
Many Weak Keys for PRINTcipher: Fast Key

Recovery and Countermeasures

Stanislav Bulygin1,2, Michael Walter3, and Johannes Buchmann1,2

1 Center for Advanced Security Research Darmstadt - CASED
Mornewegstraße 32, 64293 Darmstadt, Germany

{Stanislav.Bulygin}@cased.de
2 Technische Universität Darmstadt, Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
michael.walter@swel.com, buchmann@cdc.informatik.tu-darmstadt.de
3 University of California, San Diego, Department of Computer Science and

Engineering
9500 Gilman Drive, Mail code 0404, La Jolla, CA 92093-5004, USA

miwalter@eng.ucsd.edu

Abstract. In this paper we investigate the invariant property of
PRINTcipher first discovered by Leander et al. in their CRYPTO 2011
paper. We provide a complete study and show that there exist 64 fam-
ilies of weak keys for PRINTcipher–48 and as many as 115,669 for
PRINTcipher–96. Moreover, we show that searching the weak key space
may be substantially sped up by splitting the search into two consecu-
tive steps. We show that for many classes of weak keys, key recovery can
be done with very small time complexity in the chosen/known plaintext
scenario. This shows that the cipher is actually much more vulnerable
to this type of attacks than was even thought previously. Still, effective
countermeasures exist against the attack. The method of finding all weak
key families has value on its own. It is based on Mixed Linear Integer
Programming and can be adapted to solving other interesting problems
on similar ciphers.

Keywords: PRINTcipher, invariant coset attack, mixed integer linear
programming, weak keys, chosen plaintext attack, key recovery.

1 Introduction

Lightweight cryptography gained its importance due to emergence of many ap-
plications that involve using small and resource constraint devices such as RFID
tags, smart cards, and sensor networks. Conventional cryptographic algorithms
turned out to be too massive to be implemented on such devices. Therefore, the
need for new cryptographic primitives arose in the community. In particular, the
whole arsenal of lightweight block ciphers has been developed in recent years to
satisfy the needs of secure usage of small devices. The block cipher PRESENT is
one outstanding example that gained popularity [1]. Other block ciphers, such as

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 189–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



190 S. Bulygin, M. Walter, and J. Buchmann

KATAN and KTANTAN family [2], LED block cipher [3] and many others were
presented recently. Following the design principle of PRESENT, several block ci-
phers with even more lightweight structure have been proposed: PRINTcipher [4]
and EPCBC [5] are immediate examples, as well as SPONGENT hash family [6].

PRINTcipher is a block cipher proposed at CHES 2010 [4] and is really push-
ing the design solutions for lightweight ciphers to their limits. PRINTcipher has
been an object of numerous attacks since then. Methods of linear and differential
cryptanalysis [7,8,9] as well as algebraic cryptanalysis [10] have been proposed to
analyze PRINTcipher. Also certain results on side channel analysis of PRINTci-
pher appeared [10,11]. Notably, cryptanalytic methods proposed so far were not
able to break more than 2

3 of PRINTcipher’s rounds for a large portion of keys1.
At CRYPTO 2011 Leander et al. proposed a very powerful attack, which they

called the invariant coset attack [12]. Using this attack it is possible to break
the full PRINTcipher (both the 48- and the 96-bit versions) for a significant
portion of keys using only a few chosen plaintexts. Note, however, that despite
the fact that distinguishing a weak key can be done in unit time, the complete
key recovery for weak key families presented in [12] would take quite a consider-
able time in practice. The authors of [12] presented two families of weak keys for
PRINTcipher–48, each having 251 keys, as well as two families for PRINTcipher–
96. However, it remained unknown whether other families existed and what was
a systematic way of finding them.

In this paper we thoroughly investigate the invariant property of PRINTci-
pher. We suggest a systematic method of obtaining all invariant cosets of the
cipher and corresponding families of weak keys. In particular, we are able to
recover all 64 families of weak keys for PRINTcipher–48 and all 115,669 families
for PRINTcipher–96. It is possible to speed the key recovery process compared
to a simple brute force of the remaining key bits. In the case of PRINTcipher–48
we identified many weak keys that can be recovered in a matter of minutes on a
single PC. This shows that the cipher is actually much more vulnerable to this
type of attacks than was even thought previously. The key recovery procedure
is improved compared with the simple brute force by a factor of 8 to 2048 de-
pending on the weak key class. For PRINTcipher–96 the gain can be as large as
227. Similarly to [12] we analyze countermeasures against the attack. Since our
analysis of the invariant property is complete we may argue about security of
the cipher against the invariant coset attack. In particular, we claim that with
countermeasures suggested in this paper both versions of PRINTcipher remain
secure ciphers.

The method of finding weak key families is based on Mixed Integer Linear
Programming (MILP). It appears to be a novel technique to use MILP in such
a context. Noteworthy is also that this method can be adapted to solving other
interesting problems on similar ciphers and therefore has value on its own.

The outline of the paper is as follows. In Section 2 we briefly recall the defini-
tion of PRINTcipher and outline its properties that are relevant for the further

1 The best attack of [9] can break 31 out of 48 rounds of PRINTcipher–48 for the
fraction of 0.036% of keys using almost the entire code book.



Many Weak Keys for PRINTcipher: Fast Key Recovery 191

exposition; we also recall the attack of [12]. Section 3 presents methods of obtain-
ing and using invariant cosets (or invariant projected subsets as we call them).
Section 3.1 presents the general background on defining sets of invariant pro-
jected subsets and their characterization. These defining sets then give rise to
families of weak keys. Section 3.2 presents a method of finding all defining sets
based on MILP that turns out to be highly efficient in practice. Section 3.3 sum-
marizes the results for PRINTcipher–48 and PRINTcipher–96 obtained by our
methods, computing the number of keys in each weak key family and complexity
of the key recovery, as well as protecting measures. Finally, Section 4 provides a
retrospective of the proposed methods and puts them in a more general context
providing possible further directions for research. In Appendices A and B the
reader may find the table with results for PRINTcipher–48 as well as a worked
out example illustrating computations from Section 3.3 resp.

