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Abstract. WIDEA is a family of block ciphers inspired by the IDEA
block cipher. The design uses n-parallel instances of IDEA with an im-
proved key schedule to obtain block ciphers with larger block sizes. More-
over, the given design is suggested as the compression function for Davies-
Meyer mode. In this paper, we discuss the security of the block cipher
when used as a compression function. Inspired by the weak key attacks
on IDEA, we take the advantage of slow diffusion mechanism of the key
schedule and present free-start collisions for WIDEA-8 which is the spec-
ified version by designers. Our results are practical and we are able to
obtain free-start collisions with a complexity of 213.53 .
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1 Introduction

Block ciphers are key components of cryptography. In the last two decades, par-
allel to the improvement in the technology, algorithms have evolved and more
efficient and secure designs have been proposed. However, some algorithms man-
aged to survive despite the extensive cryptanalysis. The block cipher IDEA [20],
designed in 1990 by Lai and Massey, is a nice example of such an algorithm.
There were various attacks on reduced round version of IDEA [4–7, 10, 13, 17],
but there was no known attack for full IDEA except the discovered weak key
classes [9,11,16]. Recently, in EUROCRYPT’12, an attack which is better than
exhaustive search with a factor of four was presented [19] for the full number of
rounds.

WIDEA-n [18] is a family of block ciphers which aims to extend the block
size of IDEA from 64-bit to n × 64-bit by improving the performance results.
In addition, the key schedule of IDEA is patched to make the design more
secure against existing attacks and a non-linear shift register is used rather than
rotations in the subkey generation.

Related Work. To the best of our knowledge, no external analysis of WIDEA-
n has been published so far. But as a related work, security of the single-length
and double-length hashing modes by using the IDEA as compression function is
analyzed in [22]. The main idea of the analysis is to use the weak keys defined
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previously in [11] as an iterative characteristic for the compression function.
Free-start collisions and semi-free-start collisions are obtained for the various
schemes with practical complexity.

Our Contribution. In this paper, we study the security of WIDEA-n block
cipher when it is used as a compression function in Davies-Meyer mode. We
first use an approach similar to the one described above. However, due to the
changes in key schedule, we only obtain free-start collisions up to seven rounds.
Then, we modify the attack according to the new key schedule. We find new
iterative characteristics with high probabilities such that the basic attack strat-
egy is still applicable. At the end, we get free-start collisions for the full (8.5
round) WIDEA-8. Furthermore, we show that two free-start collisions can be
combined to get a second order differential collision. These attacks are based on
the utilization of weak keys and our results are given in Table 1.

Table 1. Results for WIDEA-8

target rounds time attack type sect.

comp. function 7 1 free-start collision §4.2
comp. function 8.5 (full) 1 free-start near-collision §4.3
comp. function 8.5 (full) 213.53 free-start collision §4.3

Outline. This paper is organized as follows. In Section 2, we give a brief de-
scription of the WIDEA-n block cipher. In Section 3, we give an overview of the
weak keys and describe the previous attacks on IDEA. Then, we present our ob-
servations and describe our attack procedure in Section 4. Finally, we conclude
and summarize our results in Section 5.

2 Description of WIDEA

WIDEA-n [18] is a family of block ciphers, designed by Junod and Macchetti,
presented at FSE 2009. The design uses n parallel applications of the IDEA [20]
round function, strengthened with a mixing layer based on an MDS matrix.

In this paper, we focus on the version with n = 8 since it is introduced in
the original paper with full specification. WIDEA-8 accepts a 512-bit plaintext
X = X0||X1||X2||X3 and a 1024-bit user key K which can be seen as an array of
eight 128-bit words as inputs, and is composed of 8.5 rounds. Throughout this
paper we will use the following notation.

� Modular multiplication in Z
∗
216+1

� Modular addition in Z216

⊕ XOR
≪ n left rotation of n positions
X(i) The input of the i-th round
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Fig. 1. The round function for WIDEA

LetX(i) = X
(i)
0 ||X(i)

1 ||X(i)
2 ||X(i)

3 withX
(i)
j = x

(i)
j,1||x(i)

j,2|| . . . ||x(i)
j,n and x

(i)
j,k ∈ Z216 .

Then, the round function of WIDEA-8 is given in Figure 1.
In the design paper, WIDEA-8 is proposed as the compression function of

Davies-Meyer mode [12] and the software performance is as good as the SHA-2
family [1] and the SHA-3 finalists [2, 3, 14, 15, 23].

