

Lecture Notes in Computer Science 7779
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ed Dawson (Ed.)

Topics in Cryptology –
CT-RSA 2013
The Cryptographers’ Track at the RSA Conference 2013
San Francisco, CA, USA, February 25 - March 1, 2013
Proceedings

13

Volume Editor

Ed Dawson
Queensland University of Technology
Institute for Future Enviroments
Brisbane, QLD 4000, Australia
E-mail: e.dawson@qut.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36094-7 e-ISBN 978-3-642-36095-4
DOI 10.1007/978-3-642-36095-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012955763

CR Subject Classification (1998): E.3, K.6.5, D.4.6, K.4.4, J.1, C.2.0, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The RSA conference has been a major international event for information
security experts since its introduction in 1991. It is an annual event that attracts
hundreds of vendors and thousands of participants from industry, government,
and academia. Since 2001, the RSA conference has included the Cryptographers’
Track (CT-RSA), which provides a forum for current research in cryptography.
CT-RSA has become a major publication venue for cryptographers.

This year’s RSA conference was held in San Francisco, California, from Febru-
ary 25 to March 1, 2013. The CT-RSA conference servers were hosted by Queens-
land University of Technology in Australia. This year 89 submissions were re-
ceived out of which 25 papers were selected. I would like to thank the authors of
all submissions. The review process was thorough with each submission receiving
at least three reviews (five if the submitted paper included a Program Commit-
tee member). I wish to thank all Program Committee members as well as the
subreviewers who assisted them for their hard and dedicated work in selecting
the papers for CT-RSA 2013.

Two invited talks were given. The first was by Nadia Heninger: “Mining
Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices.” The
second was by John Kelsey: “SHA3 and the Future of Hashing.”

I would especially like to thank my postdoctoral research fellow Farzad Salim,
who assisted me throughout the organization of the program for CT-RSA. I
would also like to thank Liz McVety from the RSA conference organization for
assisting with arrangements for speakers and Orr Dunkelman for the advise.
Finally, I would like to thank Thomas Baigneres and Matthieu Finiasz for the
iChair software that helped facilitate a smooth review process.

November 2012 Ed Dawson

Organization

Program Chair

Ed Dawson Queensland University of Technology, Australia

Steering Committee

Orr Dunkelman University of Haifa, Israel
Marc Fischlin Darmstadt University of Technology, Germany
Ari Juels RSA Laboratories, USA
Aggelos Kiayias University of Connecticut, USA
Josef Pieprzyk Macquarie University, Australia
Ron Rivest MIT, USA
Moti Yung Google, USA

Program Committee

Michel Abdalla École Normale Supérieure, France
Masayuki Abe NTT Secure Platform Laboratories, Japan
Josh Benaloh Microsoft Research, USA
John R. Black University of Colorado at Boulder, USA
Ioana Cristina Boureanu EPFL, Switzerland
Lily Chen NIST, USA
Seung Geol Choi University of Maryland, USA
Ed Dawson (Chair) Queensland University of Technology, Australia
Yvo Desmedt UT Dallas, USA
Pierre-Alain Fouque École Normale Supérieure, France
Jovan Dj. Golic Telecom Italia, Italy
Tor Helleseth University of Bergen, Norway
Matt Henricksen Institute for Infocomm Research (I2R),

Singapore
Huseyin Hisil Izmir Yasar University, Turkey
Kwangjo Kim Korea Advanced Institute of Science and

Technology (KAIST), Korea
Lars R. Knudsen Technical University of Denmark, Denmark
Xuejia Lai Shanghai Jiao Tong University, China
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands

VIII Organization

Arjen Lenstra EPFL, Switzerland
Javier Lopez University of Malaga, Spain
Stefan Lucks Bauhaus-Universität Weimar, Germany
Mark Manulis University of Surrey, UK
Tsutomu Matsumoto Yokohama National University, Japan
Chris Mitchell Royal Holloway, UK
Atsuko Miyaji Japan Advanced Institute of Science

and Technology (JAIST), Japan
Elisabeth Oswald University of Bristol, UK
Josef Pieprzyk Macquarie University, Australia
Rei Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute, India
Joerg Schwenk Ruhr-Universität Bochum, Germany
Douglas Stebila Queensland University of Technology, Australia
Andreas Steffen University of Applied Sciences Rapperswil,

Switzerland
Willy Susilo University of Wollongong, Australia
Routo Terada University of São Paulo, Brazil
Huaxiong Wang Nanyang Technological University, Singapore
Chuan-Kun Wu IIE, Chinese Academy of Sciences, China

External Reviewers

Asli Bay
Anja Becker
Daniel J. Bernstein
Sanjay Bhattacherjee
Andrey Bogdanov
Julia Borghoff
Joppe Bos
Colin Boyd
Xavier Boyen
Tom Carlson
Debrup Chakraborty
Jiageng Chen
Jie Chen
Sherman Chow
Clavier Christophe
Craig Costello
Onete Cristina
Romar dela Cruz
Patrick Derbez
Alexandre Duc
Gerardo Fernandez

Christian Forler
Eiichiro Fujisaki
Wei Gao
Zheng Gong
Teng Guo
Kishan Chand Gupta
Mitsuhiro Hattori
Nadia Heninger
Jialin Huang
Qiong Huang
Tibor Jager
Stanislaw Jarecki
Jeremy Jean
Dimitar Jetchev
Shaoquan Jiang
Pierre Karpman
Oleksandr Kazymyrov
John Kelsey
Kaleb Lee
Hoon Wei Lim
Anders Smedstuen Lund

Jhawar Mahavir
Ho AuMan
Dustin Moody
Sean Murphy
Pablo Najera
Kris Narayan
Ta KhoaNguyen
Juanma Gonzalez Nieto
Ryo Nishimaki
David Nuñez
Katsuyuki Okeya
Kazumasa Omote
Jose A. Onieva
Matthew Parker
Rene Peralta
Krzysztof Pietrzak
Somindu Ramanna
Jothi Rangasamy
Peter Schwabe
Shashank Singh
Daniel Smith

Organization IX

Le Su
Petr Susil
Stefan Tillich
Michael Tunstall
Meltem Sonmez Turan
Serge Vaudenay
Roel Verdult
Damien Vergnaud

Vincent Verneuil
Huaxiong Wang
Jakob Wenzel
Marcin Wojcik
Kenneth Wong
Keita Xagawa
Hong Xu
Jing Xu

Weijia Xue
Guomin Yang
Reza Z’aba
Liangfeng Zhang
Rui Zhang
Yun Zhang
Jinmin Zhong
Yongbin Zhou

Table of Contents

Side Channel Attacks I

Horizontal and Vertical Side-Channel Attacks against Secure RSA
Implementations . 1

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild

Timing Attack against Protected RSA-CRT Implementation Used
in PolarSSL . 18

Cyril Arnaud and Pierre-Alain Fouque

Digital Signatures I

Fair Exchange of Short Signatures without Trusted Third Party 34
Philippe Camacho

Fully Secure Attribute-Based Systems with Short
Ciphertexts/Signatures and Threshold Access Structures 50

Cheng Chen, Jie Chen, Hoon Wei Lim, Zhenfeng Zhang,
Dengguo Feng, San Ling, and Huaxiong Wang

Public-Key Encryption I

A Robust and Plaintext-Aware Variant of Signed ElGamal
Encryption . 68

Yannick Seurin and Joana Treger

Efficient Public Key Cryptosystem Resilient to Key Leakage Chosen
Ciphertext Attacks . 84

Shengli Liu, Jian Weng, and Yunlei Zhao

Cryptographic Protocols I

Simple, Efficient and Strongly KI-Secure Hierarchical Key Assignment
Schemes . 101

Eduarda S.V. Freire, Kenneth G. Paterson, and Bertram Poettering

Randomized Partial Checking Revisited . 115
Shahram Khazaei and Douglas Wikström

XII Table of Contents

Secure Implementation Methods

Randomly Failed! The State of Randomness in Current Java
Implementations . 129

Kai Michaelis, Christopher Meyer, and Jörg Schwenk

Efficient Vector Implementations of AES-Based Designs: A Case Study
and New Implemenations for Grøstl . 145

Severin Holzer-Graf, Thomas Krinninger, Martin Pernull,
Martin Schläffer, Peter Schwabe, David Seywald, and
Wolfgang Wieser

Symmetric Key Primitives I

Collisions for the WIDEA-8 Compression Function 162
Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varıcı

Finding Collisions for Round-Reduced SM3 . 174
Florian Mendel, Tomislav Nad, and Martin Schläffer

Many Weak Keys for PRINTcipher: Fast Key Recovery and
Countermeasures . 189

Stanislav Bulygin, Michael Walter, and Johannes Buchmann

Side Channel Attacks II

Applying Remote Side-Channel Analysis Attacks on a Security-Enabled
NFC Tag . 207

Thomas Korak and Thomas Plos

Practical Leakage-Resilient Pseudorandom Objects with Minimum
Public Randomness . 223

Yu Yu and François-Xavier Standaert

Cryptographic Protocols II

Cryptanalytic Attacks on MIFARE Classic Protocol 239
Jovan Dj. Golić

Asynchronous Computational VSS with Reduced Communication
Complexity . 259

Michael Backes, Amit Datta, and Aniket Kate

Public-Key Encryption II

Proxy Re-Encryption in a Stronger Security Model Extended
from CT-RSA2012 . 277

Toshiyuki Isshiki, Manh Ha Nguyen, and Keisuke Tanaka

Table of Contents XIII

Solving BDD by Enumeration: An Update . 293
Mingjie Liu and Phong Q. Nguyen

Identity-Based Encryption

The k-BDH Assumption Family: Bilinear Map Cryptography
from Progressively Weaker Assumptions . 310

Karyn Benson, Hovav Shacham, and Brent Waters

Accountable Authority Identity-Based Encryption with Public
Traceability . 326

Junzuo Lai, Robert H. Deng, Yunlei Zhao, and Jian Weng

Efficient Delegation of Key Generation and Revocation Functionalities
in Identity-Based Encryption . 343

Jae Hong Seo and Keita Emura

Symmetric Key Primitives II

The Low-Call Diet: Authenticated Encryption for Call Counting
HSM Users . 359

Mike Bond, George French, Nigel P. Smart, and Gaven J. Watson

A Fully Homomorphic Cryptosystem with Approximate Perfect
Secrecy . 375

Michal Hojśık and Veronika P̊ulpánová

Weak Keys of the Full MISTY1 Block Cipher for Related-Key
Differential Cryptanalysis . 389

Jiqiang Lu, Wun-She Yap, and Yongzhuang Wei

Author Index . 405

Horizontal and Vertical Side-Channel Attacks

against Secure RSA Implementations

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild

ANSSI, 51, Boulevard de la Tour-Maubourg, 75700 Paris 07 SP, France
firstname.name@ssi.gouv.fr

Abstract. Since the introduction of side-channel attacks in the nineties,
RSA implementations have been a privileged target. A wide variety of
countermeasures have been proposed and most of practical attacks are
nowadays efficiently defeated by them. However, in a recent work pub-
lished at ICICS 2010, Clavier et al. have pointed out that almost all the
existing countermeasures were ineffective if the attacks are performed
with a modus operandi called Horizontal. Such attacks, originally intro-
duced by Colin Walter at CHES 2001, involve a single observation trace
contrary to the classical attacks where several ones are required. To de-
feat Horizontal attacks, the authors of the ICICS paper have proposed a
set of new countermeasures. In this paper, we introduce a general frame-
work enabling to model both Horizontal and classical attacks (called
Vertical) in a simple way. This framework enables to enlighten the sim-
ilarities and the differences of those attack types. From this formalism,
we show that even if Clavier et al.’s countermeasures thwart existing
attacks, they do not fully solve the leakage issue. Actually, flaws are
exhibited in this paper and efficient attacks are devised. We eventually
propose a new countermeasure.

1 Introduction

Side-Channel Analysis (SCA) is a cryptanalytic technique that consisting in ex-
ploiting the side channel leakage (e.g. the power consumption, the electromag-
netic emanations) produced during the execution of a cryptographic algorithm
embedded on a physical device. It uses the fact that this leakage is statisti-
cally dependent on the intermediate variables that are processed. Some of these
variables are sensitive in the sense that they are related to secret data, thus
reaching information on them enables efficient key recovery attacks [3, 9, 15].
Since the publication of the first attacks, many papers describing either counter-
measures or attack improvements have been published (see [3,4,16] for example).
Among these improvements, higher-order SCA are of particular interest. They
extend the initial concept by considering a set of several instructions instead of
a single one and circumvent many countermeasures proposed in the literature
(e.g. [4, 10]). Another significant improvement has been proposed initially by
Walter [19] and then studied more deeply by Clavier et al. in [5]. Essentially,
it consists in a new modus operandi called Horizontal, in which sensitive infor-
mation is extracted from a single measurement split into several parts. It differs

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Bauer et al.

from the classical Vertical mode where information is obtained from different al-
gorithm executions. Horizontal mode applies when the same guessable sub-part
of a secret is involved in many internal operations during the overall algorithm
processing. This is particularly the case for RSA implementations where the ex-
ponentiation is composed of small multiplications that all depend on the same
secret exponent sub-part. As noticed in [5, 19], a striking point is that classical
countermeasures (e.g. the exponent or the message blinding techniques), efficient
in the Vertical context, turn out to be almost ineffective in the Horizontal one.
This makes the construction of new appropriate countermeasures a real issue
for the security of embedded implementations of RSA and similar algorithms.
An attempt to design such countermeasures thwarting both types of attacks has
been done in [5]. Actually, we show in this paper that these countermeasures
(Sections 4 and 5) do not completely remove the leakage, even if they thwart
some attacks. To exhibit the flaws and, eventually, to propose new countermea-
sures (Section 6), we first introduce a framework enabling to formally study the
resistance of an implementation against side channel attacks in both Horizontal
and Vertical modes (Sections 2 and 3). This framework could be used to further
analyse the security of other algorithms’ implementations than RSA ones. On
the other hand, the countermeasure proposed in this paper is a first step towards
an efficient and effective security against Horizontal attacks. The definition of
alternative countermeasures is a new open avenue for further research.

2 A Comprehensive Study of Side-Channel Analyses

In the following, a general framework is introduced which enables to describe
most of the existing attacks in a similar way and to identify their core differences
(actually the leakage pre-treatment, the leakage model and the statistical test).

2.1 A General Framework for Side-Channel Analyses

Notations. A realization of a random variable X is referred to as the corre-
sponding lower-case letter x. A sample of observations of X is denoted by (x) or
by (xi)i when an indexation is needed. In this case, the global event is sumed
up as (x) ←↩ X . The ith coordinate of a variable X (resp. x), viewed as a vector,
is denoted by X [i] (resp. x[i]). As usual, the notation E[X] refers to the mean
of X . For clarity reasons we sometimes use the notation EX [·] to enlighten the
variable over which the mean is computed.

All the attacks below target a variable Z(k,X) defined as the output of a spe-
cific computation (e.g. a multiplication) performed by the device and
parametrized by a secret sub-part k and a public variable X1. In the follow-
ing, we shall use Z instead of Z(k,X) if there is no ambiguity on k and X .

To recover information on k, the attacks are performed on a sample of obser-
vations related to the processing of Z by the device. Each of those observations,

1 We shall sometimes need to consider the known value as a pair of variables: in this
case we will use the notation (X,Y) instead of X.

Horizontal and Vertical Side-Channel Attacks 3

such as power consumption, electromagnetic emanations, and so on, is usually
composed of several physical measurements corresponding to leakages at differ-
ent times ti. It can hence be viewed as a realization of a multivariate random
variable L whose coordinates L[i] satisfy:

L[i] = ϕi

(
Z
)
+ βi , (1)

where ϕi only depends on the device behaviour at time ti during the processing
of Z and βi is an independent Gaussian noise with zero mean and standard
deviation σi. The function ϕi is a priori unknown. The index i will be sometimes
omitted. In this case, it is assumed that the same function is associated to all
the time indices.

An SCA is based on the Hypothesis Testing principle [13]. To make this test, a

set of prediction values hj are deduced from each hypothesis k̂ on k and from the
sample of implementation inputs (xj) corresponding to the observations. This
step involves a leakage model function m that must have been priorly chosen
by the attacker (for instance based on its knowledge on the attacked device
architecture). With this model function, the prediction values hj are built s.t.

hj = m(z(k̂, xj)). Eventually, the adversary uses a distinguisher Δ to compare
the hj with the observations lj ←↩ L|X = xj .

The overall set of SCA is usually split in two subclasses. The first one, called
simple Side-Channel Analysis, contains all attacks where observations only need
to be done on a single value of the public input parameter (this implies that all
the xj are equal to a same value, say x). This set contains S-PA [14], S-EMA
[8,18] or S-TA (Timing Analysis) [14]. The second subclass, called advanced Side-
Channel Analysis, includes attacks where observations of the targeted internal
processing must be done for several public input parameters. In particular, it
contains univariate SCA attacks such as DPA [15], CPA [3] or MIA [9] and
multivariate SCA attacks such as HO-DPA [15, 17] or HO-MIA [1]. We give
hereafter a more formal description of those two subclasses.

Simple SCA. The class of simple SCA includes all Vertical or Horizontal SCA
where the adversary makes observations for a single algorithm input. Table 1
provides a description of a simple Side-Channel Analysis2.

Remark 1. In theory, simple SCA may be conducted with a single observation.
In practice however, it is often necessary to use several observations of the pro-
cessing for the same variable x in order to reduce the noise impact. In this
case, the statistical distinguisher Δ may for instance involve a preliminary step
consisting in averaging the observations sample.

Advanced SCA. All the attacks where observations must involve different
inputs belong to the advanced SCA category. This kind of attacks follows the
outlines given in Table 2.

2 In contexts where the adversary is not allowed to choose the algorithm input but
knows it, the first step just aims at fixing the input value for the rest of the attack.

4 A. Bauer et al.

Table 1. Simple Side-Channel Analysis

1. Choose a value x for X.
2. Measure a sample (lj)j ←↩ (L|X = x) of N leakages.
3. Select a distinguisher Δ and choose a model function m.

4. For each hypothesis k̂ on k, compute h = m(z(k̂, x)).

5. For each k̂, compute Δ[k̂] = Δ
[
(lj)j ,h

]
.

6. Deduce from Δ[·] information on k.

Table 2. Advanced Side-Channel Analysis

1. Get N measurements (lj , xj)j ←↩ (L, X).
2. Select a distinguisher Δ and choose a model function m.

3. For each hypothesis k̂ on k build a set of predictions hj

such that hj = m(z(k̂, xj)).

4. For each k̂, compute Δ[k̂] = Δ
[
(hj)j , (lj)j

]
5. Deduce from Δ[·] information on k.

Remark 2. Depending on the statistical treatment processed by the distinguisher,
the latter one may include a particular leakage post-processing E . This post-
treatment may be used to select some particular points in the leakage traces
and, possibly, to combine them. For instance, in a second-order advanced SCA
involving the mutual information as distinguisher, the function E can be defined
such that E

(
L
)
=
(
L[p],L[q]

)
for some constant indices (leakage times) p and q.

In a second-order advanced SCA involving the correlation coefficient as distin-
guisher, E may be defined such that E

(
L
)
= (L[p]− E(L[p])) · (L[q]− E(L[q])).

Moreover, the choice of the model function must be done in accordance with the
distinguisher (see e.g. [17] and [9]).

2.2 Leakage Measurements and Observations

In the literature, two main ways have been defined to get the observations lj
during the first step of the attacks in Tables 1 and 2. The first method sim-
ply consists in executing the implementation several times (with the same input
in simple SCA or with several ones in advanced SCA) and in defining lj as the
observation related to the jth algorithm execution. Those attacks are called Ver-
tical. The second method refers to attacks where a single execution is needed and
where each lj corresponds to the observation of a processing at a different time
period during this execution. In this case, the index j refers to the time period.
The underlying assumption is that all the observations rely on the same internal
calculus of Z(k,X), parametrized by a same secret k and different known values

Horizontal and Vertical Side-Channel Attacks 5

Vertical SCA Horizontal SCA

First execution

Second execution

N + 1th execution
1
st
pe
ri
od

2
n
d

pe
ri
od

N
+
1
th

pe
ri
od

...

l0 ←↩ L|X = x0

leakage
values

time

l1 ←↩ L|X = x1

l1[i]←↩ L[i]|X = x1

ti

lN ←↩ L|X = xN

lN [i]←↩ L[i]|X = xN

ti

l0 ←↩ L|X = x0 lN ←↩ L|X = xN

. . .

Fig. 1. Vertical and Horizontal SCA

xj in advanced SCA, or a constant one x in simple SCA. Attacks corresponding
to this modus operandi are called Horizontal. Figure 1 illustrates the notations
and the differences between the two modus operandi.

All the attacks discussed in Section 2.1 can be either Vertical or Horizontal3.
Even if the Horizontal or Vertical characteristic of an SCA has no impact on
the attack steps themselves (as described in Tables 1 and 2), it impacts the
implementation security analysis. Indeed, we will see in Section 4 that a coun-
termeasure may become ineffective when going from one category of attacks to
another one. We illustrate this in the context of secure RSA implementations.

2.3 Taxonomy

Based on the discussions conducted in previous sections, we propose here a
general taxonomy for simple and advanced side-channel attacks. To name an
attack we propose to use the convention [XXX]-[YYY]-[ZZZ] where:

– XXX equals either S for simple SCA or is a reference to the statistical tool for
advanced SCA (e.g. C for Correlation, MI for Mutual Information, ML for
Maximum Likelihood, LR for Linear Regression, etc.). In case of multivariate
SCA, we propose to pad the order/dimension followed by O at the left of
the distinguisher letter.

3 Possibly, the observations acquisition phase may mix horizontal and vertical tech-
niques. In this case, the attack will be termed Rectangle.

6 A. Bauer et al.

– YYY is an acronym referring to the leakage type; PA for Power Analysis,
EMA for Electromagnetic Analysis, TA for Timing Attacks, etc.

– ZZZ is optional and may be used to specify if the attack is profiled or not.
In this case, ZZZ is replaced by P (for Profiling) or UnP (for UnProfiling).
For instance, Template attack is a ML-PA-P attack.

Of course, all those attacks can be applied either on a Vertical or Horizontal
mode. Figure 2 illustrates the taxonomy for some existing attacks.

YYY

XXX

S-EMA

S-PA

S-TA

Simple SCA

0 Order

D-EMA

D-PA

D-TA

C-PA

MI-PA

LR-PA

ML-PA

ML-EMA

First Order

2OD-PA

2OML-PA

Second Order

Advanced SCA

TA

PA

EMA

ZZZ

P

UnP

Fig. 2. Side-Channel Attacks

In the following sections, we focus on Horizontal SCA in the RSA context.
We will recall the existing attacks and will discuss about the effectiveness of the
Vertical SCA countermeasures against Horizontal SCA.

3 RSA Context

3.1 Operation Flows in RSA Exponentiations

The execution flow of an RSA implementation is usually viewed as the succession
of only two different operations: a modular squaring and a modular multiplication
respectively denoted by O0 and O1. For convenience, we will assume that both
operations are bivariate and defined such that Oi(X,Y) = X iY ī ·Y . For instance,
the left-to-right Square andMultiply algorithmparametrized by a d-bit long secret
k (the most significant bit is assumed to be equal to 1) and a public modulus n,
operating on a message X can be associated to the following sequence:

Y ←Of(0)(X,Y), Y ←Of(1)(X,Y), · · · , Y ←Of(N)(X,Y) , (2)

where Y is the updated intermediate result (initially set to 1), N denotes the
value d+HW(k) and the binary function f is defined as:

f(j) =

{
j , if j = 0, 1

f(j − 1) · k
[
d− 1−

∑j−2
i=0 f(i)

]
, otherwise.

(3)

The operations’ flow in (2) is illustrated on Figure 3.

Horizontal and Vertical Side-Channel Attacks 7

To defeat simple SCA against RSA implementations, a classical countermea-
sure is to insert dummy multiplications in order to have a regular algorithm.
This leads to the definition of the so-called Square and Multiply Always algo-
rithm which may be associated with the sequence below where each square is
followed by a multiplication whatever the secret k:

Y1←O0(X,Y1), Yk[d−1]←O1(X,Y1), Y1←O0(X,Y1), Yk[d−2]←O1(X,Y1), · · · ,
Y1←O0(X,Y1), Yk[0]←O1(X,Y1) , (4)

with Y0 denoting a garbage variable and Y1 a working register initially set to 1
(and playing the same role as Y in (2)).

Of(0) = O0

Of(1) = O1

Of(2) = O0

�Of(3) = O1

Of(4) = O0

�Of(5) = O1

k[d− 3] = 0

Of(5) = O1

k[d− 3] = 1

k[d− 2] = 0

Of(3) = O1

Of(4) = O0

�Of(5) = O1

k[d− 3] = 0

Of(5) = O1

k[d− 3] = 1

k[d− 2] = 1

k[d− 1] = 1

�O denotes a dummy operation

Fig. 3. First Loops of Square and Multiply Always algorithm

Remark 3. An improved version of the Square and Multiply Always algorithm,
based on the Montgomery Ladder trick [11], is often preferred as it is more
resistant to the so-called Safe-Error attacks [20]. In this version, there is no
garbage variable and Yk[i] is used in the subsequent operation even if k[i] is equal
to 0. We point out here that this version and the Square and Multiply Always
algorithm have exactly the same vulnerabilities with respect to advanced SCA.
Indeed, in both cases, each loop iteration in the exponentiation processes the
same operations and only the memory manipulation is different.

The granularity of the sequence descriptions in (2) and (4) is not fine enough
to investigate advanced SCA. Those attacks indeed require the identification of
intermediate results depending on small sub-parts of the input parameters. To
enable such an identification, the execution flows must be rewritten as a suc-
cession of operations on ω-bit words4. Let us assume that modular squarings
and multiplications are implemented with the schoolbook multiplication called

4 The value ω typically depends on the device architecture and is usually equal to 8,
16 or 32.

8 A. Bauer et al.

Long Integer Multiplication (LIM for short) followed by a Barrett reduction (for
self-contentedness we recall the LIM algorithm in Appendix A). The variables
X and Y are then represented as base-2ω vectors5 (X [a])0≤a≤t and (Y [b])0≤b≤t

with t = � log2(X)
ω �. After this rewriting, we get the following decomposition of an

operation Oi, where we only exhibited the intermediate base-2ω multiplications
Z[a, b] ← X [a]iY [a]ī · Y [b]:

Z[0, 0]←X[0]iY [0]ī · Y [0], Z[0, 1]←X[0]iY [0]ī · Y [1], · · · , Z[0, t]←X[0]iY [0]ī · Y [t]

Z[1, 0]←X[1]iY [1]ī · Y [0], · · · · · · , Z[1, t]←X[1]iY [1]ī · Y [t]
...

...
...

...

Z[t, 0]←X[t]iY [t]ī · Y [0], · · · · · · , Z[t, t]←X[t]iY [t]ī · Y [t]

.

Fig. 4. Decomposition of the operation Oi(X,Y) = Xi · Y i · Y

3.2 Attacks Targets

When applied against the operations’ sequences (2) or (4), advanced SCA aim
at recovering all the bits of k one after another from the left to the right. Here,
we assume that the most significant bit of k is 1 and we show in this section and
the next one how advanced SCA succeed in recovering the value of k[d− 2]. The
attacks may further be repeated to fully recover k. To simplify the notations,
we denote the secret bit k[d − 2] by s. In a classical left-to-right Square and
Multiply algorithm, s is involved for the first time in the operation Of(3). In
this case, one can develop the operands of Of(3) in terms of s and X . Actually,
according to (3) we have f(3) = s, which means that Of(3) corresponds to the
processing X2 · X2−s (i.e. Y = X2 in Figure 4). In a left-to-right Square and
Multiply Always algorithm, the value s impacts on the fifth operation. Indeed,
depending on s, the result of the fourth operation has either been put into the
working register or in the garbage register. As a consequence, the fifth operation
(which is always a squaring O0) corresponds to the processing X2+s · X2+s

(i.e. Y = X2+s in Figure 4). Eventually, depending on the algorithm we deduce
that the elementary base-2ω multiplications Z[a, b] satisfy6:

– Square and Multiply (operation Of(3) in (2)):

Z[a, b] = X2[a] ·X2−s[b] . (5)

5 Without loss of generality, we assume that X and Y have the same length t. This
possibly implies that the binary representation of one of them has been left-padded
with 0s.

6 We alert the reader on the fact that, in this paper, we make a distinction between
the notations Xi[a] and (X[a])i: the first one denotes the (a+1)th coordinate of the
base-2ω representation of the value Xi, whereas the second one denotes the rising
at the power i of the (a+ 1)th coordinate of the base-2ω representation of the value
X.

Horizontal and Vertical Side-Channel Attacks 9

– Square and Multiply Always (fifth operation in (4)):

Z[a, b] = X2+s[a] ·X2+s[b] . (6)

Equations (5) and (6) show that each intermediate result Z[a, b] depends on s.
This implies that the observation La,b related to the manipulation of Z[a, b] by
the device leaks information on s. To exploit this leakage in a vertical advanced
SCA, the pair of indices (a, b) is fixed and the observations are measured for
different values x ←↩ X of the algorithm input. In an Horizontal advanced
SCA, the observations are performed for a single value x ←↩ X but different
pairs of indices (a, b) ∈ [0; t] × [0; t] (in the latter case, a and b are viewed as
random variables and will be denoted by capital letters).

3.3 Horizontal Attacks

In this section, we are interested in Horizontal analyses such as the Big Mac
attack [19] and the Horizontal Correlation Analysis [5]. For a fixed value x ←↩
X but various pairs (a, b), we assume that the adversary observes the device
behavior la,b during the processing of the intermediate results z[a, b].

Big Mac Attack. This attack is a Collision Analysis, designed in the case
of the Square and Multiply algorithm when the adversary does not known the
exponentiation input x. The principle consists in recovering the secret key k
from the most significant bit to the least significant one. According to Equation
(5), elementary operations involved in Of(3) during the modular exponentiation
can be either of the shape x2[a] ·x2[b] when s equals 0, or of the form x2[a] · x[b]
when s equals 1. As a consequence, if the attacker is able to determine whether
the leakage traces la,b, involved in this operation, correspond to multiplications
by x2[b] or by x[b], then the value of s will easily be recovered. In order to make
this distinction, the adversary performs a collision attack between the traces
la,b corresponding to Of(3) and the traces l′a,b related to another multiplication
involving x as operand (e.g. the operation Of(1) which defines the multiplication
of 1 by the input x in the Square and Multiply algorithm). To this purpose, the
attacker uses for instance the average leakages (1

t+1

∑
a la,b)b and (1

t+1

∑
a l

′
a,b)b,

and after selecting a distinguisher Δ, e.g. the Euclidean Distance, computes
the value Δ((1

t+1

∑
a l

′
a,b)b, (

1
t+1

∑
a la,b)b) in order to validate or invalidate the

hypothesis s = 1. As explained before, the Big-Mac attack has originally been
described as a Collision Analysis for unknown exponentiation inputs and a non-
regular Square and Multiply algorithm7 (see bold notations on right-hand sided
leaf in Figure 5).

Horizontal C-PA. Contrary to the previous attack, this one has been described
in the context of Atomic Square and Multiply implementations, and also applies
to the Square and Multiply Always algorithm (Sequence (4)) when the input x is

7 This principle can be extended to Sliding Windows implementations, see Walter’s
original paper [19].

10 A. Bauer et al.

H-CPA

Regular

H-CPA

Non Regular

X known

Big Mac

Regular

Big Mac

Non Regular

X unknown

Fig. 5. Big-Mac attack and Horizontal CPA classification

known to the adversary. To recover the key-bit s corresponding to the variables
Z[a, b] defined in (6), the attacker involves a well-chosen model function (e.g. the
Hamming weight) and for each key-bit hypothesis ŝ ∈ {0, 1}, computes the set
of predictions ha,b = m(Z[a, b]) (where s is replaced by ŝ in (6)). Eventually,
the Pearson coefficient ρ is chosen as distinguisher and the discrimination is
done by processing ρ[(ha,b)a,b, (la,b)a,b]. The applicability of this attack has been
illustrated on Figure 5, see bold notations for the original description of the
attack.

Extension of these Attacks. Even if the Big Mac Attack has been initially
introduced for unknown exponentiation inputs, it can of course be adapted to
known entries. Indeed, another way to proceed consists in using the model func-
tionm : a, ŝ �→ 1

t+1

∑
a ϕ̂(x

2[a]·x1+ŝ[b]) where ϕ̂ is chosen according to the device
specificities (e.g. ϕ̂ equals to the Hamming weight function). In the framework
proposed in Section 2, the Big Mac Attack can thus become an Horizontal ED-
PA (with ED standing for Euclidean Distance). This could be illustrated on
Figure 5 by adding Big Mac in each leaf of the left hand-sided sub-tree. In addi-
tion, one can also use Big Mac attack to target regular implementations, such as
modular exponentiations using the Square and Multiply always algorithm. In-
deed, Equation (6) shows that operation Of(4) is either x

2[a] ·x2[b] when s equals
0, or x3[a] · x3[b] when s equals 1. In that case, the attacker can average on the
second multiplications operands instead of the first one (as done in the previous
attacks). This leads to the computation of the values (1

t+1

∑
b l

′
a,b)a coming from

operation Of(3) (which corresponds to x2[a] ·x[b]) and (1
t+1

∑
b la,b)a issued from

Of(4). From that point and as before, the attacker evaluates a distinguisher Δ
(e.g. the Euclidean Distance) to determine whether the multiplication has been
performed with x2[a] or with x3[a], which leads to recover s. Eventually, the
same process can be applied to guess the following remaining bits of the secret
key k. This extension of the Big Mac attack is illustrated on Figure 5 by the
grey-dotted box.

Applying Horizontal C-PA from the Square and Multiply always implemen-
tation to the non-regular one is obvious (see also the grey-dotted box on the
scheme).

Horizontal and Vertical Side-Channel Attacks 11

As seen in this section, the Big Mac attack and the Horizontal C-PA can both
be applied not only in their original contexts but against Square and Multiply
and Square and Multiply always implementations. Their success indeed does not
depend on the structure of the exponentiation algorithm. They can moreover
be applied in both known input and unknown input modes. In the sequel, we
use those observations to argue that the countermeasures proposed to defeat
Horizontal C-PA, are in fact sensible to Big Mac like attacks.

4 Existing Countermeasures

The most popular countermeasures against Vertical advanced SCA is the ex-
ponent blinding and the multiplicative/additive message blinding (e.g. [6, 14]).
The first countermeasure implies that all the observations in the adversary hands
correspond to different secrets/exponents. The second countermeasure implies
that no intermediate variable depends on the algorithm input. In the two cases,
it becomes impossible to make predictions and the Vertical first-order advanced
SCA fail.

The exponent blinding countermeasure perfectly illustrates that the effective-
ness of a countermeasure may totally change when passing from Vertical to
Horizontal contexts. Indeed, when the exponent randomization is applied, all
the variables Z[a, b] defined as in (5) or (6) will depend on the same masked bit
s̃. As a consequence, the Horizontal advanced SCA described in Section 3 will
succeed in recovering it. As the knowledge of the blinded exponent provides the
adversary with the same capabilities as knowing s itself (e.g. it can produce the
same signatures) the attack may be considered as successful. In [5], the authors
also argue that message blinding thwart Horizontal attacks only if the bit-length
λ of the random value R is greater than 32 bits. For smaller values of λ, an
efficient attack is indeed exhibited. As a consequence of the exponent blinding
ineffectiveness and of the message blinding inefficiency, there is a real lack of
countermeasures against Horizontal attacks. This led Clavier et al. to propose
the following three countermeasures [5]:

– Blind Operands in LIM. The first countermeasure proposed in [5] consists
in applying a full blinding on the words X [a] and Y [b], i.e. to substitute in
the LIM algorithm the operation X [a] · Y [b] by (X [a] − R1)(Y [b] − R2) +
R1 · Y [b] + R2 · X [a] − R1 · R2, where R1 and R2 are two ω-bit random
values. For efficiency reasons, the authors propose to compute once the values
R1 · Y [b], R2 · X [a] and R1 · R2 and to store them. The complexity of this
countermeasure is (t+1)2+2(t+1)+1 ω-bit multiplications (the unprotected
LIM requires (t + 1)2 multiplications) and 4 log2(n) + 2ω bits of additional
storage, where n is the RSA modulus.

– Randomize One Loop in LIM and Blind. The second countermeasure in [5]
starts from the first one and mixes it with a randomization of the order in
which the words X [a] are involved in the LIM. This method consists in using
a permutation vector applied to the words X [a] and in masking the words

12 A. Bauer et al.

Y [b]. This countermeasure requires (t+1)2 + t+1 ω-bit multiplications and
2 log2(n) bits of additional storage.

– Randomize the Two Loops in LIM. This countermeasure is a variant of the
second one. In this case, the authors fully randomize the order of the process-
ings of the Z[a, b] variables. As an advantage no operand in the LIM needs
to be blinded anymore. However, the drawback is that two random permu-
tation vectors have to be stored. No extra ω-bit multiplication compared to
the unprotected LIM is needed here.

In the next section, we argue that the three countermeasures below do not fully
hide the first-order leakage and we exhibit efficient attacks.

5 Attacks against Horizontal SCA Countermeasures

The attacks presented in this section are described in the Square and Multiply
Always setting but are straightly applicable in the classical Square and Multiply
setting.

Blind Operands in LIM. In this case, the variable Z[a, b] in (6) becomes:

Z̃[a, b] = (X2+s[a]−R1) · (X2+s[b]−R2) . (7)

According to (1), the observation la,b of the Z̃[a, b] processing satisfies la,b ←↩

ϕa,b

(
Z̃[a, b]

)
+βa,b, where it can be checked that

∑
a Z̃[a, b] depends on X2+s[b],

and hence on s. This dependency can be exploited in a Horizontal C-PA by
correlating the means l̄·,b =

1
t+1

∑
a la,b with the predictions:

hb =
1

t+1

∑
a ma,b

(
X2+ŝ[a] ·X2+ŝ[b]

)
, (8)

for ŝ = 0 and ŝ = 1 and for ma,b being an estimation of the unknown function
ϕa,b. The rationale behind the definition of hb in (8) may be found in the ex-
tended version of this paper [2]. As illustrated in Figure 6, it may be observed
that the attack is still effective if the maskR1 is different for all the wordsX

2+s[a]
since the leakages are averaging over indices a to compute the predictions hb.

Simulation Results. Experiments have been performed to check that the pre-
dictions hb in (8) are consistent with the means l·,b of the observations la,b when
the hypothesis ŝ on s is valid. Indeed, in that case a correlation peak can be
observed, making the adversary guess the right key-bit value s. Then, process-
ing iteratively, the whole secret k can finally be recovered. The results that have
been obtained are sumed up in Figure 6 for a model function ma,b and ϕ defined
as the Hamming weight. Each point on the curve corresponds to the smallest
number t needed to achieve a 90% success rate, according to the noise standard
deviation. Attacks are reported for an architecture size ω in {8, 16, 32}.

Horizontal and Vertical Side-Channel Attacks 13

RSA 1024

RSA 2048

RSA 1024

RSA 2048

RSA 2048

RSA 4096

Fig. 6. Evolution of the ω-bit length t of X and Y (y-axis log-scaled) to achieve a 90%
success rate depending on the noise standard deviation σ (x-axis log-scaled).

Randomize One Loop in LIM and Blind. In this case, a random permu-
tation α over [0; t] is generated before each new exponentiation and the variable
Z[a, b] in (6) becomes:

Z̃[a, b] = X2+s[α(a)] · (X2+s[b]−R) . (9)

The randomization of the manipulations of the words X2+s[a] does not modify
the value of the sum

∑
a Z̃[a, b]. As a consequence, it does not change the fact

that - as for countermeasure 1 - this sum depends on X2+s[b] and hence on s.

14 A. Bauer et al.

The previous attack against Countermeasure 1 can hence be still applied and its
efficiency is the same.

Randomize the Two Loops in LIM. In this case, two random permutations
α and β defined over [0; t] are generated and we have:

Z̃[a, b] = X2+s[α(a)] ·X2+s[β(b)] . (10)

To attack this countermeasure, a solution consists in performing the same at-
tack as against the first and the second countermeasure exhaustively for all the
possible permutations β. This attack stays efficient as long as t is reasonably
small (lower than 16).

The first attack presented in this section shows that protection strategies
based on masking are not promising. A possibility could be to use a different pair
of masks for each internal multiplication but the cost of such a countermeasure
would be prohibitive. The randomization of operations order seems to be more
interesting but the attacks exhibited in this section point out that they must
be carefully specified. In the following section we propose such a specification
where the operations order randomization is done globally over all the indices.

6 New Countermeasure

Here, we propose to randomize the two loops (over a and b) in the LIM simul-
taneously. For such a purpose, we first need to efficiently8 generate a random
permutation over {(a, b); a, b ∈ [0; t]}. To achieve good efficiency, we propose to
generate such a random permutation using Algorithm 1, following the same idea
as in [7]. Even if there is no formal proof that this method enables to generate
random permutations that are indistinguishable from perfectly random ones, we
are confident about this in practice. The number of permutations that can be
generated thanks to Algorithm 1 is around (t + 1)2� where � is the number of
random values in the input of Algorithm 1. This number is sufficiently high to
prevent attacks involving exhaustive search.

Algorithm 1. Generation of Random Permutation (GRP)

Input: Two integers t and �, a permutation α0 over [0, (t+ 1)2 − 1].
Output: A vector in [0, (t+ 1)2 − 1] (elements are represented in base t+ 1).
(r0, r1, . . . , r�−1)← random elements in Z(t+1)2

for i from 0 to �− 1 do
for j from 0 to (t+ 1)2 − 1 do

αi+1[j]← α0[(αi[j] + ri) mod (t+ 1)2]

return α�

8 This step may be very costly even for small values of the parameter t [12].

Horizontal and Vertical Side-Channel Attacks 15

The random permutation returned by Algorithm 1 can be used to randomize
the manipulation of the words X [a] and Y [b] simultaneaously. A second random
permutation P over the set of integers 1, 2, . . . , 2t+ 1 must be used to avoid
attacks in the carry propagation treatment. Eventually, we get the proposal of
Algorithm 2 leading to a secure Long Integer Multiplication algorithm, where
the carry registers C[h] must be of bit-length ω + log2(t+ 1).

Algorithm 2. Long Integer Multiplication with randomization of the two
loops together.

Input: X = (X[t], X[t− 1], . . . , X[0])2ω , Y = (Y [t], Y [t− 1], . . . , Y [0])2ω , p.
Output: LIM(X,Y).
α� = (α, β)← GRP(t, p, α0)
P ← random permutation of 1, 2, . . . , 2t+ 1.
for a from 0 to 2t+ 1 do

R[a] = C[a] = 0

for h from 0 to (t+ 1)2 − 1 do
a← α[h]; b← β[h]
(U, V)2ω ← R[a+ b] +X[a] · Y [b]
R[a+ b]← V
C[a+ b+ 1]← C[a+ b+ 1] + U

for i from 1 to 2t+ 1 do
for j from 1 to 2t+ 1 do

s← P [j]
if s ≥ i then

(U, V)2ω ← R[s] + C[s]
R[s]← V
C[s+ 1]← C[s + 1] + U
C[s]← 0

return R

References

1. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual Information Analysis: a Comprehensive Study. J. Cryp-
tology 24(2), 269–291 (2011)

2. Bauer, A., Jaulmes, É., Prouff, E., Wild, J.: Horizontal and Vertical Side-Channel
Attacks Against Secure RSA Implementations – Extended Version. To appear on
the Cryptology ePrint Archive (2013)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

16 A. Bauer et al.

5. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal Cor-
relation Analysis on Exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

6. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
725–725. Springer, Heidelberg (1999)

7. Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp.
278–292. Springer, Heidelberg (2008)

8. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

10. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

11. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

12. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley (1973)

13. Koc, C.K.: Cryptographic Engineering. Springer (2008)
14. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

15. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to Differential Power
Analysis. J. Cryptographic Engineering 1(1), 5–27 (1998)

16. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

17. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second-Order Differential
Power Analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

18. Quisquater, J.-J., Samylde, D.: A new Tool for non-Intrusive Analysis of Smart
Cards based on Electro-Magnetic Emissions, the SEMA and DEMA Methods. Pre-
sented at the rump Session of Eurocrypt (2000)

19. Walter, C.D.: Sliding Windows Succumbs to Big Mac Attack. In: Koç, Ç.K., Nac-
cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

20. Yen, S.-M., Joye, M.: Checking Before Output May Not Be Enough Against Fault-
Based Cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

Horizontal and Vertical Side-Channel Attacks 17

A Long Integer Multiplication

Let X = (X [t], X [t− 1], . . . , X [0])2ω denote the decomposition of an integer X
in ω-bit words. The Long Integer Multiplication algorithm is:

Algorithm 3. Long Integer Multiplication

Input: X = (X[t], X[t− 1], . . . , X[0])2ω , Y = (Y [t], Y [t− 1], . . . , Y [0])2ω .
Output: LIM(X,Y).
for a from 0 to 2t+ 1 do

R[a]← 0

for a from 0 to t do
C ← 0
for b from 0 to t do

(U, V)2ω ← Z[a, b] = X[a] · Y [b]
(U, V)2ω ← (U, V)2ω +C
(U, V)2ω ← (U, V)2ω +R[a+ b]
R[a+ b]← V
C ← U

R[a+ t+ 1]← C

return R

Timing Attack against Protected RSA-CRT

Implementation Used in PolarSSL

Cyril Arnaud1 and Pierre-Alain Fouque2

1 École de l’Air
cy.arnaud@orange.fr
2 Université Rennes 1

pierre-alain.fouque@ens.fr

Abstract. In this paper, we present a timing attack against the RSA-
CRT algorithm used in the current version 1.1.4 of PolarSSL, an open-
source cryptographic library for embedded systems. This implementation
uses a classical countermeasure to avoid two previous attacks of Schindler
and another one due to Boneh and Brumley. However, a careful analysis
reveals a bias in the implementation of Montgomery multiplication. We
theoretically analyse the distribution of output values for Montgomery
multiplication when the output is greater than the Montgomery constant,
R. In this case, we show that an extra bit is set in the top most significant
word of the output and a time variance can be observed. Then we present
some proofs with reasonable assumptions to explain this bias due to
an extra bit. Moreover, we show it can be used to mount an attack
that reveals the factorisation. We also study another countermeasure
and show its resistance against attacked library.

Keywords: Side-Channel Attack, Timing Attack, Montgomery Multi-
plication, Practical Attack, PolarSSL.

1 Introduction

The implementation of light-weight open-source cryptographic libraries is an
important security issue. In this paper, we study timing attacks on the current
version, 1.1.4, of the open source library PolarSSL [1] which is a well-known
library, widely used in embedded systems. We look at the security of the expo-
nentiation used in PolarSSL which is similar to the one used in OpenSSL [2] but
presents some differences.

There are mainly three timing attacks [[3,4,5], on the RSA with Chinese Re-
mainder Theorem (CRT) using Montgomery multiplication (MM). In the latter
algorithm, a conditional branch leaks some information about the modulus and
if RSA-CRT is used, the modulus is a prime factor of the RSA modulus N . These
attacks were performed without blinding and can be applied to the version of
Montgomery multiplication which contains a final conditional subtraction, called
extra-reduction, for reducing the output. A classical and efficient countermea-
sure consists in using dummy operations to make the time computation constant

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 18–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Timing Attack against PolarSSL 19

in the Montgomery implementation. Such countermeasure is used by PolarSSL
while OpenSSL prefers to use the blinding technique.

In this work, we study the dummy operation countermeasure used to avoid
these three attacks and we propose an efficient practical chosen-ciphertext attack
on this countermeasure used in PolarSSL. We show that even though the extra-
reduction is not visible, since the dummy operations mask them, when the ouput
of Montgomery multiplication before any conditional subtraction is greater than
R, an extra-bit is set and the computation takes more time when the output is
less thanR. In this paper, we study the probability of an extra bit in Montgomery
multiplication. When q � R, we prove that the probability of an extra-bit for
a squaring operation, for a multiplication with two random numbers and for
a multiplication with a particular value c ∈ Zq tends to 1/3, 1/4 and c/2R
respectively.

Our paper is organized as follows : §2 describes the different algorithms used
to compute efficiently the exponentiation operations. We also recall how the
previous attacks operate and the countermeasures that were proposed to defeat
these attacks. In §3, we describe the specifications of the PolarSSL exponenti-
ation implementations, we also show that some bias is still present in the time
computation and we explain the probability of an extra bit. In §4, our attack
details are addressed, and §5 presents our experimental results. We investigate
possible countermeasures in §6. We conclude our paper in §7.

2 Background

2.1 Montgomery Multiplication

First proposed by Montgomery in [6], the MM algorithm provides an efficient
method for computing modular multiplications (given q an odd integer and two
integers a, b ∈ Zq, we compute ab mod q) and squaring (a2 mod q).

In this subsection, we describe a generic multi-precision variant of MM. Long
integers are represented as a sequence of words, the size of words is denoted by

w. Let r = 2w and s =
⌈
|Q|
w

⌉
represents the number of required words of size w.

Large integers are written in basis r, and we note digits in lowercase. Thus, those
numbers have the forms A =

∑i=s−1
i=0 air

i = (as−1, ..., a0)r, B = (bs−1, ..., b0)r,
Q = (qs−1, ..., q0)r, where 0 ≤ ai, bi, qi < r. Let R = rs and μ0 = − 1

q0
mod r. Big

number library implement a w-bit multiplication used during the multiplication
of a word with a large integer, which is denoted by ⊗w. Multi-precision variant
of MM is described in figure 1.

In order to use MM all variables must first be converted in Montgomery rep-
resentation Ā(= AR mod Q) by computing multimontmul(A,R2, Q) = Ā. At
the end, the result of the algorithm can be converted to classical representation
by performing multimontmul(A, 1, Q) = A mod Q.

In line 8 of multimontmul, the conditional subtraction, Z = Z − Q , is
called an extra-reduction. It is occasionally carried out to ensure that the result
Z is in the range [0, Q) and causes a timing difference. Timing attacks [3,4,5]

20 C. Arnaud and P.-A. Fouque

1: function multimontmul(A,B,Q)
2: Z = (zs, ..., z0)r ← 0
3: for i = 0 to s − 1 do
4: u ← ((z0+ai×b0)×μ0) mod r
5: Z ← (Z + ai ⊗w B)
6: Z ← (Z + u ⊗w Q) div r

7: if Z ≥ Q then
8: Z ← Z − Q

9: return Z (= ABR−1 mod Q)

Fig. 1. MM Multi-precision variant.
A,B < Q.

1: function montmul(A,B,Q)
2: Z = (z2s, ..., z0)r ← 0
3: for i = 0 to s − 1 do
4: u ← (zi + ai × b0) × μ0

5: (z2s, ..., zi) ← ((z2s, ..., zi)+ ai ⊗w B)
6: (z2s, ..., zi) ← ((z2s, ..., zi) + u ⊗w Q)
7: zi ← ai

8: G ← (z2s, ..., zs)
9: if G ≥ Q then
10: sub(G,Q, s) � Extra-reduction
11: else
12: sub(Z,G, s) � defence

13: return G (= ABR−1 mod Q)

Fig. 2. POLARSSL’s Montgomery Multi-
plication multi-precision with countermea-
sure. A,B < Q.

detect the timing difference according to the extra-reduction is executed or not.
In fact, Schindler [3] showed that the probability of an extra-reduction occurs in
multimontmul(X̄, B,W), where B is uniformly distributed in Zq, is:

P (extra-reduction in mont(X̄, B,Q)) =
X̄ mod Q

2R
(1)

According to (1), when X̄ rises and approaches a multiple of Q, the probability
of an extra-reduction increases. At exact multiples of Q, the probability of an
extra-reduction is null.

2.2 Modular Exponentiation Algorithm: Sliding Window

MM is particularly interesting when it is combined with the modular exponenti-
ation algorithm to compute m = cd mod q. OpenSSL[2] and PolarSSL[1] use an
optimization of the square-&-multiply algorithm. This algorithm, called Sliding
Windows Exponentiation (SWE), considers block of bits of the exponent rather
than bits. The exponent d is split into windows of size wsize (depending on the
size of d), where the windows are not always contiguous. Different ways are avail-
able for choosing windows. As shown in figure 3, SWE requires a precomputed
table which is computed before the exponentiation process. During the modular
exponentiation phase (computing M̄), this table is used to process wsize bits of
d at each iteration. In both phases of SWE (precomputation phase and expo-
nentiation), the MM is used.

2.3 Decryption of RSA with Chinese Remainder Theorem

Let N = PQ be a n-bit RSA modulus, where P and Q are prime numbers. The
public key is denoted by (N , e) and the associated private key by (D, P , Q). RSA
decryption consists in computing a modular exponentiation M = CD mod N ,

Timing Attack against PolarSSL 21

1: function exponent(C,D,Q)
2: if C ≥ Q then
3: C ← C mod Q

4: C̄1 ← mont(C,R2, Q)
5: Precomputing table phase
6: Modular exponentiation phase
7: M ← mont(M̄, 1, Q)
8: return M (= CD mod Q)

Fig. 3. Sliding window exponentiation

1: function RSA-CRT(C,D, P,Q)
2: Cp ← CDp mod P
3: Cq ← CDq mod Q
4: T ← (Cq −Cp)π mod Q
5: M ← TP +Cp

6: return M (= CD mod N)

Fig. 4. RSA-CRT decryption.
Dp = D mod (P − 1), Dq = D mod
(Q − 1) and π = P−1 mod Q are pre-
computed.

where C is the ciphertext to decrypt. A well-known optimization of this op-
eration is the RSA-CRT which takes advantage of the decomposition in prime
factor of N . Then, RSA-CRT reduces the computation time by a factor of about
75%. The RSA-CRT,with Garner’s recombination, is shown in figure 4. The at-
tacked implementations compute lines (2) and (3) using the SWE exponentiation
algorithm.

General Idea of Timing Attacks on RSA-CRT. According to (1), during
the modular exponentiation, if two chosen ciphertext X and Y are decrypted,
when X̄ < Ȳ < Q the total number of extra-reductions is greater than the case
of X̄ < Q < Ȳ . So, by detecting time difference to perform the decryption of X̄
and Ȳ with RSA-CRT, we can reduce the search space of Q.

Overview of Known Timing Attacks on RSA-CRT. We focus on two
attacks [5,4] against OpenSSL 0.9.7 without using any blinding countermeasure.
OpenSSL implements four optimizations for RSA decryption : CRT, SWE, MM
and two multiplication procedures, normal and Karatsuba’s algorithm. OpenSSL
performs Karatsuba’s multiplication when multiplying two integers of the same
number of words, otherwise uses normal routine. Karatsuba is faster than normal
multiplication. The two attacks exploit the factorization of the RSA modulus by
exploiting the time variance of RSA-CRT decryption in OpenSSL which de-
pends on the number of extra-reductions in MM and the choice of multiplication
procedure. The attacks perform a binary search to find the bits of Q bit-by-bit.

In [5], Boneh and Brumley show that the effect of extra-reductions and Karat-
suba depends on the position of the bit being recovered. Thus, there is a pre-
vailing parameter which has an influence on the time variance. Two ways are
explored for recovering a bit of Q. In [5], timing attack exploits MM which are
carried out during the modular exponentiation phase of SWE while [4] exploits
those are carried out during the precomputation phase.

Boneh and Brumley [5] propose two countermeasures to make RSA-CRT de-
cryption time independent on the input ciphertext. The first one is to use only

22 C. Arnaud and P.-A. Fouque

one multiplication procedure. The other one is to carry out a dummy subtraction
if an extra-reduction is not needed. The result of dummy operation is not used.
This approach is also suggested by Schindler [3].

3 PolarSSL’s Implementation of RSA-CRT Decryption

PolarSSL [1] is a light-weight open source cryptographic and SSL/TLS library
written in C. PolarSSL is implemented for embedded systems and has also been
ported to Windows and Linux (32 and 64 bit). The PolarSSL implementation
of RSA decryption uses, as optimization, the CRT, SWE and MM with defence.
We describe the last two algorithms below.

3.1 Montgomery Multiplication Multi-precision

PolarSSL implements only one procedure for computing the MM and accepts
multiplication for w = 8, 16, 32, or 64. PolasSSL’s MM multi-precision is given
in figure 2, where function sub(X,Y, s) returns X ← X − Y for the s least
significant words. In this case, the division of Z by r is performed by bumping a
counter on Z. After s iterations, the s+1 most significant words of Z are equals
to ABR−1 mod Q and the s least significant words to A.

In the following, we assume that for fixed parameters Q and r the running
times to perform lines 8 to 13 are identical for all inputs. It is worth noticing
that if an extra-reduction is not needed, a dummy subtraction is carried out (line
12). Those two operations (lines 10 and 12), subtractions on s words, take the
same time to be performed. Moreover, we check that compiler optimizations do
not remove the conditional branch. In all cases, the study of the assembly code
reveals that the dummy subtraction is still present for all compiler optimizations.

In this paper we perform a cryptanalysis based on the conditions under which
G is greater than R before any conditional subtraction is performed.

3.2 Timing Variation in PolarSSL’s Montgomery Multiplication
Multi-precision

The dummy subtraction is used in montmul(A,B,Q) to make the time required
to perform the multiplication independent on the A and B operands. For more
clarity, we study the behaviour of the generic Montgomery multiplication multi-
precision figure 1.

Theorem 1. [10] For inputs 0 ≤ A,B < Q, multimontmul(A,B,Q) returns
the ouput Z ≡ ABR−1 mod Q satisfying ABR−1 ≤ Z < Q+ABR−1 before any
conditional subtraction.

We suppose that R
2 < Q < R. This assumption is true for standard RSA key

lengths, such as 512, 1024 or 2048 bits, but also when these lengths are a multiple
of world size. In this case, theorem 1 implied that Z < 2R. Moreover, if the value

Timing Attack against PolarSSL 23

of Z is greater than R then the value of the top most word of Z is 1, i.e. zs = 1,
this bit is called extra bit.

In the source code of the multiplier, a while loop propagates a carry until no
further carry is generated. Then, if the output Z is greater than R, during the
sth computation of line 6 of figure 1, the while loop is used to carry propagation
up to the top most word of Z. Thus, a timing difference, whether the extra bit
is carried out or not, could allow an attacker to mount a timing attack.

We performed experiments to show if an attacker could observe a timing
difference in montmul. We generated two random numbers A, B with known
size, converted in Montgomery representation, and a prime number Q where R

2 <
Q < R. We sort the time in CPU’s clock ticks to perform montmul(A,B,Q)
according to the size numbers and if an extra bit, an extra-reduction without
extra bit or neither of them is carried out. The delay observed, Figure 5, to
carry out Z before any conditional subtraction confirmed explanation above
about timing difference. For the whole of montmul(A,B,Q) we observed the
same delay between curves. Thus, extra-reduction, if Q ≤ Z < R, was actually
masked by the dummy subtraction. However, the delay was smaller than the bias
observed in previous attacks and it was proportional to the bitsize of Q, noted
|Q|. In addition, compiler optimisation did not affect delay between curves.

 504 505 506 507 508 509 510 511 512 504 505 506 507 508 509 510 511 512

 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990

T
im

e
in

 C
P

U
´

cy
cl

es

Z<Q
R<Z

Q<Z<R

A size B size

T
im

e
in

 C
P

U
´

cy
cl

es

(a) |Q| = 512

 1016 1017 1018 1019 1020 1021 1022 1023 1024 1016 1017 1018 1019 1020 1021 1022 1023 1024

 4740
 4760
 4780
 4800
 4820
 4840
 4860
 4880
 4900

T
im

e
in

 C
P

U
´

cy
cl

es

Z<Q
R<Z

Q<Z<R

A size B size

T
im

e
in

 C
P

U
´

cy
cl

es

(b) |Q| = 1024

Fig. 5. montmul(A,B,Q) without any conditional subtraction (w = 64 bits)

3.3 The Probability of an Extra Bit

Here we study the distribution of extra bit in MM algorithm inside the modular
exponentiation algorithm. We investigate the distribution for some cases and
we show that the probability for an extra bit is different for a squaring opera-
tion (Psquare), for a multiplication with two random A and B (Pmul) and for a
multiplication with a particular value C ∈ ZQ (PC).

First of all, to establish the probability distribution for the MM output Z
after s iterations (figure 1), three reasonable assumptions are made :

1. Q is large and so we can switch from discrete to continuous method,

24 C. Arnaud and P.-A. Fouque

2. Colin D. Walter [11] showed that during an exponentiation, inputs to MM
are uniformly distributed mod Q and independent,

3. for inputs A and B to MM during an exponentiation, the output Z be-
fore the conditional subtraction is uniformly distributed over the interval
[ABR−1, Q+ABR−1) [11].

Lemma 1. During the exponentiation, for input 0 ≤ A,B < Q, the probability

of an extra bit is not null if and only if Q >
√
5−1
2 ×R .

Proof (of lemma 1). According to assumptions (2) and theorem 1, we obtain
ABR−1 ≤ Z < Q + Q2R−1 . An extra bit is set if and only if Z ≥ R after s
iterations. Then, if an extra bit is set, R ≤ Z < Q+Q2R−1 . This inequality is

true if and only if Q2R−1+Q−R > 0, solving for Q we obtain Q >
√
5−1
2 ×R .

�
Lemma 2. During the exponentiation, for input 0 ≤ A,B < Q and C ∈ ZQ

fixed, the probability of an extra bit is :

1. Pmul =

{
Q
4R

+ (R−Q)2R

Q3 × (3
4
+ 1

2
log(Q2

(R−Q)R
))− (R−Q)

R
if Q >

√
5−1
2
×R

0 otherwise

2. Psquare =

{
Q
3R

+
2(R−Q)

√
(R−Q)R

3Q2 − (R−Q)
R

if Q >
√

5−1
2
×R

0 otherwise

3. PC =

{
C
2R

+ (R−Q)2R

2CQ2 − (R−Q)
R

if C > (R−Q)R
Q

and Q >
√

5−1
2
×R

0 otherwise

The proof (of lemma 2) is in appendix A.
If Q → R, then the probability of an extra bit for a squaring, for a mul-

tiplication with random numbers and for a multiplication with a particular
value in montmul tends to 1

3 ,
1
4 and C

2R respectively. On the other hand, for

Q →
√
5−1
2 ×R, these probabilities tend to 0.

Corollary 1. For Q >
√
5−1
2 × R and X,Y ∈

(
(R−Q)R

Q , Q
)
, if X > Y then

PX > PY .

Proof (of corollary 1). Let f a function denoted by :

f :

(
(R−Q)R

Q
,Q

)
→ (0, 1)

C �→ C

2R
+

(R −Q)2R

2CQ2
− (R−Q)

R

∀ C > (R−Q)R
Q , f ′(C) = 1

2R − 1
C2 × (R−Q)2R

2Q2 > 0 .

Then f is strictly increased in interval
(

(R−Q)R
Q , Q

)
. Thus if X , Y within this

interval with X > Y then PX > PY .
�

Timing Attack against PolarSSL 25

3.4 Sliding Window Exponentiation

In this subsection we treat a variant of SWE, a fixed window exponentiation
(fixedexponent) which is used in PolarSSL. It differs from the SWE in
OpenSSL. In PolarSSL, the precomputation table phase computes C̄1 which is
the ciphertext in Montgomery representation, C̄2wsize−1

1 with successive wsize−1
squares of C̄1, and stores in the table C̄i = montmul(C̄1, C̄i−1, Q), for i =
(2wsize−1 + 1) to (2wsize − 1). In the modular exponentiation, a block of bits
(only one or wsize) of D are processed at each iteration. The secret exponent
D is split into windows of fixed size wsize (depending on the size of D) where
the most significant bit is 1. We denote by wd the value of the window. This
window is used to carry out M̄ = montmul(M̄, C̄wd

, Q) during an iteration of
the modular exponentiation phase.

For fixed Q and D and according to lemma 2, the number of extra bits in
modular exponentiation phase of fixedexponent(C,D,Q) is constant and in-
dependent of ciphertext input C. However, using lemma 2, numbers of extra bits
depend on C̄1 which is equal to CR mod Q. According to corollary 1, the secret
modulus Q can be found by using a chosen ciphertext.

It is worth noticing that Schindler’s attack fails while Boneh and Brumley
timing attack [5] should work against PorlarSSL’s RSA-CRT.

4 A Timing Attack on PolarSSL

In this section, we will suppose the size of RSA modulus is equal to 512, 1024,
or 2048 bits. The precomputing table phase of SWE in modulo Q requires
2wsize−1 − 1 (from 1 to 32) MM with C̄1, i.e. ciphertext in Montgomery rep-
resentation. Therefore, we exploit these operations in our attack. Because of the
bias in PolarSSL’s Montgomery multiplication is very small, we also use efficient
statistical hypothesis tests such as F-test and T-test in our attack model.

4.1 Two-Sample Hypothesis Testing

Two-sample hypothesis testing is a method estimating two independent samples
parameters which are extracted from two populations.

An F-test is used to test equal variance of the two populations. The value
generated by F-test, Fobserved, is used to verify the timing sampling correctness.
In some case, we invalidate some erroneous measurements due to the noise of
other processes running on the machine. The F-test is :

Fobserved =
n1

n1−1s1
2

n2

n2−1s2
2,

(2)

where n1, n2 are sample sizes and s1
2, s2

2 are the sample variances. Let Fα is
the critical value of the F-distribution with (n1 − 1, n2 − 1) degrees of freedom
and a significance level α. If Fobserved > Fα then variances of the population are
different.

26 C. Arnaud and P.-A. Fouque

In two-sample t-test, we compare two independent sample means from two
populations with a same variance. The value generated by T-test, Tobserved, is
used in the decision strategy for recovering bit. The two-sample t-test is :

Tobserved =
(x̄1 − x̄2)− d0

Sp

√
1
n1

+ 1
n2

, (3)

where Sp
2 =

(n1 − 1)s1
2 + (n2 − 1)s2

2

n1 + n2 − 2
,

where x̄1 and x̄2 are the sample means. Let tα is the critical value of the Student’s
t distribution with (n1 +n2− 2) degrees of freedom and a significance level α. If
the means of the two samples are right, Tobserved is less than Tα, otherwise greater
than the critical value. Furthermore, we define a parameter Tβ to increase the
correctness of guess.

4.2 Our Attack Method

Let N be an RSA modulus with N = pq, q < p, |N | = n and |q| = |p| = n/2. To
factorize N , it is enough to recover the half most significant bits of p or q, since
Coppersmith’s [7] algorithm allows one to recover the complete factorisation of
N. However, our method allows us to recover around the n/2−log2(NS)−1 most
significant bits of modulus, where the parameter NS is called the neighbourhood
size and used to increase statically the bias (for more details about NS refer
to [5]).Thus, our attack ensures the recovery of bits of p or q one at a time, from
most significant to least. Let q = (1, q1, ..., qn

2 −1) is the binary coded of q and
assume that the attacker knows the k most significant bits of q. We recover qk
as follows :

– Step 1 : Generate g and gh where g = (1, q1, , ..qk−1, 0, . . . , 0) and gh =
(1, q1, , ..qk−1, 1,, 0). If qk = 1 then g < gh < q, otherwise g < q < gh .

– Step 2 : For j = 0 to NS − 1 compute uj = (g + j)R−1 mod N and
uhj = (gh + j)R−1 mod N . The parameter neighbourhood size, i.e. NS,
depend on experiment parameters.

– Step 3 : For j = 0 to NS−1 measure the time to decrypt both uj and uhj .
Let Tuj = T ime(RSA−CRT (uj, d, p, q)) and Tuhj

= T ime(RSA−CRT (uhj,
d, p, q)). We obtain two groups.

– Step 4 : Take a time sampling of the two groups, noted ζu and ζuh
.

– Step 5 : Compute Fobserved of ζu and ζuh
using (2). If Fobserved > Fα, we

assume that timing samples are invalidated. So, we replay step 3.

– Step 6 : Find the largest interval t in ζu and ζuh
where Fobserved ≈ 1.

– Step 7 : Compute Tobserved of ζu and ζuh
, using 3, in interval t. If Tobserved <

Tα, the attacker assumes that qk = 1. Otherwise, if Tobserved > Tβ, we fixed
empirically Tβ = 10, then qk = 0. If Tα < Tobserved < Tβ, we assume that
timing samples are invalidated and we replay step 3.

Timing Attack against PolarSSL 27

Unlike Boneh and Brumley [5], our attack does not need a particular phase to
determine the first few bits: the attack begins with g = (1, 0, ..., 0) and recovers
p or q.

An optimization of step 3 was to carry out only one of the two samples ζu and
ζuh

. Indeed, one of sample of the previous recovering bit could be reused during
the recovering process. If we guessed that qk = 0 (resp. qk = 1) then we reused
ζu (resp. ζuh

) during the decision process of the next bit. Thus, the number of
chosen ciphertext was divided by two. However, we carried out the two samples
ζu and ζuh

when these timing samples are invalidated.

5 Experimental Results

We performed our attack against the latest version 1.1.4 of PolarSSL with coun-
termeasure (dummy subtraction). All of the experiments presented were run
under Ubuntu 12.04 LTS 64 bits on an Intel Core i7. We compiled, using GCC
4.6.3, PolarSSL with its default value : -D FILE OFFSET BITS=64 -O. We gener-
ated randomly all keys with PolarSSL’s key generation routine. To get an accu-
rate time measurement of RSA-CRT decryption, we used Time Stamp Counter
(TSC) and Performance Monitor Counters (PMC).

5.1 Time Measurement

A well known method for measuring time is the TSC[8], a 64-bit register, which
counts front side bus ticks and multiplies it by the CPU’s frequency. The TSC is
available on Intel CPU since introduction of the Pentium. This counter is read
using the rdtsc assembly instruction which is not a privilege operation.

Our experiments were performed on a multi-core platform which compromised
the use of the TSC registers. Thus, we implemented another way too.

PMC[8] provides the capability to monitor performance events and measure
ticks for each core. Every PMC has a number which allows it to be referenced.
PMC are supported by Model Specific Register (MSR). MSR are specific to a
particular CPU which store data and set information for the CPU. PMC can be
read using rdmsr while wrmsr writes to an MSR. We used these instructions to
store ticks values for a chosen core. These instructions must be executed using
privilege ring 0. Then, we need to use a kernel driver.

5.2 Experimental Results

In this subsection, we present the result of four experiments with the three sizes
of modulus : 512, 1024 and 2048 bits. In each case, we showed that recovering
half of the most significant bits of a prime factor is possible with a success
probability around 100%. The first two experiments were performed in the same
computing process. We measured directly the time to perform RSA-CRT for a
chosen ciphertext. These experiments ensured we check the effectiveness of our
statistical choices and the accuracy of using PMC. The last two experiments

28 C. Arnaud and P.-A. Fouque

were obtained in inter-process in nature, and via TCP socket. We implemented
a simple TCP server and client with the two processes ran on the same machine
(server and client). The TCP server read a binary string sent by the client
which is in PolarSSL’s multi-precision representation. When it completed the
decryption of the RSA-CRT, it returned 0 to the client. The TCP client measured
the time between sending a message and receiving a response.

We attacked several random keys to determinate the efficiency of our method.
The size of neighbourhoods was gained empirically. We denote by Δ0 =
mean(ζu)−mean(ζuh

) when qi is 0 and Δ1 when it is 1. Due to Karatsuba’s mul-
tiplication, in [5,4] the decryption time during RSA-CRT is variable (depending
on the weight of recovering bit) when in PolarSSL is quite stable.

These different experiments demonstrated that our statistical tests are reliable
and suitable for timing attack. Moreover, measuring time with PMC made our
attack more efficient.

Experiment 1 - Same Process with RTDSC Instruction. In this experi-
ment, we measured the time to perform RSA-CRT with RDTSC instruction. Ta-
ble 1 shows when the key size increases, the ratio of replay becomes higher. The
decryption time computing rises with the key size because of noise since other
processes penalize our attack.

Table 1 also shows that the Δ0 for qi = 0 depends on the modulus size.
The delay between Montgomery multiplication with and without extra bit is
increased by a factor of 2 for q’s size 512 and 1024 bits. When we perform RSA-
CRT with a 1024-bit (resp. 2048-bit) modulus, the size of the window in SWE
is 5 (resp. 6). Then, the precomputation table phase of SWE requires 15 (resp
31) MM. In the experiments, a factor of four between Δ0 for 1024 and 2048 bits
modulus is expected.

Table 1. Results of our attack with RDTSC. We measure timing computation in the
same process.

Modulus size NS ratio of replay Δ0 Δ1 Number of query

512 bits 600 2% 2614 -90 78600
1024 bits 800 18% 5553 -134 241600
2048 bits 1000 50% 21855 -1743 768000

Experiment 2 - Same Process with RDMSR Instruction. In this experiment
we show, in table 2, that for the same size of neighbourhood, the noise due to
other processes running in the computer do not interfere too much with our
attack. When we use PMC for measuring ticks, we read time for our process
core. Thus, processes running on other cores do not penalize the timing attack.

Timing Attack against PolarSSL 29

Table 2. Results of our attack with the RDMSR. We measure timing computation in
the same process.

Modulus size NS ratio of replay Δ0 Δ1 Number of query

512 bits 600 2% 2452 67 78600
1024 bits 800 10% 4554 −216 225600
2048 bits 1000 15% 22434 −992 589000

Experiment 3 - Inter-Process with RTDSC Instruction. Table 3 shows that
communication via inter-process does not reduce the effectiveness of our attack.
The noise from inter-process is eliminated by increasing the size of neighbour-
hood, given similar Δ0 and ratio of replay.

Table 3. Results of our attack with RDTSC. We measure timing computation in inter-
process via TCP.

Modulus size NS ratio of replay Δ0 Δ1 Number of query

512 bits 1000 2% 2537 -144 131000
1024 bits 1100 21% 5557 -1489 341000
2048 bits 1200 55% 28157 1042 952800

Experiment 4 - Inter-Process with RDMSR Instruction. In this experiment
we use processor affinity which allows us to choose the core/CPU where a process
is running. Thus, the TCP client and server are carried out on different cores.
Table 4 shows that the ratio of replay in inter-process attack is very low when
we used RDMSR instruction.

Table 4. Results of our attack with RDMSR. We measure timing computation in inter-
process via TCP.

Modulus size NS ratio of replay Δ0 Δ1 Number of query

512 bits 1000 0% 2217 -1 128000
1024 bits 1100 5% 5067 -675 295900
2048 bits 1200 10% 17033 872 675600

When we used RDMSR in inter-process we were able to recover a 1024 bits
key with an average of 215200 queries. These results are obtained with 800
neighbourhoods and a ratio of replay is around 5%.

30 C. Arnaud and P.-A. Fouque

5.3 Network Attacks

Two ways are performed to measure timing decryption of RSA-CRT during inter-
process attack. In [5], Boneh and Brumley show that it is enough to increase
neighbourhood to convert an inter-process into a network timing attack. Thus
using RTDSC instruction, we should be able to factorise N by measuring the time,
from sending the ciphertext on the network and to receiving the response of the
server.

Another way is also possible. Assume that an attacker is able to perform a
spy process on the server, operating at a high level. The TCP client performs the
ciphertext to be decrypted and sends the message. The spy sniffs TCP socket on
the server and measure the time, using RDMSR instruction, taken by the server
for answering. Once this is completed, the spy process sends the measurement
to the client which is responsible for the decision of bit to recover. This scenario
should have the same result as RDMSR in inter-process.

In the real world scenario the experimental data is limited. However, in Po-
larSSL’s SSL implementation the key does not have timelife, only the SSL’s
session (lifetime is one day in PolarSSL’s example). Our attack in inter-process
with a 1024 key size takes about ten minutes. So, the attack presented in our
paper seems to be feasible in the real world.

6 Defences

PolarSSL’s library is vulnerable during our timing attack. In order to counteract
it, we could make constant the time decryption of the RSA-CRT implementation.
The attack results show that it is very complicated to obtain an implementation
with those characteristics for any key size. In order to protect PolarSSL against
this attack, three countermeasures can be developed in this section. The first
one is used by OpenSSL and we suggested two others.

6.1 Blinding

This defence makes the time decryption of RSA-CRT independent on the input
ciphertext. RSA-CRT blinding is implemented as follows.

Let a is a random value, e the RSA encryption exponent and c the ciphertext.
To decrypt c :

– compute : x = ae.c mod N ,

– decrypt x : RSA− CRT (x, d, p, q) = m′ = aedcd mod N ,

– compute : m′
a mod N = aed−1cd mod N = cd mod N = m.

Since a is random, then x is a random value. Then, the attacker can not choose
the ciphertext being input to MM. This approach is preferred by Boneh and
Brumley [5].

Timing Attack against PolarSSL 31

6.2 Alternatives to Blinding

Our timing attack exploits the behaviour of the MM when an extra bit is carried
out, others, when an extra-reduction occurs. Two strategies are possible for
cancelling out extra bit : the first one uses particular modulus size whereas the
other needs to modify PolarSSL’s key generation routine.

In the following, we suppose that attacked library implements a dummy sub-
traction, such as PolarSSL, used to mask the timing effect of an extra-reduction
without extra bit.

