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Abstract. Since the introduction of side-channel attacks in the nineties,
RSA implementations have been a privileged target. A wide variety of
countermeasures have been proposed and most of practical attacks are
nowadays efficiently defeated by them. However, in a recent work pub-
lished at ICICS 2010, Clavier et al. have pointed out that almost all the
existing countermeasures were ineffective if the attacks are performed
with a modus operandi called Horizontal. Such attacks, originally intro-
duced by Colin Walter at CHES 2001, involve a single observation trace
contrary to the classical attacks where several ones are required. To de-
feat Horizontal attacks, the authors of the ICICS paper have proposed a
set of new countermeasures. In this paper, we introduce a general frame-
work enabling to model both Horizontal and classical attacks (called
Vertical) in a simple way. This framework enables to enlighten the sim-
ilarities and the differences of those attack types. From this formalism,
we show that even if Clavier et al.’s countermeasures thwart existing
attacks, they do not fully solve the leakage issue. Actually, flaws are
exhibited in this paper and efficient attacks are devised. We eventually
propose a new countermeasure.

1 Introduction

Side-Channel Analysis (SCA) is a cryptanalytic technique that consisting in ex-
ploiting the side channel leakage (e.g. the power consumption, the electromag-
netic emanations) produced during the execution of a cryptographic algorithm
embedded on a physical device. It uses the fact that this leakage is statisti-
cally dependent on the intermediate variables that are processed. Some of these
variables are sensitive in the sense that they are related to secret data, thus
reaching information on them enables efficient key recovery attacks [3, 9, 15].
Since the publication of the first attacks, many papers describing either counter-
measures or attack improvements have been published (see [3,4,16] for example).
Among these improvements, higher-order SCA are of particular interest. They
extend the initial concept by considering a set of several instructions instead of
a single one and circumvent many countermeasures proposed in the literature
(e.g. [4, 10]). Another significant improvement has been proposed initially by
Walter [19] and then studied more deeply by Clavier et al. in [5]. Essentially,
it consists in a new modus operandi called Horizontal, in which sensitive infor-
mation is extracted from a single measurement split into several parts. It differs
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from the classical Vertical mode where information is obtained from different al-
gorithm executions. Horizontal mode applies when the same guessable sub-part
of a secret is involved in many internal operations during the overall algorithm
processing. This is particularly the case for RSA implementations where the ex-
ponentiation is composed of small multiplications that all depend on the same
secret exponent sub-part. As noticed in [5, 19], a striking point is that classical
countermeasures (e.g. the exponent or the message blinding techniques), efficient
in the Vertical context, turn out to be almost ineffective in the Horizontal one.
This makes the construction of new appropriate countermeasures a real issue
for the security of embedded implementations of RSA and similar algorithms.
An attempt to design such countermeasures thwarting both types of attacks has
been done in [5]. Actually, we show in this paper that these countermeasures
(Sections 4 and 5) do not completely remove the leakage, even if they thwart
some attacks. To exhibit the flaws and, eventually, to propose new countermea-
sures (Section 6), we first introduce a framework enabling to formally study the
resistance of an implementation against side channel attacks in both Horizontal
and Vertical modes (Sections 2 and 3). This framework could be used to further
analyse the security of other algorithms’ implementations than RSA ones. On
the other hand, the countermeasure proposed in this paper is a first step towards
an efficient and effective security against Horizontal attacks. The definition of
alternative countermeasures is a new open avenue for further research.

2 A Comprehensive Study of Side-Channel Analyses

In the following, a general framework is introduced which enables to describe
most of the existing attacks in a similar way and to identify their core differences
(actually the leakage pre-treatment, the leakage model and the statistical test).

2.1 A General Framework for Side-Channel Analyses

Notations. A realization of a random variable X is referred to as the corre-
sponding lower-case letter x. A sample of observations of X is denoted by (x) or
by (xi)i when an indexation is needed. In this case, the global event is sumed
up as (x)←↩ X . The ith coordinate of a variable X (resp. x), viewed as a vector,
is denoted by X [i] (resp. x[i]). As usual, the notation E[X ] refers to the mean
of X . For clarity reasons we sometimes use the notation EX [·] to enlighten the
variable over which the mean is computed.

