SC and size(D) to denote the circuit-size
complexity of D.

Using these notations, our main result can be stated as follows.

Theorem 2 (Leakage-Resilient Security). If F is (t,2,ε)-secure PRF, and
G is a (t,q,ε)-secure PRF, then for any � ≤ q, adversary A, distinguisher D with
(size(A) + size(D)) ∈ Ω(23λε · t/n) and for any leakage size (per round) λ, we
have that either:

AdvInd(SC,A,D, �) ∈ O(�
√
23λ · ε),

or otherwise there exist efficient black-box constructions of public key encryption
(PKE) from the PRFs F and G and the leakage functions L1,· · · ,L�−1.

How to Interpret the Result? The above theorem is a typical “win-win”
situation, similar to those given in [1,7,8,26,28], where a contradiction to one task
gives rise to an efficient protocol for another seemingly unrelated (and sometimes
more useful) task. As mentioned in introduction, we know from [18] that black
box constructions of PKE from PRFs are very unlikely to exist. Thus, if the
building primitives F and G are one-way function equivalents (i.e. they are not
PKE primitives), for example using practical block ciphers such as the AES,
and the leakage functions are intrinsic to hardware implementation (i.e. not
artificially chosen) then the stream cipher SC will be leakage-resilient as stated
above. Before giving the proof, we recall the notion of HILL pseudo-entropy:

Definition 2 (HILL Pseudo-entropy [14,16]). X has at least k bits of HILL
pseudo-entropy, denoted by HHILL

ε,t (X)≥k, if there exists Y so that H∞(Y )≥k and
CDt(X,Y ) ≤ ε. X has at least k bits of HILL pseudo-entropy conditioned on Z

, denoted by HHILL
ε,t (X |Z)≥k, if there exists (Y, Z ′) such that ˜H∞(Y |Z ′) ≥ k and

CDt((X,Z), (Y, Z ′)) ≤ ε.
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Outline of the Proof. We will present the proof in two main steps. First,
we will show the security of our stream cipher when the seed is kept secret.
This part of the proof essentially borrows techniques from previously published
papers. Next, we will show our main result, i.e. that either leakage-resilience is
maintained when S is public, or we have efficient black box constructions of PKE
from PRFs as stated in Theorem 2.

Lemma 1 (Security of SC with Secret S). Let P[0···�−1]
def
= (P0, · · · , P�−1).

For the same F, G, �, A, D as given in Theorem 2, we have that:

| Pr
K0,S

[D(view� \ S, P[0···�−1],X�) = 1]− D(view� \ S, P[0···�−1], Un) = 1] | ∈ O(�
√

23λ · ε).

Proof sketch. Since G is a secure PRF and S is leak-free, it suffices to prove the
security by replacing every Pi by true randomness P ′i . The conclusion follows
from Lemma 2 below, by letting i = � and applying computational extractor4

F on K�−1 and P ′�−1. It essentially holds because P ′�−1 is independent of all
preceding random variables. �

Lemma 2 (The ith round HILL Pseudo-entropy). Assume that we use
uniform randomness P ′0, · · · , P ′�−1 and define the view accordingly as below:

view′�
def
= (P ′0, · · · , P ′�−1, X1, · · · , X�−1, L1(K0, P

′
0), · · · , L�−1(K�−2, P ′�−2)). (2)

Then we have:

HHILL
εi,ti(Ki−1|view′i \ Pi−1) ≥ n− λ, (3)

where εi = 2(i− 1)
√
23λ · ε and (ti + (i − 1)tF +

∑i−1
j=1 tLi) ∈ Ω(23λε · t/n).

A proof of this Lemma can be found in [10] (and implicitly in [9,27,37]). We will
provide an alternative proof with improved bounds in Section 3.3, by utilizing
recent technical lemmata from [11] (slightly improving the dense model theorem
[9,30]) and Lemma 4 from [6], which explicitly states that a PRF used as com-
putational exactor only needs log(1/ε) bits of randomness (which, as mentioned
in Section 3.1, is desirable for efficiency).

The only difference between Lemma 1 and our final goal (i.e. Theorem 2)
is that the security guarantee of the former one forbids adversary to see S (it
only makes P0, · · · , P�−1 public). We now argue why this security guarantee
remains when additionally conditioned on S. Beforehand, we introduce prelimi-
naries about key-agreement and PKE.