2.1 Key Schedule

In the IDEA block cipher, the subkeys are generated by rotating the master key
which causes some weaknesses in the design. Therefore, in the key schedule of
WIDEA a non-linear feedback shift register is used to generate the subkeys. Let
Ki, 0 ≤ i ≤ 7 be the master key; Ci, 0 ≤ i ≤ 6 be the chosen constants and
Zi, 0 ≤ i ≤ 51 denote the subkeys that are used in the 8.5 rounds of WIDEA-n.
Then, the key schedule is given as follows:

Zi = Ki 0 ≤ i ≤ 7

Zi = ((((Zi−1 ⊕ Zi−8)
16
� Zi−5)

16
≪ 5) ≪ 24)⊕ C i

8−1 8 ≤ i ≤ 51, 8|i
Zi = ((((Zi−1 ⊕ Zi−8)

16

� Zi−5)
16
≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 � i
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Here, each subkey Zi has a size of n × 16 bits and it can be split into the n
16-bit slices (i.e., Zi = zi,1, . . . , zi,n). Note that rotation by 5 bit positions is
independently carried out on each slice zi,j for 1 ≤ j ≤ n and rotation by
24 bit positions is carried out globally for Zi. For more detail, we refer to the
specification of WIDEA [18].

3 Weak Keys for IDEA

If a key results in nonrandom behavior of the cipher it is called a weak key. For
most of the ciphers, the weak keys are only a small fraction of the possible key
space and hence the attacker tries to find the large set of weak classes to mount
an attack. However, when a hash function is constructed from a block cipher,
as in Davies-Meyer construction, the message takes the role of the key and the
attacker has full control over it. Note that there exists various analysis on the
weak keys for IDEA [9,11,16]. The ones related with our analysis are described
below.

3.1 Weak Key Classes

Daemen et al. studied the classes of weak keys yielding characteristics with
probability one in [11]. The nonlinear operations in the round function of IDEA
are the modulo addition in Z216 and the modular multiplication in Z

∗
216+1 which

provide good diffusion. Therefore, the basic idea is using a pair of inputs that
differ only in the most significant bit (for each 16-bit word) and finding keys that
will preserve this difference after modular addition and modular multiplication.
To be more precise, let Δ = 0x8000, if the key value entering the modular
operation, say Zi, equals to ±1 in Z216+1 then the difference after the modular
operation again equals to Δ. This observation puts conditions on the subkey
values used in the multiplication operation. But the rest of the subkeys can be
chosen freely. Using this idea, the authors presented all possible characteristics
for the round function of the IDEA block cipher with the conditions on the
corresponding subkeys resulting in weak key classes of size up to 235 out of 2128.

3.2 Application to Hashing Modes

Recently, Wei et al. studied the security of the IDEA block cipher when it is
used in various single-length or double-length hashing modes [22]. They were
able to generate free-start collisions, semi-free-start collisions, pseudo-preimages
or even hash collisions in practical complexity for most of these modes. Their
attacks are based on the weak key classes mentioned above.

The simplest collision attack in the paper uses the null key (all zeros) for
the encryption and each 16-bit plaintext word has the difference (Δ,Δ,Δ,Δ).
As stated in [11], these differences will behave linearly and lead to the same
difference in the ciphertext with probability one. This difference is then canceled
with the feed-forward operation resulting in a collision for the compression or
hash function depending on the hashing mode.
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4 Collision Attack on WIDEA-8

In this section, we study the security of the WIDEA-8 block cipher when it is
used in Davies-Meyer construction. We first describe our basic attack strategy
and show how the attacks on IDEA in hashing mode can be modified to attack
WIDEA-8. We then present our results and give sample collisions.

4.1 Basic Attack Strategy

Although the round function of the WIDEA-8 block cipher is more complex than
that of the IDEA block cipher due to the MDS operation, the previous attack
strategy is still applicable if one is able to find an iterative characteristic that
holds with high probability.

Observation 1. The parallel instances of IDEA are only connected by the MDS
matrix in the MA-box and hence if we can find a characteristic for one slice where
the MA-box (see Figure 1) is never active, the attack is reduced to attacking only
one slice instead of all eight.