All the attacks below target a variable Z(k,X) defined as the output of a spe-
cific computation (e.g. a multiplication) performed by the device and
parametrized by a secret sub-part k and a public variable X1. In the follow-
ing, we shall use Z instead of Z(k,X) if there is no ambiguity on k and X .

To recover information on k, the attacks are performed on a sample of obser-
vations related to the processing of Z by the device. Each of those observations,

1 We shall sometimes need to consider the known value as a pair of variables: in this
case we will use the notation (X,Y ) instead of X.
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such as power consumption, electromagnetic emanations, and so on, is usually
composed of several physical measurements corresponding to leakages at differ-
ent times ti. It can hence be viewed as a realization of a multivariate random
variable L whose coordinates L[i] satisfy:

L[i] = ϕi

(
Z
)
+ βi , (1)

where ϕi only depends on the device behaviour at time ti during the processing
of Z and βi is an independent Gaussian noise with zero mean and standard
deviation σi. The function ϕi is a priori unknown. The index i will be sometimes
omitted. In this case, it is assumed that the same function is associated to all
the time indices.

An SCA is based on the Hypothesis Testing principle [13]. To make this test, a

set of prediction values hj are deduced from each hypothesis k̂ on k and from the
sample of implementation inputs (xj) corresponding to the observations. This
step involves a leakage model function m that must have been priorly chosen
by the attacker (for instance based on its knowledge on the attacked device
architecture). With this model function, the prediction values hj are built s.t.

hj = m(z(k̂, xj)). Eventually, the adversary uses a distinguisher Δ to compare
the hj with the observations lj ←↩ L|X = xj .

The overall set of SCA is usually split in two subclasses. The first one, called
simple Side-Channel Analysis, contains all attacks where observations only need
to be done on a single value of the public input parameter (this implies that all
the xj are equal to a same value, say x). This set contains S-PA [14], S-EMA
[8,18] or S-TA (Timing Analysis) [14]. The second subclass, called advanced Side-
Channel Analysis, includes attacks where observations of the targeted internal
processing must be done for several public input parameters. In particular, it
contains univariate SCA attacks such as DPA [15], CPA [3] or MIA [9] and
multivariate SCA attacks such as HO-DPA [15, 17] or HO-MIA [1]. We give
hereafter a more formal description of those two subclasses.

Simple SCA. The class of simple SCA includes all Vertical or Horizontal SCA
where the adversary makes observations for a single algorithm input. Table 1
provides a description of a simple Side-Channel Analysis2.

Remark 1. In theory, simple SCA may be conducted with a single observation.
In practice however, it is often necessary to use several observations of the pro-
cessing for the same variable x in order to reduce the noise impact. In this
case, the statistical distinguisher Δ may for instance involve a preliminary step
consisting in averaging the observations sample.

Advanced SCA. All the attacks where observations must involve different
inputs belong to the advanced SCA category. This kind of attacks follows the
outlines given in Table 2.

2 In contexts where the adversary is not allowed to choose the algorithm input but
knows it, the first step just aims at fixing the input value for the rest of the attack.
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Table 1. Simple Side-Channel Analysis

1. Choose a value x for X.
2. Measure a sample (lj)j ←↩ (L|X = x) of N leakages.
3. Select a distinguisher Δ and choose a model function m.

4. For each hypothesis k̂ on k, compute h = m(z(k̂, x)).

5. For each k̂, compute Δ[k̂] = Δ
[
(lj)j ,h

]
.

6. Deduce from Δ[·] information on k.

Table 2. Advanced Side-Channel Analysis

1. Get N measurements (lj , xj)j ←↩ (L, X).
2. Select a distinguisher Δ and choose a model function m.

3. For each hypothesis k̂ on k build a set of predictions hj

such that hj = m(z(k̂, xj)).

4. For each k̂, compute Δ[k̂] = Δ
[
(hj)j , (lj)j

]

5. Deduce from Δ[·] information on k.

Remark 2. Depending on the statistical treatment processed by the distinguisher,
the latter one may include a particular leakage post-processing E . This post-
treatment may be used to select some particular points in the leakage traces
and, possibly, to combine them. For instance, in a second-order advanced SCA
involving the mutual information as distinguisher, the function E can be defined
such that E(L)

=
(
L[p],L[q]

)
for some constant indices (leakage times) p and q.