4 As shown in Lemma 4, PRFs are computational extractors in the sense that when ap-
plied to min-entropy sources (or their computational analogue HILL pseudo-entropy
sources), one obtains pseudo-random outputs provided that independent P ′

i s are
used.
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Key-Agreement and PKE. PKE is equivalent to a 2-pass key-agreement
protocol [18], which in turn can be obtained from a 2-pass bit-agreement protocol
with noticeable correlation and overwhelming security [15]. Bit-agreement refers
to a protocol in which two efficient parties Alice and Bob (without any pre-shared
secrets) communicate over an authenticated channel. At the end of the protocol,
Alice and Bob output a bit bA and bB, respectively. The protocol has correlation
ε, if it holds that Pr[bA = bB] ≥ 1+ε

2 . Furthermore, the protocol has security δ,
if for every efficient adversary Eve, which can observe the whole communication
C, it holds that Pr[Eve(1k, C) = bB] ≤ 1− δ

2 .

The following Lemma completes the proof of Theorem 2.

Lemma 3 (Secret vs. Public S). For the same F, G, �, A, D as given in
Theorem 2 such that by keeping S secret, the stream cipher SC is secure as
stated in Lemma 1, i.e.

| Pr
K0,S

[D(view� \ S, P[0···�−1], X�) = 1]− D(view� \ S, P[0···�−1], Un) = 1] | = negl(n),

(4)

we have that either the above is still negligible when additionally conditioned
on S, or otherwise there exists efficient black-box constructions of public key
encryption from the PRFs F and G and the leakage functions L1,· · · ,L�−1.

Proof. By contradiction, let us assume that for some c > 0 and for infinitely
many n’s, there exists efficient D̃ such that: PrK0,S[D̃(view�, X�) = 1] −
PrK0,S [D̃(view�, Un) = 1] ≥ 1

nc . We construct a 2-pass bit-agreement protocol as
in Figure 5.

It follows from Equation (4) that no efficient passive adversary Eve (observing
the communication) will be able to guess bB (i.e. whether r is x� or uniform ran-
domness) with more than negligible advantage. Furthermore, the bit-agreement
also achieves correlation:

Alice

s← Un

p0, · · · , p�−1 ← G(s, 0), · · · ,G(s, �− 1)

bA ← D̃(r, view�)

Bob

k0←Un

Evaluate SC on k0, p0, · · · , p�−1

to get view� \ s and x�

bB←U1

if bB = 0 then r := x�

else if bB = 1 then r ← Un

p0, · · · , p�−1

r, view� \ s

Fig. 5. A bit agreement protocol from any PRFs F,G and leakage functions L1, · · · ,
L�−1
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Pr[bA = bB] = Pr[bB = 1]
︸ ︷︷ ︸

=1/2

Pr[bA = 1|bB = 1] + Pr[bB = 0]
︸ ︷︷ ︸

=1/2

Pr[bA = 0|bB = 0]
︸ ︷︷ ︸

=1−Pr[bA=1|bB=0]

=
1

2
(Pr[bA = 1|bB = 1] + 1− Pr[bA = 1|bB = 0])

=
1

2

(

1 + Pr
K0,S

[D̃(view�, X�) = 1]− Pr
K0,S

[D̃(view�, Un) = 1]

)

≥ 1 + 1
nc

2
,

which implies 2-pass key agreement and PKE (by privacy amplification and
parallel repetition [15]). Intuitively, the protocol can be seen as a bit-PKE. That
is, Alice generates secret and public key pair sk = s and pk = (p0, · · · , p�−1)
respectively, and sends her public key to Bob for him to encrypt his message
bB such that only Alice (with secret key sk) can decrypt (with non-negligible
correlation). This completes the proof. ��

As observed in [1], we can further extend this type of bit-PKE to a 1-out-of-2
Oblivious Transfer (OT) against curious-but-honest adversaries5 as follows. For
choice bit b, Alice first samples pkb := (p0, · · · , p�−1) and pk1−b ← Un� and then
sends pk0, pk1 to Bob. Bob, who holds two bits σ0 and σ1, uses the bit-PKE to
encrypt σ0 and σ1 under pk0 and pk1, respectively. Finally, Alice recover σb and
learns no information about σ1−b (since it is computationally hidden by uniform
randomness pk1−b).

Additional remark about the protocol in Figure 5. In the non-uniform
setting, any insecurity already implies efficient protocols for PKE and OT (using
the hypothetical non-uniform D̃), whereas in the uniform setting we will get
practical and useful protocols, uniformly generated given the security parameter.
See more discussion in [1].

3.3 Alternative Proof of Lemma 2

We will need the two following technical lemmata for the proof.

Theorem 3 (Dense Model Theorem [9,11]). Let (X,Z) ∈ {0, 1}n×{0, 1}λ
be random variables such that CDt(X,Un) < ε and let εHILL > 0. Then we have:

HHILL
2λε+εHILL,tHILL

(X |Z) ≥ n− λ, where tHILL ∈ Ω(ε2HILL · t/n).