2 The Block Cipher PRINTcipher

2.1 Description of the Cipher

PRINTcipher [4] is a substitution-permutation network, which design is largely
inspired by the block cipher PRESENT [1]. The main differences with PRESENT
is the absence of a key schedule (all round keys are the same and are equal to a
master key) and key-dependent S-Boxes. PRINTcipher comes in two variations:
PRINTcipher-48 encrypts 48-bits blocks with an 80-bit key and has 48 rounds,
PRINTcipher-96 encrypts 96-bit blocks with a 160-bit key and has 96 rounds.
Here we present a short overview of the cipher, referring the reader to [4] for a
more detailed description and analysis.

The encryption process of PRINTcipher–48 follows a classical SP-network
structure, see Figure 1 for the round function. Both versions have similar struc-
ture. The key k = (sk1, sk2) is divided into two parts. The subkey sk1 is used
for XORing with the state and sk2 defines the S-Box layer, see below. The linear
diffusion layer is implemented by a bit permutation similar to PRESENT and is
given by the map P :

P (i) =

{
3i mod n− 1 for 0 ≤ i ≤ n− 2,
n− 1 for i = n− 1,

(1)

so that the i−th bit of the state is moved to the position P (i). The RCi for
i = 1, . . . , n are 6-bit long round constants obtained via a certain LFSR and
are placed in the last two position triplets. The S-Box layer is a layer of n/3
3-bit S-Boxes, where each S-Box is chosen according to the value of the two
corresponding bits of the subkey sk2. Therewith, there are 4 possible S-Boxes at
each position called V0, V1, V2, V3 in [4]. One may also consider such an S-Box as
a composition of a key dependent bit permutation that acts on groups of three
bits (triplets) and then followed by the layer of fixed S-Boxes, each one being
a 3-bit S-Box with the truth table as in Table 1. This S-Box, called V0 in [4],
is preceded by a key-dependent permutation defined by Table 2. In Table 2 the



192 S. Bulygin, M. Walter, and J. Buchmann

Table 1. Truth table for the S-Box V0

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

Table 2. Key depended permutation

a1 a0 Permutation

0 0 (0,1,2)

0 1 (0,2,1)

1 0 (1,0,2)

1 1 (2,1,0)

three input bits are permuted according to the two consecutive bits from the
subkey sk2 called a0 and a1.

We need properties of masks that exist for keyed S-Boxes of PRINTcipher.
By an α–β mask we understand a situation when fixing some α out of 3 S-
Box input values yields fixed β output values regardless of the values at other
input/output positions. There is obviously a 3–3 mask, since knowledge of three
input bits of an S-Box yields all three output bits. There is also obviously a 0–0
mask. It turns out that for certain values of sk2-bits, PRINTcipher’s S-Box has
2–2 masks for all 3 · 3 = 9 possible combinations of input and output positions.
Table 3 shows that each possible 2-mask on the input bits has a corresponding
2-mask for output bits. In this table +/− notation shows which bits of the mask
are fixed (+) and ones which are not (−). For example, the first row says that
if we have a mask where the first two bits of both input and output to a keyed
S-Box are fixed, then both S-Boxes with a0 = 0 satisfy the mask. Moreover, the
two fixed output bits of the mask, as well as the two input bits, must be 0. Table
3 plays an important role in studying the invariant coset attack of [12]. Notably,
there are also 2–1, 2–0, 1–0 masks and no others. Clearly, the 2–2 and 3–3 masks
are the most desirable for cryptanalytic properties.

2.2 Invariant Coset Attack of Leander et al.

In their work [12] Leander et al. showed that for PRINTcipher there exist subsets
of plaintexts which, when encrypted with keys from certain other subsets, end

Table 3. Behavior of the 2–2 masks in S-Boxes of PRINTcipher

Input mask Output mask Values of (a0, a1) input values output values

+ +− ++− 0* 00* 00*

+ +− +−+ 10 10* 1*1

+ +− −++ 11 11* *10

+−+ ++− 10 0*0 00*

+−+ +−+ 00 or 11 0*1 or 1*0 1*1

+−+ −++ 01 1*1 *10

−++ ++− 11 *00 00*

−++ +−+ 01 *10 1*1

−++ −++ *0 *11 *10



Many Weak Keys for PRINTcipher: Fast Key Recovery 193

up in the same subset of plaintexts. Thus they showed an invariant property for
PRINTcipher under certain weak keys. The subsets they presented are of quite
special form: they are linear cosets. An invariant coset for the plaintexts is of
the form U + d for some linear subspace U ⊆ F

n
2 and some vector d ∈ F

n
2 ; the

weak keys are from the coset U + c+ d for some other vector c ∈ F
n
2 . Notably,

the U ’s are linear subspaces of a special kind. Namely, they are linear subspaces
where all vectors have the value 0 at certain positions. The vectors c and d then
“adjust” the zeros, so that the invariant property holds. The authors of [12]
show that distinguishing the weak keys so obtained can be done using only a
few chosen plaintexts, thus presenting a powerful attack. In the invariant coset
attack they heavily use the property of 2–2 masks presented in Table 3.

3 Obtaining and Exploiting Invariant Projected Subsets

In this section we describe methods of obtaining all invariant cosets for both
versions of PRINTcipher. These invariant cosets are of the same type as in [12],
i.e. we only consider cosets that are described by the “projection” equations
specifying values of vectors at certain positions. In Section 3.1 we investigate
defining sets of invariant cosets (or invariant projected subsets, as we call them),
i.e. sets of positions the subsets are projected onto. We provide their character-
ization that is used in Section 3.2 to provide a method for finding all possible
defining sets using techniques of Mixed Integer Linear Programming. In Section
3.3 we describe the structure of weak key classes that stem from the invariant
projected subsets, compute a number of elements in each class and compute time
complexity of weak key recovery. Notably, we show that it is possible to speed
up the search process by separating the search space into two steps.

3.1 Defining Sets of Invariant Projected Subsets

Definition 1. A projected subset U ⊂ F
n
2 is defined as

U := {u = (u0, . . . , un−1) ∈ F
n
2 |ui1 = a1, . . . , uit = at for some t ≥ 0,

0 ≤ i1 < · · · < it ≤ n− 1 and some a = (a1, . . . , at) ∈ F
t
2}.

We define defU ⊂ Zn to be the subset of indexes i1, . . . , it with the above property
and for such a subset we define a vector valU ∈ (F2∪{′∗′})n as follows: valU [ij ] =
aj , 1 ≤ j ≤ t and valU [i] =

′ ∗′, i ∈ Zn \ defU . We call defU the defining set
of U .