In a second-order advanced SCA involving the correlation coefficient as distin-
guisher, E may be defined such that E(L)

= (L[p]− E(L[p])) · (L[q]− E(L[q])).
Moreover, the choice of the model function must be done in accordance with the
distinguisher (see e.g. [17] and [9]).

2.2 Leakage Measurements and Observations

In the literature, two main ways have been defined to get the observations lj
during the first step of the attacks in Tables 1 and 2. The first method sim-
ply consists in executing the implementation several times (with the same input
in simple SCA or with several ones in advanced SCA) and in defining lj as the
observation related to the jth algorithm execution. Those attacks are called Ver-
tical. The second method refers to attacks where a single execution is needed and
where each lj corresponds to the observation of a processing at a different time
period during this execution. In this case, the index j refers to the time period.
The underlying assumption is that all the observations rely on the same internal
calculus of Z(k,X), parametrized by a same secret k and different known values
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Fig. 1. Vertical and Horizontal SCA

xj in advanced SCA, or a constant one x in simple SCA. Attacks corresponding
to this modus operandi are called Horizontal. Figure 1 illustrates the notations
and the differences between the two modus operandi.

All the attacks discussed in Section 2.1 can be either Vertical or Horizontal3.
Even if the Horizontal or Vertical characteristic of an SCA has no impact on
the attack steps themselves (as described in Tables 1 and 2), it impacts the
implementation security analysis. Indeed, we will see in Section 4 that a coun-
termeasure may become ineffective when going from one category of attacks to
another one. We illustrate this in the context of secure RSA implementations.

2.3 Taxonomy

Based on the discussions conducted in previous sections, we propose here a
general taxonomy for simple and advanced side-channel attacks. To name an
attack we propose to use the convention [XXX]-[YYY]-[ZZZ] where:

– XXX equals either S for simple SCA or is a reference to the statistical tool for
advanced SCA (e.g. C for Correlation, MI for Mutual Information, ML for
Maximum Likelihood, LR for Linear Regression, etc.). In case of multivariate
SCA, we propose to pad the order/dimension followed by O at the left of
the distinguisher letter.

3 Possibly, the observations acquisition phase may mix horizontal and vertical tech-
niques. In this case, the attack will be termed Rectangle.
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– YYY is an acronym referring to the leakage type; PA for Power Analysis,
EMA for Electromagnetic Analysis, TA for Timing Attacks, etc.

– ZZZ is optional and may be used to specify if the attack is profiled or not.
In this case, ZZZ is replaced by P (for Profiling) or UnP (for UnProfiling).
For instance, Template attack is a ML-PA-P attack.

Of course, all those attacks can be applied either on a Vertical or Horizontal
mode. Figure 2 illustrates the taxonomy for some existing attacks.

YYY

XXX

S-EMA

S-PA

S-TA

Simple SCA

0 Order

D-EMA

D-PA

D-TA

C-PA

MI-PA

LR-PA

ML-PA

ML-EMA

First Order

2OD-PA

2OML-PA

Second Order

Advanced SCA

TA

PA

EMA

ZZZ

P

UnP

Fig. 2. Side-Channel Attacks

In the following sections, we focus on Horizontal SCA in the RSA context.
We will recall the existing attacks and will discuss about the effectiveness of the
Vertical SCA countermeasures against Horizontal SCA.

3 RSA Context

3.1 Operation Flows in RSA Exponentiations

The execution flow of an RSA implementation is usually viewed as the succession
of only two different operations: a modular squaring and a modular multiplication
respectively denoted by O0 and O1. For convenience, we will assume that both
operations are bivariate and defined such that Oi(X,Y ) = X iY ī ·Y . For instance,
the left-to-right Square andMultiply algorithmparametrized by a d-bit long secret
k (the most significant bit is assumed to be equal to 1) and a public modulus n,
operating on a message X can be associated to the following sequence:

Y ←Of(0)(X,Y ), Y ←Of(1)(X,Y ), · · · , Y ←Of(N)(X,Y ) , (2)

where Y is the updated intermediate result (initially set to 1), N denotes the
value d+HW(k) and the binary function f is defined as:

f(j) =

{
j , if j = 0, 1

f(j − 1) · k[d− 1−∑j−2
i=0 f(i)

]
, otherwise.