Lemma 4 (PRFs on Weak Keys and Inputs [6,27]). If F : {0, 1}n ×
{0, 1}n → {0, 1}m is a (2t, 2, ε)-secure PRF, then for (K,Z) with
˜H∞(K|Z) ≥ n− λ, and independent P with H∞(P ) ≥ log (1/ε), we have

CDt(F(K,P ), Um | P,Z) ≤
√
2λ · ε.

5 A 1-out-of-2 oblivious transfer refers to a protocol, where Alice has a bit b and Bob
has two messages m0 and m1 such that Alice wishes to receive mb without Bob
learning b, while Bob wants to be assured that the Alice receives only one of the two
messages.
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Proof sketch. Similar to [9,27], we show the above by induction on εi and ti.
For i = 1, Equation (3) is trivially satisfied (t1 = ∞ and ε1 = 0). It remains
to show that if Equation (3) holds for case i with parameter εi and ti, then it

must hold for case i + 1 with εi+1 ≤ εi + 2
√
23λ · ε and ti+1=min{ti − (tF +

tLi), Θ(23λε · t/n)}. By Definition 2, Equation (3) with (εi,ti) refers to the fact
that conditioned on view′i \ P ′i−1, there exists K̃i−1 with n − λ bits of average

min-entropy such that Ki−1 is (ti, εi)-close to K̃i−1. By our leakage assumptions,
P ′i−1 is independent of (Ki−1,view′i \ P ′i−1), so if we apply F to K̃i−1 and P ′i−1,
Lemma 4 directly implies that:

CDt/2( (K̃i, X̃i) := F(K̃i−1, P ′i−1) , U2n | view′i ) ≤
√
2λ · ε.

Taking into account Li(K̃i−1, P ′i−1), we know by Theorem 3 that:

HHILL
2
√
23λ·ε,Θ(23λε·t/n)( K̃i, X̃i | view′i, Li(K̃i−1, P ′i−1) ) ≥ 2n− λ,

which implies (using the chain rule for min-entropy) that K̃i has n − λ bits of
HILL pseudo-entropy (for the same parameters) conditioned on X̃i. Note that
this is almost what we want except that F is applied to K̃i−1 rather than Ki−1.
Hence, we need to pay 2

√
23λ · ε for εi+1 − εi, and lose tF+tLi in complexity (to

simulate the experiment). �

4 Leakage-Resilient PRFs

By minimizing their randomness requirements, the previous results improve the
relevance of leakage-resilient stream ciphers. Besides, they also increases our
confidence that simple constructions such as the first proposal in [37] are indeed
secure against side-channel attacks. Hence, a natural question is to investigate
whether a similar situation is observed for PRFs. In this context, three proposals
have been analyzed in the literature. Standaert et al. first observed in [35] that a
tree-based construction such as the one of Goldreich, Goldwasser and Micali [13]
inherently brings improved resistance against side-channel attacks. They proved
its leakage-resilience under a (non-standard) random oracle based assumption.
Next, Dodis and Pietrzak proposed a similar tree-based design using an alternat-
ing structure, and proved its leakage-resilience in the standard model. Finally,
Faust et al. replaced the alternating structure by public randomness (following
the approach they used for the stream cipher in Figure 3) [10]. In this last case,
a fresh pi is required in each step of the PRF tree. The techniques described in
the previous section can be directly applied to mitigate this requirement. That
is, one can run a PRF on a counter and public seed to generate the pi’s. As
in Lemma 3, either this construction is secure, or we can build a bit agreement
protocol using the PRFs and leakage functions of the figure. While the random-
ness saving may be not substantial for a regular PRF (with input size linear in
n), it will be desirable for variants that handle long (polynomial-size) inputs, e.g.
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for Message Authentication Codes (MACs). Finally, we note that as in [10], the
constructed leakage-resilient PRF is only secure against non-adaptive inputs.
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vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

5. Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-
Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 21–40. Springer, Heidelberg (2010)

6. Dodis, Y., Yu, Y.: Overcoming weak expectations. Short version appears in Infor-
mation Theory Workshop ITW 2012 (2012),
http://www.cs.nyu.edu/~dodis/ps/weak-expe.pdf

7. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC
2006), pp. 711–720 (2006)

8. Dziembowski, S.: On Forward-Secure Storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2008), pp. 293–302 (2008)

10. Faust, S., Pietrzak, K., Schipper, J.: Practical Leakage-Resilient Symmetric Cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012)

11. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption:
New Constructions and a Connection to Computational Entropy. In: Cramer, R.
(ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
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28. Pietrzak, K., Sjödin, J.: Weak Pseudorandom Functions in Minicrypt. In: Aceto, L.,
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