Use Particular Modulus Size. Colin D. Walter [9] demonstrated that if
we choose s′ > s such as 2Q < rs

′−1, s
′ ≥ s + 2, then MM does not need

extra-reduction. For cancelling out extra-reduction, large integer needs to be
represented with s+2 words which is quite inefficient. We could make our timing
attack impracticable with particular modulus size.

Suppose that |Q| = kw + 1. Then, s = �<Q>
w � = k + 1 and R = rs = rk+1

= 2kw+w. We obtain :

2kw < Q < 2kw+1 and Q <
1

2w−1
×R (4)

where w ∈ {8, 16, 32, 64}. According to lemma 1 extra-bit is cancelling out. Thus,
our timing is defeated against’s attacked library.

Countermeasure effectiveness is equivalent to blinding with a lower penalty.
Penalty is 10% (resp. 6%) between 1026 and 1024 (resp. 2050 and 2048) modulus
size .

Suppose that |Q| = kw − 1, so s = � |Q|
w � = k. We obtain :

2kw−2 < Q < 2kw−1 and
1

4
<

Q

R
<

1

2
(5)

where w ∈ {8, 16, 32, 64}. According to lemma 1 extra-bit is cancelling out. Thus,
our timing is defeated against attacked library.

Modify PolarSSL’s Key Generation Routine. Another way to counteract

timing attacks is to generate keys where primes factors are less than
√
5−1
2 ×R .

Then, according to lemma 1, extra-bit is cancelling out.

7 Conclusion

In this paper, we present a timing attack against PolarSSL - a protected SSL
implementation of RSA-CRT. Our attack exploits an unknown arithmetical bias
in Montgomery multiplication. In spite of this countermeasure, our experiments
show that a timing attack is still possible using in inter-process for different
modulus size. We also present a new way for measuring time decryption via
performance monitor counters which improves the efficiency.

32 C. Arnaud and P.-A. Fouque

References

1. Bakker, P.: PolarSSL project. Version 1.1.4 (2012-05-31),
http://polarssl.org/download_overview?download=1.1.4

2. Young, E.A., Hudson, T.J.: OpenSSL project. Version 0.9.7, http://openssl.org

3. Schindler, W.: A Timing Attack against RSA with the Chinese Remainder The-
orem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124.
Springer, Heidelberg (2000)

4. Aciiçmez, O., Schindler, W., Kooç, K.: Improving Brumley and Boneh timing at-
tack on unprotected SSL implementation. In: Atluri, V., Meadows, C., Juels, A.
(eds.) ACM Conference on Computer and Communication Security, pp. 139–146.
ACM (2005)

5. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th USENIX Security Symposium, pp. 1–14 (2003)

6. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computations 44, 519–521 (1995)

7. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10, 233–260 (1997)

8. Intel. Intel 64 and IA-32 : Architectures Software Developer’s Manual Combined
Volumes 3A and 3B, System Programming Guide, Parts 1 and 2

9. Walter, C.D.: Montgomery Exponentiation Needs no Final Subtractions. Electron-
ics Letters 35(21), 1831–1832 (1999)

10. Walter, C.D.: Precise Bounds for Montgomery Modular Multiplication and Some
Potentially Insecure RSA Moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS,
vol. 2271, pp. 30–39. Springer, Heidelberg (2002)

11. Schindler, W., Walter, C.D.: More Detail for a Combined Timing and Power At-
tack against Implementations of RSA. In: Paterson, K.G. (ed.) Cryptography and
Coding. LNCS, vol. 2898, pp. 245–263. Springer, Heidelberg (2003)

A Proof of Lemma 2

Proof. We assume that Q >
√
5−1
2 ×R.

According to assumptions (1) and (3), we write Pmul as :

Pmul = P (extra bit in montmul(A,B,Q))

� P (ABR−1 + Y > R)

=

∫ Q

(R−Q)R
Q

∫ Q

(R−Q)R
A

∫ Q

R−AB
R

p(A,B, Y) dY dBdA ,

where Y is unformly distributed on ZQ and p(A,B, Y) is the probability density
function for A× B × Y . According to assumptions (1) and (3) A, B and Y are
independently distributed mod Q. Thus, p(A,B, Y) = p(A) × p(B) × p(Y). As
noted above, A, B and Y are uniform on [0, Q).

http://polarssl.org/download_overview?download=1.1.4
http://openssl.org

Timing Attack against PolarSSL 33

Thus, p(A,B, Y) = 1
Q3 . Then

Pmul �
1

Q3

∫ Q

(R−Q)R
Q

∫ Q

(R−Q)R
A

∫ Q

R−AB
R

dY dBdA

=
1

Q3

∫ Q

(R−Q)R
Q

∫ Q

(R−Q)R
A

Q−R+
AB

R
dBdA

=
1

Q3

∫ Q

(R−Q)R
Q

AQ2

2R
+

1

A
× 1

2
(R −Q)2R−Q(R−Q) dA

=
Q

4R
+

(R−Q)2R

Q3
×
(
3

4
+

1

2
log

(Q2

(R −Q)R

))
− (R−Q)

R
.

In the same way, the probability of extra bit in a squaring operation is :

Psquare = P (extra bit in montmul(A,A,Q)) � P (A2R−1 + Y > R)

=

∫ Q

√
(R−Q)R

∫ Q

R−A2

R

p(A, Y) dY dA

=
1

Q2

∫ Q

√
(R−Q)R

Q−R +
A2

R
dA

=
Q

3R
+

2(R −Q)
√

(R−Q)R

3Q2
− (R−Q)

R
.

For a fixed C with (R−Q)R
Q < C < Q, the probability of extra bit is :

PC = P (extra bit in montmul(A,C,Q)) � P (CAR−1 + Y > R)

=

∫ Q

(R−Q)R
C

∫ Q

R−CA
R

p(A, Y) dY dA

=
1

Q2

∫ Q

(R−Q)R
C

Q−R+
CA

R
dA

=
C

2R
+

(R−Q)2R

2CQ2
− (R−Q)

R

�

Fair Exchange of Short Signatures

without Trusted Third Party

Philippe Camacho

Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 4to piso, Santiago, Chile

pcamacho@dcc.uchile.cl

Abstract. We propose a protocol to exchange Boneh-Boyen short sig-
natures in a fair way and without relying on a trusted third party. Our
protocol is quite practical and is the first of the sort to the best of our
knowledge. Our construction uses a new non-interactive zero-knowledge
(NIZK) argument to prove that a commitment is the encryption of a bit
vector. We also design a NIZK argument to prove that a commitment
to a bit vector v = (b1, b2, ..., bκ) is such that

∑
i∈[κ] bi2

i−1 = θ where θ

is the discrete logarithm of some public value D = gθ. These arguments
may be of independent interest.

Keywords: Fair exchange, short signatures, gradual release of a secret.

1 Introduction

Nowadays it is more and more common to trade digital goods on the web: E-
books, software licenses, avatar-games currencies like Ultima Online1 to cite a
few. Whether these goods are exchanged on E-bay through Paypal or bought
directly to their provider Amazon or Microsoft, the transaction to be secure
requires a trusted third party (TTP). Though it works quite well in practice,
enabling totally distributed and at the same time secure transaction systems is
of clear interest: It would avoid some security issues due to the presence of single
points of failure, and also allow smoother electronic commercial transactions that
would not rely on some intermediary. A lot of these transactions may be captured
by the exchange of digital signatures. Suppose for example you want to buy a
software license to some independent developer: Indeed exchanging the software
license as well as the money transfer (digital check) can be modeled by signed
messages. However we face a non-trivial problem. Given that the transaction is
made on-line, a malicious participant may fool his counterpart by not sending his
signature or sending some garbage information. A protocol that prevents such
a behavior from a corrupted party is called fair : This means that at the end of
the execution of protocol either both parties obtain the signature they expected
or none does.

1 http://en.wikipedia.org/wiki/Ultima_Online

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 34–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://en.wikipedia.org/wiki/Ultima_Online

Fair Exchange of Short Signatures without Trusted Third Party 35

There are two main approaches to solve this problem. On the one hand, one
can assume that both players interact through a TTP. Though this solution does
not fit our goal, it is important to note that an important line of research has
focused on designing protocols where the TTP is only required when “something
goes wrong”. These protocols are said to be optimistically fair : See [1,25] and
[22] for some recent work.

On the other hand, if no TTP exists and we assume that both participants
have exactly the same computational resources, then it is impossible in general to
achieve complete fairness [10]. In [2,14] was proposed a way to relax the notion of
fairness in order to overcome Cleve’s impossibility result. The idea is to assume
that both players have roughly the same amount of time, so we can achieve
partial fairness. Several secure multi-party computations and specific protocols,
like [6,11,12,5,16], were built on top of this security notion. The recurrent idea
behind these constructions consists in enabling each player to release their secret
bit by bit in alternation. Thus, if a player aborts, the other participant will have
“only one bit of disadvantage”. Formalizing this idea is not an easy task though,
in particular because it is hard to reason on the specific amount of time for the
players. This issue was noticed in [19] where authors point out that (1) assigning
more time to the honest party in order to allow him recover his value is somehow
artificial as it does not depend on the participant himself, and (2) implementing
such definitions seems to imply the use of strong assumptions related to the
exact time required to solve some computational problem.

In this work we propose a new security definition that still captures the in-
tuition of partial fairness for the exchange of digital signatures, but without
forcing the participants to have access to almost equal computational resources
as proposed in [16]. The idea of our definition is to compare the probabilities of
computing valid signatures on the agreed messages at the end of the protocol.
More precisely, if the adversary aborts the protocol, the honest participant2 will
compute the expected signature by choosing randomly a value from the space
of signature candidates, which is defined by the remaining bits to be obtained.
The adversary will keep running its own algorithm and also output a signature
candidate. We say the protocol is secure if the probabilities that each participant
output a valid signature only differ by a polynomial factor. Note that this defini-
tion, like previous ones that circumvent Cleve’s impossibility result [10], allows
the adversary to get some advantage, but it guarantees that this advantage is
polynomially bounded. With that definition in hand we can prove the security of
our protocol without having to rely on the strong assumptions mentioned above.
Our protocol is designed to exchange short signatures [4] without the presence
of a TTP. We use bilinear maps as the underlying signature scheme, and also the
idea of releasing gradually each bit of some secret θ that will enable to recover
the signature. The security of our construction relies on complexity assumptions
for bilinear maps, namely the κ-Strong Diffie-Hellman [4], and the κ-Bilinear

2 Note that we need to consider that at least one participant is honest, as otherwise we
cannot really avoid that one of the two adversaries, which are arbitrary polynomial
time algorithms, wins.

36 P. Camacho

Diffie-Hellman assumptions [3] and holds in the common reference string model.
As we use non-interactive zero-knowledge proofs of knowledge (ZKPoK) in order
to make the protocol simpler and more efficient, we require the use of random
oracle [15] or some non-black box assumptions [20]. If we like, we can use inter-
active ZKPoK at a minor expense of round efficiency.

Our Contributions

1. We propose a practical protocol for exchanging short signatures [4] without
relying on a TTP. To the best of our knowledge this is the first construction
that meets such a goal. The number of rounds of our protocol is κ+1, where
κ is the security parameter. The communication complexity is 16κ2 + 12κ
bits. The protocol requires a linear number of group exponentiations, group
multiplications, bilinear map applications, hash computations and also a
constant number of group divisions.

2. We introduce a new non-interactive zero-knowledge (NIZK) argument to
prove that a commitment is the encryption of a bit vector. This protocol
may be of independent interest.

3. We introduce another NIZK argument to prove that a commitment to a
bit vector corresponds to the binary decomposition of some value θ which
is hidden as the discrete logarithm of some group element. We think this
argument may lead to other interesting applications.

4. As stated earlier, we propose a new security definition for partial fairness in
the context of the exchange of digital signatures. This definition is simple
and avoids the issue of involving the exact running time of the participants.

Our Approach. Let κ ∈ N be the security parameter. Let (p,G,GT , e, g) ←
BMGen(1κ) be the public parameter where p = |G| = |GT | is prime, G,GT are
cyclic groups, e : G×G → GT is the bilinear map and g is a random generator.
Let s be a random element in Zp, we consider the following common reference

string: (g, gs, gs
2

, ..., gs
κ

) = (g0, g1, g2, ..., gκ). In practice this common reference
string can be computed using generic multi-party computation techniques (see
[9] for an efficient implementation) so that the secret s is randomly generated
and remains unknown to all the participants. Another alternative is to rely on a
TTP that would “securely delete” the secret after the generation of the common
reference string. Obviously the intention of this work is to avoid the use of a
TTP, but note however that even in this case, the TTP would be required only
once.

Our construction can be summarized as follows. The prover chooses a secret
θ ∈ Zp, then commits each bit of this secret into a Pedersen [28]
commitment, where the bit bi in position i with randomness ri ∈ Zp will be

committed with respect to the base (g, gi): That is Commit(bi, ri, i) = grigbii .
Then we use a NIZK argument 3 to prove this commitment really encrypts a
bit. The next step is to publish D = gθ and show, using another NIZK argument,

3 The reader can refer to the full version of this paper [7] for standard definitions
related to NIZK protocols.

Fair Exchange of Short Signatures without Trusted Third Party 37

that θ, the discrete logarithm of D, is “equivalent” to the bit vector commit-
ted in C = (Commit(bi, ri, i))i∈[κ]. More precisely, the argument proves that
θ =

∑
i∈[κ] bi2

i−1. Now if we consider some signature σ, the prover will blind it

using θ to obtain σ̃ = σθ. Using bilinear maps it is straightforward to verify that
σ̃ contains a valid signature σ which is blinded in the exponent by θ, the discrete
logarithm of D. The other verifications will consist simply in checking the NIZK
arguments. Finally, we need to provide zero-knowledge proofs of knowledge for
the representation of each bit commitment in order to be able to simulate the
execution of the protocol even if the adversary aborts. By releasing each bit in
turn, both players will reconstruct their own blinding factor θ and obtain the
signature.

Related Work. Among the abundant literature on the topic of gradual release
and fair exchange for digital signatures, [12] is probably the work that is the
most similar to ours: It describes a practical fair exchange protocol for digital
signatures based on gradual release of a secret. The protocol described in [12]
works for Rabin, RSA and El Gamal signatures. The number of rounds of the
protocol described in [12] is roughly 2κ for RSA and Rabin signatures and κ for
El Gamal signatures.

Due to Cleve’s impossibility result [10], the question of building complete fair
protocols with dishonest majority seemed to be closed. However, Gordon et al.
showed that non-trivial functions can be computed fairly in the two-party model
[18], and left the question of finding a tight characterization of these functions
open. In particular it is not known whether functions with a non-polynomial size
domain and that return multiple bits as output (like computing a signature) can
be computed fairly in Cleve’s setting.

In [19] is proposed a definition for partial fairness that may exhibit some
similarities with ours (both definitions involve a Q(κ) factor where Q is a poly-
nomial). However our definition and approach differs quite from [19]. First, the
setting in [19] is more general than our specific construction to exchange digital
signatures. Secondly, in their protocol, the number of rounds is variable and de-
fines the level of fairness, whereas in our construction fairness only depends on
the computational power of the participants.

Our NIZK argument to prove that a commitment encrypts a bit vector is
inspired by [21,20]. We remark that, though [16] uses the idea of gradual release,
the construction proposed is not practical as it requires to code the functionality
(signing in our case) as an arithmetic circuit.

Organization of the Paper. In Section 2 we introduce notations and recall
some definitions and standard techniques we use in this work. In Section 3 we
describe the bit vector commitment scheme. The argument for proving the equiv-
alence between a bit vector commitment (Ci)i∈[κ] and the discrete logarithm θ

of gθ is introduced in Section 4. The fair exchange protocol is shown in Section
5. We conclude in Section 6.

38 P. Camacho

2 Preliminaries

2.1 Notations

For m,n ∈ N with m < n, [m..n] means the set of integers {m,m+1, ..., n−1, n}
and [n] means the set of integers {1, ..., n}. If κ ∈ N is the security parameter
then 1κ denotes the unary string with κ ones. We will use p to denote a prime
number of κ bits. A function ν : N → [0, 1] is said to be negligible in κ if for
every polynomial q(·) there exists κ0 such that ∀κ > κ0 : ν(κ) < 1/q(κ). In the
following, neg will denote some negligible function in κ. An algorithm is called

PPT if it is probabilistic and runs in polynomial time in κ. We write x
R← X to

denote an element x chosen uniformly at random from a set X . x ← v means
that the variable x is assigned the value v.

A vector of n components and values vi is denoted v = (vi)i∈[n]. If the vector
contains elements of Zp we may also write B[·] = (B[1], B[2], ..., B[n]). Let θ ∈
Zp, we denote by θ[·] the binary decomposition (vector) of θ. That is θ[·] =
(θ[1], ..., θ[κ]) and in particular θ =

∑
i∈[κ] θ[i]2

i−1. P (·) will stand for a formal

polynomial with coefficients in Zp, and P [·] for the vector of its coefficients:
Thus if d = deg(P) is the degree of polynomial P (·) then we have: P (X) =∑

i∈[d+1] P [i]X i−1.

2.2 Non-interactive Zero-Knowledge Proofs of Knowledge

Our protocol for fair exchange uses zero-knowledge proofs of knowledge relative
to bit commitments. In order to simplify the description of the fair exchange
protocol we will use non-interactive zero-knowledge proofs of knowledge. We note
however that interactive ZKPoK would work as well, though adding 2 rounds to
our protocol and loosing possibly security guarantees in case the protocol is run
in parallel or involves more than 2 players. The most popular way to implement
such protocols is by using the Fiat-Shamir heuristic [15], trading non-interaction
for a security proof relying on the random oracle model. We mention that our
scheme could also be adapted to fit Groth’s short non-interactive argument proof
system [20]. In this case the security of non-interactive proofs of knowledge would
depend on a non-black box assumption and we would get shorter arguments4.

Let G be a cyclic group of prime order p where the discrete logarithm is hard.
Let H : G → Zp be a randomly chosen function from a CRHF. Let g, h be
two random generators of G such that the discrete logarithm of h in base g is
unknown.

We will need a ZKPoK of the discrete logarithm θ of some public valueD = gθ.
Following the notation of [8], we have that PK{θ : gθ} = (c = H(gr), z =

r − cθ) where r
R← Zp. The verifier checks that c = H(Dcgz). We will also

use the following ZKPoK that convinces a verifier that the prover knows the
representation of a commitment C = gαhβ in base (g, h) where α, β ∈ Zp.

4 Note however that the common reference string would need to be of quadratic size
in the size of the statements.

Fair Exchange of Short Signatures without Trusted Third Party 39

PK{(α, β) : C = gαhβ} = (c = H(gr1hr2), z1 = r1 − cα, z2 = r2 − cβ) where

r1, r2
R← Zp. The verifier checks that c = H(Ccgz1hz2).

2.3 Bilinear Maps

In this paper we consider bilinear maps which are defined as following:
Let G,GT , be cyclic groups of prime order p. We consider a map

e : G×G → GT which is

– bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(ax, by) = e(a, b)xy.
– non-degenerate: let g be a generator of G then e(g, g) also generates GT .
– efficiently computable: There exists a polynomial time algorithm BMGen with

parameter 1κ that outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT is the representation
of the corresponding groups of size p (p being a prime number of κ bits), g is
a generator of G, and ê is an efficient algorithm to compute the map. For the
sake of simplicity, we will not distinguish between G,GT , e, and Ĝ, ĜT , ê.

2.4 Assumptions

Let N ∈ N. For the following assumptions, the common public parameter is
PP =< (p,G,GT , e, g), (g0, g1, g2, · · · , gN) > where s is chosen randomly in Zp

and gi = gs
i

for i ∈ [0..N].

Definition 1. N-Diffie-Hellman Inversion (N-DHI) assumption, [26].

The N -Diffie-Hellman Inversion problem consists in computing g
1
s given PP. We

say the N -DHI assumption holds if for any PPT adversary A we have

AdvN-DHI(A, κ,N) = Pr
[
g

1
s ← A(1κ, PP)

]
= neg(κ)

The bilinear variant of the previous assumption was introduced in [3].

Definition 2. N-Bilinear Diffie-Hellman Inversion assumption
(N-BDHI). The N - Bilinear Diffie-Hellman Inversion problem consists in com-

puting e(g, g)
1
s given PP. We say the N -BDHI assumption holds if for any PPT

adversary A we have

AdvN-BDHI(A, κ,N) = Pr
[
e(g, g)

1
s ← A(1κ, PP)

]
= neg(κ)

Definition 3. N-Strong Diffie-Hellman assumption (N-SDH), [4]. The

N -Strong Diffie-Hellman (N -SDH) problem consists in computing (c, g
1

s+c) given
PP. We say the N -SDH assumption holds if for any PPT adversary A we have

AdvN-SDH(A, κ,N) = Pr
[
(c, g

1
s+c) ← A(1κ, PP)

]
= neg(κ)

As mentioned in [4], the N -SDH assumption is equivalent to the N -DHI assump-
tion when c is fixed. The following assumption can be considered as a particular
case of the poly-Diffie-Hellman assumption [23], or a generalization of the N+1-
Exponent assumption introduced in [30].

40 P. Camacho

Definition 4. N+i-Diffie-Hellman Exponent(N+i-DHE) assumption.

The N+i-Diffie-Hellman Exponent problem consists in computing gs
N+i

, for
1 ≤ i ≤ N given PP. We say the N+i-DHE assumption holds if for any PPT
adversary A we have

AdvN+i-DHE(A, κ,N) = Pr
[
gs

N+i ← A(1κ, PP)
]
= neg(κ)

In [30], the N -DHI assumption was shown to be equivalent to the N+1-Exponent
assumption (N+1-DHE). We state 5 here the following implication.

Proposition 1. N -BDHI ⇒ N+i-DHE.

2.5 Digital Signatures

Standard Digital Signatures. We denote by SSig = (SKG, SSig, SVf) a
standard signature scheme. A pair of private / public keys (sk, pk) is created
by running SKG(1κ). Given a message m ∈ {0, 1}∗, a signature on m under
pk is σm = SSig(sk,m). A signature σ on m is deemed valid if and only if
SVf(pk,m, σ) returns valid. Regarding security, we use the standard notion of
existential unforgeability under chosen message attack [17].

Boneh and Boyen Signature Scheme [4]. We recall here briefly the short
signature scheme [4] introduced by Boneh and Boyen. The setup algorithm
BMGen(1κ) generates the public parameters of the scheme (p,G,GT , e, g)

6. The

key generation algorithm SKG(1κ) selects random integers x, y
R← Zp and sets

u = gx and v = gy. The secret key is sk = (g, x, y) and the public key is
pk = (g, u, v). Given a message m and sk, the signing algorithm SSig(sk,m)

works as follows. It selects rσ
R← Zp such that rσ − (x+m)/y �= 0 mod p and re-

turn the (randomized) signature σ = (g
1

x+m+yrσ , rσ) = (σ′, rσ). Finally, in order
to verify a signature σ on message m relative to the public key pk, the algorithm
SVf(pk,m, σ) consists in checking that e(σ′, ugmvrσ) = e(g, g). The scheme is
secure in the standard model under the N -SDH assumption.

2.6 Simultaneous Hardness of Bits for Discrete Logarithm

Our construction relies on the idea of releasing gradually the bits of θ ∈ Zp,
the discrete logarithm in base g of D = gθ. A problem that could arise in this
situation would be that some θ values are somehow easier to find than others,
especially when some of the bits are released. This might help an adversary to
retrieve θ much faster (by a factor greater than a polynomial) and thus break the
security of our protocol. To overcome this issue we need to introduce the Simul-
taneous hardness of bits of the discrete logarithm assumption which states that

5 The proof is very similar to the one introduced in [30] and can be found in the full
version [7].

6 We use symmetric bilinear map for the sake of exposition.

Fair Exchange of Short Signatures without Trusted Third Party 41

a polynomial time adversary cannot distinguish7 between a random sequence of
l = κ− ω(log κ) bits and the first l bits of θ when given D = gθ.

Definition 5. (Simultaneous hardness of bits for discrete logarithm) Let G be
a cyclic group of prime order p. We say that the Simultaneous hardness of bits
for discrete logarithm (SHDL) assumption holds, if for every PPT adversary A
and for any l = ω(log κ), we have that the following quantity is negligible in κ:

AdvSHDL(A, κ) = |Pr
[

θ
R← Zp :

1 ← A(gθ, θ[1..κ− l])

]
− Pr

[
θ, α

R← Zp :
1 ← A(gθ, α[1..κ− l])

]
|

where the probability is taken over the random choices of A.

Schnorr [29] showed that the SHDL holds in the generic group model by com-
puting the following upper bound on the advantage of the adversary:

AdvSHDL(A, κ) = O(κ(κ− l)
√
t(
2κ−l

2κ
)1/4)

where t is the number of generic group operations of the adversary. Thus,
if we set l = ω(log κ), we obtain that AdvSHDL(A, κ) = O(κ(κ − ω(log κ))√
t(2−ω(log κ))1/4), which is negligible.
The recent work [13] by Duc and Jetchev suggests that results applying to

groups of integers modulo a safe prime [27,24] can be extended to elliptic curves
so to reduce the SHDL assumption to more standard ones.

3 A New Argument to Prove a Commitment Encrypts
a Bit

In this section we describe a commitment scheme to encrypt a vector of values
in Zp and then provide a NIZK proof that each component of this vector is a
bit. Our technique borrows from [21] in the sense we use the idea that if the
value b encrypted is a bit then b(b − 1) must be equal to 0, and also from [20]
by implementing a basic form of the restriction argument.

Our commitment scheme requires to generate a common reference string

CRS = (g, gs, gs
2

, ..., gs
N

) = (g0, g1, ..., gN) where s
R← Zp is the trapdoor. To

commit a bit bi in position i using randomness ri ∈ Zp, we compute the follow-

ing slight variation of the Pedersen commitment Commit(bi, ri, i) = Ci = grigbii .
The commitment to the vector B = (b1, b2, ..., bN) using the randomness r =
(ri)i∈[N] will simply be the vector formed by the commitments for each
bit in position i: C = (Ci)i∈[N]. Abusing a bit our notation, we will write
C = Commit(B, r).

7 Note that a PPT adversary can easily distinguish both bit strings if l = κ−O(log κ)
by performing a brute force attack on the remaining bits as 2O(log κ) is a polynomial
in κ.

42 P. Camacho

We still need a NIZK that each commitment Ci is the encryption of a bit. The
prover proceeds as follows: He computes the “translation” of the commitment
by N − i positions to the right, by providing the value Ai = griN−ig

bi
N . If we

compute e(Ai, Cig
−1) and try to express this quantity as e(Bi, g), we realize by

simple inspection (see correctness proof of Theorem 1) that a factor g
bi(bi−1)
N+i

will appear. Obviously the prover does not know gN+i so in case bi /∈ {0, 1} he
will not be able to provide the second part of the proof, Bi. If bi is indeed a bit
then the prover will compute the proof πi = (Ai, Bi) in order to convince the
verifier that Ci is the encryption of a bit relative to position i. The proofs for
the following proposition and theorem can be found in the full version [7].

Proposition 2. The vector commitment scheme described above is perfectly hid-
ing and computationally binding under the N -BDHI assumption.

Common reference string: Input (1κ, N)

1. (p,G,GT , e, g) ← BMGen(1κ)

2. s
R← Zp

3. Return CRS =< (p,G,GT , g), (g0, g1, g2, ..., gN) > where for all i ∈ [0..N] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (C1, C2, ..., CN). The

claim is that for each i ∈ [N] there exists ri, bi such that Ci = grig
bi
i where bi ∈ {0, 1}.

Proof: Input (CRS,B, r)

1. Check that B = (b1, ..., bN) ∈ {0, 1}N . Return ⊥ if this is not the case.

2. Check that r = (r1, ..., rN) ∈ Z
N
p . Return ⊥ if this is not the case.

3. For each i ∈ [N] compute an argument πi that Ci is the commitment to a bit in base

gi: πi = (Ai, Bi) where Ai = CsN−i

i and Bi is such that e(Ai, Cig
−1
i) = e(Bi, g).

4. Return π = (πi)i∈[N].

Verification: Input (CRS,C, π)

1. Parse C as (Ci)i∈[N]. Check that C ∈ G
N .

2. Parse π as ((Ai, Bi))i∈[N]. Check that π ∈ (G × G)N .

3. For each i ∈ [N] check that:
(a) e(Ci, gN−i) = e(Ai, g).

(b) e(Ai, Cig
−1
i) = e(Bi, g).

4. Return valid if and only if all check pass, otherwise return ⊥.

Fig. 1. NIZK proof of a commitment being the encryption of a binary vector

Theorem 1. The protocol of Fig. 1 is a NIZK proof that the statement C =
(Ci)i∈[N] is such that for every i ∈ [N] there exists (ri, bi) ∈ (Zp × {0, 1}) with
Ci = grigbii . The NIZK proof has perfect completeness, perfect zero-knowledge
and computational soundness under the N -BDHI assumption.

Fair Exchange of Short Signatures without Trusted Third Party 43

4 Base Equivalence Argument

Let θ
R← Zp. Consider the commitment to the bit vector C = (Ci)i∈[κ] =

(grig
θ[i]
i)i∈[κ] where ri ∈ Zp for each i ∈ [κ] and also D = gθ. In this sec-

tion we introduce a NIZK proof to show that indeed each bit commitment in
position i, Ci, encrypts the ith bit of θ, which is hidden as the discrete log-
arithm of D. This argument will allow us to blind the signature with some
random factor θ (in the exponent) and then reveal each bit of this exponent
gradually without leaking any additional information. The idea is the follow-

ing. Given θ ∈ Zp and C = (grig
θ[i]
i)i∈[κ], the prover proceeds in two steps.

First he computes D′ =
∏

i∈[κ] g
rig

θ[i]
i

gr where r =
∑

i∈[κ] ri. Here the prover
computes some compressed representation of the bit vector commitment and
removes the randomness. Observe however that as θ is uniformly random, thus
so is D′. The prover will need to convince the verifier that r is indeed the ac-
cumulated randomness of the bit vector commitment. To do so he computes

U = D′ 1s = (
∏

i∈[κ] g
θ[i]
i)

1
s =

∏
i∈[κ] g

θ[i]
i−1 where we recall that g0 = g. Observe

that this value can be computed without knowing s. In order to verify this proof,

the verifier will check that e(
∏

i∈[κ] Ci

gr , g) = e(U, g1). Intuitively, once the ran-
domness of the bit vector is removed one can move the vector to the left by one
position. If r would not be equal to

∑
i∈[κ] ri, this would not be possible with-

out breaking some assumption. The second step consists in checking that the

condensed bit vector commitment U =
∏

i∈[κ] g
θ[i]
i−1 is “equivalent” to the simple

commitment gθ. This is done by noting that U =
∏

i∈[κ] g
θ[i]
i−1 = gP (s) where

P (·) is the polynomial P (X) =
∑

i∈[κ] θ[i]X
i−1. This means in particular that

P (2) =
∑

i∈[κ] θ[i]2
i−1 = θ. Thus, we need to prove that P (s)−P (2) = P (s)− θ

is divisible by s− 2. The prover can compute the coefficients of the formal poly-
nomial W (·) such that P (X)− P (2) = W (X)(X − 2), then using the common
reference string CRS the prover obtains V = gW (s). Verifying the “base equiv-
alence” statement consists in checking that e(UD , g) = e(V, g1g

−2) = e(V, gs−2).
This means that indeed θ = P (2) and thus the coefficients of P (·) correspond
to the binary decomposition of θ. The full protocol is detailed in Fig. 2 and the
proof of the theorem is available in the full version [7].

Theorem 2. The protocol in Fig. 2 is a NIZK proof that the bits of the dis-
crete logarithm of D correspond to the bit vector committed in (Ci)i∈[κ]. The
NIZK proof has perfect completeness, perfect zero-knowledge and computational
soundness under the κ-SDH assumption.

5 Fair Exchange of Short Signatures without TTP

Our fair exchange protocol for digital signatures works as follows. At the begin-
ning a common reference string CRS is generated. Then each participant runs

44 P. Camacho

Common reference string: Input (1κ, κ)

1. (p,G,GT , e, g) ← BMGen(1κ).

2. s
R← Zp.

3. Return CRS =< (p,G,GT , e), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

Statement: The statement is formed by a vector of elements of G: (D,C1, C2, ..., Cκ)
where (Ci)i∈[κ] is a commitment to a bit vector as defined in Sect. 3. The claim is that
the vector formed by the binary decomposition of the discrete logarithm of D is equal to
the bit vector committed in (Ci)i∈[κ].

Proof: Input (CRS, θ, r1, ..., rκ)

1. Check that D = gθ . Return ⊥ if this is not the case.

2. Compute for every i ∈ [κ]: Ci = grig
θ[i]
i .

3. Compute r =
∑

i∈[κ] ri.

4. Compute U = (

∏
i∈[κ] Ci

gr)
1
s using the common reference string CRS and the bit vector

θ[·].
5. Compute the formal polynomial W (·) such that P (X)−P (2) = W (X)(X − 2) where

P (X) =
∑

i∈[κ] θ[i]X
i−1, and P (2) =

∑
i∈[κ] θ[i]2

i−1 = θ. Compute V = gW (s)

using the coefficients of the formal polynomial W (·) and the common reference string
CRS.

6. Return π = (r, U, V).

Verification: Input (CRS, C, π)

1. Parse C as (D, (Ci)i∈[κ]).

2. Parse π as (r, U, V).

3. Check that r ∈ Zp.

4. Check that (U, V,D,C1, ..., Cκ) ∈ G
κ+3.

5. Compute D′ =
∏

i∈[κ] Ci

gr .

6. Check that e(D′, g) = e(U, g1).

7. Check that e(U
D , g) = e(V, g1g

−2).

8. Accept if all tests pass in which case return valid otherwise return ⊥.

Fig. 2. NIZK proof that a basic commitment is equivalent to a bit vector commitment

FEKeyGen(1κ) to obtain a pair of (public/private) keys (pk, sk) for the signing
algorithm. At this point each participant executing EncSigGen(CRS, sk,m) will
compute an encrypted signature γ for the message m, using the signature σm

blinded with some factor θ. This value γ will also contain the proofs that relate
the signature σm with some bit vector commitment to θ.

The rest is straightforward: Each participant sends the encrypted signature.
If all the verifications pass, the first participant PA will ask to PB to open the
commitment of the first bit of θA. If the opening is successful, PB will do the
same for its own blinding factor θB. The process is repeated for each bit until all
the bits of the blinding factors are recovered. Finally, each player can compute
the signature by “canceling out” the blinding factor θ. The abstract syntax of
the protocol is described in Fig. 3.

Fair Exchange of Short Signatures without Trusted Third Party 45

We describe now more in detail how the encrypted signature is constructed,
which is the core of our construction. The encrypted signature contains:

1. A commitment C to the bit string formed by the bits of θ as described in
Section 3.

2. σ̃, the signature of the message m blinded by θ.
3. Proofs to guarantee that the bit vector commitment encrypts the binary

decomposition of the blinding factor θ.
4. A proof in order to convince the verifier that γ is the encryption of σm under

some blinding factor θ which is hidden in the basic commitment gθ.
5. A proof of knowledge of the discrete logarithm ofD and a proof of knowledge

of the representation of each bit commitment of the vector C. These proofs
of knowledge will allow us to keep simulating the adversary despite it aborts.

A detailed description of the concrete protocol is given in Fig. 4.

PA(CRS,mA,mB) PB(CRS,mA,mB)

1 (skA, pkA) ← FEKeyGen(1κ)
2 pkA −→
3 (skB , pkB) ← FEKeyGen(1κ)
4 ←− pkB

5 (θA, rA, γA) ← EncSigGen(CRS, skA,mA)
6 γA −→
7 (θB , rB , γB) ← EncSigGen(CRS, skB ,mB)
8 ←− γB

10 v ← EncSigCheck(CRS, pkB ,mB , γB)
11 if v = 0 then ABORT
12 v ← EncSigCheck(CRS, pkA,mA, γA)
13 if v = 0 then ABORT
for i = 1 to κ:
14 openA,i ← KeyBitProofGen(CRS, rA, θA, i)
15 openA,i −→
16 openB,i ← KeyBitProofGen(CRS, rB , θB, i)
17 ←− openB,i

19 vi ← KeyBitCheck(CRS, openB,i, i)
20 if vi = 0 then ABORT
21 vi ← KeyBitCheck(CRS, openA,i, i)
22 if vi = 0 then ABORT
end for
23 σmB

← EncSigDecrypt(γB , θB)
24 σmA

← EncSigDecrypt(γA, θA)

Fig. 3. Abstract fair exchange protocol

We say that the protocol is perfectly complete8 if, and only if, both players
PA and PB that follow the protocol obtain respectively σA = SSig(skB,mB),
the signature of message mB and σB = SSig(skA,mA), the signature of message
mA, with probability 1.

8 Here complete does not refer to fairness.

46 P. Camacho

We say that the protocol is (partially) fair if, at the end of the execution of
the protocol (be it normal or anticipated by the abortion of the adversary), the
probability of both players to recover their corresponding signature differs at
most by a polynomial factor in the security parameter κ. As mentioned in the
introduction, the advantage of this approach is that it avoids trying to compare
the exact running time of the participants and thus allows to capture in a simple,
but precise manner, the intuition of partial fairness.

Definition 6. (Partial fairness) We define the partial fairness of the protocol
through the following experiment: The adversary A plays the role of the corrupted
player say w.l.o.g. PA. Thus, PB is honest and follows the protocol. OSSig(·) is
the signing oracle for the signature scheme SSig relative to the public key pkB
of PB.

1. A asks for signature computations for arbitrary messages to OSSig(·).
2. A chooses the messages mA and mB on which the fair exchange protocol will

be run, with the restriction that mB must not have been requested before to
OSSig(·).
A computes also its public key pkA and sends it to PB.

3. A then interacts in arbitrary way with PB.
4. If A has aborted before ending the protocol, then let θ∗A[1..i] (0 ≤ i ≤ κ) be

the partial blinding obtained by PB. At this point we assume that PB will
try to compute SSig(skA,mA) by choosing at random some element in the
remaining space of size 2κ−i. We call this tentative signature σB.

5. A keeps running its own algorithm and finally outputs a tentative signature
σA on mB relative to public key pkB .

The protocol is said to be partially fair if and only if there exists some polynomial
Q(·) such that

Pr [SVf(pkB ,mB, σA) = valid]

Pr [SVf(pkA,mA, σB) = valid]
≤ Q(κ)

where the probability is taken over the random choices of A and PB.

As the signature scheme presented in [4] is secure under the κ-SDH assumption,
we have the following result (see the full version [7] for the proof).

Theorem 3. The protocol described in Fig. 4 is complete. Moreover if the κ-
SDH assumption, the κ-BDHI assumption and the SHDL assumption hold, and
a securely precomputed common reference string is available, then it is secure in
the random oracle model according to definition 6.

Fair Exchange of Short Signatures without Trusted Third Party 47

FESetup(1κ)
1. (p,G,GT , e, g)← BMGen(1κ)

2. s
R
← Zp

3. Return CRS =< (p,G,GT , e, g), (g0, g1, g2, ..., gκ) > where for all i ∈ [0..κ] : gi = gsi .

FEKeyGen(1κ)

1. (sk, pk) ← SKG(1κ) where sk = (g, x, y) and pk = (g, u, v) with u = gx and v = gy ,
like described in section 2.5.

2. Return (sk, pk).

EncSigGen(CRS, sk,m)

1. Compute θ
R
← Zp.

2. Compute D = gθ .

3. Compute C = (Ci)i∈[κ] = (grig
θ[i]
i)i∈[κ].

4. Compute π1 that shows that C is the encryption of a binary vector as described in
figure 1.

5. Compute π2 that shows that C is the encryption of the bits of the binary decompo-
sition of the blinding factor θ as described in figure 2.

6. Compute PKθ = PK{θ : gθ} as described in section 2.2.

7. Compute PK, a vector where each component at position i is ZKPoK for the repre-

sentation of Ci in base (g, gi). PK = (PK{(ri, θ[i]) : grig
θ[i]
i })i∈[κ] as described in

section 2.2.

8. Parse sk as (g, x, y).

9. Set rσ
R
← Zp.

10. Compute σ = (σ′, rσ)← SSig(sk,m) where σ′ = g
1

x+m+yrσ .

11. Set σ̃ ← (σ′θ = g
θ

x+m+yrσ , rσ) = (σ̃′, rσ).

12. Set γ ← (D,C, π1, π2, PKθ,PK, σ̃).

13. Return (θ,r, γ), where r = (ri)i∈[κ] is the randomness vector of the commitment C.

EncSigCheck(CRS, pk,m, γ)

1. Parse γ as γ = (D,C, π1, π2, PKθ,PK, σ̃).

2. Check π1 as described in figure 1.

3. Check π2 as described in figure 2.

4. Check PKθ using D and PKθ as described in section 2.2.

5. Check the zero-knowledge proof of knowledge PK using C and PK as described in
section 2.2.

6. Parse pk as pk = (g, u, v).

7. Check that e(σ̃, ugmvr
σ) = e(D, g).

8. Return valid if all tests pass, ⊥ otherwise.

KeyBitProofGen(CRS, r, θ, i)

1. Opens the ith commitment of C, that is (θ[i], ri) such that Ci = grig
θ[i]
i .

2. Return open← (θ[i], ri).

KeyBitCheck(CRS, open, i)

1. Parse open as open = (b, r)

2. Check that Ci = grgb
i and b ∈ {0, 1}.

EncSigDecrypt(γ, θ)

1. Parse γ as γ = (D,C, π, PKθ,PK, σ̃).

2. Parse σ̃ as σ̃ = (σ̃′, rσ).

3. Compute σ′ = σ̃′
1
θ .

4. Return σ = (σ′, rσ).

Fig. 4. Implementation of the fair exchange protocol

48 P. Camacho

6 Conclusion and Future Work

In this work we introduced a practical protocol to exchange short signatures [4]
fairly without relying on a TTP. It seems our approach can be applicable to
other signature schemes or more generally to the exchange of values which are
computed from a secret and are publicly verifiable using bilinear maps. Thus,
our techniques might be extended in order to obtain a general framework to
build practical fair protocols involving bilinear maps.

Acknowledgments. The author is very grateful to Anna Lysyanskaya for
pointing out a gap in the proof of Theorem 3.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS, pp. 7–17. ACM Press (April 1997)

2. Blum, M.: How to exchange (secret) keys. ACM Transactions on Computer Sys-
tems 1(2), 175–193 (1983)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)

5. Boneh, D., Naor, M.: Timed Commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)

6. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and Verifiable
Release of a Secret. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
156–166. Springer, Heidelberg (1988)

7. Camacho, P.: Fair Exchange of Short Signatures Without Trusted Third Party
(2012), http://eprint.iacr.org/2012/288

8. Camenisch, J., Stadler, M.: Proof Systems for General Statements about Dis-
crete Logarithms (1997), ftp://ftp.inf.ethz.ch/pub/crypto/publications/

CamSta97b.ps

9. Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure Multi-
Party Computation of Boolean Circuits with Applications to Privacy in On-
Line Marketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp.
416–432. Springer, Heidelberg (2012)

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC, pp. 364–369. ACM Press (November 1986)

11. Cleve, R.: Controlled Gradual Disclosure Schemes for Random Bits and Their
Applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 573–588.
Springer, Heidelberg (1990)

12. Damg̊ard, I.: Practical and Provably Secure Release of a Secret and Exchange of
Signatures. Journal of Cryptology 8(4), 201–222 (1995)

13. Duc, A., Jetchev, D.: Hardness of Computing Individual Bits for One-Way Func-
tions on Elliptic Curves. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417,
pp. 832–849. Springer, Heidelberg (2012)

14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

http://eprint.iacr.org/2012/288
ftp://ftp.inf.ethz.ch/pub/crypto/publications/CamSta97b.ps
ftp://ftp.inf.ethz.ch/pub/crypto/publications/CamSta97b.ps

Fair Exchange of Short Signatures without Trusted Third Party 49

15. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

16. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource Fairness
and Composability of Cryptographic Protocols. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281 (1988)

18. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete Fairness in Secure Two-
Party Computation. Journal of the ACM 58(6), 1–37 (2011)

19. Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

20. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer,
Heidelberg (2010)

21. Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-interactive Zero Knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

22. Huang, Q., Wong, D.S., Susilo, W.: The Construction of Ambiguous Optimistic
Fair Exchange from Designated Confirmer Signature without Random Oracles. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
120–137. Springer, Heidelberg (2012)

23. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomi-
als and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

24. MacKenzie, P.D., Patel, S.: Hard Bits of the Discrete Log with Applications to
Password Authentication. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 209–226. Springer, Heidelberg (2005)

25. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC, pp. 12–19. ACM Press, New York (2003)

26. Mitsunari, S., Sakai, R., Kasahara, M.: A New Traitor Tracing. In: EICE, vol. E
85-A, pp. 481–484 (2002)

27. Patel, S., Sundaram, G.S.: An Efficient Discrete Log Pseudo Random Generator.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer,
Heidelberg (1998)

28. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

29. Schnorr, C.P.: Security of Almost ALL Discrete Log Bits. Electronic Colloquium
on Computational Complexity (1998)

30. Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilin-
ear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

Fully Secure Attribute-Based Systems

with Short Ciphertexts/Signatures
and Threshold Access Structures

Cheng Chen1, Jie Chen2, Hoon Wei Lim2, Zhenfeng Zhang1, Dengguo Feng1,
San Ling2, and Huaxiong Wang2

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
{chencheng,zfzhang,feng}@is.iscas.ac.cn

2 Division of Mathematical Sciences,
School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore

s080001@e.ntu.edu.sg, {hoonwei,lingsan,hxwang}@ntu.edu.sg

Abstract. It has been an appealing but challenging goal in research on
attribute-based encryption (ABE) and attribute-based signatures (ABS)
to design a secure scheme with short ciphertexts and signatures, respec-
tively. While recent results show that some promising progress has been
made in this direction, they do not always offer a satisfactory level of
security, i.e. achieving selective rather than full security.

In this paper, we aim to achieve both full security and short cipher-
texts/signatures for threshold access structures in the ABE/ABS setting.
Towards achieving this goal, we propose generic property-preserving con-
versions from inner-product systems to attribute-based systems. We first
give concrete constructions of fully secure IPE/IPS with constant-size ci-
phertexts/signatures in the composite order groups. By making use of our
IPE/IPS schemes as building blocks, we then present concrete construc-
tions of fully secure key-policy ABE (KP-ABE) and ciphertext-policy
ABE (CP-ABE) with constant-size ciphertexts, and a fully secure ABS
with constant-size signatures with perfect privacy for threshold access
structures. These results give rise to the first constructions satisfying the
aforementioned requirements. Our schemes reduce the number of pair-
ing evaluations to a constant, a very attractive property for practical
attribute-based systems. Furthermore, we show that our schemes can be
extended to support large attribute universes and more expressive access
structures.

1 Introduction

Attribute-Based Encryption. The notion of attribute-based encryption
(ABE) [14] was initially developed from the fuzzy identity-based encryption
(FIBE) primitive [31], which allows some sort of error-tolerance. That is, iden-
tities are viewed as sets of attributes, and a user can decrypt if she possesses
keys for enough of (but not necessarily all) attributes a ciphertext is encrypted
under. At the same time, colluding users cannot combine their keys to decrypt a

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 50–67, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fully Secure Attribute-Based Systems 51

ciphertext which none of them were able to decrypt independently. Since then,
ABE finds many useful applications in cryptographic access control systems,
and is further categorized into ciphertext-policy ABE (CP-ABE) and key-policy
ABE (KP-ABE). In the former, a secret key is associated with an attribute set;
a user can decrypt a ciphertext if and only if the attribute set satisfies the access
structure associated with the ciphertext. In the latter, on the contrary, a secret
key is associated with an access structure; a user can decrypt a ciphertext as-
sociated with an attribute set if and only if the attribute set satisfies the access
structure associated with the user’s secret key. Recently, the signature analogue
of ABE, i.e. attribute-based signatures (ABS), has been introduced [24] (see also
[12,23,29]). ABS offers an interesting property in that a signature does not reveal
the identity of the signer (hence preserving the privacy of the signer), since it is
generated and can be verified based on only the signer’s attributes.

While it is desirable that an attribute-based system to be as expressive as
possible (in terms of enforcing an access control policy), two major factors to
consider when designing an ABE/ABS scheme are efficiency and security. Major-
ity of existing ABE and ABS schemes have linear-size ciphertexts and signatures,
respectively, in the maximal number of attributes. Indeed, recent proposals, such
as [1,10,11,15,16], have focused on reducing the sizes of ciphertexts and signa-
tures in the attribute-based setting. Of these, Herranz et al. [16] presented a
CP-ABE scheme supporting threshold access policies with constant-size cipher-
texts; while Attrapadung and Libert [1] proposed a KP-ABE scheme supporting
general access structures with constant-size ciphertexts; and Herranz et al. [15]
gave two constructions of ABS with constant-size signatures for threshold predi-
cates. While these works have taken a significant step forward towards improving
the efficiency of ABE/ABS, they have so far not achieved a satisfactory level of
security. In other words, the aforementioned schemes achieve better efficiency
at the expense of weaker security. They are proven to be only selectively secure,
i.e. an adversary is required to announce the target he intends to attack before
seeing the public (system) parameters. The goal of this paper is to offer solu-
tions that achieve both full security and constant-size ABE ciphertexts or ABS
signatures.

Predicate Encryption. Functional encryption (FE) [2,8,22,28] is recently seen
as a new vision of public key encryption. In an FE system, a decryption key al-
lows a user to learn a function of the encrypted data. Given a functionality F (·, ·),
an authority holding a master secret key can generate a decryption key SKk that
is able to compute the function F (k, x) from the encryption of x. The security
of the FE system guarantees that one cannot learn anything more about x.
ABE and predicate encryption are both example primitives that satisfy the
notion of FE.

The concept of predicate encryption (PE) was proposed by Katz, Sahai and
Waters [19]. Particularly, they devised a PE scheme for inner products: a ci-
phertext encrypted for the attribute vector y can only be opened by a key x
that gives an inner-product x · y = 0. They showed that the inner-product

52 C. Chen et al.

encryption (IPE) suffices to give functional encryption associated with the
evaluation of polynomials or formulae in conjunctive/disjunctive normal form
(CNF/DNF). Attrapadung and Libert [2] proposed a fully secure IPE scheme
with constant-size ciphertexts based on Waters’ tag-based IBE scheme [34]; while
Okamoto and Takashima [30] also proposed an IPE scheme with analogous prop-
erties on dual pairing vector spaces. We note that it seems possible to construct
fully secure ABE with constant-size ciphertexts directly from these two IPE
schemes. However, the resulting ABE schemes have two notable shortcomings:
(i) the ABE schemes are rather complex1 and it is not always clear how full
security can be proven; and (ii) the access structures are restricted to a single
AND/OR-gate.

Our Approach. In this paper, we consider how PE can be used to construct
fully secure ABE and ABS with constant-size ciphertexts and signatures, re-
spectively. Moreover, we would like our constructions to support threshold access
structures. (Henceforth, we use a prefix ‘t’ to indicate that an attribute-based
system supports threshold access structures, for example tKP-ABE and tCP-
ABE.)

Our general idea is to construct attribute-based systems from inner-product
systems by extending the technique from [19]: we treat a vector space as an
attribute universe, where each coordinate corresponds to an attribute; for an
attribute subset S, a coordinate is equal to 1 if its corresponding attribute is an
element of S, otherwise, the coordinate equals to 0. If two subsets have t common
attributes, the corresponding vectors overlap in exactly t coordinates, and the
inner-product of them equals to t. In addition, we require some coordinates
to express threshold values and to allow an inner-product between the vector
associated with the attribute subset S and the vector associated with an access
structure (if S satisfies the access structure).

One major advantage of such a conversion technique is that the resulting
attribute-based construction preserves the sizes of ciphertexts/signatures and
the security of the corresponding inner-product scheme. This implies that we
can obtain fully (or adaptively) secure tABE with constant-size ciphertexts and
fully secure tABS (in terms of unforgeability and perfect privacy) with constant-
size signatures, so long as the IPE and the signature analogue (IPS) used in the
conversion comply to these properties. We also note that there currently seems
to be no suitable IPS candidate for our purpose. For the sake of simplicity, we
construct IPE and IPS schemes with the required properties in the composite
order group setting as an intermediate step towards achieving fully secure and
efficient tABE and tABS. Although it is possible to construct the schemes under
the prime order groups (as we will discuss in Section 5), our IPE/IPS schemes
are more compact in the composite order groups setting since they do not employ
additional tags as with the schemes in [2,30].

1 Current constructions [2,21,28,29,30] under the prime order groups and proven secure
using the dual encryption system proof methodology typically have a multitude of
parameters and intricate compositions, in comparisons to those under the composite
order groups [20,22].

Fully Secure Attribute-Based Systems 53

Moreover, since the secret key components (of IPE/IPS) used in our conver-
sion are independent from each other, it becomes more natural to derive the
required security proof using the dual system proof technique as compared to
those in [15], for example. We can now make an (ABE/ABS) secret key semi-
functional by turning the secret key components sequentially in a hybrid security
manner.

Our Contributions. We first give appropriate formal definitions and secu-
rity models for predicate signatures. We then specify three generic property-
preserving conversions: (i) IPE to tKP-ABE, (ii) IPE to tCP-ABE, and (iii)
IPS to tABS. Further, we give concrete constructions of IPE and IPS in the
composite order group setting. Our IPE scheme is fully secure with constant-
size ciphertexts and our IPS scheme is fully unforgeable and perfectly private,
and has constant-size signatures. They are proven secure under the complexity
assumptions used by Lewko and Waters [22].

Using our IPE scheme as a building block, we present concrete constructions
of fully secure tKP-ABE and tCP-ABE with constant-size ciphertexts. The ci-
phertexts of both the tKP-ABE and the tCP-ABE schemes consist of 3 group
elements. The security of our tKP-ABE and tCP-ABE inherits the security of the
underlying IPE scheme. We also give a fully secure tABS construction that relies
on our IPS scheme with constant-size signatures. Our tABS produces signatures
that each also consists of 3 group elements. The full unforgeability and prefect
privacy properties are preserved from the underlying IPS scheme. To the best of
our knowledge, there are no previous schemes that satisfy these properties. In
addition, our schemes reduce the number of pairing evaluations to a constant;
this appears to be a very attractive property for attribute-based systems. Table
1 shows that in comparisons with previous work, our attribute-based schemes
have better efficiency and higher security. Here, PP denotes public parameters,
SK denotes secret keys, CT denotes ciphertexts, Sig denotes signatures, all in the
attribute-based setting. Pai denotes the number of paring computations required
in the scheme.

We remark that all our schemes in Section 4 are for small universes. Thus as a
further contribution, we show that the schemes can be extended to support large
universes2 by borrowing the tricks from [31] in the standard model. Moreover,
we show that our constructions can deal with more general access structures, as
discussed in Section 5.

2 Predicate Encryption and Signatures

We give the definitions and security models for predicate encryption and pred-
icate signature. We also show how these definitions capture the notions of
ABE/ABS and IPE/IPS and provide example instantiations of these primitives.

2 The attribute universe is a set containing all the attributes defined for an attribute-
based system. In the small universe case, the size of the attribute universe is defined
at system setup. In the large universe case, the number of attributes is unlimited.

54 C. Chen et al.

Table 1. Comparisons between existing and our ABE/ABS systems

scheme security size of PP size of SK size of CT or Sig expressiveness Pai

CP-ABE

EM+09 [11] selective O(n) O(n) O(1) (n,n)-threshold 2
CZF11 [10] selective O(n) O(n) O(1) and-gate 2
HLR10 [16] selective O(n) O(n) O(1) threshold 3
GZC12 [18] selective O(n) O(n)2 O(1) threshold 3
OT10 [28] full O(n)2 O(n) O(n) general O(n)
Our CP-ABE full O(n) O(n)2 O(1) threshold 2

KP-ABE
ABP11 [1] selective O(n) O(n)2 O(1) general 3
OT10 [28] full O(n)2 O(n) O(n) general O(n)
Our KP-ABE full O(n) O(n)2 O(1) threshold 2

ABS

HLLR12a [15] selective O(n) O(n) O(1) threshold 12
HLLR12b [15] selective O(n) O(n)2 O(1) threshold 3
OT11 [29] full O(n)2 O(n) O(n) general O(n)
Our ABS full O(n) O(n)2 O(1) threshold 3

2.1 Predicate Encryption

Predicate encryption (PE) is a variant of functional encryption, which was for-
mally defined in [8]. We now define the syntax of predicate encryption and its
security model. (Our definitions follow the general framework of those given in
[2,19].3)

Let R : K × X → {0, 1} be a predicate, where K and X de-
note “role” and “policy” spaces. A predicate encryption scheme ΠPE =
(PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) for R consists of four probabilistic
polynomial-time (PPT) algorithms that are described as follows:

– PE.Setup(κ, des): The algorithm takes a security parameter κ and a scheme
description des as input. It outputs some public parameters PP and a master
secret key MSK.

– PE.KeyGen(PP,MSK,y): The algorithm takes as input the public parameters
PP, a master key MSK and a role y ∈ K . It returns a secret key SKy

associated with y.
– PE.Enc(PP,x,M): The algorithm takes as input a messageM , an encrypting

policy x ∈ X and public parameters PP. It outputs a ciphertext CT.
– PE.Dec(PP,x, SKy,CT): The algorithm takes as input a secret key SKy,

a ciphertext CT with a policy x and public parameters PP. It outputs a
message M or ⊥.

For correctness, we require that, for all y ∈ K and x ∈ X , if R(x,y) = 1, then

PE.Dec(PP,x,PE.KeyGen(PP,MSK,y),PE.Enc(PP,x,M)) = M,

3 Our definition of predicate encryption here and throughout the paper refers to the
class of PE with public index (as with [8]), in which the decryption algorithm should
input the index component, as well as the bit length, of the plaintext. This type of
PE has also been informally referred to as “payload hiding” in the literature [19].

Fully Secure Attribute-Based Systems 55

where PP and MSK have been obtained by properly executing the PE.Setup
algorithm.

Security Model. In this paper, we consider only the payload-hiding security,
which requires that ciphertexts hide the encrypted messages from an adversary
but they do not hide their underlying encrypting policies. Let κ be a security pa-
rameter. We describe the security model against chosen plaintext attacks (CPA)
for a PE scheme ΠPE by considering the following security game between an
adversary A and its challenger.

– Setup. The challenger runs the PE.Setup(κ, des) algorithm and gives the
public parameters PP to the adversary.

– Phase 1. The adversary adaptively submits a role y ∈ K and the challenger
answers with a secret key SKy to the adversary.

– Challenge. The adversary submits two messagesM0 andM1 of equal length
and a challenge policy x ∈ X . The challenger chooses μ ∈ {0, 1} at random
and encrypts Mμ under x. The resulting ciphertext CT is given to the ad-
versary.

– Phase 2. The adversary is allowed to continue to make queries as Phase 1.
– Guess. Finally, the adversary outputs a guess μ′ of μ. We say that A is

successful if none of the role y in Phases 1 & 2 that satisfies R(x,y) = 1 has
been queried and μ′ = μ. The success probability is defined as SuccCPA

A,ΠPE
(κ).

Definition 1. For a PE scheme ΠPE, the advantage of an adversary A in the
game is defined as AdvCPA

A,ΠPE
(κ) = |SuccCPA

A,ΠPE
(κ) − 1

2 |. A PE scheme ΠPE is

secure if AdvCPA
A,ΠPE

(κ) is negligible with respect to the security parameter κ, for
any PPT adversary A.

Note that a weaker model that considers selective security can be defined as with
the above security game with the exception that the adversary A is allowed to
choose the challenge encrypting policy x before the setup phase.

Variants. There exist many public key primitives that can be viewed as special
cases of PE, for example, identity-based encryption (IBE) [4,9], hierarchical IBE
(HIBE) [13], broadcast encryption [6], ABE [31,14], IPE [2,30], and spatial en-
cryption (SE) [5]. We provide the definitions of ABE and IPE using the syntax
of PE in the full version of this paper.

2.2 Predicate Signatures

We now define predicate signatures using the syntax of PE. In predicate sig-
natures, the signing and verification algorithms are parameterized by a role
y and a policy predicate x, respectively. A predicate signature generated by
a signer with role y is said to be correctly verified by the public param-
eters and a policy predicate x if R(x,y) = 1 holds. No other informa-
tion is revealed by the signature. A predicate signature (PS) scheme ΠPS =
(PS.Setup,PS.KeyGen,PS.Sign,PS.Verify) for R then consists of four probabilis-
tic PPT algorithms that are described as follows:

56 C. Chen et al.

– PS.Setup(κ, des): The algorithm takes a security parameter κ and a scheme
description des as input. It outputs some public parameters PP and a master
secret key MSK.

– PS.KeyGen(PP,MSK,y): The algorithm takes as input the public parameters
PP, a master key MSK and a role y ∈ K . It returns a secret key SKy

associated with y.
– PS.Sign(PP, SKy,x,M): The algorithm takes as input a message M , a secret

key SKy, a signing policy x ∈ X and public parameters PP. It outputs a
signature σ.

– PS.Verify(PP,x, σ,M): The algorithm takes as input a message M , a signa-
ture σ with a policy x and public parameters PP. It outputs 1 if the signature
is deemed valid and 0 otherwise.

For correctness, for all y ∈ K and x ∈ X , if R(x,y) = 1, it is required that

PS.Verify(PP,x,PS.Sign(PP,PS.KeyGen(PP,MSK,y),x,M),M) = 1

and the values PP,MSK have been obtained by properly executing the algorithms
PS.Setup.

Security Model. We consider two essential security properties for a PS scheme:
unforgeability and signer privacy.

Unforgeability: A PS scheme must provide the typical unforgeability prop-
erty, even against colluding users. Let κ be a security parameter. We then define
unforgeability under chosen message attacks (UF-CMA) for a PS scheme ΠPS

by considering the following security game between an adversary A and its chal-
lenger:

– Setup. The challenger runs PS.Setup(κ, des), and sends the public parame-
ters PP to A.

– Query. A can make secret key and signature queries.

• Secret key queries. A adaptively chooses a role y ∈ K and receives
the secret key SKy = PS.KeyGen(PP,MSK,y) from the challenger.

• Signature queries. A adaptively chooses a pair (x,M) consisting of
a policy x and a message M . The challenger chooses a role y that
R(x,y) = 1, runs SKy = PS.KeyGen(PP,MSK,y) and computes a sig-
nature σ = PS.Sign(PP, SKy,x,M) which is returned to A.

– Forgery. At the end of the game, A outputs a tuple (x∗,M∗, σ∗). A is
successful if:

• A has not made any signature query for the pair (x∗,M∗);
• None of the role y in secret key queries phase satisfies R(x∗,y) = 1;
• PS.Verify(PP,x∗, σ∗,M∗) = 1.

The advantage of the adversaryA in successfully breaking the UF-CMA security
of a PS scheme ΠPS is defined as SuccUF-CMA

A,ΠPS
(κ) = Pr[A wins].

Fully Secure Attribute-Based Systems 57

Definition 2. A PS scheme ΠPS is UF-CMA if SuccUF-CMA
A,ΠPS

(κ) is negligible
with respect to the security parameter κ, for any PPT adversary A.

Similarly, if the adversary A is allowed to choose the challenge signing policy x
before the setup phase, we then have a weaker model called selective unforge-
ability.

Perfect Privacy: This property is required to achieve anonymous ABS in the
sense that PS signatures reveal no information except that the role information
that has been used to generate the signatures. Perfect privacy must hold even
against an unbounded adversary which has knowledge of the master secret key.

Definition 3. A PS scheme ΠPS is perfectly private, if for any message M ,
any two roles y1,y2, any secret keys SK1 = PS.KeyGen(PP,MSK,y1), SK2 =
PS.KeyGen(PP,MSK,y2), and any policy x such that R(x,y1) = 1 and
R(x,y2) = 1, the distribution of PS.Sign(PP, SK1,x,M) is identical to that of
PS.Sign(PP, SK2,x,M).

Identity-based signatures (IBS) [17], identity-based ring signatures (IBRS) [37],
and ABS [12,15,23,24,29] are example of special cases of PS. Moreover, as
we define below, the notion of inner-product signatures (IPS) is also a variant
of PS.

Inner-Product Signatures. The notion of inner-product signatures (IPS) can
be defined as with PS, except with the following modification:

– The setup algorithm defines a positive integer N and a dimension n;
– The role space K := {v := (v1, . . . , vn) ∈ Zn

N};
– The policy space X := {x := (x1, . . . , xn) ∈ Zn

N};
– The predicate R : K× X → {0, 1} is defined as

R(v,x) :=

{
1 if 〈v,x〉 = 0
0 otherwise.

The detailed description of ABS can refer to [24,29]. In this paper, we are mainly
concerned with the notions of ABS and IPS.

3 Generic Constructions

We describe transformation from inner-product systems to attribute-based sys-
tems supporting threshold access structures. We first recall the definition of an
access structure.

Definition 4. Let U = {att1, att2, . . . , attn} be a set of attributes. An access
structure is a set collection A ⊆ 2{att1,att2,...,attn}\∅. An access structure is mono-
tone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

58 C. Chen et al.

We use (Ω, t) to denote a threshold access structure Γ in U if there exist a
threshold t and a subset Ω ⊆ U such that S ∈ Γ ⇔ |S∩Ω| ≥ t. When the access
structures are restricted to the threshold setting, we call it threshold CP-ABE
(tCP-ABE), threshold KP-ABE (tKP-ABE) and threshold ABS (tABS).

3.1 Generic Construction of tKP-ABE from IPE

To construct a tKP-ABE scheme over an attribute universe U :=
{att1, . . . , attn}, we require an (n + 1)-dimensional IPE scheme. Given an IPE
scheme ΠIPE with four algorithms: (IPE.Setup, IPE.KeyGen, IPE.Enc, IPE.Dec), we
construct a tKP-ABE scheme ΠtKP with the corresponding four algorithms:
(tKP.Setup, tKP.KeyGen, tKP.Enc, tKP.Dec) as follows:

– tKP.Setup(κ,U): It runs IPE.Setup(κ, n+ 1) and outputs public parameters
PP and a master key MSK.

– tKP.Enc(PP, S,M): For a subset S ⊆ U, it first computes a vector x :=
(x1, . . . , xn+1) as follows:

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

Then runs IPE.Enc(PP,x,M) and outputs a ciphertext CT.
– tKP.KeyGen(PP, Γ := (Ω, t),MSK): For a threshold access structure (Ω, t)

(where we denote m := |Ω|), it computes a vector v := (v1, . . . , vn) as
follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ Ω
0 otherwise

Then for 1 ≤ j ≤ m − t + 1 it runs IPE.SKi := IPE.KeyGen(PP,vj ,MSK),
where vj := (t + j − 1, v1, . . . , vn). Outputs the secret key KP.SK(Ω,t) :=
{IPE.SKj}1≤j≤m−t+1.

– tKP.Dec(PP,CT, S,KP.SK(Ω,t)): For a ciphertext CT with the subset S and
a secret key parsed as KP.SK(Ω,t) := {IPE.SK1, . . . , IPE.SKm−t+1}, if k :=
|S∩Ω| ≥ t, it runs IPE.Dec(PP,x,CT, IPE.SKk−t+1) and outputs the message
M , where x := (x1, . . . , xn+1):

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

Correctness. For the vector x := (x1, . . . , xn+1) corresponding to the subset
S in the ciphertext and the vector vk−t+1 := (v1, . . . , vn+1) corresponding to the
secret key component IPE.SKk−t+1 in the tKP-ABE, we have

x1 · v1 = −k,

n+1∑
i=2

xi · vi = k

So we have 〈x,vk−t+1〉 = 0. This implies that the resulting tKP-ABE scheme
inherits the decryptability from the underlying IPE scheme, i.e.,

Fully Secure Attribute-Based Systems 59

IPE.Dec(PP,x, IPE.Enc(PP,x,M), IPE.KeyGen(PP,v,MSK)) = M

iff 〈x,v〉 = 0.

Theorem 1. The resulting tKP-ABE scheme is (selectively) secure if the un-
derlying IPE is (selectively) secure.

3.2 Generic Construction of tCP-ABE from IPE

To construct a tCP-ABE scheme over an attribute universeU := {att1, . . . , attn},
we require an (n + 2)-dimensional IPE scheme. Given an IPE scheme
ΠIPE with four algorithms: (IPE.Setup, IPE.KeyGen, IPE.Enc, IPE.Dec), we con-
struct a tCP-ABE scheme ΠtCP with the corresponding four algorithms:
(tCP.Setup, tCP.KeyGen, tCP.Enc, tCP.Dec) as follows:

– tCP.Setup(κ,U): It runs IPE.Setup(κ, n + 2) and outputs public parameters
PP and a master key MSK.

– tCP.Enc(PP, Γ := (Ω, t),M): For a threshold access structure (Ω, t), it com-
putes a vector x := (x1, . . . , xn+2) as follows:

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

Then runs IPE.Enc(PP,x,M) and outputs a ciphertext CT.
– tCP.KeyGen(PP, S,MSK): For a subset S ⊆ U, it first computes a vector

v := (v1, . . . , vn) as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ S
0 otherwise

Then for 1 ≤ i ≤ |S| − 1 it runs IPE.SKi := IPE.KeyGen(PP,vi,MSK),
where vi := (1, v1, . . . , vn, 1 − i). Outputs the secret key CP.SKS :=
{IPE.SKi}1≤i≤|S|−1.

– tCP.Dec(PP,CT, Γ := (Ω, t),CP.SKS): For a ciphertext CT with the thresh-
old (Ω, t) and a secret key parsed as KP.SKS := {IPE.SKi}1≤i≤|S|−1, if
k := |S ∩ Ω| ≥ t, it runs IPE.Dec(PP,x,CT, IPE.SKk−t+1) and outputs the
message M , where x := (x1, . . . , xn+2):

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

Correctness. The security reduction can follow closely with that of the generic
construction for the above tKP-ABE and we will not discuss any further here.

Theorem 2. The resulting tCP-ABE scheme is (selectively) secure if the un-
derlying IPE is (selectively) secure.

60 C. Chen et al.

3.3 Generic Construction of tABS from IPS

To construct a tABS scheme over an attribute universe U := {att1, . . . , attn}, we
require an (n+2)-dimensional IPS scheme. Given an IPS scheme ΠIPS with four
algorithms: (IPS.Setup, IPS.KeyGen, IPS.Sign, IPS.Verify), we construct a tABS
scheme ΠtABS with the corresponding four algorithms:
(tABS.Setup, tABS.KeyGen, tABS.Sign, tABS.Verify) as follows:

– tABS.Setup(κ,U): It runs IPS.Setup(κ, n+2) and outputs public parameters
PP and a master key MSK.

– tABS.KeyGen(PP, S,MSK): For a subset S ⊆ U, it first computes a vector
v := (v1, . . . , vn) as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ S
0 otherwise

Then for 1 ≤ i ≤ |S| − 1 it runs IPS.SKi := IPS.KeyGen(PP,vi,MSK),
where vi := (1, v1, . . . , vn, 1 − i). Outputs the secret key ABS.SKS :=
{IPS.SKi}1≤i≤|S|−1.

– tABS.Sign(PP,ABS.SKS , Γ := (Ω, t),M): If k := |S ∩Ω| ≥ t, it runs
σ ← IPS.Sign(PP,x, IPS.SKk−t+1, Γ ||M), where x := (x1, . . . , xn+2) as fol-
lows:

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

And it outputs σ as the signature.

– tABS.Verify(PP, σ, Γ := (Ω, t),M): It runs IPS.Verify(PP,x, σ, Γ ||M) where
x := (x1, . . . , xn+2) as follows:

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1

And outputs the result.

Correctness. The deduction can follow closely with that of the generic con-
struction of tKP-ABE above. And we omit it here.

Theorem 3. The resulting tABS scheme is (selectively) unforgeable and per-
fectly private if the underlying IPS is (selectively) unforgeable and perfectly
private.

The security proofs of Theorems 1, 2 & 3 can be easily obtained from the def-
initions of ABE/ABS and IPE/IPS. Due to space constraints, we omit them
here.

Fully Secure Attribute-Based Systems 61

4 Concrete Constructions of tABE and tABS

We are now ready to describe how to construct a threshold attribute-based sys-
tem from an inner-product system. For the space considersion, we give concrete
constructions of IPE/IPS which are tailored to our needs in the full version
of this paper. Making use of our IPE/IPS schemes as building blocks, we pro-
pose constructions for fully secure tKP-ABE and tCP-ABE with constant-size
ciphertexts, as well as fully secure and perfectly private tABS with constant-size
signatures. Due to the space limitation, we only give the instances of tKP-ABE
and ABS. The tCP-ABE scheme can be easily obtained from the tKP-ABE
scheme and we omit it here. The correctness and security of our schemes follows
from the generic conversions. Our schemes are for small universes of attributes
U := {att1, . . . , attn} and based on composite order groups. (The definition of
composite order bilinear groups can be found in the full version of this paper
or [22].)

Composite Order Bilinear Groups. We define composite order bilinear
groups as follows: let Gc be a group generator which outputs I := (N =
p1p2p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic groups
of order N = p1p2p3, and e is a bilinear map, e : G × G → GT such that
e(g, g) �= 1 for g and for any u, v ∈ ZN , it holds that e(gu, gv) = e(g, g)uv.
We say that G is a bilinear group if the group operation in G and the bilinear
map e : G × G → GT are both efficiently computable. Notice that the map
e is symmetric since e(gu, gv) = e(g, g)uv = e(gv, gu). We let Gp1 , Gp2 , Gp3

denote the subgroups of order p1, p2, p3 in G, respectively. Furthermore, for
a, b, c ∈ {1, p1, p2, p3} we denote by Gabc the subgroup of order abc. From the
fact that the group is cyclic it is simple to verify that if g and h are group
elements of different order (and thus belonging to different subgroups), then
e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our
constructions.

4.1 Fully Secure tKP-ABE with Constant-Size Ciphertexts

– tKP.Setup(κ,U := {att1, . . . , attn}): The setup algorithm chooses a random
description I := (N = p1p2p3, G,GT , e) with G = Gp1 × Gp2 × Gp3 . It
then randomly picks α, a0, . . . , an+1 ∈ ZN and X3 ∈ Gp3 . It then sets h :=
(h0, . . . , hn+1) = (ga0 , ga1 , . . . , gan+1). It outputs the public parameters and
master key as PP := (I, g,h, e(g, g)α), MSK := (α,X3), respectively.

– tKP.KeyGen(PP, Γ := (Ω, t),MSK): For a threshold access structure (Ω, t)
(where we let m := |Ω|), the algorithm computes a vector v := (v1, . . . , vn)
as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ Ω
0 otherwise

.

Then for 1 ≤ i ≤ m − t + 1, the algorithm randomly picks ri ∈ ZN

and (R0,i, . . . , Rn+1,i) ∈ Gn+2
p3

, and outputs the secret key element SKi

:= (K0,i,K1,i, . . . ,Kn+1,i) by setting

62 C. Chen et al.

K0,i := griR0,i, K1,i := gαhri
0 R1,i,

{
Kj,i :=

(
h
− vj,i

v1,i

1 hj

)ri
Rj,i

}
j=2,...,n+1

,

where vi := (v1,i, . . . , vn+1,i) = (t + i − 1, v1, . . . , vn). It also outputs the
secret key KP.SK(Ω,t) := {SKi}1≤i≤m−t+1.

– tKP.Enc(PP, S,M): For a subset S ⊆ U and a message M ∈ GT to encrypt,
the algorithm first computes a vector x := (x1, . . . , xn+1) as follows:

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

.

It then randomly picks s ∈ ZN and computes the ciphertext CT :=

(C,C0, C1) as C := M · e(g, g)αs, C0 := gs, C1 :=
(
h0

∏n+1
j=1 h

xj

j

)s
.

– tKP.Dec(PP,CT, S,KP.SKS): For a ciphertext CT parsed as (C,C0, C1) with
the subset S and a secret key KP.SK(Ω,t) parsed as {SK1, . . . , SKm−t+1}, if
k := |S ∩Ω| ≥ t, the algorithm first computes x := (x1, . . . , xn+1):

x1 := −1, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ S
0 otherwise

.

It then uses SKk−t+1 := (K0,K1, . . . ,Kn+1) to decrypt: e(g, g)αs =

e(C0,K1

∏n+1
j=2 K

xj

j)/e(C1,K0) and recovers the message as M :=
C/e(g, g)αs.

4.2 Fully Secure tABS with Constant-Size Signatures

– tABS.Setup(κ,U := {att1, . . . , attn}): The setup algorithm chooses a ran-
dom description I := (N = p1p2p3, G,GT , e) with G = Gp1 × Gp2 × Gp3 .
It then randomly picks α, a0, . . . , an+2, b0, b1, b2 ∈ ZN , X3 ∈ Gp3 and a
collision-resistant hash function H : {0, 1}∗ → ZN . The algorithm sets h :=
(h0, . . . , hn+2) = (ga0 , ga1 , . . . , gan+2), and outputs the public parameters
and master key as PP := (I, g,h, gb0 , gb1 , gb2 , X3, e(g, g)

α), MSK := (α).
– tABS.KeyGen(PP, S,MSK): For a subset S ⊆ U, the algorithm first computes

a vector v := (v1, . . . , vn) as follows:

for 1 ≤ i ≤ n : vi :=

{
1 if atti ∈ S
0 otherwise

.