Definition 2. Let V ⊂ Zn with n divisible by 3, then V is a 1̄−subset iff ∀ 0 ≤
j < n/3 : |{3j, 3j + 1, 3j + 2} ∩ V | �= 1.

The above definition calls a subset of positions a 1̄−subset iff in each consecutive
triplet of positions there are 0, 2, or 3 elements from that subset.



194 S. Bulygin, M. Walter, and J. Buchmann

Definition 3. Let T ⊆ Zn with n divisible by 3. For i ∈ {1, 2, 3} define

Ti :=
⋃

0≤j<n/3
|{3j,3j+1,3j+2}∩T |=i

[{3j, 3j + 1, 3j + 2} ∩ T
]
.

In other words, we divide the set {0, . . . , n− 1} into triplets and then look which
triplets have exactly i elements of T in them and collect these elements into Ti.
Let U be a projected subset with the defining set defU . For short notation we
denote Ui := (defU )i for i = 1, 2, 3.

Now let Esk1,sk2,r = Ssk2 ◦ RCr ◦ P ◦ XORsk1 be the round function of
PRINTcipher-n for the round 1 ≤ r ≤ n, where sk1 and sk2 are parts of the
secret key as defined in Section 2.1.

Theorem 1. Let T ⊂ Zn with n divisible by 3 and

1. T ∩ {n− 6, . . . , n− 1} = 
;
2. T is a 1̄−subset of Zn;
3. ∀ 0 ≤ j < n/3 : |{3j, 3j + 1, 3j + 2} ∩ T | = |{3j, 3j + 1, 3j + 2} ∩ P (T )|.
Then there exists a projected subset U ⊂ F

n
2 with def U = T such that

Esk1,sk2,r(U) = U for some sk1 ∈ F
n
2 and sk2 ∈ F

2n/3
2 and any r ≥ 1.The

set {valU [i] : i ∈ U2} is uniquely determined by T .
Vice versa: if for a projected subset U ⊂ F

n
2 holds Esk1,sk2,r(U) = U for some

sk1 ∈ F
n
2 and sk2 ∈ F

2n/3
2 and any r ≥ 1, then defU satisfies conditions (1.)–(3.)

above.

Proof. (⇒) : We want to show that there exist sk1 ∈ F
n
2 and sk2 ∈ F

2n/3
2 such

that Esk1,sk2,r(U) = U for all r ≥ 1 for some projected subset U with def U = T .
For the construction of U we need to specify the values in valU as well as the
corresponding values of sk1 and sk2. Note that due to properties (2.) and (3.),
the set of positions P (T ) is also a 1̄-subset. Now observe that positions of P (T )
define input masks to the S-Box layer Ssk2 and those from T define output masks
of that layer. Indeed, we start with the positions from T at the beginning of the
round. So in order to have an invariant property, we have to end with T as well.
Due to properties (2.) and (3.) we have that only 0–0, 2–2 and 3–3 cases are
possible for the S-Box masks (see Section 2.1). Note that in the case of a 2–2
mask most of the time the corresponding values of the key sk2 are fixed and
determined by T , see Table 3. In the case of ambiguity, we may take arbitrary
value for the corresponding bit of sk2. Also from Table 3 we see that for the
2–2 masks S-Box output values are uniquely defined in all cases, the same for
input values except for the mask + − + → + − +. In this case arbitrary but
fixed choice of the corresponding bits of sk2 resolves the ambiguity. After the 2–2
cases are resolved (either through mandatory assignment or arbitrary but now
fixed choice) we move to the 0–0 and 3–3 masks. Here both outputs of S-Boxes
and the corresponding values of sk2 can be assigned arbitrary values (sk2 bits
are equal in this case). Note that assignment of output values in the case of a 3–3



Many Weak Keys for PRINTcipher: Fast Key Recovery 195

mask provides an assignment of values in {valU [i] : i ∈ U3}. We have that inputs
and outputs to the S-Boxes at positions P (T ) and T resp. are now defined. This
yields, via the operation XORsk1 , unique values for the key sk1 at positions T .
Moreover, the values in valU are now fixed too. Therewith the set U is now fully
defined by defU = T and such constructed valU . Note that since outputs of
S-Boxes at positions T2 = U2 (see Definition 3) are uniquely determined by the
2–2 masks, we have that the values {valU [i], i ∈ U2} are uniquely determined.
Condition (1.) makes sure that the round counter RCi is avoided (i.e. there we
have only 0–0 mask) and therewith there is no chance to change input/output
values of S-Boxes, and so invariant property is preserved.
(⇐) : For the reverse direction, note that defU should satisfy (2.) and (3.), since
for the invariant property we need an α–α mask and there are only 0–0, 2–2,
and 3–3 of this sort, see Section 2.1. Again, the invariant property must not be
spoiled by the round counter, thus the condition (1.) should be satisfied.

We refer to the example in Appendix B for assisting in understanding the no-
tation and how the invariant property works. Note that in the case Theorem 1
holds, we have Esk1,sk2,r(V + d) = V + d for a certain linear subspace V ⊆ F

n
2

and d ∈ F
n
2 . This V + d is an invariant coset as per [12]. In order to follow

our terminology, we prefer the term invariant projected subset. Also note that if
U = V + d is an invariant projected subset, then defU is a disjoint union of U2

and U3: defU = U2 � U3, see Definition 3. As a result of Theorem 1 we have a
one-to-one correspondence between defining sets of invariant projected subsets
and subsets of Zn that satisfy (1.)–(3.) of Theorem 1.

3.2 Defining Sets via Polytopes in Z
n

Now having the characterization of defining sets, we provide an efficient method
of finding all subsets of Zn satisfying conditions (1.)–(3.) of Theorem 1. The
method is based on providing a one-to-one correspondence between defining sets
of the invariant projective subsets of PRINTcipher–n and points of a certain
polytope in Z

n. One can then efficiently find these points by applying techniques
of Mixed Integer Linear Programming (MILP).