(3)

The operations’ flow in (2) is illustrated on Figure 3.
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To defeat simple SCA against RSA implementations, a classical countermea-
sure is to insert dummy multiplications in order to have a regular algorithm.
This leads to the definition of the so-called Square and Multiply Always algo-
rithm which may be associated with the sequence below where each square is
followed by a multiplication whatever the secret k:

Y1←O0(X,Y1), Yk[d−1]←O1(X,Y1), Y1←O0(X,Y1), Yk[d−2]←O1(X,Y1), · · · ,
Y1←O0(X,Y1), Yk[0]←O1(X,Y1) , (4)

with Y0 denoting a garbage variable and Y1 a working register initially set to 1
(and playing the same role as Y in (2)).

Of(0) = O0

Of(1) = O1

Of(2) = O0

�Of(3) = O1

Of(4) = O0

�Of(5) = O1

k[d− 3] = 0

Of(5) = O1

k[d− 3] = 1

k[d− 2] = 0

Of(3) = O1

Of(4) = O0

�Of(5) = O1

k[d− 3] = 0

Of(5) = O1

k[d− 3] = 1

k[d− 2] = 1

k[d− 1] = 1

�O denotes a dummy operation

Fig. 3. First Loops of Square and Multiply Always algorithm

Remark 3. An improved version of the Square and Multiply Always algorithm,
based on the Montgomery Ladder trick [11], is often preferred as it is more
resistant to the so-called Safe-Error attacks [20]. In this version, there is no
garbage variable and Yk[i] is used in the subsequent operation even if k[i] is equal
to 0. We point out here that this version and the Square and Multiply Always
algorithm have exactly the same vulnerabilities with respect to advanced SCA.
Indeed, in both cases, each loop iteration in the exponentiation processes the
same operations and only the memory manipulation is different.

The granularity of the sequence descriptions in (2) and (4) is not fine enough
to investigate advanced SCA. Those attacks indeed require the identification of
intermediate results depending on small sub-parts of the input parameters. To
enable such an identification, the execution flows must be rewritten as a suc-
cession of operations on ω-bit words4. Let us assume that modular squarings
and multiplications are implemented with the schoolbook multiplication called

4 The value ω typically depends on the device architecture and is usually equal to 8,
16 or 32.
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Long Integer Multiplication (LIM for short) followed by a Barrett reduction (for
self-contentedness we recall the LIM algorithm in Appendix A). The variables
X and Y are then represented as base-2ω vectors5 (X [a])0≤a≤t and (Y [b])0≤b≤t

with t = � log2(X)
ω �. After this rewriting, we get the following decomposition of an

operation Oi, where we only exhibited the intermediate base-2ω multiplications
Z[a, b]← X [a]iY [a]ī · Y [b]:

Z[0, 0]←X[0]iY [0]ī · Y [0], Z[0, 1]←X[0]iY [0]ī · Y [1], · · · , Z[0, t]←X[0]iY [0]ī · Y [t]

Z[1, 0]←X[1]iY [1]ī · Y [0], · · · · · · , Z[1, t]←X[1]iY [1]ī · Y [t]
...

...
...

...

Z[t, 0]←X[t]iY [t]ī · Y [0], · · · · · · , Z[t, t]←X[t]iY [t]ī · Y [t]

.

Fig. 4. Decomposition of the operation Oi(X,Y ) = Xi · Y i · Y

3.2 Attacks Targets

When applied against the operations’ sequences (2) or (4), advanced SCA aim
at recovering all the bits of k one after another from the left to the right. Here,
we assume that the most significant bit of k is 1 and we show in this section and
the next one how advanced SCA succeed in recovering the value of k[d− 2]. The
attacks may further be repeated to fully recover k. To simplify the notations,
we denote the secret bit k[d − 2] by s. In a classical left-to-right Square and
Multiply algorithm, s is involved for the first time in the operation Of(3). In
this case, one can develop the operands of Of(3) in terms of s and X . Actually,
according to (3) we have f(3) = s, which means that Of(3) corresponds to the
processing X2 · X2−s (i.e. Y = X2 in Figure 4). In a left-to-right Square and
Multiply Always algorithm, the value s impacts on the fifth operation. Indeed,
depending on s, the result of the fourth operation has either been put into the
working register or in the garbage register. As a consequence, the fifth operation
(which is always a squaring O0) corresponds to the processing X2+s · X2+s