Then for 1 ≤ i ≤ |S| − 1, the algorithm randomly picks ri ∈ ZN and
(R0,i, . . . , Rn+2,i) ∈ Gn+3

p3
, and outputs the secret key element SKi :=

(K0,i,K1,i,
. . . ,Kn+2,i) by setting

K0,i := griR0,i, K1,i := gαhri
0 R1,i,

{
Kj,i :=

(
h
− vj,i

v1,i

1 hj

)ri
Rj,i

}
j=2,...,n+2

,

where vi := (v1,i, . . . , vn+2,i) = (1, v1, . . . , vn, 1 − i). The algorithm also
outputs the secret key ABS.SKS := {SKi}1≤i≤|S|−1.

Fully Secure Attribute-Based Systems 63

– tABS.Sign(PP,ABS.SKS , Γ := (Ω, t),M): To sign a message M with a
threshold access structure (Ω, t) with a secret key ABS.SKS parsed as
{SKi}1≤i≤|S|−1, if k := |S ∩ Ω| ≥ t, the algorithm uses SKk−t+1 :=
(K0,K1, . . . ,Kn+2). It first computes v := (v1, . . . , vn+2) and x :=
(x1, . . . , xn+2) as follows:

v1 := 1, for 1 ≤ i ≤ n : vi+1 :=

{
1 if atti ∈ S
0 otherwise

, vn+2 := k − t;

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1.

The algorithm then randomly picks r1, r2, α
′ ∈ ZN and R0, . . . , Rn+2,

R′
1, R

′
2, R

′
3 ∈ Gp3 , and computes

K ′
0 := K0 · gr1R0, K ′

1 := K1 · gα′hr1
0 R1,

{
K ′

i := Ki · (h
− vi

v1
1 hi)

r1Ri

}
i=2,...,n+2

,

K ′
n+1 := gr2R′

1, K ′
n+2 := g−α′gr2b0R′

2, K ′
n+3 := ((gb1)H(M||Γ,x)gb2)r2R′

3.

It outputs the signature σ := (σ1, σ2, σ3, σ4) by setting

σ1 := K ′
1 ·

n∏
i=2

(K ′
i)

xi , σ2 := K ′
0, σ3 := K ′

n+2 ·K ′
n+3, σ4 := K ′

n+1.

– tABS.Verify(PP, σ, Γ := (Ω, t),M): On input a signature σ parsed as
(σ1, σ2, σ3, σ4) and a threshold (Ω, t), the algorithm computes x :=
(x1, . . . , xn+2), where

x1 := −t, for 1 ≤ i ≤ n : xi+1 :=

{
1 if atti ∈ Ω
0 otherwise

, xn+2 := 1.

The algorithm outputs 1 if

e(g, g)α =
e(g, σ1 · σ3)

e
(
h0

∏n+2
i=1 hxi

i , σ2

)
· e
(
gb0(gb1)H(M||Γ,x)gb2 , σ4

) .
Otherwise, it outputs 0.

5 Extensions

5.1 Constructions in Prime Order Groups

Using groups of prime order can potentially lead to more efficient systems (via
faster group operations) and security under different assumptions. A natural
problem is how to construct the prime order group variants of our systems.
This depends on the constructions of the underlying IPE/IPS. For IPE, [2,30]

64 C. Chen et al.

gave two fully secure IPE schemes with constant-size ciphertexts in prime order
groups. For IPS, we present a fully secure and perfectly private IPS scheme with
constant-size signatures in the prime order groups based on the HIPE (Hierar-
chical Inner-product Encryption) scheme of [30]. The detail of the construction
is given in the full version of this paper. With that, we can make use of the above
constructions to obtain the desired attribute-based schemes in the prime order
groups.

5.2 Large Universe Constructions

Our constructions in Section 4 are limited to the small-universe case where the
set of attributes U is defined at system setup and the size of the public parameters
grows with |U|. We now show how to extend them to the large universe setting
where the number of attributes is unlimited and the public parameter size is
constant. In the random oracle model, it is easy to overcome the dimension-
limitation and achieve a “large-dimension” in the inner-product systems.

We now turn to realizing a large universe constructions in the standard model.
From the concrete constructions presented in Section 4, we can apply the tricks
used for the large universe constructions in [31,35]. As in the random oracle
model, we “program” each coordinate parameter element by using a hash func-
tion that has enough degrees of randomness to plug in the same information.
The tradeoff is that we need to define the maximum number of attributes max
that any one key may have in the setup phase. Moreover, the public parameters
grow linearly with max. We stress that this does not limit the number of at-
tributes that may be used in the system. We realize construction in the standard
model by adapting the construction of tKP-ABE in the full version of this paper.
We remark that similar techniques can be used to realize large universe variant
of our ABE/ABS constructions based on composite groups and ABE construc-
tions based on the prime order groups converted from [2] in the standard model,
although we do not provide the details in this paper.

5.3 More General Access Structures

Our generic conversions can be extended to admit weighted threshold access
structures which are more general than threshold. We use Γ := (Ω,ω, t) to
denote a weighted threshold access structure [3] over U if there exist a threshold
t and an assignment of weights ω : U → ZN such that S ∈ Γ ⇔ Σatt∈Sω(att) ≥ t.
We can make our generic conversion support weighted threshold access structure
by a slight modification. For a weighted threshold access structure Γ := (Ω,ω, t),
we set the vector x := (x1, . . . , xn) as

for 1 ≤ i ≤ n : xi :=

{
ω(atti) if atti ∈ Ω
0 otherwise

and the vector v := (v1, . . . , vn) expressing subset S ⊆ U is unchange.

Fully Secure Attribute-Based Systems 65

We can compute the sum of weights of the attributes in S by computing the
inner-product of the two vectors. This way, we can realize the weighted threshold
access structures.

Acknowledgment. The work is supported by the National Basic Research Pro-
gram of China (No. 2013CB338003), and the National Natural Science Founda-
tion of China (No.61170278, 91118006).

References

1. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-Policy Attribute-
Based Encryption with Constant-Size Ciphertexts. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer,
Heidelberg (2011)

2. Attrapadung, N., Libert, B.: Functional Encryption for Inner Product: Achieving
Constant-Size Ciphertexts with Adaptive Security or Support for Negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010)

3. Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret
Sharing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 600–619. Springer,
Heidelberg (2005)

4. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

6. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

8. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Chal-
lenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer,
Heidelberg (2011)

9. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption
Scheme. In: Biham, E. (ed.) EUROCRYPT 2003, vol. 2656, pp. 254–271. Springer,
Heidelberg (2003)

10. Chen, C., Zhang, Z., Feng, D.: Efficient Ciphertext Policy Attribute-Based En-
cryption with Constant-Size Ciphertext and Constant Computation-Cost. In:
Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer,
Heidelberg (2011)

11. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A Ciphertext-
Policy Attribute-Based Encryption Scheme with Constant Ciphertext Length. In:
Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer,
Heidelberg (2009)

66 C. Chen et al.

12. Escala, A., Herranz, J., Morillo, P.: Revocable Attribute-Based Signatures with
Adaptive Security in the Standard Model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011)

13. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

14. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM Press
(2006)

15. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short Attribute-Based Sig-
natures for Threshold Predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 51–67. Springer, Heidelberg (2012)

16. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant Size Ciphertexts in Threshold
Attribute-Based Encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

17. Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In:
Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer,
Heidelberg (2003)

18. Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold Ciphertext Pol-
icy Attribute-Based Encryption with Constant Size Ciphertexts. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer,
Heidelberg (2012)

19. Katz, J., Sahai, A.,Waters, B.: Predicate Encryption SupportingDisjunctions, Poly-
nomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

20. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

21. Lewko, A.: Tools for Simulating Features of Composite Order Bilinear Groups in the
Prime Order Setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

22. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

23. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: Asiaccs 2010, pp. 60–69. ACM Press, New York (2010)

24. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer,
Heidelberg (2011)

25. Mordini, E., Massari, S.: Body, biometrics and identity. Bioethics 22(9), 488–498
(2008)

26. Nagar, A., Rane, S., Vetro, A.: Alignment and bit extraction for secure fingerprint
biometrics. In: SPIE Conference on Electronic Imaging (2010)

27. Nandakumar, K., Jain, A.: Multibiometric Template Security Using Fuzzy Vault.
In: International Conference on Biometrics: Theory, Applications and Systems, pp.
1–6 (2008)

28. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Re-
lations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

Fully Secure Attribute-Based Systems 67

29. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-
monotone Predicates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg
(2011)

30. Okamoto, T., Takashima, K.: Achieving Short Ciphertexts or Short Secret-Keys
for Adaptively Secure General Inner-Product Encryption. In: Lin, D., Tsudik, G.,
Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg
(2011)

31. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

32. Shamir, A.: How to share a secret. Communications. ACM 22(11), 612–613 (1979)
33. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:

Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

34. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

35. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011)

36. Yang, P., Cao, Z., Dong, X.: Fuzzy Identity Based Signature. Cryptology ePrint
Archive, Report 2008/002 (2008), http://eprint.iacr.org/

37. Zhang, F., Kim, K.: ID-Based Blind Signature and Ring Signature from Pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

http://eprint.iacr.org/

A Robust and Plaintext-Aware Variant
of Signed ElGamal Encryption

Yannick Seurin and Joana Treger

ANSSI, Paris, France
yannick.seurin@m4x.org, joana.marim@ssi.gouv.fr

Abstract. Adding a Schnorr signature to ElGamal encryption is a pop-
ular proposal aiming at thwarting chosen-ciphertext attacks by render-
ing the scheme plaintext-aware. However, there is no known security
proof for the resulting scheme, at least not in a weaker model than the
one obtained by combining the Random Oracle Model (ROM) and the
Generic Group Model (Schnorr and Jakobsson, ASIACRYPT 2000). In
this paper, we propose a very simple modification to Schnorr-Signed
ElGamal encryption that leaves keys and ciphertexts size unchanged,
for which the resulting scheme is semantically secure under adaptive
chosen-ciphertext attacks (IND-CCA2-secure) in the ROM under the
Decisional Diffie-Hellman assumption. In fact, we even prove that our
new scheme is plaintext-aware in the ROM as defined by Bellare et al.
(CRYPTO ’98). Interestingly, we also observe that Schnorr-Signed El-
Gamal is not plaintext-aware (again, for the definition of Bellare et al.)
under the Computational Diffie-Hellman assumption. We show that our
new scheme additionally achieves anonymity as well as robustness, a no-
tion formalized by Abdalla et al. (TCC 2010) which captures the fact
that it is hard to create a ciphertext that is valid under two different
public keys. Finally, we study the hybrid variant of our new proposal,
and show that it is IND-CCA2-secure in the ROM under the Computa-
tional Diffie-Hellman assumption when used with a symmetric encryp-
tion scheme satisfying the weakest security notion, namely ciphertext
indistinguishability under one-time attacks (IND-OT-security).

1 Introduction

ElGamal and Variants. The ElGamal encryption scheme [18] is one of the
oldest discrete-log based public key encryption scheme. It works as follows. Given
a cyclic group G of prime order p and a generator G, a secret/public key pair
is a pair (x, X = Gx), where x is randomly drawn in Z∗

p. To encrypt a message
M ∈ G, one draws a random integer r ∈ Z∗

p, and computes R = Gr and Y =
MXr. The ciphertext is (Y, R), and can be decrypted by computing Y/Rx.

ElGamal encryption is one-way under the Computational Diffie-Hellman
(CDH) assumption, and its semantic security against chosen-plaintext attacks
(IND-CPA-security) is equivalent to the Decisional Diffie-Hellman (DDH)

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 68–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Robust and Plaintext-Aware Variant 69

assumption [42]. However, it is not secure against adaptive1 chosen-ciphertext
attacks since it is malleable: given a ciphertext (Y, R) corresponding to plaintext
M , one can easily generate a ciphertext corresponding to MGz as (Y Gz , R).
This implies that the scheme cannot be IND-CCA2-secure.

There have been mainly two approaches aiming at enhancing the security of
ElGamal encryption to resist adaptive chosen-ciphertext attacks in the Random
Oracle Model (ROM). The first one is to use the so-called hybrid (or hashed)
variant of the scheme, where Xr is hashed through a random oracle HK to
give a secret key K subsequently used in a symmetric encryption scheme. The
resulting scheme is often referred to as DHIES [4,15,28]. To establish the IND-
CCA2-security of hybrid ElGamal encryption, one has to rely on the IND-CCA2-
security of the symmetric encryption scheme2 and on the non-standard Strong
Diffie-Hellman (SDH) assumption, which states that the CDH problem remains
hard even given access to an oracle solving the DDH problem.3 Recently, Cash
et al. [12] removed the need to rely on the SDH assumption by proposing the
Twin ElGamal encryption scheme, a variant of hybrid ElGamal which is IND-
CCA2-secure under the CDH assumption.

The second approach is to add a non-interactive proof of knowledge of the
random integer r used to encrypt the plaintext, with the hope to make the
scheme plaintext-aware. The notion of plaintext awareness was introduced in [9]
and captures the intuitive idea that it should be impossible for an attacker to
create a valid ciphertext without knowing the corresponding plaintext, thereby
rendering the decryption oracle available to an IND-CCA2 adversary useless.
The most natural idea is to add a Schnorr signature [37] to the ciphertext, as
was proposed in [24,42]: to encrypt a message M ∈ G, in addition to the usual
ElGamal ciphertext R = Gr, Y = MXr, a Schnorr signature (with secret key
r) is computed using a random oracle Hc by drawing a random integer a ∈ Z∗

p,
and setting A = Ga, c = Hc(Y, R, A), and s = a + cr mod p. The ciphertext
is then (Y, R, s, c). To decrypt with the secret key x, first check whether c =
Hc(Y, R, GsR−c), then return Y/Rx = M (or ⊥ if the check failed). We call this
scheme Schnorr-Signed ElGamal (SS-EG for short) encryption.

Intuitively, since the Schnorr proof of knowledge is extractable in the ROM
[33,34], the security reduction should be able to extract the integer r used to form
a ciphertext (Y, R, s, c) and answer decryption queries issued by an IND-CCA2
adversary without knowing the secret key x as Y/Xr. However, no one knows
how to turn this intuition into a formal security proof. As clearly explained by
Shoup and Gennaro [41, Sec. 7.2], the problem is that Schnorr signatures are
not known to be online (a.k.a. straight-line) extractable [32,20]: the extractor

1 Regarding non-adaptive chosen-ciphertext attacks, i.e. IND-CCA1 security of ElGa-
mal encryption, see [29].

2 In fact, the weaker notion of indistinguishability under one-time chosen-ciphertext
attacks (IND-OTCCA) is sufficient [15,22].

3 The SDH assumption is slightly weaker than the Gap Diffie-Hellman (GDH) as-
sumption [31]: the first element of the triplets submitted to the DDH oracle is fixed
for the SDH problem, whereas it can be freely chosen for the GDH problem.

70 Y. Seurin and J. Treger

needs to rewind the prover (here, the adversary) in order to extract r. This
causes problems if the adversary orders its random oracle and decryption queries
in a certain way (e.g., if it asks n random oracle queries ci = Hc(Yi, Ri, Ai)
corresponding to the Schnorr signature for the encryption of n messages Mi, and
then asks the decryption queries for the messages in reverse order, that is for
Mn, . . . , M1). Tsiounis and Yung [42] gave a proof that SS-EG encryption is IND-
CCA2-secure using a strong assumption on Schnorr signatures (which basically
amounts to saying that they are online extractable). Schnorr and Jakobsson [38]
showed that SS-EG encryption is IND-CCA2-secure by combining the ROM and
the Generic Group Model (GGM). However, as noted by Fischlin [19], combining
these two idealized models may be even more problematic than considering each
one independently.

Shoup and Gennaro [41] proposed two variants of SS-EG encryption named
TDH1 and TDH2, whose hybrid variants are IND-CCA2-secure in the ROM
under respectively the CDH and the DDH assumption (regarding non-hybrid
variants, see the full version of this paper [39]). They were primarily concerned
with the context of threshold encryption, where it is necessary that decryption
servers be able to publicly verify (i.e. without knowing the secret key) the validity
of a ciphertext before starting the decryption process. This constraint leads to
schemes which, though efficient, are more complex than SS-EG. It is therefore
a natural question whether removing the necessity to be able to publicly verify
the validity of a ciphertext could yield more efficient provably IND-CCA2-secure
variants of SS-EG encryption.

Robustness. Robustness for an encryption scheme informally means that it is
hard to create a ciphertext that decrypts to a valid plaintext under two different
secret keys.4 This notion was only recently formalized by Abdalla et al. [3],
and further studied by Mohassel [30]. Robustness can always be achieved by
appending the public key of the intended receiver to the ciphertext (and checking
it on decryption). However, the notion becomes really interesting when coupled
with anonymity (a.k.a. key privacy) [6], which requires that a ciphertext does
not reveal the public key under which it was created—and then the previous
solution for robustness becomes inadequate. Anonymity and robustness not only
help make encryption more resistant to misuse, but also are inherently important
properties for some applications of public key encryption such as encryption with
keyword search [1] or auction protocols [36].

Basic ElGamal encryption can be shown anonymous under CPA-attacks as-
suming the DDH problem is hard [6], however it is clearly not robust since any ci-
phertext is valid. This is also true for Schnorr-Signed ElGamal5 since the validity
check does not depend on the secret nor the public key (anonymity and robustness
4 This is strong robustness. Weak robustness means that it is impossible to produce

a plaintext that, once encrypted under some public key, decrypts to some valid
plaintext under the secret key corresponding to a second, different public key.

5 Schnorr-Signed ElGamal can easily be seen to achieve anonymity under CPA-attacks.
We expect however that proving anonymity under CCA2-attacks will run into the
same problems as a proof of IND-CCA2-security.

A Robust and Plaintext-Aware Variant 71

for TDH1/2 are more subtle, but neither of them achieves both anonymity and ro-
bustness, see the full version of the paper [39]). It is claimed in [3] that a very mini-
mal modification to DHIES [4] (which is anonymous under CCA2-attacks) renders
the scheme robust. Though no formal proof is available, such a proof seems to re-
quire non-standard assumptions on the MAC scheme used.6 We also note that all
variants of ElGamal encryption with compact ciphertexts where the decryption
algorithm never rejects [28,11,5] cannot be robust (independently of whether they
are anonymous or not). Hence, it seems to be an open problem to propose a sim-
ple variant of ElGamal encryption achieving both anonymity under CCA2-attacks
and robustness without additional non-standard assumption.

Contributions of This Work. We propose a very simple variant of Schnorr-
Signed ElGamal encryption, and prove that it is IND-CCA2-secure in the ROM
under the DDH assumption by showing that it is plaintext-aware. Additionally,
we show that the resulting encryption scheme is not only anonymous under
CCA2 attacks assuming the DDH problem is hard, but also strongly robust (as-
suming the additional check at decryption that the randomness used to encrypt
was not 0). The proof of robustness only requires that the hash function used to
instantiate the random oracle be collision-resistant.

The modification only affects the way the random challenge c for the signature
is generated; in particular the key size and the ciphertexts size remain unchanged
compared with Schnorr-Signed ElGamal. We name our new scheme Chaum-
Pedersen-Signed ElGamal (CPS-EG for short) encryption since it uses a proof of
equality of discrete logarithms (introduced by Chaum and Pedersen [13]) rather
than a proof of knowledge of discrete logarithm. This idea already proved fruitful
for signature schemes [25,21]. In fact, our scheme can be seen as an optimized
variant of TDH2 [41]. A comparison of CPS-EG with existing related schemes
can be found in Table 1.

We prove our scheme to be in a sense minimal relatively to plaintext aware-
ness: removing any input to the random oracle when computing the challenge for
the signature makes the scheme provably (under some computational assump-
tion) not plaintext-aware.7 In particular, we show that Schnorr-Signed ElGamal
encryption is not plaintext-aware as defined in [7] under the CDH assumption.
We think that this observation might help explain why progress has remained
elusive regarding IND-CCA2-security of this scheme.

We also analyze the hybrid version of our scheme, named HCPS-EG, and
show that it is IND-CCA2-secure in the ROM under the CDH assumption. As
the non-hybrid variant, the scheme is anonymous under CCA2-attacks (assuming
the CDH problem is hard) and strongly robust (assuming a collision-resistant
hash function). An interesting feature of this scheme is that it achieves IND-
CCA2-security using the weakest form of security for the data encapsulation

6 Personal communication with the authors of [3].
7 We stress that we refer here to the strong notion of plaintext awareness in the ROM

as defined in [7]. Our results seem unlikely to be extensible to weaker notions such
as the PA2-RO notion suggested in [8].

72 Y. Seurin and J. Treger

mechanism (DEM), namely ciphertext indistinguishability under one-time at-
tacks (IND-OT-security) [15,22]. In more concrete terms, the HCPS-EG scheme
can be safely used with AES in counter mode. This is a property shared with
other ElGamal variants, notably [11,5]. However for these two schemes, the de-
cryption algorithm never rejects (they aim at compact ciphertexts), and hence
they cannot be robust. A summary of results regarding HCPS-EG as well as a
comparison with related schemes can be found in Table 1. Fully detailed analysis
is deferred to the full version of the paper [39].

Related Work. Abe [2] studied generic ways to combine a hybrid encryption
scheme and a signature scheme (which in particular applies to Hashed ElGa-
mal and Schnorr signatures) to obtain an IND-CCA2 encryption scheme in the
ROM where validity of a ciphertext can be publicly checked. Besides, a lot of
efforts were devoted to variants of ElGamal encryption provably IND-CCA2-
secure in the standard model. This started with the “double-base” variant by
Damgård [16], which is IND-CCA1-secure under the non-standard Diffie Hellman
Knowledge (DHK) assumption [8]. Later, Cramer and Shoup [14] proposed their
famous cryptosystem provably IND-CCA2-secure under the DDH assumption,
and formally introduced the notion of hybrid encryption [15]. Notable subsequent
work includes [27,26].

Organization. In Section 2, we recall the necessary background on ElGamal
encryption and plaintext awareness. We describe our new scheme and prove that
it is plaintext-aware, hence IND-CCA2-secure in Section 3. Then, we show in
Section 4 that our scheme is in a sense minimal if one wants to obtain plaintext
awareness. In Section 5, we study anonymity and robustness of our new scheme.
Some proofs are omitted for reasons of space and can be found (except for
Theorem 2, a known result) in the full version of this paper [39].

2 Preliminaries

2.1 Basic Definitions

The security parameter will be denoted k. When S is a non-empty finite set, we
write s ←$ S to mean that a value is sampled uniformly at random from S and
assigned to s. By z ← AO1,O2,...(x, y, . . .) we denote the operation of running
the (possibly probabilistic) algorithm A on inputs x, y, . . . with access to oracles
O1, O2, . . . (possibly none), and letting z be the output. PPT will stand for
probabilistic polynomial-time.

A (prime-order) group generator GpGen is a PPT algorithm that takes a secu-
rity parameter 1k and outputs a triplet (G, p, G) where G is a group8 of prime
order p ∈ [2k−1, 2k[and G is a generator of G. In all the following, we will assume
that all algorithms are given (G, p, G) (e.g., as part of a public key) and will not
denote it explicitly. We denote 1G the identity element of G.
8 More precisely it outputs the description of the group, but we confound it here for

simplicity.

A Robust and Plaintext-Aware Variant 73

Table 1. Comparison of variants of basic (non-hybrid) ElGamal encryption. The secret,
resp. public key size is in number of mod p integers, resp. group elements. The next
two columns give the number of exponentiations per encryption and decryption. For
encryption, we separate off-line/online exponentiations. We count GsR−c as one single
exponentiation even though it is slightly more expensive. The ciphertext size is given in
number of group elements plus mod p integers. The IND column gives the assumption
needed to prove IND-CCA2-security (all schemes except ElGamal use the ROM). The
ANON+SROB column indicates whether the scheme achieves ANON-CCA2-security
and strong robustness, as well as the assumptions needed. DDH stands for Decisional
Diffie-Hellman, GGM for Generic Group Model, and CRHF for Collision-Resistant
Hash Function. Regarding the security properties of TDH1/2, see the full version of
the paper [39].

scheme sk/pk size exp./enc. exp./dec. cip. size IND ANON
+SROB Refs

ElGamal 1 2/0 1 2G
DDH

(CPA only) No [18,42]

SS-EG 1 3/0 2 2G + 2p GGM No [38]
TDH1 1 3/2 3 3G + 2p DDH No [41]
TDH2 1/2 5/0 3 3G + 2p DDH No [41]

CPS-EG 1 4/0 3 2G + 2p DDH
Yes

(DDH+
CRHF)

Sec. 3 & 5

Table 2. Comparison of variants of hashed ElGamal encryption. The first three
columns are as for Table 1. The ciphertext expansion is given in number of group
elements, plus the size |τ | of a MAC in case an authenticated DEM is needed. The
DEM column indicates with which type of Data Encapsulation Mechanism the scheme
is assumed to be used (see the full version [39] for definitions of AE-OT and IND-OT).
SPRP means that the DEM must be a (variable-input length) strong pseudorandom
permutation. The IND and ANON+SROB columns are as for Table 1. For (Twin-
)DHIES, the star indicates that a non-standard assumption is needed for the MAC
to achieve strong robustness. CDH stands for Computational Diffie-Hellman, SDH for
Strong DH, and GDH for Gap DH.

scheme sk/pk
size exp./enc. exp./dec. cip. exp. DEM IND ANON

+SROB Refs

DHIES 1 2 1 G + |τ | AE-OT SDH Yes∗ [4]
Twin-DHIES 2 3 2 G + |τ | AE-OT CDH Yes∗ [12]

KM 1 2 1 G SPRP SDH No [28]
Twin-KM 2 3 2 G SPRP CDH No [12]

AKO 1 2 1 G IND-OT SDH No [5]
Twin AKO 2 3 2 G IND-OT CDH No [5]

Boyen 1 3 2 G IND-OT GDH No [11]

HCPS-EG 1 4 3 G + 2p IND-OT CDH
Yes

(CDH+
CRHF)

full
version

[39]

74 Y. Seurin and J. Treger

We say that the Computational Diffie-Hellman (CDH) problem is hard rela-
tively to GpGen if the following advantage:

Advcdh
GpGen,A(k) = Pr

[
(G, p, G) ← GpGen(1k), x, y ←$ Zp, Z ← A(Gx, Gy) :

Z = Gxy
]

is negligible for any PPT adversary A.
We say that the Decisional Diffie-Hellman (DDH) problem is hard relatively

to GpGen if the following advantage:

Advddh
GpGen,A(k) =

∣∣ Pr
[
(G, p, G) ← GpGen(1k), x, y ←$ Zp : 1 ← A(Gx, Gy, Gxy)

]

− Pr
[
(G, p, G) ← GpGen(1k), x, y, z ←$ Zp : 1 ← A(Gx, Gy, Gz)

] ∣
∣

is negligible for any PPT adversary A.
Random oracles are used for distinct goals in the various schemes considered

in this paper, and will be denoted as follows: Hc will denote the random oracle
used to generate the challenge for the signature, HK will denote the random
oracle used to derive the key for the DEM in hybrid schemes, and HG will
denote a random oracle mapping to G (only used in TDH1). We will use H as
a shortcut for the set of random oracles accessed by a scheme.

Definition 1 (Encryption scheme). A public key encryption scheme PKE is
a triplet of polynomial-time algorithms (PKE.Kg, PKE.Enc, PKE.Dec) where:

– PKE.Kg, the (probabilistic) key generation algorithm, takes a security param-
eter 1k and returns a secret/public key pair (sk, pk).

– PKE.Enc, the (probabilistic) encryption algorithm, takes a public key pk and
a message M and returns a ciphertext ψ.

– PKE.Dec, the (deterministic) decryption algorithm, takes a secret key sk and
a ciphertext ψ and returns either a message M or the special symbol ⊥ that
indicates that the ciphertext is invalid.

We assume that a public key pk defines a message space MsgSp(pk) and for
consistency we impose that for any k:

Pr
[
(sk, pk) ← PKE.Kg(1k), M ←$ MsgSp(pk), ψ ← PKE.Enc(pk, M) :

PKE.Dec(sk, ψ) = M
]

= 1 .

We recall the usual security definitions for PKE schemes in the full version of
the paper [39].

The ElGamal PKE encryption scheme is formally defined in Figure 1 (re-
call that the group parameters (G, p, G) are implicitly included in pk, and here
MsgSp(pk) = G).

The following classical security result regarding ElGamal encryption is due to
Tsiounis and Yung.

Theorem 1 ([42]). The ElGamal encryption scheme is IND-CPA-secure if and
only if the DDH problem is hard relatively to GpGen.

A Robust and Plaintext-Aware Variant 75

ElGamal PKE scheme

PKE.Kg(1k)
(G, p, G) ← GpGen(1k)
x ←$ Z∗

p; X ← Gx

sk ← x; pk ← X
Return (sk, pk)

PKE.Enc(pk = X, M)
r ←$ Z∗

p

R ← Gr; R′ ← Xr

Y ← MR′

Return ψ ← (Y, R)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y, R)
R′ ← Rx

Return M ← Y/R′

Fig. 1. The ElGamal encryption scheme

2.2 Plaintext Awareness in the ROM

The notion of plaintext awareness was first suggested in [9] to capture the idea
that the only way that an adversary can produce a valid ciphertext is to apply the
encryption algorithm to the public key and a message. The motivation was that
IND-CPA-security coupled with plaintext awareness should yield IND-CCA2-
security, since this property would make the decryption oracle available to an
IND-CCA2 adversary useless. The original definition in [9], which was formalized
in the ROM, was found too weak to imply IND-CCA2-security, and was later
adequately refined in [7]. Providing a satisfactory definition for the standard
model turned out to be more subtle and was achieved in [8]. Though it was
initially thought as a simple tool geared towards proofs of IND-CCA2-security,
intrinsic motivations for studying plaintext awareness were later proposed, in
particular in order to securely instantiate the ideal encryption functions of the
Dolev-Yao model [17,23], or to provide deniability to key exchange protocols [35].

In this work, we use the definition of plaintext awareness in the ROM intro-
duced in [7] and we refer to this definition as ROM-PA-security. This definition
involves two types of algorithms: a ciphertext creator C and a plaintext extractor
P . The ciphertext creator is given a public key pk and has access to the random
oracle H and to the encryption algorithm PKE.EncH

pk . All queries of C to the
random oracle and corresponding answers are recorded in a list LH . All answers
(ciphertexts) received from the encryption oracle are recorded in a list Lψ (the
corresponding plaintexts are not recorded). C outputs a ciphertext ψ /∈ Lψ. We
write (LH , Lψ, ψ) ← run CH,PKE.EncH

pk (pk). The plaintext extractor P takes as
input (LH , Lψ, ψ, pk) and aims at returning the plaintext corresponding to ψ.

Definition 2 (ROM-PA). Let PKE = (PKE.Kg, PKE.Enc, PKE.Dec) be an encryp-
tion scheme. PKE is said to be secure in the sense of plaintext awareness in the
ROM (ROM-PA-secure) if there is a PPT algorithm P (the plaintext extractor)
such that for any PPT ciphertext creator C, the failure probability of P relatively
to C, defined as:

Failpa
PKE,P,C(k) = Pr

[
(pk, sk) ← PKE.Kg(1k);

(LH , Lψ, ψ) ← run CH,PKE.EncH
pk (pk) : P(LH , Lψ, ψ, pk) �= PKE.DecH

sk (ψ)
]

,

76 Y. Seurin and J. Treger

is a negligible function (the probability is taken over the random tape of all
algorithms and the answers of the random oracle).

One may wonder why the ciphertext creator is given access to an encryption
oracle since it can encrypt plaintexts by itself using the public key. However,
this reflects the fact that an adversary may obtain ciphertexts it has not en-
crypted by itself (in particular, this is the case of the challenge ciphertext in
an IND-CCA2 security experiment), in which case it may not necessarily know
the corresponding random oracle queries (which are consequently not listed in
LH). See [40,7] for a detailed discussion. Bellare et al. [7] showed the following
theorem.

Theorem 2 ([7]). If a PKE scheme is both IND-CPA-secure and ROM-PA-
secure, then it is IND-CCA2-secure.

They also showed that ROM-PA-security is strictly stronger than IND-CCA2-
security: there exist IND-CCA2-secure PKE schemes that are not ROM-PA-
secure (provided IND-CCA2-secure PKE schemes exist at all).

Note that in the above definition of ROM-PA-security, the plaintext extractor
is not given access to the random oracle: it must work with the list of random
oracle queries of the ciphertext creator. If one allows the plaintext creator to
freely access the random oracle, one loses the intuitively appealing constraint
for the plaintext extractor to work given only the view of the ciphertext creator.
However, for the hybrid version of the scheme (see the full version [39]), we
will need this relaxation of the definition, and will call ROM-PA’-security the
resulting property. Fortunately, it can be checked that the proof of Theorem 2
can be straightforwardly transposed to ROM-PA’-security, namely IND-CPA-
security plus ROM-PA’-security implies IND-CCA2-security.

Though the ElGamal encryption scheme does not use the ROM, it is clear that
it cannot satisfy any notion of plaintext awareness since an adversary can simply
output a random pair (Y, R) ←$ G2, which implies that a plaintext extractor
should be able to break the one-wayness of the scheme, which holds under the
CDH assumption. An attempt to make ElGamal encryption plaintext-aware is to
add a Schnorr signature, resulting in what we call the Schnorr-Signed ElGamal
(SS-EG) encryption scheme [42,24]. Let Hc : G3 → Zp be a random oracle. It is
defined in Figure 2.

Clearly, this scheme inherits IND-CPA-security in the ROM under the DDH
assumption from basic ElGamal encryption (the reduction only needs to simu-
late the signature when preparing the challenge ciphertext by programming the
random oracle adequately).9 However, as discussed in the introduction, there is
no known proof that this scheme is IND-CCA2-secure in a weaker model than
the combination of the ROM and the GGM. In Section 4, we prove that this
scheme is in fact provably not ROM-PA-secure under the CDH assumption.

9 Note that in the standard model, one can easily come with instantiations of Hc that
ruin even IND-CPA-security of the scheme.

A Robust and Plaintext-Aware Variant 77

SS-EG PKE scheme

PKE.Kg(1k)
(G, p, G) ← GpGen(1k)
x ←$ Z∗

p; X ← Gx

sk ← x; pk ← X
Return (sk, pk)

PKE.Enc(pk = X, M)
r, a ←$ Z∗

p

R ← Gr; R′ ← Xr

Y ← MR′

A ← Ga

c ← Hc(Y, R, A)
s = a + cr mod p
Return ψ ← (Y, R, s, c)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y, R, s, c)
R′ ← Rx

A ← GsR−c

if Hc(Y, R, A) �= c
Return ⊥

Return M ← Y/R′

Fig. 2. The SS-EG encryption scheme

3 Chaum-Pedersen-Signed ElGamal Encryption

In this section, we describe our modification of the SS-EG encryption scheme and
analyze its security. We name the new scheme Chaum-Pedersen-Signed ElGamal
(CPS-EG for short) encryption. The change is quite small: we simply add two
elements, R′ = Rx and A′ = Ax, in the call to the random oracle Hc when
computing the challenge c for the signature. This corresponds to moving from
a proof of knowledge of the discrete logarithm r = DLogG(R) to a Chaum-
Pedersen [13] proof of equality of discrete logarithms DLogG(R) = DLogX(R′).
The scheme uses a random oracle Hc : G5 → Zp. It is defined in Figure 3.

CPS-EG PKE scheme

PKE.Kg(1k)
(G, p, G) ← GpGen(1k)
x ←$ Z∗

p; X ← Gx

sk ← x; pk ← X
Return (sk, pk)

PKE.Enc(pk = X, M)
r, a ←$ Z∗

p

R ← Gr; R′ ← Xr

Y ← MR′

A ← Ga; A′ ← Xa

c ← Hc(Y, R, R′, A, A′)
s = a + cr mod p
Return ψ ← (Y, R, s, c)

PKE.Dec(sk = x, ψ)
Parse ψ as (Y, R, s, c)
R′ ← Rx

A ← GsR−c; A′ ← Ax

if Hc(Y, R, R′, A, A′)
�= c

Return ⊥
Return M ← Y/R′

Fig. 3. The CPS-EG encryption scheme

Note that the correctness of a ciphertext cannot be checked publicly (i.e.
without knowledge of the secret key x). As for the Schnorr-Signed variant, it
is straightforward to prove that the scheme remains IND-CPA-secure under the
DDH assumption for GpGen.

Theorem 3. Assume that the DDH problem is hard for GpGen. Then the CPS-
EG encryption scheme is IND-CPA-secure.

78 Y. Seurin and J. Treger

The intuition regarding why the CPS-EG scheme is ROM-PA-secure is simple:
since R′ is now included in the random oracle queries, the plaintext extractor
will directly be able to decrypt Y once it has located the corresponding query.
Namely, upon reception of a ciphertext (Y, R, s, c), it can compute A = GsR−c,
and look throughout the list of random oracle queries to find the (unique with
high probability) query (Y, R, R′, A, A′) such that the answer was c. There is
however a small caveat: the plaintext extractor must check that this query was
correctly formed, i.e. R′ = Rx and A′ = Ax. This is ensured by the following
lemma (which is the core of the proof of soundness of the Chaum-Pedersen
protocol [13], and also the base of the “twinning” technique of Cash et al. [12]).

Lemma 1. Fix X = Gx, x ∈ Z∗
p. Let R = Gr, R′, A = Ga, A′ ∈ G be four group

elements such that r, a �= 0 mod p, and R′ �= Rx or A′ �= Ax. Then there is at
most one integer c ∈ Zp such that there exists s ∈ Zp satisfying both Gs = ARc

and Xs = A′R′c.
Proof. Denote R′ = Ry and A′ = Az , and assume that there exists (s1, c1) and
(s2, c2) with c1 �= c2 satisfying Gsi = ARci and Xsi = A′R′ci for i = 1, 2.
Then Gxsi = AxRxci = A′R′ci = AzRyci , which implies a(x − z) = rci(y − x)
mod p. Hence if y �= x, then c1 = c2 = a(x − z)/r(y − x) mod p, contradicting
the assumption that c1 �= c2. If y = x then z = x (since a �= 0 mod p) which
contradicts the assumption that R′ �= Rx or A′ �= Ax. ��
We now give the formal proof that the scheme is ROM-PA-secure.

Theorem 4. The CPS-EG encryption scheme is ROM-PA-secure. Hence, it
is IND-CCA2-secure in the ROM under the assumption that DDH is hard for
GpGen.
Proof. Consider a ciphertext creator C making at most qh random oracle queries
and qe queries to the encryption oracle (these queries are irrelevant to the anal-
ysis). Let (LH , Lψ, ψ) be the output of a run of C on public key pk = X = Gx,
where ψ = (Y, R, s, c). The plaintext extractor P proceeds as follows: it computes
A = GsR−c and looks throughout LH for all queries of the form (Y, R, ∗, A, ∗),
where ∗ denotes any group element, such that the answer was c. If there is
no such query, it returns ⊥ (meaning that the ciphertext is invalid). If there
is more than one such query, the plaintext extractor aborts. Otherwise, denote
(Y, R, R′, A, A′) the unique query such that the answer was c. P checks whether
Xs = A′R′c. If this does not hold, it returns ⊥ (meaning that the ciphertext is
invalid). Otherwise it returns M = Y/R′ as the plaintext.

We now analyze the failure probability of the plaintext extractor. First, note
that since ψ /∈ Lψ, the query (Y, R, Rx, A, Ax) cannot have been issued to the
random oracle during any of the qe calls of the ciphertext creator to PKE.EncH

pk .
Hence, if this query is not in LH , then the view of C and P is independent of
the value of Hc at this point. We consider four distinct cases.
1. If there is no query of the form (Y, R, ∗, A, ∗) such that the answer was c,

then the ciphertext is valid with probability at most 1/p. Hence, by returning
⊥, the plaintext extractor errs with probability at most 1/p.

A Robust and Plaintext-Aware Variant 79

2. The probability that there are two queries to the random oracle such that
the answers were the same is upper bounded by q2

h/2p; this is also an upper
bound on the probability that the plaintext extractor aborts.

3. If there is a unique query (Y, R, R′, A, A′) such that the answer was c, but
A′ �= XsR′−c, then either R′ �= Rx or A′ �= Ax. Consequently, the ciphertext
is valid with probability at most 1/p and again, by returning ⊥, the plaintext
extractor errs with probability at most 1/p.

4. If there is a unique query (Y, R, R′, A, A′) such that the answer was c, and
Xs = A′R′c, then two situations can occur. If R′ = Rx and A′ = Ax,
then it is clear that the plaintext extractor returns the plaintext that would
be returned by PKE.DecH

sk . Else, R′ �= Rx or A′ �= Ax, and according to
Lemma 1, there is at most one integer c0 such that there exists s satisfying
both Gs = ARc0 and Xs = A′R′c0 , and for each query the random oracle
returned c = c0 with probability at most 1/p. Hence the plaintext extractor
is fooled into returning an incorrect plaintext with probability at most qh/p.

Collecting all cases shows that the failure probability of the plaintext extractor
is at most 2q2

h/p, which is negligible in the security parameter. It follows from
Theorems 2 and 3 that the scheme is IND-CCA2-secure in the ROM under the
assumption that DDH is hard for GpGen. ��
We note that CPS-EG seems to be the simplest IND-CCA2-secure scheme in the
ROM that retains some kind of homomorphic property. Namely, given two ci-
phertexts (Y1, R1, s1, c1) and (Y2, R2, s2, c2) corresponding respectively to plain-
texts M1 and M2, one can compute the first two elements of the ciphertext for
M1M2 as for basic ElGamal encryption. It is however impossible to “sign” the
new ciphertext without knowledge of the random values used to encrypt M1 and
M2. This property appears to be useful in e-voting applications [43,10].

4 Minimality of CPS-EG Regarding Plaintext Awareness

In this section, we consider whether the CPS-EG encryption scheme remains
ROM-PA-secure when some inputs are removed from the call to the random
oracle Hc. Surprisingly, we are able to show that under an adequate assumption,
the resulting scheme cannot be ROM-PA-secure. Namely:

– If we remove R′ and A′, we exactly recover the SS-EG scheme, and we can
show that the scheme is not ROM-PA-secure under the CDH assumption.

– If we remove one single element among R, R′, A, or A′, then the scheme
is not ROM-PA-secure under the DDH assumption (removing Y trivially
makes the scheme malleable).

This is captured by the following two theorems.

Theorem 5. Assume that the CDH problem is hard for GpGen. Then the SS-EG
encryption scheme is not ROM-PA-secure.

80 Y. Seurin and J. Treger

Proof. Assume for contradiction that SS-EG encryption is ROM-PA-secure, and
let P be a plaintext extractor. We build a reduction R that solves the CDH
problem. Let (G, p, G) ← GpGen(1k) and (X = Gx, R = Gr) denote the input to
R. R simulates the run of a ciphertext creator as follows. It draws two integers
s, c ←$ Zp, a random group element Y ←$ G, computes A = GsR−c, and
programs the random oracle with Hc(Y, R, A) = c. Then it runs the plaintext
extractor with input LHc = ((Y, R, A), c), Lψ = ∅, ψ = (Y, R, s, c), and pk = X .
It is clear that the ciphertext is valid, and that the simulation of the random
oracle is perfect. Hence, with overwhelming probability, P returns the plaintext
M corresponding to ψ, from which R can compute Grx = Y/M . ��
Since ROM-PA-security is strictly stronger than IND-CCA2-security, the result
above does not imply that SS-EG is not IND-CCA2-secure in the ROM. Would
SS-EG be proved IND-CCA2-secure this would yield a natural separation be-
tween this notion and ROM-PA-security (the separation provided in [7] used a
rather contrived counter-example, but without any computational assumption).
Also, there are many possible ways to weaken the definition of plaintext aware-
ness in the ROM. The theorem above seems to crucially rely on the impossibility
for the plaintext extractor to rewind the ciphertext creator or to program the
random oracle: it must work online, and can only observe the ciphertext creator
queries. In particular, [8] proposed weaker notions of PA in the ROM where the
plaintext extractor is not black-box (it can depend on the code of the ciphertext
creator), and is given the random coins of the ciphertext creator, which enables
to rewind it. Exploring whether SS-EG may fulfill such weaker definitions is an
interesting open question.

Regarding the minimality of CPS-EG, we have the following result.

Theorem 6. Assume that the DDH problem is hard for GpGen. Then the CPS-
EG encryption scheme does not remain ROM-PA-secure when any of the four
elements R, R′, A or A′ is removed from the inputs to Hc when generating c.
When Y is removed the scheme becomes (unconditionally) malleable and hence
is not IND-CCA2-secure nor ROM-PA-secure.

5 Anonymity and Robustness of CPS-EG

The formal definition of anonymity for a PKE scheme is recalled in the full
version [39]. Informally, this requires that an adversary cannot distinguish under
which public key an (adversarially chosen) message was encrypted. We start with
showing that the CPS-EG scheme provides anonymity under CCA2 attacks.

Theorem 7. Assume that the DDH problem is hard for GpGen. Then the CPS-
EG encryption scheme is ANON-CCA2-secure.

The definition of strong robustness is recalled in the full version [39]. We will now
see that the CPS-EG scheme achieves strong robustness, assuming the following
very simple tweak to the scheme (in fact, the same was proposed for Cramer-
Shoup encryption in [3]). We define the CPS-EG∗ scheme exactly as the CPS-EG

A Robust and Plaintext-Aware Variant 81

scheme, with the additional check on decryption that R �= 1G (if the check fails,
then the decryption algorithm returns ⊥).

Theorem 8. Assume Hc is instantiated with a collision-resistant hash function
family. Then the CPS-EG∗ encryption scheme is SROB-CCA-secure.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T.,
Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited:
Consistency Properties, Relation to Anonymous IBE, and Extensions. Journal of
Cryptology 21(3), 350–391 (2008)

2. Abe, M.: Securing Encryption + Proof of Knowledge in the Random Oracle Model.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 277–289. Springer, Hei-
delberg (2002)

3. Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010)

4. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

5. Abe, M., Kiltz, E., Okamoto, T.: Compact CCA-Secure Encryption for Messages
of Arbitrary Length. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 377–392. Springer, Heidelberg (2009)

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

7. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Se-
curity for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

8. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without
Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–
62. Springer, Heidelberg (2004)

9. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

10. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios
for Provable Ballot Privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011)

11. Boyen, X.: Miniature CCA2 PK Encryption: Tight Security Without Redundancy.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 485–501. Springer,
Heidelberg (2007)

12. Cash, D.M., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Appli-
cations. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145.
Springer, Heidelberg (2008)

13. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

14. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

82 Y. Seurin and J. Treger

15. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing 33(1), 167–226 (2003)

16. Damgård, I.B.: Towards Practical Public Key Systems Secure against Chosen Ci-
phertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
445–456. Springer, Heidelberg (1992)

17. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

19. Fischlin, M.: A Note on Security Proofs in the Generic Model. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 458–469. Springer, Heidelberg (2000)

20. Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

21. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient Signature Schemes with Tight
Reductions to the Diffie-Hellman Problems. Journal of Cryptology 20(4), 493–514
(2007)

22. Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for secure hybrid
encryption. Inf. Comput. 208(11), 1243–1257 (2010)

23. Herzog, J.C., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg
(2003)

24. Jakobsson, M.: A Practical Mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 448–461. Springer, Heidelberg (1998)

25. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on
Computer and Communications Security, pp. 155–164. ACM (2003)

26. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A New Randomness Extraction
Paradigm for Hybrid Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2009)

27. Kurosawa, K., Desmedt, Y.G.: A New Paradigm of Hybrid Encryption Scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

28. Kurosawa, K., Matsuo, T.: How to Remove MAC from DHIES. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 236–247.
Springer, Heidelberg (2004)

29. Lipmaa, H.: On the CCA1-Security of Elgamal and Damgård’s Elgamal. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 18–35.
Springer, Heidelberg (2011)

30. Mohassel, P.: A Closer Look at Anonymity and Robustness in Encryption Schemes.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 501–518. Springer,
Heidelberg (2010)

31. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-C. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

32. Pass, R.: On Deniability in the Common Reference String and Random Oracle
Model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer,
Heidelberg (2003)

A Robust and Plaintext-Aware Variant 83

33. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

34. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

35. Raimondo, M.D., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference
on Computer and Communications Security - CCS 2006, pp. 400–409. ACM (2006)

36. Sako, K.: An Auction Protocol Which Hides Bids of Losers. In: Imai, H., Zheng, Y.
(eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)

37. Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology 4(3), 161–174 (1991)

38. Schnorr, C.-P., Jakobsson, M.: Security of Signed ElGamal Encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Hei-
delberg (2000)

39. Y. Seurin and J. Treger. A Robust and Plaintext-Aware Variant of Signed ElGa-
mal Encryption. Full version of this paper. Available from the authors or from,
http://eprint.iacr.org.

40. Shoup, V.: OAEP Reconsidered. Journal of Cryptology 15(4), 223–249 (2002)
41. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ci-

phertext Attack. Journal of Cryptology 15(2), 75–96 (2002)
42. Tsiounis, Y., Yung, M.: On the Security of ElGamal Based Encryption. In:

Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer,
Heidelberg (1998)

43. Wikström, D.: Simplified Submission of Inputs to Protocols. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008)

http://eprint.iacr.org

Efficient Public Key Cryptosystem Resilient

to Key Leakage Chosen Ciphertext Attacks

Shengli Liu1,4,�, Jian Weng2,5,��, and Yunlei Zhao3,4,� � �

1 Dept. of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

slliu@sjtu.edu.cn
2 Department of Computer Science, Emergency Technology Research Center

of Risk Evaluation and Prewarning on Public Network Security, Jinan University
cryptjweng@gmail.com

3 Software School, Fudan University, Shanghai 201203, China
ylzhao@fudan.edu.cn

4 State Key Laboratory of Information Security, Institute of
Information Engineering, Chinese Academy of Sciences, Beijing 100093

5 Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai

Abstract. Leakage-resilient public key encryption (PKE) schemes are
designed to resist “memory attacks”, i.e., the adversary recovers the cryp-
tographic key in the memory adaptively, but subject to constraint that
the total amount of leaked information about the key is bounded by
some parameter λ. Among all the IND-CCA2 leakage-resilient PKE pro-
posals, the leakage-resilient version of the Cramer-Shoup cryptosystem
(CS-PKE), referred to as the KL-CS-PKE scheme proposed by Naor
and Segev in Crypto09, is the most practical one. But, the key leak-
age parameter λ and plaintext length m of KL-CS-PKE are subject to
λ + m ≤ log q − ω(log κ), where κ is security parameter and q is the
prime order of the group on which the scheme is based. Such a depen-
dence between λ and m is undesirable. For example, when λ (resp., m)
approaches to log q, m (resp., λ) approaches to 0.

In this paper, we designed a new variant of CS-PKE that is resilient
to key leakage chosen ciphertext attacks. Our proposal is λ ≤ log q −
ω(log κ) leakage-resilient, and the leakage parameter λ is independent of
the plaintext space that has the constant size q (exactly the same as that
in CS-PKE). The performance of our proposal is almost as efficient as
the original CS-PKE. As far as we know, this is the first leakage-resilient
CS-type cryptosystem whose plaintext length is independent of the key
leakage parameter, and is also the most efficient IND-CCA2 PKE scheme
resilient to up to log q − ω(log κ) leakage.

� Funded by NSFC (No. 61170229, 61133014), Innovation Project (No.12ZZ021)
of Shanghai Municipal Education Commission, and Specialized Research Fund
(No.20110073110016) for the Doctoral Program of Higher Education.

�� Funded by NSFC No. 61272413, and the Opening Project of Shanghai Key Lab-
oratory of Integrate Administration Technologies for Information Security under
Grant No. AGK201100.

� � � Contact author, funded by NSFC (No. 61070248, 61272012), and Innovation
Project (No.12ZZ013) of Shanghai Municipal Education Commission.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 84–100, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 85

1 Introduction

IND-CCA2 security is well-accepted as the standard security notion in public key
encryption. However, the security model does not consider many realistic attacks,
like side-channel attacks[2,3,16,17]. These attacks are very powerful since they ex-
ploit information leakage of physical implementations. Lots of works were devoted
to the formalization of side-channel attacks. The framework proposed by Micali
and Reyzin [18] assumed that only computation leaks information, and construc-
tions of cryptographic primitives resilient to computational information leakage
have been presented in [22,21,13,12,18]. In 2008, Halderman et.al. [15] observed
that “cold boot attacks”make possible for the adversary to recover some bits of the
cryptographic key in the memory, with momentary physical access to the DRAM.
In 2008, Akavia, Goldwasser and Vaikuntanathan[1] recognized these attacks as
a new class of side-channel attacks, namely “memory attacks”. They also gave a
new framework of modeling “key leakage” in a “memory attack”. In such an at-
tack, the adversary is able to choose arbitrary functions of the cryptographic key
adaptively, and obtains the outputs of these functions. The only constraint is that
the total amount of leaked information about the key is bounded by some param-
eter λ. Following this general framework, lots of key-leakage resilient public key
encryption (KL-PKE) schemes were proposed in the past a few years.

1.1 Related Work

In 2005, Akavia et.al.[1] showed that the lattice-based PKE scheme proposed
by Regev [23] is resilient to any leakage of L/polylog(L) bits, with L the bit
length of the secret key. In 2009, Naor and Segev [20] distinguished between
chosen-plaintext key leakage attacks and chosen-ciphertext key leakage attacks.
They suggested that any PKE based on hash proof systems [6] can be made
secure against chosen-plaintext key leakage attacks (IND-KL-CPA) with help
of randomness extractors. In the extended framework of chosen-ciphertext key
leakage attacks (IND-KL-CCA2), Naor and Segev proved that Naor-Yung ’s
“double encryption” paradigm works as well. The requirement is that the two
PKE components are IND-KL-CPA secure, and non-interactive zero-knowledge
(NIZK) defines a language that the two PKEs encrypt the same plaintext. Naor-
Yung ’s paradigm achieves key leakage λ up to L(1− o(1)).

The lack of efficient implementations of NIZK makes Naor-Yung ’s paradigm
less practical. In 2010, Dodis et.al. [10] exploited more efficient ways to achieve
IND-KL-CCA2 security. They proposed a new concept of true-simulation ex-
tractable NIZK arguments, and gave a construction of IND-KL-CCA2-secure
PKE from an IND-KL-CPA secure one together with a strong f -true-simulation
extractable NIZK argument. The key leakage λ is also up to L(1− o(1)).

Among all the proposals to achieve IND-KL-CCA2 security, the variant of
Cramer-Shoup cryptosystem presented in [20] is the most practical one. For pre-
sentation simplicity, we will call the original IND-CCA2 secure Cramer-Shoup
cryptosystem “CS-PKE” and the IND-CCA2 leakage-resilient Cramer-Shoup
scheme proposed in [20] “KL-CS-PKE”. The KL-CS-PKE follows the original

86 S. Liu, J. Weng, and Y. Zhao

CS-PKE and uses extractors to deal with key leakage. Let G be a group of
prime order q, the CS-PKE scheme is roughly recalled as follows. The secret key
is (x1, x2, y1, y2, z1, z2), all uniformly at random from Z∗

q , and the corresponding
public key is c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , h = gz11 gz22 . The encryption (decryption) al-
gorithm creates three ephemeral keys (cr, dr, hr) = (ux1

1 ux2
2 , uy1

1 uy2

2 , uz1
1 uz2

2) with
r taken uniformly at random from Zq . Two of them, (cr, dr) = (ux1

1 ux2
2 , uy1

1 uy2

2)
are used to ensure (check) the consistence of the ciphertext. The last one hr =
uz1
1 uz2

2 is used to mask (recover) the plaintext.

Encryption Decryption

u1 = gr1 , u2 = gr2 , r ∈ Z
∗
q , s ∈ {0, 1}t; α = T (u1, u2, e, s);

e = M ⊕ Ext(hr, s); If v �= ux1+y1α
1 ux2+y2α

2 , output ⊥;

α = T (u1, u2, e, s); v = crdrα; otherwise M = e⊕ Ext(uz1
1 uz2

2 , s);

Output (u1, u2, s, e, v). Output M.

Fig. 1. The KL-CS-PKE Scheme

The key leakage of CS-PKE brings two effects: (1) The information leakage
related to (x1, x2, y1, y2) will deteriorate the probability of rejecting inconsistent
ciphertexts, hence making the security reduction looser than that of CS-PKE.
The information leakage related to (z1, z2) makes it unsuitable to mask the plain-
text directly. To solve these problems, Naor and Segev employed an extractor
Ext to distill a random shorter key from the ephemeral key uz1

1 uz2
2 that is in turn

used to mask the plaintext. The bit length of plaintext is then determined by
the length of the distilled random key. As for the proof of the IND-KL-CCA2
security, the key observation (with some careful calculation) is that the aver-
age min-entropy of (z1, z2) conditioned on all the information leaked is upper
bounded by log q−λ bits. According to randomness extraction theory, on a secu-
rity parameter κ, the distilled randomness, hence the plaintext, both are upper
bounded by log q − λ − ω(log κ) bits, which is much shorter than that in the
CS-PKE. The KL-CS-PKE scheme proposed by Naor and Segev [20] is recalled
in Figure 1, where the public and secret keys and system parameters remain the
same as in CS-PKE, and T is a target collision resistant hash function.

1.2 Our Contributions

Based on the original Cramer-Shoup cryptosystem (CS-PKE) [7] and the KL-
CS-PKE variant [20], we propose a new leakage-resilient CCA2-secure PKEs.
However, we essentially follow a new line.

Like CS-PKE and KL-CS-PKE, the secret key includes (x1, x2), (y1, y2),
(z1, z2) and the public key is given by c = gx1

1 gx2
2 , d = gy1

1 gy2

2 , h = gz11 gz22 . The
new idea is that all the three parts of secret key, namely (x1, x2), (y1, y2) and

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 87

(z1, z2), are involved both in the ciphertext consistence check and the random
distillation to mask plaintexts. A key observation is: the three parts of secret key
altogether imply larger average min-entropy, even conditioned on all the leaked
information bounded by λ ≤ log q − ω(log κ). Larger min-entropy implies more
randomness can be distilled. On the other hand, we use a special universal hash
function (i.e., Hs(a, b) = a · bs, for a, b ∈ G and s ∈ Z∗

q) as an extractor, where
a = (cd)r and b = hr for r ∈ Z∗

q with our proposal, which allows plaintext space
to be G, and makes the security proof neat and tighter. The actual design of
our proposal was also carefully guided by the underlying analysis, particularly
for ensuring non-zero matrix determinant. Our proposal is briefly described in
Figure 2, where the framed texts mark the differences between KL-CS-PKE and
our proposal.

Our proposal is almost efficient as the CS-PKE, and we show it is λ ≤ log q−
ω(log κ) leakage resilient. In addition, it has the following two advantages:

– The plaintext space is the group G, enjoying a constant size q. It is indepen-
dent of the leakage parameter λ.

– The security reduction is tighter than that of KL-CS-PKE [20].

Encryption Decryption

u1 = gr1 , u2 = gr2, r, s ∈ Z
∗
q ; α = T (u1, u2, e, s);

e = M · (cd)r · hrs; If v �= ux1+y1α+z1
1 ux2+y2α+z2

2 , output ⊥;

α = T (u1, u2, e, s); otherwise

v = (c · h)r · drα; M = e · u−(x1+y1+z1s)
1 u

−(x2+y2+z2s)
2 ;

Output (u1, u2, s, e, v) Output M.

Fig. 2. Our proposal

2 Preliminaries

2.1 Notations and Assumptions

Let H denote a finite set, |H| denote the cardinality of the set H, and h ← H
denote sampling uniformly at random from the set H. If H is a probability
distribution, then h ← H denotes sampling h according to the distribution. If
A(·) is an algorithm, then a ← A(·) denotes running the algorithm and obtaining
a as an output, which is distributed according to the internal randomness of
A(·). A function f(λ) is negligible if for every c > 0 there exists an λc such that
f(λ) < 1/λc for all λ > λc. Let PPT denote probabilistic polynomial-time.

Definition 1. Let H be a set of hash functions, mapping X to Y. Let k ←
HGen(1κ) denote the index generation algorithm, which on input the security
parameter κ outputs an index k that in turn determines a hash function Hk ∈

88 S. Liu, J. Weng, and Y. Zhao

H. H is target collision-resistant if any PPT adversary A has negligible (in κ)
advantage AdvTCR

H,A (κ), which is defined as

Pr [Hk(x) = Hk(x
′), x �= x′ | k ← HGen(1κ);x ← X ;x′ ← A(Hk, x)] .

Definition 2. Let G be a group of prime order q, which is determined by some
security parameter κ (normally, κ is just set to be the bit length of q, i.e, log q)).
Define two distributions D = {(g, gx, gy, gxy)} and R = {(g, gx, gy, gz)}, where
x, y, z ← Zq. The DDH problem is to distinguish the two distributions. A PPT
distinguisher A’s advantage is defined as

AdvDDH
G,A (κ) = |Pr [A((g,X, Y, Z) ← D) = 1] | − Pr [A((g,X, Y, Z) ← R) = 1] |.

The DDH assumption means the advantage of any PPT A is negligible (in κ).

Lemma 1. [24] (Difference Lemma) Let A,B, F be events defined over some
probability distribution, and A∧¬F = B ∧¬F . Then |Pr [A]−Pr [B] | ≤ Pr [F] .

2.2 Statistical Distance, Min-Entropy, and Leftover Hash Lemma

Definition 3. [5,11] Let X ∈ X , Y ∈ Y be two random variables. The min-
entropy of X is defined as H∞(X) := − logmaxx∈X Pr [X = x] . The average
min-entropy of X given Y is defined as the logarithm of the average guessing
probability of X given Y , i.e., H̃∞(X |Y) := − log

(
Ey←Y [2

−H∞(X|Y=y)].
)
The

statistic distance of two distributions of variable X and Y , both of which take
values from X , is defined as SD(X,Y) = 1

2

∑
a∈X |Pr [X = a]− Pr [Y = a] |.

Lemma 2. [11] Let Y, Z be random variables and Y takes r possible values.
Then H̃∞(X |(Y, Z)) ≥ H̃∞(X |Z)− r.

Definition 4. [11] A function Ext : X × {0, 1}t → Y is an average-case (l, δ)-
strong extractor if for random variables X,Z such that X ∈ X and H̃∞(X |Z) ≥
l, the formula SD((Ext(X,R), R, Z), (UY , R, Z)) ≤ δ holds, where R is uniformly
chosen from {0, 1}t, and UY denotes a uniform distribution over Y.

Definition 5. [4,26] (Universal hash) A family of functions {Hk : X →
Y}k∈K is universal if Prk←K [Hk(x1) = Hk(x2)] ≤ 1

|Y| for all distinct x1, x2 ∈ X .

Example 1. [25] The family of functions {Hk1,k2,··· ,kl
: Zl+1

q → Zq, ki ∈ Zq, i =
1, 2, · · · , l} is universal, where Hk1,k2,··· ,kl

(x0, x1, · · · , xl) = x0+k1x1+· · ·+klxl.
All operations are in the prime field Fq.

The fact that a multiplicative group G of prime order q is isomorphic to (Zq,+)
gives us another family of universal hash functions.

Example 2. Let G be a multiplicative group of prime order q, and g ∈ G, g �= 1.
The family of functions {Hk1,k2,··· ,kl

: Gl+1 → G}ki∈Zq,i=1,2,··· ,l is universal,

where Hk1,k2,··· ,kl
(g0, g1, · · · , gl) = g0 · gk1

1 · . . . · gkl

l .

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 89

Lemma 3. [11] (Leftover Hash Lemma and Generalized version) Let
{Hk : X → Y}k∈K be a family of universal hash functions. Let UY denote
a uniform distribution over Y. For any random variables X ← X , Z ← Z,
and K ← K, SD((Hk(X),K), (UY ,K)) ≤ 1

2

√
Pc(X)|Y| ≤ 1

2

√
2−H∞(X)|Y|, and

SD((Hk(X),K, Z), (UY ,K, Z)) ≤ 1
2

√
2−H̃∞(X|Z)|Y|.

The leftover hash lemma shows that a family of universal hash functions {Hk :
X → Y}k∈K is able to play the role of an average-case (l, δ)-Extractor Ext :
X ×K → Y, with log |Y| ≤ l − 2 log(1/δ) + 2.

2.3 Key Leakage Chosen-Ciphertext Security (KL-CCA2)

A public key encryption scheme (relative to a plaintext space M) consists of
three PPT algorithms, namely (KeyGen, Enc, Dec). The key generation algorithm
KeyGen takes as input a security parameter κ, output a public/privat key pair
(pk, sk). The encryption algorithm Enc takes as input a public key pk and a
plaintext m ∈ M and outputs a ciphertext c. The decryption algorithm Dec
takes as input a private key sk and a ciphertext c, and outputs a plaintext m or
the special symbol ⊥ meaning that the ciphertext is inconsistent.

It requires that decryption “undoes” encryption for all (pk, sk) ← KeyGen(λ)
and for m ∈ M.

ExptIND-KL-CCA2
PKE,A (b)

1. (pk, sk)← KeyGen(1κ)

2. (M0,M1, state)← ALK(sk),Dec(sk,·)
1 (pk) with |M0| = |M1|

3. C∗ ← Encpk(Mb)

4. b′ ← ADec �=C∗ (sk,·)
2 (C∗, state)

5. Output b′

The indistinguishability-based definition of chosen-ciphertext security in the
key leakage setting (IND-KL-CCA2) is defined by the experiment with adver-
sary A, i.e., ExptIND-KL-CCA2

PKE,A (b), where Dec(sk, ·) is a decryption oracle and
KL(sk) is a key leakage oracle. The adversary can adaptively query KL(sk)
with any function fi, i ≥ 1, and then gets back fi(sk). Let Dec �=C∗(sk, ·) denote
a decryption oracle who decrypts any ciphertext other than C∗.

The advantage of the adversary A = (A1,A2) in the above experiment is
defined as AdvIND-KL-CCA2

PKE,A (κ) :=
∣∣Pr [b = b′]− 1

2

∣∣ .
Definition 6. (IND-KL-CCA2 Security). A public key encryption scheme
PKE=(KeyGen, Enc, Dec) is (m,λ, ε)-secure against a-posteriori key-leakage
chosen-ciphertext attacks, if for sufficiently large κ it holds:

90 S. Liu, J. Weng, and Y. Zhao

– the plaintext space is of size 2m,
– the sum of output lengths of all the queried leakage functions is bounded by

λ,
– any PPT adversary A = (A1,A2) has AdvIND-KL-CCA2

PKE,A (κ) ≤ ε.

2.4 Key-Leakage Resilient Cramer-Shoup PKE (KL-CS-PKE)

Now we review the key-leakage resilient Cramer-Shoup PKE (KL-CS-PKE)
scheme proposed in [20].

Key Generation: On input the security parameter κ, the key generation al-
gorithm generates a group G of prime order q with two generators g1, g2.
Choose an average-case (log q − λ, δ)-Exactor Ext : G × {0, 1}t → {0, 1}m.
Choose x1, x2, y1, y2, z1, z2 ← Z∗

q . Compute c = gx1
1 gx2

2 , d = gy1

1 gy2

2 and
h = gz11 gz22 . Let T be a Target Collision Resistant (TCR) hash function, ran-
domly chosen from a TCR family T . Output the public key and the secret
key as PK = {G, q, g1, g2, c, d, h, T,Ext}, SK = {PK, x1, x2, y1, y2, z1, z2}.

Encryption: The encryption algorithm encrypts anm-bit plaintextM with the
public key PK to obtain the corresponding ciphertext C = (u1, u2, e, s, v)
as follows. Choose random elements r ← Z∗

q and s ← {0, 1}t. Compute

u1 = gr1, u2 = gr2, e = M ⊕ Ext(hr, s), α = T (u1, u2, s, e), v = crdr·α.

Decryption: The decryption algorithm decrypts a ciphertext C =
(u1, u2, e, s, v) with the secret key {x1, x2, y1, y2, z1, z2} to obtain the corre-
sponding plaintextM as follows. The consistency of the ciphertext is checked
by v = ux1+y1α

1 ux2+y2α
2 , where α = T (u1, u2, e, s). If the ciphertext is not

consistent, output “⊥”, otherwise compute M = e⊕ Ext(uz1
1 uz2

2 , s).

Choose a proper universal hash function as (log q − λ, δ) extractor, then δ =
2(λ+m)/2−1

√
q . We have the following theorem for the KL-CS-PKE scheme.

Theorem 1. [20] Let q be the prime order of the group G on which the KL-
CS-PKE scheme in [20] is based, and Q(κ) be the number of decryption queries.
Then the KL-CS-PKE is (m,λ, ε)-IND-KL-CCA2 secure, where m ≤ log q−λ−
ω(log κ), and

ε ≤ AdvDDH
G,A′ (κ) +AdvTCR

H,A′′(κ) +
2λQ(κ)

q −Q(κ)
+

2(λ+m)/2−1

√
q

,

where A′ and A′′ are PPT algorithms, derived from the assumed algorithm A
against the IND-KL-CCA2 security of KL-CS-PKE, for breaking the DDH and
TCR assumptions respectively.

The KL-CS-PKE scheme proposed in [20] follows the line of the original Cramer-
Shoup cryptosystem. The secret key is divided into three parts: (x1, x2), (y1, y2)
and (z1, z2). The first two parts (x1, x2), (y1, y2) are used to check the consistence

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 91

of the ciphertext, and the last part (z1, z2) is used to generate an ephemeral key
grz11 grz22 from which a shorter random string is distilled by an extractor to mask
the plaintext. Compared to the original IND-CCA2 secure CS-PKE, the λ-bit key
leakage has two effects. It may occur in (x1, x2) and (y1, y2), which deteriorates
the probability that an invalid ciphertext, where u1 = gr11 and u2 = gr22 for
r1 �= r2, is accepted as a consistent one (i.e., passing the consistence check in
decryption). The probability is 1/q in the original CS-PKE, but increases to 2λ/q
in KL-CS-PKE. The λ-bit key leakage may occur in (z1, z2), which shrinks the
length of the output of the extractor (consequently the length of the plaintext)
to m ≤ log q − λ− ω(log κ).

3 New Variant of Cramer-Shoup Cryptosystem with
IND-KL-CCA2 Security

As contrast to the well-separated functionality of (x1, x2, y1, y2) and (z1, z2),
we propose to employ all the three parts of secret key, namely (x1, x2), (y1, y2)
and (z1, z2), both in the ciphertext consistence check and the random distil-
lation. On the one hand, there are more uncertainties (measured by average
min-entropy) about (x1, x2, y1, y2, z1, z2) to an adversary, and this makes possi-
ble for an extractor to distill more randomness to mask plaintexts. On the other
hand, the random distillation is implemented by a special universal hash function
Hs(a, b) = a · bs as extractor, where s ← Z∗

q and a = (cd)r and b = hr with our
proposal, which is defined in Example 2 with l = 1. This allows plaintext space
to be G, and makes the security analysis neat and tighter. The actual design of
our proposal was also carefully guided by the underlying analysis, particularly
for ensuring non-zero matrix determinant.

The new variant of Cramer-Shoup scheme consists of three PPT algorithms,
PKE=(KeyGen, Enc, Dec), as shown below in details.

Key Generation (PK, SK) ← KeyGen(1κ): On input the security parame-
ter 1κ, the key generation algorithm generates a group G of prime order
q with two generators g1, g2. Choose x1, x2, y1, y2, z1, z2 ∈ Z∗

q . Compute
c = gx1

1 gx2
2 , d = gy1

1 gy2

2 and h = gz11 gz22 . Let T be a Target Collision
Resistant (TCR) hash function, randomly chosen from a TCR family T .
Output the public key PK = {G, q, g1, g2, c, d, h, T } and the secret key
SK = {PK, x1, x2, y1, y2, z1, z2}.

Encryption C ← Enc (PK,M): The encryption algorithm encrypts a plain-
text M ∈ G with the public key PK to obtain the corresponding ciphertext
C = (u1, u2, e, s, v) as follows. Choose random elements r, s ← Z∗

q . Compute

– u1 = gr1, u2 = gr2, e = M · ((c · d)r · hr·s) ,

– α = T (u1, u2, s, e), v = (c · h)r · dr·α.
Decryption M ← Dec (SK,C): The decryption algorithm decrypts a cipher-

text C = (u1, u2, e, s, v) with the secret key {x1, x2, y1, y2, z1, z2} to obtain
the corresponding plaintext M as follows.

92 S. Liu, J. Weng, and Y. Zhao

– The consistency of the ciphertext is checked by

v = ux1+y1·α+z1
1 · ux2+y2·α+z2

2 , (1)

where α = T (u1, u2, e, s). If Eq.(1) does not hold, output ⊥, otherwise
go to the next step.

– Compute M = e

(ux1+y1+z1s
1 ·ux2+y2+z2s

2)
.

The correctness of the scheme comes from the facts that (c·h)r·dr·α = ux1+y1α+z1
1 ·

ux2+y2α+z2
2 and cr · dr · hsr = ux1+y1+z1s

1 · ux2+y2+z2s
2 .

The plaintext space of our proposal is G instead of the bit strings. To remove
this restriction, G can be chosen as the subgroup of quadratic residues of Fp,
where p = 2q + 1, and q is a Sophie German prime, as suggested in [7].

Theorem 2. The above scheme is (log q, λ, ε)-IND-KL-CCA2 secure public key
encryption scheme. Here q is the prime order of the group G that PKE is based

on, λ ≤ log q−ω(log κ) (more precisely, λ ≤ log q−2 log 1
δ +2 where δ = 2λ/2−1

√
q))

and

ε ≤ AdvDDH
G,A′ (κ) +AdvTCR

T ,A′′(κ) +
2λQ(κ)

q −Q(κ)
+

2λ/2−1

√
q

,

where Q(κ) is the number of decryption queries, and A′ and A′′ have the same
meanings as in Theorem 1.

Before going into the formal proof, we briefly give a high-level description of the
following gamed-based security proof.

Let C∗ = (u∗
1, u

∗
2, e

∗, s∗, v∗) = Enc (PK,Mb) be the challenge ciphertext in
the IND-KL-CCA2 game. The aim is to prove that any PPT adversary cannot
determine whether Mb is M0 or M1 except with probability 1/2 biased with a
negligible probability. A ciphertext C = (u1, u2, e, s, v) is called a valid cipher-
text if (g1, g2, u1, u2) is a DDH tuple, otherwise, it is called an invalid one. A
ciphertext C = (u1, u2, e, s, v) is called consistent if it can pass the consistence
check with Eq.(1) in the decryption algorithm. First of all, the challenge cipher-
text C∗ is changed into an invalid but consistent ciphertext. This can be easily
done with secret key (x1, x2, y1, y2, z1, z2). The adversary is infeasible to detect
such a change in C∗ due to the DDH assumption.

As to an adversary A, the information about the secret key is learned with
the public key elements (c, d, h), the challenge ciphertext C∗ = (u∗

1, u
∗
2, e

∗, s∗, v∗)
and the λ-bit leakage. In C∗, the secret key functions in v∗ are for consistence
check, and in e∗ for randomness extraction to mask Mb. Note that A learns
no more information about secret-key (other than what can be publicly de-
rived) by submitting valid ciphertext ciphertexts to the decryption oracle. Next
step is to prove that the probability that an invalid ciphertext C (�= C∗) is
accepted as a consistent one, given (c, d, h, C∗) and λ-bit leakage, is negligible.
This is guaranteed with the TCR property of T and the average min-entropy of
secret key.

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 93

The last step is to prove that e∗ leaks no information about Mb at all.
Note that the value e∗/Mb = Hs∗ ((u

∗
1)

x1+y1(u∗
2)

x2+y2 , (u∗
1)

z1(u∗
2)

z2) is just the
output of the extractor Hs∗(·, ·). The remaining thing is to prove that, given
(c, d, h, v∗) and the λ-bit leakage, the average min-entropy of the two variables
((u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2) is at least 2 log q−λ. Then, by the generalized

leftover hash lemma (Lemma 3), we have that m = log q ≤ 2 log q−λ−2 log 1
δ +2

and thus λ ≤ log q − 2 log 1
δ + 2, and Hs∗(·, ·) is a (2 log q − λ, δ)-extractor with

δ = 2λ/2−1
√
q . This finally establishes that e∗/Mb is δ-close to uniform distribution,

and e∗ hides Mb statistically except with negligible probability δ.

Proof. We proceed with a series of games played between a simulator D and an
adversary A, and show that Game i and Game i+1 are indistinguishable except
with negligible probability, i = 0, 1, 2, 3, 4, 5. We define Si as the event that the
adversary A outputs a correct guess of b.

Game 0: This is the original game. The simulator D generates the public key
PK and secret keys SK with KeyGen, where PK = {G, q, g1, g2, c, d, h} and
SK = {PK, x1, x2, y1, y2, z1, z2}. The simulator sends PK to the adversary.
For each decryption query C or key leakage function query fi made by A,
the simulator returns M ← Dec (sk, C) or fi(SK) using the secret key SK.
Then the adversary A submits two plaintext M0,M1 of equal length to
D. The simulator computes the corresponding challenge ciphertext C∗ =
Enc (PK,Mb) with b ← {0, 1}. The adversary A outputs b′, which is the
guess of b. Let S0 be the event that b′ = b in Game 0.