Theorem 2. Let IPn be a subset in {0, 1}n ⊂ Z
n, where n is divisible by 3,

defined as a subset of those x = (x0, . . . , xn−1) ∈ {0, 1}n that satisfy2

xn−6 = · · · = xn−1 = 0,

for all 0 ≤ j < n/3 :

x3j + x3j+1 + x3j+2 = xP−1(3j) + xP−1(3j+1) + xP−1(3j+2), (2)

x3j + x3j+1 ≥ x3j+2, x3j + x3j+2 ≥ x3j+1, x3j+1 + x3j+2 ≥ x3j ,
n−1∑
i=0

xi > 0.

2 Note that the arithmetic is integer.



196 S. Bulygin, M. Walter, and J. Buchmann

For each v ∈ IPn define Tv := {i|vi = 1} ⊂ Zn. Then for every v ∈ IPn the
set Tv satisfies (1.)–(3.) of Theorem 1. Conversely, for each set T that satisfies
(1.)–(3.) of Theorem 1 there exists v ∈ IPn such that T = Tv.

Proof. For the proof we need the following observation, which is proved by a
direct inspection. Namely, for a pair of vectors a = (a0, a1, a2) and b = (b0, b1, b2)
from Z

3 ∩ {0, 1}3 that satisfy

b0 + b1 + b2 = a0 + a1 + a2, b0 + b1 ≥ b2, b0 + b2 ≥ b1, b1 + b2 ≥ b0,

only the following cases for Hamming weights of a and b are possible: wt(a) =
wt(b) = i for i = 0, 2, 3. Now property (1.) follows directly from the condition in
the first line of (2). It is not hard to see that the above observation easily yields
claimed properties (2.) and (3.). The last line of the conditions (2) makes sure
that we do not include the trivial all-zero solution.

It is not difficult to see that the converse statement is also true.

Combining Theorem 1 and Theorem 2 we obtain a one-to-one correspondence
between defining sets of invariant projected subsets and vectors from IPn ⊂
{0, 1}n.

So the question now is how to compute all elements of IPn for n = 48, 96.
One possible solution is to use the MILP. Recall that the problem of the MILP is
to optimize (i.e. either maximize or minimize) a linear objective function under
linear constraints with solutions lying in Z

p × R
n−p. In our case the feasible

solutions are all in {0, 1}n as per (2) and we thus have a binary integer linear
program – a certain kind of MILP. Therefore, we can use an MILP solver with
the additional requirement that the solutions should lie in {0, 1}n. Also, in our
case we do not actually have an optimization problem, but rather a constraint
satisfaction problem that likewise can be solved by an MILP solver.

3.3 Families and Classes of Weak Keys

In this subsection we provide detailed results for PRINTcipher that can be ob-
tained by the method from Section 3.2. We used SAGE computer algebra system
[13] together with the MILP solver CPLEX3 through the SAGE interface4.

The results as presented in Tables 4 and 5 for both versions of PRINTcipher.
In the tables we also indicate how our work improves the initial result of [12].

Each family is composed of potentially several classes of weak keys. By a class
we understand a set of weak keys that ensure the invariant property for certain
plaintext subsets, see more on that below. The family, in turn, unites all classes
of weak keys stemming from invariant projected sets with the same defining set.
We can provide only an upper bound on the number of all weak keys, since weak
key classes can intersect, see “How many weak keys are there in a family defined

3 IBM ILOG CPLEX 12.1 under the academic license.
4 See http://sagemath.org/doc/reference/sage/numerical/mip.html?highlight=

linear%20programming

http://sagemath.org/doc/reference/sage/numerical/mip.html?highlight=linear%20programming
http://sagemath.org/doc/reference/sage/numerical/mip.html?highlight=linear%20programming


Many Weak Keys for PRINTcipher: Fast Key Recovery 197

Table 4. Results and comparison for
PRINTcipher–48

Our analysis Leander et al. [12]

# weak key families /
all found? 64/Yes 2/No

upper bound on
# weak keys 252.5 252

fastest time
for key recovery 224 238

in CP/KP scenario

Table 5. Results and comparison for
PRINTcipher–96

Our analysis Leander et al. [12]

# weak key families /
all found? 115,669/Yes 2/No

upper bound on
# weak keys 2117.7 2102

fastest time
for key recovery 230 276

in CP/KP scenario

by defU?” below. We also provide the minimum of the time complexities of all
possible classes of weak keys.

Table 6 in Appendix A presents detailed results for PRINTcipher–48. Defining
sets of weak key families found in [12] are marked in bold there.

Description of Weak Key Classes. From Theorem 1 we know that once
we have a subset of positions T ⊂ Zn that satisfies conditions (1.)–(3.) there
exists a key k = (sk1, sk2) and a projected subset U with defU = T such
that Esk1,sk2,r(U) = U for all r ≥ 1. Moreover, the set of projected values
{valU [i] : i ∈ U2} is uniquely determined by T . Now we would like to have
more: we want to have a description of all classes of weak keys (i.e. those that
preserve the invariant property) that correspond to T = defU . These classes
form a family.

For this we first need to fix values for all elements in {valU [i] : i ∈ defU}.
Values {valU [i] : i ∈ U2} are uniquely determined by T as per Theorem 1.

Then choose a vector v3 ∈ F
|U3|
2 and assign valU [ij ] = v3[j], 1 ≤ j ≤ |U3|, where

U3 = {i1, . . . , i|U3|} with i1 < · · · < i|U3|. So now the invariant projected subset U
is fully defined. Let us show that there exists a class of weak keys WK(defU , v3)
such that for any (sk1, sk2) = k ∈ WK(defU , v3) : Esk1,sk2,r(U) = U for all
r ≥ 1. Let us describe separately the two parts sk1 and sk2 of a key k =
(sk1, sk2) ∈ WK(defU , v3).

We start with sk2. Define for 0 ≤ j ≤ 3:

Sj := {0 ≤ i < n/3 : |{3i, 3i+ 1, 3i+ 2} ∩ defU | = j}.
So Sj collects those S-Boxes that have j bits both in input and output masks
(i.e. a j–j mask). We construct the sk2-part of k as follows.

- Bits sk2[2i] and sk2[2i+ 1] for i ∈ S3 can attain arbitrary values. There are
2
3 |U3| such bits (a 3–3 mask).