(i.e. Y = X2+s in Figure 4). Eventually, depending on the algorithm we deduce
that the elementary base-2ω multiplications Z[a, b] satisfy6:

– Square and Multiply (operation Of(3) in (2)):

Z[a, b] = X2[a] ·X2−s[b] . (5)

5 Without loss of generality, we assume that X and Y have the same length t. This
possibly implies that the binary representation of one of them has been left-padded
with 0s.

6 We alert the reader on the fact that, in this paper, we make a distinction between
the notations Xi[a] and (X[a])i: the first one denotes the (a+1)th coordinate of the
base-2ω representation of the value Xi, whereas the second one denotes the rising
at the power i of the (a+ 1)th coordinate of the base-2ω representation of the value
X.
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– Square and Multiply Always (fifth operation in (4)):

Z[a, b] = X2+s[a] ·X2+s[b] . (6)

Equations (5) and (6) show that each intermediate result Z[a, b] depends on s.
This implies that the observation La,b related to the manipulation of Z[a, b] by
the device leaks information on s. To exploit this leakage in a vertical advanced
SCA, the pair of indices (a, b) is fixed and the observations are measured for
different values x ←↩ X of the algorithm input. In an Horizontal advanced
SCA, the observations are performed for a single value x ←↩ X but different
pairs of indices (a, b) ∈ [0; t] × [0; t] (in the latter case, a and b are viewed as
random variables and will be denoted by capital letters).

3.3 Horizontal Attacks

In this section, we are interested in Horizontal analyses such as the Big Mac
attack [19] and the Horizontal Correlation Analysis [5]. For a fixed value x ←↩
X but various pairs (a, b), we assume that the adversary observes the device
behavior la,b during the processing of the intermediate results z[a, b].

Big Mac Attack. This attack is a Collision Analysis, designed in the case
of the Square and Multiply algorithm when the adversary does not known the
exponentiation input x. The principle consists in recovering the secret key k
from the most significant bit to the least significant one. According to Equation
(5), elementary operations involved in Of(3) during the modular exponentiation
can be either of the shape x2[a] ·x2[b] when s equals 0, or of the form x2[a] · x[b]
when s equals 1. As a consequence, if the attacker is able to determine whether
the leakage traces la,b, involved in this operation, correspond to multiplications
by x2[b] or by x[b], then the value of s will easily be recovered. In order to make
this distinction, the adversary performs a collision attack between the traces
la,b corresponding to Of(3) and the traces l′a,b related to another multiplication
involving x as operand (e.g. the operation Of(1) which defines the multiplication
of 1 by the input x in the Square and Multiply algorithm). To this purpose, the
attacker uses for instance the average leakages ( 1

t+1

∑
a la,b)b and ( 1

t+1

∑
a l

′
a,b)b,

and after selecting a distinguisher Δ, e.g. the Euclidean Distance, computes
the value Δ(( 1

t+1

∑
a l

′
a,b)b, (

1
t+1

∑
a la,b)b) in order to validate or invalidate the

hypothesis s = 1. As explained before, the Big-Mac attack has originally been
described as a Collision Analysis for unknown exponentiation inputs and a non-
regular Square and Multiply algorithm7 (see bold notations on right-hand sided
leaf in Figure 5).

Horizontal C-PA. Contrary to the previous attack, this one has been described
in the context of Atomic Square and Multiply implementations, and also applies
to the Square and Multiply Always algorithm (Sequence (4)) when the input x is

7 This principle can be extended to Sliding Windows implementations, see Walter’s
original paper [19].
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H-CPA

Regular

H-CPA

Non Regular

X known

Big Mac

Regular

Big Mac

Non Regular

X unknown

Fig. 5. Big-Mac attack and Horizontal CPA classification

known to the adversary. To recover the key-bit s corresponding to the variables
Z[a, b] defined in (6), the attacker involves a well-chosen model function (e.g. the
Hamming weight) and for each key-bit hypothesis ŝ ∈ {0, 1}, computes the set
of predictions ha,b = m(Z[a, b]) (where s is replaced by ŝ in (6)). Eventually,
the Pearson coefficient ρ is chosen as distinguisher and the discrimination is
done by processing ρ[(ha,b)a,b, (la,b)a,b]. The applicability of this attack has been
illustrated on Figure 5, see bold notations for the original description of the
attack.