Game 1: It is the same as Game 0 except for the generation of the challenge ci-
phertext C∗. In this game, the simulator D generates C∗ = (u∗

1, u
∗
2, e

∗, s∗, v∗)
with its secret key SK as follows.
Choose random elements r∗, s∗ ← Z∗

q . Compute

– u∗
1 = gr

∗
1 ,

– u∗
2 = gr

∗
2 ,

– e∗ = Mb · (u∗
1)

x1+y1+z1s · (u∗
2)

x2+y2+z2s,
– α∗ = T (u∗

1, u
∗
2, e

∗, s∗),

– v∗ = (u∗
1)

x1+y1α
∗+z1(u∗

2)
x2+y2α

∗+z2 .
This change is only conceptual, hence Pr [S1] = Pr [S0] .

Game 2: It is the same as Game 1 except for the generation of the challenge

ciphertext C∗ = (u∗
1, u

∗
2, e

∗, s∗, v∗), where u∗
1 = g

r∗1
1 , u∗

2 = g
r∗2
2 , with r∗1 , r

∗
2

chosen uniformly at random from Z∗
q .

Just as done in the analysis of the CS-PKE scheme (say, the original Cramer-
Shoup scheme) [7], any difference between Game 1 and Game 2 can be used
to build a PPT algorithm A′ to distinguish a DDH tuple from a random
tuple. Hence

|Pr [S2]− Pr [S1] | ≤ AdvDDH
G,A′′ (λ).

Game 3: It is the same as Game 2 except that the simulator D applies a spe-
cial rejection rule. Let F denote the event that there exists a ciphertext
C = (u1, u2, e, s, v) among the decryption queries such that (u1, u2, e, s) �=

94 S. Liu, J. Weng, and Y. Zhao

(u∗
1, u

∗
2, e

∗, s∗) but T (u1, u2, e, s) = T (u∗
1, u

∗
2, e

∗, s∗), which means a hash col-
lision occurs. The simulator D rejects the corresponding queried ciphertext
C when F occurs. Then Pr [S2 ∧ ¬F] = Pr [S3 ∧ ¬F]. According to the Dif-
ference Lemma of [7] (recalled in Definition 1) and the analysis of CS-PKE
[7] and KL-CS-PKE [20], we can construct another PPT algorithm A′′, such
that

|Pr [S2]− Pr [S3] | ≤ Pr [F] ≤ AdvTCR
H,A′′(λ).

Game 4: It is the same as Game 3 except that the simulator D applies a spe-
cial rejection rule. If A asks for decryption of an invalid ciphertext C =
(u1, u2, e, s, v), i.e., (g1, g2, u1, u2) is not a DDH tuple, the simulator D re-
jects with ⊥ and the game aborts. Let F ′ be the event that D outputs ⊥
for this reason, then Pr [S4|¬F ′] = Pr [S3|¬F ′] . According to the Difference
Lemma,

|Pr [S4]− Pr [S3] | ≤ Pr [F ′] .

Now we analyze the probability that the event F ′ occurs.
Before submitting the first invalid ciphertext, the adversary’s view consists
of the public key (q, g1, g2, c, d, h, T), the chosen plaintexts (M0,M1) and
the challenge ciphertext C∗ = (u∗

1, u
∗
2, e

∗, s∗, v∗), λ-bit leakage about secret
key elements (x1, x2, y1, y2, z1, z2), and the valid ciphertext queries to the
decryption oracle and the answers from it (recall that we are considering
the view prior to submitting the first invalid ciphertext by the adversary).
Let β = logg1 g2. Firstly, note that by submitting valid ciphertexts to the
decryption oracle the adversary does not learn any more information on
(x1, x2, y1, y2, z1, z2). In fact, by submitting a valid ciphertext the adversary
only learns linear combinations of the constraints logg1 c = x1+βx2, logg1 d =
y1 + βy2 and logg1 h = z1 + βz2, which are already known from the public-
keys. Also note that q, g1, g2, T, u

∗
1, u

∗
2, s

∗,M1−b all are independent of the
secret key. Then, what can be learnt about secret key (x1, x2, y1, y2, z1, z2),
from c, d, h, v∗, e∗,Mb and λ-bit leakage, can be formulated with the following
equations.

logg1 c = x1 + βx2 (2)

logg1 d = y1 + βy2 (3)

logg1 h = z1 + βz2 (4)

logg1 v
∗ = r∗1x1 + r∗2βx2 + α∗r∗1y1 + α∗r∗2βy2 + r∗1z1 + r∗2βz2 (5)

logg1 e
∗/Mb = r∗1x1 + r∗2βx2 + r∗1y1 + r∗2βy2 + s∗r∗1z1 + s∗r∗2βz2; (6)

λ-bit leakage of (x1, x2, y1, y2, z1, z2). (7)

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 95

Since the secret key elements (x1, x2, y1, y2, z1, z2) are uniformly chosen from
Z6
q , we have

H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, C∗,Mb, λ-leakage)

= H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, u∗
1, u

∗
2, s

∗, v∗, e∗/Mb, λ-leakage)

= H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, v∗, e∗/Mb, λ-leakage) (8)

≥ log q − λ. (9)

Eq. (8) follows from the fact that u∗
1, u

∗
2, s

∗ are independently chosen, and
(9) according to Lemma 2.
Let C = (u1, u2, e, s, v) be the first invalid ciphertext submitted by A. Let
r1 = logg1 u1 and r2 = logg1 u2, then r1 �= r2.

1. If C = C∗, the simulator D has already rejected in Game 0.
2. If C �= C∗ but α = α∗, the simulator D has already rejected in Game 3.
3. If C �= C∗ but α �= α∗, and the simulator D accepts the invalid ciphertext

C, then the following linear equations hold.

logg1 c = x1 + βx2;
logg1 d = y1 + βy2;
logg1 h = z1 + βz2;
logg1 v

∗ = r∗1x1 + r∗2βx2 + α∗r∗1y1 + α∗r∗2βy2 + r∗1z1 + r∗2βz2;
logg1 e

∗/Mb = r∗1x1 + r∗2βx2 + r∗1y1 + r∗2βy2 + s∗r∗1z1 + s∗r∗2βz2;
logg1 v = r1x1 + r2βx2 + αr1y1 + αr2βy2 + r1z1 + r2βz2.

(10)

Equation (10) is reformed to be

⎛⎜⎜⎜⎜⎜⎜⎝
1 β 0 0 0 0
0 0 1 β 0 0
0 0 0 0 1 β
r∗1 r∗2β α∗r∗1 α∗r∗2β r∗1 r∗2β
r∗1 r∗2β r∗1 r∗2β s∗r∗1 s∗r∗2β
r1 r2β αr1 αr2β r1 r2β

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

y1
y2
z1
z2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

logg1 c
logg1 d
logg1 h
logg1 v

∗

logg1 e
∗/Mb

logg1 v

⎞⎟⎟⎟⎟⎟⎟⎠ . (11)

Let A be the matrix of 6 by 6 in Eq. (11), we have

det(A) = β3(r∗1 − r∗2)
2(r1 − r2)(α

∗ − α)(s∗ − 1).

Then det(A) �= 0 except with a negligible probability 1/q, due to the fact
that r∗1 �= r∗2 , r1 �= r2, α �= α∗ and the random choice of s∗. Different val-
ues of v give different solutions for (x1, x2, y1, y2, z1, z2). According to Eq.
(9), the adversary guesses (x1, x2, y1, y2, z1, z2) correctly with probability at
most 2λ/q. Therefore, the first invalid ciphertext C is accepted by D with
probability at most 2λ/q. Similarly, the i-th invalid ciphertext is accepted
by D with probability at most 2λ/(q − i + 1) ≤ 2λ/(q −Q(κ)), where Q(κ)

96 S. Liu, J. Weng, and Y. Zhao

is the total number of decryption queries. By the union bound, we have

Pr [F ′] ≤ 2λQ(κ)
q−Q(κ) and

|Pr [S4]− Pr [S3] | ≤ Pr [F ′] ≤ 2λQ(κ)

q −Q(κ)
.

The number of queries Q(κ) is a polynomial in κ, hence Pr [F ′] is negligible.
Game 5: It is the same as Game 4 except for the generation of the challenge

ciphertext C∗ = (u∗
1, u

∗
2, e

∗, s∗, v∗). The only change is that e∗ is replaced
with an element ê chosen uniformly at random from G. Since all the invalid
ciphertexts submitted by A are rejected by the decryption oracle, decryption
oracle cannot help A gain more information about the secret key. The only
information related to secret key known by A is still characterized by the
public key elements (c, d, h), the λ-bit leakage, and (v∗, e∗) in C∗.
Next, we will show that e∗/Mb is in fact the output a (2 log q− λ, δ) extrac-
tor with (u∗

1)
x1+y1(u∗

2)
x2+y2 and (u∗

1)
z1(u∗

2)
z2 as input. Given the informa-

tion c, d, h, v∗ and the λ-bit leakage, we determine the average min-entropy
H̃∞ ((u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2 | c, d, h, v∗, λ-leakage) .

Let us check the following equations in x1, x2, y1, y2, z1, z2.

logg1 c = x1 + βx2;
logg1 d = y1 + βy2;
logg1 h = z1 + βz2;
logg1

v∗ = r∗1x1 + r∗2βx2 + α∗r∗1y1 + α∗r∗2βy2 + r∗1z1 + r∗2βz2;
logg1

(
(u∗

1)
x1+y1(u∗

2)
x2+y2

)
= r∗1x1 + r∗2βx2 + r∗1y1 + r∗2βy2;

logg1
((u∗

1)
z1(u∗

2)
z2) = r∗1z1 + r∗2βz2.

(12)

Equivalently,

⎛⎜⎜⎜⎜⎜⎜⎝
1 β 0 0 0 0
0 0 1 β 0 0
0 0 0 0 1 β
r∗1 r∗2β α∗r∗1 α∗r∗2β r∗1 r∗2β
r∗1 r∗2β r∗1 r∗2β 0 0
0 0 0 0 r∗1 r∗2β

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

y1
y2
z1
z2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

logg1 c
logg1 d
logg1 h
logg1 v

∗

logg1 ((u
∗
1)

x1+y1(u∗
2)

x2+y2)
logg1(u

∗
1)

z1(u∗
2)

z2

⎞⎟⎟⎟⎟⎟⎟⎠ .

(13)
The determinant of the above matrix is −β3(α∗ − 1)(r∗1 − r∗2)

3 �= 0. Given
c, d, h, v∗, each pair ((u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2) determines a unique

tuple (x1, x2, y1, y2, z1, z2).
Hence,

H̃∞
(
(u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2 |c, d, h, v∗, λ-leakage

)
(14)

= H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, v∗, λ-leakage) (15)

≥ H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, v∗)− λ ≥ 2 log q − λ, (16)

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 97

where (15) is from the observation that, conditioned on (c, d, h, v∗), the func-
tion (x1, x2, y1, y2, z1, z2) → ((u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2) is injective,

and applying an injective function to a function preserves its min-entropy,
(16) is derived by applying Lemma 2 twice.
Applying the universal hash function Hs∗ : G × G → G (defined in Ex-
ample 2 with l = 1 and Hs∗(a, b) = a · bs∗ where a = (u∗

1)
x1+y1(u∗

2)
x2+y2

and b = (u∗
1)

z1(u∗
2)

z2) as a (2 log q − λ, δ) extractor to the two variables
(u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2 , we have

e∗/Mb = Hs∗
(
(u∗

1)
x1+y1(u∗

2)
x2+y2 , (u∗

1)
z1(u∗

2)
z2
)

= (u∗
1)

x1+y1(u∗
2)

x2+y2 ((u∗
1)

z1(u∗
2)

z2)
s∗

= (u∗
1)

x1+y1+z1s
∗
(u∗

2)
x2+y2+z2s

∗
.

According to the generalized leftover lemma (Lemma 3), the statistical dis-

tance between e∗ and ê is given by SD(e∗, ê) ≤ 1
2

√
q · 2λ

q2 = 2λ/2−1
√
q . Hence

|Pr [S5]−Pr [S4] | ≤ δ = 2λ/2−1
√
q . Now that ê is uniformly distributed, we have

Pr [S5] = 1/2. �

Remark: By putting all the secret-key elements into ciphertext consistency check-
ing and random distillation, and by employing the specific universal hash based
extractor, we can have that the average entropy of secret-key given the view of
the adversary is at least 2 log q−λ. According to the generalized leftover lemma,
and recall that the range of the specific universal hash based extractor is just G
(i.e., the plaintext lengthm = log q), we have thatm ≤ 2 log q−λ−2 log 1

δ+2 and
thus λ ≤ log q− 2 log 1

δ +2. In comparison, the average entropy of secret-key for
the KL-CS-PKE scheme proposed by Naor and Segev [20], given the adversary’s
view, is only at least log q − λ. Then, by the (log q − λ, δ)-extractor, it requires
that m ≤ log q − λ− 2 log 1

δ + 2 (equivalently, m+ λ ≤ log q − 2 log 1
δ + 2).

4 Performance Analysis

Now we compare our proposal with the original Cramer-Shoup cryptosystem
(CS-PKE) in [7] and the KL-CS-PKE scheme proposed by Naor and Segev in
[20] in the following tables.

Let ε1 = AdvDDH
G,A′ (κ), ε2 = AdvTCR

H,A′′(κ), and M denote the plaintext space.
Let λ be the amount of leakage bits, and Q(κ) be the number of decryption
queries. Table 1 shows that our proposal gives a larger plaintext space and the
security reduction is tighter than KL-CS-PKE in [20]. The plaintext space of our
proposal is G, which is independent of the amount of leakage λ. This is exactly
like that in the original CS-PKE scheme [7]. In contrast, the KL-CS-PKE scheme
in [20] requires that the length of the plaintext is limited by log q−λ−ω(log κ).
Also, on the same leakage parameter λ, the IND-KL-CCA2 security reduction
of our proposal is also tighter than that of KL-CS-PKE.

Let “1 Ex” denote a modular exponentiation, which evaluates gx in group
G, and “1 SE” denote a simultaneous modular exponentiation of gx1g

y
2 , which

98 S. Liu, J. Weng, and Y. Zhao

Table 1. Parameters of CS-PKE, KL-CS-PKE and our proposal

Scheme |M| leakage AdvIND-KL-CCA2
PKE,A (1κ)

CS-PKE [7] q — ε1 + ε2 +
Q(κ)

q−Q(κ)

KL-CS-PKE [20]
2m λ ε1 + ε2 +

2λQ(κ)
q−Q(κ)

+ 2(λ+m)/2−1
√

q

(2m < q/2λ) (λ ≤ log q −m− ω(log κ)) (m+ λ ≤ log q − ω(log κ))

Our proposal q
λ ε1 + ε2 +

2λQ(κ)
q−Q(κ)

+ 2λ/2−1
√

q

(λ ≤ log q − ω(log κ)) (λ ≤ log q − ω(log κ))

Table 2. Efficiency and ciphertext sizes of CS-PKE, KL-CS-PKE and our proposal

Scheme KeyGen Enc Dec Ciphertext Size

CS-PKE [7] 3 SE 3 Ex +1 SE 2 SE 4G

KL-CS-PKE [20] 3 SE 3 Ex + 1 SE+ 1 Ext 2 SE 4G+ t-bit

Our proposal 3 SE 2 Ex + 2 SE 2 SE 4G + log q-bit

amounts for about 1.27 exponentiations [19,14,9]. Let “1 Ext” denote an evalu-
ation of the extractor Ext : G × {0, 1}t → {0, 1}m. Let “1G” denote an element
from group G, and “m-bit” denote an m-bit string. In order to achieve the pa-
rameter relations among plaintext space, allowed leakage and IND-KL-CCA2
security reduction as specified in Table 1, the needed computational efficiency
and ciphertext sizes, among CS-PKE [7], KL-CS-PKE [20] and our proposal,
are compared in Table 2. It is shown that our proposal is almost as efficient
as CS-PKE. For KL-CS-PKE and our proposal, if both schemes work to en-
crypt a log q-bit plaintext, KL-CS-PKE can be slightly more efficient than ours.
However, in this case, KL-CS-PKE does not allow key leakage any more, as λ
approaching to 0 in this case. On the other hand, assuming key leakage ap-
proaching to log q − ω(log κ), our proposal is significantly more efficient than
KL-CS-PKE, as in this case the plaintext size of KL-CS-PKE approaches to 0.

5 Conclusion

As a response to Naor and Segev’s calling for further refinement of key leakage
resilient variant of Cramer-Shoup Cryptosystem in order to get rid of the de-
pendency between plaintext length m and leakage parameter λ, in this paper
we designed a new variant of Cramer-Shoup cryptosystem. With some careful
observations and a calculation guided design, our proposal follows a new line:
(1) the whole secret key is involved in both ciphertext consistence checking and
randomness distillation, and (2) a special universal hashing based extractor is

Efficient PKE Resilient to Key Leakage Chosen Ciphertext Attacks 99

employed (alternatively, randomness extractor is only implicitly used with our
proposal). Our scheme is IND-KL-CCA2 secure with a tighter reduction than
that of KL-CS-PKE, λ = log q − ω(log κ) leakage resilient, and the plaintext
space is the whole group that the scheme is based on and is independent of the
leakage parameter. The performance of our proposal is comparable to the original
Cramer-Shoup cryptosystem. As far as we know, this is the first leakage-resilient
CS-type cryptosystem whose plaintext length is independent of the key leakage
parameter, and is also the most efficient IND-CCA2 PKE scheme resilient to up
to log q − ω(log κ) leakage. In some sense, our result also further demonstrates
the elegance of the original Cramer-Shoup cryptosystem [7] (as well as its key
leakage resilient variant by Naor and Segev [20]). As a new IND-KL-CCA2 vari-
ant of Cramer-Shoup with independent plaintext length and leakage parameter,
our proposal may also be of independent value.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18, 143–154 (1979)

5. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing 17(2), 230–261
(1988)

6. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

7. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

8. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-key System. In: Kim, K.-C. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001) (Full version with additional
co-author J. B. Nielsen)

9. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and Fast Algorithms for
Multiexponentiations. IEEE Transactions on Computers 49(2), 141–147 (2000)

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryp-
tography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Comput-
ing 38(1), 97–139 (2008)

100 S. Liu, J. Weng, and Y. Zhao

12. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 293–
302 (2008)

13. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

14. Gordon, D.M.: A Survey of Fast Exponentiation Methods. Journal of Algo-
rithms 27(1), 129–146 (1998)

15. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: Proceedings of the 17th USENIX Security Sympo-
sium, pp. 45–60 (2008)

16. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Micali, S., Reyzin, L.: Physically observable cryptography. In: Proceedings of the
1st Theory of Cryptography Conference, pp. 278–296 (2004)

19. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography,
pp. 617–619. CRC Press (1995)

20. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg
(2009)

21. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

22. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher based
pseudo random number generator secure against side-channel key recovery. In: Pro-
ceedings of the ACM Symposium on Information, Computer and Communications
Security (ASIACCS), pp. 56–65 (2008)

23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pp. 84–93 (2005)

24. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. In:
IACR Cryptology ePrint Archive, p. 332 (2004)

25. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press (2005)

26. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

Simple, Efficient and Strongly KI-Secure

Hierarchical Key Assignment Schemes

Eduarda S.V. Freire�, Kenneth G. Paterson��, and Bertram Poettering��

Information Security Group,
Royal Holloway, University of London, U.K.

Abstract Hierarchical Key Assignment Schemes can be used to enforce
access control policies by cryptographic means. In this paper, we present
a new, enhanced security model for such schemes. We also give simple,
efficient, and strongly-secure constructions for Hierarchical Key Assign-
ment Schemes for arbitrary hierarchies using pseudorandom functions
and forward-secure pseudorandom generators. We compare instantia-
tions of our constructions with state-of-the-art Hierarchical Key Assign-
ment Schemes, demonstrating that our new schemes possess an attractive
trade-off between storage requirements and efficiency of key derivation.

1 Introduction

Access control: There are numerous examples where it is desirable to provide dif-
ferentiated access to data according to an access control policy. As an illustration,
consider a hospital where doctors are assigned access permission to a set of files
containing some personal information in a patient’s medical record, depending
on their seniority, while nurses, being at a lower level in the hierarchy, have more
restricted access to that information. As another example, consider a building
management scenario where sensors are installed to capture temperature, hu-
midity, light, motion, sound, or other data. These data have different levels of
sensitivity, and access to information of different types might be restricted to
different personnel, depending on their roles in the organization. Normal em-
ployees would only be able, for example, to access temperature, humidity and
light of the floor where they work, while managers of that floor would be able to
have access to information related to presence in rooms on that floor, like mo-
tion and sound data. The manager of the building would, however, have access
to all information for the different floors of the building. As a third example,
broadcasters wish to control access to broadcast services in such a way that only
paying customers can access the programmes included in the package to which
they have subscribed, and nothing else. Other application domains include man-
agement of databases containing sensitive information, military and government
communication, and protection of industrial secrets. Indeed the field of access
control is a healthy sub-discipline of Information Security in its own right.

� This author supported by CAPES Foundation/Brazil on grant 0560/09-0 and Royal
Holloway, University of London.

�� This author supported by EPSRC Leadership Fellowship EP/H005455/1.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 101–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

102 E.S.V. Freire, K.G. Paterson, and B. Poettering

Cryptographic enforcement: The use of cryptographic techniques to enforce ac-
cess control policies for hierarchical structures was first proposed in 1983, by Akl
and Taylor [1], who put forward the concept of a (hierarchical) key assignment
scheme (KAS). Such a scheme is a method to assign some private information
and encryption keys to each class in a hierarchy in such a way that the private
information assigned to a class, along with some public information, can be used
to derive symmetric encryption keys assigned to all classes lower down in the
hierarchy. Formally, the hierarchy is modelled as a partially ordered set (poset),
each data item is labelled by a class u in the hierarchy, and is encrypted using
the encryption key ku corresponding to that class. Now a user, given access to
the private information Su, can derive the relevant encryption key kv for any
descendant class v, and hence gain access to the data of class v. Since the original
paper by Akl and Taylor, a large number of different schemes have been pro-
posed, offering different trade-offs in terms of the amount of public and private
storage required and the complexity of key derivation – see for example [2–17].
Many additional issues are addressed in these works: time-dependent constraints,
dynamic addition and removal of classes, and revocation, for example. A recent
survey of this area by Crampton et al. [18] provides a detailed classification and
analyses of many of the schemes proposed in the last decades.

Many of the early schemes lacked any formal security analysis, but this short-
coming has been gradually addressed beginning with the work of Atallah et
al. [8], who proposed two different security notions: security against key recov-
ery attacks (KR-security) and security with respect to key indistinguishability
(KI-security). Informally, KR-security captures the notion that an adversary
should not be able to compute a key to which it should not have access; whereas
in the notion of KI-security, the adversary should not even be able to distinguish
between the real key and a random string of the same length. The stronger KI-
security notion is important in enabling secure composability for hierarchical
key assignment schemes, that is, in achieving the property that any secure key
assignment scheme can be safely used alongside any suitably secure encryption
scheme.

Our contributions: We first argue that the KI-security notion introduced in [8]
needs to be strengthened in order to capture the widest possible range of realistic
attacks. In particular, the current model does not allow an adversary to gain
access to encryption keys kv for classes above the target class u, even though
these encryption keys might leak through usage and their compromise need not
directly lead to a compromise of the private information Su or encryption key
ku for the target class. We then define a model that provides this additional
compromise capability to the adversary, and show that our new model is strictly
stronger than the existing KI-security notion. Section 2 contains the details.

We next propose two very simple and efficient hierarchical key assignment
schemes for arbitrary posets, and prove them to be secure in the sense of our
strengthened security notion. Both of our schemes exploit the chain partition idea
recently introduced by Crampton et al. [15]. This gives a method of constructing
a KAS for an arbitrary access structure (modelled as a poset), represented by a

Simple, Efficient and Strongly KI-Secure Hierarchical KASs 103

directed acyclic graph P = (V,E), from a KAS for a simple chain (i.e. a KAS
for a totally ordered set) by partitioning the poset into chains and building the
keys for the more complex scheme for P in a particular way from the keys of
the simpler chain KAS. This approach has the nice property that the amount
of private storage needed per class is bounded by the width of the poset P . This
approach was proposed without any formal security analysis in [15], and analysed
in some specific cases in [16]. We provide in Section 3 a generic security analysis
of this approach, showing that the security of the resulting scheme for P = (V,E)
in our strengthened model is equivalent to the security (also in our strengthened
model) for the chain scheme. It is worth noting that this construction can support
different levels of security or efficiency of key derivation for different subgroups
in a hierarchy, by using different schemes in each chain.

This construction enables us to focus on constructing efficient KAS for chain
posets in our strengthened model. Our first construction in Section 4 is based
only on pseudorandom functions (PRFs), which can be efficiently implemented
using, for example, HMAC [19] built using only a cryptographic hash function, or
by using an iterated version of the simple and efficient factoring-based construc-
tion proposed by Naor and Reingold [20] (wherein the evaluation of the function
at a given point is comparable in cost to two modular exponentiations). When
implemented in the latter way, our scheme enjoys provable security based on one
of the most established concrete intractability assumption used in cryptography,
namely the factoring assumption.

Our second construction, in Section 5, is based on any forward-secure pseu-
dorandom generator (FS-PRG). This construction is a generalization and a
strengthening of the construction for chains given in [16], which implicitly makes
use of the known forward-security of the BBS PRG [21] in order to achieve
KI-security. Note that the BBS generator was not originally presented as a
stateful generator and its forward-security property was first used in the Blum-
Goldwasser cryptosystem [22] and later by Bellare and Yee [23]. An FS-PRG
can be obtained cheaply and generically from any PRG using the constructions
of Bellare and Yee [23]; moreover a PRG can be easily obtained from a PRF.
Thus our second scheme can be instantiated in a variety of ways.

In the full version of this paper [24], we provide a detailed comparison of
instantiations of our new constructions with a variety of proven-secure KAS
from the literature.

2 Hierarchical Key Assignment Schemes

2.1 Basic Definitions

A partially ordered set (poset) is a pair (V,≤) where V is a finite set of pairwise
disjoint classes, called security classes, and ‘≤’ is a partial order on V , i.e. is
a reflexive, antisymmetric, and transitive binary relation. A security class can
represent a person, a department, or a user group in an organisation. Relation

104 E.S.V. Freire, K.G. Paterson, and B. Poettering

≤ is defined in accordance with authority for each class in V : for any two classes
u, v ∈ V we write v ≤ u or u ≥ v to indicate that users in class u can access the
data of users in class v. We say that u covers v, denoted v� u or u� v, if v < u
and there does not exist c ∈ V such that v < c < u. (V,≤) is a totally ordered set
(or chain) if for all u, v ∈ V , either v < u or u > v or u = v. We say that A ⊆ V
is an antichain in V if for all u, v ∈ A, u �= v, we have v � u and v � u. Any
poset (V,≤) can be represented by a specific directed acyclic graph G = (V,E),
called access graph, where the vertices coincide with the security classes and
there is an edge from class u to class v if and only if u > v. A partition of set V
is a collection of sets {V1, . . . , Vs} such that (i) Vi ⊆ V ∀i, (ii) V1 ∪ . . .∪ Vs = V ,
and (iii) i �= j ⇒ Vi ∩ Vj = ∅.

The problem that we address consists of assigning keys (e.g., to be used in
a symmetric encryption scheme) to each class in a poset in such a way that
it should be possible to efficiently derive the keys for any descendant class in
the poset. The cryptographic primitive that solves this challenge is called a
hierarchical key assignment scheme [1], and is defined as follows.

Definition 1 (Key Assignment Scheme). Let Γ denote a set of access graphs,
i.e. of graphs that correspond to posets. A hierarchical key assignment scheme
(KAS) for Γ is a pair of algorithms (Gen, Derive) satisfying the following con-
ditions:

1. Gen(1ρ, G) is a probabilistic polynomial-time algorithm that takes as input
a security parameter 1ρ and a graph G = (V,E) ∈ Γ and outputs (a) for
all classes u ∈ V : private information Su and key ku ∈ {0, 1}p(ρ), for a
fixed polynomial p; (b) public information pub. We denote by (S, k, pub) the
output of Gen(1ρ, G), where S = (Su)u∈V and k = (ku)u∈V are the vectors
of private information and keys, respectively.

2. Derive(G, u, v, Su, pub) is a deterministic polynomial-time algorithm that
takes as input a graph G, classes u, v ∈ V such that v ≤ u, private infor-
mation Su, and public information pub, and outputs a key k ∈ {0, 1}p(ρ)
assigned to class v.

Correctness requires that for all ρ ∈ N, all G ∈ Γ , all (S, k, pub) output by
Gen(1ρ, G), and all u, v ∈ V, v ≤ u: Derive(G, u, v, Su, pub) = kv.

2.2 Security of Key Assignment Schemes

Various informal security models for key assignment schemes have been de-
veloped and proposed in the past. Formal security modelling began with [8].
However, as we will argue, all these models – both formal and informal – are
inadequate for practical application in the most challenging of security environ-
ments. In the following, we first describe our new, strengthened models, and
discuss the differences to the established ones.

Simple, Efficient and Strongly KI-Secure Hierarchical KASs 105

We consider variants of the key indistinguishability (KI) security goal pro-
posed by Atallah et al. in [8]. We consider models with both static and dynamic
adversaries. It will shortly become clear, however, that these two models are
polynomially equivalent. We begin with an informal statement of our security
models, and then give a formal model in terms of a security experiment involving
an adversary.

Static adversariesAstat , upon given an access graph G = (V,E), first choose a
security class u ∈ V to attack. Using Gen algorithm on graph G, the experiment
generates (S, k, pub). The adversary is then provided with private information Sv

assigned to all classes v ∈ V that should not enable the computation of key ku,
along with the set of all keys kv associated to classes v ∈ V such that v > u,
and the public information pub. Precisely, the adversary gets pub and the two
sets CorruptG,S,u and KeysG,u, where we define

CorruptG,S,u = {Sv ∈ S | u � v} and KeysG,u = {kv | v > u} .

Notice that, given CorruptG,S,u, the adversary can compute for himself all keys
kv for v ∈ CorruptG,S,u. As a challenge, the adversary additionally gets either
key ku or a random string of the same length, and it has to distinguish these
two cases. We refer to Definition 2 below for the formal specification of this
experiment. Observe that, from the obtained information, the adversary can
gain access to kv for any v ∈ V \ {u}.

In contrast to static adversaries, dynamic (also called adaptive) adversaries
Adyn may request keys kv and secret information Sv in an adaptive manner
before eventually committing to a security class u ∈ V they want to attack.
After receiving a challenge based on key ku, they continue to request keys and
secret information until terminating and outputting a bit. The adversary wins
in the experiment if it successfully distinguishes the key ku from random, under
the restriction that u �≤ v for all classes v in the corrupted set and that key ku
has not been requested.

It is not difficult to see that the static and dynamic models are actually poly-
nomially equivalent. Indeed, in the corresponding reduction, the static adversary
simply guesses which class will be the subject of the dynamic adversary’s query,
and aborts if the guess turns out to be incorrect; this reduction succeeds with
probability 1/|V |. A similar proof was used in [9] (and implicitly in [8]). So
schemes proven secure against static adversaries are automatically also secure
against dynamic adversaries (albeit with a less tight overall security reduction).
In the remainder of the paper, we focus on the static case.

We next give our definition for security in the sense of strong key indistin-
guishability with respect to static adversaries (S-KI-ST-security), formalising the
above discussion.

Definition 2 (S-KI-ST). Let Γ be a set of access graphs and let (Gen, Derive)
be a hierarchical key assignment scheme for Γ . Consider the following experiment
(where we assume that adversary A keeps state between invocations):

106 E.S.V. Freire, K.G. Paterson, and B. Poettering

Experiment ExpS−KI−ST
A,G (1ρ) :

u ← A(1ρ, G)
(S, k, pub) ← Gen(1ρ, G)

β
r←− {0, 1}

If β = 1 then T ← ku else T
r←− {0, 1}p(ρ)

d ← A(pub,CorruptG,S,u,KeysG,u, T)
return d

For any G ∈ Γ , the advantage of A in the above experiment is defined as

AdvS−KI−ST
A,G (ρ) = 2

∣∣∣Pr [ExpS−KI−ST
A,G (1ρ) = β

]
− 1/2

∣∣∣ .
Note that if we write ExpS−KI−ST,γ

A,G (1ρ), γ ∈ {0, 1}, for the modification of

ExpS−KI−ST
A,G (1ρ) where bit β is fixed to β = γ, we have that

AdvS−KI−ST
A,G (ρ) =

∣∣∣Pr[ExpS−KI−ST,1
A,G (1ρ) = 1]− Pr[ExpS−KI−ST,0

A,G (1ρ) = 1]
∣∣∣ .

The key assignment scheme is said to be secure in the sense of strong key indis-
tinguishability with respect to static adversaries (S-KI-ST-secure) if
AdvS−KI−ST

A,G (ρ) is negligible for every efficient adversary A and any graph
G ∈ Γ .

It will be evident that one can also define an S-KR-ST-security notion, in which
the adversary is required to recover the key ku rather than distinguish it from a
random key. Clearly S-KI-ST-security implies S-KR-ST security.

We now explain why our model is stronger than the one introduced by Atallah
et al. [8] that it is based on. While our S-KI-ST adversary receives both the set
CorruptG,S,u ⊆ S of secret information and the set KeysG,u ⊆ {0, 1}p(ρ) of
computed (symmetric) keys, in the model from [8] the adversary receives only
the former set when performing its attack. In the dynamic setting, our strong
adversary has access to keys kv for which v > u, where u is the challenge security
class, whereas in the dynamic model of [8], the adversary has no access to such
keys. Now in a real deployment of a scheme, some of the cryptographic keys kv
used in the scheme may leak, perhaps through cryptanalysis or misuse. In this
case, we would like our selected security model to provide the strongest possible
guarantees about the security of other keys that have not been leaked. But note
that the previous security model from [8] provides no such guarantees, whereas
our model provides the strongest possible guarantee, in that all keys kv with
v > u are given to the adversary. Indeed, as the next example makes clear, it is
quite feasible that leakage of a key kv for which v > u can damage the security
of the key ku.

A separating example: Consider a graph (V,E) having linear structure, i.e. V =
{v0, . . . , vn−1} with vi+1 � vi for all i. Let H be a one-way function, which we
model as a random oracle. We select Sv0 at random from the domain of H and

Simple, Efficient and Strongly KI-Secure Hierarchical KASs 107

set kvi = Svi and Svi+1 = H(Svi) for all i. It is clear how the Gen and Derive

algorithms should be defined, and that the resulting scheme is correct. It is also
easy to see that the scheme is KR-ST-secure in the random oracle model, in the
sense of [8]. However, it is also clear that with knowledge of key Sv0 , all keys Sv

in the hierarchy can be efficiently determined (including challenge key ku) and
hence the scheme is insecure in the S-KR-ST model. We note that this separation
is for key recovery (KR) security notions.

3 Security Analysis of the Chain Partition Construction

We begin by reviewing the Chain Partition Construction for key assignment
schemes from [15]. Given a partially ordered set (V,≤), represented by the di-
rected acyclic graph P = (V,E), Dilworth’s Theorem [25] asserts that every par-
tially ordered set (V,≤) can be partitioned into w chains, where w is the width
of V , that is, the cardinality of the largest antichain in V . The partition need not
be unique. We select a particular partition of V into chains {C0, . . . , Cw−1}. The
length of Ci is denoted by li, for 0 ≤ i ≤ w − 1. We let lmax denote maxi{li}.
The maximum class of Ci is regarded as the first class in Ci and the minimum
class as the last class. Since {C0, . . . , Cw−1} is a partition of V , each u ∈ V
belongs to precisely one chain.

Let C = u0 � . . . � um be any chain in V . Then any chain of the form
uj � . . . � um, 0 < j ≤ m is said to be a suffix of C. Now, for any u ∈ V , the
set ↓ u := {v ∈ V : v ≤ u} has non-empty intersection with one or more chains
C0, . . . , Cw−1. It is proved in [15] that the intersection of ↓ u and the chain Ci is
a suffix of Ci or the empty set. Following, [15], this will enable us to define the
private information that should be given to a user with label u.

Since {C0, . . . , Cw−1} is a partition of V into chains, {↓ u∩C0, . . ., ↓ u∩Cw−1}
is a disjoint collection of chain suffixes. Additionally, the private information for
each class in V should be chosen so that the private information for the j-th class
of a chain can be used to compute keys for all lower classes in that chain. Hence,
we can see that a user with label u should be given the private information for
the maximal classes in the non-empty suffixes ↓ u ∩ C0, . . . , ↓ u ∩ Cw−1. Given
u ∈ V , let û0, . . . , ûw−1 denote these maximal classes, with the convention that
ûi =⊥ if ↓ u ∩ Ci = ∅. Let ui

j denote the j-th class in the chain Ci, where
0 ≤ j ≤ li − 1.

The Chain Partition Construction: Let (V,≤) be a poset, P = (V,E) the corre-
sponding directed acyclic graph, and ρ a security parameter. Select a chain parti-
tion of V into w chains C0, . . . , Cw−1, so that Ci contains classes u

i
0, u

i
1, . . . , u

i
li−1,

with ui
j+1 < ui

j, 0 ≤ j < li − 1. Let lmax denote maxi{li}. Additionally, let X =
(GenX, DeriveX) be a KAS scheme for the set consisting of a single chain of length
exactly lmax. Then the chain partition scheme KASCP(X, P) = (GenCP, DeriveCP)
(relative to the particular partition selected) is defined as follows.

108 E.S.V. Freire, K.G. Paterson, and B. Poettering

Algorithm GenCP(1
ρ, P):

1. For 0 ≤ i ≤ w − 1, run GenX on inputs 1ρ and a chain of length lmax to
obtain (T i, ki, pubi). Discard the last lmax − li elements of T i and ki to
obtain the secret information and keys for a chain of length li. Note that
this chain has the same Derive algorithm as the starting chain. For ease of
notation, we continue to denote the reduced sets by T i and ki, and we write
T i = {Tui

0
, . . . , Tui

li−1
} and ki = {kui

0
, . . . , kui

li−1
}. We stress here that we

could run different algorithms GenX to produce the different chains of lengths
li, but for ease of notation we will assume they are all the same.

2. For each u ∈ V , define the private information Su to be {Tûi : ûi �=⊥ , 0 ≤
i ≤ w − 1} and the encryption key ku to be ku = kui

j
, where u = ui

j .

3. Let S and k be the sets of private information and keys, respectively, in the
above construction, and let pubCP = (pub0, . . . , pubw−1).

4. Output (S, k, pubCP).

Algorithm DeriveCP(P, u
i
j , u

g
h, Sui

j
, pubCP):

1. For ui
j ≥ ug

h, find ûg, the maximal class in ↓ ui
j∩Cg . This class is in chain Cg.

We denote it by ug
r , where 0 ≤ r < lg. Note that, by construction, ug

r ≤ ui
j

and Tug
r
∈ Sui

j
.

2. Set kug
h
← DeriveX(Cg, u

g
r , u

g
h, Tug

r
, pubg).

3. Output kug
h
.

Theorem 1 (S-KI-ST Security of the Chain Partition Construction).
Let P be a directed acyclic graph and X be an S-KI-ST-secure scheme for single
chains. Then scheme KASCP(X, P) = (GenCP, DeriveCP) obtained from the chain
partition construction is also S-KI-ST-secure.

Proof. Assume ACP attacks a class ui
j of graph P . If ACP is able to distinguish

between the real key kui
j
associated with class ui

j , and a random string having the

same length, we show that we can construct an S-KI-ST adversary AX against
the scheme X that, using ACP as a black box, is able to distinguish between real
or random keys. Algorithm AX plays the S-KI-ST security game described in
Definition 2, receiving as initial input a security parameter 1ρ and a chain on
lmax classes. Adversary AX simulates the environment of ACP in such a way that
ACP’s view is indistinguishable from its view when playing the S-KI-ST security
game.

Algorithm AX:

1. Receive from the S-KI-ST experiment a chain C on lmax classes
v0, . . . , vlmax−1.

2. Let P = (V,E) ∈ Γ and run ACP with input (1ρ, P) to get ACP’s choice of
target class u.

3. Generate a chain partition of P containing chains C0, . . . , Cw−1. In this parti-
tion, class u is identified as some class ui

j in some chain Ci of length li ≤ lmax.
For 0 ≤ t ≤ w − 1, t �= i, run Gen on inputs 1ρ and a chain of length lmax

Simple, Efficient and Strongly KI-Secure Hierarchical KASs 109

to obtain (St, kt, pubt), the set of secret information, the set of keys and the
public information for that chain. Note that, as in the construction, these
sets can be truncated to obtain the set of secret information, the set of keys
and the public information for a chain of length exactly lt. By abuse of
notation, we continue to use (St, kt, pubt) to denote this data.

4. Output vj in chain C as AX’s choice of target class. AX now receives as input
the public information, pub, output by GenX, along with secret information
Svt for all classes vt < vj in C, and all secret keys kvt in C such that vt > vj .
AX also receives as input a value T which is either the real key kvj or a
random key of the same length. In what follows, AX will identify the first li
classes in C with the chain Ci in the chain partition construction.

5. Set pubCP = (pub0, . . . , pubi−1, pub, pubi+1, . . . , pubw−1). Use the secret in-
formation Svt for classes vt < vj in C together with the secret information
in the sets St for 0 ≤ t ≤ w − 1, t �= i to build the set CorruptP,S,u. Use
keys kvt in C such that vt > vj and the keys from the sets kt to build the
set KeysP,u.

6. Run ACP with inputs (pubCP,CorruptP,S,u,KeysP,u, T). It is easy to see that
AX has the information required to properly construct the sets
CorruptP,S,u,KeysP,u in such a way that ACP’s input here is valid in ACP’s
experiment against the scheme KASCP(X, P), and such that T is the real key
(resp. the random key) in ACP’s experiment if and only if T is the real key
(resp. the random key) in AX’s experiment.

7. When ACP outputs a bit, output the same bit.

Now as AX’s simulation is perfect, we see that the advantage of AX in winning its
S-KI-ST indistinguishability game for the chain C of length lmax is the same as
the advantage of ACP in playing the S-KI-ST indistinguishability game against
KASCP(X, P). The theorem now follows. �

Note that, in the above theorem, X need only be an S-KI-ST-secure scheme for
chains of length exactly lmax. Because of the truncation trick, this is equivalent
to X being an S-KI-ST-secure scheme for the set of graphs consisting of chains
of lengths up to lmax.

4 A Scheme Based on PRFs

We construct an S-KI-ST-secure key assignment scheme for totally-ordered hier-
archical access structures of arbitrary depth, based on pseudorandom functions.
By combining our construction with the result from Section 3, a general key
assignment scheme for arbitrary posets is obtained.

We admit that also Atallah et al. [8] give an efficient PRF-based construction
for arbitrary posets. However, their construction achieves only a security notion
called ‘key recovery’ (where an adversary attacking a class u has to compute
the challenge key ku, instead of distinguishing it from random), which is weaker
than our S-KI-ST notion. Moreover, our scheme is much simpler, and requires
no public information to be stored.

110 E.S.V. Freire, K.G. Paterson, and B. Poettering

We start by recalling the definition of a PRF, the central building block of
our construction:

Definition 3 (Pseudorandom Function, PRF). Let K,D,R be finite sets1

and F : K × D → R be an efficient function. For all κ ∈ K and x ∈ D we also
write Fκ(x) = F (κ, x) and call Fκ : D → R an instance of F . More formally,
let Rand = RD = {g | g : D → R} denote the set of all functions D → R. Let
AF be an algorithm that has oracle access to a function D → R, and returns a
bit. Consider the following two experiments:

Experiment ExpPRF−1
AF ,F (1ρ) : Experiment ExpPRF−0

AF ,F (1ρ) :

κ
r←− K g

r←− Rand

d ← AFκ

F (1ρ) d ← Ag
F (1

ρ)
return d return d

The advantage of AF is defined as

AdvPRF
AF ,F (ρ) =

∣∣∣Pr [ExpPRF−1
AF ,F (1ρ) = 1

]
− Pr

[
ExpPRF−0

AF ,F (1ρ) = 1
]∣∣∣ .

We say that F is pseudorandom (or: is a PRF) if AdvPRF
AF ,F (ρ) is negligible for

every efficient adversary AF .

In our following construction, we will use special PRFs where K = R = {0, 1}ρ
for security parameter ρ, and D is any set. We remark that some constructions
in [8] also require PRFs with similar restrictions on keyspace and range. For con-
creteness, we propose to deploy the (hash-based) HMAC primitive [19] as a PRF
(see also analysis in [26]). In addition, it might be possible to find suitable con-
structions based on number-theoretic assumptions, e.g. derived from factoring-
based PRF by Naor and Reingold [20], or the PRF obtained by converting the
BBS [21] PRG into a PRF via the Goldreich-Goldwasser-Micali construction [27].

4.1 A PRF-Based Key Assignment Scheme for Totally Ordered
Hierarchies

We briefly recall the setting of key assignment for chains. Let Γ be the family of
graphs corresponding to totally ordered hierarchies, and let G = (V,E) ∈ Γ be
a graph, where V = {u0, . . . , un−1} for some n, and ui+1 � ui for all i. To each
security class ui ∈ V , private information Si and key ki are assigned, where Si

can be used to compute subordinated keys. Here we abuse notation, for better
exposition (we can do this because we are in the linear setting), writing Si for
Sui and ki for kui .

1 More precisely, we assume that K,D,R are families of finite sets, indexed by a
security parameter ρ. That is, we require K = (Kρ)ρ∈N, and similarly for D and R.
For the sake of a cleaner exposition, however, we do not write down the security
parameter explicitly.

Simple, Efficient and Strongly KI-Secure Hierarchical KASs 111

Let ρ be a security parameter and let F : {0, 1}ρ × D → {0, 1}ρ be a PRF.
Let c0 and c1 be two different elements in D. The Gen and Derive algorithms
work as follows.

Algorithm Gen(1ρ, G):

1. Pick random S0
r←− {0, 1}ρ and set k0 ← FS0(c1).

2. For each class ui ∈ V, i > 0, set Si ← FSi−1(c0) and ki ← FSi(c1).
3. Set S ← (S0, . . . , Sn−1), k ← (k0, . . . , kn−1), and pub ← ∅.
4. Output (S, k, pub).

Algorithm Derive(G, ui, uj, Si, pub): (note that we may assume j ≥ i)

1. If i = j then return kj = FSi(c1).
2. For h = i+ 1 to j: Sh ← FSh−1

(c0).
3. Return kj = FSj (c1).

Observe that computing key kj from secret information Si requires exactly
j − i+ 1 evaluations of the underlying PRF.

The following theorem is proven in the full version of this paper [24].

Theorem 2 (S-KI-ST Security of the PRF-based Scheme for Totally
Ordered Hierarchies). The above PRF-based scheme is key indistinguishable,
in the sense of Definition 2, for any totally ordered graph G, assuming security
of pseudorandom function F .

5 A Scheme Based on Forward-Secure PRGs

FS-PRGs, introduced by Bellare and Yee in [23], are stateful/iterated pseudoran-
dom generators (PRGs) that deterministically derive sequences of fixed-length
bit strings from an initial (random) seed. More precisely, in each iteration they
output a string of bits, update their internal state, and securely erase the old
state. Like in regular PRGs, the output sequences are required to be indistin-
guishable from sequences of random strings. The pivotal property of FS-PRGs
is forward security, i.e. the adversary has the ability to eventually corrupt gen-
erator’s internal state, but indistinguishability of output strings is guaranteed
to still hold up to that point.

In this section, building on generic FS-PRGs, we construct a key assignment
scheme which achieves S-KI-ST security for totally-ordered access graphs and,
in combination with the results from Section 3, for arbitrary posets. It is worth
pointing out that we actually widely generalize the construction from [16], which
implicitly exploits the property of forward security of the BBS pseudorandom
generator. As our construction generically builds on FS-PRGs, it is amenable to
the efficiency gain obtained by replacing the BBS-based FS-PRG by, for instance,
an HMAC-based one.

Before describing our scheme, let us first recall the definition and security no-
tion of forward-secure pseudorandom number generators (FS-PRGs). Observe

112 E.S.V. Freire, K.G. Paterson, and B. Poettering

that we slightly weaken the model from [23] (considering static adversaries
instead of adaptive ones), what renders our construction of a key assignment
scheme more general. Clearly the FS-PRG constructions proposed and proved
secure in [23] naturally remain secure in our adapted model.

Definition 4 (Forward-Secure PRG). Let GFS = (GFS.setup, GFS.key,
GFS.next) be a set of efficient algorithms such that GFS.setup is a probabilis-
tic algorithm that, on input a security parameter 1ρ, outputs a set of system
parameters ‘params’; GFS.key is a probabilistic key generation algorithm that
takes ‘params’ as input and outputs an initial state St0 ∈ {0, 1}ρ (the initial
seed); GFS.next : {0, 1}ρ → {0, 1}ρ × {0, 1}p(ρ) is a deterministic algorithm that
turns state Sti−1 ∈ {0, 1}ρ (the ‘seed’ at iteration i) into a pair (Sti, Outi),
where Sti ∈ {0, 1}ρ is the updated state, and Outi is a p(ρ)-bit string.

Let D be an adversary against GFS. D is fed with a number of output blocks,
Out1, Out2, . . . , Outi, each of length p(ρ), and is given the then current state of
the generator, Sti. Consider the following experiments:

Experiment ExpFS−PRG−1
D,GFS

(1ρ) : Experiment ExpFS−PRG−0
D,GFS

(1ρ) :

i ← D i ← D
params

r←− GFS.setup(1
ρ) params

r←− GFS.setup(1
ρ)

St0
r←− GFS.key(params) St0

r←− GFS.key(params)
i′ ← 0 i′ ← 0
Repeat Repeat
i′ ← i′ + 1 i′ ← i′ + 1
(Sti′ , Outi′) ← GFS.next(Sti′−1) (Sti′ , Outi′) ← GFS.next(Sti′−1)

Outi′
r←− {0, 1}p(ρ)

Until i′ = i Until i′ = i
Out ← Out1, Out2, . . . , Outi Out ← Out1, Out2, . . . , Outi
d ← D(Sti, Out) d ← D(Sti, Out)
return d return d

The advantage of D is defined as

AdvFS−PRG
D,GFS

(ρ) =
∣∣∣Pr[ExpFS−PRG−1

D,GFS
(1ρ) = 1]− Pr[ExpFS−PRG−0

D,GFS
(1ρ) = 1]

∣∣∣ .
We say that GFS is a forward-secure pseudorandom number generator (FS-PRG)
if AdvFS−PRG

D,GFS
(ρ) is negligible for every efficient adversary D.

5.1 The FS-PRG-Based Scheme for a Single Chain

Key assignment schemes for totally-ordered access graphs are readily constructed
from FS-PRGs: In our construction, we identify the FS-PRG’s state Sti with the
private information Si stored for class ui, while key ki is set to the FS-PRG’s
output Outi+1.

More precisely, let Γ be the family of graphs corresponding to totally or-
dered hierarchies, let G = (V,E) ∈ Γ be a graph, where V = {u0, . . . , un−1}
for some n, and ui+1 � ui for all i. As in Section 4.1, we write Si for private
information Sui , and ki for key kui . Let ρ be a security parameter, and let

Simple, Efficient and Strongly KI-Secure Hierarchical KASs 113

GFS = (GFS.setup, GFS.key, GFS.next) be an FS-PRG. Then Gen and Derive

algorithms work as follows.

Algorithm Gen(1ρ, G):

1. Run params ← GFS.setup(1
ρ) and S0 ← GFS.key(params);

2. For all 0 ≤ i < n: Compute (Si+1, ki) ← GFS.next(Si);
3. Set S ← (S0, . . . , Sn−1), k ← (k0, . . . , kn−1), and pub ← ∅;
4. Output (S, k, pub).

Algorithm Derive(G, ui, uj, Si, pub): (note that we may assume j ≥ i)

1. For h = i to j: (Sh+1, kh) ← GFS.next(Sh);
2. Return kj .

The following theorem is proven in the full version of this paper [24].

Theorem 3 (S-KI-ST Security of the FS-PRG-based Scheme for To-
tally Ordered Hierarchies). The above FS-PRG-based scheme is key indistin-
guishable, in the sense of Definition 2, for any totally ordered graph G, assuming
security of the FS-PRG, GFS.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Transactions on Computer Systems 1(3), 239–248 (1983)

2. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Transactions
on Computers 34(9), 797–802 (1985)

3. Harn, L., Lin, H.Y.: A cryptographic key generation scheme for multilevel data
security. Computers & Security 9(6), 539–546 (1990)

4. Chen, T.S., Chung, Y.F.: Hierarchical access control based on Chinese remainder
theorem and symmetric algorithm. Computers & Security 21(6), 565–570 (2002)

5. Shen, V., Chen, T.S.: A novel key management scheme based on discrete logarithms
and polynomial interpolations. Computers & Security 21(2), 164–171 (2002)

6. Wu, T.C., Chang, C.C.: Cryptographic key assignment scheme for hierarchical
access control. Int. Journal of Computer Systems Science and Engineering 16(1),
25–28 (2001)

7. Yeh, J.H., Chow, R., Newman, R.: A key assignment for enforcing access control
policy exceptions. In: Int. Symposium on Internet Technology, pp. 54–59 (1998)

8. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. In: ACM Conference on Computer and Com-
munications Security, pp. 190–202 (2006)

9. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. In: ACM Conference on Computer and Com-
munications Security, pp. 288–297 (2006)

10. Tzeng, W.G.: A secure system for data access based on anonymous authentica-
tion and time-dependent hierarchical keys. In: ACM Symposium on Information,
Computer and Communications Security, pp. 223–230 (2006)

114 E.S.V. Freire, K.G. Paterson, and B. Poettering

11. Wang, S.Y., Laih, C.S.: An efficient solution for a time-bound hierarchical key
assignment scheme. IEEE Transactions on Dependable and Secure Computing 3(1),
91–100 (2006)

12. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient Provably-Secure Hierarchical
Key Assignment Schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS,
vol. 4708, pp. 371–382. Springer, Heidelberg (2007)

13. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

14. D’Arco, P., De Santis, A., Ferrara, A.L., Masucci, B.: Variations on a theme by Akl
and Taylor: Security and tradeoffs. Theoretical Computer Science 411(1), 213–227
(2010)

15. Crampton, J., Daud, R., Martin, K.M.: Constructing Key Assignment Schemes
from Chain Partitions. In: Foresti, S., Jajodia, S. (eds.) Data and Applications
Security and Privacy XXIV. LNCS, vol. 6166, pp. 130–145. Springer, Heidelberg
(2010)

16. Freire, E.S.V., Paterson, K.G.: Provably Secure Key Assignment Schemes from
Factoring. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp.
292–309. Springer, Heidelberg (2011)

17. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. J. Cryptology 25(2), 243–270 (2012)

18. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: Computer Security Foundations Workshop, pp. 98–111 (2006)

19. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

20. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

21. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing 15(2), 364–383 (1986)

22. Blum, M., Goldwasser, S.: An Efficient Probabilistic Public-Key Encryption
Scheme Which Hides All Partial Information. In: Blakely, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, pp. 289–299. Springer, Heidelberg (1985)

23. Bellare, M., Yee, B.S.: Forward-Security in Private-Key Cryptography. In: Joye,
M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

24. Freire,E.S.V.,Paterson,K.G.,Poettering,B.: Simple, efficientandstronglyKI-secure
hierarchical key assignment schemes (2012), http://eprint.iacr.org/2012/645

25. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51(1), 161–166 (1950)

26. Dodis,Y.,Gennaro,R., H̊astad, J.,Krawczyk,H.,Rabin,T.:RandomnessExtraction
and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

27. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

http://eprint.iacr.org/2012/645

Randomized Partial Checking Revisited

Shahram Khazaei� and Douglas Wikström

KTH Royal Institute of Technology
khazaei@kth.se,
dog@csc.kth.se

Abstract. We study mix-nets with randomized partial checking (RPC) as pro-
posed by Jakobsson, Juels, and Rivest (2002). RPC is a technique to verify the
correctness of an execution both for Chaumian and homomorphic mix-nets. The
idea is to relax the correctness and privacy requirements to achieve a more
efficient mix-net.

We identify serious issues in the original description of mix-nets with RPC
and show how to exploit these to break both correctness and privacy, both for
Chaumian and homomorphic mix-nets. Our attacks are practical and applicable
to real world mix-net implementations, e.g., the Civitas and the Scantegrity voting
systems.

1 Introduction

A mix-net is a protocol that provides anonymity for a group of senders. This notion was
first introduced by Chaum in 1981 [2] to implement anonymous channels in general
and electronic voting schemes in particular. A voter submits an encrypted ballot and
the mix-net later outputs the plaintexts in random order. Other applications of mix-nets
include anonymous web browsing [8], private payment systems [16], and multiparty
computation [13].

The original mix-net proposed by Chaum is a decryption mix-net that works as fol-
lows with mix-serversM1, . . . ,Mk. The jth mix-server generates a key pair (pk j , skj)
and publishes the public key. To encrypt a message mi, the ith sender forms a ciphertext

ci,0 = Encpk1
(Encpk2

(· · ·Encpkk
(mi) · · ·)) .

The mix-servers then take turns and “peel off” a layer of encryption and permute
the resulting ciphertexts before publishing them. More precisely, the jth mix-server
computes

ci,j = Decskj
(cπj(i),j−1)

for a random permutation πj . Note that the output of the last mix-server is the list of
randomly permuted plaintexts. Chaum’s mix-net preserves the privacy of the senders as
long as at least one server keeps its secret key and its random permutation secret, but a
single mix-server can replace all ciphertexts with ciphertexts of his own choosing.

� The author is now at the Department of Mathematical Sciences at Sharif University of Tech-
nology, Tehran, Iran: shahram.khazaei@sharif.edu

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 115–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 S. Khazaei and D. Wikström

Jakobsson, Juels, and Rivest [15] proposed Randomized Partial Checking (RPC) as
a technique to address this problem and gave heuristic arguments showing that it should
be difficult to change more than a small number of ciphertexts. The idea is strikingly
simple: each mix-server is challenged to reveal how he processed a random subset of
his input ciphertexts. If more than a handful of the ciphertexts are processed incorrectly,
then he should get caught. In this scheme a single mix-server clearly does not provide
privacy, but it seems that several mix-servers taken together still provide fairly strong
privacy guarantees.

For homomorphic cryptosystems, Park, Itoh and Kurosawa introduced re-encryption
mix-nets [20]. Here the mix-servers generate a single joint public key with a verifiably
secret shared secret key and decryption is replaced by re-encryption, followed by a joint
verifiable decryption step. This means that the size of the ciphertext is independent of
the number of mix-servers. Sako and Kilian constructed the first universally verifiable
mix-net [23], where senders can verify that the entire shuffle was performed correctly
(and not just that their own input was included in the output). Sako and Kilian’s con-
struction was based on cut-and-choose zero-knowledge proofs; Neff [18] and Furukawa
and Sako [7] gave much more efficient zero-knowledge proofs of shuffles.

Much of the work in the field aim to improve the efficiency of the mix-net,
e.g., [12,11,9,14], but most mix-nets not based on proofs of shuffles have been broken
or vulnerabilities have been found.

1.1 Motivation and Contribution

Random partial checking (RPC) is fast and in contrast to efficient proofs of shuffles
[18,7] it is compatible with any cryptosystem for which a mix-server can efficiently
prove that it processed a single ciphertext correctly. Thus, it is one of few mix-nets that
can be used with cryptosystems conjectured to be secure against quantum computers.
Currently, it is also the only viable option to construct a universally verifiable mix-
net from any cryptosystem. Furthermore, it is perhaps the most common heuristically
secure mix-net found in real implementations. Jakobsson et al. only claim a restricted
form of security for their mix-net, but as such it has resisted all attacks for 10 years.
This makes it an important cryptographic construction to study.

We show that the description of RPC by Jakobsson et al. [15] does not capture their
ideas correctly. More precisely, we have discovered fully practical attacks on both the
privacy and the correctness of their protocol and notable real world implementations of
it, e.g., the Civitas voting system [4]. Using similar ideas we can also attack the cor-
rectness of related schemes, e.g., the Scantegrity voting system [3] that was used in real
elections including Takoma Park City Municipal Elections 2009 and 2011. The most
serious attack allows an adversary to replace the complete output of the mix-net with-
out detection by corrupting a single mix-server, but we can also break the anonymity of
targeted senders at low cost in terms of the number of corrupted senders. Furthermore,
we show that even if the issues we have identified are handled correctly, an adversary
can replace t ciphertexts in the homomorphic mixing without detection with probabil-
ity roughly (3/4)t and not 2−t as claimed. Finally, we argue informally that there is no
blackbox proof of security for homomorphic mix-nets with RPC.

Randomized Partial Checking Revisited 117

The proper interpretation of our results is not that the basic ideas behind RPC are
flawed, but we think RPC should not be used at all with homomorphic mix-nets, and it
should not be used for Chaumian mix-nets until there is a rigorous proof of security. We
believe that modeling and proving the security is possible if only the issues identified
in this paper are rectified and hope to provide such a proof in future work.

2 Notation

We consider a mix-net with k pairs of mix-servers M1, . . . ,M2k that provide
anonymity for a group of N senders P1, . . . ,PN . It is convenient to think of each pair
of consecutive mix-servers as if they are executed by a single entity, i.e., M2j−1,M2j

is executed by the jth party.
We denote a cryptosystem by CS = (Gen,Enc,Dec), where Gen, Enc, and Dec de-

note the key generation algorithm, the encryption algorithm, and the decryption algo-
rithm respectively. The key generation algorithm Gen outputs a pair (pk , sk) consisting
of a public key and a private key. We let Mpk , Cpk , and Rpk be the sets of plain-
texts, ciphertexts, and randomizers, respectively, associated with the public key pk . We
write c = Encpk (m, r) for the encryption of a plaintext m using randomness r, and
Decsk (c) = m for the decryption of a ciphertext c. We often view Enc as a proba-
bilistic algorithm and drop r from our notation. Recall that a cryptosystem is called
homomorphic if for every public key pk : Mpk , Cpk , and Rpk are groups and for every
m0,m1 ∈ Mpk and r0, r1 ∈ Rpk we have

Encpk (m0, r0)Encpk (m1, r1) = Encpk (m0m1, r0 + r1) .

Homomorphic cryptosystems allow ciphertexts to be re-encrypted. This means that any-
body with access to the public key can take a ciphertext c and form c ·Encpk (1, r), for a
randomly chosen r ∈ Rpk , and the resulting ciphertext is identically, but independently,
distributed to the original ciphertext.

We extend our notation to lists of keys. For a plaintext m and lists of public and
private keys pk = (pk1, . . . , pk �) and sk = (sk1, . . . , sk �), we write

Encpk (m) = Encpk1
(Encpk2

(· · ·Encpk�
(m) · · ·)) and

Decsk (c) = Decsk�
(Decsk�−1

(· · ·Decsk1
(c) · · ·)) .

3 Randomized Partial Checking

In this section we provide a brief description of the mix-net with randomized partial
checking (RPC) proposed by Jakobsson et al. [15] that focuses on the most common
variations. We mostly borrow their notation in the following for easy reference.

The mix-net with RPC is not intended to provide full correctness or privacy; it gains
in efficiency by relaxing the security requirements. The goal is to prevent mix-servers
from undetectably modifying many inputs; it is easy to see that a malicious server can
succeed in changing a small number of inputs with constant probability. Assuming that
the penalty for being identified as a cheater is severe, the authors of [15] argue that

118 S. Khazaei and D. Wikström

this suffices. The privacy guarantees are also relaxed: while the exact correspondence
between senders and their inputs is hidden, some information may still be leaked (e.g.,
that a specific input did not originate from a specific sender with a probability different
from what is ideally expected).

RPC is proposed as a general technique to verify the correctness of both homomor-
phic and Chaumian mix-nets. A key requirement on the underlying cryptosystem is that
it allows a party to transform a ciphertext c into a ciphertext c′ using a cryptographic
transformation Xj , and then prove that it did so correctly. For a homomorphic mix-net,
Xj denotes random re-encryption and proving that this was done correctly amounts
to revealing the randomness used. For a Chaumian mix-net Xj denotes decryption. To
prove that the transformation was applied a zero-knowledge proof of correct decryp-
tion can be used. However, if the cryptosystem allows using the secret key to recover
the randomness used to form a ciphertext from the ciphertext itself, then the random-
ness can simply be revealed. This interesting feature is not mentioned in [15]. In the
following we assume for concreteness that the cryptosystem has this special feature.

3.1 Key Distribution

There is a public key pk and a corresponding secret key sk for the mix-net. For the
homomorphic mix-net, the public key is jointly generated, whereas for the Chaumian
mix-net it is a list of 2k keys. For homomorphic mixing, the joint secret key is typically
verifiably secret shared among the mix-servers [6] and not known by any subset smaller
than a certain threshold. For the Chaumian mix-net, Mj knows the jth component of
the secret key, sk j , and each such key is verifiably secret shared among all the mix-
servers. The threshold used determines the privacy and robustness of the mix-net.

3.2 Ballot Preparation and Encryption

Each sender Pi encrypts his plaintext mi as ci,0 = Encpk (mi), and sends it to
the bulletin board. Pfitzmann [22,21] pointed out that this ciphertext must either be
non-malleable (CCA2-secure) on its own, or augmented with a non-interactive zero-
knowledge proof of knowledge of the plaintext to provide this property. For concrete-
ness we assume that the latter approach is used.

3.3 Initial Ballot Checking

When all voters have submitted their ciphertexts, all duplicates are removed (preserv-
ing a single copy) and ciphertexts with invalid proofs are discarded. Without loss of
generality, we assume that this results in a list of N ciphertexts (c1,0, . . . , cN,0).

3.4 Permutation Commitment

Each server Mj selects a permutation πj on N elements uniformly at random. The
server publishes on the bulletin board a commitment to πj or π−1

j depending on j being
odd or even. The commitment consists of N integer commitments of the form

Γ
(In)
j =

(
ζwi,j [πj(i)]

)N
i=1

or Γ
(Out)
j =

(
ζwi,j [π

−1
j (i)]

)N
i=1

,

Randomized Partial Checking Revisited 119

depending on the parity of j, where ζw[i] denotes a commitment to integer i under
randomness w. We simply let γi,j denote the ith commitment of mix-server Mj , i.e.,

γi,j is an element of Γ (In)
j or Γ (Out)

j depending on the parity of j.

3.5 Mix-Net Processing

Each server Mj , in turn accepts a ciphertext list (c1,j−1, . . . , cN,j−1) from the bulletin
board as input, and computes a list (c1,j , . . . , cN,j) as output and publishes it on the
bulletin board, where input ciphertext goes through the cryptographic transformation

ci,j = Xj(cπj(i),j−1) .

For the homomorphic mixing, the transformation Xj re-encrypts the input ciphertext
using the joint public key. For the Chaumian mix-net, Xj is the decryption algorithm
executed with the secret key sk j .

3.6 Correctness Check

Each mix-server Mj is verified as follows. The mix-servers jointly select a collection
of ciphertexts from its input or output list, depending on j being even or odd. The se-
lection method is explained in the next section. Mix-server Mj is then asked to reveal a
collection of input/output correspondences related to the selected ciphertexts. Suppose
that Mj wishes to reveal information that allows anyone to verify that an input cipher-
text ck,j−1 maps to ci,j . The mix-server Mj reveals the triple (k, i, rk,i,j) where rk,i,j
is the information required to validate the transformation ci,j = Xj(ck,j−1). In the case
of the Chaumian mix-net, rk,i,j is the randomness chosen by a sender when encrypting
ci,j to obtain ck,j−1; in the case of the homomorphic mix-net, rk,i,j is the randomness
value chosen by Mj itself for re-encrypting ck,j−1.

Additionally, Mj reveals his commitment to the mapping from ck,j−1 to ci,j . An
odd-numbered mix-server Mj , for the selected ciphertext ci,j , decommits γi,j (re-
vealing k = πj(i)) whereas an even-numbered mix-server, for the selected ciphertext
ck,j−1, decommits γk,j (revealing i = π−1

j (k)).
If all the input/output correspondences verifies correctly, then the mix-server passes

the correctness check. Otherwise, he is identified as a cheater.

Inconsistent Permutation Commitments are Possible. We observe that Jakobsson et al.
do not stress the importance of checking that the opened commitments of integers are
consistent with a permutation. That is, all the revealed commitments γi,j’s (or γk,j ’s)
must open to distinct values. In fact, they emphasize that the verification of correspon-
dences can be performed independently, i.e., it is easy to parallelize. In Section 6, we
explore this issue in depth.

3.7 Selection Strategy

Jakobsson et al. propose different schemes for how to select a subset for each mix-
server’s inputs. The pairwise dependent selection scheme is favored and can be

120 S. Khazaei and D. Wikström

described as follows. Two adjacent mix-servers are paired to ensure that no overlap-
ping correspondences are revealed. The output list (c1,2j−1, . . . , cN,2j−1) of an odd-
numbered mix-server is divided in two groups of ciphertexts. Then M2j−1 is
challenged with one group and M2j with the other one.

The partitioning of the output list of an odd-numbered mix-servers is done as fol-
lows. Mix-servers jointly compute a random seed R. One way to do this is that each
mix-server commits to a random value Rj before starting verification. Then, they open
their commitments and compute R as the XOR of all Rj’s. The seed R can be used
to determine which challenges each mix-server needs to answer. For achieving univer-
sal verifiability, RPC combines the random seed R with the contents of the bulletin
board, denoted by BB, to compute a seed Q2j−1, e.g., by computing the hash value
H(H(R,BB), j) where H is a cryptographic hash function. The seed Q2j−1 is inter-
preted as a vector of N boolean values of which half are true which is used to divide
(c1,2j−1, . . . , cN,2j−1) in two disjoint groups.

The correctness check of mix-servers can be done in two ways: in-phase with mixing,
i.e., right after each mix-server pair has published his output list, or after all mixing has
been performed, i.e., the last mix-server has published his output list. Both schemes are
proposed for homomorphic mixing, but if cheating is detected in the second scheme,
then the culprit would be kicked out and the mixing restarts. Only when the mixing
proceeds without any detected cheating does joint decryption take place. For Chaumian
mixing the correctness check is suggested to take place in-phase. If a mix-server is
identified as a cheater, then his secret key is recovered and his input decrypted in the
open.

3.8 Ballot Decryption

For the homomorphic mix-net, once the mixing operation is complete without detecting
any cheating mix-server, the holders of the secret key sk (the mix-servers or some other
entities) jointly decrypt all output ciphertexts, yielding the full list of plaintext ballots.
This decryption operation is not needed in the case of a decryption mix-net, since the
Xj transformations have already performed all necessary decryptions.

4 Pfitzmann’s Attack and a Generalization

It is easy to see that for the homomorphic mix-net with RPC, the attack of Pfitz-
mann [22,21] can be adopted to break the privacy of any given sender with probability
1/2. This forms the basis of our attacks on privacy, so it is worthwhile to describe it in
detail.

The first mix-server knows the correspondence between voters and ciphertexts. He
targets a sender with a submitted ciphertext c. Then he chooses an integer δ of suitable
size randomly and replaces one of his outputs by cδ . With probability 1/2 this is not
detected during RPC. Then he waits until the mix-net produces an output, identifies two
plaintexts m and m∗ that satisfy m∗ = mδ, and concludes that m was submitted by the
targeted sender.

With more processing, Pfitzmann’s basic attack can be generalized to break the pri-
vacy of s senders while keeping the probability of detection equal to 1/2. To target

Randomized Partial Checking Revisited 121

some ciphertexts c1, . . . , cs, the first mix-server chooses random values δ1, . . . , δs and
replaces one of its outputs by the product

∏s
i=1 c

δi
i . When the mix-net produces an

output, the attacker identifies s+ 1 plaintexts m1, . . . ,ms,m
∗ in the final list that sat-

isfy m∗ =
∏s

i=1 m
δi
i . The running time of the attack is clearly exponential in δ, so δ

should be viewed as a reasonably small constant. Then it concludes that the ith targeted
ciphertext is an encryption of mi.

5 On the Need for Duplicate Removal Everywhere

Recall that duplicate ciphertexts in the list of initial ciphertexts are removed (preserving
only the first posted copy). Jakobsson et al. do not emphasize that each mix-server
must perform this operation before processing its input. In this section we explore the
consequences of failing to do so in a Chaumian mix-net with RPC.

For simplicity, assume that the adversary targets the first s ciphertexts c1,0, . . . , cs,0
and corrupts s(s + 1)/2 senders and the first and last mix-servers. For each i, the ad-
versary removes the first layer of encryption by computing ci,1 = Decsk1

(ci,0), using
the secret key of the first corrupted mix-server. He then makes i independent encryp-
tions of ci,1 under the public key of the first mix-server. This way, the adversary has
prepared 1 + 2 + . . . + s = s(s + 1)/2 ciphertexts which will be sent by the same
number of corrupted senders — each submitting one ciphertext. By construction there
are i + 1 related ciphertexts of the ith targeted ciphertext. By looking at the input list
of the last mix-server, the adversary can identify the targeted senders’ ciphertexts (en-
crypted under the public key of the last mix-server) based on the number of duplicates.
Since the last mix-server is corrupted, he learns the plaintexts of the targeted senders.
As s + s(s + 1)/2 ≤ N must hold, this attack can break privacy of at most O(

√
N)

senders.
Jakobsson et al. do suggest to employ a CCA2 secure encryption scheme like OAEP-

based RSA [1] to make the initial encryption non-malleable. The problem illustrated by
the above attack is that the composition of the cryptosystems of the mix-servers only
remain CCA2 secure as long as the first mix-server remain uncorrupted.

Clearly, the attack is prevented if every mix-server removes the duplicates before
processing its input list. Notice that the final output list, i.e., the mixed output, can
contain duplicates.

We do not see any way to extend the above attack to a homomorphic mix-net with
RPC.

6 Inconsistent Commitments Are Dangerous

Jakobsson et al. [15] do not mention that it is essential to verify that those parts of the
permutation commitments Γ (In)

j (or Γ (Out)
j) that are opened must be consistent with

a permutation. Unfortunately, this also turns out to be the way that implementors have
interpreted the paper. A prominent research group in electronic voting generously gave
us access to their private source code of their homomorphic mix-net with RPC and it
suffered from this flaw. Another notable and publicly available example of an imple-
mentation with this flaw is the Civitas [4] election system (version 0.7.1), implemented

122 S. Khazaei and D. Wikström

by Clarkson et al. The Scantegrity scheme [3] employs a checking approach that resem-
bles random partial checking and suffers from this flaw.

In this section we show how this flaw can be exploited to break either the correctness
or the privacy, or a little bit of both, without detection.

6.1 Breaking Privacy without Detection

This attack applies only to the homomorphic mix-net with RPC. Recall our generaliza-
tion of Pfitzmann’s attack from Section 4 that breaks the privacy of s senders with de-
tection probability 1/2. We show how to mount a variation of this attack without being
detected. The adversary targets some s ciphertexts c1, . . . , cs. It chooses random values
δ1, . . . , δs and computes the product c =

∏s
i=1 c

δi
i . Then it corrupts two senders and

the first pair of mix-servers (here we assume that they are operated by a single entity).
The two corrupt senders are asked to submit two ciphertexts that are re-encryptions
of one another. The first mix-server behaves honestly and it is corrupted only in that
it keeps track of the ciphertexts submitted by the corrupted senders and how they are
re-encrypted. Let ci1,1 and ci2,1 be these ciphertexts in its output list and note that the
adversary knows how to transform ci2,1 into ci1,1 by re-encryption.

Recall that γi,2 denotes a commitment to π−1
2 (i) if M2 behaves honestly. The second

mix-server M2 behaves honestly except that:

1. It defines γi2,2 to be a commitment to π−1
2 (i1). The remainingN−1 commitments,

including γi1,2, a commitment to π−1
2 (i1), are computed in the usual way.

Note that M2 can not open both γi1,2 and γi2,2 in a way that is consistent with a
permutation since they are commitments to the same index i1.

2. It replaces ci2,1 with the maliciously constructed ciphertext c. The modified list is
then re-encrypted and shuffled to give the output list (c1,2, . . . , cN,2).

The attacker has replaced the ciphertext of one of the corrupted senders with a re-
encryption of c. If the attack goes undetected, the adversary can clearly identify the
targeted senders’ plaintexts as in the generalization of Pfitzmann’s attack.

To see that the attack is not detected by RPC, first note that both commitments γi1,2
and γi2,2 verify correctly. Then observe that cπ2(i1),2 is in fact a re-encryption of both
ci1,1 and ci2,1 and M2 can provide the randomness needed to verify this. The attack
can be extended to break the privacy of rs senders without detection by using r + 1
commitments of i1 and introducing r + 1 ciphertexts submitted by corrupted senders
that are re-encryptions of each other.

Depending on the method used to decode messages, the attack will be detected when
the output plaintexts are interpreted. Thus, in practice, the above attack could probably
only be executed once before implementors identified the issue.

Interestingly, even if decommitted values are verified to be distinct, the above attack
with two ciphertexts originating from a single ciphertext input by a corrupted party per-
forms better than the attacks considered by Jakobsson et al. We discuss this is Section 7.