- For i ∈ S2, the bits sk2[2i] and sk2[2i+1] get their values according to column
3 of Table 3 by examining the corresponding parts of U2 and (P (defU ))2 to
get +/− masks. The star sign ’*’ means that the corresponding bit of sk2
can attain arbitrary value. Denote by U∗ ⊂ Z2n/3 the set of positions of
sk2 that correspond to ’*’s. In the case of the +−+ → + −+ mask assign
arbitrary value to sk2[2i] = sk2[2i + 1]. Let us denote the set of S-Boxes
yielding the +−+ → +−+ mask by U= ⊂ S2 ⊂ Zn/3.



198 S. Bulygin, M. Walter, and J. Buchmann

- Bits sk2[2i] and sk2[2i + 1] for i ∈ S0 can attain arbitrary values (a 0–0
mask). There are 2

3n− 2
3 |U3|− |U2| such bits. Indeed, from the length of sk2,

which is 2
3n, we subtract positions from S3 (= 2

3 |U3|) and S2 (= |U2|).
Now determine the sk1 part. Let the choice of sk2 be done as above and fixed.

- Denote Y = XORsk1 (X). Note that {valU [i] : i ∈ defU} are fixed, there-
fore Xi, i ∈ defU have fixed values. Now, since the choice of sk2 bits for
active S-Boxes (i.e. those with i ∈ S2 ∪ S3) has been fixed, we have that
inputs to S-Boxes at positions P (defU ) have fixed values. Therefore Yi,∈
P−1(P (defU )) = defU are fixed as well. As a result sk1[i] = Xi⊕Yi, i ∈ defU
are now determined.

- Bits sk1[i], i ∈ Zn \ defU can attain arbitrary values. There are n − |defU |
such bits.

An explicit example explaining the notation is given below:

XORsk1

X

Y

RCi

0 ∗ × − ≡ − − × − 0 ∗ − −

Fig. 1. Defining set no. 14, Table 6
Bold: positions of defU and their transition through the round
× : S-Boxes 1 and 9 belonging to S3

− : S-Boxes 2,6,7,10,14, and 15 belonging to S0

≡: S-Box 3 belongs to U= ⊂ S2

∗ : sk2-positions of U
∗ = {1, 25} ⊆ Z32

Having the above construction, we obtain the following proposition.5

Proposition 1. Let T ⊂ Zn satisfy (1.)–(3.) of Theorem 1. Let v3 ∈ F
|T3|
2 and

U ⊂ F
n
2 be a projected subset with defU = T and valU composed of unique values

for {valU : i ∈ U2} and {valU (U3[i]) = v3[i] : 1 ≤ i ≤ |U3|}. Then for the set
WK(defU , v3) constructed as above holds

Esk1,sk2,r(U) = U, r ≥ 1,

for any (sk1, sk2) ∈ WK(defU , v3).

5 For space reasons, we must refer to the full version of the paper for a formal proof.



Many Weak Keys for PRINTcipher: Fast Key Recovery 199

How to Distinguish the Weak Keys? Now let us detail how to distinguish
in the chosen plaintext scenario the weak keys belonging to WK(defU , v3) for
some defining set defU of an invariant projected set U with a fixed choice of bits
{valU [i] : i ∈ U2} and {valU [U3[i]] = v3[i] : 1 ≤ i ≤ |U3|}. The attacker chooses

an arbitrary p ∈ U and encrypts p with a key (sk1, sk2) = k ∈ F
5n/3
2 obtaining

c = Esk1,sk2,n(p). If c[i] = p[i] for all i ∈ defU , i.e. c ∈ U , then k is a candidate
element of WK(defU , v3). To be sure we need several chosen plaintexts, since
with probability 2−|defU | one has p[i] = c[i], i ∈ defU , where the key k can be
any key. So in order to distinguish we need #CP = � 5

3n/|defU |� plaintexts from
U and their corresponding encryptions. For 5

3n = 80 it is at most 5 chosen
plaintexts, see also [12].

How Many Weak Keys Are There in a Family Defined by defU? For a
given defU there are 2|U3| possibilities to assign values for the vector v3. There-
fore, each family of weak keys has 2|U3| classes. We want to determine∣∣∣ ⋃

v3∈F
|U3|
2

WK(defU , v3)
∣∣∣.

The following bounds for the number above hold:

2|U3||WK(defU , 0)| ≥
∣∣ ⋃
v3∈F

|U3|
2

WK(defU , v3)
∣∣ ≥ |WK(defU , 0)|. (3)

Indeed, if we fix vector v3 = 0, then the number of elements in all classes is at
least the number of elements in one class and is at most 2|U3| times the number
of elements in that class, since

|WK(defU , a)| = |WK(defU , b)| ∀a, b ∈ F
|U3|
2 .

We cannot simply say that |∪
v3∈F

|U3|
2

WK(defU , v3)| is equal to the upper bound,
since it may happen thatWK(defU , a)∩WK(defU , b) �= 
 for some a �= b. Note,
however, that for many defU ’s the value | ∪

v3∈F
|U3|
2

WK(defU , v3)| does attain

the upper bound. We skip the details due to space constraints.
Now as to the computation of |WK(defU , 0)| (or, equivalently |WK(defU , a)|

for any other a ∈ F
|U3|
2 ), we just follow the lines of the argument preceding

Proposition 1. Namely, if we compute the number of arbitrarily assigned key
bits, we need to add the numbers of bits of sk1[i], i ∈ Zn \ defU (= n− |defU |),
from sk2[2i], sk2[2i+ 1] for i ∈ S0 and i ∈ S3 (= 2

3n− 2
3 |U3| − |U2| and = 2

3 |U3|
resp.), as well as the number of bits of U∗ ⊂ Z2n/3 (= |U∗|) and one bit per
U= ⊂ Zn/3 (= |U=|). Summing up, we obtain

log2 |WK(defU , 0)| = 5

3
n− |defU | − |U2|+ |U∗|+ |U=|. (4)

Therewith the upper bound (and often the actual value) is

log2

∣∣∣ ⋃
v3∈F

|U3|
2

WK(defU , v3)
∣∣∣ ≥ 5

3
n− 2|U2|+ |U∗|+ |U=|. (5)



200 S. Bulygin, M. Walter, and J. Buchmann

Summing up the numbers obtained via (5) over all defU we have an upper bound
on the overall number of weak keys: it is 252.51 for PRINTcipher–48 and 2117.7

for PRINTcipher–96.