Based on this observation, if we have the input difference (Δ,Δ,Δ,Δ) in one of
the slices, then these differences in the 16-bit words cancel each other before the
MDS operation and the input difference does not affect the other slices. As a
result, we are able to obtain an iterative characteristic. A sample characteristic
when there is a difference in the n-th slice is given in Figure 2.

Z0,1 Z1,1 Z2,1 Z3,1

Z4,1

Z5,1

Z4,n

Z0,n Z1,n Z2,n Z3,n

Z5,n

Δ Δ Δ Δ

Δ Δ Δ Δ

M
DS

Fig. 2. A sample iterative characteristic for WIDEA-n
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When an iterative characteristic is found, then due to the feed-forward opera-
tion in the Davies-Meyer mode, the output difference cancels out with the initial
difference resulting in a collision for the compression function.

Unfortunately, it is not possible to use directly the null key as in the previous
attacks. Whereas the key schedule of the IDEA block cipher uses only rotations
and hence is linear, as described in Section 2.1 the key schedule of the WIDEA-8
block cipher consists of addition with a constant, modular addition, rotation and
xor. Therefore, even though a null key is chosen after some rounds the subkeys
will have nonzero values.

4.2 Collision Attack on 7 Rounds

In order to perform an attack, we want to find the longest iterative characteristic.
Now, being familiar with the basic attack strategy, the existing challenge can
be summarized as follows. To minimize the diffusion of the input differences,
we need not only that the message words (which are used as keys) entering the
multiplication have no difference but also the message words have to be zero.
However, if we start with a null master key, the after three rounds all slices have
nonzero values. Therefore, our aim is to find the maximum number of rounds
such that all subkeys are zero at least in one of the slices. For this purpose we
make use of the following observation.

Observation 2. Given any eight consecutive subkeys {Zi+1, Zi+2, . . . , Zi+8}, it
is possible to construct the whole set of subkeys.

This allows us to start from the middle by setting the intermediate subkey values
to zero and calculate forwards and backwards using the inverse key-schedule.

Zi = [([(Zi+8 ⊕ C i+1
8 −1) ≫ 24]

16
≫ 5)

16

� Zi+3]⊕ Zi+7, 0 ≤ i ≤ 51, 8|i
Zi = [([Zi+8 ≫ 24]

16
≫ 5)

16

� Zi+3]⊕ Zi+7, 0 ≤ i ≤ 51, 8 � i

The best results we found are obtained by setting the subkeys Z25 = Z26 =
. . . = Z32 = 0. As it can be seen from Table 2, the subkey values entering
the multiplication for WIDEA-8 equals to zero for the first slice up to Z42. We
want to note that we focus only on the subkey values zi,j = z(i+3),j with i =
0, 6, 12, ..., 48, since if this values equal to zero then the multiplication operation
behaves linear and the characteristic will hold.

As a result, we are able to pass seven rounds with probability one when there
is the chosen difference (Δ,Δ,Δ,Δ) where Δ = 0x8000 in the first slice. A
collision example is given in Table 3.

4.3 Extending the Attack to Full WIDEA-8

In this section, we discuss how the attack on 7 rounds can be extended to full
WIDEA-8. By ignoring the conditions on the message words in the first round
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Table 2. Subkeys for WIDEA-8 when Z25 = Z26 = . . . = Z32 = 0.

i zi,1 zi,2 zi,3 zi,4 zi,5 zi,6 zi,7 zi,8

0 0000 E7FD 1444 6810 8B79 2822 47C8 0200

3 0000 E7FE 06F8 0000 0000 0000 0000 0000

6 0000 0001 F2E9 AFF7 0600 0000 0000 0000

9 0000 E7FF FC58 0000 0000 0000 0000 0000

12 0000 F001 0520 0000 0000 0000 0000 0000

15 0000 0FFF FAE0 0000 0000 0000 0000 0000

18 0000 F001 0520 0000 0000 0000 0000 0000

21 0000 0FFF FAE0 0000 0000 0000 0000 0000

24 0000 F001 0520 0000 0000 0000 0000 0000

27 0000 0000 0000 0000 0000 0000 0000 0000

30 0000 0000 0000 0000 0000 0000 0000 0000

33 0000 0000 0000 0000 0000 0000 0000 0000

36 0000 0000 0000 0000 0000 0000 0000 0000

39 0000 0000 0000 0000 0000 0000 0000 0000

42 0000 0000 0000 0000 0015 E080 0B00 0000

45 4891 8264 0000 0000 0000 0000 00AF 5C00

we could find an input where most other subkeys are zero as required for the
attack. In more detail, we set the subkeys Z33 = Z34 = . . . = Z40 = 0 and find
all other subkeys by computing forwards and backwards. The results are given
in Table 4.