Randomized Partial Checking Revisited 123

6.2 Rigging an Election without Detection

This attack applies to the homomorphic mix-net with RPC, and if the duplicates are not
removed (see Section 5), it is also applicable to the Chaumian mix-net. A straightfor-
ward adaptation of the attack applies to the Scantegrity voting system [3].

The adversary corrupts the first sender and the first mix-server. The first sender is
asked to use m as his plaintext. During the attack all other encrypted votes are replaced
by m. The first mix-server simply replaces all the ciphertexts by c1,0, i.e., the submitted
ciphertext by the first sender which is an encryption of m. The modified list is then
correctly transformed and shuffled to produce the output list (c1,2, . . . , cN,2). To avoid
being detected, the first mix-server chooses all the γi,1’s as commitments to 1, i.e., all
of them are opened to 1. Clearly, the first mix-server can then provide the evidence that
c1,0 maps to all ci,2’s. Therefore, the output list of the last mix-server is N encryptions
of m and the attack is not detected.

To make the resulting output look less unrealistic, the attacker can of course submit
encryptions of several different plaintexts and choose a suitable distribution over these
and apply the attack for each such plaintext.

We stress that there is no way to notice this attack except manually inspecting the
list of decommitted integers. Thus, this attack could in fact already have been exploited
in executions of mix-nets with RPC, so we suggest that transcripts of old executions of
such implementations are inspected manually.

7 What Is the Best We Can Hope for?

Note that even if duplicates are removed everywhere and it is verified that all opened
commitments contain distinct integers to prevent the attacks of the previous sections,
then this does not guarantee that all the unopened commitments are consistent with a
permutation. We show that we can still replace ciphertexts in the homomorphic mix-
net or eliminate in Chaumian mix-net with notably better probability than the attack
considered optimal by Jakobsson et al.

The attack is essentially the same as in Section 6.2 except that only one ciphertext
submitted by an honest sender is replaced by a copy of the ciphertext of the corrupted
sender. Then the probability of detection is 1/4, since the attack is only detected if the
two commitments containing the same integer are opened. The attack can be repeated
independently t times to replace t ciphertexts with probability (3/4)t.

For the homomorphic mix-net, replacing ciphertexts translates to replacing the final
plaintexts, i.e., the output of the mix-net. For Chaumian mix-net our replacements cor-
responds to replacing the final plaintext if the last mix-server in the chain makes the
replacements; otherwise, since the duplicates are removed, replacing ciphertexts results
in eliminating plaintexts from the final mixed output.

8 On the Universal Verifiability of RPC

Recall that a mix-net is called universally verifiable if it ensures correctness even if the
adversary corrupts all parties, and consider the case where checking takes place at the

124 S. Khazaei and D. Wikström

end of the mixing. If all mix-servers are corrupted, then they can try to cheat by repeat-
edly: replacing t ciphertexts in their output, picking a random seed as in the protocol,
and checking if the resulting challenges can be answered. The attack is successful if a
replacement is found that passes the correctness check. Assuming the adversary repeats
the procedure q times, Jakobsson et al. argue that the success probability in each attempt
is bounded by 2−t and then apply the union bound to conclude that the probability of
success is roughly 1− (1− 2−t)q ≤ q2−t.

8.1 An Improved Attack

There is a more clever attack on the public verifiability of homomorphic mixing with
RPC. A straightforward application of the idea of Section 7 shows that the success
probability can be increased to roughly 1− (1− (3/4)t)q . In other words, the adversary
can change 1/ log(4/3) ≈ 2.4 times as many ciphertexts as claimed for a given com-
putational complexity. For example, to change t = 192 ciphertexts the adversary has to
prepare and do 280 hash queries. This should be compared with the claimed bound of
80 ciphertexts for corresponding complexity. This attack also applies to the Chaumian
mixing even if the duplicates are removed. This requires that the replacement is done
by the last mix-server.

8.2 When Checking Is Performed at the End of the Mixing

Universal verifiability is considerably weaker when in-phase checking is used. The
problem is that in-phase checking allows the adversary to replace a few ciphertexts in
each each mix-server. Replacing kt ciphertexts in this way goes undetected with prob-

ability roughly
(
1− (1− (3/4)t)q

)k
(instead of 1− (1− (3/4)tk)q) for homomorphic

mixing. For example, with k = 5, t = 192, and roughly 280 queries to the hash func-
tion, the adversary can replace almost one thousand ciphertexts. If we really care about
public verifiability, then this is unlikely to be acceptable. This also holds for Chaumian
mixing even if the duplicates are removed everywhere but the replaced ciphertexts are
eliminated except for the last mix-server.

This leaves us with two options for Chaumian mix-nets: either we adopt checking
in-phase with mixing and accept the weaker guarantee on universal verifiability, or we
use checking after mixing.

There is a fairly obvious attack on a Chaumian mix-net with RPC if the checking
is performed at the end of the mixing and this is why Jakobsson et al. do not suggest
this type of checking. The problem is that the adversary can corrupt the first mix-server,
replace some ciphertexts, and simply wait for the output of the mix-net. Then he will
be caught, but before this happens the votes of the targeted voters have already been
revealed.

To prevent this attack and still use checking after mixing, we propose to protect
senders plaintexts with an innermost cryptosystem whose secret is shared between the
mix-servers and only recovered after the checking has been successfully performed.
This can also be implemented by letting each server generate an additional key pair and
letting the joint key be the list of all the additional public keys. This avoids the need

Randomized Partial Checking Revisited 125

for a costly distributed key generation protocol, but increases the size of ciphertexts.
Another problem with this scheme is that the execution can only be aborted if cheating
is detected.

Note that the problem with checking at the end of the mixing does not appear in
a homomorphic mix-net with RPC since nothing is revealed about the plaintexts until
after the checking is completed successfully.

9 On the Provable Security of RPC

Even cryptographic protocols proposed without a proof of security by experienced cryp-
tographers can often be broken, and this seems to be particularly true for mix-nets.
Historically the proposals of heuristically secure mix-nets [20,11,12,14,9] have been
followed by discovery of security flaws [22,21,5,17,24].

A formal proof of security does not guarantee that no attack will ever be
found (proofs can have subtle errors, assumptions can be wrong, and the adversarial
model can be unrealistic), but it increases the confidence in the security of the scheme
significantly.

9.1 Homomorphic Mix-Net with RPC

We argue informally that homomorphic mix-nets with RPC, e.g., based on El Gamal
cannot be proven secure using a blackbox reduction in the simulation paradigm, even if
the issues explored in this paper are handled correctly.

A definition of security in the simulation paradigm requires that no efficient distin-
guisher can tell a suitable ideal model with a simulator from a real model with a real
adversary. Suppose that there is a real adversary and a distinguisher that contradicts this
claim. We must use them to break the semantic security of the cryptosystem. The first
step would be to do a hybrid argument such that two hybrids only differ in that in one
of the hybrids the ith voter encrypts his true message and in the other he encrypts some
bogus message, e.g. zero. Then to exploit the adversary in a blackbox way we would:

1. Accept a public key from the semantic security experiment as input and somehow
embed this into the public key used by voters. We could for example pretend that
the public key belongs to one of the honest senders and simulate the verifiable secret
sharing of the secret key without knowing the secret key at all.

2. Simulate the execution until the ith voter prepares its ciphertext and interrupt the
execution at this point. Then we hand the true plaintext and the bogus plaintext to
the experiment and wait for a ciphertext in return which is used as the ciphertext of
the ith sender in the continued simulation.

3. Simulate the decryption of the given ciphertext to the true plaintext, and output the
output of the distinguisher. (In a homomorphic mix-net we must keep track of how
it is permuted through the mix-net to be able to do this.)

The problem with the homomorphic mix-net with RPC is that a corrupted mix-server
with probability 3/4 can replace a ciphertext by any ciphertext and before the distin-
guisher outputs its result, the adversary expects to see the plaintext of this ciphertext

126 S. Khazaei and D. Wikström

in the output of the mix-net. Thus, the adversary is given access to a restricted decryp-
tion oracle before the distinguisher guesses which model it is interacting with. In other
words, for the adversary to be useful to the reduction, the simulator must solve almost
the same problem as the reduction is intended to do.

9.2 Chaumian Mix-Net with RPC

Proving the security of the Chaumian mix-net with RPC based on a CCA2 secure cryp-
tosystem where the vulnerabilities explored in this paper are resolved seems hard, but
not impossible. The challenge is to capture the restricted forms of privacy and sound-
ness that it exhibits. The obvious way to resolve the problem with limited privacy is to
assume that there are sufficiently many mix-servers to get full privacy, but it turns out
to be non-trivial to determine how many mix-servers are needed.

Gomulkiewicz et al. [10] study the probability distribution of the permutations link-
ing the input and outputs of a mix-net with RPC given the information revealed. They
show that the distance between this distribution and the uniform distribution is O(1

N)
even when there is only a constant number of mix-servers. Contrary to what is claimed,
this result does not capture the privacy of a mix-net with RPC, but it may well be a
useful result.

10 Interpretation and Discussion

It is easy to add consistency checks to the random partial checking protocol, but such
consistency checks are missing in the description of Jakobsson et al. [15]. Implementers
should of course follow the description of a cryptographic protocol strictly to make
sure that their implementation capture the intentions of the protocol designers, so it
is not surprising that the consistency checks are missing in all implementations we
have considered. Furthermore, even if the needed consistency checks are added the
protocol still does not achieve the claimed security guarantees. Thus, we think it is
fair to consider the issues we have identified as flaws in the protocol and not as mere
implementation bugs, although we realize that different interpretations are possible.
Both the Civitas [4] and the Scantegrity [3] teams have reported that they have already
mended, or are about to mend, their implementations based on our insights.

Our attack on correctness is easily generalized to be very difficult for a human to dis-
cover by a manual sanity check of the values revealed during random partial checking.
Thus, we choose to view our attack as undetectable in practice, despite that it can be
detected using an algorithm that performs the needed consistency checks.

It is hard to exaggerate how fortunate we are to be able to retroactively verify that the
attack on correctness did not take place in a given execution. We strongly suggest that
all implementers of random partial checking (or similar schemes) perform the needed
verifications for all conducted elections. The Scantegrity team has already reported that
no tampering took place in elections using their scheme.

We stress that all the issues described in this paper were found in an attempt to prove
the security of random partial checking and we are convinced that any attempt to do
so would have revealed the same issues. Thus, we think that our work illustrates the

Randomized Partial Checking Revisited 127

importance of precise descriptions and rigorous proofs of security. Proofs of security
can have subtle bugs and models can be unrealistic, but we think that protocols without
proofs of security should not be trusted.

Acknowledgments. Tal Moran contributed to our initial discussions on possible ap-
proaches to prove the security of random partial checking. Johan Håstad gave helpful
comments. Members of the Civitas and the Scantegrity teams quickly confirmed our
findings and provided valuable feedback on a draft of this paper.

References

1. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM 24(2), 84–88 (1981)

3. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A., Vora, P.: Scant-
egrity: End-to-end voter-verifiable optical- scan voting. In: IEEE Security and Privacy, vol. 6,
pp. 40–46 (2008)

4. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: IEEE
Symposium on Security and Privacy, pp. 354–368. IEEE Computer Society (2008)

5. Desmedt, Y., Kurosawa, K.: How to Break a Practical MIX and Design a New One. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer, Heidelberg
(2000)

6. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS, pp.
427–437. IEEE Computer Society (1987)

7. Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

8. Gabber, E., Gibbons, P.B., Matias, Y., Mayer, A.J.: How to Make Personalized Web Browis-
ing Simple, Secure, and Anonymous. In: Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318, pp.
17–32. Springer, Heidelberg (1997)

9. Golle, P., Zhong, S., Boneh, D., Jakobsson, M., Juels, A.: Optimistic Mixing for Exit-Polls.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 451–465. Springer, Heidelberg
(2002)

10. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid Mixing and Security of Chaum’s
Visual Electronic Voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 132–145. Springer, Heidelberg (2003)

11. Jakobsson, M.: A Practical Mix. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 448–461. Springer, Heidelberg (1998)

12. Jakobsson, M.: Flash mixing. In: PODC, pp. 83–89 (1999)
13. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via ciphertexts. In:

Okamoto [19], pp. 162–177
14. Jakobsson, M., Juels, A.: An optimally robust hybrid mix network. In: PODC, pp. 284–292.

ACM Press, New York (2001)
15. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting by ran-

domized partial checking. In: Boneh, D. (ed.) USENIX Security Symposium, pp. 339–353.
USENIX (2002)

16. Jakobsson, M.: Mix-Based Electronic Payments. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 157–173. Springer, Heidelberg (1999)

128 S. Khazaei and D. Wikström

17. Mitomo, M., Kurosawa, K.: Attack for flash mix. In: Okamoto [19], pp. 192–204
18. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: CCS 2001: Proc. of

the 8th ACM Conference on Computer and Communications Security, pp. 116–125. ACM,
New York (2001)

19. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg (2000)
20. Park, C., Itoh, K., Kurosawa, K.: Efficient Anonymous Channel and All/Nothing Election

Scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 248–259. Springer,
Heidelberg (1994)

21. Pfitzmann, B.: Breaking an Efficient Anonymous Channel. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995)

22. Pfitzmann, B., Pfitzmann, A.: How to Break the Direct RSA-Implementation of Mixes. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 373–381.
Springer, Heidelberg (1990)

23. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting scheme — A Practical Solution
to the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

24. Wikström, D.: Five Practical Attacks for “Optimistic Mixing for Exit-Polls”. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 160–175. Springer, Heidelberg
(2004)

Randomly Failed!

The State of Randomness in Current Java
Implementations

Kai Michaelis, Christopher Meyer, and Jörg Schwenk

Horst Görtz Institute for IT-Security, Ruhr-University Bochum
{kai.michaelis,christopher.meyer,joerg.schwenk}@rub.de

Abstract. This paper investigates the Randomness of several Java Run-
time Libraries by inspecting the integrated Pseudo Random Number
Generators. Significant weaknesses in different libraries including An-
droid, are uncovered.

1 Introduction

With a market share of 33-50% [1], [2], [3] Android is currently the most popular
mobile OS. Each of the 331-400 million sold devices (cf. [3]) is able to run Java
applications written in Java. Java provides interfaces for different Pseudo Ran-
dom Number Generators (PRNGs), such as SecureRandom, which is intended
for use by cryptographic schemes. But, only the API is specified - each library
implements own algorithms. Designing secure and reliable PRNGs is a hard and
complicated task [4], as well as implementing these algorithms correctly. One of
the worst ideas is to implement own unproved PRNG constructs.

This paper examines the quality of the random numbers generated by common
Java libraries. In detail, the PRNGs, intended for use in cryptographic environ-
ments, of Apache Harmony1, GNU Classpath2, OpenJDK3 and BouncyCastle4

are inspected. It is shown that the over-all entropy of the Android PRNG can
be reduced to 64 bits. Beyond this, multiple weaknesses of entropy collectors are
revealed. However, some of these weaknesses only occur under special conditions
(e.g., unavailable /dev/{u}random device). We clearly point out that we are not
going to discuss the quality of random numbers generated by PRNGs shipped
with Operating Systems (OS). Discussions of OS provided (P)RNG facilities can
be found at e.g., [5], [6], [7].

2 Related Work

Problems related to weak pseudo random number generators (PRNGs) have
been topic of several previously published papers. In 2012 Argyros and Kiayias

1 http://harmony.apache.org/
2 http://www.gnu.org/software/classpath/
3 http://openjdk.java.net/
4 http://www.bouncycastle.org/

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 129–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://harmony.apache.org/
http://www.gnu.org/software/classpath/
http://openjdk.java.net/
http://www.bouncycastle.org/

130 K. Michaelis, C. Meyer, and J. Schwenk

investigated in [8] the state of PRNGs in PHP5 and outlined flaws leading to
attack vectors. Their results are based on insecure constructions of PRNGs in-
troduced by custom algorithms.

Kopf outlined in [9] multiple cryptographic and implementational flaws in
widespread Content Management Systems (CMS). These observations focused
weak cryptographic constructs and pecularities of PHP. The resulting bugs are
not caused by weak PRNGs, but by vulnerable custom algorithms in combination
with implementational flaws.

Meyer and Somorovsky [10] uncovered a vulnerable use of SecureRandom in
WSS4J6. A function responsible for nonce generation, used at various places in
the framework, suffered from weak PRNG seeding.

Problems related to PRNGs are also topic of multiple CWEs (CommonWeak-
ness Enumeration)7 that deal with the misuse or use of weak pseudo random
number generators (cf. CWE 330-343).

In [11]) Lenstra et al. inspected millions of public keys of different types (RSA,
DSA, ElGamal and ECDSA) and found keys violating basic principles for secure
cryptographic parameters. According to the authors these weak keys could be a
result of poorly seeded PRNGs.

More alarming results concerning key quality are presented by Heninger et
al. in [7] pointing out that ”Randomness is essential for modern cryptography”.
Missing entropy was identified as a root cause for many weak and vulnerable
keys. Additionally, the authors identified weak entropy problems under certain
conditions in the Linux RNG.

A more theory based cryptanalytic set of attacks on PRNGs can be found at
e.g., [12].

2.1 Contribution

The results of this paper focus on PRNG implementations of Java core libraries.
Even thus all libraries implement the same functionality - generating (pseudo)
random numbers - based on the same API, the algorithms for random number
generation differ from library to library.

The main contribution is an analysis of algorithms implemented in most
commonly used SecureRandom generators. For this analysis tests provided by
the Dieharder [13] and STS [14] testsuites are used to check for cryptographic
weaknesses. Additionally manual code analysis uncovered algorithmical and im-
plementational vulnerabilities.

3 Implementations and Algorithms

In Java, random numbers are derived from an initial seed. Two instances of a
PRNG seeded with equal values always generate equal random sequences. The

5 http://www.php.net
6 http://ws.apache.org/wss4j/
7 http://cwe.mitre.org

http://www.php.net
http://ws.apache.org/wss4j/
http://cwe.mitre.org

Randomly Failed! 131

cryptographic strong PRNGs are accessed via the SecureRandom interface which
is part of the Java Cryptography Architecture.

3.1 Apache Harmony - Android’s Version of SecureRandom

Apache Harmony, introduced in 2005 as an open source implementation of the
Java Core Libraries published under the Apache License8, became obsolete with
the publication of SUN Microsystems’ reference implementation in 2006. Al-
though discontinued since 2011, the project is further devleoped as part of
Google’s Android platform.

1 // require cnt: counter >= 0, state: seed bytes and iv: previous output
2 iv = sha1(iv,concat(state ,cnt)) ;
3 cnt = cnt + 1;
4 return iv;

Listing 1.1. Apache Harmony’s SecureRandom

The PRNG shipped with Android uses the SHA-1 [15] hash algorithm to gen-
erate pseudo random sequences and is ideally seeded by the random devices
provided by the OS. Random numbers are generated by calculating hash sums
of an internal state concatenated with a 64 bit integer counter and a padding
(algorithm in Listing 1.1). The counter is, starting at zero, incremented each run
of the algorithm. Additionally, a padding is required to fill remaining bits of a
85 bytes buffer. This padding follows the SHA-1 padding scheme: The last 64
bits hold the length len of the values to be hashed in bits. Any space between
the end of the values and the length field is filled with a single ’1’ bit followed by
zeros. The resulting hash sums are returned as pseudo random sequence. Figure
1 illustrates the state buffer.

20 byte seed (5 * 32 bit words) 8 byte counter 57 byte padding

i. s0 s1 s2 s3 s4 0 · · · 0

ii. s0 s1 s2 s3 s4 cnt0 cnt1 10 · · · 0 len

Fig. 1. The seed bytes s0, .., s4 in row i concatenated with a 64 bit counter c0, c1 (two
32bit words), padding bits and the length len as in row ii are hashed repeatedly to
generate a stream of pseudorandom bytes

3.2 GNU Classpath

The GNU Classpath project started in 1998 as the first open source implemen-
tation of Java’s core libraries. The library is licensed under GPL 9 and is e.g.,
partly used by the IcedTea 10 project.

8 http://www.apache.org/licenses/
9 http://www.gnu.org/licenses/

10 http://icedtea.classpath.org/wiki/Main_Page

http://www.apache.org/licenses/
http://www.gnu.org/licenses/
http://icedtea.classpath.org/wiki/Main_Page

132 K. Michaelis, C. Meyer, and J. Schwenk

1 // require state : <= 512 bit buffer, iv : current Initialzation Vector
2 byte[] output = sha1(iv,state);
3 state = concat(state,output);
4 if (state .length > 512) { // in bits
5 iv = sha(iv,state [0:512]) ; // first 512 bits
6 state = state[512:−1]; // rest
7 output = sha1(iv,state) ;
8 }
9 return output;

Listing 1.2. GNU Classpath’s SecureRandom

The SecureRandom implementation (algorithm in Listing 1.2) of GNU Classpath
is powered by a class MDGenerator that is parameterized with an arbitrary hash
algorithm. A new SecureRandom instance is seeded with 32 bytes yielding an
internal state as shown in row i of Figure 2. Based on this start value a digest
is computed. The resulting hash (e.g. 160 bit in case of SHA-1) is returned as
pseudo random value r0. r0 in turn is concatenated with the former seed forming
the new state in row ii.

These bytes are hashed again yielding the second output r1. Finally, the seed
concatenated with the previous two hash values form the new state (c.f. row iii)
whose digest is the third output value r3. r3 is again appended to the previous
state resulting in the state illustrated in row iv. Each fourth ri values a block
overflow happens causing the implementation to hash the full block and use this
hash as initialization vector (IV) for the new block. The only unknown value is
the 32 byte long initial seed. All other information are known (as they are parts
of former ri value).

Block 1 (64 byte) Block 2 (64 byte)

i. seed pad

ii. seed r0 pad

iii. seed r0 r1h r1l pad

iv. seed r0 r1h r1l r2 pad

Fig. 2. Hashing the previous pseudo random bytes concatenated with the fomer seed
produces the next output value

GNU Classpath includes a “backup” seeding facility (algorithm in Listing 1.3)
for Unix-like operating systems. The VMSecureRandom class is able to harvest
entropy from the OS’ process scheduler. Every call to the seeding facility starts
8 threads, each one incrementing a looped one byte counter. The parent thread
waits until at least one of the 8 threads is picked up by the scheduler. The seed
value is calculated by XORing each of the one byte counters. This forms the first
seed byte. Accordingly, the next seed byte is generated the same way. When the
requested amount of seeding material is gathered the threads are stopped.

Randomly Failed! 133

1 int n = 0
2 byte[] S = new byte[8];
3 byte[] output = new byte[32];
4
5 for(int i = 0; i < 8; i++) {
6 S[i] = start thread(n); // ‘‘ spinner’’ incrementing a counter starting at n
7 n = (2∗n) % pow(2,32);
8 }
9

10 while(!spinners running())
11 wait() ;
12
13 for(int i = 0; i < 32; i++) {
14 output[i] = 0;
15
16 for(int j = 0; j < 8; j++)
17 output[i] = output[i] ˆ counter(S[j]) ;
18 }
19
20 for(int i = 0; i < 8; i++)
21 stop thread(S[i]) ;
22
23 return output;

Listing 1.3. GNU Classpath’s entropy collector

3.3 OpenJDK

As the direct successor of the Java Development Kit (JDK), OpenJDK 11 pro-
vides not only Java core libraries, but additionally a Java compiler and a virtual
machine. OpenJDK is the official reference implementation of Java and open
source licensed under GPL. The project is supported by major vendors such as
IBM or SAP.

1 // require state : seed bytes , iv : SHA−1 standard IV
2 byte[] output = sha1(iv,state);
3 byte[] new state = (state + output + 1) % pow(2,160);
4
5 if (state == new state)
6 state = (new state + 1) % pow(2,160);
7 else
8 state = new state;
9

10 return output;

Listing 1.4. OpenJDK’s SecureRandom

OpenJDK uses the OS’ PRNG in conjunction with a similar scheme as the
previously mentioned libraries (algorithm in Listing 1.4). An initial 160 bit seed

11 http://openjdk.java.net/

http://openjdk.java.net/

134 K. Michaelis, C. Meyer, and J. Schwenk

value is hashed using SHA-1. The result is XORed with the output of the OS
specific PRNG and returned as pseudo random bytes. This output is added to
the initial seed plus 1 modulo 2160. An additional check compares the new seed
to the old one preventing the function from getting trapped in a fixed state
where si + SHA-1(si) + 1 ≡ si mod 2160.

Fig. 3. SecureRandom of OpenJDK. In each step the current state (seed) si is com-
pressed yielding output oi. The sum of oi, si−1 and 1 give new state si+1.

The integrated entropy collector (cf. Listing 1.5) uses multiple threads to
gather randomness. In contrast to GNU Classpath, only one thread increments a
counter. Subsequently, new threads are started suspending five times for 50ms to
keep the scheduler busy. Before continuing the lower 8 bits of the current counter
value pass an S-Box. The XOR sum of all 5 counters is returned as random byte.
The entropy collector enforces mandatory runtime (250ms) and counter value
(64000). Even after enough seed is produced the entropy collector continues to
run. The seed bytes are hashed together with entries of System.properties and
the result is used as seed.

1 counter = 0;
2 quanta = 0;
3 v = 0;
4
5 while(counter < 64000 && quanta < 6) {
6 start thread () // loops 5 times, sleeping 50ms each
7 latch = 0;
8 t = time();
9

10 while(time() − t < 250ms) // repeat for 250ms
11 latch = latch + 1;
12
13 counter = counter + latch;
14 v = v ˆ SBox[latch % 255];
15 quanta = quanta + 1;
16 }
17
18 return v;

Listing 1.5. OpenJDK’s entropy collector

Randomly Failed! 135

3.4 The Legion of Bouncy Castle

Bouncy Castle is not a complete core library, but a security framework for the
Java platform. This includes a SecurityProvider as well as cryptographic APIs
for standalone usage. The project provides enhanced functionality, as well as
support for a broader range of cryptographic algorithms compared to default
OpenJDK. Bouncy Castle implements various pseudo random generators as well
as a threaded entropy collector akin of the one in OpenJDK.

The DigestRandomGenerator (cf. Listing 1.6) uses a cryptographic hash algo-
rithm to generate a pseudorandom sequence by hashing an internal secret state
of 160 bits with a 64 bit state counter producing 160 bits of pseudorandom out-
put at once. After each hash operation the state counter is incremented. The
initial secret state is received from a seeding facility. Every tenth hash opera-
tion on the state, a 64 bit seed counter is incremented and a new secret state
is generated by hashing the current state concatenated with the seed counter.
This new secret state replaces the old one, where the state counter remains
at its previous value. When another pseudorandom value is requested from the
DigestRandomGenerator instance, this new secret state is hashed with the state
counter, producing a cryptographic checksum to be returned to the caller as ran-
dom byte array.

1 // require seedBuffer: 160bit seed, stateBuffer : 160bit array, seedCounter and
stateCounter: 64bit integers

2
3 if (stateCounter % 10 == 0) {
4 stateBuffer = sha1(iv,concat(seedBuffer,seedCounter));
5 seedCounter += 1;
6 }
7
8 byte[] output = sha1(iv,concat(stateBuffer,stateCounter));
9 stateCounter++;

10
11 return output;

Listing 1.6. DigestRandomGenerator

The VMPCRandomGenerator is based on Bartosz Zoltak’s Variable Modified Per-
mutation Composition one-way function [16].

The ThreadedSeedGenerator implements a threaded entropy collector scheme.
Only two threads are used: one thread increments a counter in a loop, whereas the
other waits 1ms until the counter has changed. The new value is appended to an
output array. The incrementing thread is teared down after all random bytes are
collected. The generator offers twomodes of operation: a) “slow”mode where only
the least significant bit of every byte is used and b) “fast” mode where the whole
byte is used.

136 K. Michaelis, C. Meyer, and J. Schwenk

1 // require count: number of seed bytes needed, fast : enable ”fast” mode
2 byte[] output = byte[count];
3 t = start thread() // increments a counter in a loop
4 int last = 0;
5
6 // use bits in ”slow” mode
7 if (! fast)
8 count ∗= 8;
9

10 for(int i = 0; i < count; i++) {
11 while(counter(t) == last)
12 sleep(1) ;
13
14 last = counter(t);
15 if (fast)
16 output[i] = (byte)last;
17 else
18 output[i/8] = (last % 2) | (output[i/8] << 1);
19
20 }
21 stop thread(t) ;
22 return output;

Listing 1.7. ThreadedSeedGenerator

4 Methodology

Manual code review was performed for each of the introduced PRNGs. During
code review the code was checked for implementation flaws and obvious bugs.
Aside from code review blackbox tests on the output were preformed to grade
the entropy. For this the Dieharder test suite [13] for (pseudo) random number
generators was used, as well as Monobit, Runs, and Serial tests from the STS [14]
suite.

While these tests can not replace cryptanalysis they still uncover bias and
dependency in the pseudo random sequence. For every test exists an expected
distribution of outcomes. Test runs produce a value that is compared to the
theoretical outcome. A p-value, describing the probability that a real RNG would
produce this outcome, between 0 and 1 is computed. A p-value below a fixed
significance level α = 0.001 indicates a failure of the PRNG with probability
1 − α. Dieharder differs from this methodology as it relies on multiple p-values
to evaluate the quality of a PRNG. It is possible (and expected) for a good RNG
to produce “failing” p-values. Instead of grading a single outcome, 100 p-values
are computed and the distribution of these values is compared to an uniform
one. This generates a final p-value grading the quality of the PRNG.

No cryptanalysis was performed - we analyzed the algorithms and evaluated
the quality of randomness by using special purpose testsuites.

Randomly Failed! 137

5 Results

This section highlights prospective weaknesses of the implementations and eval-
uates the quality of generated randomness. Due to space limitations, only con-
ditions targeting the observed weaknesses are regarded - the statistical graphs
can be found in the Appendix in Section 6.

Striking about all implementations of SecureRandom is the limited state size.
In OpenJDK and GNU Classpath adding more entropy (> 160bit) to an in-
stance will not enhance security. This limitation is alarming, since it renders the
PRNGs useless for key generation > 160 bit (as e.g., in AES’ case). Only Apache
Harmony relies on a 512 bit buffer.

5.1 Apache Harmony

Apache Harmony revealed multiple weaknesses caused by implementation bugs.
As a part of Android a plethora of cryptographic functions [17] rely on this
PRNG. One of the bugs addresses directly the Android platform, where as the
second one only targets Apache Harmony.

Weaknesses. FIRST - When creating a self seeding SecureRandom instance
(by calling the constructor without arguments and subsequent setSeed() call),
the code fails to adjust the byte offset (a pointer into the state buffer) after
inserting a start value. This causes the 64 bit counter and the beginning of the
padding (a 32 bit word) to overwrite parts of the seed instead of appending to
it. The remaining 64 bits of entropy render the PRNG useless for cryptographic
applications12.

20 byte seed (== 5 * 32 bit words) 8 byte counter 57 byte padding

ii. s0 s1 s2 s3 s4 cnt0 cnt1 10 · · · 0 len

iii. cnt0 cnt1 10 · · ·0 s3 s4 0 · · · 0 len

Fig. 4. Instead of appending (c.f. row ii), the counter and the succeeding padding
overwrite a portion of the seed, yielding row iii

SECOND13 - When running under a Unix-like OS a new SecureRandom in-
stance is seeded with 20 bytes from the urandom or random device. If both are
unaccessible the implementation provides a fall-back seeding facility (cf. List-
ing 1.8): seed is gathered from the random() PRNG of the GNU C library,
which is seeded it via srandom() with the UNIX-time, processor time and the
pointer value of a heap-allocated buffer. After seeding, random() is used to gen-
erate seed bytes for SecureRandom. Before these bytes are returned the most
significant bit is set to zero (mod 128) - this behavior is neither documented,
expected nor explained.

12 The bug was communicated to the Google Security Team.
13 This bug is not part of the Android Source.

138 K. Michaelis, C. Meyer, and J. Schwenk

1 char ∗seed = malloc(20);
2 srandom(clock() ∗ time() ∗ malloc()) % pow(2,31));
3 for(int i = 0; i < 20; i++)
4 seed[i] = random() % 128;
5
6 return seed;

Listing 1.8. Apache Harmony’s getUnixSystemRandom

The missing entropy is not compensated (e.g., by requesting > 20 bytes). As
a consequence, the effective seed of a SecureRandom instance is only 7/8 for
each requested byte, degrading security (of only 64 bits due to the first bug)
by another 8 bits to 56 bits (s3 and s4 are 2 * 32 bit words == 8 byte). Even
worse, the argument of srandom() in the GNU C library is of type unsigned

int while Harmony reduces the argument modulo INT MAX (defined in limits.h)
- the maximum value for signed ints. This limits the entropy of a single call to
the seeding facility to 31 bits.

Quality of Entropy Collectors. Generating 10MiB of seed - two consecutive
bytes are interpreted as a single point - lead to the chart in Figure 9. It shows a
lack of values above 127 in each direction. This test targets the second bug. The
first bug limits the security to 64/56 bit, depending on the seeding source. This
seed space of only 264 elements is within reach of Brute-Force attacks utilizing
GPGPUs/FPGAs (cf. [15]).

5.2 GNU Classpath

The library’s entropy collector revealed inconsistencies regarding normal distri-
bution of the output bits which could result in vulnerabilities.

Weaknesses. - The implementation of GNU Classpath contains a significant
weakness related to internal states. As long as a new generated random value
concatenated with the previous state does not overflow the current block, all
hash computations are done with the same IV. States in rows i and ii from
Figure 2 are both hashed with the SHA-1 standard IV. The obtained state in
row iii overflows the first block - the hash value of this first block is used as
input for the hash of the second block in row iii and as IV for the succeeding
computation of r1l |r2 concatenated with r3. The state is reduced from 32 bytes
seed to only 20 unkown IV bytes.

Fig. 5. Schematic view of a single SHA-1 iteration. Values in the dotted boxes are
known when used in the SecureRandom class from GNU Classpath.

Randomly Failed! 139

The IV is the only unknown value. To break the algorithm an attacker has to
discover the IV for a known message producing a known checksum. While no such
attack on SHA-1 has been published yet, this scenario is different from a preimage
attack (c.f., [18], [19]). The compression function in SHA-1, ignoring the final 32
bit additions is invertible(c.f., [20]) for a given message. Thus, the addition of the
secret IV (see Figure 5) remains the only hurdle in breaking the implementation.

Quality of Entropy Collectors. The seeding facility harvests entropy from
multiple threads competing for CPU time. While the behaviour of the scheduler
is difficult to predict it is possible to influence it. Only one of eight threads
is expected to be scheduled. During seed extraction this precondition is not
checked, enabling an attacker to fill (parts) of the output array with identical
values by preventing threads to run (e.g., by creating high process load).

To test this construction under worst conditions, 11GiB of seed values were gen-
erated. To simulate high load 8 processes were run simultaneously. Each process
queried for 16384 bytes while iterating in a loop. At first inspection, the resulting
random seed revealed large (up to 2800 bytes) “holes” where random bytes were
equal. As a result, the algorithm did not pass any blackbox tests. While the test
conditions were extreme, they still expose a weakness in this entropy harvester.

The first 10MiB of seed are sampled on a graph (c.f., Figures 10). As can be
seen, Classpath was unable to fill the whole space, leaving 64 by 64 large patches
in the second and forth quadrant, as well as 32 by 32 along the diagonal when
running under heavy load. In contrast, under normal conditions the entropy
collector produced a well-balanced pane.

5.3 OpenJDK

The overall impression of SecureRandom’s reference implementation suggests a
thoughtful and mature implementation.

Weaknesses. Code review bared no obvious weaknesses. Still, if an attacker is
able to learn any internal state (si in Figure 3) all following states sj ∀j > i and
outputs oj = SHA-1(sj) can be predicted if the OS PRNG (/dev/{u,}random)
is unavailable14.

Quality of Entropy Collectors. OpenJDK’s strategy for seed generation in
abstance of OS support is similar to VMSecureRandom of GNU Classpath. Open-
JDK supplements the threaded entropy collector by enforcing minimal limits on
runtime before extracting bytes and adding a substitution box. The unhashed15

seed bytes were evaluated. The implementation revealed to be magnitudes slower,
resulting in only 20MiB of seed generated by 8 processes running simultaneously.
From the 114 blackbox tests only 30 were passed, whereas 12 failed with a p-
value< 0.05 and 72 with p-value< 10−6. The random bytes had grave difficulties
with the STS tests, failing Monobit, Runs and the first eight Serial tests. This
indicates poor variance in single bits and tuples up to eight bits. Nevermind, the
resulting graph is filled very balanced (cf. Figure 11).

14 Until the user manually reseeds the SecureRandom instance.
15 Before hashing with additional System.properties values.

140 K. Michaelis, C. Meyer, and J. Schwenk

5.4 The Legion of Bouncy Castle

Bouncy Castle’s implementation is also a hash-based algorithm (Digest-
RandomGenerator). No obvious bugs were found during code review. In contrast,
the entropy collector ThreadedSeedGenerator revealed difficulties to generate
sufficient random bytes.

Weaknesses. In DigestRandomGenerator the seed is modified every tenth call
(cf. Section 3.4). This may increase the period of the PRNG and hinders an
attacker aware of the secret state to calculate previous outputs. Predicting all
succeeding outputs is still possible as the counter values can be guessed by
observing the amount of values produced yet.

The VMPC function used in VMPCRandomGenerator is known to be vulnerable
to multiple distinguishing attacks (cf. [21], [22], [23]).

Quality of Entropy Collectors. The entropy collector checks if a counter
incremented in another thread has changed. Under heavy load the counter often
differs only about 1 incrementation.

The seed generator running in “fast” mode passed most of the STS tests
including Monobit, Runs and Serial up to eight bit tuple size. In “slow” mode,
long sequences of ones and zeros caused to fail the Runs test, as well as the Serial
test for 2-bit blocks. Both modes were still able to fill the pane after 10MiB of
one byte samples (c.f., Figure 12).

5.5 Vulnerabilities Summary

The Tables depitcted in Figures 6, 7, 8 finally summarize our results16.

Library
Security when seeded from

OS PRNG integrated source

Apache Harmony 64 bit 31 bit
GNU Classpath 160 bit dubious(see text)

OpenJDK 160 bit dubious(see text)

Fig. 6. Summary of the results from SecureRandom audits

Library Source of entropy
Passed Blackbox

tests

Apache Harmony UNIX-time, processor time, heap pointer 0/114
GNU Classpath Thread scheduler 0/114(see text)

OpenJDK Thread scheduler, System.properties 30/114

Fig. 7. Summary of the integrated seed generators

16 Bouncy Castle is partly missing since it ships with replacements for SecureRandom

and configurable entropy collectors. And is thus not directly comparable.

Randomly Failed! 141

Library Component Vulnerability
only if OS
PRNG
unavail.

Apache Harmony SecureRandom Entropy limited to 64bit.
Apache Harmony SecureRandom Entropy limited to 31bit. X

Gnu Classpath SecureRandom
Possibly predictable if later

IVs are known.

Gnu Classpath Entropy Collector
Suggestible by other

threads.
X

Bouncy Castle VMPCRandomGenerator
Vulnerable to distinguishing

attacks.

Fig. 8. Overall summary of all uncovered vulnerabilities

6 Conclusion

The SecureRandom PRNG is the primary source of randomness for Java and is
used e.g., by cryptographic operations. This underlines its importance regarding
security. Some of fallback solutions of the investigated implementations revealed
to be weak and predict- or capable of being influenced. Very alarming are the
defects found in Apache Harmony, since it is partly used by Android. Long
update intervals and missing pre-OS-release patching of device manufacturers in
the past (c.f., [24]) may cause this bug to remain in the Android ecosystem for
months or even years.

Although, some libraries provide acceptable randomness, the use of hardware
RNGs instead of PRNGs is recommended for critical purposes.

References

1. Gupta, A., Cozza, R., Nguyen, T.H., Milanesi, C., Shen, S., Vergne, H.J.D.L.,
Zimmermann, A., Lu, C., Sato, A., Glenn, D.: Market Share: Mobile Devices,
Worldwide, 1Q12. Technical report, Garnter, Inc. (May 2012)

2. Nielsen: Two Thirds of New Mobile Buyers Now Opting For Smartphones. Tech-
nical report, The Nielsen Company (June 2012)

3. Bennett, J.: Android Smartphone Activations Reached 331 Million in Q1 2012 Re-
veals New Device Tracking Database from Signals and Systems Telecom. Technical
report, Signals and Systems Telecom (May 2012)

4. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (August 1986)

5. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux Random Number
Generator. In: IEEE Symposium on Security and Privacy (2006)

6. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random
number generator. In: ACM Conference on Computer and Communications Secu-
rity (2007)

142 K. Michaelis, C. Meyer, and J. Schwenk

7. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining Your Ps and
Qs: Detection of Widespread Weak Keys in Network Devices. In: Proceedings of
the 21st USENIX Security Symposium (August 2012)

8. Agyros, G., Kiayias, A.: I forgot your password: Randomness attacks against PHP
applications. In: Proceedings of the 21st USENIX Security Symposium. USENIX
Association (2012)

9. Kopf, G.: Non-Obvious Bugs by Example (2010),
http://gregorkopf.de/slides_berlinsides_2010.pdf

10. Meyer, C., Somorovsky, J.: Why seeding with System.currentTimeMillis() is
not a good idea (January 2012), http://armoredbarista.blogspot.de/2012/01/
why-seeding-with-systemcurrenttimemilli.html

11. Lenstra, A., Hughes, J., Augier, M., Bos, J., Kleinjung, T., Wachter, C.: Public
Keys. In: Advances in Cryptology CRYPTO 2012. LNCS. Springer, Heidelberg
(2012)

12. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Cryptanalytic Attacks on Pseudo-
random Number Generators. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372,
pp. 168–188. Springer, Heidelberg (1998)

13. Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: A Random Number Test
Suite. Technical report, Duke University (2012)

14. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S., Bassham III, L.E.: A Statistical
Test Suite for the Validation of Random Number Generators and Pseudo Random
Number Generators for Cryptographic Applications. Technical report, National
Institute of Standards and Technology (NIST) (April 2010)

15. Lee, E.H., Lee, J.H., Park, I.H., Cho, K.R.: Implementation of high-speed SHA-1
architecture. IEICE Electronics Express (2009)

16. Zoltak, B.: VMPC One-Way Function and Stream Cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004)

17. Google Inc.: javax.crypto — Android Developers (July 2012)
18. McDonald, C., Hawkes, P., Pieprzyk, J.: Differential Path for SHA-1 with com-

plexity O(2ˆ52). IACR Cryptology ePrint Archive (2009)
19. Wikipedia: Preimage attack — Wikipedia, The Free Encyclopedia (accessed Au-

gust 24, 2012)
20. Handschuh, H., Knudsen, L.R., Robshaw, M.: Analysis of SHA-1 in Encryption

Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer,
Heidelberg (2001)

21. Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M., Suzaki, T., Kawabata, T.: The Most
Efficient Distinguishing Attack on VMPC and RC4A (2005)

22. Maximov, A.: Two Linear Distinguishing Attacks on VMPC and RC4A and Weak-
ness of RC4 Family of Stream Ciphers (2007) (corrected)

23. Li, S., Hu, Y., Zhao, Y., Wang, Y.: Improved cryptanalysis of the vmpc stream
cipher. Journal of Computational Information Systems (2012)

24. Sverdlove, H., Brown, D., Cilley, J., Munro, K.: Orphan Android: Top Vulnerable
Smartphones 2011. Technical report, Bit9, Inc. (November 2011)

http://gregorkopf.de/slides_berlinsides_2010.pdf
http://armoredbarista.blogspot.de/2012/01/why-seeding-with-systemcurrenttimemilli.html
http://armoredbarista.blogspot.de/2012/01/why-seeding-with-systemcurrenttimemilli.html

Randomly Failed! 143

Appendix

Fig. 9. Distribution of 2-tuples from Apache Harmonys integrated seeding facility

(a) heavy (b) normal

Fig. 10. Distribution of 2-tuples from VMSecureRandom under heavy (a) and normal (b)
workload as implemented in GNU Classpath

Fig. 11. Distribution of 2-tuples from the entropy collector in OpenJDK

144 K. Michaelis, C. Meyer, and J. Schwenk

(a) slow (b) fast

Fig. 12. Distribution of 2-tuples from the ThreadedSeedGenerator in Bouncy Castle’s
lightweight crypto library for Java running on “slow” (a) and “fast” (b)

Efficient Vector Implementations of AES-Based

Designs: A Case Study and New Implemenations
for Grøstl�

Severin Holzer-Graf, Thomas Krinninger, Martin Pernull, Martin Schläffer1,
Peter Schwabe2, David Seywald, and Wolfgang Wieser

1 IAIK, Graz University of Technology, Austria
martin.schlaeffer@iaik.tugraz.at

2 Digital Security Group, Radboud University Nijmegen, The Netherlands
peter@cryptojedi.org

Abstract. In this paper we evaluate and improve different vector im-
plementation techniques of AES-based designs. We analyze how well the
T-table, bitsliced and bytesliced implementation techniques apply to the
SHA-3 finalist Grøstl. We present a number of new Grøstl implementa-
tions that improve upon many previous results. For example, our fastest
ARM NEON implementation of Grøstl is 40% faster than the previously
fastest ARM implementation. We present the first Intel AVX2 imple-
mentations of Grøstl, which require 40% less instructions than previous
implementations. Furthermore, we present ARM Cortex-M0 implemen-
tations of Grøstl that improve the speed by 55% or the memory require-
ments by 15%.

1 Introduction

Since the Advanced Encryption Standard (AES) was chosen by NIST in Octo-
ber 2000 [24], it has been used in innumerable applications. Apart from those
applications, the components of AES or its design principles are also used as
the basis for many new cryptographic algorithms. Especially the announcement
of Intel to add an AES instruction (AES-NI) to its future processors [21] has
caused an increasing amount of new AES-based designs. As a consequence, many
AES-based designs and a few more AES-inspired designs have been submitted
to the SHA-3 competition [25] initiated by NIST.

Building an AES-based design has several advantages. From a security point of
view, AES-based designs can benefit from proofs against a large class of attacks.

� The work presented in this paper was carried out while Peter Schwabe was employed
by Research Center for Information Technology Innovation, Academia Sinica, Tai-
wan. This work was funded in part by the National Science Council under Grant
100-2628-E-001-004-MY3, the European Commission through the ICT programme
under contract ICT-SEC-2009-5-258754 (TAMPRES), and the Austrian Science
Fund (FWF project P21936 and TRP 251-N23). Permanent ID of this document:
de28943b229dbbf9d523fba01c2b028f. Date: Nov. 19, 2012.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 145–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

146 S. Holzer-Graf et al.

Additionally, the design and security analysis of AES is kept particularly simple
to provide security assurance within a short amount of time. As a consequence,
the first single-key attack on 7 rounds of AES-128 [14] has been found before
the AES competition was finished and the number of rounds (of non-marginal
attacks) did not improve since then [13].

Aside from security analysis one of the most important criteria for the evalu-
ation of cryptographic algorithms is software performance. Various implementa-
tion techniques have been proposed for AES and AES-based designs. The perfor-
mance of AES-based designs and the best choice of implementation techniques
highly depends on the target microarchitecture. If AES-NI is available, a design
may be remarkably fast, while without AES-NI at can be quite slow. This is
especially true for AES-based hash functions which consist of a large state with
additional operations for mixing more than one AES state. This effect can be
observed for many AES-based designs submitted to the SHA-3 competition.

In this work we focus on the three main software implementation techniques
of AES-based designs: T-tables [12, Sect. 5.2], bitslicing [7] and byteslicing [1],
which are discussed in detail in Section 3. We apply all techniques to the AES-
based SHA-3 finalist Grøstl [16] and provide a number of new and improved
results. We focus on implementations using vector-instruction sets.

In Section 4 we propose the first 256-bit vector implementation of Grøstl us-
ing the Intel AVX2 instructions [11]. Since no processor using AVX2 is available,
we compare the number of instructions instead of performing a proper bench-
mark. The first AVX2 implementation is a bytesliced implementation of Grøstl-
512 which improves the number of instructions by 40% compared to the AVX
implementation. The second implementation uses the new AVX2 vpgatherqq

instructions which allows to perform parallel table lookups.
In Section 5, we present the first ARM NEON [3, Chapter A7] implemen-

tations of Grøstl by applying all three techniques of Section 3. We show that
the T-table and bitslicing approach result in equally fast implementations, while
byteslicing is slower. However, we expect that byteslicing will outperform the
other implementation techniques with the future AES instructions of ARMv8.

Finally, in Section 6 we show that vector implementations using byteslicing
can even be used efficiently in low-memory environments. We present 32-bit
bytesliced implementations of Grøstl which consume much less memory than
T-table implementations at almost the same speed.

We have submitted all software presented in this paper to eBASH [4] or
XBX [28] for public benchmarking and have put it into the public domain to
maximize reusability of our results.

2 Description of Grøstl

The hash function Grøstl [15] was designed as a candidate for the SHA-3 com-
petition [26]. For the final round of the competition, Grøstlwas tweaked in order
to increase its security margin. It is an iterated hash function with a compression
function built from two distinct permutations P and Q, which are based on the

Efficient Vector Implementations of AES-Based Designs 147

same principles as the AES round transformation. In the following, we describe
the components of the Grøstl hash function in more detail.

2.1 The Hash Function

Grøstl comes in two main variants, Grøstl-256 and Grøstl-512 which are used
for different hash-value sizes of n = 256 and n = 512 bits. The hash function first
pads the input message M and splits the message into blocks M1,M2, . . . ,Mt

of � bits with � = 512 for Grøstl-256, and � = 1024 for Grøstl-512. The mes-
sage blocks are processed via the compression function f(Hi−1,Mi) and output
transformation Ω(Ht). The size of the chaining value Hi is � bits as well.

H0 = IV

Hi = f(Hi−1,Mi) for 1 ≤ i ≤ t

h = Ω(Ht).

The compression function f is based on two �-bit permutations P and Q (some-
times denoted by P� and Q�) and is defined as follows:

f(Hi−1,Mi) = P (Hi−1 ⊕Mi)⊕Q(Mi)⊕Hi−1.

The output transformation Ω is applied to Ht to give the final hash value of size
n, where truncn(x) discards all but the least significant n bits of x:

Ω(Ht) = truncn(P (Ht)⊕Ht),

2.2 The Permutations

In each permutation, the four AES-like round transformations AddRoundConstant
(AC), SubBytes (SB), ShiftBytes (SH), andMixBytes (MB) are applied to the state
in the given order. The two permutations P and Q differ only the constants used
in AC and SH. Grøstl-256 has 10 rounds and the 512-bit state of permutation
P512 and Q512 is viewed as an 8× 8 matrix of bytes. For Grøstl-512, 14 rounds
are used and the 1024-bit state of the two permutations P1024 and Q1024 is
viewed as an 8× 16 matrix of bytes.

AddRoundConstant (AC) xors a round-dependent constant to one row of the
state. The constant and the row is different for P and Q. Additionally, a round-
independent constant 0xff is xored to every byte in Q. SubBytes (SB) applies
the AES S-box to each byte of the state and the definition of the S-box can be
found in [16]. ShiftBytes (SH) cyclically rotates the bytes of row r to the left by
σ[r] positions with different values for P and Q in Grøstl-256 and Grøstl-512.
The rotation values are as follows:

σ = {0, 1, 2, 3, 4, 5, 6, 7} for P512,

σ = {1, 3, 5, 7, 0, 2, 4, 6} for Q512,

σ = {0, 1, 2, 3, 4, 5, 6, 11} for P1024,

σ = {1, 3, 5, 11, 0, 2, 4, 6} for Q1024.

148 S. Holzer-Graf et al.

MixBytes (MB) is a linear diffusion layer, which multiplies each column A of
the state with a constant, circulant 8 × 8 matrix M by computing A ← M · A.
The multiplication is performed in the finite field GF (28) using the irreducible
polynomial x8 ⊕ x4 ⊕ x3 ⊕ x ⊕ 1 (0x11B). Since the multiplication by 2 can
be carried out very efficiently using a single shift operation and a conditional
xor, we will calculate all multiplications by combining multiplications by 2 and
additions (xor). Moreover, optimized formulas for computingMixBytes have been
published in [1]. Using these formulas, only 48 xors and 16 multiplications by 2
are needed to compute MixBytes:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

bi = ai + ai+1,

ai = bi + ai+6,

ai = ai + bi+2,

bi = bi + bi+3,

bi = 02 · bi,
bi = bi + ai+4,

bi = 02 · bi,
ai = bi+3 + ai+4.

3 Implementation Methods for AES-Based Designs

In this section we give a high-level overview on common implementation tech-
niques for AES-based designs using Grøstl-256 as an example. The main imple-
mentation techniques for AES-based designs are the T-table approach [12, Sect.
5.2], bitslicing [7], and byteslicing [1].

3.1 T-Table Approach

Daemen and Rijmen have presented a lookup-table-based approach for imple-
menting AES on 32-bit processors in [12, Sect. 5.2]. This approach is known
as the T-table approach and it can be generalized to other AES-based designs.
The idea is to combine the SubBytes, MixColumns, and ShiftRows operations into
table lookups. The size of the entries of the lookup tables matches the size of
the state columns, 32 bits for AES and 64 bits for Grøstl.

Since many current and future small-scale 32-bit processors also provide 64-
bit instructions (MMX, NEON), Grøstl can also be implemented efficiently on
these platforms using the T-table approach. Even the 32-bit ARMv6 instruction
set supports 64-bit loads which can be used for a T-table based implementation
of Grøstl as shown in [27].

In T-table implementations, each column of the Grøstl state of is stored in a
64-bit registers. The AddRoundConstant transformation is computed through 8
xors on 64-bit registers. The SubBytes, ShiftBytes, and MixBytes operations are

Efficient Vector Implementations of AES-Based Designs 149

computed through 8 table lookups from tables T0, . . . , T7 and 7 xors per column;
for example, for column 0:

b0 =T0(a00)⊕ T1(a11)⊕ T2(a22)⊕ T3(a33)⊕
T4(a44)⊕ T5(a55)⊕ T6(a66)⊕ T7(a77).

The values aij are bytes of the input state; the tables T0, . . . , T7 contain 8-to-
64-bit lookups of the S-box together with the 8 multipliers of MixBytes. For
example, for the first table T0 we get:

T0(x) = 02 · S(x) ‖ 07 · S(x) ‖ 05 · S(x) ‖ 03 · S(x) ‖
05 · S(x) ‖ 04 · S(x) ‖ 03 · S(x) ‖ 02 · S(x)

Extracting a single byte from a word can be implemented using a bit-shift and
a logical and. Then, the computation of one column consists of only 8 table
lookups, 8 xor (7 xor for MB, 1 xor for AC), 8 shift and 8 and instructions.
On some platforms, single bytes aij can be extracted from 64-bit column words
aj = [a00, a10, . . . , a70]

T at no cost. In this case, we can save (some of) the shift
and and instructions.

3.2 Bytesliced Implementation

Another option to implement AES-based designs is a byte-wise parallel compu-
tation of columns [1]. This works especially well for large states and on platforms
with large registers. In Grøstl, all round transformations except ShiftBytes and
AddRoundConstant apply exactly the same computation to each column of the
Grøstl state independently. Therefore, we can use a single-instruction-multiple-
data (SIMD) approach to compute these identical operations on more than one
column at the same time. If the state is stored in row ordering using w-bit
registers, w/8 columns can be computed in parallel.

A requirement for this approach to be efficient is that all round transforma-
tions of Grøstl can be parallelized using only a few w-bit SIMD instructions.
AddRoundConstant and MixBytes can be computed in parallel simply using basic
ALU instructions. For ShiftBytes we need a byte-shuffling instruction or some
mask-and-rotate instructions. The most difficult round transformation to paral-
lelize is the 8-bit table lookup of SubBytes. However, using the Intel AES New
Instructions extension (AES-NI) [21] or the vector-permute (vperm) approach
by Hamburg [19], parallel AES S-box table lookups can be performed efficiently.
Moreover, the fastest Grøstl implementation [4] is a bytesliced implementation
using AES-NI.

In a bytesliced implementation, we need to use a row-ordering of the Grøstl
state. However, the input bytes of the message are mapped to the Grøstl state
in column-ordering. The column-ordering is a benefit for T-table based imple-
mentations but a drawback for bytesliced implementations. To reduce the state-
transformation cost, the internal state is kept in row-ordering throughout the
whole computation. Then, we only need to transform each input message block

150 S. Holzer-Graf et al.

P Q

q0bit0:

r0 r0

q1bit1:

r1 r1

q2bit2:

r2 r2

q3bit3:

r3 r3

q4bit4:

r4 r4

q5bit5:

r5 r5

q6bit6:

r6 r6

q7bit7:

r7 r7

c0 c0c1 c1c2 c2c3 c3c4 c4c5 c5c6 c6c7 c7

Fig. 1. Data organization of the bitsliced state for Grøstl-256 in 128-bit NEON q

registers. Bits of equal rows (r0, . . . , r7) but different columns (c0, . . . , c7) are stored
within the same byte.

and the hash-function output at the very end (the IV can be stored already
in row-ordering). Transforming the input message from column-ordering to row-
ordering corresponds to transposing the state matrix of the input message block.

3.3 Bitsliced Implementation

Bitslicing is an implementation technique proposed by Biham to improve the
performance of DES [7]. Currently, the fastest software implementation of AES
(without AES-NI) uses bitslicing [23]. Therefore, bitslicing is also a promising
approach for other AES-based designs. Bitslicing works particularly well if the
same operations can be performed many times in parallel. In AES, this is the
case if multiple blocks are encrypted using a parallel mode of operation. Since
the hash function Grøstl has a large state with many independent columns,
bitslicing can be applied efficiently as well.

In general, bitslicing mimics hardware implementations in software. The data
is transposed and, for example, a 32-bit value is stored in 32 registers, one bit
per register. With this bitsliced representation of data we can simulate hardware
gates with the corresponding bit-logical instructions. To use all m bits of a
register, the same stream of operations is computed on m independent data
streams in parallel. Registers of width m are used as vector registers with m
1-bit entries.

The AES S-boxes are computed using their algebraic structure (inversion in
F2) as it is also done in efficient hardware implementations [8, 10]. With minor
modifications, the formulas underlying these hardware implementations are also
used for bitslicing. More specifically, Käsper and Schwabe use 128 xor/and/or in-
structions and 35 mov (register to register) instructions in [23]. The mov instruc-
tions are required because in the SSE instruction set the output of an instruction
has to overwrite one of the inputs. With 3-operand instructions (as provided by

Efficient Vector Implementations of AES-Based Designs 151

AVX and NEON) and 16 registers, the AES S-box can be implemented using
only 128 Boolean instructions. Although this is much slower than a table lookup
for a single AES S-box computation, the high degree of parallelism (128 indepen-
dent computations) often lets bitsliced implementations achieve higher speeds
than table lookups.

The AES implementation by Käsper and Schwabe needs to process 8 blocks
in parallel to achieve the required level of parallelism. In Grøstl-256 we can
compute all 128 AES S-boxes of P and Q in parallel without the need for multiple
blocks. However, ShiftBytes and MixBytes are more difficult to implement in this
case. Note that for the S-box, it does not matter in which order the bytes are
stored in registers. Therefore, we can choose a bitsliced state which fits the
operations ShiftBytes and MixBytes best. By storing the Grøstl-256 bitsliced
state as shown in Fig.1, we get an efficient implementation using 128-bit ARM
NEON instructions (see Sect. 5.2).

4 Implementing Grøstl Using AVX2

The Intel AVX2 instruction set is an extension of the AVX instruction set and
will be released by Intel for new processors in 2013 [22]. AVX2 provides a num-
ber of additions which can improve the efficiency of AES-based designs. AVX2
extends the functionality of integer-vector instructions to 256 bits. Furthermore,
new gather instructions have been added, which provide new possibilities to
implement parallel T-table lookups in AES-based designs.

Since no processors supporting AVX2 are available yet, all our AVX2 imple-
mentations have been tested using the Intel Software Development Emulator [20].
Because benchmarking of those implementations is not yet possible, we instead
compare the number of instructions. Using AVX2, we show how to reduce the
number of instructions for Grøstl by up to 40%, compared to previous AVX or
AES-NI implementations [1]. Note that a similar comparison has been made by
Gueron and Krasnov for their new AVX2 SHA-2 implementations using paral-
lelized message schedules [18].

4.1 Byteslicing Grøstl-512 Using AVX2 and AES-NI Instructions

Using 256-bit registers of AVX2, P and Q of Grøstl-512 can be computed com-
pletely in parallel, except for the aesenclast instruction. Note that using AES-
NI with SSE, P and Q have to be computed after each other. AVX2 also brings
another major improvement compared to AVX. Many AVX instructions used by
Grøstl-512 were only working on 128-bits (vaesenclast, vpshufb, vpcmpgtb,
vpaddb). Especially vpcmpgtb and vpaddb are used very often in the multipli-
cation by 2 of MixBytes. Hence, also many insertion and extraction instructions
were needed to process the upper 128 bits of a 256-bit register separately.

Additionally, we have replaced the floating-point AVX instructions (vxorps,
vxorpd) by their integer AVX2 instructions (vpxor). This avoids possible penal-
ties caused by switching between integer and floating point domains [11].

152 S. Holzer-Graf et al.

To summarize our implementation, AddRoundConstant and ShiftBytes both
can be fully parallelized and need only 8 instructions each. Note that vpshufb
treats both 128-bit lanes separately. However, when storing P and Q in separate
128-bit lanes, we avoid all lane-switching penalties. In SubBytes, we need to
use two 128-bit vaesenclast instructions for each row of the state. Together
with the necessary vinserti128 and vextracti128 instructions, SubBytes of
Grøstl-512 needs 32 instructions per round.

The most expensive round transformation is MixBytes. As shown in [1],
MixBytes can be implemented using 48 xors and 16 multiplications by 2 (MUL2).
Using the 256-bit vpblendvb instruction of AVX2, a single MUL2 computation
can be implemented using only three 256-bit instructions. Together with 16
mov/xor instructions to load, store, copy, or clear temporary values, we get
48+ 3 · 16+ 16 = 112 instructions for MixBytes. Note that other variants to cre-
ate the reduction mask in MUL2 are possible. For example, we may get a better
throughput using vpcmpgtb with vpand instead of vpblendvb once AVX2 is
available:

// ymm0 will be multiplied by 2

// ymm1 has to be all 0x1b

// ymm2 has to be all zero

// ymm3 will be lost

vpblendvb ymm3, ymm2, ymm1, ymm0

vpaddb ymm0, ymm0, ymm0

vpxor ymm0, ymm0, ymm3

// ymm0 will be multiplied by 2

// ymm1 has to be all 0x1b

// ymm2 has to be all zero

// ymm3 will be lost

vpcmpgtb ymm3, ymm2, ymm0

vpaddb ymm0, ymm0, ymm0

vandpd ymm3, ymm3, ymm1

vxorpd ymm0, ymm0, ymm3

Including an overhead of 5 instructions, we get a total of 8 + 8+ 32+ 112 = 165
instructions for one round of Grøstl-512. Note that previously published AVX
implementations need 271 instructions per round and the 128-bit AES-NI im-
plementation needs 338 instructions [1]. Hence, using our new AVX2 implemen-
tation of Grøstl-512 we are able to save 40% of the instructions. Furthermore,
using AVX2 instructions, we were also able to reduce the number of instructions
to transpose the input message block into bytesliced representation.

4.2 Parallel T-Table Lookups for Grøstl-256 Using VPGATHERQQ

The new AVX2 instruction vpgatherqq allows to load four independent 64-bit
values from memory into one 256-bit register. Using this instruction, we have
implemented a fourfold parallel T-table implementation of Grøstl-256.We store
the Grøstl-256 state column-wise and need two 256-bit registers for each of P
and Q.

To perform the i-th T-table lookup for SubBytes and MixBytes, we first need
a vpshufb instruction to extract the i-th byte of each 64-bit word. Note that
we also use vpshufb to clear the unused bytes. To perform the actual lookups,
vpgatherqq scales the extracted byte by a factor of 8 and adds the table address.
The scaling takes into account that we actually perform 8-to-64 bit lookups. The
table addresses are stored in 8 general-purpose registers.

Efficient Vector Implementations of AES-Based Designs 153

The vpgatherqq instruction uses a mask to determine for which 64-bit words
the lookup is performed. If the MSB of the corresponding 64-bit word is not set,
this word is left unchanged. However, vpgatherqq clears the mask after each
invocation and we have to restore the mask each time, e.g. using a vpcmpeqq

instruction. Additionally, all registers used by vpgatherqq have to be distinct.
Hence, we need 8 instructions for each of the 8 T-table lookups together with
xoring the results. Since we can save two initial xors, we get 62 instructions for
SubBytes and MixBytes per permutation and round. The code to compute the
lookup of table i of one round is given below:

// SubBytes+MixBytes (Table i)

// byte extraction

vpshufb tmp0, ymm0, [EXTR+i*256]

vpshufb tmp1, ymm1, [EXTR+i*256]

// restore gather mask

vpcmpeqq mask, mask, mask

vpcmpeqq mask, mask, mask

// 4 parallel T-table lookups

// address of table i is in ri

vpgatherqq tmp2, [8*tmp0+ri], mask

vpgatherqq tmp3, [8*tmp1+ri], mask

// xor table lookup results

vpxor ymm2, ymm2, tmp2

vpxor ymm3, ymm3, tmp3

If table lookups can be performed in parallel, ShiftBytes together with the byte
extractions can become the most costly operations in T-table implementations.
Since most processors do not offer byte extraction instructions, a couple of ALU
instructions are needed. In the case of AVX2, we can us a number of byte shuffles
to compute ShiftBytes and to extract the bytes needed for the lookup. Since the
vpshufb instruction can not move bytes across 128-bit lanes, we need additional
vpermq instructions to cross lanes. To swap bytes between the two 256-bit regis-
ters storing the state, we use vpblendd which merges two vectors at 32-bit word
granularity. To compute ShiftBytes, we need 8 instructions per permutation and
round. The instructions for ShiftBytes are given below:

// pre-shuffle

vpshufb ymm0, ymm0, [SHIFT_P0]

vpshufb ymm1, ymm1, [SHIFT_P0]

// cross lanes

vpermq ymm2, ymm0, 0xd8

vpermq ymm3, ymm1, 0xd8

// combine registers

vpblendd ymm0, ymm2, ymm3, 0xaa

vpblendd ymm1, ymm3, ymm2, 0xaa

// final shuffle

vpshufb ymm0, ymm0, [SHIFT_P1]

vpshufb ymm1, ymm1, [SHIFT_P1]

Together with two instructions for AddRoundConstant we get in total, (2 +
8 + 62) · 2 = 144 instructions per round of Grøstl-256. The currently fastest
Grøstl-256 implementation uses AES-NI and needs 169 instructions per round.
However, since it is still unknown how many cycles the vpgatherqq instruction
will need to compute 4 lookups, we cannot conjecture any speed improvement.

5 ARM NEON Implementations of Grøstl

In this section, we present three new Grøstl implementations using ARM NEON
instructions. We are focusing on the ARM Cortex A8 processor. The NEON vec-
tor instruction set is available also on other processors and the implementations

154 S. Holzer-Graf et al.

Table 1. Benchmark results of our NEON Grøstl implementations in cycles/byte for
long messages. We used the SUPERCOP benchmarking suite [5] and performed the
measurements using an ARM Cortex-A8 (Hercules eCafe).

hash function T-table 5.1 bitsliced 5.2 vperm 5.3 arm32 [29] arm11 [27]

Grøstl-256 45.8 48.5 92.0 76.9 99.4

Grøstl-512 67.0 - - 103.2 -

presented here will work on them as well. However, the performance may be
different from what we describe here. Each implementation corresponds to one
of the implementation techniques described in Section 3. With the T-tables and
the bitslicing approach, we get almost equally fast implementations running at
around 46 cycles/byte. The bytesliced implementation is slower since we need to
use the vperm approach to compute the AES S-box. However, once ARMv8 in-
structions with AES extensions are available [17], the bytesliced implementation
will most likely be the fastest again. Detailed benchmarking results are given in
Table 1.

The ARM NEON unit is a general-purpose SIMD (Single Instruction, Multiple
Data) engine, which has its own registers and instruction set. It has 16 128-bit
quadword registers (q0-q15) which can also be viewed (aliased) as 32 64-bit
doubleword registers (d0-d31).

NEON on the Cortex A8 has limited dual issue capabilities. Instructions are
divided between load/store/permute instructions and data processing (ALU)
instructions. A data processing instruction can be dual issued with a load, store,
or permute instruction. For multi-cycle instructions dual issue is only performed
at the first and last cycle (see [2, Sect. 16.5.3]).

The ARMv7 core has 16 user-accessible general-purpose registers r0-r15, and
one register which holds the current program status (CPSR). Register r15 con-
tains the program counter, r14 the link register, and r13 the stack pointer. In
ARM mode, the link register and stack pointer can also be used as a general pur-
pose register. One important property of the ARM processor is the built-in barrel
shifter, which can shift and rotate the last operand of an ALU instruction at no
cost. The ARM processor consists of two ALU units and one load/store unit.

Since ARM and NEON have separate instruction queues, ARM instructions
also can be dual issued with NEON instructions. However, several restrictions
apply. First, at most 2 instructions can be executed per cycle. Second, at most
one load/store/permute can be performed per cycle. Third, moving data from
NEON to ARM causes a penalty of at least 20 cycles, since the NEON unit lags
behind the ARM unit.

5.1 T-Table Implementation of Grøstl Using NEON

Using NEON, one column of the Grøstl state can be stored in a 64-bit dou-
bleword NEON register. This reduces the number of xors compared to a 32-bit

Efficient Vector Implementations of AES-Based Designs 155

/* ROW 1 (SH+SB+MB) */ /* increase T-table address */

/* load state bytes */ /* compute lookup address */

/* T-table lookups */ /* xor results */

ldrb r0, [%[P], #9]; add %[T], %[T], #2048;

ldrb r1, [%[P], #17];

ldrb r2, [%[P], #25];

ldrb r3, [%[P], #33]; add r0, %[T], r0, asl #3;

ldrb r4, [%[P], #41]; add r1, %[T], r1, asl #3;

ldrb r5, [%[P], #49]; add r2, %[T], r2, asl #3;

ldrb r6, [%[P], #57]; add r3, %[T], r3, asl #3;

ldrb r7, [%[P], #1]; add r4, %[T], r4, asl #3;

vld1.64 d8, [r0, :64]; add r5, %[T], r5, asl #3;

vld1.64 d9, [r1, :64]; add r6, %[T], r6, asl #3;

vld1.64 d10, [r2, :64]; add r7, %[T], r7, asl #3;

vld1.64 d11, [r3, :64];

vld1.64 d12, [r4, :64]; veor q0, q0, q4;

vld1.64 d13, [r5, :64]; veor q1, q1, q5;

vld1.64 d14, [r6, :64]; veor q2, q2, q6;

vld1.64 d15, [r7, :64]; veor q3, q3, q7;

Listing 1. The computation of row 1 of Grøstl-256 with ARM NEON using the T-
table approach. Instructions are issued row-by-row. The address of the permutation
P is stored in P, and the address of the current table is stored in T. The initial add
instruction computes the (new) table address for row 1.

ARM implementation. Unfortunately, the indices used for the table lookups need
to be stored in ARM registers. Hence, we compute one Grøstl round as follows:
We load bytes of the state from memory into ARM registers and compute the ta-
ble lookup address using ARM instructions. The table lookup itself and the xors
are performed using NEON instructions. Finally, we store the result in memory
using NEON stores.

Note that the 20-cycle penalty also occurs when transferring data from NEON
to ARM through memory. We avoid this penalty by interleaving the computation
of one round of P with a round of Q, since no data dependency between the
two permutations exist. Hence, the ARM unit can continue to work on Q until
the NEON unit is finished with computing and storing the result of one P
round. Furthermore, we interleave the computation of 8 different columns of one
permutation, to hide instruction latencies.

To avoid expensive byte extractions, we load single bytes of the state into the
ARM registers using ldrb. We load bytes and compute the lookups row-by-row.
This has the additional advantage, that we can use the same table address for 8
consecutive lookups. The address for the lookup is computed using add including
a barrel shift to account for 8-to-64 bit table lookups. The actual T-table lookup
is performed using vld1.64. We reduce the number of xors by using 128-bit
veor instructions. The computation of one example row is given in Listing 1.

Equivalent code blocks are repeated 8 times for each row and round of P and
Q. For AddRoundConstant we need four 128-bit loads and four veor instructions.

156 S. Holzer-Graf et al.

Additionally, we need four 128-bit stores at the end of each round. To summarize,
the load/store instructions will be the bottleneck and we get a lower bound of
(16 · 8+ 4+ 4) · 10 · 2/64 = 42.5 cycles/byte. Using our new implementation, we
get 45.8 cycles/byte on a Cortex-A8 processor.

5.2 Bitsliced Implementation of Grøstl-256 Using NEON

With the representation of the bitsliced state described in Section 3.3 we need 8
loads and 8 xors for AddRoundConstant and 128 ALU instructions for SubBytes [6].
The ShiftBytes operation rotates octets of bits (of a row) by different distances.
To avoid expensive masking operations, it is most efficient to store these 8 bits
within one byte. To rotate bits within each byte, we make use of the variable shift
instruction vshl.u8. Note that the shift constants for shifting bits in bitsliced
representation are the same as for bytes in standard representation.

The multiplication by 2 of MixBytes is rather cheap in bitsliced implementa-
tions and consists of only 3 xors [23]. What remains is to xor different rows of
the non-bitsliced state to each other. Since we store bits of rows within bytes, we
need to shuffle bytes of q-registers such that the corresponding bytes overlap and
can get xored. Since crossing 64-bit lanes causes additional penalties, we store
P in the lower and Q in the upper half of the 128-bit registers. Furthermore, we
store the rows such that we can overlap corresponding bytes by rotating 8-byte
blocks using the vext.8 instruction. For example, we compute bi = ai + ai+1 of
bit 0 as follows:

vext.8 d24, d4, d4, #1;

vext.8 d25, d5, d5, #1;

veor q10, q2, q12;

Note that we can dual issue vext.8 instructions with ALU instructions. In
our implementation, we are able to interleave all vext.8 instructions with the
veor instructions of MixBytes, as well as the vshl.u8 and vorr instructions of
ShiftBytes. A sample excerpt of the implementation is given in Listing 2.

In the bitsliced representation of Grøstl-256, we have 128 ALU instructions
for SubBytes, followed by 96 vext.8 instructions which are interleaved with the
ALU instructions of ShiftBytes and MixBytes. Hence, in the first part of one
round, ALU instructions are the bottleneck, while in the second part, it is load,
store, and permute instructions. Together with 8 loads and 8 veor required for
the AddRoundConstant operation (interleaved), we get a lower bound of (8 +
128+ 96) · 10/64 = 36.25 cycles/byte. In reality, our benchmark resulted in 48.5
cycles/byte, which is still about the same speed as the T-table implementation.
We are continuing to investigate the reasons for the difference between the lower
bound and our actual performance.

5.3 Bytesliced Vperm Implementation of Grøstl-256

The third option to implement Grøstl using NEON is a bytesliced implementa-
tion using vperm to compute the SubBytes transformation. On x86, the vperm

Efficient Vector Implementations of AES-Based Designs 157

vext.8 d24, d4, d4,#1;

vext.8 d25, d5, d5,#1;

vext.8 d26, d6, d6,#1; vshl.u8 q6, q14, q4; # bit6: shift left

vext.8 d27, d7, d7,#1; veor q10, q2, q12; # b2_i = a2_i + a2_{i+1}

vext.8 d24, d4, d4,#6;

vext.8 d25, d5, d5,#6; veor q11, q3, q13; # b3_i = a3_i + a3_{i+1}

vext.8 d26, d6, d6,#6; vshl.u8 q1, q9, q4; # bit1: shift left

vext.8 d27, d7, d7,#6; veor q2, q10, q12; # a2_i = b2_i + a2_{i+6}

vext.8 d24,d20,d20,#2;

vext.8 d25,d21,d21,#2; veor q3, q11, q13; # a3_i = b3_i + a3_{i+6}

vext.8 d26,d22,d22,#2; vshl.u8 q14, q14, q5; # bit6: shift right

vext.8 d27,d23,d23,#2; veor q2, q2, q12; # a2_i = a2_i + b2_{i+2}

vext.8 d24,d20,d20,#3;

vext.8 d25,d21,d21,#3; veor q3, q3, q13; # a3_i = a3_i + b3_{i+2}

vext.8 d26,d22,d22,#3; vshl.u8 q9, q9, q5; # bit1: shift right

vext.8 d27,d23,d23,#3; veor q10, q10, q12; # b2_i = b2_i + b2_{i+3}

vext.8 d4, d4, d4,#4;

vext.8 d5, d5, d5,#4; veor q11, q11, q13; # b3_i = b3_i + b3_{i+3}

vext.8 d6, d6, d6,#4; vorr q6, q6, q14; # bit6: combine SHL+SHR

vext.8 d7, d7, d7,#4; vorr q1, q1, q9; # bit1: combine SHL+SHR

Listing 2. Bitsliced implementation of Grøstl-256 using ARM NEON

implementation has a similar speed as the T-table implementation but using
NEON, vector-permute or byte-shuffle instructions are more expensive.