What Is the Complexity of the Weak Key Recovery? Once a weak key is
distinguished, the attacker wants to recover the remaining key bits that are not
deduced immediately from the distinguishing phase. Of course, we may simply
use several known plaintexts and brute force the keys in WK(defU , v3), but we
can actually do better: we can separate the key recovery process in two consec-
utive steps, each having smaller time complexity.

Step 1 (chosen plaintext). Using chosen plaintexts from the distinguishing
phase brute force inactive key bits, i.e. sk1[i], i ∈ Zn \ defU and sk2[2i], sk2[2i+
1], i ∈ S0. For the actual implementation of this step we assign arbitrary values
to sk2[2i], sk2[2i + 1], i ∈ S3, sk2[2i] = sk2[2i + 1], i ∈ U=, sk2[i], i ∈ U∗ and
compute the corresponding bits of sk1 to get candidate keys for testing.

Note that after assigning arbitrary values to certain key bits, we rely on the
assumption that the remaining “cipher” behaves as a random permutation. Since
the overall number of plaintext bits in several chosen plaintexts exceeds the num-
ber of key bits we brute force, we expect, as usual, that we have a unique solution
for these key bits. Due to certain degeneration properties of PRINTcipher it is
not always true, however. Without going into technical details, we just state that
there exist certain positions at which bits of sk1 may attain arbitrary values in
this chosen plaintext scenario. Therefore we assign in this step some arbitrary
values to these bits, call them weird bits, and brute force them in the next step.
Denote the number of such weird bits w.

Now the computation of the work factor is similar to the one for the number
of weak keys as above. We have the work factor of Step 1:

log2 WF1 = n−|defU |+ 2

3
n− 2

3
|U3|−|U2|−w =

5

3
(n−|defU |)− 1

3
|U2|−w. (6)

Note that the number of chosen plaintexts from the distinguishing phase is in-
deed enough, since the remaining “block length” n− |defU | times #CP exceeds
log2 WF1 for all defU .

Step 2 (known plaintext). This is as far as we can go with chosen plaintexts.
We cannot distinguish bits sk2[2i], sk2[2i+ 1], i ∈ S3 ∪ U= and sk2[i] for i ∈ U∗

having only these plaintexts. Therefore, for the second phase we take one known
plaintext that is not in U and brute force these key bits. Note, however, that
now the sk1-bits sk1[P

−1(3i)], sk1[P
−1(3i + 1)], sk1[P

−1(3i + 2)] correspond-
ing to i ∈ S3 cannot be determined from one round as in the case of chosen
plaintexts where the invariant property holds. Similar situation is with the bits
sk1[P

−1(3i)], sk1[P
−1(3i+2)] with i ∈ U=. So we have to brute force these bits

as well. We also brute force the weird bits in this step. We have

log2 WF2 =
5

3
|U3|+ |U∗|+ 3 · |U=|+ w. (7)



Many Weak Keys for PRINTcipher: Fast Key Recovery 201

Combining (6) and (7) we have that the overall work factor for the key recovery is

log2 WF ≈ max{log2 WF1, log2 WF2} =

max
{5

3
(n− |defU |)− 1

3
|U2| − w,

5

3
|U3|+ |U∗|+ 3 · |U=|+ w

}
. (8)

Now it is interesting to point out that a simple brute force approach would just
search through a weak key class in the known plaintext scenario and its work
factor would be the number of elements given by (4). We define a gain of our
key recovery procedure over the simple brute force as a difference between (4)
and (8), which gives a logarithm of the speed-up factor. Gains for all classes in
the case of PRINTcipher–48 are given in Appendix A. For PRINTcipher–96 the
largest gain is 27 yielding a speed-up factor of 227 which is quite substantial.

See the example in Appendix B for a detailed work-out of the above
computations.

Remark 1. The key recovery procedure in chosen/known plaintext scenario as
described above was implemented for PRINTcipher–48 and tested for weak key
classes that allow practical time key recovery. We could always correctly and
uniquely recover the secret key.

Countermeasures against the Attack. Note that due to existence of the
round constant RCi in the last 6 bits (corresponding to the last two S-Boxes no.
n/3−2 and n/3−1), our invariant projected subsets should not be active in these
two S-Boxes. As can be seen from Table 6, for PRINTcipher–48 there exist no
def U that avoids the last three S-Boxes. So, as has already been pointed out in
[12], spreading out the round constant over the last three S-Boxes (two bits of the
constant per S-Box) protects against the attack. Note, however, that this choice
is not as obvious as it may seem. For example, a SPONGENT-like solution [6],
where S-Boxes 0,1 and 14,15 are used for placing the round constant (or any three
of them) does not provide a secure solution, since classes no. 23 and 58 from Ta-
ble 6 avoid them, providing at least 250 weak keys. However, the “SPONGENT”
solution obviously defeats the classes no. 44 and 47 found in [12].

Note that opposed to the 48-bit case, in the case of PRINTcipher–96 there
exist defining sets that avoid the last three S-Boxes. In fact, there are 28 such
sets. So the countermeasure suggested in [12] for PRINTcipher–48 does not work
for all families here. Still, there is a collection of combinations of three S-Boxes
that cannot be avoided by any defining set. The S-Boxes 0,1,23 is one possible
solution among many others. So, in order to defeat the attack, one has to spread
out the round counter over these S-Boxes.

Important note: One may argue that the invariant attack in its complete
form as described in this paper is of not much value, since there still exist
simple countermeasures that defeat all families of weak keys. Note, however,
that since our analysis is complete, i.e. we have found all weak key families, we
may argue about security of the cipher against the invariant attack. Whereas
having only partial results of [12] it is not possible. In fact, as we have seen
above, countermeasures for PRINTcipher–96 that may be hinted from [12] are
not effective for many families of weak keys.



202 S. Bulygin, M. Walter, and J. Buchmann

4 Related and Future Work

In this paper we have undertaken a complete study of the invariant coset attack
initially presented at CRYPTO 2011 by Leander et al. By explicitly providing
characterization of defining sets of invariant projected subsets and weak key
families and classes we were able to recover all families of keys that are weak
in the sense of the invariant coset attack. We also showed that both versions of
the cipher can be made immune to this attack at no additional cost. The latter
conclusion was only possible to make due to completeness of our analysis.