Extension of these Attacks. Even if the Big Mac Attack has been initially
introduced for unknown exponentiation inputs, it can of course be adapted to
known entries. Indeed, another way to proceed consists in using the model func-
tionm : a, ŝ �→ 1

t+1

∑
a ϕ̂(x

2[a]·x1+ŝ[b]) where ϕ̂ is chosen according to the device
specificities (e.g. ϕ̂ equals to the Hamming weight function). In the framework
proposed in Section 2, the Big Mac Attack can thus become an Horizontal ED-
PA (with ED standing for Euclidean Distance). This could be illustrated on
Figure 5 by adding Big Mac in each leaf of the left hand-sided sub-tree. In addi-
tion, one can also use Big Mac attack to target regular implementations, such as
modular exponentiations using the Square and Multiply always algorithm. In-
deed, Equation (6) shows that operation Of(4) is either x

2[a] ·x2[b] when s equals
0, or x3[a] · x3[b] when s equals 1. In that case, the attacker can average on the
second multiplications operands instead of the first one (as done in the previous
attacks). This leads to the computation of the values ( 1

t+1

∑
b l

′
a,b)a coming from

operation Of(3) (which corresponds to x2[a] ·x[b]) and ( 1
t+1

∑
b la,b)a issued from

Of(4). From that point and as before, the attacker evaluates a distinguisher Δ
(e.g. the Euclidean Distance) to determine whether the multiplication has been
performed with x2[a] or with x3[a], which leads to recover s. Eventually, the
same process can be applied to guess the following remaining bits of the secret
key k. This extension of the Big Mac attack is illustrated on Figure 5 by the
grey-dotted box.

Applying Horizontal C-PA from the Square and Multiply always implemen-
tation to the non-regular one is obvious (see also the grey-dotted box on the
scheme).
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As seen in this section, the Big Mac attack and the Horizontal C-PA can both
be applied not only in their original contexts but against Square and Multiply
and Square and Multiply always implementations. Their success indeed does not
depend on the structure of the exponentiation algorithm. They can moreover
be applied in both known input and unknown input modes. In the sequel, we
use those observations to argue that the countermeasures proposed to defeat
Horizontal C-PA, are in fact sensible to Big Mac like attacks.

4 Existing Countermeasures

The most popular countermeasures against Vertical advanced SCA is the ex-
ponent blinding and the multiplicative/additive message blinding (e.g. [6, 14]).
The first countermeasure implies that all the observations in the adversary hands
correspond to different secrets/exponents. The second countermeasure implies
that no intermediate variable depends on the algorithm input. In the two cases,
it becomes impossible to make predictions and the Vertical first-order advanced
SCA fail.

The exponent blinding countermeasure perfectly illustrates that the effective-
ness of a countermeasure may totally change when passing from Vertical to
Horizontal contexts. Indeed, when the exponent randomization is applied, all
the variables Z[a, b] defined as in (5) or (6) will depend on the same masked bit
s̃. As a consequence, the Horizontal advanced SCA described in Section 3 will
succeed in recovering it. As the knowledge of the blinded exponent provides the
adversary with the same capabilities as knowing s itself (e.g. it can produce the
same signatures) the attack may be considered as successful. In [5], the authors
also argue that message blinding thwart Horizontal attacks only if the bit-length
λ of the random value R is greater than 32 bits. For smaller values of λ, an
efficient attack is indeed exhibited. As a consequence of the exponent blinding
ineffectiveness and of the message blinding inefficiency, there is a real lack of
countermeasures against Horizontal attacks. This led Clavier et al. to propose
the following three countermeasures [5]:

– Blind Operands in LIM. The first countermeasure proposed in [5] consists
in applying a full blinding on the words X [a] and Y [b], i.e. to substitute in
the LIM algorithm the operation X [a] · Y [b] by (X [a] − R1)(Y [b] − R2) +
R1 · Y [b] + R2 · X [a] − R1 · R2, where R1 and R2 are two ω-bit random
values. For efficiency reasons, the authors propose to compute once the values
R1 · Y [b], R2 · X [a] and R1 · R2 and to store them. The complexity of this
countermeasure is (t+1)2+2(t+1)+1 ω-bit multiplications (the unprotected
LIM requires (t + 1)2 multiplications) and 4 log2(n) + 2ω bits of additional
storage, where n is the RSA modulus.