In vperm implementations, each byte is split into nibbles which are then used
as 4-bit indices to several 16-byte lookup tables. Four lookup tables are needed
to compute the SubBytes transformation. Using the vperm approach, the S-box
result can be multiplied by any factor without additional cost. This has been
used by all previous vperm implementations of Grøstl [1, 9]. However, if all
multipliers are computed in advance, many temporary results are needed and
also the optimized MixBytes formulas cannot be used. The computation of one
row of SubBytes is shown in the listing below:

vand q2, q0, q8

vshr.u8 q1, q0, #4

veor q0, q2, q1

vtbl.8 d6, {d24-d25}, d2

vtbl.8 d7, {d24-d25}, d3

vtbl.8 d8, {d26-d27}, d4

vtbl.8 d9, {d26-d27}, d5

veor q3, q3, q4

vtbl.8 d4, {d24-d25}, d0

vtbl.8 d5, {d24-d25}, d1

veor q2, q2, q4

vtbl.8 d6, {d24-d25}, d4

vtbl.8 d7, {d24-d25}, d5

veor q3, q3, q1

vtbl.8 d8, {d24-d25}, d6

vtbl.8 d9, {d24-d25}, d7

veor q4, q4, q0

vtbl.8 d0, {d28-d29}, d6

vtbl.8 d1, {d28-d29}, d7

vtbl.8 d2, {d30-d31}, d8

vtbl.8 d3, {d30-d31}, d9

veor q0, q1, q0

Note that we need two vtbl.8 to shuffle 16 bytes and each instruction costs 2
cycles since we shuffle across 64-bit lanes. Hence, 16 AES S-box lookups need 22

158 S. Holzer-Graf et al.

instructions and we get a lower bound of 28 cycles (14 vtbl.8 instructions with
2 cycles each). For the multplication by 2 (MUL2) we obtain 7 instructions and
a lower bound of 8 cycles as follows:

// MUL2

vand q1, q0, q8

vshr.u8 q0, q0, #4

vtbl.8 d2, {d20-d21}, d2

vtbl.8 d3, {d20-d21}, d3

vtbl.8 d0, {d22-d23}, d0

vtbl.8 d1, {d22-d23}, d1

veor q0, q0, q1

AddRoundConstant needs 8 veor instructions and for ShiftBytes we can use 14
vext instructions to rotate bytes within 64-bit lanes. Additionally we have 19
load and stores of constants and temporary values. Using the optimized MixBytes
formulas with 48 veor and 16 MUL2, we get a vperm NEON implementation
for Grøstl-256 running at 92 cycles/byte.

6 Low-Memory Vector Implementation of Grøstl

On 32-bit platforms, the straight-forward way to implement Grøstl or other
AES-based designs is the T-table approach. However, this method is not very
suitable in low-memory environments since tables of a few kilobytes are needed.
In this case, a bytesliced implementation can be the better choice. If the cache is
small, it may even be faster than a T-table implementation. In this section, we
give two short examples of bytesliced implementations using very small vectors.

6.1 32-Bit Bytesliced Implementations of Grøstl-256 for Cortex-M0

Since the ARM Cortex-M0 processor has only a small cache, memory access
is rather expensive. Therefore, it turned out to be more efficient to compute
MixBytes using a bytesliced implementation instead of using precomputed T-
tables. In a 32-bit bytesliced implementation, we can compute 4 columns in
parallel. Only for the SubBytes layer we need to extract bytes and perform single
S-box lookups using a small table. Since the Cortex-M0 has only 8 registers we
need to store the state in memory and process only a small fraction of the state
at once.

However, load and store instructions on the Cortex-M0 are more expensive
than ALU instructions. Therefore, we try to keep values in registers and perform
as many computations on them as possible. The constants for AddRoundConstant
are computed instead of storing them in memory. To compute the SubBytes layer,
we load 32-bit values of the state into registers and extract single bytes using
ALU instructions to perform the AES S-box lookup. For ShiftBytes we load two
32-bit values containing one row of the state and rotate and swap the values
inside registers.

For MixBytes we use the optimized formulas with a minimal amount of 48 xor
operations. Due to the small number of registers, we need a rather high number
of temporary variables, in-register mov instructions and memory loads. Note that
on the ARM Cortex-M0 platform, push and pop need only N +1 cycles to push

Efficient Vector Implementations of AES-Based Designs 159

Table 2. Benchmark results of the low-memory 32-bit vector implementation of
Grøstl-256 on an ARM Cortex-M0 processor. We have measured the speed in cy-
cles/byte for long messages and the memory requirements in bytes. The evaluation
using 4 ·RAM+ROM has been proposed by XBX [28]. All implementations have been
submitted to XBX.

speed RAM ROM 4 ·RAM+ROM
[cycles/byte] [Bytes] [Bytes] [Bytes]

bytesliced (fast) 469 344 1948 3324
bytesliced (small) 801 304 1464 2680
T-table (2kB) 406 704 6952 9768
T-table (8kB) 383 508 12630 14662

sphlib 856 792 15184 18352
8bit-c 1443 632 2796 5324
armcryptolib 17496 400 1260 2860

or pop N registers to or from the stack, compared to 2 ·N instructions for loads
and stores. By computing blocks of 8 32-bit values and using push and pop, we
can significantly reduce the number of cycles needed to store temporary values.

Furthermore, we have implemented the multiplication by 2 completely within
memory. We use an MSB mask 0x80808080 to generate the value which is condi-
tionally xored to the bits determined by the irreducible polynomial 0x11b. This
method is similar to the multiplication by 2 used in the bitsliced implementation.
The following listing shows the corresponding Thumb assembly code:

// MUL2

// r5: input, output

// r6: msbmask

// r1,r2: temporary

movs r1, r0

ands r1, r6

mvns r2, r6

ands r0, r2

lsls r0, #1

lsrs r1, #7

lsls r2, r1, #1

orrs r1, r2

lsls r2, r1, #3

orrs r1, r2

eors r0, r1

6.2 Results

We have implemented a fast and a small Thumb 32-bit bytesliced implementation
for the Cortex-M0. The main difference is the use of macros and loop unrolling to
speed up the computation at the cost of more memory. The results are given in
Table 2. Additionally, we have implemented improved T-table implementations
using 2kB or 8kB tables. We compare our results with previously published T-
table implementations of Grøstl-256. The results show, that in low-memory
environments, the bytesliced implementation consumes much less memory at
only slightly decreased speed.

7 Conclusions

In this work we have analyzed three different implementation techniques for AES-
based designs and presented various new and improved vector implementations of

160 S. Holzer-Graf et al.

the SHA-3 finalist Grøstl. Depending on the target platform and the available in-
structions, a different implementation technique may be the fastest. For example,
in the case of ARM NEON implementations we currently get the best result using
the T-table approach, while the lower bound for the bitsliced implementation is
better. Furthermore, once AES instructions of ARMv8will be available, the bytes-
liced implementation technique will most likely outperform the others. The case is
similar for many other platforms. We hope that our work will help implementers,
but also designers of newAES-based cryptographic primitives to find the right bal-
ance of implementation characteristics.

References

1. Aoki, K., Roland, G., Sasaki, Y., Schläffer, M.: Byte Slicing Grøstl – Optimized In-
tel AES-NI and 8-bit Implementations of the SHA-3 Finalist Grøstl. In: Lopez, J.,
Samarati, P. (eds.) Proceedings of SECRYPT 2011, pp. 124–133. SciTePress (2011)

2. ARM Limited: Cortex-a8 technical reference manual, revision r3p2 (2010),
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/

index.html

3. ARM Limited: NEON (March 2011), http://www.arm.com/products/processors/
technologies/neon.php

4. Bernstein, D.J., Lange, T.: eBASH: ECRYPT Benchmarking of All Submitted
Hashes (January 2011), http://bench.cr.yp.to/ebash.html

5. Bernstein, D.J., Lange, T.: SUPERCOP (2012),
http://bench.cr.yp.to/supercop.html, (accessed September 9, 2012)

6. Bernstein, D.J., Schwabe, P.: NEON crypto (2012),
http://cryptojedi.org/papers/#neoncrypto

7. Biham, E.: A Fast New DES Implementation in Software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997),
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/

CS/CS0891.pdf

8. Boyar, J., Peralta, R.: A New Combinational Logic Minimization Technique with
Applications to Cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010)

9. Çalik, Ç.: Multi-stream and Constant-time SHA-3 Implementations. NIST hash
function mailing list (December 2010),
http://www.metu.edu.tr/~ccalik/software.html#sha3

10. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

11. Corp, I.: Intel advanced vector extensions programming reference (2011),
http://software.intel.com/file/36945

12. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. NIST AES Algorithm Submission
(September 1999),
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

13. Derbez, P., Fouque, P.A., Jean, J.: Improved Key Recovery Attacks on Reduced-
Round AES. In: CRYPTO Rump Session (2012)

14. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.L.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/index.html
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://bench.cr.yp.to/ebash.html
http://bench.cr.yp.to/supercop.html
http://cryptojedi.org/papers/#neoncrypto
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://www.metu.edu.tr/~ccalik/software.html#sha3
http://software.intel.com/file/36945
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

Efficient Vector Implementations of AES-Based Designs 161

15. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008), http://www.groestl.info (retrieved July 4, 2010)

16. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(Round 3) (2011), http://www.groestl.info (November 25, 2011)

17. Grisenthwaite, R.: Armv8 technology preview (2011),
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf

18. Gueron, S., Krasnov, V.: Simultaneous hashing of multiple messages. Cryptology
ePrint Archive, Report 2012/371 (2012), http://eprint.iacr.org/2012/371

19. Hamburg, M.: Accelerating AES with Vector Permute Instructions. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 18–32. Springer, Heidelberg
(2009), http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

20. Intel: Intel software development emulator (2012), http://software.intel.com/
en-us/articles/intel-software-development-emulator/

21. Intel Corporation: Intel Advanced Encryption Standard Instructions (AES-NI)
(March 2011), http://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-instructions-aes-ni/

22. Intel (Mark Buxton): Haswell New Instruction Descriptions (June 2011),
http://software.intel.com/en-us/blogs/2011/06/13/

haswell-new-instruction-descriptions-now-available/

23. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Hei-
delberg (2009)

24. National Institute of Standards and Technology: FIPS PUB 197, Advanced En-
cryption Standard (AES). Federal Information Processing Standards Publication
197, U.S. Department of Commerce (November 2001)

25. National Institute of Standards and Technology: Cryptographic Hash Project
(2007), http://www.nist.gov/hash-competition.

26. NIST: Announcing request for candidate algorithm nominations for a new cryp-
tographic hash algorithm (SHA-3) family. Federal Register 72(212), 62212–62220
(2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

27. Schwabe, P., Yang, B.-Y., Yang, S.-Y.: SHA-3 on ARM11 Processors. In:
Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp.
324–341. Springer, Heidelberg (2012), http://cryptojedi.org/papers/#sha3arm

28. Wenzel-Benner, C., Gräf, J.: XBX: eXternal Benchmarking eXtension for the SU-
PERCOP Crypto Benchmarking Framework (2012),
https://xbx.das-labor.org/

29. Wieser, W.: Optimization of Grøstl for 32-bit ARM Processors. Bachelor’s thesis,
Graz University of Technology, Austria (2011)

http://www.groestl.info
http://www.groestl.info
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf
http://eprint.iacr.org/2012/371
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://software.intel.com/en-us/articles/intel-software-development-emulator/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://www.nist.gov/hash-competition
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://cryptojedi.org/papers/#sha3arm
https://xbx.das-labor.org/

Collisions for the WIDEA-8 Compression

Function

Florian Mendel1, Vincent Rijmen2, Deniz Toz2, and Kerem Varıcı2

1 Graz University of Technology, IAIK, Austria
2 KU Leuven, ESAT/COSIC and iMinds, Belgium

Abstract. WIDEA is a family of block ciphers inspired by the IDEA
block cipher. The design uses n-parallel instances of IDEA with an im-
proved key schedule to obtain block ciphers with larger block sizes. More-
over, the given design is suggested as the compression function for Davies-
Meyer mode. In this paper, we discuss the security of the block cipher
when used as a compression function. Inspired by the weak key attacks
on IDEA, we take the advantage of slow diffusion mechanism of the key
schedule and present free-start collisions for WIDEA-8 which is the spec-
ified version by designers. Our results are practical and we are able to
obtain free-start collisions with a complexity of 213.53 .

Keywords: hash functions, cryptanalysis, WIDEA-8.

1 Introduction

Block ciphers are key components of cryptography. In the last two decades, par-
allel to the improvement in the technology, algorithms have evolved and more
efficient and secure designs have been proposed. However, some algorithms man-
aged to survive despite the extensive cryptanalysis. The block cipher IDEA [20],
designed in 1990 by Lai and Massey, is a nice example of such an algorithm.
There were various attacks on reduced round version of IDEA [4–7, 10, 13, 17],
but there was no known attack for full IDEA except the discovered weak key
classes [9,11,16]. Recently, in EUROCRYPT’12, an attack which is better than
exhaustive search with a factor of four was presented [19] for the full number of
rounds.

WIDEA-n [18] is a family of block ciphers which aims to extend the block
size of IDEA from 64-bit to n × 64-bit by improving the performance results.
In addition, the key schedule of IDEA is patched to make the design more
secure against existing attacks and a non-linear shift register is used rather than
rotations in the subkey generation.

Related Work. To the best of our knowledge, no external analysis of WIDEA-
n has been published so far. But as a related work, security of the single-length
and double-length hashing modes by using the IDEA as compression function is
analyzed in [22]. The main idea of the analysis is to use the weak keys defined

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 162–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Collisions for the WIDEA-8 Compression Function 163

previously in [11] as an iterative characteristic for the compression function.
Free-start collisions and semi-free-start collisions are obtained for the various
schemes with practical complexity.

Our Contribution. In this paper, we study the security of WIDEA-n block
cipher when it is used as a compression function in Davies-Meyer mode. We
first use an approach similar to the one described above. However, due to the
changes in key schedule, we only obtain free-start collisions up to seven rounds.
Then, we modify the attack according to the new key schedule. We find new
iterative characteristics with high probabilities such that the basic attack strat-
egy is still applicable. At the end, we get free-start collisions for the full (8.5
round) WIDEA-8. Furthermore, we show that two free-start collisions can be
combined to get a second order differential collision. These attacks are based on
the utilization of weak keys and our results are given in Table 1.

Table 1. Results for WIDEA-8

target rounds time attack type sect.

comp. function 7 1 free-start collision §4.2
comp. function 8.5 (full) 1 free-start near-collision §4.3
comp. function 8.5 (full) 213.53 free-start collision §4.3

Outline. This paper is organized as follows. In Section 2, we give a brief de-
scription of the WIDEA-n block cipher. In Section 3, we give an overview of the
weak keys and describe the previous attacks on IDEA. Then, we present our ob-
servations and describe our attack procedure in Section 4. Finally, we conclude
and summarize our results in Section 5.

2 Description of WIDEA

WIDEA-n [18] is a family of block ciphers, designed by Junod and Macchetti,
presented at FSE 2009. The design uses n parallel applications of the IDEA [20]
round function, strengthened with a mixing layer based on an MDS matrix.

In this paper, we focus on the version with n = 8 since it is introduced in
the original paper with full specification. WIDEA-8 accepts a 512-bit plaintext
X = X0||X1||X2||X3 and a 1024-bit user key K which can be seen as an array of
eight 128-bit words as inputs, and is composed of 8.5 rounds. Throughout this
paper we will use the following notation.

" Modular multiplication in Z∗
216+1

� Modular addition in Z216

⊕ XOR
≪ n left rotation of n positions
X(i) The input of the i-th round

164 F. Mendel et al.

Z0,1 Z1,1 Z2,1 Z3,1

Z0,n Z1,n Z2,n Z3,n

x
(i)
0,1 x

(i)
1,1 x

(i)
2,1 x

(i)
3,1

x
(i)
0,n x

(i)
1,n x

(i)
2,n x

(i)
3,n

x
(i+1)
2,1 x

(i+1)
3,1

x
(i+1)
0,n x

(i+1)
1,n x

(i+1)
2,n x

(i+1)
3,n

MA-Box

Z4,1

Z5,1

Z4,n

Z5,n

M
DS

Fig. 1. The round function for WIDEA

LetX(i) = X
(i)
0 ||X(i)

1 ||X(i)
2 ||X(i)

3 withX
(i)
j = x

(i)
j,1||x

(i)
j,2|| . . . ||x

(i)
j,n and x

(i)
j,k ∈ Z216 .

Then, the round function of WIDEA-8 is given in Figure 1.
In the design paper, WIDEA-8 is proposed as the compression function of

Davies-Meyer mode [12] and the software performance is as good as the SHA-2
family [1] and the SHA-3 finalists [2, 3, 14, 15, 23].

2.1 Key Schedule

In the IDEA block cipher, the subkeys are generated by rotating the master key
which causes some weaknesses in the design. Therefore, in the key schedule of
WIDEA a non-linear feedback shift register is used to generate the subkeys. Let
Ki, 0 ≤ i ≤ 7 be the master key; Ci, 0 ≤ i ≤ 6 be the chosen constants and
Zi, 0 ≤ i ≤ 51 denote the subkeys that are used in the 8.5 rounds of WIDEA-n.
Then, the key schedule is given as follows:

Zi = Ki 0 ≤ i ≤ 7

Zi = ((((Zi−1 ⊕ Zi−8)
16
� Zi−5)

16
≪ 5) ≪ 24)⊕ C i

8−1 8 ≤ i ≤ 51, 8|i

Zi = ((((Zi−1 ⊕ Zi−8)
16

� Zi−5)
16
≪ 5) ≪ 24) 8 ≤ i ≤ 51, 8 � i

Collisions for the WIDEA-8 Compression Function 165

Here, each subkey Zi has a size of n × 16 bits and it can be split into the n
16-bit slices (i.e., Zi = zi,1, . . . , zi,n). Note that rotation by 5 bit positions is
independently carried out on each slice zi,j for 1 ≤ j ≤ n and rotation by
24 bit positions is carried out globally for Zi. For more detail, we refer to the
specification of WIDEA [18].

3 Weak Keys for IDEA

If a key results in nonrandom behavior of the cipher it is called a weak key. For
most of the ciphers, the weak keys are only a small fraction of the possible key
space and hence the attacker tries to find the large set of weak classes to mount
an attack. However, when a hash function is constructed from a block cipher,
as in Davies-Meyer construction, the message takes the role of the key and the
attacker has full control over it. Note that there exists various analysis on the
weak keys for IDEA [9,11,16]. The ones related with our analysis are described
below.

3.1 Weak Key Classes

Daemen et al. studied the classes of weak keys yielding characteristics with
probability one in [11]. The nonlinear operations in the round function of IDEA
are the modulo addition in Z216 and the modular multiplication in Z∗

216+1 which
provide good diffusion. Therefore, the basic idea is using a pair of inputs that
differ only in the most significant bit (for each 16-bit word) and finding keys that
will preserve this difference after modular addition and modular multiplication.
To be more precise, let Δ = 0x8000, if the key value entering the modular
operation, say Zi, equals to ±1 in Z216+1 then the difference after the modular
operation again equals to Δ. This observation puts conditions on the subkey
values used in the multiplication operation. But the rest of the subkeys can be
chosen freely. Using this idea, the authors presented all possible characteristics
for the round function of the IDEA block cipher with the conditions on the
corresponding subkeys resulting in weak key classes of size up to 235 out of 2128.

3.2 Application to Hashing Modes

Recently, Wei et al. studied the security of the IDEA block cipher when it is
used in various single-length or double-length hashing modes [22]. They were
able to generate free-start collisions, semi-free-start collisions, pseudo-preimages
or even hash collisions in practical complexity for most of these modes. Their
attacks are based on the weak key classes mentioned above.

The simplest collision attack in the paper uses the null key (all zeros) for
the encryption and each 16-bit plaintext word has the difference (Δ,Δ,Δ,Δ).
As stated in [11], these differences will behave linearly and lead to the same
difference in the ciphertext with probability one. This difference is then canceled
with the feed-forward operation resulting in a collision for the compression or
hash function depending on the hashing mode.

166 F. Mendel et al.

4 Collision Attack on WIDEA-8

In this section, we study the security of the WIDEA-8 block cipher when it is
used in Davies-Meyer construction. We first describe our basic attack strategy
and show how the attacks on IDEA in hashing mode can be modified to attack
WIDEA-8. We then present our results and give sample collisions.

4.1 Basic Attack Strategy

Although the round function of the WIDEA-8 block cipher is more complex than
that of the IDEA block cipher due to the MDS operation, the previous attack
strategy is still applicable if one is able to find an iterative characteristic that
holds with high probability.

Observation 1. The parallel instances of IDEA are only connected by the MDS
matrix in the MA-box and hence if we can find a characteristic for one slice where
the MA-box (see Figure 1) is never active, the attack is reduced to attacking only
one slice instead of all eight.

Based on this observation, if we have the input difference (Δ,Δ,Δ,Δ) in one of
the slices, then these differences in the 16-bit words cancel each other before the
MDS operation and the input difference does not affect the other slices. As a
result, we are able to obtain an iterative characteristic. A sample characteristic
when there is a difference in the n-th slice is given in Figure 2.

Z0,1 Z1,1 Z2,1 Z3,1

Z4,1

Z5,1

Z4,n

Z0,n Z1,n Z2,n Z3,n

Z5,n

Δ Δ Δ Δ

Δ Δ Δ Δ

M
DS

Fig. 2. A sample iterative characteristic for WIDEA-n

Collisions for the WIDEA-8 Compression Function 167

When an iterative characteristic is found, then due to the feed-forward opera-
tion in the Davies-Meyer mode, the output difference cancels out with the initial
difference resulting in a collision for the compression function.

Unfortunately, it is not possible to use directly the null key as in the previous
attacks. Whereas the key schedule of the IDEA block cipher uses only rotations
and hence is linear, as described in Section 2.1 the key schedule of the WIDEA-8
block cipher consists of addition with a constant, modular addition, rotation and
xor. Therefore, even though a null key is chosen after some rounds the subkeys
will have nonzero values.

4.2 Collision Attack on 7 Rounds

In order to perform an attack, we want to find the longest iterative characteristic.
Now, being familiar with the basic attack strategy, the existing challenge can
be summarized as follows. To minimize the diffusion of the input differences,
we need not only that the message words (which are used as keys) entering the
multiplication have no difference but also the message words have to be zero.
However, if we start with a null master key, the after three rounds all slices have
nonzero values. Therefore, our aim is to find the maximum number of rounds
such that all subkeys are zero at least in one of the slices. For this purpose we
make use of the following observation.

Observation 2. Given any eight consecutive subkeys {Zi+1, Zi+2, . . . , Zi+8}, it
is possible to construct the whole set of subkeys.

This allows us to start from the middle by setting the intermediate subkey values
to zero and calculate forwards and backwards using the inverse key-schedule.

Zi = [([(Zi+8 ⊕ C i+1
8 −1) ≫ 24]

16
≫ 5)

16

� Zi+3]⊕ Zi+7, 0 ≤ i ≤ 51, 8|i

Zi = [([Zi+8 ≫ 24]
16
≫ 5)

16

� Zi+3]⊕ Zi+7, 0 ≤ i ≤ 51, 8 � i

The best results we found are obtained by setting the subkeys Z25 = Z26 =
. . . = Z32 = 0. As it can be seen from Table 2, the subkey values entering
the multiplication for WIDEA-8 equals to zero for the first slice up to Z42. We
want to note that we focus only on the subkey values zi,j = z(i+3),j with i =
0, 6, 12, ..., 48, since if this values equal to zero then the multiplication operation
behaves linear and the characteristic will hold.

As a result, we are able to pass seven rounds with probability one when there
is the chosen difference (Δ,Δ,Δ,Δ) where Δ = 0x8000 in the first slice. A
collision example is given in Table 3.

4.3 Extending the Attack to Full WIDEA-8

In this section, we discuss how the attack on 7 rounds can be extended to full
WIDEA-8. By ignoring the conditions on the message words in the first round

168 F. Mendel et al.

Table 2. Subkeys for WIDEA-8 when Z25 = Z26 = . . . = Z32 = 0.

i zi,1 zi,2 zi,3 zi,4 zi,5 zi,6 zi,7 zi,8

0 0000 E7FD 1444 6810 8B79 2822 47C8 0200

3 0000 E7FE 06F8 0000 0000 0000 0000 0000

6 0000 0001 F2E9 AFF7 0600 0000 0000 0000

9 0000 E7FF FC58 0000 0000 0000 0000 0000

12 0000 F001 0520 0000 0000 0000 0000 0000

15 0000 0FFF FAE0 0000 0000 0000 0000 0000

18 0000 F001 0520 0000 0000 0000 0000 0000

21 0000 0FFF FAE0 0000 0000 0000 0000 0000

24 0000 F001 0520 0000 0000 0000 0000 0000

27 0000 0000 0000 0000 0000 0000 0000 0000

30 0000 0000 0000 0000 0000 0000 0000 0000

33 0000 0000 0000 0000 0000 0000 0000 0000

36 0000 0000 0000 0000 0000 0000 0000 0000

39 0000 0000 0000 0000 0000 0000 0000 0000

42 0000 0000 0000 0000 0015 E080 0B00 0000

45 4891 8264 0000 0000 0000 0000 00AF 5C00

we could find an input where most other subkeys are zero as required for the
attack. In more detail, we set the subkeys Z33 = Z34 = . . . = Z40 = 0 and find
all other subkeys by computing forwards and backwards. The results are given
in Table 4.

Using this as message input and the same iterative characteristic as for the
attack on 7 rounds with Δ = 0x8000 we could find a free-start near-collision for
full WIDEA-8. Note that due to the fact that z0,8 = 0x42B4 another difference
Δ′ is needed in the chaining value x0,8 to get the difference Δ = 0x8000 after
the multiplication operation in the first round. The result is a free-start near-
collision for full WIDEA-8 with complexity of 1 and only a difference in one
16-bit word at the output of the compression function after the application of
the feed-forward. Moreover, we want to note that two free-start near-collisions
can be combined to get a zero-sum (second-order differential collision [8,21]) for
full WIDEA-8 with a complexity of only 2 compression function evaluations.

However, by using differences other than Δ = 0x8000 in the chaining input we
can turn the free-start near-collision into a free-start collision for the compression
function. Note that this will effect the probability of the attack due to the mod-
ular additions in WIDEA-8. Remember, we have z0,8 = 0x42B4, z2,8 = 0x7e49,
z8,8 = 0x2600 and z49,8 = 0x5E00.

(x
(1)
2,8

16
� z2,8) ⊕((x

(1)
2,8 ⊕Δ)

16
� z2,8) = Δ (1)

(x
(2)
8,8

16
� z5,8) ⊕((x

(2)
8,8 ⊕Δ)

16
� z8,8) = Δ (2)

(x
(8)
49,8

16

� z49,8) ⊕((x
(8)
49,8 ⊕Δ)

16

� z49,8) = Δ (3)

Collisions for the WIDEA-8 Compression Function 169

Table 3. A collision example for seven round of WIDEA-8 in hexadecimal

State

5750 C1C3 1603 ADC5 2A12 DE9C 3547 1F24

5D9F 6856 D5A3 0188 808B 6D14 B0F4 58A9

6143 365B BFDA 89DA 551B F732 225A FE0C

9BA8 C55E AA2E B4E1 3417 720D 22CF 8A28

State’

D750 C1C3 1603 ADC5 2A12 DE9C 3547 1F24

DD9F 6856 D5A3 0188 808B 6D14 B0F4 58A9

E143 365B BFDA 89DA 551B F732 225A FE0C

1BA8 C55E AA2E B4E1 3417 720D 22CF 8A28

M1 = M2

0000 E7FD 1444 6810 8B79 2822 47C8 0200

0000 C7FF 67D5 2FE1 4839 0840 0000 0000

0000 D7FF 3F97 0009 931F A917 0000 0000

0000 E7FE 06F8 0000 0000 0000 0000 0000

0000 E800 96CD C81A F500 0000 0000 0000

0000 D000 FC31 5803 3414 2F78 0000 0000

0000 0001 F2E9 AFF7 0600 0000 0000 0000

0000 E7FF EC1A 5FEE 0C00 0000 0000 0000

WIDEA-8(State ,M1)⊕M1 = WIDEA-8(State’,M2)⊕M2

D029 603E 368F 998F 7585 021C 492B 7DF0

BCB0 B142 15B0 B273 B503 1A6A F410 9E4D

8F7F BA4D 460E 8C9D D2AD 0036 104B 43E6

E306 6246 6D73 3CDF FD52 B205 267E 0720

We aim for differences with low Hamming weight. Moreover, we need a difference
for which we can find a chaining input such that

(x
(1)
0,8 " 0x42B4)⊕ ((x

(1)
0,8 ⊕Δ)" 0x42B4) = Δ (4)

has a solution for some x
(1)
0,8 ∈ Z162 , and

(x
(j)
i,8 " 0x0000)⊕ ((x

(j)
i,8 ⊕Δ)" 0x0000) = Δ (5)

occurs with a high probability for all j where i ≥ 3 and i|3.

Attack Procedure. We performed a search over all possibleΔ values and found
the best one (satisfying the conditions above) as Δ = 0x5820. We generate two
input values X and X′ as follows.

170 F. Mendel et al.

Table 4. Subkeys for WIDEA-8 when Z33 = Z34 = . . . = Z40 = 0

i zi,1 zi,2 zi,3 zi,4 zi,5 zi,6 zi,7 zi,8

0 3209 680D AB9C 470D 6357 300A C7C8 42B4

3 0000 BFFB 22E2 E13A 8FBC B209 0800 0000

6 0000 2806 E120 46FD F980 0000 0000 0000

9 0000 67FF 9C35 7EB3 3108 31C0 0400 0000

12 0000 F001 5517 790A 1080 0000 0000 0000

15 0000 27FA E93A 9F2E F600 0000 0000 0000

18 0000 D806 CECC 48A1 0B80 0000 0000 0000

21 0000 0FFF 72E5 CF97 FB00 0000 0000 0000

24 0000 F001 4521 1838 0680 0000 0000 0000

27 0000 0000 0000 0000 0000 0000 0000 0000

30 0000 0000 0000 0000 0000 0000 0000 0000

33 0000 0000 0000 0000 0000 0000 0000 0000

36 0000 0000 0000 0000 0000 0000 0000 0000

39 0000 0000 0000 0000 0000 0000 0000 0000

42 0000 0000 0000 0000 0000 0000 0000 0000

45 0000 0000 0000 0000 0000 0000 0000 0000

48 F7BA 0000 0000 0000 0000 0000 0000 0000

51 0000 0000 0003 C018 1C60 0100 0000 0000

– For X, restrict x(1)
0,8 to the values that satisfy Equation (4) and choose random

values for the remaining 496 bits.
– Assign X′ = X⊕ (0112||Δ||0112||Δ||0112||Δ||0112||Δ)

We then compute the output of full WIDEA-8 used in Davies-Meyer mode and
check whether a collision occurs or not.

Complexity of the Attack. Equations (1)−(3) each have a success probabil-
ity of 2−4 and Equation (5) is satisfied with probability 2−0.09. Therefore the
complexity of the attack can be approximated as (2−0.09)17 · (2−4)3 = 2−13.53

when xor is used in the feed-forward.
As a result, after generating 214 initial values, one can find a free-start colli-

sions for WIDEA-8 with full number of rounds. In practice, we found a collision
after 28 trials which is better than our estimated complexity. The example is
given in Table 5.

Collisions for the WIDEA-8 Compression Function 171

Table 5. A collision example for full WIDEA-8 in hexadecimal

State

2C7A 0866 9F38 C148 3FB1 7BDA 0232 9054

E56C 8780 3E0D 96F3 6D1D F028 907A CA77

DDB6 AC09 77E4 D4C5 6715 E3CA 165A 3396

A835 DACB CA5D CC01 5270 F382 D7D7 7873

State’

2C7A 0866 9F38 C148 3FB1 7BDA 0232 C874

E56C 8780 3E0D 96F3 6D1D F028 907A 9257

DDB6 AC09 77E4 D4C5 6715 E3CA 165A 6BB6

A835 DACB CA5D CC01 5270 F382 D7D7 2053

M1 = M2

3209 680D AB9C 470D 6357 300A C7C8 42B4

0000 5801 97F4 D0DA 0371 04E1 F400 0000

0000 7FF8 5C75 B946 131E 6335 CCF1 7E49

0000 BFFB 22E2 E13A 8FBC B209 0800 0000

0000 4FF7 753E 2805 3E23 80E2 0C00 0000

0000 E7F9 7FC3 1818 DE12 EF37 C8F4 C1FF

0000 2806 E120 46FD F980 0000 0000 0000

0000 4008 8FE9 8005 8A98 FF6E F800 0000

WIDEA-8(State ,M1)⊕M1 = WIDEA-8(State’,M2)⊕M2

2C06 6743 87F8 775D 8AB8 5957 226C 4F0F

626F 934B 949F 7195 333A 997A 0D1E 9A32

3D2C 3435 3861 E7CB 2198 8074 94DA 2C26

2544 AD24 4881 E8DC 2344 015F B015 6D81

5 Conclusion and Discussion

We have implemented the attacks and found free-start collisions for Davies-
Meyer mode when it is initiated with WIDEA-8 as compression function. Since
this single-length hashing mode is assumed to be secure in the ideal cipher model,
it is not a good choice to use WIDEA-8 in this mode with the initially defined
parameters. The easiest solution to fix this weakness seems like choosing the
constant values more randomly. But still, the best way might be to use a new key
schedule whose diffusion is better in the both forward and backward direction.

Acknowledgments. The work presented in this paper was done while Florian
Mendel was with KU Leuven. The work has been supported in part by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), by
the European Commission through the ICT programme under contract ICT-
2007-216676 ECRYPT II, and by the Research Fund KU Leuven, OT/08/027.

172 F. Mendel et al.

References

1. Secure Hash Standard. Federal Information Processing Standard 180-4. National
Institute of Standards and Technology (2012),
http://csrc.nist.gov/publications/fips/

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (Round 3) (2010), http://131002.net/blake/blake.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission.
Submission to NIST (Round 3) (2011),
http://keccak.noekeon.org/Keccak-submission-3.pdf

4. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

5. Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA.
In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427.
Springer, Heidelberg (2006)

6. Biham, E., Dunkelman, O., Keller, N.: A New Attack on 6-Round IDEA. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg
(2007)

7. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New Data-Efficient Attacks on
Reduced-Round IDEA. IACR Cryptology ePrint Archive 2011, 417 (2011)

8. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-Order Dif-
ferential Collisions for Reduced SHA-256. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)

9. Biryukov, A., Nakahara Jr, J., Preneel, B., Vandewalle, J.: New Weak-Key Classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

10. Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer,
Heidelberg (1997)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

12. Davies, D., Price, W.: Digital signatures, an update. In: 5th International Confer-
ence on Computer Communication, pp. 845–849 (1994)

13. Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg
(2003)

14. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein Hash Function Family. Submission to NIST (Round 3) (2010),
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

15. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(Round 3) (2011), http://www.groestl.info/Groestl.pdf

16. Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

17. Junod, P.: New Attacks Against Reduced-Round Versions of IDEA. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidelberg
(2005)

18. Junod, P., Macchetti, M.: Revisiting the IDEA Philosophy. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 277–295. Springer, Heidelberg (2009)

http://csrc.nist.gov/publications/fips/
http://131002.net/blake/blake.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.groestl.info/Groestl.pdf

Collisions for the WIDEA-8 Compression Function 173

19. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: Cryptanalysis of
Full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 392–410. Springer, Heidelberg (2012)

20. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

21. Lamberger, M., Mendel, F.: Higher-Order Differential Attack on Reduced SHA-256.
Cryptology ePrint Archive, Report 2011/037 (2011), http://eprint.iacr.org/

22. Wei, L., Peyrin, T., Soko�lowski, P., Ling, S., Pieprzyk, J., Wang, H.: On the
(In)Security of IDEA in Various Hashing Modes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 163–179. Springer, Heidelberg (2012)

23. Wu, H.: The Hash Function JH. Submission to NIST (round 3) (2011),
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

http://eprint.iacr.org/
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

Finding Collisions for Round-Reduced SM3

Florian Mendel, Tomislav Nad, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

tomislav.nad@iaik.tugraz.at

Abstract. In this work, we provide the first security analysis of reduced
SM3 regarding its collision resistance. SM3 is a Chinese hash function
standard published by the Chinese Commercial Cryptography Adminis-
tration Office for the use of electronic authentication service systems and
hence, might be used in several cryptographic applications in China. So
far only few results have been published for the SM3 hash function. Since
the design of SM3 is very similar to the MD4 family of hash functions and
in particular to SHA-2, a revaluation of the security of SM3 regarding
collision resistance is important taking into account recent advances in
the cryptanalysis of SHA-2. In this paper, we extend the methods used
in the recent collision attacks on SHA-2 and show how the techniques
can be effectively applied to SM3. Our results are a collision attack on
the hash function for 20 out of 64 steps and a free-start collision attack
for 24 steps of SM3, both with practical complexity.

Keywords: hash functions, cryptanalysis, collisions, free-start collisions.

1 Introduction

A cryptographic hash function H maps a message M of arbitrary length to a
fixed-length hash value h. Informally, a cryptographic hash function has to fulfill
the following security requirements:

– Collision resistance: it is practically infeasible to find two messages M and
M∗, with M∗ �= M , such that H(M) = H(M∗).

– Second preimage resistance: for a given messageM , it is practically infeasible
to find a second message M∗ �= M such that H(M) = H(M∗).

– Preimage resistance: for a given hash value h, it is practically infeasible to
find a message M such that H(M) = h.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how a
hash function is designed, an adversary will always be able to find preimages or
second preimages after trying out about 2n different messages. Finding collisions
requires a much smaller number of trials: about 2n/2 due to the birthday paradox.
If the internal structure of a particular hash function allows collisions or (second)
preimages to be found more efficiently than what could be expected based on its

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 174–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Finding Collisions for Round-Reduced SM3 175

hash length, then the function is considered to be broken. For a formal treatment
of the security properties of cryptographic hash functions we refer to [10, 11].

Most cryptanalytic results on hash functions focus on collision attacks. In the
last years collisions have been shown for many commonly used hash functions. In
particular, the collision attacks of Wang et al. [13,14] on MD5 and SHA-1 have
convinced many cryptographers that these widely deployed hash functions can
no longer be considered secure. As a consequence, NIST proposed the transition
from SHA-1 to the SHA-2 family and many companies and organization are
migrating to SHA-2. Furthermore, researchers are evaluating alternative hash
functions in the SHA-3 initiative organized by NIST [9] to find a new hash
function standard.

In this work, we analyze the Chinese hash function standard SM3. SM3 was de-
signed by Wang et al. [1] and is published by the Chinese Commercial Cryptogra-
phy Administration Office for the use of electronic authentication service systems.
The amount of cryptanalytic results on SM3 is low compared to other hash func-
tion standards. Kircanski et al. [4] presented a distinguisher for the compression
function of SM3 up to 35 steps with complexity 2117.1. Moreover, Zou et al. [15]
presented a preimage attack on 30 steps of SM3 with complexity of 2249.

The design of SM3 is very similar to the MD4 family in particular SHA-2. New
collision attacks on SHA-2 and similar hash functions have been shown [2, 5–8]
recently. The attacks have in common that they are all of practical complex-
ity and are based on automatic search algorithms to find complex differential
characteristics.

In this paper, we develop the methods by Mendel et al. for SHA-256 [7] further
and apply them on SM3. We show how the technique can be effectively applied
to SM3. Furthermore, we present a collision for 20 steps and a free-start collision
for 24 steps of SM3. These are the first collision attacks on the step-reduced SM3
hash and compression function.

The remainder of this paper is structured as follows. A description of the hash
function is given in Section 2. In Section 3 we describe the basic attack strategy.
In Section 4 we show how we can find differential characteristics and conforming
message pairs for SM3. Finally, we present a collision and free-start-collision for
step-reduced SM3 in Section 5 and conclude in Section 6.

2 Description of SM3

SM3 is an iterated hash function that processes 512-bit input message blocks
and produces a 256-bit hash value. In the following, we briefly describe the hash
function. It basically consists of two parts: the message expansion and the state
update transformation. A detailed description of the hash function is given in [1].

2.1 Message Expansion

The message expansion of SM3 is linear in GF (2). It splits the 512-bit message
block into 16 words Mi, i = 0, . . . , 15, and expands them into 68 expanded
message words Wi and 64 expanded message words W ′

i as follows:

176 F. Mendel, T. Nad, and M. Schläffer

Wi =

{
Mi 0 ≤ i < 16
σ0(Wi−16 ⊕Wi−9 ⊕Wi−3 ≪ 15)⊕Wi−13 ≪ 7⊕Wi−6 16 ≤ i < 68

and
W ′

i = Wi ⊕Wi+4 0 ≤ i < 64 .

The functions σ0(X) is given by

σ0(X) = X ⊕ (X ≪ 15)⊕ (X ≪ 23)

2.2 State Update Transformation

The state update transformation starts from a (fixed) initial value IV of eight
32-bit words and updates them in 64 steps. In each step the 32-bit words Wi

and W ′
i are used to update the eight state variables Ai−1, Bi−1, . . . , Hi−1.

T1 = (Ai−1 ≪ 12 + Ei−1 +Ki) ≪ 7
T2 = Hi−1 + f0(Ei−1, Fi−1, Gi−1) + T1 +Wi

Ai = Di−1 + f1(Ai−1, Bi−1, Ci−1) + (T1 ⊕Ai−1 ≪ 12) +W ′
i

Ei = Σ0(T2)
Bi = Ai−1

Ci = Bi−1 ≪ 9
Di = Ci−1

Fi = Ei−1

Gi = Fi−1 ≪ 19
Hi = Gi−1

(1)

For the definition of the step constants Ki we refer to [1]. The bitwise Boolean
functions f0 and f1 are different for each step. In the first 16 steps fXOR is used
for both f0 and f1. After step 16 f0 is fIF and f1 is fMAJ.

fXOR(X,Y, Z) = X ⊕ Y ⊕ Z
fIF(X,Y, Z) = XY ⊕XZ ⊕ Z

fMAJ(X,Y, Z) = XY ⊕ Y Z ⊕XZ
(2)

The linear function Σ0 is defined as follows:

Σ0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17) (3)

After the last step of the state update transformation, the initial values are
XORed to the output values of the last four steps (Davies-Meyer construction).
The result is the final hash value or the initial value for the next message block.

3 Basic Attack Strategy

In the following, we first give a brief overview of the attack strategy used in
the recent collision attacks on the MD4-family of hash functions [12, 14]. The
high-level strategy can be summarized as follows:

Finding Collisions for Round-Reduced SM3 177

1. Find a characteristic for the hash function that holds with high probability.
2. Use message modification techniques to fulfill conditions imposed by the

characteristic. This increases the probability of the characteristic.
3. Use random trials to find values for the remaining free message bits such

that the message follows the characteristic.

The most difficult and important part of the attack is to find a good differential
characteristic. The second important part of the attack is to find conforming
inputs for the differential characteristic. For both parts we used the technique
of the recent attack on SHA-2 [7].

4 Automatic Search Tool

The collision attack on SHA-2 [7] can be summarized as follows:

1. Determine a starting point for the search which results in an attack on a
large number of steps. The resulting start characteristic should span over
few steps and only some message words should contain differences.

2. Use an automated search tool to find a differential characteristic for the
unrestricted intermediate steps including the message expansion.

3. Continue the search to find a conforming message pair. If no message pair
can be found, adjust the differential characteristic accordingly.

Due to the linearity of the message expansion, finding a good starting point is
rather simple. The most difficult and important part of the attack is to find a
good differential characteristic. Due to the increased complexity of SM3 com-
pared to hash functions like SHA-1 and MD5, finding good differential charac-
teristics by hand is almost impossible. Therefore, we use an automatic tool to
find complex nonlinear differential characteristics. The tool is also used for solv-
ing nonlinear equations involving conditions on state words and free message
bits, i.e. to find confirming message pairs. The tool is based on the approach
of Mendel et al. [7] to find nonlinear differential characteristics and conforming
message pairs for SHA-2.

4.1 Generalized Conditions

The tool and search algorithm is based on the concept of generalized conditions
introduced in [2]. Generalized conditions are inspired by signed-bit differences
and take all 16 possible conditions on a pair of bits into account. Table 1 lists
all these possible conditions and introduces the notation for the various cases.

Using these generalized conditions and propagating them in a bitsliced man-
ner, we can construct complex differential characteristics in an efficient way. The
basic idea of the search algorithm is to randomly pick a bit from a set of bit
positions with predefined conditions, impose a more restricted condition and
compute how this new condition propagates. This is repeated until an inconsis-
tency is found or all unrestricted bits from the set are eliminated. Note that this

178 F. Mendel, T. Nad, and M. Schläffer

Table 1. Notation for possible generalized conditions on a pair of bits [2]

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
- - - -

(Xi, X
∗
i) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

general approach can be used for both, finding differential characteristics and
conforming message pairs. There are three important aspects of the automated
tool: using a good starting point, using an efficient condition propagation and
using a sophisticated search strategy. We discuss each aspect in the following
sections.

4.2 Defining a Starting Point

Similar to the attack on SHA-256 [7] we construct a local collision with differ-
ences in a few steps which results in a attack on a large number of steps. Since
the message expansion of SM3 is linear finding a starting point is easier than for
SHA-256.

To find a good starting point for SM3, a system of linear equations repre-
senting the message expansion is constructed. Afterwards, linear constraints are
added and the system is solved. In that way several good starting points for up
to 24 steps have been found. The starting points for 20 and 24 steps are given
in the Appendix in Table 5 and Table 7.

Note that unlike in most hash function attacks so far, the non-linear part for 24
steps is placed at the end instead of the beginning. This has several reasons. First
of all the differential characteristic for the message expansion is more sparse.
Furthermore, after step 16 the Boolean function IF and MAJ instead of XOR
are used. This again results in more sparse characteristic. In general the more
sparse a characteristic the easier it is to find conforming message pairs.

4.3 Efficient Condition Propagation

The efficient propagation of new conditions is crucial for the performance of the
algorithm, since it is the most often needed operation in the search algorithm.
Due to the nature of the search algorithm where changes to the characteristic
(using generalized conditions) are done on bit-level, we perform the propagation
of conditions also on bit-level. At the beginning of the search every bit has at
least one of the 16 generalized conditions (see Table 1). During the search we
impose conditions on specific bits. These bits are inputs or outputs of functions.
If a bit in the output is changed then all bits which are used to determine this

Finding Collisions for Round-Reduced SM3 179

output bit are updated. We call such a set of bits a bit-slice. If the changed bit
is an input of a function then all other bits of the corresponding bit-slice are
updated. The following example illustrates this process.

Example 1 (Condition Propagation). Let f : F3
32 → F32 be the Boolean IF func-

tion operating on 32-bit words and defined as follows:

f(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) = o.

Then the output bit oi depends on the bits {xi, yi, zi} and {xi, yi, zi, oi} forms
a bit-slice. If the generalized condition ∇xi changes then the conditions of the
set {∇xi,∇yi,∇zi,∇oi} are updated.

In our approach the update process is done exhaustively by computing all possi-
ble conditions of a bit-slice. This seems at first to be inefficient but we are using
two techniques to significantly speed up the process. The first one splits the
state update in smaller functions and the second one utilizes a cache. However,
the update process for a modular addition is done in a slightly different way.
The bit-slices of a modular addition contain also input carry and output carry.
Hence, the bit-slices are connected through the carry bits. If the condition for a
carry bit changes, then the connected bit-slice is updated as well. Furthermore,
the whole update process is iterative and updates bits until conditions do not
change any more.

4.4 Increasing the Propagation Performance

In the state update transformation of SM3, only two state variables are updated
in each step, namely Ai and Ei. Therefore, we can redefine the state update
such that only these two variables are involved. In this case, we get the following
mapping between the original and new state variables:

Ai Bi Ci Di Ei Fi Gi Hi

Ai Ai−1 Ai−2 Ai−3 Ei Ei−1 Ei−2 Ei−3

Hence, only two state variables need to be stored. Furthermore, the complexity
of propagating generalized conditions increases exponentially with the number
of input bits and additions. Similar as in SHA-2 the number of input bits in
the update of Ai,Ei and Wi is high. To reduce the computational complexity of
the propagation, we further split the update of Wi, Ei and Ai into sub-steps.
The decision where to split need to be done carefully. If too many sub-steps are
introduced we are losing too much information resulting in a worse propagation
and late detection of contradictions. If too few sub-steps are introduced the per-
formance of the propagation is too slow. Therefore, we found the following sepa-
ration of the SM3 state update which leads to a good performance/propagation
ratio:

180 F. Mendel, T. Nad, and M. Schläffer

Si = Wi−16 ⊕Wi−9 ⊕Wi−3 ≪ 15,

Pi = Si ⊕ Si ≪ 15⊕ Si ≪ 23,

Wi = Pi ⊕Wi−13 ≪ 7⊕Wi−6,

W ′
i = Wi ⊕Wi+4,

Li = Ai−1 ≪ 12 + Ei−1 +Ki ≪ 7,

Fi = Ai−1 ⊕Ai−2 ⊕Ai−3 ≪ 9,

Ai = Fi +W ′
i +Ai−4 ≪ 9 + (Li ≪ 7⊕Ai−1 ≪ 12),

Gi = Ei−1 ⊕ Ei−2 ⊕ Ei−3 ≪ 19,

Ri = Ei−4 ≪ 19 + Li ≪ 7 +Wi +Gi,

Ei = Ri ⊕Ri ≪ 9⊕Ri ≪ 17.

By carefully analyzing the state update and message expansion we have split up
the computations such that one step does not have more than 5 inputs. Using
this representation of SM3 we can use a cache during the propagation efficiently.
Furthermore, for those steps with only three inputs we are able to compute all
possibilities beforehand, changing the propagation of this steps to a simple table
lookup.

4.5 Search Strategy

To reduce the complexity of the system and eventually find a solution, random
additional conditions are introduced. In other words, some variables are guessed.
Even the most efficient method to propagate information may not result in
a solution if we make poor guesses. We need a guessing strategy, which can
efficiently use the new information generated by the propagation of information
introduced by previous guesses. The goal of a good guessing strategy is to discard
invalid solutions and to find a valid solution as soon as possible. The guessing
strategy depends in first place on the shape of the equations and the storeable
information propagated. Furthermore, external knowledge of the structure of the
attacked cryptographic system can help to improve the guessing strategy.

Our guessing strategy is similar to the one used by Mendel et al. in the
attack on SHA-256 reduced to 32 steps [7]. However, there are some small but
important modifications. In our approach for SM3 we further refine the search
strategy for SM3 by considering specific output words for guessing. As in the
attack of [7], our search strategy consists of several stages and each stage can
basically be divided into three parts: decision, deduction and backtracking. Note
that the same separation is done in many other fields, like SAT solvers [3]. In the
decision part, we decide which bit is chosen and which constraints are imposed
at its position. In the deduction part we compute the propagation of the new
information and check for consistence. In the case of an inconsistency we need
to backtrack and undo previous decisions, which is the third and last part.

Finding Collisions for Round-Reduced SM3 181

Let U be a set of generalized conditions. Repeat the following until U is empty:
Decision

1. Pick according to some heuristic (or randomly) a bit in U .
2. Impose new constraints on this bit according to Table 2.

Deduction
3. Propagate the Information to the other variables and equations as de-

scribed in Section 4.3.
4. If an inconsistency is detected start backtracking, else continue with step

1.
Backtracking

5. Try the second choice for the decision bit.
6. If this still results in an inconsistency mark this bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with step 1.

Note that in each stage different bits are chosen (guessed). In total we have two
stages which can be summarized as follows.

Stage 1: In the first stage we search for a consistent differential characteristic
in the state words. Therefore, we add all unconstrained bits of Ai andEi

that are ? or x to the set U . Furthermore, we add bits of Li as well to U .
Experience has shown that guessing the output of modular additions first
provides a significant speed up. Due to the additional freedom added by
the carry bits, the propagation of conditions is slow towards the output of
modular additions if these bits are not included in U .

Stage 2: In the second stage we search for conforming inputs. Therefore, we pick
decision bits with many two-bit conditions, since this ensures that bits which
influence a lot of other bits are guessed first. Furthermore, many other bits
propagate by defining the value of a single bit. Hence, this way inconsistent
characteristics are discarded earlier and valid solutions are found faster. The
concept of two-bit conditions was introduced in [7] .

Note that we dynamically switch between the two stages. Additionally, we restart
the search from scratch after a certain amount of inconsistencies to terminate
branches which appear to be stuck because of exploring a search space far from
a solution.

Table 2. Decision rules of our guessing strategy with r ∈ {0, 1} a random value

Decision bit r Choice 1 Choice 2

? 1,0 - x

x
0 u n

1 n u

-
0 0 1

1 1 0

182 F. Mendel, T. Nad, and M. Schläffer

5 Results for Reduced SM3

To find collisions for reduced SM3 we apply the techniques described in Sec-
tion 4. We first construct a differential characteristic with low Hamming weight
in the message expansion which functions as starting point for the automatic
search algorithm. Next the search algorithm is applied. Running on a cluster
with 72 nodes, the algorithm finds a differential characteristic in less than 1
hour. Afterwards, we continue the search for a conforming message pair which
can be found in several seconds.

5.1 Collision Attack

Using the starting point given in Table 5 and our automatic search algorithm
described in Section 4, we are able to construct collisions for up to 20 steps
of SM3. The differential characteristic is given Table 6. In Table 3 we present
colliding message pairs. Note that we have used an additional first message block
to generate several different initial values for the second message block. These
degrees of freedom were needed for the attack to work, otherwise we could not
find a confirming message pair.

Table 3. Collision for 20 steps of SM3

h0 7380166f 4914b2b9 172442d7 da8a0600 a96f30bc 163138aa e38dee4d b0fb0e4e

m0
03c98f41 a8bda164 709a299c d76610eb 26b351ac 53547024 8efdff59 7e818400

4188b7f1 954faf0e a32f9984 6e5d8975 dc3b528a 973480e4 f6be9d9b cf07f13e

h1 5e801aac 4b8c7a46 c8f34646 3b2420c1 97e775ae e3a6c399 83a05d40 6a257995

m1
559654cd 8d4f9e94 8ca64e4a b85d989c 8c185880 b51caad1 03eca739 be66a265

ca21ab71 9c341028 2c043967 d4617038 bf6744ca d8772f12 a58e12c0 35f4f9f2

m∗
1

559654cd 8d1f9e84 8ca64e5a b85d989c 8c185880 950cbad1 03eca739 be66a265

ca71ab61 9c341028 2c043967 d4617038 bf6744ca d8772f12 a58e12c0 35f4f9f2

Δm1
00000000 00500010 00000010 00000000 00000000 20101000 00000000 00000000

00500010 00000000 00000000 00000000 00000000 00000000 00000000 00000000

h2 b2033829 677c16d2 a6de9db9 fd898668 a9119d20 476364d6 a0838adc 08d3833d

5.2 Free-Start Collision

Using the starting point given in Table 7 and our automatic search algorithm
described in Section 4, we are able to construct free-start collisions for up to
24 steps of SM3. The differential characteristic is given in Table 8. In Table 4
we present a colliding message pair and IV pair resulting in a collision after 24
steps. Again this attack has practical complexity. The main difference in this
attack to previous attack is, that we had to place the non-linear part at the end
to get sparse characteristics.

Finding Collisions for Round-Reduced SM3 183

Table 4. Free-Start-Collision for 24 steps of SM3

h0 898991b0 8de47668 6e54847c 9167ff5e 3c7d51fe e2101301 6c53d522 7b3809df

h∗
0 898991b0 8da47668 ee54847c 1127ff5e 3c7d51fe e2100301 ec53d522 fb3819df

Δh0 00000000 00400000 80000000 80400000 00000000 00001000 80000000 80001000

m
07595c54 e01e0245 facd449a 07ca096d 510445e8 4e1d0dff 97f2a3c0 79f02f14

2ebfac50 48cdde2d e88f68e1 2b5032d1 3aa9a79f 656d1380 693417c1 ce82a62a

m∗ 07595c54 e01e0245 7acd449a 07ca096d 510445e8 4e1d0dff 97f2a3c0 79f02f14

2ebfac50 48cdde2d e88f68e1 2b5032d1 3aa9a79f 656d1380 693417c1 ce82a62a

Δm
00000000 00000000 80000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

h1 a83d45dc 9eda869d 48baa718 78ccd026 25696682 d0be9f4a e70babf3 f4852e70

6 Conclusions

Since the collision attacks of Wang et al. [13, 14] on MD5 and SHA-1 many
cryptographers are convinced that these widely deployed hash functions can no
longer be considered secure. As a consequence, NIST proposed the transition
from SHA-1 to the SHA-2 family and many companies and organization are
migrating to SHA-2. Furthermore, researchers are evaluating alternative hash
functions in the SHA-3 initiative. In this work, we analyze the Chinese hash
function standard SM3. SM3 was designed by Wang et al [1] and is published
by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service systems. The amount of cryptanalytic results
on SM3 is low compared to other hash function standards.

The design of SM3 is very similar to the MD4 family, in particular to SHA-256.
Since new collision attacks on SHA-256 and similar hash functions have been
shown recently, a revaluation of the security of similar hash functions such as
SM3 seems to be necessary. The attacks are based on a the concept of generalized
conditions and an automatic search algorithm. Recently, Mendel et al. improved
and extended the technique such that it can be applied on more complex ARX
based hash function. In this paper we develop the methods by Mendel et al. for
SHA-256 [7] further and apply them on SM3. We show how the technique can
be effectively applied to SM3. Furthermore, we present a collision for 20 steps
and a free-start collision for 24 steps of SM3. These are the first collision attacks
on step-reduced SM3 and both attacks have practical complexity.

Acknowledgments. Part of this work was done while Florian Mendel was with
KU Leuven. The work has been supported in part by the Austrian Science Fund
(FWF), project P21936-N23 and by the European Commission under contract
ICT-2007-216646 (ECRYPT II).

184 F. Mendel, T. Nad, and M. Schläffer

Table 5. Starting point for a collision for 20 steps of SM3

i
∇
A

i
∇
E

i
∇
W

i
∇
W

′ i

-4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
x
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-

2
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-

3
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-

9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Finding Collisions for Round-Reduced SM3 185

Table 6. Differential characteristic for a collision for 20 steps of SM3

i
∇
A

i
∇
E

i
∇
W

i
∇
W

′ i

-4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
x
x
x
-
-
-
-
-
x
x
-
-
-
-
-
-
-
-
-
-
x
x
x
x
x
x
x
x
-
-
1
-
x
-
x
-
-
-
-
x
x
x
x
x
-
-
-
-
-
-
x
-
1
0
x
x
x
-
x
x
-
-
x
x
-
-
0
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
x
-
-
-
-
-
-
x
-
-
-
-
-
-
x
-
1
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-

2
-
x
x
-
x
-
-
-
x
x
-
x
x
-
-
x
x
x
-
-
x
-
-
-
-
-
-
-
-
x
x
x
-
-
-
x
0
x
x
x
x
-
-
-
-
x
x
-
x
-
x
x
x
-
x
-
-
x
-
-
-
-
x
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-

3
x
-
x
-
x
-
-
-
-
-
-
-
-
x
x
x
x
x
x
x
x
-
-
-
-
-
-
-
x
-
x
-
x
x
-
x
-
-
x
1
x
-
x
x
x
-
x
-
-
-
-
-
-
-
-
-
-
-
x
x
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
x
x
x
x
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
x
-
-
-
-
-
-
-
-
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
x
-
-
-
-
-
-
-
-
-
0
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
0
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
1
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-

9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

186 F. Mendel, T. Nad, and M. Schläffer

Table 7. Starting point for a free-start collision for 24 steps of SM3

i
∇
A

i
∇
E

i
∇
W

i
∇
W

′ i

-4
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

-3
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

-2
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

-1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-

1
8
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
0
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
x
x
-
-
-
x
-
x
-
x
-
-
-
x
-
x
x
x
-
-
-
-
-
-
-
x
-
-

2
1
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-

2
2
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
x
-
-
-
-
-
-
-
-
-
-
-
-

Finding Collisions for Round-Reduced SM3 187

Table 8. Differential characteristic for a free-start collision for 24 steps of SM3

i
∇
A

i
∇
E

i
∇
W

i
∇
W

′ i

-4
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

-3
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

-2
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-

-1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
4
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5
x
-
-
-
-
x
-
-
x
x
-
x
x
-
x
x
x
-
x
x
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
x
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
x
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6
-
x
x
-
x
-
-
x
-
x
-
-
-
x
-
-
-
x
-
-
-
x
-
x
-
-
x
x
-
-
-
-
-
-
-
-
x
-
-
x
-
-
x
-
x
-
-
-
-
-
-
x
-
-
1
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
7
x
-
-
x
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
x
x
-
-
-
-
-
x
-
-
-
-
x
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
x
-
x
-
x
0
-
-
-
-
-
-
x
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-

1
8
x
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
x
x
-
-
-
-
x
x
-
-
x
x
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
9
x
x
x
x
x
x
x
-
-
x
x
x
-
-
-
-
-
-
x
-
-
x
-
-
-
-
x
-
x
-
x
-
-
-
-
-
-
-
-
x
x
x
-
-
-
-
-
-
-
-
-
x
-
0
0
-
-
-
-
-
-
-
x
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
0
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
x
x
-
-
-
x
-
x
-
x
-
-
-
x
-
x
x
x
-
-
-
-
-
-
-
x
-
-

2
1
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-

2
2
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
-
x
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
x
x
-
-
-
-
-
-
-
-
-
-
-
-

188 F. Mendel, T. Nad, and M. Schläffer

References

1. Specification of SM3 cryptographic hash function (in Chinese),
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

2. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

3. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the Satisfiability
(SAT) Problem: A Survey. In: DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pp. 19–152. American Mathematical Society (1996)

4. Kircanski, A., Shen, Y., Wang, G., Youssef, A.: Boomerang and Slide-Rotational
Analysis of the SM3 Hash Function. In: Knudsen, L.R., Wu, H. (eds.) Selected
Areas in Cryptography. LNCS. Springer (to appear, 2012)

5. Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential Attacks on Reduced
RIPEMD-160. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483,
pp. 23–38. Springer, Heidelberg (2012)

6. Mendel, F., Nad, T., Schläffer, M.: Cryptanalysis of Round-Reduced HAS-160. In:
Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 33–47. Springer, Heidelberg (2012)

7. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

8. Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream
Hash Function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 226–243. Springer, Heidelberg (2012)

9. National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

10. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

11. Stinson, D.R.: Some Observations on the Theory of Cryptographic Hash Functions.
Des. Codes Cryptography 38(2), 259–277 (2006)

12. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

13. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

14. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

15. Zou, J., Wu, W., Wu, S., Su, B., Dong, L.: Preimage Attacks on Step-Reduced
SM3 Hash Function. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 375–390.
Springer, Heidelberg (2012)

http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

Many Weak Keys for PRINTcipher: Fast Key

Recovery and Countermeasures

Stanislav Bulygin1,2, Michael Walter3, and Johannes Buchmann1,2

1 Center for Advanced Security Research Darmstadt - CASED
Mornewegstraße 32, 64293 Darmstadt, Germany

{Stanislav.Bulygin}@cased.de
2 Technische Universität Darmstadt, Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
michael.walter@swel.com, buchmann@cdc.informatik.tu-darmstadt.de
3 University of California, San Diego, Department of Computer Science and

Engineering
9500 Gilman Drive, Mail code 0404, La Jolla, CA 92093-5004, USA

miwalter@eng.ucsd.edu

Abstract. In this paper we investigate the invariant property of
PRINTcipher first discovered by Leander et al. in their CRYPTO 2011
paper. We provide a complete study and show that there exist 64 fam-
ilies of weak keys for PRINTcipher–48 and as many as 115,669 for
PRINTcipher–96. Moreover, we show that searching the weak key space
may be substantially sped up by splitting the search into two consecu-
tive steps. We show that for many classes of weak keys, key recovery can
be done with very small time complexity in the chosen/known plaintext
scenario. This shows that the cipher is actually much more vulnerable
to this type of attacks than was even thought previously. Still, effective
countermeasures exist against the attack. The method of finding all weak
key families has value on its own. It is based on Mixed Linear Integer
Programming and can be adapted to solving other interesting problems
on similar ciphers.

Keywords: PRINTcipher, invariant coset attack, mixed integer linear
programming, weak keys, chosen plaintext attack, key recovery.

1 Introduction

Lightweight cryptography gained its importance due to emergence of many ap-
plications that involve using small and resource constraint devices such as RFID
tags, smart cards, and sensor networks. Conventional cryptographic algorithms
turned out to be too massive to be implemented on such devices. Therefore, the
need for new cryptographic primitives arose in the community. In particular, the
whole arsenal of lightweight block ciphers has been developed in recent years to
satisfy the needs of secure usage of small devices. The block cipher PRESENT is
one outstanding example that gained popularity [1]. Other block ciphers, such as

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 189–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190 S. Bulygin, M. Walter, and J. Buchmann

KATAN and KTANTAN family [2], LED block cipher [3] and many others were
presented recently. Following the design principle of PRESENT, several block ci-
phers with even more lightweight structure have been proposed: PRINTcipher [4]
and EPCBC [5] are immediate examples, as well as SPONGENT hash family [6].

PRINTcipher is a block cipher proposed at CHES 2010 [4] and is really push-
ing the design solutions for lightweight ciphers to their limits. PRINTcipher has
been an object of numerous attacks since then. Methods of linear and differential
cryptanalysis [7,8,9] as well as algebraic cryptanalysis [10] have been proposed to
analyze PRINTcipher. Also certain results on side channel analysis of PRINTci-
pher appeared [10,11]. Notably, cryptanalytic methods proposed so far were not
able to break more than 2

3 of PRINTcipher’s rounds for a large portion of keys1.
At CRYPTO 2011 Leander et al. proposed a very powerful attack, which they

called the invariant coset attack [12]. Using this attack it is possible to break
the full PRINTcipher (both the 48- and the 96-bit versions) for a significant
portion of keys using only a few chosen plaintexts. Note, however, that despite
the fact that distinguishing a weak key can be done in unit time, the complete
key recovery for weak key families presented in [12] would take quite a consider-
able time in practice. The authors of [12] presented two families of weak keys for
PRINTcipher–48, each having 251 keys, as well as two families for PRINTcipher–
96. However, it remained unknown whether other families existed and what was
a systematic way of finding them.

In this paper we thoroughly investigate the invariant property of PRINTci-
pher. We suggest a systematic method of obtaining all invariant cosets of the
cipher and corresponding families of weak keys. In particular, we are able to
recover all 64 families of weak keys for PRINTcipher–48 and all 115,669 families
for PRINTcipher–96. It is possible to speed the key recovery process compared
to a simple brute force of the remaining key bits. In the case of PRINTcipher–48
we identified many weak keys that can be recovered in a matter of minutes on a
single PC. This shows that the cipher is actually much more vulnerable to this
type of attacks than was even thought previously. The key recovery procedure
is improved compared with the simple brute force by a factor of 8 to 2048 de-
pending on the weak key class. For PRINTcipher–96 the gain can be as large as
227. Similarly to [12] we analyze countermeasures against the attack. Since our
analysis of the invariant property is complete we may argue about security of
the cipher against the invariant coset attack. In particular, we claim that with
countermeasures suggested in this paper both versions of PRINTcipher remain
secure ciphers.

The method of finding weak key families is based on Mixed Integer Linear
Programming (MILP). It appears to be a novel technique to use MILP in such
a context. Noteworthy is also that this method can be adapted to solving other
interesting problems on similar ciphers and therefore has value on its own.

The outline of the paper is as follows. In Section 2 we briefly recall the defini-
tion of PRINTcipher and outline its properties that are relevant for the further

1 The best attack of [9] can break 31 out of 48 rounds of PRINTcipher–48 for the
fraction of 0.036% of keys using almost the entire code book.

Many Weak Keys for PRINTcipher: Fast Key Recovery 191

exposition; we also recall the attack of [12]. Section 3 presents methods of obtain-
ing and using invariant cosets (or invariant projected subsets as we call them).
Section 3.1 presents the general background on defining sets of invariant pro-
jected subsets and their characterization. These defining sets then give rise to
families of weak keys. Section 3.2 presents a method of finding all defining sets
based on MILP that turns out to be highly efficient in practice. Section 3.3 sum-
marizes the results for PRINTcipher–48 and PRINTcipher–96 obtained by our
methods, computing the number of keys in each weak key family and complexity
of the key recovery, as well as protecting measures. Finally, Section 4 provides a
retrospective of the proposed methods and puts them in a more general context
providing possible further directions for research. In Appendices A and B the
reader may find the table with results for PRINTcipher–48 as well as a worked
out example illustrating computations from Section 3.3 resp.

2 The Block Cipher PRINTcipher

2.1 Description of the Cipher

PRINTcipher [4] is a substitution-permutation network, which design is largely
inspired by the block cipher PRESENT [1]. The main differences with PRESENT
is the absence of a key schedule (all round keys are the same and are equal to a
master key) and key-dependent S-Boxes. PRINTcipher comes in two variations:
PRINTcipher-48 encrypts 48-bits blocks with an 80-bit key and has 48 rounds,
PRINTcipher-96 encrypts 96-bit blocks with a 160-bit key and has 96 rounds.
Here we present a short overview of the cipher, referring the reader to [4] for a
more detailed description and analysis.

The encryption process of PRINTcipher–48 follows a classical SP-network
structure, see Figure 1 for the round function. Both versions have similar struc-
ture. The key k = (sk1, sk2) is divided into two parts. The subkey sk1 is used
for XORing with the state and sk2 defines the S-Box layer, see below. The linear
diffusion layer is implemented by a bit permutation similar to PRESENT and is
given by the map P :

P (i) =

{
3i mod n− 1 for 0 ≤ i ≤ n− 2,
n− 1 for i = n− 1,

(1)

so that the i−th bit of the state is moved to the position P (i). The RCi for
i = 1, . . . , n are 6-bit long round constants obtained via a certain LFSR and
are placed in the last two position triplets. The S-Box layer is a layer of n/3
3-bit S-Boxes, where each S-Box is chosen according to the value of the two
corresponding bits of the subkey sk2. Therewith, there are 4 possible S-Boxes at
each position called V0, V1, V2, V3 in [4]. One may also consider such an S-Box as
a composition of a key dependent bit permutation that acts on groups of three
bits (triplets) and then followed by the layer of fixed S-Boxes, each one being
a 3-bit S-Box with the truth table as in Table 1. This S-Box, called V0 in [4],
is preceded by a key-dependent permutation defined by Table 2. In Table 2 the

192 S. Bulygin, M. Walter, and J. Buchmann

Table 1. Truth table for the S-Box V0

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

Table 2. Key depended permutation

a1 a0 Permutation

0 0 (0,1,2)

0 1 (0,2,1)

1 0 (1,0,2)

1 1 (2,1,0)

three input bits are permuted according to the two consecutive bits from the
subkey sk2 called a0 and a1.

We need properties of masks that exist for keyed S-Boxes of PRINTcipher.
By an α–β mask we understand a situation when fixing some α out of 3 S-
Box input values yields fixed β output values regardless of the values at other
input/output positions. There is obviously a 3–3 mask, since knowledge of three
input bits of an S-Box yields all three output bits. There is also obviously a 0–0
mask. It turns out that for certain values of sk2-bits, PRINTcipher’s S-Box has
2–2 masks for all 3 · 3 = 9 possible combinations of input and output positions.
Table 3 shows that each possible 2-mask on the input bits has a corresponding
2-mask for output bits. In this table +/− notation shows which bits of the mask
are fixed (+) and ones which are not (−). For example, the first row says that
if we have a mask where the first two bits of both input and output to a keyed
S-Box are fixed, then both S-Boxes with a0 = 0 satisfy the mask. Moreover, the
two fixed output bits of the mask, as well as the two input bits, must be 0. Table
3 plays an important role in studying the invariant coset attack of [12]. Notably,
there are also 2–1, 2–0, 1–0 masks and no others. Clearly, the 2–2 and 3–3 masks
are the most desirable for cryptanalytic properties.

2.2 Invariant Coset Attack of Leander et al.

In their work [12] Leander et al. showed that for PRINTcipher there exist subsets
of plaintexts which, when encrypted with keys from certain other subsets, end

Table 3. Behavior of the 2–2 masks in S-Boxes of PRINTcipher

Input mask Output mask Values of (a0, a1) input values output values

+ +− ++− 0* 00* 00*

+ +− +−+ 10 10* 1*1

+ +− −++ 11 11* *10

+−+ ++− 10 0*0 00*

+−+ +−+ 00 or 11 0*1 or 1*0 1*1

+−+ −++ 01 1*1 *10

−++ ++− 11 *00 00*

−++ +−+ 01 *10 1*1

−++ −++ *0 *11 *10

Many Weak Keys for PRINTcipher: Fast Key Recovery 193

up in the same subset of plaintexts. Thus they showed an invariant property for
PRINTcipher under certain weak keys. The subsets they presented are of quite
special form: they are linear cosets. An invariant coset for the plaintexts is of
the form U + d for some linear subspace U ⊆ Fn

2 and some vector d ∈ Fn
2 ; the

weak keys are from the coset U + c+ d for some other vector c ∈ Fn
2 . Notably,

the U ’s are linear subspaces of a special kind. Namely, they are linear subspaces
where all vectors have the value 0 at certain positions. The vectors c and d then
“adjust” the zeros, so that the invariant property holds. The authors of [12]
show that distinguishing the weak keys so obtained can be done using only a
few chosen plaintexts, thus presenting a powerful attack. In the invariant coset
attack they heavily use the property of 2–2 masks presented in Table 3.

3 Obtaining and Exploiting Invariant Projected Subsets

In this section we describe methods of obtaining all invariant cosets for both
versions of PRINTcipher. These invariant cosets are of the same type as in [12],
i.e. we only consider cosets that are described by the “projection” equations
specifying values of vectors at certain positions. In Section 3.1 we investigate
defining sets of invariant cosets (or invariant projected subsets, as we call them),
i.e. sets of positions the subsets are projected onto. We provide their character-
ization that is used in Section 3.2 to provide a method for finding all possible
defining sets using techniques of Mixed Integer Linear Programming. In Section
3.3 we describe the structure of weak key classes that stem from the invariant
projected subsets, compute a number of elements in each class and compute time
complexity of weak key recovery. Notably, we show that it is possible to speed
up the search process by separating the search space into two steps.

3.1 Defining Sets of Invariant Projected Subsets

Definition 1. A projected subset U ⊂ Fn
2 is defined as

U := {u = (u0, . . . , un−1) ∈ Fn
2 |ui1 = a1, . . . , uit = at for some t ≥ 0,

0 ≤ i1 < · · · < it ≤ n− 1 and some a = (a1, . . . , at) ∈ Ft
2}.

We define defU ⊂ Zn to be the subset of indexes i1, . . . , it with the above property
and for such a subset we define a vector valU ∈ (F2∪{′∗′})n as follows: valU [ij] =
aj , 1 ≤ j ≤ t and valU [i] =

′ ∗′, i ∈ Zn \ defU . We call defU the defining set
of U .

Definition 2. Let V ⊂ Zn with n divisible by 3, then V is a 1̄−subset iff ∀ 0 ≤
j < n/3 : |{3j, 3j + 1, 3j + 2} ∩ V | �= 1.

The above definition calls a subset of positions a 1̄−subset iff in each consecutive
triplet of positions there are 0, 2, or 3 elements from that subset.

194 S. Bulygin, M. Walter, and J. Buchmann

Definition 3. Let T ⊆ Zn with n divisible by 3. For i ∈ {1, 2, 3} define

Ti :=
⋃

0≤j<n/3
|{3j,3j+1,3j+2}∩T |=i

[
{3j, 3j + 1, 3j + 2} ∩ T

]
.

In other words, we divide the set {0, . . . , n− 1} into triplets and then look which
triplets have exactly i elements of T in them and collect these elements into Ti.
Let U be a projected subset with the defining set defU . For short notation we
denote Ui := (defU)i for i = 1, 2, 3.

Now let Esk1,sk2,r = Ssk2 ◦ RCr ◦ P ◦ XORsk1 be the round function of
PRINTcipher-n for the round 1 ≤ r ≤ n, where sk1 and sk2 are parts of the
secret key as defined in Section 2.1.

Theorem 1. Let T ⊂ Zn with n divisible by 3 and

1. T ∩ {n− 6, . . . , n− 1} = ';
2. T is a 1̄−subset of Zn;
3. ∀ 0 ≤ j < n/3 : |{3j, 3j + 1, 3j + 2} ∩ T | = |{3j, 3j + 1, 3j + 2} ∩ P (T)|.

Then there exists a projected subset U ⊂ Fn
2 with def U = T such that

Esk1,sk2,r(U) = U for some sk1 ∈ Fn
2 and sk2 ∈ F2n/3

2 and any r ≥ 1.The
set {valU [i] : i ∈ U2} is uniquely determined by T .
Vice versa: if for a projected subset U ⊂ Fn

2 holds Esk1,sk2,r(U) = U for some

sk1 ∈ Fn
2 and sk2 ∈ F2n/3

2 and any r ≥ 1, then defU satisfies conditions (1.)–(3.)
above.