Note also that methods of this paper, such as finding all defining set as per
Section 3.2, are interesting on their own. It can be shown that similar approach
can be employed in other contexts, e.g. for finding optimal guessing strategies
for algebraic cryptanalysis. These directions put the methods in a more general
context that deserves further investigation.

Acknowledgements. The first author is supported by the German Science
Foundation (DFG) grant BU 630/22-1. The second author is supported in part
by the NSF grant CNS-1117936. We would like to thank Gregor Leander for his
critical comments that helped to improve the paper considerably. We are also
thankful to Mohamed Ahmed Abdelraheem for providing the C implementation
of PRINTcipher that was used in the implementation of the attacks. Finally, we
thank anonymous referees for their numerous valuable suggestions and remarks.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight
Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 450–466. Springer, Heidelberg (2007)

2. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

3. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

4. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

5. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - A Block Cipher
Suitable for Electronic Product Code Encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011)

6. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

7. Abdelraheem, M.A., Leander, G., Zenner, E.: Differential Cryptanalysis of Round-
Reduced PRINTcipher: Computing Roots of Permutations. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 1–17. Springer, Heidelberg (2011)



Many Weak Keys for PRINTcipher: Fast Key Recovery 203

8. Ågren, M., Johansson, T.: Linear Cryptanalysis of PRINTcipher – Trails and
Samples Everywhere. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011.
LNCS, vol. 7107, pp. 114–133. Springer, Heidelberg (2011)

9. Karakoç, F., Demirci, H., Harmancı, A.E.: Combined Differential and Linear
Cryptanalysis of Reduced-Round PRINTcipher. In: Miri, A., Vaudenay, S. (eds.)
SAC 2011. LNCS, vol. 7118, pp. 169–184. Springer, Heidelberg (2012)

10. Bulygin, S., Buchmann, J.: Algebraic Cryptanalysis of the Round-Reduced and
Side Channel Analysis of the Full PRINTCipher-48. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 54–75. Springer, Heidelberg (2011)

11. Zhao, X., Wang, T., Guo, S.: Fault Propagate Pattern Based DFA on SPN Struc-
ture Block Ciphers using Bitwise Permutation, with Application to PRESENT and
PRINTcipher, ePrint, http://eprint.iacr.org/2011/086.pdf

12. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of
PRINTcipher: The Invariant Subspace Attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011)

13. William Stein, S., et al.: SAGE Mathematics Software, pp. 593–599. The Sage
Development Team (2008), http://www.sagemath.org

A The List of Defining Sets of All Possible Invariant
Projected Subsets of PRINTcipher–48

Table 6 presents defining sets of all possible invariant projected sets for
PRINTcipher–48.

B Example of Computations for Weak Keys Number and
Work Factors

Example 1. In this example we would like to provide a detailed workout of the
computations discussed in Section 3.3. We work with PRINTcipher–48 and a
specific defining set (no. 5 in Table 6):

defU = {0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41}.

In the figure below the positions of defU and their transition through the round
is denoted in bold.

Note that inputs and outputs of the S-Boxes in this example are uniquely
determined by the set defU and Table 3. In the figure the symbol ∀ means that
any value of the corresponding sk2-bit works for the invariant property. For ABC
and XY Z it holds that SBOXEF (ABC) = XY Z. Note that XY Z itself can
attain arbitrary values and ABC is determined by these and EF bits of the key
sk2. The “passive” bits are denoted with “*” and can attain arbitrary value. We
have |U2| = 24, |U3| = 3, |U∗| = 5, |U=| = 0, w = 0. The following table makes
the situation on the figure in a bit more formal way:

http://eprint.iacr.org/2011/086.pdf
http://www.sagemath.org


204 S. Bulygin, M. Walter, and J. Buchmann

Table 6. Defining sets of invariant projected subsets of PRINTcipher–48
Bold font: families found in [12]
#k : number of elements in the corresponding family
logWF : logarithm of the time complexity (work factor) of key recovery for each class
in the family
Gain: logarithm of the speed-up factor of the mixed CP/KP scenario over the simple
brute force in KP
⊥: an upper bound, not an exact value

No. defU #k logWF Gain

1 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 36⊥ 25 11

2 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 42 26 10

3 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 37 27 7

4 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 41 25 10

5 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41] 37 27 7

6 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41] 36 27 6

7 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 39, 41] 37 27 7

8 [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 39, 41] 37 27 7

9 [0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 34⊥ 24 10

10 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 39 24 9

11 [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 44 25 10

12 [0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 33⊥ 24 9

13 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 35 24 8

14 [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 40 25 9

15 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 39 26 7

16 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 35 24 8

17 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 38 26 6

18 [0, 2, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 38 26 6

19 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 26 5

20 [0, 2, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 26 5

21 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 35 27 5

22 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 27 4

23 [6, 8, 9, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 50 38 6

24 [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 40 26 8

25 [0, 1, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 39 26 7

26 [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 36 26 7

27 [0, 1, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 35 26 6

28 [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 36 27 6

29 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 34 27 4

30 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 30⊥ 25 11

31 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 41 24 11

32 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 45 25 11

33 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 35⊥ 24 11

34 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 37 24 10

35 [0, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 37 24 10

36 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 40 26 8

37 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 40 26 8

38 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 36 26 7

39 [0, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 37 27 7

40 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 40 26 8

41 [0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 43 26 11

42 [0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 39 26 10

43 [0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 39 27 9

44 [0, 1, 4, 5, 12, 13, 16, 17, 24, 25, 28, 29, 36, 37, 40, 41] 51 48 3

45 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 40, 41] 40 26 8

46 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 40, 41] 34 27 4

47 [0, 1, 3, 4, 5, 9, 11, 12, 13, 16, 17, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 51 38 7