– Randomize One Loop in LIM and Blind. The second countermeasure in [5]
starts from the first one and mixes it with a randomization of the order in
which the words X [a] are involved in the LIM. This method consists in using
a permutation vector applied to the words X [a] and in masking the words
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Y [b]. This countermeasure requires (t+1)2 + t+1 ω-bit multiplications and
2 log2(n) bits of additional storage.

– Randomize the Two Loops in LIM. This countermeasure is a variant of the
second one. In this case, the authors fully randomize the order of the process-
ings of the Z[a, b] variables. As an advantage no operand in the LIM needs
to be blinded anymore. However, the drawback is that two random permu-
tation vectors have to be stored. No extra ω-bit multiplication compared to
the unprotected LIM is needed here.

In the next section, we argue that the three countermeasures below do not fully
hide the first-order leakage and we exhibit efficient attacks.

5 Attacks against Horizontal SCA Countermeasures

The attacks presented in this section are described in the Square and Multiply
Always setting but are straightly applicable in the classical Square and Multiply
setting.

Blind Operands in LIM. In this case, the variable Z[a, b] in (6) becomes:

Z̃[a, b] = (X2+s[a]−R1) · (X2+s[b]−R2) . (7)

According to (1), the observation la,b of the Z̃[a, b] processing satisfies la,b ←↩
ϕa,b

(
Z̃[a, b]

)
+βa,b, where it can be checked that

∑
a Z̃[a, b] depends on X2+s[b],

and hence on s. This dependency can be exploited in a Horizontal C-PA by
correlating the means l̄·,b = 1

t+1

∑
a la,b with the predictions:

hb =
1

t+1

∑
a ma,b

(
X2+ŝ[a] ·X2+ŝ[b]

)
, (8)

for ŝ = 0 and ŝ = 1 and for ma,b being an estimation of the unknown function
ϕa,b. The rationale behind the definition of hb in (8) may be found in the ex-
tended version of this paper [2]. As illustrated in Figure 6, it may be observed
that the attack is still effective if the maskR1 is different for all the wordsX

2+s[a]
since the leakages are averaging over indices a to compute the predictions hb.

Simulation Results. Experiments have been performed to check that the pre-
dictions hb in (8) are consistent with the means l·,b of the observations la,b when
the hypothesis ŝ on s is valid. Indeed, in that case a correlation peak can be
observed, making the adversary guess the right key-bit value s. Then, process-
ing iteratively, the whole secret k can finally be recovered. The results that have
been obtained are sumed up in Figure 6 for a model function ma,b and ϕ defined
as the Hamming weight. Each point on the curve corresponds to the smallest
number t needed to achieve a 90% success rate, according to the noise standard
deviation. Attacks are reported for an architecture size ω in {8, 16, 32}.
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RSA 1024

RSA 2048

RSA 1024

RSA 2048

RSA 2048

RSA 4096

Fig. 6. Evolution of the ω-bit length t of X and Y (y-axis log-scaled) to achieve a 90%
success rate depending on the noise standard deviation σ (x-axis log-scaled).

Randomize One Loop in LIM and Blind. In this case, a random permu-
tation α over [0; t] is generated before each new exponentiation and the variable
Z[a, b] in (6) becomes:

Z̃[a, b] = X2+s[α(a)] · (X2+s[b]−R) . (9)

The randomization of the manipulations of the words X2+s[a] does not modify
the value of the sum

∑
a Z̃[a, b]. As a consequence, it does not change the fact

that - as for countermeasure 1 - this sum depends on X2+s[b] and hence on s.
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The previous attack against Countermeasure 1 can hence be still applied and its
efficiency is the same.