Proof. (⇒) : We want to show that there exist sk1 ∈ Fn
2 and sk2 ∈ F2n/3

2 such
that Esk1,sk2,r(U) = U for all r ≥ 1 for some projected subset U with def U = T .
For the construction of U we need to specify the values in valU as well as the
corresponding values of sk1 and sk2. Note that due to properties (2.) and (3.),
the set of positions P (T) is also a 1̄-subset. Now observe that positions of P (T)
define input masks to the S-Box layer Ssk2 and those from T define output masks
of that layer. Indeed, we start with the positions from T at the beginning of the
round. So in order to have an invariant property, we have to end with T as well.
Due to properties (2.) and (3.) we have that only 0–0, 2–2 and 3–3 cases are
possible for the S-Box masks (see Section 2.1). Note that in the case of a 2–2
mask most of the time the corresponding values of the key sk2 are fixed and
determined by T , see Table 3. In the case of ambiguity, we may take arbitrary
value for the corresponding bit of sk2. Also from Table 3 we see that for the
2–2 masks S-Box output values are uniquely defined in all cases, the same for
input values except for the mask + − + → + − +. In this case arbitrary but
fixed choice of the corresponding bits of sk2 resolves the ambiguity. After the 2–2
cases are resolved (either through mandatory assignment or arbitrary but now
fixed choice) we move to the 0–0 and 3–3 masks. Here both outputs of S-Boxes
and the corresponding values of sk2 can be assigned arbitrary values (sk2 bits
are equal in this case). Note that assignment of output values in the case of a 3–3

Many Weak Keys for PRINTcipher: Fast Key Recovery 195

mask provides an assignment of values in {valU [i] : i ∈ U3}. We have that inputs
and outputs to the S-Boxes at positions P (T) and T resp. are now defined. This
yields, via the operation XORsk1 , unique values for the key sk1 at positions T .
Moreover, the values in valU are now fixed too. Therewith the set U is now fully
defined by defU = T and such constructed valU . Note that since outputs of
S-Boxes at positions T2 = U2 (see Definition 3) are uniquely determined by the
2–2 masks, we have that the values {valU [i], i ∈ U2} are uniquely determined.
Condition (1.) makes sure that the round counter RCi is avoided (i.e. there we
have only 0–0 mask) and therewith there is no chance to change input/output
values of S-Boxes, and so invariant property is preserved.
(⇐) : For the reverse direction, note that defU should satisfy (2.) and (3.), since
for the invariant property we need an α–α mask and there are only 0–0, 2–2,
and 3–3 of this sort, see Section 2.1. Again, the invariant property must not be
spoiled by the round counter, thus the condition (1.) should be satisfied.

We refer to the example in Appendix B for assisting in understanding the no-
tation and how the invariant property works. Note that in the case Theorem 1
holds, we have Esk1,sk2,r(V + d) = V + d for a certain linear subspace V ⊆ Fn

2

and d ∈ Fn
2 . This V + d is an invariant coset as per [12]. In order to follow

our terminology, we prefer the term invariant projected subset. Also note that if
U = V + d is an invariant projected subset, then defU is a disjoint union of U2

and U3: defU = U2 � U3, see Definition 3. As a result of Theorem 1 we have a
one-to-one correspondence between defining sets of invariant projected subsets
and subsets of Zn that satisfy (1.)–(3.) of Theorem 1.

3.2 Defining Sets via Polytopes in Zn

Now having the characterization of defining sets, we provide an efficient method
of finding all subsets of Zn satisfying conditions (1.)–(3.) of Theorem 1. The
method is based on providing a one-to-one correspondence between defining sets
of the invariant projective subsets of PRINTcipher–n and points of a certain
polytope in Zn. One can then efficiently find these points by applying techniques
of Mixed Integer Linear Programming (MILP).

Theorem 2. Let IPn be a subset in {0, 1}n ⊂ Zn, where n is divisible by 3,
defined as a subset of those x = (x0, . . . , xn−1) ∈ {0, 1}n that satisfy2

xn−6 = · · · = xn−1 = 0,

for all 0 ≤ j < n/3 :

x3j + x3j+1 + x3j+2 = xP−1(3j) + xP−1(3j+1) + xP−1(3j+2), (2)

x3j + x3j+1 ≥ x3j+2, x3j + x3j+2 ≥ x3j+1, x3j+1 + x3j+2 ≥ x3j ,
n−1∑
i=0

xi > 0.

2 Note that the arithmetic is integer.

196 S. Bulygin, M. Walter, and J. Buchmann

For each v ∈ IPn define Tv := {i|vi = 1} ⊂ Zn. Then for every v ∈ IPn the
set Tv satisfies (1.)–(3.) of Theorem 1. Conversely, for each set T that satisfies
(1.)–(3.) of Theorem 1 there exists v ∈ IPn such that T = Tv.

Proof. For the proof we need the following observation, which is proved by a
direct inspection. Namely, for a pair of vectors a = (a0, a1, a2) and b = (b0, b1, b2)
from Z3 ∩ {0, 1}3 that satisfy

b0 + b1 + b2 = a0 + a1 + a2, b0 + b1 ≥ b2, b0 + b2 ≥ b1, b1 + b2 ≥ b0,

only the following cases for Hamming weights of a and b are possible: wt(a) =
wt(b) = i for i = 0, 2, 3. Now property (1.) follows directly from the condition in
the first line of (2). It is not hard to see that the above observation easily yields
claimed properties (2.) and (3.). The last line of the conditions (2) makes sure
that we do not include the trivial all-zero solution.

It is not difficult to see that the converse statement is also true.

Combining Theorem 1 and Theorem 2 we obtain a one-to-one correspondence
between defining sets of invariant projected subsets and vectors from IPn ⊂
{0, 1}n.

So the question now is how to compute all elements of IPn for n = 48, 96.
One possible solution is to use the MILP. Recall that the problem of the MILP is
to optimize (i.e. either maximize or minimize) a linear objective function under
linear constraints with solutions lying in Zp × Rn−p. In our case the feasible
solutions are all in {0, 1}n as per (2) and we thus have a binary integer linear
program – a certain kind of MILP. Therefore, we can use an MILP solver with
the additional requirement that the solutions should lie in {0, 1}n. Also, in our
case we do not actually have an optimization problem, but rather a constraint
satisfaction problem that likewise can be solved by an MILP solver.

3.3 Families and Classes of Weak Keys

In this subsection we provide detailed results for PRINTcipher that can be ob-
tained by the method from Section 3.2. We used SAGE computer algebra system
[13] together with the MILP solver CPLEX3 through the SAGE interface4.

The results as presented in Tables 4 and 5 for both versions of PRINTcipher.
In the tables we also indicate how our work improves the initial result of [12].

Each family is composed of potentially several classes of weak keys. By a class
we understand a set of weak keys that ensure the invariant property for certain
plaintext subsets, see more on that below. The family, in turn, unites all classes
of weak keys stemming from invariant projected sets with the same defining set.
We can provide only an upper bound on the number of all weak keys, since weak
key classes can intersect, see “How many weak keys are there in a family defined

3 IBM ILOG CPLEX 12.1 under the academic license.
4 See http://sagemath.org/doc/reference/sage/numerical/mip.html?highlight=

linear%20programming

http://sagemath.org/doc/reference/sage/numerical/mip.html?highlight=linear%20programming
http://sagemath.org/doc/reference/sage/numerical/mip.html?highlight=linear%20programming

Many Weak Keys for PRINTcipher: Fast Key Recovery 197

Table 4. Results and comparison for
PRINTcipher–48

Our analysis Leander et al. [12]

weak key families /
all found? 64/Yes 2/No

upper bound on
weak keys 252.5 252

fastest time
for key recovery 224 238

in CP/KP scenario

Table 5. Results and comparison for
PRINTcipher–96

Our analysis Leander et al. [12]

weak key families /
all found? 115,669/Yes 2/No

upper bound on
weak keys 2117.7 2102

fastest time
for key recovery 230 276

in CP/KP scenario

by defU?” below. We also provide the minimum of the time complexities of all
possible classes of weak keys.

Table 6 in Appendix A presents detailed results for PRINTcipher–48. Defining
sets of weak key families found in [12] are marked in bold there.

Description of Weak Key Classes. From Theorem 1 we know that once
we have a subset of positions T ⊂ Zn that satisfies conditions (1.)–(3.) there
exists a key k = (sk1, sk2) and a projected subset U with defU = T such
that Esk1,sk2,r(U) = U for all r ≥ 1. Moreover, the set of projected values
{valU [i] : i ∈ U2} is uniquely determined by T . Now we would like to have
more: we want to have a description of all classes of weak keys (i.e. those that
preserve the invariant property) that correspond to T = defU . These classes
form a family.

For this we first need to fix values for all elements in {valU [i] : i ∈ defU}.
Values {valU [i] : i ∈ U2} are uniquely determined by T as per Theorem 1.

Then choose a vector v3 ∈ F|U3|
2 and assign valU [ij] = v3[j], 1 ≤ j ≤ |U3|, where

U3 = {i1, . . . , i|U3|} with i1 < · · · < i|U3|. So now the invariant projected subset U
is fully defined. Let us show that there exists a class of weak keys WK(defU , v3)
such that for any (sk1, sk2) = k ∈ WK(defU , v3) : Esk1,sk2,r(U) = U for all
r ≥ 1. Let us describe separately the two parts sk1 and sk2 of a key k =
(sk1, sk2) ∈ WK(defU , v3).

We start with sk2. Define for 0 ≤ j ≤ 3:

Sj := {0 ≤ i < n/3 : |{3i, 3i+ 1, 3i+ 2} ∩ defU | = j}.

So Sj collects those S-Boxes that have j bits both in input and output masks
(i.e. a j–j mask). We construct the sk2-part of k as follows.

- Bits sk2[2i] and sk2[2i+ 1] for i ∈ S3 can attain arbitrary values. There are
2
3 |U3| such bits (a 3–3 mask).

- For i ∈ S2, the bits sk2[2i] and sk2[2i+1] get their values according to column
3 of Table 3 by examining the corresponding parts of U2 and (P (defU))2 to
get +/− masks. The star sign ’*’ means that the corresponding bit of sk2
can attain arbitrary value. Denote by U∗ ⊂ Z2n/3 the set of positions of
sk2 that correspond to ’*’s. In the case of the +−+ → + −+ mask assign
arbitrary value to sk2[2i] = sk2[2i + 1]. Let us denote the set of S-Boxes
yielding the +−+ → +−+ mask by U= ⊂ S2 ⊂ Zn/3.

198 S. Bulygin, M. Walter, and J. Buchmann

- Bits sk2[2i] and sk2[2i + 1] for i ∈ S0 can attain arbitrary values (a 0–0
mask). There are 2

3n−
2
3 |U3|− |U2| such bits. Indeed, from the length of sk2,

which is 2
3n, we subtract positions from S3 (= 2

3 |U3|) and S2 (= |U2|).

Now determine the sk1 part. Let the choice of sk2 be done as above and fixed.

- Denote Y = XORsk1 (X). Note that {valU [i] : i ∈ defU} are fixed, there-
fore Xi, i ∈ defU have fixed values. Now, since the choice of sk2 bits for
active S-Boxes (i.e. those with i ∈ S2 ∪ S3) has been fixed, we have that
inputs to S-Boxes at positions P (defU) have fixed values. Therefore Yi,∈
P−1(P (defU)) = defU are fixed as well. As a result sk1[i] = Xi⊕Yi, i ∈ defU
are now determined.

- Bits sk1[i], i ∈ Zn \ defU can attain arbitrary values. There are n − |defU |
such bits.

An explicit example explaining the notation is given below:

XORsk1

X

Y

RCi

0 ∗ × − ≡ − − × − 0 ∗ − −

Fig. 1. Defining set no. 14, Table 6
Bold: positions of defU and their transition through the round
× : S-Boxes 1 and 9 belonging to S3

− : S-Boxes 2,6,7,10,14, and 15 belonging to S0

≡: S-Box 3 belongs to U= ⊂ S2

∗ : sk2-positions of U∗ = {1, 25} ⊆ Z32

Having the above construction, we obtain the following proposition.5

Proposition 1. Let T ⊂ Zn satisfy (1.)–(3.) of Theorem 1. Let v3 ∈ F|T3|
2 and

U ⊂ Fn
2 be a projected subset with defU = T and valU composed of unique values

for {valU : i ∈ U2} and {valU (U3[i]) = v3[i] : 1 ≤ i ≤ |U3|}. Then for the set
WK(defU , v3) constructed as above holds

Esk1,sk2,r(U) = U, r ≥ 1,

for any (sk1, sk2) ∈ WK(defU , v3).

5 For space reasons, we must refer to the full version of the paper for a formal proof.

Many Weak Keys for PRINTcipher: Fast Key Recovery 199

How to Distinguish the Weak Keys? Now let us detail how to distinguish
in the chosen plaintext scenario the weak keys belonging to WK(defU , v3) for
some defining set defU of an invariant projected set U with a fixed choice of bits
{valU [i] : i ∈ U2} and {valU [U3[i]] = v3[i] : 1 ≤ i ≤ |U3|}. The attacker chooses

an arbitrary p ∈ U and encrypts p with a key (sk1, sk2) = k ∈ F5n/3
2 obtaining

c = Esk1,sk2,n(p). If c[i] = p[i] for all i ∈ defU , i.e. c ∈ U , then k is a candidate
element of WK(defU , v3). To be sure we need several chosen plaintexts, since
with probability 2−|defU | one has p[i] = c[i], i ∈ defU , where the key k can be
any key. So in order to distinguish we need #CP = � 5

3n/|defU |� plaintexts from
U and their corresponding encryptions. For 5

3n = 80 it is at most 5 chosen
plaintexts, see also [12].

How Many Weak Keys Are There in a Family Defined by defU? For a
given defU there are 2|U3| possibilities to assign values for the vector v3. There-
fore, each family of weak keys has 2|U3| classes. We want to determine∣∣∣ ⋃

v3∈F
|U3|
2

WK(defU , v3)
∣∣∣.

The following bounds for the number above hold:

2|U3||WK(defU , 0)| ≥
∣∣ ⋃
v3∈F

|U3|
2

WK(defU , v3)
∣∣ ≥ |WK(defU , 0)|. (3)

Indeed, if we fix vector v3 = 0, then the number of elements in all classes is at
least the number of elements in one class and is at most 2|U3| times the number
of elements in that class, since

|WK(defU , a)| = |WK(defU , b)| ∀a, b ∈ F|U3|
2 .

We cannot simply say that |∪
v3∈F

|U3|
2

WK(defU , v3)| is equal to the upper bound,
since it may happen thatWK(defU , a)∩WK(defU , b) �= ' for some a �= b. Note,
however, that for many defU ’s the value | ∪

v3∈F
|U3|
2

WK(defU , v3)| does attain

the upper bound. We skip the details due to space constraints.
Now as to the computation of |WK(defU , 0)| (or, equivalently |WK(defU , a)|

for any other a ∈ F|U3|
2), we just follow the lines of the argument preceding

Proposition 1. Namely, if we compute the number of arbitrarily assigned key
bits, we need to add the numbers of bits of sk1[i], i ∈ Zn \ defU (= n− |defU |),
from sk2[2i], sk2[2i+ 1] for i ∈ S0 and i ∈ S3 (= 2

3n− 2
3 |U3| − |U2| and = 2

3 |U3|
resp.), as well as the number of bits of U∗ ⊂ Z2n/3 (= |U∗|) and one bit per
U= ⊂ Zn/3 (= |U=|). Summing up, we obtain

log2 |WK(defU , 0)| =
5

3
n− |defU | − |U2|+ |U∗|+ |U=|. (4)

Therewith the upper bound (and often the actual value) is

log2

∣∣∣ ⋃
v3∈F

|U3|
2

WK(defU , v3)
∣∣∣ ≥ 5

3
n− 2|U2|+ |U∗|+ |U=|. (5)

200 S. Bulygin, M. Walter, and J. Buchmann

Summing up the numbers obtained via (5) over all defU we have an upper bound
on the overall number of weak keys: it is 252.51 for PRINTcipher–48 and 2117.7

for PRINTcipher–96.

What Is the Complexity of the Weak Key Recovery? Once a weak key is
distinguished, the attacker wants to recover the remaining key bits that are not
deduced immediately from the distinguishing phase. Of course, we may simply
use several known plaintexts and brute force the keys in WK(defU , v3), but we
can actually do better: we can separate the key recovery process in two consec-
utive steps, each having smaller time complexity.

Step 1 (chosen plaintext). Using chosen plaintexts from the distinguishing
phase brute force inactive key bits, i.e. sk1[i], i ∈ Zn \ defU and sk2[2i], sk2[2i+
1], i ∈ S0. For the actual implementation of this step we assign arbitrary values
to sk2[2i], sk2[2i + 1], i ∈ S3, sk2[2i] = sk2[2i + 1], i ∈ U=, sk2[i], i ∈ U∗ and
compute the corresponding bits of sk1 to get candidate keys for testing.

Note that after assigning arbitrary values to certain key bits, we rely on the
assumption that the remaining “cipher” behaves as a random permutation. Since
the overall number of plaintext bits in several chosen plaintexts exceeds the num-
ber of key bits we brute force, we expect, as usual, that we have a unique solution
for these key bits. Due to certain degeneration properties of PRINTcipher it is
not always true, however. Without going into technical details, we just state that
there exist certain positions at which bits of sk1 may attain arbitrary values in
this chosen plaintext scenario. Therefore we assign in this step some arbitrary
values to these bits, call them weird bits, and brute force them in the next step.
Denote the number of such weird bits w.

Now the computation of the work factor is similar to the one for the number
of weak keys as above. We have the work factor of Step 1:

log2 WF1 = n−|defU |+
2

3
n− 2

3
|U3|−|U2|−w =

5

3
(n−|defU |)−

1

3
|U2|−w. (6)

Note that the number of chosen plaintexts from the distinguishing phase is in-
deed enough, since the remaining “block length” n− |defU | times #CP exceeds
log2 WF1 for all defU .

Step 2 (known plaintext). This is as far as we can go with chosen plaintexts.
We cannot distinguish bits sk2[2i], sk2[2i+ 1], i ∈ S3 ∪ U= and sk2[i] for i ∈ U∗

having only these plaintexts. Therefore, for the second phase we take one known
plaintext that is not in U and brute force these key bits. Note, however, that
now the sk1-bits sk1[P

−1(3i)], sk1[P
−1(3i + 1)], sk1[P

−1(3i + 2)] correspond-
ing to i ∈ S3 cannot be determined from one round as in the case of chosen
plaintexts where the invariant property holds. Similar situation is with the bits
sk1[P

−1(3i)], sk1[P
−1(3i+2)] with i ∈ U=. So we have to brute force these bits

as well. We also brute force the weird bits in this step. We have

log2 WF2 =
5

3
|U3|+ |U∗|+ 3 · |U=|+ w. (7)

Many Weak Keys for PRINTcipher: Fast Key Recovery 201

Combining (6) and (7) we have that the overall work factor for the key recovery is

log2 WF ≈ max{log2 WF1, log2 WF2} =

max
{5
3
(n− |defU |)−

1

3
|U2| − w,

5

3
|U3|+ |U∗|+ 3 · |U=|+ w

}
. (8)

Now it is interesting to point out that a simple brute force approach would just
search through a weak key class in the known plaintext scenario and its work
factor would be the number of elements given by (4). We define a gain of our
key recovery procedure over the simple brute force as a difference between (4)
and (8), which gives a logarithm of the speed-up factor. Gains for all classes in
the case of PRINTcipher–48 are given in Appendix A. For PRINTcipher–96 the
largest gain is 27 yielding a speed-up factor of 227 which is quite substantial.

See the example in Appendix B for a detailed work-out of the above
computations.

Remark 1. The key recovery procedure in chosen/known plaintext scenario as
described above was implemented for PRINTcipher–48 and tested for weak key
classes that allow practical time key recovery. We could always correctly and
uniquely recover the secret key.

Countermeasures against the Attack. Note that due to existence of the
round constant RCi in the last 6 bits (corresponding to the last two S-Boxes no.
n/3−2 and n/3−1), our invariant projected subsets should not be active in these
two S-Boxes. As can be seen from Table 6, for PRINTcipher–48 there exist no
def U that avoids the last three S-Boxes. So, as has already been pointed out in
[12], spreading out the round constant over the last three S-Boxes (two bits of the
constant per S-Box) protects against the attack. Note, however, that this choice
is not as obvious as it may seem. For example, a SPONGENT-like solution [6],
where S-Boxes 0,1 and 14,15 are used for placing the round constant (or any three
of them) does not provide a secure solution, since classes no. 23 and 58 from Ta-
ble 6 avoid them, providing at least 250 weak keys. However, the “SPONGENT”
solution obviously defeats the classes no. 44 and 47 found in [12].

Note that opposed to the 48-bit case, in the case of PRINTcipher–96 there
exist defining sets that avoid the last three S-Boxes. In fact, there are 28 such
sets. So the countermeasure suggested in [12] for PRINTcipher–48 does not work
for all families here. Still, there is a collection of combinations of three S-Boxes
that cannot be avoided by any defining set. The S-Boxes 0,1,23 is one possible
solution among many others. So, in order to defeat the attack, one has to spread
out the round counter over these S-Boxes.

Important note: One may argue that the invariant attack in its complete
form as described in this paper is of not much value, since there still exist
simple countermeasures that defeat all families of weak keys. Note, however,
that since our analysis is complete, i.e. we have found all weak key families, we
may argue about security of the cipher against the invariant attack. Whereas
having only partial results of [12] it is not possible. In fact, as we have seen
above, countermeasures for PRINTcipher–96 that may be hinted from [12] are
not effective for many families of weak keys.

202 S. Bulygin, M. Walter, and J. Buchmann

4 Related and Future Work

In this paper we have undertaken a complete study of the invariant coset attack
initially presented at CRYPTO 2011 by Leander et al. By explicitly providing
characterization of defining sets of invariant projected subsets and weak key
families and classes we were able to recover all families of keys that are weak
in the sense of the invariant coset attack. We also showed that both versions of
the cipher can be made immune to this attack at no additional cost. The latter
conclusion was only possible to make due to completeness of our analysis.

Note also that methods of this paper, such as finding all defining set as per
Section 3.2, are interesting on their own. It can be shown that similar approach
can be employed in other contexts, e.g. for finding optimal guessing strategies
for algebraic cryptanalysis. These directions put the methods in a more general
context that deserves further investigation.

Acknowledgements. The first author is supported by the German Science
Foundation (DFG) grant BU 630/22-1. The second author is supported in part
by the NSF grant CNS-1117936. We would like to thank Gregor Leander for his
critical comments that helped to improve the paper considerably. We are also
thankful to Mohamed Ahmed Abdelraheem for providing the C implementation
of PRINTcipher that was used in the implementation of the attacks. Finally, we
thank anonymous referees for their numerous valuable suggestions and remarks.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight
Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 450–466. Springer, Heidelberg (2007)

2. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

3. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

4. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

5. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - A Block Cipher
Suitable for Electronic Product Code Encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011)

6. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A Lightweight Hash Function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

7. Abdelraheem, M.A., Leander, G., Zenner, E.: Differential Cryptanalysis of Round-
Reduced PRINTcipher: Computing Roots of Permutations. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 1–17. Springer, Heidelberg (2011)

Many Weak Keys for PRINTcipher: Fast Key Recovery 203

8. Ågren, M., Johansson, T.: Linear Cryptanalysis of PRINTcipher – Trails and
Samples Everywhere. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011.
LNCS, vol. 7107, pp. 114–133. Springer, Heidelberg (2011)

9. Karakoç, F., Demirci, H., Harmancı, A.E.: Combined Differential and Linear
Cryptanalysis of Reduced-Round PRINTcipher. In: Miri, A., Vaudenay, S. (eds.)
SAC 2011. LNCS, vol. 7118, pp. 169–184. Springer, Heidelberg (2012)

10. Bulygin, S., Buchmann, J.: Algebraic Cryptanalysis of the Round-Reduced and
Side Channel Analysis of the Full PRINTCipher-48. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 54–75. Springer, Heidelberg (2011)

11. Zhao, X., Wang, T., Guo, S.: Fault Propagate Pattern Based DFA on SPN Struc-
ture Block Ciphers using Bitwise Permutation, with Application to PRESENT and
PRINTcipher, ePrint, http://eprint.iacr.org/2011/086.pdf

12. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of
PRINTcipher: The Invariant Subspace Attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011)

13. William Stein, S., et al.: SAGE Mathematics Software, pp. 593–599. The Sage
Development Team (2008), http://www.sagemath.org

A The List of Defining Sets of All Possible Invariant
Projected Subsets of PRINTcipher–48

Table 6 presents defining sets of all possible invariant projected sets for
PRINTcipher–48.

B Example of Computations for Weak Keys Number and
Work Factors

Example 1. In this example we would like to provide a detailed workout of the
computations discussed in Section 3.3. We work with PRINTcipher–48 and a
specific defining set (no. 5 in Table 6):

defU = {0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41}.

In the figure below the positions of defU and their transition through the round
is denoted in bold.

Note that inputs and outputs of the S-Boxes in this example are uniquely
determined by the set defU and Table 3. In the figure the symbol ∀ means that
any value of the corresponding sk2-bit works for the invariant property. For ABC
and XY Z it holds that SBOXEF (ABC) = XY Z. Note that XY Z itself can
attain arbitrary values and ABC is determined by these and EF bits of the key
sk2. The “passive” bits are denoted with “*” and can attain arbitrary value. We
have |U2| = 24, |U3| = 3, |U∗| = 5, |U=| = 0, w = 0. The following table makes
the situation on the figure in a bit more formal way:

http://eprint.iacr.org/2011/086.pdf
http://www.sagemath.org

204 S. Bulygin, M. Walter, and J. Buchmann

Table 6. Defining sets of invariant projected subsets of PRINTcipher–48
Bold font: families found in [12]
#k : number of elements in the corresponding family
logWF : logarithm of the time complexity (work factor) of key recovery for each class
in the family
Gain: logarithm of the speed-up factor of the mixed CP/KP scenario over the simple
brute force in KP
⊥: an upper bound, not an exact value

No. defU #k logWF Gain

1 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 36⊥ 25 11

2 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 42 26 10

3 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 37 27 7

4 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 41 25 10

5 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41] 37 27 7

6 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41] 36 27 6

7 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 39, 41] 37 27 7

8 [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 39, 41] 37 27 7

9 [0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 34⊥ 24 10

10 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 39 24 9

11 [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 44 25 10

12 [0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 33⊥ 24 9

13 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 35 24 8

14 [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 40 25 9

15 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 39 26 7

16 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 35 24 8

17 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 38 26 6

18 [0, 2, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 38 26 6

19 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 26 5

20 [0, 2, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 26 5

21 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 35 27 5

22 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 27 4

23 [6, 8, 9, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 50 38 6

24 [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 40 26 8

25 [0, 1, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 39 26 7

26 [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 36 26 7

27 [0, 1, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 35 26 6

28 [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 36 27 6

29 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 34 27 4

30 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 30⊥ 25 11

31 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 41 24 11

32 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 45 25 11

33 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 35⊥ 24 11

34 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 37 24 10

35 [0, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 37 24 10

36 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 40 26 8

37 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 40 26 8

38 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 36 26 7

39 [0, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 37 27 7

40 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 40 26 8

41 [0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 43 26 11

42 [0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 39 26 10

43 [0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 39 27 9

44 [0, 1, 4, 5, 12, 13, 16, 17, 24, 25, 28, 29, 36, 37, 40, 41] 51 48 3

45 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 40, 41] 40 26 8

46 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 40, 41] 34 27 4

47 [0, 1, 3, 4, 5, 9, 11, 12, 13, 16, 17, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 51 38 7

48 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 36 27 6

49 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 35 27 5

50 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 40, 41] 35 27 5

51 [0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 40, 41] 35 27 5

52 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 40, 41] 38 26 6

53 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 40, 41] 33 27 3

54 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 40, 41] 35 27 5

55 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 40, 41] 34 27 4

56 [0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 35 27 5

57 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 33 27 3

58 [6, 7, 9, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 48 38 4

59 [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 40, 41] 35 27 5

60 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 40, 41] 43 25 9

61 [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 40, 41] 37 27 7

62 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 40, 41] 39 26 7

63 [0, 1, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 40, 41] 38 27 8

64 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 40, 41] 38 26 6

Many Weak Keys for PRINTcipher: Fast Key Recovery 205

0 * 1 K 0 * 0 * 0 X * 0 0 0 * ** 1 * * 1 1 0 1 B Y * * 1 * * *0 1 1 0 * 1 * 1 * Z * 0 * L * *

xor rci

∀ 0 1 0 0 1 1 0 0 1 0 ∀ ∀ 0 0 ∀ E F ∗ ∗ 1 0 0 ∀ 1 0 ∗ ∗ ∗ ∗

1 * 1 1 0 * 0 * 0 X * 1 0 1 * ** 1 * * 0 1 0 1 0 Y * * 0 * * *1 0 1 1 * 0 * 0 * Z * 1 * 1 * *

1 * 1 1 0 * 0 * 0 X * 1 0 1 * ** 1 * * 0 1 0 1 0 Y * * 0 * * *1 0 1 1 * 0 * 0 * Z * 1 * 1 * *

S-Box in mask out mask U∗ (a0, a1) in vals out vals

0 + +− +−+ 0 (1,0) 10* 1*1
1 −++ −++ 1 (∀,0) *11 *10
2 + +− +−+ 0 (1,0) 10* 1*1
3 −++ +−+ 0 (0,1) *01 1*1
4 +−+ ++− 0 (1,0) 0*0 00*
5 +−+ −++ 0 (0,1) 1*1 *10
6 + +− ++− 1 (0,∀) 00* 00*
7 −++ −++ 1 (∀,0) *11 *10
8 + +− ++− 1 (0,*) 00* 00*
9 + + + +++ 0 (E,F) ABC XYZ
10 −−− −−− 0 (*,*) *** ***
11 + +− +−+ 0 (1,0) 10* 1*1
12 + +− ++− 1 (0,∀) 00* 00*
13 + +− +−+ 0 (1,0) 10* 1*1
14 −−− −−− 0 (*,*) *** ***
15 −−− −−− 0 (*,*) *** ***

Sum 5

Now, let us see how the values from the table above are distributed in one
round:

in = 1*1 *10 1*1 1*1 00* *10 00* *10 00* XYZ *** 1*1 00* 1*1 *** ***
sk1 = 0*0 *11 1*1 K*0 01* *11 00* *11 0B* XYZ *** 0*0 01* 0*L *** ***
XOR = 1*1 *01 0*0 A*1 01* *01 00* *01 0B* 000 *** 1*1 01* 1*C *** ***
P = 10* *11 10* *01 0*0 1*1 00* *11 00* ABC *** 10* 00* 10* *** ***
sk2 = 10 ∀0 10 01 10 01 0∀ ∀0 0∀ EF ** 10 0∀ 10 ** **
out = 1*1 *10 1*1 1*1 00* *10 00* *10 00* XYZ *** 1*1 00* 1*1 *** ***

In this table the values in out and in are the same and are taken from the
out vals column of the first table. Then, the values in P correspond to the inputs

206 S. Bulygin, M. Walter, and J. Buchmann

to the S-Boxes (or, equivalently, to the outputs of the diffusion layer) and are
taken from the column in vals of the first table. We then permute the values in
P with P−1 to get the output of the XORsk1 operation. Having that, we may
compute many values of sk1 right away. Note that K = 1 + A,L = 1 + C and
are determined by the values of XY Z and EF .

For a specific example, let us take XY Z = 000 so that v3 = (0, 0, 0). So we
are working now with

U = 1∗1 ∗10 1∗1 1∗1 00∗ ∗10 00∗ ∗10 00∗ 000 ∗∗∗ 1∗1 00∗ 1∗1 ∗∗∗ ∗∗∗.

Note that independently of the values of EF we have SBOX−1
EF (000) = 000 =

ABC and so K = L = 1. The weak keys from WK(defU , v3) are of the form
(sk1, sk2), where

sk1 = 0∗0 ∗11 1∗1 1∗0 01∗ ∗11 00∗ ∗11 00∗ 000 ∗∗∗ 0∗0 01∗ 0∗1 ∗∗∗ ∗∗∗,

sk2 = 10 ∗ 0 10 01 10 01 0 ∗ ∗0 0 ∗ ∗ ∗ ∗ ∗ 10 0 ∗ 10 ∗ ∗ ∗ ∗.

Now let us compute the number of elements in WK(defU , 0). Using (4) we have

|WK(defU , 0)| = 280−27−24+5 = 234.

The upper bound provided by (3) is actually tight in this case and∣∣ ⋃
v3∈F3

2

WK(defU , v3)
∣∣ = 23 · 234 = 237.

Now as to the time complexity of the key recovery, from (8) we have

log2 WF = max
{5
3
· 21− 1

3
· 24, 5

3
· 3 + 5

}
= max{27, 10} = 27.

So for the key recovery it takes around 227 encryptions having 3 chosen and 1
known plaintext. We have a gain of 34 − 27 = 7 bits compared to the simple
brute force attack.

It is not hard to see that the class of weak keys WK(defU , 0) is different from
the ones presented in [12]. Indeed, for example the keys with

sk1 = 000 ∗11 1∗1 1∗0 01∗ ∗11 00∗ ∗11 00∗ 000 ∗∗∗ 0∗0 01∗ 0∗1 ∗∗∗ ∗∗∗

do not belong to the class defined by defU no. 44, since there sk1[1] = 1 and the
keys with

sk1 = 0∗0 ∗11 1∗1 1∗0 01∗ ∗11 00∗ ∗11 00∗ 000 ∗∗∗ 0∗0 01∗ 001 ∗∗∗ ∗∗∗

do not belong to the class defined by defU no. 47, since there sk1[40] = 1, see
[12].

Applying Remote Side-Channel Analysis

Attacks on a Security-Enabled NFC Tag

Thomas Korak and Thomas Plos

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{thomas.korak,thomas.plos}@iaik.tugraz.at

Abstract. The number of applications that rely on near-field communi-
cation (NFC) technology is significantly growing. Especially for security-
related applications, short communication ranges as they are provided
by NFC systems are advantageous to minimize the risk of eavesdropping.
In this work we show that although the communication range of NFC
systems is limited to several centimeters, side-channel information mod-
ulated on the reader signal can be measured at much larger distances.
We name the side-channel information modulated on the reader signal
parasitic load modulation. By measuring the parasitic load modulation of
a tag, so-called remote side-channel analysis (SCA) attacks can be ap-
plied. We verify the practicability of such remote attacks by analyzing
a security-enabled NFC tag with an integrated Advanced Encryption
Standard (AES) module. The analyzed NFC tag operates at a carrier
frequency of 13.56MHz and uses the well known ISO14443A communi-
cation standard. We were able to conduct successful remote SCA attacks
at distances up to 1m. No special measurement equipment is required,
a self-made loop antenna, a broadband amplifier, and an oscilloscope
are sufficient. We further formulate a relationship between attack per-
formance and measurement distance that is confirmed by our practical
results. These are the first remote SCA attacks on an NFC tag and on
tags operating in the high-frequency range at 13.56MHz at all. The re-
sults emphasize that the integration of suitable SCA countermeasures is
inevitable.

Keywords: remote side-channel analysis (SCA) attacks, differential elec-
tromagnetic analysis (DEMA) attacks, near-field communication (NFC),
radio-frequency identification (RFID), Advanced Encryption Standard
(AES).

1 Introduction

Near-field communication (NFC) is a contactless communication technology that
has become increasingly important in the last years. A variety of applications
make already use of NFC technology, e.g., ticketing, transportation, mobile pay-
ment, smart posters or access-control systems. The integration of NFC function-
ality into the latest generation of smart phones underlines the relevance of this

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 207–222, 2013.
© Springer-Verlag Berlin Heidelberg 2013

208 T. Korak and T. Plos

technology and will further push its spreading. With the availability of NFC-
enabled devices in large scale, new applications such as the future Internet of
Things (IoT) will arise.

NFC technology bases on standards and platforms used by radio-frequency
identification (RFID) systems such as ISO14443-3/4 [12, 13] as well as on speci-
fications released by the NFC Forum [23]. In a basic NFC system, a reader device
(e.g., a smart phone) generates a radio frequency (RF) field that is used for con-
tactless communication with a so-called tag1. NFC systems have a rather short
communication range of only a few centimeters and their RF field operates in the
high-frequency (HF) range at 13.56MHz. The tag is a small microchip attached
to an antenna. Especially passive tags that also receive their power supply from
the RF field are interesting for applications like the future IoT, where tags have
to be available in large quantities and at a competitive price.

Due to the limitations of low-cost tags in terms of power supply (passive opera-
tion) and chip size (directly influences production costs), manufacturers initially
integrated only proprietary cryptographic algorithms into tags for enabling se-
curity functionality. However, the incidents of the last years (e.g., CRYPTO1
algorithm [24], DST40 cipher [2], Hitag 2 cipher [5]) have shown that proprietary
algorithms are not suitable for providing sufficient security for NFC or RFID sys-
tems. This has led to a paradigm shift, where manufacturers started integrating
cryptographic algorithms with state-of-the-art security to low-cost tags, like for
example the Advanced Encryption Standard (AES) [22].

Even if a cryptographic algorithm is mathematically secure, its implemen-
tation on a device can be vulnerable to side-channel analysis (SCA) attacks.
Such attacks measure side-channel information (e.g., computation time, power
consumption, electromagnetic emanation) of the device while it is computing
the cryptographic algorithm. With the measured side-channel information, se-
cret data involved in the algorithm computation (e.g., the encryption key) can
be extracted. Especially differential power analysis (DPA) attacks invented by
Kocher et al. [17] in 1999 are a very powerful technique, as they need no detailed
knowledge about the attacked device and allow to detect even very weak data
dependencies in the power consumption. As shown by Gandolfi et al. [7], also the
electromagnetic (EM) emanation of a device can be deployed for such attacks,
which are called then differential EM analysis (DEMA) attacks.

Over the years numerous articles have been published that present DPA or
DEMA attacks on contact-based devices [1, 4, 8, 14, 19, 20, 26]. However, only
a handful of articles deals with attacks on contactless devices like NFC or RFID
tags. DPA and DEMA attacks on HF tags operating at 13.56MHz have been
presented by Hutter et al. [9], Kasper et al. [15], and Oswald et al. [27]. Attacks
on an NFC tag have been shown by Korak et al. [18]. All these attacks have
been conducted in close proximity of the tag. So-called remote SCA attacks
that can be applied from distance have been first demonstrated by Oren and

1 Note that NFC technology supports also a so-called peer-to-peer mode where both
devices are actively powered and use their own RF field for communication, which
we do not consider here in our work.

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 209

Shamir [25] for tags operating in the ultra-high frequency (UHF) range around
860 to 960MHz and later also by Plos [28].

UHF tags use different communication principles than HF and NFC tags. One
difference is that UHF tags operate in the far field using electromagnetic waves,
allowing them to achieve communication ranges of 10m and more. HF and NFC
tags on the other hand operate in the near field using inductive coupling, leading
to much shorter communication ranges (up to 1.5m for HF tags and up to 10 cm
for NFC tags). Moreover, UHF tags use backscatter modulation for data trans-
mission to the reader, HF and NFC tags use load modulation. Observations
of Oren and Shamir have shown that the backscatter of UHF tags also con-
tains data-dependent information—named parasitic backscatter by them—that
enables remote SCA attacks.

In this work we practically demonstrate that NFC tags that have only a
communication range of several centimeters are also vulnerable to remote SCA
attacks, similar to UHF tags. We show that an attacker can easily measure data-
dependent information modulated on the 13.56MHz RF signal at distances up to
1m. We name the data-dependent information present in the RF signal parasitic
load modulation. This is the first article that presents results of successful remote
SCA attacks on tags in the HF range. For our analyses we use a security-enabled
NFC tag that is passively powered and that has an AES module integrated. By
measuring the parasitic load modulation of the NFC tag, we successfully revealed
the secret key of the AES module via remote SCA attacks at distances from 25 cm
up to 1m. For our attacks no extra analog preprocessing circuits like amplitude
demodulator or hardware filter are required as they are used for example in the
close-proximity measurements in [15, 27]. Instead we simply measure the peaks
of the reader signal that contain the parasitic load modulation followed by a
downsampling step in software. Our measurement setup only consists of a self-
made loop antenna, an RF amplifier, and an oscilloscope. This makes our attack
very easy to apply, even for people without detailed RFID/NFC knowledge. Our
results let us come to the conclusion that NFC tags (and probably HF tags in
general) are vulnerable to remote SCA attacks, making the integration of proper
countermeasures inevitable for such tags.

The remainder of this article is structured as follows. Section 2 describes the
remote SCA attacks and Section 3 provides details about the analyzed NFC
tag. Measurement setup and preprocessing steps are explained in Section 4. The
results of the remote SCA attacks are presented in Section 5, followed by a
summary and discussion in Section 6. Conclusions are drawn in Section 7.

2 Remote SCA Attacks

The remote SCA attacks presented in this paper have their origin in the DPA
attacks first demonstrated by Kocher et al. [17] in 1999. DPA attacks take ad-
vantage of the fact that different data processed on complementary metal-oxide
semiconductor (CMOS) devices result in different power-consumption values.
However, not only the power consumption of a device is a suitable side channel,

210 T. Korak and T. Plos

but also the EM emanation as illustrated by Gandolfi et al. [7]. DPA attacks
that use the EM emanations of a device are called DEMA attacks.

For conducting DPA or DEMA attacks, a large number of power or EM traces
has to be recorded in a first step that target the same operation of the cryp-
tographic device but with different, known input data. In the second step, sta-
tistical methods (e.g., the Pearson correlation coefficient) are applied on the
recorded traces together with modeled side-channel information of the device in
order to reveal secret information (e.g., the encryption key used by the device).
For a detailed description of DPA and DEMA attacks we refer to the book of
Mangard et al. [21].

The power consumption of a device needed for a DPA attack is typically
determined by measuring the voltage drop across a resistor that is inserted in
the supply or ground line of the device. For contactless devices like NFC and
RFID tags, inserting a resistor for directly measuring the power consumption
is often not possible. Hence, special antennas or probes are used to gather the
EM emissions of the tag chip in close proximity that can be used afterwards for
DEMA attacks [9, 15, 18, 27].

An important aspect that has to be considered when measuring the EM emis-
sions of a tag chip is the presence of the RF signal of the reader. The reader
signal is much stronger than the side-channel information emitted by the tag.
In order to overcome this problem, the tag itself can be modified or analog pre-
processing circuits can be used to minimize the influence of the reader signal.
Carluccio et al. [3] suggested for example to separate the tag chip from its an-
tenna. By connecting the tag chip to an external antenna via wires, it is possible
to place the tag chip away from the reader field, lowering the impact of the field
on the measurements. Kasper et al. [15] use an analog preprocessing circuit that
subtracts the reader signal from the signal measured with an EM probe close to
the tag chip. Oswald et al. [27] apply an analog demodulation circuit to suppress
the influence of the reader signal.

For our remote SCA attacks we use a different approach that requires neither
the separation of the tag chip from its antenna nor the application of special
analog preprocessing circuits. We even go the opposite way by exploiting the
strong reader field as a carrier of the weak data-dependent information emit-
ted by the tag. As we assume that most of the data-dependent information is
amplitude modulated on the reader signal, it is sufficient to measure only the
peaks of the reader signal. This simple measurement concept was originally used
for analyzing the emissions of UHF tags [29]. In this work we show that this
concept is also suitable for gathering the data-dependent emissions of NFC/HF
tags, even at greater distances.

NFC and HF RFID systems are inductively coupled. This means that the
antennas of reader and tag are loosely coupled and act like an air-core trans-
former [6], which is illustrated in Figure 1. Applying an alternating voltage at
the reader antenna (UReader) results in a magnetic field that itself induces an
alternating voltage at the tag antenna (UTag). The voltage at the tag is not only
used for data transmission from the reader to the tag (i.e., by modulating the

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 211

ZMod
ZChip

Data

Tag
antenna

Reader
antenna

UReader

Inductive
coupling

UTag

ZTag

Fig. 1. Basic principle of inductive cou-
pling between reader and tag antenna

Tag chip

Analog front-end Digital partAntenna

Clock
Data

Controller

Crypto-
graphic

unit

AES

VCC

GND

Fig. 2. Architecture of the evaluated chip

reader field in step with the data), but also to provide the power supply for
passive tags. Data transmission from the tag to the reader is done by so-called
load modulation, where an impedance ZMod is switched in step with the data.
Switching the impedance ZMod changes also the overall impedance of the tag
ZTag, which in turn results in changes in the magnetic field and in detectable
voltage variations at the reader antenna.

However, not only the intended load modulation influences the magnetic field,
but also changes in the power consumption of the tag chip. As the power con-
sumption directly relates to the chip’s effective impedance ZChip, the overall
impedance of the tag is changed as well. In that way data-dependent infor-
mation present in the power consumption of the tag chip is modulated on the
reader field. We call this effect parasitic load modulation, according to a similar
effect named parasitic backscatter that was observed by Oren and Shamir for
tags operating in the UHF range [25]. In the following, we use this parasitic load
modulation for conducting remote SCA attacks on a security-enabled NFC tag.

It is not obvious that remote attacks are applicable on NFC or HF tags. First,
NFC and HF tags are inductively coupled and operate in the near field where
RF signals are attenuated with 1/d3 (with d being the distance). UHF tags on
the other hand operate in the far field, where RF signals are only attenuated
with 1/d. Moreover, the parasitic backscatter observed by Oren and Shamir does
not influence the reader field, rather it relates to independent electromagnetic
waves emitted by the tag antenna. Consequently, a favorable placement of the
measurement antenna is possible that allows to gather mainly the signal emitted
by the tag antenna. However, this is not possible when measuring the parasitic
load modulation of a tag, as it is directly modulated on the strong reader field.

3 Device under Attack

In this section we give an overview of the attacked hardware device. For the
evaluation we use a prototype of an NFC-tag chip. Mounted on an antenna,
the chip behaves like a commercial, passive RFID tag. The NFC tag operates in
the HF range at a frequency of 13.56MHz for communication with the reader.
The communication protocol is implemented according to the ISO 14443-3/4

212 T. Korak and T. Plos

Fig. 3. The NFC-tag chip mounted on a
commercial RFID-tag antenna

Fig. 4. Schematic measurement setup

standard [12, 13]. The chip consists of two main parts as it can be seen in Figure
2: the analog front-end (AFE) and the digital part. The antenna is connected
to the AFE that extracts the power supply and the clock signal from the reader
field and provides them to the digital part. The digital part is responsible for
processing the commands and for sending proper responses to the reader. This
part also contains a cryptographic unit with an AES implementation to pro-
vide security services like tag authentication. In order to authenticate the NFC
tag to a reader device the Internal Authenticate (IntAuth) command is used
according to [10]. The IntAuth command sent from the reader to the tag in-
cludes an eight-byte long challenge. The response of the tag to that command
is a waiting-time extension (WTX) in order to signalize the reader that the re-
quested computation will need more time. The reader has to acknowledge the
received WTX command by sending the same command back to the tag. After
the tag has received the WTX again it generates an eight-byte long random
number, concatenates it to the previously received challenge and encrypts the
sixteen bytes (plaintext) using the AES. The last step of the IntAuth procedure
consists in sending the result of the AES computation (the ciphertext) to the
reader. The AES part is implemented as special-purpose hardware to meet the
most important requirements for RFID-tag chips: low power consumption and
small chip area. Low power consumption is a requirement because the chip uses
the power supply generated from the reader field. Chip area is an important
factor concerning the production costs.

We used the antenna of a commercial HF-RFID tag. We removed the original
chip from this antenna and mounted our NFC-tag chip on it instead as it can be
seen in Figure 3. The chip is placed in a metal housing, so its direct emanation
is attenuated.

4 Measurement Setup and Preprocessing

In this section we explain our used measurement setup as well as the prepro-
cessing steps that we have performed on the recorded traces. One important
remark is that our setup does not require any analogue preprocessing circuits

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 213

Measurement antenna

Amplifier

Trigger probe

NFC reader and
NFC tag

Fig. 5. Measuring arrangement for d = 100 cm

like a signal-cancellation circuit (c.f. [15]) or a demodulation circuit (c.f. [27]).
We only use an amplifier for larger distances between tag and measurement
antenna in order to increase the amplitude of the measured signal.

In Figure 4 the schematic measurement setup is depicted and Figure 5 shows
a picture taken during a measurement at a distance of 100 cm. An NFC reader
(Tagnology TagScan) as well as an oscilloscope (LeCroy LC584) are connected
to the control computer. This computer stores the traces and sends commands
to the NFC tag using MATLAB scripts. Furthermore we use a self-made loop
antenna with Nant = 5windings and a diameter of dant = 8 cm in order to
measure the reader signal. We have tried different values for Nant as well as for
dant, but the best results could be achieved with the values mentioned above.
In order to amplify the signal measured with the antenna we used a broadband
amplifier with a gain of 30 dB.

We do not need a dedicated trigger pin on the device under attack. We extract
the trigger information for the start of the recording step using a pattern in the
communication between NFC tag and reader as it can be seen in Figure 6. This
figure shows an EM trace of the whole IntAuth procedure as described in the
previous section. The time interval where the AES calculation takes place is
highlighted in the trace. This part was recorded in order to perform the DEMA
attacks. For recording the traces the trigger probe was placed at a distance of
25 cm. In order to reduce the effort we have fixed the trigger probe at d = 25 cm
for all measurements. However, as Figure 6 illustrates, commands sent from the
reader to the tag that are used for triggering can be clearly identified in the
trace (tag answers are smaller but can also be easily identified). Hence, placing
the trigger probe at larger distances is no problem. Experiments yielded that
the trigger information can be easily detected at distances exceeding 100 cm.

We used a special recording technique in order to get rid of analog prepro-
cessing circuits. Our assumption is that the data-dependent information is mod-
ulated on the amplitude of the reader signal due to parasitic load modulation.
So we just recorded the peaks of the reader signal to increase the resolution of
the measurement. The upper plot in Figure 7 shows one trace where the whole

214 T. Korak and T. Plos

Fig. 6. Sequence of commands for the
internal authentication using AES. The
time interval where the AES calculation
takes place is highlighted in the trace.

Fig. 7. The plot on top shows an EM
trace recorded with low resolution. The
plot in the middle shows the same trace
recorded with a high resolution. The plot
on the bottom shows a comparison be-
tween a downsampled trace and an AM-
demodulated trace.

amplitude is recorded and the lower plot shows the same trace zoomed into the
peaks. Before storing the traces we performed a downsampling step. The reader
frequency fc = 13.56MHz as well as the used sampling rate sr = 1GS/s are
known, so the downsampling rate ds can be calculated using Equation 1.

ds =
sr

fc
=

1GS/s

13.56MHz
= 73.75 [Samples] (1)

The value of ds has to be an integer value. In order to achieve this we have
used an adaptive downsampling rate. After using ds = 74 three times, ds = 73
was used one time and so on (74 + 74 + 74 + 73 = 4 · 73.75). Downsampling
using the mentioned rate means we only use one point per period Tc = 1/fc =
1/13.56MHz = 73.75ns where the point equals the maximum value in this
period. Using this method we could achieve a memory saving of a factor of
74. This method seems to be similar to an analog demodulation followed by a
lowpass filtering. To illustrate the similarity we have applied these two steps on
the trace from Figure 7. The two steps were performed in MATLAB. Using the
build-in function amdemod we demodulated the trace. Afterwards the resulting
trace was lowpass-filtered using the function filtfilt with a cut-off frequency
fco = 15MHz. Except of the downsampling step no other preprocessing steps
(e.g., alignment, filtering) are required in order to perform successful DEMA
attacks.

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 215

Fig. 8. Peak-to-peak voltage (Upp) of the
reader signal as a function of the dis-
tance between reader and measurement
antenna (Upp = f(d))

Fig. 9. Peak-to-peak voltage (Upp) of the
reader signal as a function of the angular
offset (Upp = f(angular offset))

Next the focus is put on the relationship between the amplitude of the mea-
sured reader signal Upp and the distance d between reader and measurement
antenna. According to [6] this relationship can be described with the following
equation: Upp ≈ 1

d3 . The measurements of the amplitude of the reader signal at
distances d between 25 cm and 100 cm confirmed the theory. Figure 8 illustrates
the performed comparison of measured values and values calculated based on
the equation given above. The black graph corresponds to values calculated us-
ing the equation and the data points marked with ‘x’ correspond to measured
values.

Furthermore the influence of the angular offset of the measurement antenna
was examined. For that purpose Upp was measured for angles between 0◦ (i.e.,
reader antenna and measurement antenna are coaxial as shown in Figures 4 and
5) and 90◦ with a step size of 9◦ at a constant distance d = 30 cm. The results are
summarized in Table 1. Figure 9 depicts the relationship between angular offset
and voltage where the values of the y-axis are normalized to Upp at 0◦ (Upp,0◦).
At 90◦ the Upp value can be increased from 470mV to 618mV by rotating the
measurement antenna by 90◦ (i.e., reader antenna and measurement antenna
are coplanar). The influence of the angular offset highly depends on the antenna
design of the used reader.

Table 1. Relation between Upp and angle for d = 30 cm

Angle Upp Angle Upp Angle Upp

deg mV % deg mV % deg mV %

0 910 100 36 787 86 72 453 50
9 915 101 45 686 75 81 373 41
18 889 98 54 595 65 90 470 51
27 854 94 63 548 60

216 T. Korak and T. Plos

Fig. 10. DEMA-attack result with
opened chip housing

Fig. 11. DEMA-attack result with closed
chip housing

In the following we explain how to take advantage of the zoom of the oscil-
loscope. We have recorded traces with different resolutions and have counted
the different occurring voltage values. With the lowest resolution (100mV/div)
many samples have a similar voltage value as only 8 different voltage values
appear. With increasing resolution also the number of different voltage values
increases. As a result of only measuring the peaks of the signal the voltage
values are fine grained and the quality of the DEMA attack increases.

In the following we will use fzoom (zoom factor) in order to describe the
percentage of the amplitude recorded with a given Upp (dependent on d) and a
given resolution res (V/div) according to the setting of the oscilloscope. fullscale
equals the number of divisions on the voltage axis of the oscilloscope. fzoom is
calculated according to Equation 2.

fzoom =
fullscale · res

Upp
· 100 [%] (2)

5 Side-Channel Analysis Results

In this section the results of the remote SCA-attacks using EM traces measured
at distances between 25 cm and 100 cm are presented. At the beginning a veri-
fication of our assumption that the EM emanation of the chip is modulated on
the reader signal (parasitic load modulation) is given.

5.1 Verification of the Parasitic Load Modulation

In order to verify the assumption that the EM emanation of the chip is modulated
on the reader signal and that it is not the direct emanation of the chip, we first
performed attacks at a low distance of only 7 cm for two scenarios. In the first
scenario the chip housing was opened and in the second scenario it was closed.
20 sets each containing 5000 EM traces were recorded for each scenario and a

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 217

DEMA attack was performed on each set. Next the mean (ρ̄opened, ρ̄closed) and
the standard deviation (σopened, σclosed) of the highest correlation values were
calculated for both scenarios yielding to the following results: ρ̄opened = 0.246,
σopened = 0.032, ρ̄closed = 0.244, σclosed = 0.025. Figure 10 shows one DEMA-
attack result for the scenario with opened chip housing and Figure 11 shows
one DEMA-attack result for the scenario with closed chip housing. Gray traces
correspond to wrong key hypotheses and black traces correspond to the correct
key hypothesis. Small variations in the highest correlation values can be observed
but the statistical analysis yield that the direct emanation of the chip does not
influence the results significantly.

5.2 Remote SCA-Attack Results

In the following the results of the remote DEMA attacks for high distances are
presented. We have performed attacks for the following distances: 25 cm, 35 cm,
45 cm, 50 cm, 65 cm, 80 cm, and 100 cm. In order to evaluate the attack perfor-
mance for every distance we used the nearest-rival distinguishing power (nrdp)
measure as presented in [30]. This value is calculated according to Equation 3.
ρmaxCorrect is the correlation value of the correct key hypothesis, ρmaxWrong is
the maximum correlation value of the wrong key hypotheses and σ relates to the
standard deviation. The number of traces used for the attack is N . If nrdp > 0
the attack is successful, else (nrdp ≤ 0) the correct key hypothesis cannot be
distinguished from wrong key hypotheses.

nrdp =
1

σ
· (ρmaxCorrect − ρmaxWrong); σ =

1√
N

(3)

In order to evaluate the influence of the used resolution on the attack result,
attacks with different resolutions were performed for d = 35 cm. The result
of this experiment is depicted in the upper plot in Figure 12. The left-most
data-point corresponds to the highest possible resolution which can be achieved
with the used oscilloscope, namely 2mV/div. With Upp = 590mV for this dis-
tance 3.4% of the amplitude are recorded as a consequence (fzoom = 3.4%).
The important observation here is that the highest resolution does not lead to
the attack with the highest correlation coefficient. Using fzoom = 8.5% leads
to the best results. In the case of d = 35 cm this corresponds to a resolution
of 5mV/div. In the lower plot in Figure 12 the used values for fzoom for the
different distances are depicted. The high fzoom value of over 25% for d = 65 cm
appears because with the highest resolution of the oscilloscope (2mV/div) and
the Upp value for that distance a smaller value was not achievable. In order to
achieve fzoom values in the region around 10% for higher distances (smaller
Upp values), a second amplifier stage was used to increase the gain. With this
modification fzoom values around 10% can be reached again at d = 80 cm and
d = 100 cm.

The plot in Figure 13 shows the correlation coefficient for the correct key
hypothesis for the analyzed distances. There is a big descent for the value of
ρ between 25 cm and 45 cm: Δρ25cm−45cm = ρ25cm − ρ45cm = 0.12938. The

218 T. Korak and T. Plos

Amplifier gain
increased

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

Fig. 12. Upper plot: correlation coeffi-
cient as function of fzoom (d = 35 cm).
Lower plot: used fzoom values for ana-
lyzed distances.

3

1
d

Fig. 13. The resulting correlation coeffi-
cient ρ for the analyzed distances

difference of the ρ values between 45 cm and 100 cm is comparatively small:
Δρ45cm−100cm = ρ45cm − ρ100cm = 0.04897.

Comparing Figure 8 and Figure 13 shows that the relations Upp ↔ d and
ρ ↔ d are similar. This similarity can be described as follows: The power con-
sumption and as a consequence also the EM emanation of a device at each point
in time depends on a noise part Pnoise, a constant part Pconst and the exploitable
part Pexp as explained in the book of Mangard et al. [21]. The total power con-
sumption in every point in time is the sum of these three parts according to
Equation 4.

Ptotal = Pnoise + Pconst + Pexp (4)

With the information given above the signal-to-noise ratioSNR can be calculated.
TheSNR is defined as the ratio between the variance of the signal and the variance
of the noise. As V ar(Pconst) = 0, the SNR can be calculated using Equation 5.

SNR =
V ar(Pexp)

V ar(Pnoise)
(5)

The higher the SNR at the targeted point in time for an attack is, the better
are the results of the correlation attack (higher correlation value ρ). In [21] the
relation between ρ and SNR is given according to Equation 6. One important
remark is that the approximation given in Equation 6 is only valid for small
values of SNR and for | ρ ≤ 0.2 |. For the scenario presented in this work these
limitations hold.

ρ ≈
√
SNR (6)

In a next step relations between d and V ar(Pexp) as well as between d and
V ar(Pnoise) have to be found. In our model Pexp can be seen as the exploitable
part of the EM signal of the chip which is modulated on the reader signal. As

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 219

we could show in the previous section, the relation between Upp of the reader
signal and d is the following: Upp ≈ 1

d3 . As a result also the variations caused by
Pexp decrease with the factor 1

d3 . So the first observation is that V ar(Pexp) ≈ 1
d3 .

Next the focus is put on Pnoise. In our remote scenario Pnoise can be split up into
two parts, PnoiseIC and PnoiseENV . PnoiseIC is the noise part contributed from
the chip and PnoiseENV is the environmental noise recorded with the antenna.
PnoiseENV is independent of d and PnoiseIC ≈ 1

d3 and it can furthermore be
assumed that PnoiseENV * PnoiseIC . Combining the upper results the relation
between SNR and d and as a consequence also the relation between ρ and d
(using Equation 6) can be given according to Equation 7. This theoretical result
confirms our practical measurements (cf. Figure 13).

SNR ≈ 1

d3
→ ρ ≈

√
SNR ≈ 1√

d3
(7)

6 Summary of the Results and Discussion

Table 2 provides an overview of the results achieved with the remote SCA at-
tacks for distances between 25 cm and 100 cm. The values for the nearest-rival
distinguishing power (nrdp) show that the attacks for all distances lead to correct
results. The correlation coefficient ρmaxCorrect decreases according to Equation 7
with increasing distance. As a result the number of traces used for the attack
in order to achieve correct results increases. The starting point of the analyses
was d = 25 cm and the distance was increased as soon as the SCA-attack result
was expressive. This leads to the different number of traces for the different at-
tack distances. Using a different number of traces decreases the comparability
between the attacks on the one hand. On the other hand the achieved results
are sufficient in order to confirm the theoretical assumptions like the relation
between ρ and d given in Equation 7.

In order to achieve fzoom values of 10% we have used a second amplifier stage
for the distances 80 cm and 100 cm. This explains the increased Upp values given
in Table 2 for these two distances.

Table 2. SCA-attack results achieved at the analyzed distances (for d = 80 cm and
d = 100 cm a second amplifier stage was used)

d Upp Resolution fzoom Traces used ρmaxCorrect nrdp

cm mV mV
div

%

25 1 600 10 6.25 3 000 0.204 10.95
35 590 5 8.47 3 000 0.128 5.48
45 260 2 7.69 4 500 0.074 0.40
50 180 2 11.11 9 000 0.062 3.51
65 74 2 27.03 14 000 0.039 0.70
80 1 000 10 10.00 14 000 0.043 3.67
100 640 5 7.81 30 000 0.025 0.51

220 T. Korak and T. Plos

For our remote SCA attacks we have placed reader and tag close to each
other. However, in a real-world attack scenario, it would be advantageous for an
attacker to place the reader also at a certain distance from the tag. In that way
the whole attack can be applied completely remotely without being noticed by
the tag owner. As demonstrated by Kfir et al. [16], remotely powering and also
communicating with an NFC tag up to ranges of 40 cm can be easily realized
with low-cost equipment (below 100 $). Kfir et al. achieved this range extension
by using a larger reader antenna and by increasing the strength of the reader
field. Using such a setting a large amount of traces can be recorded unnoticed by
the owner of the NFC tag. For HF tags operating in the so-called vicinity range
(e.g., according to ISO15693 [11]) that can anyway achieve larger communication
ranges of up to 1.5m, such remote attacks are even much easier to conduct as
no modification of the reader device is necessary.

7 Conclusion

In this work we presented so-called remote SCA attacks on the AES implemen-
tation of a security-enabled NFC tag. Our results confirm that it is possible to
measure side-channel information of NFC tags at distances up to 1m although
the communication range between reader and tag in NFC systems is limited to
a few centimeters according to the specification. The remote attacks are enabled
by the fact that the power consumption of the tag chip influences the amplitude
of the reader signal. We name this effect parasitic load modulation. By measur-
ing the small amplitude variations of the reader signal, DEMA attacks can be
applied from a distance. In order to measure these weak variations no special
analog preprocessing circuits are required, a self-made loop antenna, an ampli-
fier, and an oscilloscope are sufficient. As the desired side-channel information
is modulated on the reader signal, only its peaks were recorded, followed by a
downsampling step in software. This makes the attack not only very simple to
conduct but also improves the attack performance as the recorded traces be-
come significantly smaller in size. Moreover, we formulate the relation between
obtained correlation coefficient and distance of tag and measurement antenna,
confirming our practical observations. These are the first remote SCA attacks on
an NFC/RFID tag operating in the HF range at all. We assume that other tags
operating in the HF range at a carrier frequency of 13.56MHz (e.g., ISO15693
tags) are vulnerable as well to such attacks, underlining the importance of inte-
grating proper SCA countermeasures.

Acknowledgements. The work presented in this article has been supported by
the European Commission through the ICT programTAMPRES (under contract
ICT-SEC-2009-5-258754).

References

[1] Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

Applying Remote SCA Attacks on a Security-Enabled NFC Tag 221

[2] Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A., Szydlo, M.: Secu-
rity Analysis of a Cryptographically-Enabled RFID Device. In: Proceedings of
USENIX Security Symposium, Baltimore, Maryland, USA, pp. 1–16 (July-August
2005)

[3] Carluccio, D., Lemke, K., Paar, C.: Electromagnetic Side Channel Analysis of a
Contactless Smart Card: First Results. In: Oswald, E. (ed.) RFIDSec 2005, Graz,
Austria, July 13-15, pp. 44–51 (2005)

[4] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: A Cautionary Note Regarding Evalu-
ation of AES Candidates on Smart-Cards. In: Second Advanced Encryption Stan-
dard (AES) Candidate Conference, Rome, Italy (1999)

[5] Courtois, N.T., O’Neil, S., Quisquater, J.-J.: Practical Algebraic Attacks on the
Hitag2 Stream Cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009)

[6] Finkenzeller, K.: RFID-Handbook, 2nd edn. Carl Hanser Verlag (April 2003) ISBN
0-470-84402-7

[7] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

[8] Ha, J.C., Kim, C., Moon, S.-J., Park, I., Yoo, H.: Differential Power Analysis on
Block Cipher ARIA. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J.
(eds.) HPCC 2005. LNCS, vol. 3726, pp. 541–548. Springer, Heidelberg (2005)

[9] Hutter, M., Mangard, S., Feldhofer, M.: Power and EM Attacks on Passive 13.56
MHz RFID Devices. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 320–333. Springer, Heidelberg (2007)

[10] International Organisation for Standardization (ISO). ISO/IEC 7816-4: Informa-
tion technology - Identification cards - Integrated circuit(s) cards with contacts -
Part 4: Interindustry commands for interchange (1995), http://www.iso.org

[11] International Organisation for Standardization (ISO). ISO/IEC 15693-3: Identi-
fication cards - Contactless integrated circuit(s) cards - Vicinity cards – Part 3:
Anticollision and transmission protocol (2001)

[12] International Organization for Standardization (ISO). ISO/IEC 14443-3: Identifi-
cation Cards - Contactless Integrated Circuit(s) Cards - Proximity Cards - Part3:
Initialization and Anticollision(2001), http://www.iso.org

[13] International Organization for Standardization (ISO). ISO/IEC 14443-4: Identifi-
cation Cards - Contactless Integrated Circuit(s) Cards - Proximity Cards - Part4:
Transmission Protocol (2008), http://www.iso.org

[14] Jaffe, J.: More Differential Power Analysis: Selected DPA Attacks. Presented at
ECRYPT Summerschool on Cryptographic Hardware, Side Channel and Fault
Analysis (June 2006)

[15] Kasper, T., Oswald, D., Paar, C.: EM Side-Channel Attacks on Commercial Con-
tactless Smartcards Using Low-Cost Equipment. In: Youm, H.Y., Yung, M. (eds.)
WISA 2009. LNCS, vol. 5932, pp. 79–93. Springer, Heidelberg (2009)

[16] Kfir, Z., Wool, A.: Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard Systems. In: Proceedings SecureComm 2005, Athens, Greece, Septem-
ber 5-9, pp. 47–58. IEEE Computer Society (2005)

[17] Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

[18] Korak, T., Plos, T., Hutter, M.: Attacking an AES-Enabled NFC Tag: Implica-
tions from Design to a Real-World Scenario. In: Schindler, W., Huss, S.A. (eds.)
COSADE 2012. LNCS, vol. 7275, pp. 17–32. Springer, Heidelberg (2012)

http://www.iso.org
http://www.iso.org
http://www.iso.org

222 T. Korak and T. Plos

[19] Lemke, K., Schramm, K., Paar, C.: DPA on n-Bit Sized Boolean and Arithmetic
Operations and Its Application to IDEA, RC6, and the HMAC-Construction. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219.
Springer, Heidelberg (2004)

[20] Mangard, S.: Exploiting Radiated Emissions - EM Attacks on Cryptographic ICs.
In: Ostermann, T., Lackner, C. (eds.) Proceedings of Austrochip 2003, October
3, pp. 13–16 (2003) ISBN 3-200-00021-X

[21] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Se-
crets of Smart Cards. Springer (2007) ISBN 978-0-387-30857-9

[22] National Institute of Standards and Technology (NIST). FIPS-197: Advanced
Encryption Standard (November 2001), http://www.itl.nist.gov/fipspubs/

[23] NFC Forum. NFC Forum Type 4 Tag Operation - Technical Specification (March
2007)

[24] Nohl, K.: Cryptanalysis of Crypto-1. Computer Science Department University
of Virginia, White Paper (2008)

[25] Oren, Y., Shamir, A.: Remote Password Extraction from RFID Tags. IEEE Trans-
actions on Computers 56(9), 1292–1296 (2007)

[26] Örs, S.B., Gürkaynak, F.K., Oswald, E., Preneel, B.: Power-Analysis Attack on
an ASIC AES Implementation. In: Proceedings of International Conference on In-
formation Technology: Coding and Computing (ITCC 2004), Las Vegas, Nevada,
USA, April 5-7, vol. 2, IEEE Computer Society (2004) ISBN 0-7695-2108-8

[27] Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power Analysis and
Templates in the Real World. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

[28] Plos, T.: Susceptibility of UHF RFID Tags to Electromagnetic Analysis. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 288–300. Springer,
Heidelberg (2008)

[29] Plos, T., Maierhofer, C.: On Measuring the Parasitic Backscatter of Sensor-
enabled UHF RFID Tags. In: Proceedings of ARES 2012, Prague, Czech Republic,
pp. 38–46. IEEE (August 2012)

[30] Whitnall, C., Oswald, E.: A Comprehensive Evaluation of Mutual Information
Analysis Using a Fair Evaluation Framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

http://www.itl.nist.gov/fipspubs/

Practical Leakage-Resilient Pseudorandom

Objects with Minimum Public Randomness

Yu Yu1,2 and François-Xavier Standaert3

1 Tsinghua University, Institute for Interdisciplinary Information Sciences, China
2 East China Normal University, Department of Computer Science, China

3 Université catholique de Louvain, ICTEAM/ELEN/Crypto Group, Belgium

Abstract. One of the main challenges in leakage-resilient cryptogra-
phy is to obtain proofs of security against side-channel attacks, under
realistic assumptions and for efficient constructions. In a recent work
from CHES 2012, Faust et al. proposed new designs of stream ciphers
and pseudorandom functions for this purpose. Yet, a remaining limita-
tion of these constructions is that they require large amounts of public
randomness to be proven leakage-resilient. In this paper, we show that
tweaked designs with minimum randomness requirements can be proven
leakage-resilient in minicrypt. That is, either these constructions are se-
cure, or we are able to construct public-key cryptographic primitives
from symmetric-key building blocks and their leakage functions (which
is very unlikely). Hence, our results improve the practical relevance of
two important leakage-resilient pseudorandom objects.

1 Introduction

Side-channel attacks are an important threat to the security of embedded devices
like smart cards and RFID tags. Following the first publications on Differential
Power Analysis [19] (DPA) and Electro-Magnetic Analysis [12,29] (EMA), a
large body of work has investigated techniques to improve the security of cryp-
tographic implementations. During the first ten years after the publication of
these attacks, the solutions proposed were mainly taking advantage of hard-
ware/software modifications. For example, it as been proposed to exploit new
circuit technologies or to randomize the time and data in the implementations
(see [3,4,36] for early proposals of these ideas, and many improvements and
analyzes published at CHES). In general, these countermeasures are successful
in the sense that they indeed reduce the amount of information leakage. Yet,
security evaluations considering worst-case (profiled) side-channel attacks such
as [33] usually reveal that reaching high security levels is expensive and highly
dependent of physical assumptions. Taking the example of secret sharing (aka
masking), multiple shares are required for this purpose (i.e. so-called higher-
order security [34]). However, the implementation cost of higher-order masking
schemes is significant [31], and the risk of physical effects leading to exploitable
weaknesses (such as glitches [21]) leads to additional design constraints.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 223–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 Y. Yu and F.-X. Standaert

Motivated by the great challenges in physical security, recent works have also
considered the possibility to analyze the effectiveness of countermeasures against
side-channel attacks in a more formal way, and to design new primitives (aimed
to be) inherently more secure against such attacks. Taking the case of symmetric
cryptography building blocks (that are important primitives to design as they are
usual targets of DPA attacks [20]), a variety of models have been introduced for
this purpose, ranging from specialized to general. For example, a PRNG secure
against side-channel key recovery attacks was proposed at ASIACCS 2008 by
Petit et al. [25], and analyzed in front of a class of (realistic yet specific) leakage
functions. Following, a construction of leakage-resilient stream cipher has been
presented by Dziembowski and Pietrzak at FOCS 2008, together with a proof
of security in the standard model [9]. Quite naturally, such “physical security
proofs” raise a number of concerns regarding their relevance to practice, a topic
that has been intensively discussed over the last couple of years. In particular, one
of the fundamental issues raised by leakage-resilient cryptography is to determine
reasonable restrictions of the leakage function, e.g. in terms of informativeness
and computational power. As far as computational power is concerned (which
will be our main concern in this paper), an appealing solution is to consider
the leakage function to be polynomial time computable, as initially proposed
by Micali and Reyzin [24], and leading to contrasted observations. On the one
hand, polynomial time functions are significantly more powerful than actual
leakage functions. For example, they allow so called “precomputation attacks”
(aka future computation attacks) that are arguably unrealistic in practice [35].
On the other hand, meaningful alternatives seem quite challenging to specify.
Furthermore, given that one obtains proofs of security under such strong leakages
without paying too large implementation overheads, polynomial time functions
remain a useful abstraction.

Fig. 1. The Eurocrypt 2009 stream cipher

Practical Leakage-Resilient Pseudorandom Objects 225

In this context, one of the design tweaks used by Dziembowsky and Pietrzak is
the so-called “alternating structure”. Figure 1 depicts such an alternating struc-
ture for a simplified stream cipher proposed by Pietrzak at Eurocrypt 2009 [27],
that can be instantiated only from (AES-based) weak Pseudo-Random Func-
tions (wPRFs)1. If one assumes that the two branches of such an alternating
structure leak independently, no leakage occuring in one of the branches can be
used to compute bits that will be manipulated in future computations of the
other branch, hence ruling out the possibility of precomputation attacks. The
main drawback of this proposal is that a key bit-size of 2n can only guarantee
a security of at most 2n. Hence, as it appears unrealistic that a circuit actu-
ally leaks about something it will only compute during its future iterations, a
following work by Yu et al. investigated the possibility to mitigate the need of
an alternating structure [37]. In a paper from CCS 2010, they first proposed to
design a “natural” (i.e. conform to engineering intuition) leakage-resilient stream
cipher, which could only be proven secure under a (non-standard) random oracle
based assumption. Next, they proposed a variant of the FOCS 2008 (and Eu-
rocrypt 2009) designs, replacing the alternating structure by alternating public
randomness, and under the additional (necessary) assumption that the leakage
function is non adaptive. Eventually, in a recent work of CHES 2012, Faust et
al. showed that large amounts of public randomness (i.e. linear in the number
of stream cipher iterations) were actually required for the proof of Yu et al. to
hold [10]. While it remains an open question to determine whether the exact
construction proposed in [37] (using only two alternating public values) can be
proven secure or attacked in a practical setting, this last result reveals a tension
between the proof requirements and how the best known side-channel attacks
actually proceed against leakage-resilient constructions [23].

Considering the previous observations, this paper tackles the fundamental
question of how much public randomness is actually needed to obtain proofs of
leakage-resilience in symmetric cryptography. For this purpose, we investigate
(yet another) variant of stream cipher, where only a single public random value
is picked up prior to (independent of) the selection of the leakage functions, and
then expanded thanks to a PRNG. Quite naturally, a strong requirement for this
approach to be interesting is that the seed of the PRNG should not be secret
(or we would need a leakage-resilient PRNG to process it, i.e. essentially the
problem we are trying to solve). Surprisingly, we show that this approach can
be proven secure in minicrypt [17] (i.e. the hypothetical world introduced by Im-
pagliazzo, where one-way functions exist, but public-key cryptography does not).
More precisely, using the technique of [1] (see also similar ones in earlier litera-
ture [7,8,26,28]), we show that either the proposed solution is leakage-resilient,

1 Besides their possible implementation costs, additional components in leakage-
resilient constructions can also become a better target for a side-channel adversary,
e.g. as discussed with the case of randomness extractors in the FOCS 2008 stream
cipher [22,32]. In this respect, relying only on AES-based primitives (for which the
security against side-channel attacks has been carefully analyzed) is an interesting
feature of the Eurocrypt 2009 proposal in Figure 1.

226 Y. Yu and F.-X. Standaert

or we are able to construct black-box constructions of public-key encryption
schemes from symmetric primitives and their leakage functions. When using
block ciphers such as the AES to instantiate the stream cipher, the latter is
very unlikely due to known separation results between one-way functions and
PKE [18]. We then conclude this work by illustrating that this observation also
applies to PRFs for which various designs were already proposed [5,10,23,35].

Summarizing, proofs of leakage-resilience require to restrict the leakage func-
tion both in terms of informativeness and computing power. As finding useful
and realistic restrictions is hard with state-of-the-art techniques, we consider an
alternative approach, trying to limit the implementation overheads due to unre-
alistic models. Admittedly, our analysis is based on the same assumptions as the
previously mentioned works (i.e. polynomial time, bounded and non-adaptive
leakage functions). The quest for more realistic models remains a very impor-
tant research direction. Meanwhile, we believe that our intermediate conclusion
is important, as it highlights that leakage-resilient (symmetric) cryptography can
be obtained with minimum public randomness (i.e. the public seed of a PRNG).