Using this as message input and the same iterative characteristic as for the
attack on 7 rounds with Δ = 0x8000 we could find a free-start near-collision for
full WIDEA-8. Note that due to the fact that z0,8 = 0x42B4 another difference
Δ′ is needed in the chaining value x0,8 to get the difference Δ = 0x8000 after
the multiplication operation in the first round. The result is a free-start near-
collision for full WIDEA-8 with complexity of 1 and only a difference in one
16-bit word at the output of the compression function after the application of
the feed-forward. Moreover, we want to note that two free-start near-collisions
can be combined to get a zero-sum (second-order differential collision [8,21]) for
full WIDEA-8 with a complexity of only 2 compression function evaluations.

However, by using differences other than Δ = 0x8000 in the chaining input we
can turn the free-start near-collision into a free-start collision for the compression
function. Note that this will effect the probability of the attack due to the mod-
ular additions in WIDEA-8. Remember, we have z0,8 = 0x42B4, z2,8 = 0x7e49,
z8,8 = 0x2600 and z49,8 = 0x5E00.

(x
(1)
2,8

16
� z2,8) ⊕((x

(1)
2,8 ⊕Δ)

16
� z2,8) = Δ (1)

(x
(2)
8,8

16
� z5,8) ⊕((x

(2)
8,8 ⊕Δ)

16
� z8,8) = Δ (2)

(x
(8)
49,8

16

� z49,8) ⊕((x
(8)
49,8 ⊕Δ)

16

� z49,8) = Δ (3)
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Table 3. A collision example for seven round of WIDEA-8 in hexadecimal

State

5750 C1C3 1603 ADC5 2A12 DE9C 3547 1F24

5D9F 6856 D5A3 0188 808B 6D14 B0F4 58A9

6143 365B BFDA 89DA 551B F732 225A FE0C

9BA8 C55E AA2E B4E1 3417 720D 22CF 8A28

State’

D750 C1C3 1603 ADC5 2A12 DE9C 3547 1F24

DD9F 6856 D5A3 0188 808B 6D14 B0F4 58A9

E143 365B BFDA 89DA 551B F732 225A FE0C

1BA8 C55E AA2E B4E1 3417 720D 22CF 8A28

M1 = M2

0000 E7FD 1444 6810 8B79 2822 47C8 0200

0000 C7FF 67D5 2FE1 4839 0840 0000 0000

0000 D7FF 3F97 0009 931F A917 0000 0000

0000 E7FE 06F8 0000 0000 0000 0000 0000

0000 E800 96CD C81A F500 0000 0000 0000

0000 D000 FC31 5803 3414 2F78 0000 0000

0000 0001 F2E9 AFF7 0600 0000 0000 0000

0000 E7FF EC1A 5FEE 0C00 0000 0000 0000

WIDEA-8(State ,M1) ⊕M1 = WIDEA-8(State’,M2) ⊕M2

D029 603E 368F 998F 7585 021C 492B 7DF0

BCB0 B142 15B0 B273 B503 1A6A F410 9E4D

8F7F BA4D 460E 8C9D D2AD 0036 104B 43E6

E306 6246 6D73 3CDF FD52 B205 267E 0720

We aim for differences with low Hamming weight. Moreover, we need a difference
for which we can find a chaining input such that

(x
(1)
0,8 � 0x42B4)⊕ ((x

(1)
0,8 ⊕Δ)� 0x42B4) = Δ (4)

has a solution for some x
(1)
0,8 ∈ Z162 , and

(x
(j)
i,8 � 0x0000)⊕ ((x

(j)
i,8 ⊕Δ)� 0x0000) = Δ (5)

occurs with a high probability for all j where i ≥ 3 and i|3.