Randomize the Two Loops in LIM. In this case, two random permutations
α and β defined over [0; t] are generated and we have:

Z̃[a, b] = X2+s[α(a)] ·X2+s[β(b)] . (10)

To attack this countermeasure, a solution consists in performing the same at-
tack as against the first and the second countermeasure exhaustively for all the
possible permutations β. This attack stays efficient as long as t is reasonably
small (lower than 16).

The first attack presented in this section shows that protection strategies
based on masking are not promising. A possibility could be to use a different pair
of masks for each internal multiplication but the cost of such a countermeasure
would be prohibitive. The randomization of operations order seems to be more
interesting but the attacks exhibited in this section point out that they must
be carefully specified. In the following section we propose such a specification
where the operations order randomization is done globally over all the indices.

6 New Countermeasure

Here, we propose to randomize the two loops (over a and b) in the LIM simul-
taneously. For such a purpose, we first need to efficiently8 generate a random
permutation over {(a, b); a, b ∈ [0; t]}. To achieve good efficiency, we propose to
generate such a random permutation using Algorithm 1, following the same idea
as in [7]. Even if there is no formal proof that this method enables to generate
random permutations that are indistinguishable from perfectly random ones, we
are confident about this in practice. The number of permutations that can be
generated thanks to Algorithm 1 is around (t + 1)2� where � is the number of
random values in the input of Algorithm 1. This number is sufficiently high to
prevent attacks involving exhaustive search.

Algorithm 1. Generation of Random Permutation (GRP)

Input: Two integers t and �, a permutation α0 over [0, (t+ 1)2 − 1].
Output: A vector in [0, (t+ 1)2 − 1] (elements are represented in base t+ 1).
(r0, r1, . . . , r�−1)← random elements in Z(t+1)2

for i from 0 to �− 1 do
for j from 0 to (t+ 1)2 − 1 do

αi+1[j]← α0[(αi[j] + ri) mod (t+ 1)2]

return α�

8 This step may be very costly even for small values of the parameter t [12].
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The random permutation returned by Algorithm 1 can be used to randomize
the manipulation of the words X [a] and Y [b] simultaneaously. A second random
permutation P over the set of integers 1, 2, . . . , 2t+ 1 must be used to avoid
attacks in the carry propagation treatment. Eventually, we get the proposal of
Algorithm 2 leading to a secure Long Integer Multiplication algorithm, where
the carry registers C[h] must be of bit-length ω + log2(t+ 1).

Algorithm 2. Long Integer Multiplication with randomization of the two
loops together.

Input: X = (X[t], X[t− 1], . . . , X[0])2ω , Y = (Y [t], Y [t− 1], . . . , Y [0])2ω , p.
Output: LIM(X,Y ).
α� = (α, β)← GRP(t, p, α0)
P ← random permutation of 1, 2, . . . , 2t+ 1.
for a from 0 to 2t+ 1 do

R[a] = C[a] = 0

for h from 0 to (t+ 1)2 − 1 do
a← α[h]; b← β[h]
(U, V )2ω ← R[a+ b] +X[a] · Y [b]
R[a+ b]← V
C[a+ b+ 1]← C[a+ b+ 1] + U

for i from 1 to 2t+ 1 do
for j from 1 to 2t+ 1 do

s← P [j]
if s ≥ i then

(U, V )2ω ← R[s] + C[s]
R[s]← V
C[s+ 1]← C[s + 1] + U
C[s]← 0

return R

References

1. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual Information Analysis: a Comprehensive Study. J. Cryp-
tology 24(2), 269–291 (2011)
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A Long Integer Multiplication

Let X = (X [t], X [t− 1], . . . , X [0])2ω denote the decomposition of an integer X
in ω-bit words. The Long Integer Multiplication algorithm is:

Algorithm 3. Long Integer Multiplication

Input: X = (X[t], X[t− 1], . . . , X[0])2ω , Y = (Y [t], Y [t− 1], . . . , Y [0])2ω .
Output: LIM(X,Y ).
for a from 0 to 2t+ 1 do

R[a]← 0

for a from 0 to t do
C ← 0
for b from 0 to t do

(U, V )2ω ← Z[a, b] = X[a] · Y [b]
(U, V )2ω ← (U, V )2ω +C
(U, V )2ω ← (U, V )2ω +R[a+ b]
R[a+ b]← V
C ← U

R[a+ t+ 1]← C

return R
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