48 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 36 27 6

49 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 35 27 5

50 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 40, 41] 35 27 5

51 [0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 40, 41] 35 27 5

52 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 40, 41] 38 26 6

53 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 40, 41] 33 27 3

54 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 40, 41] 35 27 5

55 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 40, 41] 34 27 4

56 [0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 35 27 5

57 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 33 27 3

58 [6, 7, 9, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 48 38 4

59 [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 40, 41] 35 27 5

60 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 40, 41] 43 25 9

61 [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 40, 41] 37 27 7

62 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 40, 41] 39 26 7

63 [0, 1, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 40, 41] 38 27 8

64 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 40, 41] 38 26 6



Many Weak Keys for PRINTcipher: Fast Key Recovery 205

0 * 1 K 0 * 0 * 0 X * 0 0 0 * ** 1 * * 1 1 0 1 B Y * * 1 * * *0 1 1 0 * 1 * 1 * Z * 0 * L * *

xor rci

∀ 0 1 0 0 1 1 0 0 1 0 ∀ ∀ 0 0 ∀ E F ∗ ∗ 1 0 0 ∀ 1 0 ∗ ∗ ∗ ∗

1 * 1 1 0 * 0 * 0 X * 1 0 1 * ** 1 * * 0 1 0 1 0 Y * * 0 * * *1 0 1 1 * 0 * 0 * Z * 1 * 1 * *

1 * 1 1 0 * 0 * 0 X * 1 0 1 * ** 1 * * 0 1 0 1 0 Y * * 0 * * *1 0 1 1 * 0 * 0 * Z * 1 * 1 * *

S-Box in mask out mask U∗ (a0, a1) in vals out vals

0 + +− +−+ 0 (1,0) 10* 1*1
1 −++ −++ 1 (∀,0) *11 *10
2 + +− +−+ 0 (1,0) 10* 1*1
3 −++ +−+ 0 (0,1) *01 1*1
4 +−+ ++− 0 (1,0) 0*0 00*
5 +−+ −++ 0 (0,1) 1*1 *10
6 + +− ++− 1 (0,∀) 00* 00*
7 −++ −++ 1 (∀,0) *11 *10
8 + +− ++− 1 (0,*) 00* 00*
9 + + + +++ 0 (E,F) ABC XYZ
10 −−− −−− 0 (*,*) *** ***
11 + +− +−+ 0 (1,0) 10* 1*1
12 + +− ++− 1 (0,∀) 00* 00*
13 + +− +−+ 0 (1,0) 10* 1*1
14 −−− −−− 0 (*,*) *** ***
15 −−− −−− 0 (*,*) *** ***

Sum 5

Now, let us see how the values from the table above are distributed in one
round:

in = 1*1 *10 1*1 1*1 00* *10 00* *10 00* XYZ *** 1*1 00* 1*1 *** ***
sk1 = 0*0 *11 1*1 K*0 01* *11 00* *11 0B* XYZ *** 0*0 01* 0*L *** ***
XOR = 1*1 *01 0*0 A*1 01* *01 00* *01 0B* 000 *** 1*1 01* 1*C *** ***
P = 10* *11 10* *01 0*0 1*1 00* *11 00* ABC *** 10* 00* 10* *** ***
sk2 = 10 ∀0 10 01 10 01 0∀ ∀0 0∀ EF ** 10 0∀ 10 ** **
out = 1*1 *10 1*1 1*1 00* *10 00* *10 00* XYZ *** 1*1 00* 1*1 *** ***

In this table the values in out and in are the same and are taken from the
out vals column of the first table. Then, the values in P correspond to the inputs



206 S. Bulygin, M. Walter, and J. Buchmann

to the S-Boxes (or, equivalently, to the outputs of the diffusion layer) and are
taken from the column in vals of the first table. We then permute the values in
P with P−1 to get the output of the XORsk1 operation. Having that, we may
compute many values of sk1 right away. Note that K = 1 + A,L = 1 + C and
are determined by the values of XY Z and EF .

For a specific example, let us take XY Z = 000 so that v3 = (0, 0, 0). So we
are working now with

U = 1∗1 ∗10 1∗1 1∗1 00∗ ∗10 00∗ ∗10 00∗ 000 ∗∗∗ 1∗1 00∗ 1∗1 ∗∗∗ ∗∗∗.

Note that independently of the values of EF we have SBOX−1
EF (000) = 000 =

ABC and so K = L = 1. The weak keys from WK(defU , v3) are of the form
(sk1, sk2), where

sk1 = 0∗0 ∗11 1∗1 1∗0 01∗ ∗11 00∗ ∗11 00∗ 000 ∗∗∗ 0∗0 01∗ 0∗1 ∗∗∗ ∗∗∗,

sk2 = 10 ∗ 0 10 01 10 01 0 ∗ ∗0 0 ∗ ∗ ∗ ∗ ∗ 10 0 ∗ 10 ∗ ∗ ∗ ∗.
Now let us compute the number of elements in WK(defU , 0). Using (4) we have

|WK(defU , 0)| = 280−27−24+5 = 234.

The upper bound provided by (3) is actually tight in this case and

∣∣ ⋃
v3∈F

3
2

WK(defU , v3)
∣∣ = 23 · 234 = 237.

Now as to the time complexity of the key recovery, from (8) we have

log2 WF = max
{5

3
· 21− 1

3
· 24, 5

3
· 3 + 5

}
= max{27, 10} = 27.

So for the key recovery it takes around 227 encryptions having 3 chosen and 1
known plaintext. We have a gain of 34 − 27 = 7 bits compared to the simple
brute force attack.

It is not hard to see that the class of weak keys WK(defU , 0) is different from
the ones presented in [12]. Indeed, for example the keys with

sk1 = 000 ∗11 1∗1 1∗0 01∗ ∗11 00∗ ∗11 00∗ 000 ∗∗∗ 0∗0 01∗ 0∗1 ∗∗∗ ∗∗∗

do not belong to the class defined by defU no. 44, since there sk1[1] = 1 and the
keys with

sk1 = 0∗0 ∗11 1∗1 1∗0 01∗ ∗11 00∗ ∗11 00∗ 000 ∗∗∗ 0∗0 01∗ 001 ∗∗∗ ∗∗∗

do not belong to the class defined by defU no. 47, since there sk1[40] = 1, see
[12].


	Many Weak Keys for PRINTcipher: Fast Key Recovery and Countermeasures
	Introduction
	The Block Cipher PRINTcipher
	Description of the Cipher
	Invariant Coset Attack of Leander et al.

	Obtaining and Exploiting Invariant Projected Subsets
	Defining Sets of Invariant Projected Subsets
	Defining Sets via Polytopes in Zn
	Families and Classes of Weak Keys

	Related and Future Work
	References