Attack Procedure. We performed a search over all possibleΔ values and found
the best one (satisfying the conditions above) as Δ = 0x5820. We generate two
input values X and X

′ as follows.
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Table 4. Subkeys for WIDEA-8 when Z33 = Z34 = . . . = Z40 = 0

i zi,1 zi,2 zi,3 zi,4 zi,5 zi,6 zi,7 zi,8

0 3209 680D AB9C 470D 6357 300A C7C8 42B4

3 0000 BFFB 22E2 E13A 8FBC B209 0800 0000

6 0000 2806 E120 46FD F980 0000 0000 0000

9 0000 67FF 9C35 7EB3 3108 31C0 0400 0000

12 0000 F001 5517 790A 1080 0000 0000 0000

15 0000 27FA E93A 9F2E F600 0000 0000 0000

18 0000 D806 CECC 48A1 0B80 0000 0000 0000

21 0000 0FFF 72E5 CF97 FB00 0000 0000 0000

24 0000 F001 4521 1838 0680 0000 0000 0000

27 0000 0000 0000 0000 0000 0000 0000 0000

30 0000 0000 0000 0000 0000 0000 0000 0000

33 0000 0000 0000 0000 0000 0000 0000 0000

36 0000 0000 0000 0000 0000 0000 0000 0000

39 0000 0000 0000 0000 0000 0000 0000 0000

42 0000 0000 0000 0000 0000 0000 0000 0000

45 0000 0000 0000 0000 0000 0000 0000 0000

48 F7BA 0000 0000 0000 0000 0000 0000 0000

51 0000 0000 0003 C018 1C60 0100 0000 0000

– For X, restrict x
(1)
0,8 to the values that satisfy Equation (4) and choose random

values for the remaining 496 bits.
– Assign X

′ = X⊕ (0112||Δ||0112||Δ||0112||Δ||0112||Δ)

We then compute the output of full WIDEA-8 used in Davies-Meyer mode and
check whether a collision occurs or not.

Complexity of the Attack. Equations (1)−(3) each have a success probabil-
ity of 2−4 and Equation (5) is satisfied with probability 2−0.09. Therefore the
complexity of the attack can be approximated as (2−0.09)17 · (2−4)3 = 2−13.53

when xor is used in the feed-forward.
As a result, after generating 214 initial values, one can find a free-start colli-

sions for WIDEA-8 with full number of rounds. In practice, we found a collision
after 28 trials which is better than our estimated complexity. The example is
given in Table 5.
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Table 5. A collision example for full WIDEA-8 in hexadecimal

State

2C7A 0866 9F38 C148 3FB1 7BDA 0232 9054

E56C 8780 3E0D 96F3 6D1D F028 907A CA77

DDB6 AC09 77E4 D4C5 6715 E3CA 165A 3396

A835 DACB CA5D CC01 5270 F382 D7D7 7873

State’

2C7A 0866 9F38 C148 3FB1 7BDA 0232 C874

E56C 8780 3E0D 96F3 6D1D F028 907A 9257

DDB6 AC09 77E4 D4C5 6715 E3CA 165A 6BB6

A835 DACB CA5D CC01 5270 F382 D7D7 2053

M1 = M2

3209 680D AB9C 470D 6357 300A C7C8 42B4

0000 5801 97F4 D0DA 0371 04E1 F400 0000

0000 7FF8 5C75 B946 131E 6335 CCF1 7E49

0000 BFFB 22E2 E13A 8FBC B209 0800 0000

0000 4FF7 753E 2805 3E23 80E2 0C00 0000

0000 E7F9 7FC3 1818 DE12 EF37 C8F4 C1FF

0000 2806 E120 46FD F980 0000 0000 0000

0000 4008 8FE9 8005 8A98 FF6E F800 0000

WIDEA-8(State ,M1) ⊕M1 = WIDEA-8(State’,M2) ⊕M2

2C06 6743 87F8 775D 8AB8 5957 226C 4F0F

626F 934B 949F 7195 333A 997A 0D1E 9A32

3D2C 3435 3861 E7CB 2198 8074 94DA 2C26

2544 AD24 4881 E8DC 2344 015F B015 6D81

5 Conclusion and Discussion

We have implemented the attacks and found free-start collisions for Davies-
Meyer mode when it is initiated with WIDEA-8 as compression function. Since
this single-length hashing mode is assumed to be secure in the ideal cipher model,
it is not a good choice to use WIDEA-8 in this mode with the initially defined
parameters. The easiest solution to fix this weakness seems like choosing the
constant values more randomly. But still, the best way might be to use a new key
schedule whose diffusion is better in the both forward and backward direction.
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