2 Background

2.1 The CCS 2010 Stream Cipher

The CCS 2010 construction, depicted in Figure 2, is based on the observation
from the practice of side-channel attacks that leakage functions are more a prop-
erty of the target device and measurement equipment than something that is
adaptively chosen by the adversary. It therefore considers a weaker security
model, in which the polynomial time (and bounded) leakage functions are fixed
before the stream cipher execution starts. By considering those non-adaptively
chosen leakage functions, the construction can be made more efficient and easier
to implement in a secure way. This stream cipher is initialized with a secret
key k0 and two values p0 and p1 that can be public. Those two values are then
used in an alternating way: at round i, one computes ki and xi by applying the

Fig. 2. The CCS 2010 stream cipher

Practical Leakage-Resilient Pseudorandom Objects 227

wPRF to inputs ki−1 and pi−1 mod 2. Thanks to the removal of the alternating
structure, the complexity of a brute-force attack on this construction becomes
directly related to the full length of the key material, which is now exploited in
each round.

2.2 The CHES 2012 Stream Cipher

In a paper from CHES 2012, Faust et al. observed that the technical tools used
to prove the CCS 2010 construction actually require to use independent public
values in all the stream cipher rounds (rather than only two alternating ones).
Therefore, only the slightly modified the construction suggested in Figure 3,
assuming a common random string p0, p1, p2, . . ., can be proven secure with these
tools. The practical advantages of this construction compared to the FOCS 2008
/ Eurocrypt 2009 ones naturally become more contrasted. On the positive side,
the fact that the values p0, p1, p2, . . . are public can still make it easier to ensure
that rounds leak independently of each other (which is implicitly required by
the arguments of the leakage function): for example, a number of public pi’s
can be stored in non-volatile memories for this purpose. On the other hand, this
amount of public randomness required is linear in the number of stream cipher
rounds, which is hardly realistic (hence leading the authors of [10] to pay more
attention to leakage-resilient PRFs for which this penalty is less damaging - see
Section 4 for a brief discussion).

Fig. 3. The CHES 2012 stream cipher

3 Natural PRNG with Minimum Public Randomness

3.1 A New Proposal

As mentioned in introduction, it in unclear whether the need of large public
randomness in leakage-resilient stream ciphers is due to proof artifacts or if the
lack of such randomness can be exploited in realistic side-channel attacks. This

228 Y. Yu and F.-X. Standaert

Fig. 4. Leakage-resilient stream cipher with minimum randomness

question is important as such attacks would most likely reveal an issue in the
most natural construction of [37], where no public randomness is used at all and
the proof is based on a random oracle assumption. In order to answer it, we
propose an alternative stream cipher depicted in Figure 4.

The Proposed Stream Cipher. We denote our stream cipher with SC, let
n be the security parameter, and (k0,s) be the initial state of SC, where k0 ∈
{0, 1}n is a secret key and s ∈ {0, 1}n a public seed, both randomly chosen. SC
expands s into p0, p1, p2, . . . on-the-fly by running a PRF G : {0, 1}n×{0, 1}n →
{0, 1}n in counter mode2, i.e., pi := G(s, i). Then, SC uses the generated public
strings p0, p1, p2, . . . to randomize another PRF F : {0, 1}n×{0, 1}n → {0, 1}2n,
which updates the secret state ki and produces the output xi, i.e. (ki, xi) :=
F(ki−1, pi−1). That is, the stream cipher SC in Figure 4 is essentially similar to
the previous ones, excepted that any public string pi is obtained by running a
PRF on a counter value, using the public seed s.

Instantiation and Efficiency. Following [27], we instantiate F and G with
a block cipher BC : {0, 1}n×{0, 1}n → {0, 1}n, e.g. the AES. As will be shown
in Lemma 4, it is sufficient to produce log(1/ε) bits of fresh pseudo-randomness
for every pi (and pad the rest with zero’s), with ε a security parameter of the
PRF F (see Definition 1). This further improves efficiency, as we only need to
run G once every �n/ log(1/ε)� iterations of F.

Leakage Models of the CCS 2010/CHES 2012 stream ciphers. For
every ith iteration, let Li : {0, 1}n×{0, 1}n → {0, 1}λ be a function (on ki−1

2 Alternatively, we can also expand s by iterating a length-doubling PRNG in a
forward-secure way, but this would lead to less efficient designs and is not needed
(since s is public).

Practical Leakage-Resilient Pseudorandom Objects 229

and pi−1) that outputs the leakage incurred during the computation of F on
(ki−1,pi−1). The CCS 2010/CHES 2012 constructions model the leakages as
follows [10,37]:

1. (Efficient computability). Li can be computed by polynomial-size circuits.
2. (Bounded leakage per iteration). The leakage function has bounded range

given by λ ∈ O(log (1/ε)), where ε is a security parameter of the PRF F (see
Definition 1).

3. (Non-adaptivity). The selection of the leakage functions Li is made prior to
(or independent of) s, and thus only depends on ki−1 and pi−1.

Note that strictly speaking, the leakage models needed to prove the security
of the CCS 2012 and CHES 2012 stream ciphers are not exactly equivalent.
Namely, the CHES 2012 stream cipher can further tolerate that each Li not
only depends on the current state (ki−1,pi−1), but also on the past transcript

Ti−1
def
=(x1, · · · , xi−1, p0,· · · , pi−2, L1(k0, p0), · · · , Li−1(ki−2, pi−2)). This is nat-

urally impossible if only two pi’s are used.

Leakage models of FOCS 2008/Eurocrypt 2009 stream ciphers. The
FOCS 2008/Eurocrypt 2009 constructions consider a model similar to the above
one, but they do not require condition #3 and allow the adaptive selection of
the leakage functions. That is, at the beginning of each round, the adversary
adaptively chooses a function Li based on his current view. As previously men-
tioned, this leads to unrealistic attacks as the adversary can simply recover a
future secret state, say k100, by letting each Li leak some different λ bits about
it. The authors of [9,27] deal with this issue by tweaking their stream cipher
design with an alternating structure (as in Figure 1).

In the next sections, we will prove the leakage-resilient security of our stream
cipher in the (non-adaptive) model from CCS 2010/CHES 2012. More precisely,
we will also consider its less restrictive version where the leakage functions can
depend on the past transcript. Yet, for brevity, we will not explicitly put Ti−1 as
an input of each Li, as an adversary can hardwire them into Li. Note also that
we do not need to model leakages on G since the seed s (from which all p0, · · · ,
pi can be efficiently computed) is public.

3.2 Security Analysis

Notations and Definitions. For security parameter n, a function negl : N →
[0, 1] is negligible if for any c > 0 there is a n0 such that negl(n) ≤ 1/nc for
all n ≥ n0. We use uppercase letters (e.g. X) to denote a random variable and
lowercase letters (e.g. x) to denote a specific value, with exceptions being n, t
and q which are reserved for security parameter, circuit-size (or running time)
and query complexity, respectively. We write x ← X to denote the sampling of
a random x according to X . We use Un to denote the uniform distribution over
{0, 1}n. For function f , we denote its circuit-size complexity by size(f) or tf . We

230 Y. Yu and F.-X. Standaert

denote with ΔD(X,Y) the advantage of a circuit D in distinguishing the random

variables X,Y : ΔD(X,Y)
def
= | Pr[D(X) = 1] − Pr[D(Y) = 1] |. The computa-

tional distance between two random variables X,Y is defined with CDt(X,Y)
def
=

maxsize(D)≤t ΔD(X,Y), which takes the maximum over all distinguishers D of size
t. For convenience, we use CDt(X,Y |Z) as shorthand for CDt((X,Z), (Y, Z)).

The min-entropy of X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We

finally define average (aka conditional) min-entropy of a random variable X
conditioned on Z as:

H̃∞(X |Z)
def
= − log (Ez←Z [maxx Pr[X = x|Z = z]]) ,

where Ez←Z denotes the expected value computed over all z ← Z.

Standard Security Notions. Indistinguishability requires that no efficient
adversary is able to distinguish a real distribution from an idealized one (e.g.
uniform randomness) with non-negligible advantage. In this paper, we will work
in the concrete non-uniform setting3. Yet, we note that the proof can be made
uniform by adapting the technique from [2,38] (see [9] for a discussion). Given
this precision, a standard PRF is defined as:

Definition 1 (PRF). F : {0, 1}n ×{0, 1}n → {0, 1}m is a pseudorandom func-
tion (PRF) if for all polynomial-size distinguisher D making up to any polynomial
number of queries, we have:

|Pr[DF(k,·) = 1 | k ← Un]− Pr[DR(·) = 1] | ≤ negl(n),

where R is a random function uniformly drawn from function family {{0, 1}n →
{0, 1}m}. Furthermore, we say that F is a (t,q,ε)-secure PRF if for all distin-
guishers D of size t making q queries, the above advantage is bounded by ε.

Security without Leakages. Without considering side-channel adversaries,
the security of SC is easily proven using a standard hybrid argument, by consid-
ering F (on any fixed input) as a PRG, and without any security requirement
about G (which could just output any constant). This is formalized by the fol-
lowing theorem:

Theorem 1 (Security without Leakages). If F is a (t, 1, ε)-secure PRF, then
SC is (t′,
, ε′)-secure, i.e. CDt′((X1, X2, · · · , X�), Un�|S) ≤ ε′, with t′ ≈ t−
·tF
and ε′ ≤
 · ε.

Leakage-Resilient Security. We first observe that as soon as some leak-
age is given to the adversary, he can easily exploit it to distinguish xi from

3 An efficient uniform adversary can be considered as a Turing-machine which on input
1n (security parameter in unary) terminates in time polynomial in n, whereas its
non-uniform counterpart will, for each n, additionally get some polynomial-length
advice.

Practical Leakage-Resilient Pseudorandom Objects 231

uniform randomness (e.g. Li(ki−1, pi−1) leaking the first bit of xi is enough for
this purpose). Thus, all previous approaches in leakage-resilient cryptography
require that any (computationally bounded) adversary observing the leakages
for as many rounds as he wishes should not be able to distinguish the next x�

without seeing L�(k�−1, p�−1) [9,10,27,37]. Formally, let:

view�(A, SC,K0, S)
def
= (S,X1, · · · , X�−1, L1(K0, P0), · · · , L�−1(K�−2, P�−2)) (1)

denote the view of adversary A after attacking SC (initialized with K0 and S)
for
 rounds, for which we use shorthand view� in the rest of the paper. Given
a distinguisher D, we then define its indistinguishability advantage (on uniform
K0 and S) as:

AdvInd(SC,A,D,
)
def
= | Pr

K0,S
[D(view�, X�) = 1]− Pr

K0,S
[D(view�, Un) = 1] |.

We will use size(A)
def
=
(tG + tF) +

∑�−1
i=1 tLi to denote the circuit-size complex-

ity of the physical implementation of SC and size(D) to denote the circuit-size
complexity of D.

Using these notations, our main result can be stated as follows.

Theorem 2 (Leakage-Resilient Security). If F is (t,2,ε)-secure PRF, and
G is a (t,q,ε)-secure PRF, then for any
 ≤ q, adversary A, distinguisher D with
(size(A) + size(D)) ∈ Ω(23λε · t/n) and for any leakage size (per round) λ, we
have that either:

AdvInd(SC,A,D,
) ∈ O(

√
23λ · ε),

or otherwise there exist efficient black-box constructions of public key encryption
(PKE) from the PRFs F and G and the leakage functions L1,· · · ,L�−1.

How to Interpret the Result? The above theorem is a typical “win-win”
situation, similar to those given in [1,7,8,26,28], where a contradiction to one task
gives rise to an efficient protocol for another seemingly unrelated (and sometimes
more useful) task. As mentioned in introduction, we know from [18] that black
box constructions of PKE from PRFs are very unlikely to exist. Thus, if the
building primitives F and G are one-way function equivalents (i.e. they are not
PKE primitives), for example using practical block ciphers such as the AES,
and the leakage functions are intrinsic to hardware implementation (i.e. not
artificially chosen) then the stream cipher SC will be leakage-resilient as stated
above. Before giving the proof, we recall the notion of HILL pseudo-entropy:

Definition 2 (HILL Pseudo-entropy [14,16]). X has at least k bits of HILL
pseudo-entropy, denoted by HHILL

ε,t (X)≥k, if there exists Y so that H∞(Y)≥k and
CDt(X,Y) ≤ ε. X has at least k bits of HILL pseudo-entropy conditioned on Z

, denoted by HHILL
ε,t (X |Z)≥k, if there exists (Y, Z ′) such that H̃∞(Y |Z ′) ≥ k and

CDt((X,Z), (Y, Z ′)) ≤ ε.

232 Y. Yu and F.-X. Standaert

Outline of the Proof. We will present the proof in two main steps. First,
we will show the security of our stream cipher when the seed is kept secret.
This part of the proof essentially borrows techniques from previously published
papers. Next, we will show our main result, i.e. that either leakage-resilience is
maintained when S is public, or we have efficient black box constructions of PKE
from PRFs as stated in Theorem 2.

Lemma 1 (Security of SC with Secret S). Let P[0···�−1]
def
= (P0, · · · , P�−1).

For the same F, G,
, A, D as given in Theorem 2, we have that:

| Pr
K0,S

[D(view� \ S, P[0···�−1],X�) = 1]− D(view� \ S, P[0···�−1], Un) = 1] | ∈ O(�
√

23λ · ε).

Proof sketch. Since G is a secure PRF and S is leak-free, it suffices to prove the
security by replacing every Pi by true randomness P ′

i . The conclusion follows
from Lemma 2 below, by letting i =
 and applying computational extractor4

F on K�−1 and P ′
�−1. It essentially holds because P ′

�−1 is independent of all
preceding random variables. �

Lemma 2 (The ith round HILL Pseudo-entropy). Assume that we use
uniform randomness P ′

0, · · · , P ′
�−1 and define the view accordingly as below:

view′
�
def
= (P ′

0, · · · , P ′
�−1, X1, · · · , X�−1, L1(K0, P

′
0), · · · , L�−1(K�−2, P

′
�−2)). (2)

Then we have:

HHILL
εi,ti(Ki−1|view′

i \ Pi−1) ≥ n− λ, (3)

where εi = 2(i− 1)
√
23λ · ε and (ti + (i − 1)tF +

∑i−1
j=1 tLi) ∈ Ω(23λε · t/n).

A proof of this Lemma can be found in [10] (and implicitly in [9,27,37]). We will
provide an alternative proof with improved bounds in Section 3.3, by utilizing
recent technical lemmata from [11] (slightly improving the dense model theorem
[9,30]) and Lemma 4 from [6], which explicitly states that a PRF used as com-
putational exactor only needs log(1/ε) bits of randomness (which, as mentioned
in Section 3.1, is desirable for efficiency).

The only difference between Lemma 1 and our final goal (i.e. Theorem 2)
is that the security guarantee of the former one forbids adversary to see S (it
only makes P0, · · · , P�−1 public). We now argue why this security guarantee
remains when additionally conditioned on S. Beforehand, we introduce prelimi-
naries about key-agreement and PKE.

4 As shown in Lemma 4, PRFs are computational extractors in the sense that when ap-
plied to min-entropy sources (or their computational analogue HILL pseudo-entropy
sources), one obtains pseudo-random outputs provided that independent P ′

i s are
used.

Practical Leakage-Resilient Pseudorandom Objects 233

Key-Agreement and PKE. PKE is equivalent to a 2-pass key-agreement
protocol [18], which in turn can be obtained from a 2-pass bit-agreement protocol
with noticeable correlation and overwhelming security [15]. Bit-agreement refers
to a protocol in which two efficient parties Alice and Bob (without any pre-shared
secrets) communicate over an authenticated channel. At the end of the protocol,
Alice and Bob output a bit bA and bB, respectively. The protocol has correlation
ε, if it holds that Pr[bA = bB] ≥ 1+ε

2 . Furthermore, the protocol has security δ,
if for every efficient adversary Eve, which can observe the whole communication
C, it holds that Pr[Eve(1k, C) = bB] ≤ 1− δ

2 .

The following Lemma completes the proof of Theorem 2.

Lemma 3 (Secret vs. Public S). For the same F, G,
, A, D as given in
Theorem 2 such that by keeping S secret, the stream cipher SC is secure as
stated in Lemma 1, i.e.

| Pr
K0,S

[D(view� \ S, P[0···�−1], X�) = 1]− D(view� \ S, P[0···�−1], Un) = 1] | = negl(n),

(4)

we have that either the above is still negligible when additionally conditioned
on S, or otherwise there exists efficient black-box constructions of public key
encryption from the PRFs F and G and the leakage functions L1,· · · ,L�−1.

Proof. By contradiction, let us assume that for some c > 0 and for infinitely
many n’s, there exists efficient D̃ such that: PrK0,S[D̃(view�, X�) = 1] −
PrK0,S [D̃(view�, Un) = 1] ≥ 1

nc . We construct a 2-pass bit-agreement protocol as
in Figure 5.

It follows from Equation (4) that no efficient passive adversary Eve (observing
the communication) will be able to guess bB (i.e. whether r is x� or uniform ran-
domness) with more than negligible advantage. Furthermore, the bit-agreement
also achieves correlation:

Alice

s← Un

p0, · · · , p�−1 ← G(s, 0), · · · ,G(s, �− 1)

bA ← D̃(r, view�)

Bob

k0←Un

Evaluate SC on k0, p0, · · · , p�−1

to get view� \ s and x�

bB←U1

if bB = 0 then r := x�

else if bB = 1 then r ← Un

p0, · · · , p�−1

r, view� \ s

Fig. 5. A bit agreement protocol from any PRFs F,G and leakage functions L1, · · · ,
L�−1

234 Y. Yu and F.-X. Standaert

Pr[bA = bB] = Pr[bB = 1]︸ ︷︷ ︸
=1/2

Pr[bA = 1|bB = 1] + Pr[bB = 0]︸ ︷︷ ︸
=1/2

Pr[bA = 0|bB = 0]︸ ︷︷ ︸
=1−Pr[bA=1|bB=0]

=
1

2
(Pr[bA = 1|bB = 1] + 1− Pr[bA = 1|bB = 0])

=
1

2

(
1 + Pr

K0,S
[D̃(view�, X�) = 1]− Pr

K0,S
[D̃(view�, Un) = 1]

)
≥

1 + 1
nc

2
,

which implies 2-pass key agreement and PKE (by privacy amplification and
parallel repetition [15]). Intuitively, the protocol can be seen as a bit-PKE. That
is, Alice generates secret and public key pair sk = s and pk = (p0, · · · , p�−1)
respectively, and sends her public key to Bob for him to encrypt his message
bB such that only Alice (with secret key sk) can decrypt (with non-negligible
correlation). This completes the proof. �

As observed in [1], we can further extend this type of bit-PKE to a 1-out-of-2
Oblivious Transfer (OT) against curious-but-honest adversaries5 as follows. For
choice bit b, Alice first samples pkb := (p0, · · · , p�−1) and pk1−b ← Un� and then
sends pk0, pk1 to Bob. Bob, who holds two bits σ0 and σ1, uses the bit-PKE to
encrypt σ0 and σ1 under pk0 and pk1, respectively. Finally, Alice recover σb and
learns no information about σ1−b (since it is computationally hidden by uniform
randomness pk1−b).

Additional remark about the protocol in Figure 5. In the non-uniform
setting, any insecurity already implies efficient protocols for PKE and OT (using
the hypothetical non-uniform D̃), whereas in the uniform setting we will get
practical and useful protocols, uniformly generated given the security parameter.
See more discussion in [1].

3.3 Alternative Proof of Lemma 2

We will need the two following technical lemmata for the proof.

Theorem 3 (Dense Model Theorem [9,11]). Let (X,Z) ∈ {0, 1}n×{0, 1}λ
be random variables such that CDt(X,Un) < ε and let εHILL > 0. Then we have:

HHILL
2λε+εHILL,tHILL

(X |Z) ≥ n− λ, where tHILL ∈ Ω(ε2HILL · t/n).

Lemma 4 (PRFs on Weak Keys and Inputs [6,27]). If F : {0, 1}n ×
{0, 1}n → {0, 1}m is a (2t, 2, ε)-secure PRF, then for (K,Z) with

H̃∞(K|Z) ≥ n− λ, and independent P with H∞(P) ≥ log (1/ε), we have

CDt(F(K,P), Um | P,Z) ≤
√
2λ · ε.

5 A 1-out-of-2 oblivious transfer refers to a protocol, where Alice has a bit b and Bob
has two messages m0 and m1 such that Alice wishes to receive mb without Bob
learning b, while Bob wants to be assured that the Alice receives only one of the two
messages.

Practical Leakage-Resilient Pseudorandom Objects 235

Proof sketch. Similar to [9,27], we show the above by induction on εi and ti.
For i = 1, Equation (3) is trivially satisfied (t1 = ∞ and ε1 = 0). It remains
to show that if Equation (3) holds for case i with parameter εi and ti, then it

must hold for case i + 1 with εi+1 ≤ εi + 2
√
23λ · ε and ti+1=min{ti − (tF +

tLi), Θ(23λε · t/n)}. By Definition 2, Equation (3) with (εi,ti) refers to the fact
that conditioned on view′

i \ P ′
i−1, there exists K̃i−1 with n − λ bits of average

min-entropy such that Ki−1 is (ti, εi)-close to K̃i−1. By our leakage assumptions,
P ′
i−1 is independent of (Ki−1,view

′
i \ P ′

i−1), so if we apply F to K̃i−1 and P ′
i−1,

Lemma 4 directly implies that:

CDt/2((K̃i, X̃i) := F(K̃i−1, P
′
i−1) , U2n | view′

i) ≤
√
2λ · ε.

Taking into account Li(K̃i−1, P
′
i−1), we know by Theorem 3 that:

HHILL
2
√
23λ·ε,Θ(23λε·t/n)(K̃i, X̃i | view′

i, Li(K̃i−1, P
′
i−1)) ≥ 2n− λ,

which implies (using the chain rule for min-entropy) that K̃i has n − λ bits of
HILL pseudo-entropy (for the same parameters) conditioned on X̃i. Note that
this is almost what we want except that F is applied to K̃i−1 rather than Ki−1.

Hence, we need to pay 2
√
23λ · ε for εi+1 − εi, and lose tF+tLi in complexity (to

simulate the experiment). �

4 Leakage-Resilient PRFs

By minimizing their randomness requirements, the previous results improve the
relevance of leakage-resilient stream ciphers. Besides, they also increases our
confidence that simple constructions such as the first proposal in [37] are indeed
secure against side-channel attacks. Hence, a natural question is to investigate
whether a similar situation is observed for PRFs. In this context, three proposals
have been analyzed in the literature. Standaert et al. first observed in [35] that a
tree-based construction such as the one of Goldreich, Goldwasser and Micali [13]
inherently brings improved resistance against side-channel attacks. They proved
its leakage-resilience under a (non-standard) random oracle based assumption.
Next, Dodis and Pietrzak proposed a similar tree-based design using an alternat-
ing structure, and proved its leakage-resilience in the standard model. Finally,
Faust et al. replaced the alternating structure by public randomness (following
the approach they used for the stream cipher in Figure 3) [10]. In this last case,
a fresh pi is required in each step of the PRF tree. The techniques described in
the previous section can be directly applied to mitigate this requirement. That
is, one can run a PRF on a counter and public seed to generate the pi’s. As
in Lemma 3, either this construction is secure, or we can build a bit agreement
protocol using the PRFs and leakage functions of the figure. While the random-
ness saving may be not substantial for a regular PRF (with input size linear in
n), it will be desirable for variants that handle long (polynomial-size) inputs, e.g.

236 Y. Yu and F.-X. Standaert

for Message Authentication Codes (MACs). Finally, we note that as in [10], the
constructed leakage-resilient PRF is only secure against non-adaptive inputs.

Acknowledgements. Yu Yu was supported by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural
Science Foundation of China Grant 61033001, 61172085, 61061130540, 61073174,
61103221, 11061130539, 61021004 and 61133014. François-Xavier Standaert is an
associate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).
This work has been funded in part by the ERC project 280141 on CRyptographic
Algorithms and Secure Hardware (CRASH).

References

1. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X.,
Yu, Y.: Leftover Hash Lemma, Revisited. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011)

2. Barak, B., Shaltiel, R., Wigderson, A.: Computational Analogues of Entropy. In:
Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and AP-
PROX 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

4. Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence
of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

5. Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-
Channel Attacks on Feistel Networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 21–40. Springer, Heidelberg (2010)

6. Dodis, Y., Yu, Y.: Overcoming weak expectations. Short version appears in Infor-
mation Theory Workshop ITW 2012 (2012),
http://www.cs.nyu.edu/~dodis/ps/weak-expe.pdf

7. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC
2006), pp. 711–720 (2006)

8. Dziembowski, S.: On Forward-Secure Storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2008), pp. 293–302 (2008)

10. Faust, S., Pietrzak, K., Schipper, J.: Practical Leakage-Resilient Symmetric Cryp-
tography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp.
213–232. Springer, Heidelberg (2012)

11. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption:
New Constructions and a Connection to Computational Entropy. In: Cramer, R.
(ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

http://www.cs.nyu.edu/~dodis/ps/weak-expe.pdf

Practical Leakage-Resilient Pseudorandom Objects 237

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
Proceedings of the 25th Annual Symposium on Foundations of Computer Science
(FOCS 1984), pp. 464–479 (1984)

14. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

15. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 664–
673 (2005)

16. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional Computational Entropy, or Toward
Separating Pseudoentropy from Compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

17. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
Structure in Complexity Theory Conference, pp. 134–147 (1995)

18. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: The 21st Annual ACM Symposium on Theory of Computing (STOC
1989), pp. 44–61 (1989)

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

20. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

21. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

22. Medwed, M., Standaert, F.-X.: Extractors against Side-Channel Attacks: Weak
or Strong? In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
256–272. Springer, Heidelberg (2011)

23. Medwed, M., Standaert, F.-X., Joux, A.: Towards Super-Exponential Side-Channel
Security with Efficient Leakage-Resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

24. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract).
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

25. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T., Yung, M.: A block cipher
based pseudo random number generator secure against side-channel key recovery.
In: Abe, M., Gligor, V.D. (eds.) ASIACCS, pp. 56–65. ACM (2008)

26. Pietrzak, K.: Composition Implies Adaptive Security in Minicrypt. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg
(2006)

27. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

28. Pietrzak, K., Sjödin, J.: Weak Pseudorandom Functions in Minicrypt. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I.
(eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 423–436. Springer, Heidelberg
(2008)

29. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

30. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudoran-
dom sets. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2008), pp. 76–85 (2008)

238 Y. Yu and F.-X. Standaert

31. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

32. Standaert, F.-X.: How Leaky Is an Extractor? In: Abdalla, M., Barreto, P.S.L.M.
(eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 294–304. Springer, Heidelberg
(2010)

33. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

34. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

35. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Towards Hardware Intrinsic Secu-
rity: Foundation and Practice, pp. 105–139. Springer, Heidelberg (2010); Cryptol-
ogy ePrint Archive, Report 2009/341 (2009), http://eprint.iacr.org/

36. Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg
(2003)

37. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudo-
random generators. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
Conference on Computer and Communications Security, pp. 141–151. ACM (2010)

38. Zheng, C.J.: A uniform min-max theorem and its applications. STOC 2012, Poster
(2012), http://cs.nyu.edu/~stoc2012/acceptedposters.pdf

http://eprint.iacr.org/
http://cs.nyu.edu/~stoc2012/acceptedposters.pdf

Cryptanalytic Attacks on MIFARE Classic

Protocol

Jovan Dj. Golić

Security Lab, Telecom Italia IT
Via Reiss Romoli 274, 10148 Turin, Italy
{jovan.golic}@it.telecomitalia.it

Abstract. MIFARE Classic is the most widely used contactless smart
card in the world. It implements a proprietary symmetric-key mutual au-
thentication protocol with a dedicated reader and a proprietary stream
cipher algorithm known as CRYPTO1, both of which have been reverse
engineered. The existing attacks in various scenarios proposed in the
literature demonstrate that MIFARE Classic does not offer the desired
48-bit security level. The most practical scenario is the card-only sce-
nario where a fake, emulated reader has a wireless access to a genuine
card in the on-line stage of the attack. The most effective known attack
in the card-only scenario is a differential attack, which is claimed to re-
quire about 10 seconds of average on-line time in order to reconstruct
the secret key from the card. This paper presents a critical comprehen-
sive survey of currently known attacks on MIFARE Classic, puts them
into the right perspective in light of the prior art in cryptanalysis, and
proposes a number of improvements. It is shown that the differential at-
tack is incorrectly analyzed and is optimized accordingly. A new attack
of a similar, differential type is also introduced. In comparison with the
optimized differential attack, it has a higher success probability of about
0.906 and a more than halved on-line time of about 1.8 seconds.

Keywords: RFID, NFC, smart card attacks, key reconstruction at-
tacks, stream ciphers, repeated nonce attacks, inversion atacks, resyn-
chronization attacks, differential attacks.

1 Introduction

There are a number of proprietary algorithms and protocols used for data en-
cryption and device authentication in RFID (Radio Frequency IDentification)
and NFC (Near Field Communication) systems. The MIFARE Classic smart
card, by NXP Semiconductors, is claimed to be the most widely used contact-
less smart card in the world, especially for access control to buildings and public
transport. According to [6,7], this smart card covers more than 70% of the market
share for access control worldwide. It is a memory card with several extra func-
tionalities. It is capable of implementing a proprietary symmetric-key mutual
authentication protocol and a proprietary encryption algorithm (stream cipher)
known as CRYPTO1. They are also implemented on the dedicated contactless

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 239–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 J.Dj. Golić

card reader. CRYPTO1 uses a preshared 48-bit secret key for encrypting mes-
sages between a card and a reader, including challenges and responses in the
mutual authentication protocol. Data integrity on the RFID or NFC channel is
not provided for. The protocol and CRYPTO1 are both reverse engineered in
[14,7] and then analyzed in a number of scientific publications [14,12,6,7,4]. The
proposed cryptanalytic attacks in various attack scenarios demonstrate that the
MIFARE Classic smart card does not offer the 48-bit security level. Note that on
a standard CPU, the brute-force attack on the 48-bit key can take several years,
but less than an hour on the FPGA board COPACOBANA [13], at a cost of
about 10000 USD. NXP Semiconductors has also introduced other smart cards
for replacing MIFARE Classic, which use stronger authentication protocols and
encryption algorithms, e.g., MIFARE Plus in 2008, based on 128-bit AES. Ac-
cording to [6], there are more than a billion of MIFARE and about 200 million
of MIFARE Classic smart cards in use worldwide.

Attack scenarios considered include a passive scenario AttP and active sce-
narios AttAT and AttAR or their combinations. In AttP scenario, the attacker
intercepts and records traces of valid transactions between a genuine card/tag
and a genuine reader, and has the objective to decrypt some of the traces by
cryptanalysis. There are a number of active scenarios where the attacker can
initiate fake transactions between a tag and a reader. In AttAT scenario, the
attacker uses a fake, emulated reader to access a genuine tag and, possibly in
combination with AttP scenario, has the objective to perform an illegitimate
transaction on the genuine tag, e.g., reading or modifying the stored data. In
particular, in AttP or AttAT scenarios, the attacker may have the objective to
reconstruct the genuine tag key. In AttAR scenario, the attacker uses a fake,
emulated tag to access a genuine reader and has the objective to reconstruct the
genuine reader key corresponding to the unique ID of the emulated tag. AttAT
is the easiest scenario to implement in practice and is also called the tag-only or
card-only scenario. In all the scenarios, the ProxMark instrument [15], with the
open-source specification, programmed to handle the standard ISO/IEC 14443-
A, can be used to emulate tags and readers and eavesdrop on valid transactions.

The reconstruction of the key totally breaks the system. The attacker can
then perform any transaction on a genuine tag by using a fake reader with the
genuine key. In particular, it can read or modify the stored data (e.g., read
sensitive data or modify valuable data). Alternatively, the attacker can clone a
tag, i.e., produce a fake tag with the genuine key or emulate a genuine tag and
thus force a genuine reader into legitimate transactions or actions (e.g., access
to building or access to any event requiring a ticket).

The main objectives of this paper are to critically analyze all known attacks
on MIFARE Classic protocol in various scenarios and put them into the right
perspective with respect to the prior art in cryptanalysis, propose their improve-
ments, and introduce a novel attack, which appears to be the most effective
currently known attack in the tag-only scenario, where the attacker uses a fake
reader for a contactless access to a targeted genuine tag. For comparison of
tag-only attacks, see Table 1. Note that the main practical limitation factor of

Cryptanalytic Attacks on MIFARE Classic Protocol 241

these attacks is the on-line stage, which requires real-time access to the tag. The
topic and the results are very interesting in practice, due the worldwide usage
of MIFARE Classic smart cards and dedicated readers.

The MIFARE Classic protocol including the authentication protocol, the en-
cryption algorithm CRYPTO1, and the error detection code are described in
Section 2. The attack [12] in the combined AttP and AttAT scenario, which is
independent of the structure of CRYPTO1, is discussed in Section 3. Two at-
tacks [6] that work in AttP or AttAR scenario, namely, the time-memory-data
tradeoff attack and the inversion attack are presented in Section 4 and Appendix
A. Section 5 is dedicated to five attacks in AttAT, i.e., tag-only scenario. Three
of them [7] are only outlined in Appendix B, as they are not very practical.
The practical differential attack [4] is explained, critically analyzed, and opti-
mized in Section 5 and Appendix C. A novel differential attack is proposed in
Section 5 and Appendix C. All these cryptanalytic attacks relate to the mutual
authentication protocol for one sector of the MIFARE Classic smart card. The
attacks [6,7] aiming at reconstructing the keys for multiple sectors are presented
in Section 6 and Appendix D. Conclusions are given in Section 7.

2 Description of MIFARE Classic Protocol

The EEPROMmemory of the MIFARE Classic tag is divided into sectors, which
are further divided into blocks of 16 bytes each. The last block of each sector
contains two 48-bit secret keys and access conditions for the sector. The basic
operations that can be performed on the memory data include read, write, in-
crement, and decrement the stored value. The reader can access data in a given
block only upon successful authentication for the sector containing that block,
where the access conditions determine which of the two keys should be used and
define the operations allowed for the sector. The first block of the first sector is a
read-only block that contains special data including the unique 32-bit identifier
(ID or UID) of the card, the parity byte computed on ID, and the manufacturer
data. Secret keys stored on the tag can be specific to the tag or shared among
a number of tags. In the latter case, a particular tag is identified by its unique
ID stored in the read-only block. In the former case, in order to avoid storing all
the keys in the reader memory, a key specific to the tag can be derived from a
group master key and the unique ID.

The three-pass symmetric-key authentication protocol is of the challenge-
response type, where the 32-bit challenge nonces nT and nR used by the tag
and the reader are generated by the respective pseudorandom number genera-
tors. The tag nonce, nT , is generated by a 16-bit linear feedback shift register
(LFSR), which implies that it contains only 16 bits of entropy if the LFSR state
is assumed to be uniformly random. The LFSR starts from the same state after
powering up, has period 65535, and shifting its state every 9.44μs it repeats its
state after about 618ms. The only randomness factor is thus a variable time
when the tag nonce is produced. On the other hand, the reader pseudorandom
number generator starts from the same state after every restart and produces a

242 J.Dj. Golić

nonce nR only upon invocation by the authentication protocol. In this case, the
only randomness factor is a variable number of invocations after the restart. In
principle, fresh nonces are important in order to avoid fake authentication by
the replay attacks. However, if the nonces are treated as random in the protocol,
but are in fact easily repeatable or predictable, then cryptanalytic attacks with
a fake reader or a fake tag may be possible.

The tag and reader nonces serve for mutual authentication as well as for the
initialization of CRYPTO1 for encrypting the data to be exchanged. CRYPTO1
is a stream cipher (keystream generator) with a structure of a nonlinear filter
generator using a 48-bit LFSR and a nonlinear 20-bit Boolean function applied to
the LFSR state to produce the keystream bits. The ciphertext bits are produced
by XORing the plaintext and keystream bits. CRYPTO1 is initialized during
the authentication process by using the challenge nonces nT and nR, which are
bitwise XORed into the feedback path of the LFSR. Fresh nonces are important
to ensure that the keystream is not repeated for the same sector key.

The main steps of the three-pass mutual authentication protocol are depicted
in Fig. 1. In the preliminary two steps (which in reality include more auxiliary
steps), the tag sends its unique ID and the reader sends back the index of the
block (including that of the corresponding sector) to which it wishes to com-
municate to. The tag and the reader then select the key to be used for that
sector, according to the access conditions. In the first pass, the tag sends nT

in the clear form. In the second pass, the reader sends back its response con-
taining nR and the answer aR encrypted with two successive 32-bit keystream
segments ks1 and ks2, respectively. In the third pass, the tag sends its answer
aT encrypted with the subsequent 32-bit keystream segment ks3. We use the
notation as in [7], i.e., {nR} = nR⊕ks1, {aR} = aR⊕ks2, and {aT } = aT ⊕ks3.
The answers to the challenges are defined by aR = suc2(nT) and aT = suc3(nT),
where “suc” denotes the successor function associated with the 16-bit LFSR used
for generating nT , which maps 32 successive LFSR sequence bits into the next
(non-overlapping) 32 successive LFSR sequence bits.

ID

Block
nT

nR ks1, aR ks2

aT ks3

Tag Reader

Fig. 1. MIFARE Classic authentication protocol

In the process, the same keystream is generated both by the tag and the
reader, with the only difference that the reader uses nR directly, whereas the
tag first decrypts {nR} into nR. This is achieved in the bitwise manner since
ks1 also depends on nR, but in a specific way. Namely, as the current bit of ks1

Cryptanalytic Attacks on MIFARE Classic Protocol 243

used to encrypt the current bit of nR depends only on the previous bits of nR,
where the first bit of ks1 does not depend on nR at all, the bits of nR can be
recovered by the tag one at a time and then XORed into the feedback path of
the LFSR. The LFSR in CRYPTO1 is first initialized with the 48-bit key as the
initial state. Then, the LFSR is clocked 32 times during which nT ⊕ID is XORed
in the feedback loop of the LFSR, one bit at a time. Then, the LFSR is clocked
another 32 times during which nR is XORed in the feedback loop of the LFSR,
one bit at a time. The first bit of ks1 is generated after the insertion of the last
bit of nT ⊕ ID and before the insertion of the first bit of nR, whereas the last
bit of ks1 is generated before the insertion of the 32nd bit of nR. The keystream
segments ks2 and ks3, which are successively generated after ks1, as well as the
subsequent keystream bits are generated by clocking the LFSR autonomously,
and thus depend on the key and all the bits of nT ⊕ ID and nR.

Let k = k0k1 . . . k47, nT = nT,0nT,1 . . . nT,31, nR = nR,0nR,1 . . . nR,31, and
u = u0u1 . . . u31 denote the 48-bit key and 32-bit tag and reader nonces and
unique tag ID, respectively. Let s = s0s1s2 . . . denote the LFSR sequence and
let Si = sisi+1 . . . si+47 and L(Si) denote the LFSR state and the feedback bit
at time i ≥ 0, respectively. The keystream sequence z = z0z1z2 . . . is defined by

si = ki, 0 ≤ i ≤ 47, (1)

s48+i = L(Si)⊕ nT,i ⊕ ui, 0 ≤ i ≤ 31, (2)

s80+i = L(S32+i)⊕ nR,i, 0 ≤ i ≤ 31, (3)

s112+i = L(S64+i), i ≥ 0, (4)

zi = f(Si), i ≥ 0, (5)

where f denotes the filter function applied to the LFSR state as a whole.
The three keystream segments used in the protocol are ks1 = z32z33 . . . z63,
ks2 = z64z65 . . . z95, and ks3 = z96z97 . . . z127. Effectively, f is defined as a bal-
anced 20-bit Boolean function being a composition of five 4-bit Boolean func-
tions and a 5-bit Boolean function. The tap positions forming inputs to f are
taken from odd-indexed LFSR stages 9, 11, . . . , 47, so that we can write f(S0) as
f(s9, s11, . . . , s47). It effectively depends on all 20 input bits and is linear neither
in the first not the last input bit, i.e., it does not satisfy the sufficient condition
[8] for the output sequence to preserve pure randomness of the input sequence
to the filter function. In Section 5, it will be shown that this weakness opens a
door for the most effective known attacks in the tag-only scenario.

If the additive inputs to the LFSR, nT ⊕u and nR, are known, then it follows
that the LFSR can also be clocked backwards, i.e., starting from the LFSR state
at any time, one can determine all previous LFSR states, including the initial
state defined by the key. As shown in [6,7], this so-called LFSR rollback also
holds if the encryption {nR} is known instead of nR, as a simple consequence of
the fact that the filter function f(S0) does not effectively depend on the first, i.e.,
leftmost input bit s0. We note that even when f(S0) effectively depends on s0, the
LFSR rollback is still feasible by the branching inversion/reversion attack [8,10].
Accordingly, the key can be easily recovered from any reconstructed internal
state of CRYPTO1 and known transcripts of the authentication protocol.

244 J.Dj. Golić

The rationale for the mutual authentication is as follows. The correct en-
crypted answer {aR ⊕ ks2} can be produced by a genuine reader knowing the
key and the nonces nT and nR. The correct encrypted answer {aT ⊕ks3} can be
produced by a genuine tag knowing the key and the nonces nT and nR, by first
recovering nR by decryption. The tag recovers aR by decryption and verifies if
it is equal to suc2(nT), thus authenticating the reader. The reader recovers aT
by decryption and verifies if it is equal to suc3(nT), thus authenticating the tag.

The mutual authentication protocol described above relates to the authenti-
cation for one sector. For authenticating access to multiple sectors of the same
tag, the protocol is repeated by using new nonces nT and nR, with the only
difference that, for each new sector, the new authentication command (Block) is
encrypted with the previous sector key and the new nT is bitwise encrypted by
using the new key while it is bitwise inserted into the feedback path of the LFSR
in the same way as nR. The encrypted tag nonce sent by the tag is thus nT ⊕ks0,
where ks0 = z0z1 . . . z31 denotes the preceding 32-bit keystream segment. The
attacker thus knows nT only for the first sector.

According to the standard ISO/IEC 14443-A, every plaintext byte sent is fol-
lowed by the parity bit for error detection, computed as the binary complement
of the XOR of all 8 bits in the byte. The parity bits in MIFARE Classic commu-
nication protocol are thus computed over the plaintext and, importantly, each
parity bit is then encrypted with the same keystream bit subsequently reused to
encrypt the next bit of the plaintext. The fact that the parity bits are computed
over the plaintext instead of the ciphertext implies that the ciphertext itself
reveals linear relations among the keystream bits (one relation per 8+1 cipher-
text bits), which may be useful for ciphertext-only cryptanalytic attacks. The
fact that the keystream bits are repeatedly used implies that the ciphertext also
reveals linear relations among the plaintext bits other than those determined
by the parity bits (one relation per pair of ciphertext bits corresponding to the
parity bit of the current byte and the first bit of the next byte). In particular,
this weakness can be used for reducing the uncertainty of new tag nonces used
for authenticating access to multiple sectors, because such nonces are sent in the
encrypted form and need to be guessed, as pointed out above. For example, the
entropy of nT given nT ⊕ ks0 is thus reduced to 13=16-3 bits.

3 Attacks on Genuine Session and Genuine Tag

The attack [12] works in the combined AttP and AttAT scenario which requires
access to a genuine authentication session and a genuine tag, by a fake reader.
It neither uses knowledge of the encryption algorithm CRYPTO1 nor aims at
reconstructing the key. It only aims at reconstructing portions of the keystream,
which are repeatedly used for encrypting data in fake sessions initiated by a fake
reader, on the condition that the tag can be forced to use the same tag nonce nT

as the one from the intercepted genuine session. This can be achieved by using
either the periodic query or the reset query technique, due to the weakness of
the tag pseudorandom number generator, where the only randomness factor is a

Cryptanalytic Attacks on MIFARE Classic Protocol 245

variable time when the tag nonce is produced. Both techniques are also important
for other attacks with fake readers or fake tags considered in this paper.

The periodic query technique is made possible by the short period of the tag
pseudorandom number generator, which repeats its state roughly every 680ms.
Accordingly, the same value of nT can be verifiably obtained (since nT is trans-
mitted in the clear), by forcing the genuine tag into several fake authentication
sessions, called queries to the tag. The attacker can thus initiate fake authenti-
cation sessions periodically, with a precise timing, and thus ideally get the same
nT every 680ms. In practice, it would take several attempts to get the same nT

each time. Alternatively, the reset query technique [14,6] is based on the fact that
the tag pseudorandom number generator always starts shifting from the same
initial state, after resetting, which can be achieved by switching-off the field and
powering-up the passive tag by the fake reader. The attacker thus initiates the
queries at a fixed time after resetting the tag and repeats this operation as fast
as possible until the same value of nT is obtained. According to [6], the required
number of attempts to get the same nT does not exceed ten each time. The reset
query technique is significantly faster than the periodic query technique.

In fake sessions with repeated nT , it is also needed to repeat the same reader
nonce nR, which is unknown to the fake reader. To this end, the fake reader
simply replays the second pass of the authentication protocol from the recorded
transcripts of the intercepted genuine session, in each fake session with the re-
peated nT . The reader will thus be successfully authenticated to the tag and the
tag will reproduce the same nR and automatically generate the same keystream.

Since the repeated tag nonce enables the fake reader to successfully authen-
ticate itself in the fake session by replaying the corresponding transcripts of the
genuine session, the genuine tag will then proceed with the session as it were au-
thentic. The desired keystream portions can be recovered from known plaintext
portions obtained either from the genuine session or fake sessions, e.g., from the
tag ID and manufacturer data, access conditions for the sector, and known tag
responses to modified encrypted reader commands enabled by malleable bitwise
XOR encryption. The recovered keystream portions, for a fixed value of the tag
nonce and a fixed response of the fake reader in a genuine session, can then be
used to perform illegitimate transactions on the tag, such as reading and modify-
ing data stored in memory blocks. More precisely, any known or partially known
16-byte keystream block for any sector enables the attacker to read and modify
the data at the same bit positions in any other block from the same sector.

4 Attacks on Genuine Session or Genuine Reader

The attacks [6] work in AttP scenario requiring interception of a genuine authen-
tication session or in AttAR scenario requiring access to a genuine reader by a
fake tag. In the latter case, the authentication session cannot be terminated, be-
cause the fake tag cannot be successfully authenticated to the reader as it does
not know the key. The objective is to reconstruct the key for a single sector from
the known keystream segments obtained from the recorded transcripts of the au-
thentication protocol by using the known tag nonces nT and the derived values

246 J.Dj. Golić

aR = suc2(nT) and aT = suc3(nT). Each known nT gives rise to 64 keystream
bits in AttP scenario and 32 or 64 keystream bits in AttAR scenario, where 64
bits correspond to ks2 and ks3 and 32 bits to ks2. The keystream segment ks3
can be recovered also in AttAR scenario, regardless of the fact that the fake tag
does not send anything in the third pass of the protocol, if the reader proceeds
by sending back either an encrypted “halt” command (because the tag authen-
tication failed) or an encrypted “read” command (as if the tag authentication
were successful). According to [6], this happens for most readers in practical use.

The structure of the stream cipher CRYPTO1 is needed in the attacks. The
attacks first recover an internal state of CRYPTO1, e.g., the 48-bit LFSR state
S64 at a time immediately after all the bits of nT and nR have been fed into
the LFSR. This is the state from which the first bit of ks2 is produced. The
secret key is then reconstructed by the LFSR rollback, as explained in Section 2.
The two attacks proposed in [6] include a time-memory-data tradeoff (TMDT)
attack and an inversion attack. The former works in AttAR scenario and uses
keystream segments from multiple (fake) authentication sessions with a genuine
reader, while the latter works in AttP or AttAR scenario and uses the keystream
segments from one or two authentication sessions.

Both the attacks are essentially known from previous publications, which is
not mentioned in [6]. The TMDT attack can be regarded as an adaptation of the
generic TMDT attack [1,9], for a stream cipher with 248 states. More precisely,
if the stored states correspond to a special form of tag nonces chosen by the
fake tag, then the attack succeeds with probability 1 instead of a high probabil-
ity typical of TMDT attacks. The required number of keystream segments are
obtained from fake authentication sessions using variable nT and random nR

produced by the genuine reader. We point out that the number of authentica-
tion sessions can be reduced at the expense of increasing the precomputation
time, while keeping the same computation time and memory, by applying the
TMDT attack [2]. The inversion attack can be regarded as an adaptation of the
inversion attack with the decimation technique [8,10] to decimated keystream
segments shorter than the LFSR length. Recall that the generic inversion attack
on a nonlinear filter generator with the input memory size M and the greatest
common divisor of the pairwise differences between the tap positions to the filter
function being equal to d takes about 2M/d steps (in CRYPTO1, M = 38 and
d = 2). The adapted attack takes about 0.05 seconds and 8MByte of memory on
a standard CPU to recover the key. For comparison, it is claimed in [3] that the
key can be reconstructed in about 12 seconds on the same CPU by an algebraic
attack. More detailed descriptions of the attacks are given in Appendix A.

5 Attacks on Genuine Tag

The easiest attacks to implement are the tag-only or card-only attacks in AttAT
scenario, with a fake reader having access to a targeted genuine tag. The fake
reader forces the tag into multiple fake partial authentication sessions, called
queries, in which it cannot be successfully authenticated to the tag. The objective

Cryptanalytic Attacks on MIFARE Classic Protocol 247

is to reconstruct the key stored in the tag by using the transcripts of the partial
authentication sessions and the known structure of CRYPTO1.

It would be impossible to obtain needed portions of known keystream from
the tag, if it were not for a peculiar property of the authentication protocol,
which can rightfully be called a bug or even a deliberately inserted weakness
[7,4]. Namely, in the protocol, upon receiving a tag nonce in the clear, the fake
reader sends two 32-bit ciphertexts, one standing for the encrypted reader nonce,
{nR} = nR ⊕ ks1, and the other for the encrypted answer to the tag nonce,
{aR} = aR ⊕ ks2. The fake reader also sends 8 encrypted parity bits {p}, corre-
sponding to the 8 bytes sent. The attacker produces all the ciphertext directly,
in a random or chosen manner depending on the attack to be conducted, with-
out knowing the secret key. The reader’s answer, nR, decrypted by the tag will
be wrong and the authentication will fail. The bug is that in this case, if all 8
decrypted parity bits in p happen to be correct, then the tag sends back to the
reader a 4-bit ciphertext of a fixed 4-bit error message, encrypted with the first
four bits of ks3. This is a serious weakness, because it reveals to the attacker
that the 8 parity bits are all correct and discloses 4 keystream bits. Moreover,
the correct parity bits disclose to the attacker 8 independent linear combina-
tions of keystream bits, which are here referred to as the keystream parity bits.
Altogether, in the case of a successful query, the attacker thus gets 12 bits of
information or entropy regarding the key, in the form of 4 keystream bits and
8 keystream parity bits. This can then be used for mounting key reconstruction
attacks in the tag-only scenario, which are described in the sequel. Surprisingly,
according to [4], unlicensed clone MIFARE Classic cards used in some countries
always send out the encrypted error message, regardless of the values of the
parity bits. This then greatly facilitates the attacks.

In the on-line stage of the attacks, the fake reader makes a number of queries
to the genuine tag, in order to achieve a sufficient number of successful queries
(with all 8 parity bits correct). The queries can use random or fixed tag nonces,
where the latter, realized by the reset query technique, take about 50 times more
time than the former. It is thus claimed in [7] that the attacker can perform
about 1500 queries per second with a random tag nonce and about 30 queries
per second with a fixed tag nonce realized by the reset query technique. In the
off-line stage of the attacks, the collected keystream data is analyzed in order
to reconstruct the key. The on-line stage is thus a practical bottleneck of the
attacks and the required numbers of queries of one or the other type, together
with some auxiliary, simple computations, determine the on-line complexity of
the attacks. In addition, the attacks may also require significant precomputation
time and storage in the setup stage.

For random tag nonces, the keystream is also random and cannot be controlled
by the fake reader. Therefore, the best strategy for the fake reader to get a
successful query is to choose randomly {nR}, {aR}, and {p} until a successful
query occurs, i.e., until all 8 parity bits in p are correct. On average, this requires
256 queries with random nT . For fixed tag nonces, if {nR} is kept fixed by the
fake reader, then the keystream and nR will also be fixed. Further, if {aR} is also

248 J.Dj. Golić

kept fixed, then aR will be fixed and, hence, all 8 parity bits in p will be fixed
too. To get a successful query, the best strategy for the fake reader is then to
choose different instead of random values of {p}. The average number of queries
is thus reduced to 128=256/2.

Each of the three attacks proposed in [7] has serious practical limitations,
as shown in Table 1. Namely, the first attack has huge off-line time, the second
attack has very large on-line time, and the third attack has huge precomputation
time. Concise descriptions of the attacks, denoted as Attack 1, 2, and 3, are
given in Appendix B, where it is shown that by using the queries with random
tag nonces to obtain different tag nonces, the on-line time of Attack 3 can be
reduced from about 2 minutes to about 7 seconds. We now concentrate on the
fourth attack, proposed in [4] and denoted here as Attack 4. It overcomes all the
limitations of the three attacks from [7]. In spirit, this attack is similar to Attack
2 from [7], but takes better advantage of differential properties of the nonlinear
filter function f applied to the LFSR sequence. As a consequence, it requires a
significantly smaller number of queries in the on-line stage and has a significantly
smaller off-line time complexity. However, it is shown below that the analysis of
the attack given in [4] is incorrect and that the attack can be simply improved
by better usage of the queries with random and fixed tag nonces. As a result, the
optimized attack, denoted as Attack 4∗ in Table 1, has a better performance.

The main idea of the differential attack [4] is for the fake reader to first get
one successful query for some {nT }, {nR}, {aR}, and {p}. Then, the fake reader
performs a number of modifications of {nR} and, for each modification, performs
further queries with fixed {nT }, {nR}, and {aR} and different {p} in order to
get a new successful query. The 32-bit encrypted reader nonce {nR} is modified
by changing its last 3 bits and then fixed. For each of 7 possible changes, {aR}
is randomly chosen and then fixed, and only the last 5 bits of {p}, which are
(randomly) affected by the change of {nR} and {aR}, are varied. On average,
16=32/2 such queries with a fixed nonce tag are needed for a successful query
to occur. As a result of the on-line stage, the attacker thus obtains 8 successful
queries yielding the known keystream data. The problem is that this keystream
depends on unknown values of nR. This can be overcome with a high probability,
by using differential properties of f when shifted along the LFSR sequence.

Namely, it is claimed in [4] that with probability about 0.75, the 3 keystream
bits used for the decryption of the last 3 bits of {nR} are independent of these
3 bits. As a consequence, each nonzero 3-bit change δ3 of {nR} will result in the
same change of the last 3 bits of nR itself. Since the LFSR sequence depends
linearly on nR, this implies that for each value of δ3, the subsequent LFSR se-
quence will change linearly in a way that depends only on this value. This means
that it can be expressed as the bitwise XOR of the LFSR sequence correspond-
ing to {nR} and a binary sequence that depends only on the known value of
δ3. For each of 8 values of δ3, including the all-zero value, the attacker can use
the 4 keystream bits resulting from the corresponding successful query. Then,
in the off-line stage, an adapted variant [4] of the well-known resynchronization
attack [5,11], where the IV corresponds to δ3, can be used to obtain about 216

Cryptanalytic Attacks on MIFARE Classic Protocol 249

candidates for the LFSR state at the time when the last of the 4 keystream bits
is generated. The relation with the resynchronization attack is not noticed in [4].
A detailed description is given in Appendix C. The 216 candidate keys resulting
from the LFSR rollback are then tested on other keystream data already col-
lected in the on-line stage (i.e., 64 keystream parity bits), to produce the correct
key. The total off-line time complexity of about 216 steps takes practically zero
time on a standard CPU. According to [4], the attack succeeds with probability
about 0.75. In order to reconstruct the key, both on-line and off-line stages of
the attack need to be repeated about 4/3 ≈ 1.33 times on average.

Our criticism of the differential attack [4] concerns the probability of the
exploited differential property of f and the way the queries with random or
fixed tag nonces are performed in the on-line stage.

Consider a general case where the last m, m ≤ 32, bits of {nR} are changed.
Then the lastm bits of nR obtained by the bitwise decryption of {nR} will change
in the same way if the corresponding m keystream bits used for the decryption
do not change. The fact overlooked in [4] is that the first (leftmost) of these
m keystream bits does not change necessarily, because it depends only on the
previous bits of {nR}, which are not changed. The remaining m− 1 keystream
bits are generated as m − 1 successive output bits of the filter function shifted
along the LFSR sequence, i.e., by the (m−1)-bit augmented filter function of all
the bits contained in m−1 (overlapping) successive LFSR states, which form the
input to the augmented filter function. Therefore, any change of the last m bits
of {nR} will result in the same change of the last m bits of nR if and only if the
(m−1)-bit output of the (m−1)-bit augmented filter function is independent of
the last m− 1 input bits. Let πm−1 denote this probability, over the uniformly
distributed inputs. In the attack [4], m = 3 and the relevant probability is then
π2. In [7], it is proved that π1 = 29/32 ≈ 0.906, where the 1-bit augmented filter
function is f expressed as a function of all 48 LFSR state bits. Since the input
bits to f that are effectively used for generating two successive output bits are
distinct, it follows that π2 = (29/32)2 ≈ 0.821. This is the correct probability
for the differential attack [4], not 0.75.

It is interesting to note that πm = 0 would hold for all m if f were linear in the
first or the last input variable, i.e., it f satisfied the sufficient condition [8] for
pure randomness of the output sequence. In other words, if f had satisfied this
condition, then the considered differential attack would have been impossible.
On the other hand, πm = 1 would hold if f did not effectively depend on the
last m LFSR state bits. It is fair to say that in CRYPTO1, f effectively depends
on the last LFSR state bit and, hence, πm < 1 holds for all m.

In the first phase of the on-line stage of the attack, to get one successful query,
the fake reader can perform queries with a fixed or random tag nonce, where,
on average, 128 queries are required in the former case and 256 in the latter.
However, as mentioned above, the difference in the timings is significant. If qr
and qf denote the timings of the queries using random and fixed tag nonces,
respectively, then, according to [7], qf ≈ 50qr, 1500qr ≈ 1 sec, and 30qf ≈ 1 sec.
Accordingly, 256qr ≈ 5.12qf , 128qf . Surprisingly, in [4], it is proposed to use

250 J.Dj. Golić

queries with a fixed tag nonce. Moreover, if the attack fails in the first run,
then, in order to reduce the number of queries in repeated runs, it is suggested
in [4] to keep nT and the first two bytes of {nR} the same as in the first run,
which implies that the first two bits of {p} will also be the same. In this case,
on average, 32=64/2 instead of 128 queries with a fixed tag nonce are required
in the repeated runs. The average on-line time of the attack is thus estimated to
be about 256qf in the first run and 160qf in the repeated runs. Since the off-line
time is negligible, the average time required for the success is estimated to be
(128 + 32/3 + (4/3)(8 · 16))qf ≈ 310qf ≈ 10.33 sec.

It follows that this differential attack can be simply optimized by using the
queries with a random tag nonce in the first phase of all the runs. Also, in
other phases of the attack, further 16 queries with a fixed tag nonce need to be
performed not 8 times, as proposed in [4], but only 7 times, for each nonzero
3-bit modification δ3 of {nR}. The average on-line time of each run then becomes
256qr+(7 ·16)qf ≈ 117.12qf ≈ 3.9 sec. The average time required for the success
of the optimized attack Attack 4∗ is then about 117.12qf/π2 ≈ 4.75 sec, since
the attack needs to be repeated 1/π2 times on average.

We now propose a novel key reconstruction attack, denoted as Attack 5 in
Table 1. It is in spirit similar to the differential Attack 4∗, but requires a con-
siderably smaller number of queries in the on-line stage, which is a bottleneck
of tag-only attacks, and has a considerably higher probability of success. This is
achieved at the cost of increasing the off-line time complexity, which nevertheless
remains practically low. Our main insight making the tradeoff possible is that
m can be reduced from 3 to 2 bits, according to the general considerations given
above. The success probability then increases from π2 ≈ 0.821 to π1 ≈ 0.906.

The first phase of the on-line stage of the attack is the same as in Attack 4∗.
The fake reader on average makes 256 queries with random {nT }, {nR}, {aR},
and {p}, in order to get one successful query. The fake reader then proceeds by
making new queries using fixed nT , modified and then fixed {nR}, randomly
chosen and then fixed {aR}, and different {p}, where the first 3 bits of {p}
are kept the same and only the last 5 bits are varied. The modification of {nR}
consists in changing its last m = 2 bits. On average, 16=32/2 such queries with a
fixed nT are needed for a successful query to occur. Since this has to be repeated
3 times, for all 3 nonzero 2-bit changes δ2 of {nR}, a total of 48 = 3 · 16 queries
with a fixed nT are needed on average. The average on-line time of the attack
is then 256qr + (3 · 16)qf ≈ 53.12qf ≈ 1.77 sec ≈ 1.8 sec, which is more than 2
times smaller than in Attack 4∗. Each of the 4 successful queries achieved in the
on-line stage provides 12 bits of information about the 48-bit key in the form of
4 keystream bits and 8 keystream parity bits, to be used in the off-line stage.

With probability π1 ≈ 0.906, each nonzero 2-bit change δ2 of {nR} will re-
sult in the same change of the last 2 bits of nR. This means that the subsequent
LFSR sequence can then be expressed as the bitwise XOR of the LFSR sequence
corresponding to {nR} and a binary sequence that depends only on the known
value of δ2. Then, in the off-line stage, about 232 candidates for the LFSR state
at the time when the last of the 4 keystream bits resulting from each successful

Cryptanalytic Attacks on MIFARE Classic Protocol 251

query is generated can be obtained by a variant of the resynchronization attack
[5,11], where the IV corresponds to δ2. A detailed description is given in Ap-
pendix C. The 232 candidate keys resulting from the LFSR rollback are then
tested on the 32 = 4 · 8 keystream parity bits collected in the on-line stage, to
produce the correct key or a very small number of candidates. The total off-line
time complexity of about 232 steps takes about 5 minutes on a standard CPU.
The attack thus succeeds with probability about π1 ≈ 0.906.

For reducing the number of candidate keys to only 1, the attacker may also
make a small number of additional queries in the on-line stage in order to collect
more bits of information about the key. For example, to obtain additional 12
bits of information, the attacker needs another successful query, which may be
achieved in the random nT scenario with an average of 256 additional queries.
This effectively increases the on-line time to 58.24qf ≈ 1.94 sec and is still about
2 times smaller than in Attack 4∗. Alternatively, the attacker can find the unique
key at any later time in AttAR scenario, by accessing a genuine reader and then
testing the candidate keys on the keystream segment ks2 reconstructed from nT

and {aR}. More precisely, for each assumed key, the attacker generates a 32-bit
keystream segment by using nT and {nR} and then compares it with ks2.

If the attack fails, then the strategy of repeating the whole attack (on-line and
off-line stages) as many times as needed until the key is reconstructed may not
be practical, due to the off-line time of about 5 minutes. In any case, the attack
would need to be repeated only about π1 ≈ 1.1 times on average. It is hence
preferable for the attacker to decide in advance on the success probability, repeat
the on-line stage a number of times that guarantees this probability, and only
then perform the off-line stage using all the collected data. To obtain the success
probability of at least 0.99, the on-line stage needs to be performed only twice,
which takes about 3.5 seconds. In this case, additional successful queries are
not needed for testing the candidate keys, because the on-line stage performed
twice already provides the sufficient keystream. The off-line stage takes about
5 minutes with probability 0.906 or about 10 minutes otherwise, which is still
about 5 minutes on average and thus remains very practical. For comparison, to
achieve the success probability of at least 0.99, Attack 4∗ needs to be repeated
three times, which takes about 11.7 seconds, whereas the off-line stage can be
done practically instantly. The on-line stage in the new Attack 5, with m = 2,
is thus more than 3 times faster than in the optimized Attack 4∗, with m = 3.

Properties of the five presented tag-only attacks are summarized in Table 1.
Times are given both in appropriate steps (clear from the context) and in time
units, where off-line times relate to a standard CPU. TLU denotes a table lookup
operation and fev denotes one evaluation of f .

6 Multiple Sector Attacks

The cryptanalytic attacks described in previous sections relate to the mutual
authentication protocol for one sector. In this case, the tag nonce nT is sent

252 J.Dj. Golić

Table 1. Summary of tag-only attacks

Attack 1 Attack 2 Attack 3 Attack 4∗ Attack 5

[7] [7] [7] [4] this paper

Setup time 0 0 248 0 0

Setup memory 0 0 48 · 236 bit 0 0
384GByte

On-line time 1280qr 28500qf 4230qr + 128qf 3(256qr + 112qf) 2(256qr + 48qf)
1 sec 15min 7 sec 11.7 sec 3.5 sec

Off-line time 5 · 248 232.8 224 TLU 216 + 226fev 232 + 225fev
3 year 10min 20 sec ≈ 0 5min

Off-line memory ≈ 0 ≈ 0 ≈ 0 168Byte 42KByte

Success rate 100% 100% 100% 99.4% 99.1%

in the clear form, which can be used for known keystream attacks (except in
the tag-only scenario). As explained in Section 2, for authenticating access to
multiple sectors of the tag in the same session, the same protocol is repeated with
a difference that, for each new sector, the new authentication command (Block)
is encrypted with the previous sector key and the new nT is encrypted with the
preceding keystream segment ks0 generated from the new key. Therefore, nT has
to be guessed by the attacker.

Assume that the key for the first sector has been recovered by the attacker
by one of the attacks described in Sessions 4 and 5, in AttP, AttAR, or AttAT
scenario. The objective of the attacker is then to reconstruct the secret keys for
other sectors. To this end, it is required to gather data from an authentication
session for multiple sectors. This is possible in AttP and AttAT scenarios. AttAR
scenario is not useful for the attacker, because a fake tag cannot encrypt a new
nT with the correct key for the next sector and the attacker cannot then obtain
any correct keystream segment generated from the key for the next sector.

In AttP scenario [6], the attacker intercepts and records a genuine authenti-
cation session for multiple sectors, between a genuine tag and a genuine reader.
Since the key for the first sector is already reconstructed, the attacker determines
the next sector by decrypting the new authentication command. In AttAT sce-
nario [7], a fake reader initiates a fake authentication session for multiple sectors
with a genuine tag and repeatedly uses the previously reconstructed key for the
first sector. The attacker is then successfully authenticated for the first sector
and then proceeds with the authentication for the next sector. This is achieved
by sending the authentication command (Block) encrypted with the key for
the first sector, which is then successfully decrypted by the tag. In either case,
the attacker obtains a correct keystream segment generated from the key for
the next sector, on the condition that nT can be effectively guessed. In AttAT
scenario, the keystream segment length is 32 bits, from nT ⊕ ks0, while in AttP
scenario, the keystream segment length is 96 bits, from nT ⊕ ks0, aR ⊕ ks2, and
aT ⊕ ks3. The key for the next sector can then be easily reconstructed by using

Cryptanalytic Attacks on MIFARE Classic Protocol 253

the techniques described in Section 4. The keys of other sectors can be recon-
structed analogously, by proceeding one sector at a time. In [6], this attack is
called the nested authentication attack.

The tag nonce can be guessed easily not only because it contains at most
16 bits of entropy and its effective entropy depends only on the imprecision of
timing, but also because of the way the parity bits are encrypted, as pointed
out in Section 2. Namely, any pair of ciphertext bits, one bit corresponding to
the parity bit of the current byte and the other to the first bit of the next byte,
reveals a linear relation among the plaintext bits due to the fact that the two
keystream bits are the same. Each such relation reduces the plaintext uncertainty
by 1 bit. More details can be found in Appendix D.

7 Conclusions

Attacks on the MIFARE Classic protocol are made possible by repeatable and
predictable tag nonces, the weak structure of the nonlinear filter generator in
CRYPTO1, the way the parity bits for error detection are genarated, and the
fact that the tag can sent out an encrypted response even if the authentication
of the reader fails. It is shown that the TMDT attack [6] in AttAR scenario can
be regarded as an adaptation of the generic TMDT attack [1,9], whereas the
inversion attack [6] in AttP or AttAR scenario can be regarded as an adaptation
of the inversion attack with the decimation technique proposed in [8,10] for
attacking nonlinear filter generators. The easiest attacks to implement are the
tag-only attacks, in AttAT scenario, where a fake, emulated reader has a wireless
access to a genuine tag in the on-line stage of the attack. Their main limitation
factor in practice is the on-line time required. It is pointed out that each of the
three attacks from [7] has serious practical limitations, namely, Attack 1 has
huge off-line time, Attack 2 has very large on-line time of about 15min, and
Attack 3 has huge precomputation time. It is shown that by using the queries
with random tag nonces to obtain different tag nonces, the on-line time of Attack
3 can be reduced from about 2 minutes to about 7 seconds.

The best known attack in the tag-only scenario is the differential attack [4],
Attack 4, which is claimed to take about 10 seconds of average on-line time in
order to reconstruct the secret key for one sector of the card. A correct analysis
of this attack demonstrates that it can be optimized into Attack 4∗, to reduce
the average on-line time to about 4.75 seconds. On the basis of the conducted
analysis, a new attack of a similar, differential type, denoted as Attack 5, is also
proposed. It achieves a success probability of about 0.906 with the on-line time
of about 1.8 seconds, whereas the optimized differential attack, Attack 4∗, has
the success probability of about 0.821 with the on-line time of about 3.9 sec-
onds. The success probability and the on-line time of two independent runs of
Attack 5 are about 0.991 and 3.5 seconds, respectively. For three independent
runs of Attack 4∗, they are about 0.994 and 11.7 seconds, respectively. This
significant improvement is achieved at the cost of increasing the off-line time

254 J.Dj. Golić

to about 5 minutes, which still remains very practical. It is explained that the
off-line stage of both differential attacks can be regarded as an adaptation of the
resynchronization attack [5,11].

As the worldwide MIFARE Classic infrastructure cannot be changed easily,
the most effective countermeasure [4] against the tag-only attacks is putting the
cards in electromagnetic-shield covers.

References

1. Babbage, S.:A space/time tradeoff in exhausting search attacks on streamciphers. In:
Proc. European Convention on Security and Detection, IEE Conference Publication
No. 408, pp. 161–166 (May 1995)

2. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

3. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream
cipher in MiFare Classic and Oyster cards. Cryptology ePrint Archive, Report
2008/166 (2008)

4. Courtois, N.T.: The darkside of security by obscurity - and cloning MiFare Classic
rail and building passes, anywhere, anytime. In: Proc. Secrypt 2009, pp. 331–338
(2009)

5. Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization Weaknesses in Syn-
chronous Stream Ciphers. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 159–167. Springer, Heidelberg (1994)

6. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Wichers Schreur, R., Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S.,
Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg
(2008)

7. Garcia, F.D., van Rossum, P., Verdult, R., Wichers Schreur, R.: Wirelessly pick-
pocketing a Mifare Classic card. In: Proc. 30th IEEE Symposium on Security and
Privacy, Oakland, pp. 3–15 (2009)

8. Golić, J.Dj.: On the Security of Nonlinear Filter Generators. In: Gollmann, D. (ed.)
FSE 1996. LNCS, vol. 1039, pp. 173–188. Springer, Heidelberg (1996)

9. Golić, J.Dj.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

10. Golić, J.Dj., Clark, A., Dawson, E.: Generalized inversion attack on nonlinear filter
generators. IEEE Trans. Comput. C-49, 1100–1109 (2000)

11. Golić, J.Dj., Morgari, G.: On the Resynchronization Attack. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 100–110. Springer, Heidelberg (2003)

12. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A Practical Attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

13. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ciphers
with COPACOBANA –A Cost-Optimized Parallel Code Breaker. In: Goubin, L.,
Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg
(2006)

14. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID
tag. In: Proc. USENIX Security 2008, pp. 185–193 (2008)

15. Proxmark III instrument, HW and SW, http://cq.cx/proxmark3.pl

http://cq.cx/proxmark3.pl

Cryptanalytic Attacks on MIFARE Classic Protocol 255

A TMDT Attack and Adapted Inversion Attack from [6]

TMDT attack uses a precomputed table with 248−x entries (S64, ks2, ks3), sorted
by (ks2, ks3), and 2x keystream segments, either (ks2, ks3) or only ks2, obtained
from 2x (partial) authentication sessions with the genuine reader. For x = 12,
the precomputation time and memory complexities are thus both proportional
to 236. In the on-line stage, 4096 authentication sessions are needed for collecting
the keystream data, which takes about 10min. In the off-line stage, the key can
be reconstructed by 4096 table lookup operations, on a hard disk, and by the
LFSR rollback, i.e., almost instantly, provided that 64-bit keystream segments
are used. With 32-bit keystream segments, the 4096 table lookups will, on av-
erage, yield 216 (248/232) candidate states S64, instead of only one. To get the
correct key from the resulting 216 candidate keys, one more authentication ses-
sion is needed. We note that the required number of authentication sessions can
be reduced at the expense of increasing the precomputation time, while keeping
the same computation time and memory, by applying the TMDT attack [2].

Let M be the input memory size of a nonlinear filter generator defined as
the difference between the last and the first tap position to the filter function
(in CRYPTO1, M = 38). Then the time complexity of the generic inversion
attack is 2M steps. Further, let d be the greatest common divisor of the pairwise
differences between the tap positions (in CRYPTO1, d = 2). Then the input
memory size can be reduced d times by looking at d-decimations of d successive
phase shifts of the LFSR sequence.

In order to deal with short keystream segments corresponding to decimated
sequences, which are shorter than the LFSR length, one has to consider different
phase shifts of the LFSR sequence simultaneously. This can be achieved by
the technique [6] based on partitioning the LFSR recursion into d = 2 linear
terms corresponding to 2-decimations of two successive phase shifts of the LFSR
sequence. The values of these terms are computed along the decimated LFSR
segments obtained by the inversion attack and then stored in two sorted tables,
each containing about 219 entries. The matches between the entries in the two
tables then yield the reconstruced LFSR segments by interleaving. For 64-bit
keystream segments, the time complexity is thus at most 217 steps. For 32-bit
keystream segments, the time complexity is at most 220 steps and the number
of candidate keys obtained is about 216, so that one more authentication session
is needed to get the correct key. Altogether, it takes about 0.05 seconds and
8MByte of memory on a standard CPU to recover the key.

B Three Tag-Only Attacks from [7]

Attack 1 is a brute-force attack that exhaustively tests all 248 keys on the
keystream data obtained from 4-5 successful queries with a random tag nonce,
which provide 48-60 bits of entropy for the 48-bit key. To get one successful
query, it is on average needed to perform 256 queries with a random nonce tag.
The on-line stage thus takes less than 1 second to perform about 1280 queries
with a random tag nonce.

256 J.Dj. Golić

Attack 2 uses a relatively large number of queries with a fixed tag nonce, i.e.,
on average, about 28500 such queries. The on-line stage thus takes about 15
minutes. The objective is to find a special value of the 32-bit encrypted reader
nonce by adaptively choosing its values for a given value of the tag nonce. This
is achieved by an iterative process with backtracking, each time changing the
last bit of one byte of the encrypted reader nonce and checking a condition on
the corresponding encrypted correct parity bits, upon obtaining the respective
two successful queries by repeatedly changing the encrypted parity bits. The
special value of the encrypted reader nonce, satisfying the condition on all four
bytes, significantly reduces the number of possible LFSR states at a given time
and thus reduces the number of candidate keys to about 232.8. They are then
checked in the off-line stage by using the keystream data already collected in the
on-line stage, to find the correct key. The off-line stage approximately requires
10 minutes on a standard CPU.

Attack 3 uses a large partitioned table of about 384GByte, stored on a hard
disk, which is precomputed in time equivalent to that of the brute-force attack.
It stores about 236 LFSR states at a given time that result in the all-zero 32-bit
encrypted reader nonce, all-zero 32-bit encrypted answer to the tag nonce, all 8
encrypted parity bits equal to zero, as well as 4 keystream bits encrypting the
error message, all equal to zero. In the on-line stage, the attacker should make
about 4096 queries with different tag nonces in order to satisfy the conditions
for the LFSR state to belong to the precomputed table of 236 entries. In [7], it is
claimed that this requires about 2 minutes of on-line time, which is true if these
queries use a fixed tag nonce. However, in view of the fact that the tag nonce
can take 216 different values, it follows that only 4230 queries with random tag
nonces are on average sufficient to get 4096 different tag nonces. In addition, the
attacker then makes about 128 queries with a fixed tag nonce in order to further
restrict the LFSR state to a subtable of 224 entries. The on-line stage can thus
take only about 7 seconds, not 2 minutes as claimed in [7]. In the off-line stage,
the resulting 224 candidate keys are then tested on the keystream data already
collected in the on-line stage, to produce the correct key. The off-line complexity
of the attack is thus determined by 224 table lookup operations, which takes less
than about 20 seconds on a standard CPU.

C Adapted Resynchronization Attacks

The resynchronization attack [5,11] is applicable to stream ciphers with a linear
next-state function, a nonlinear Boolean output function f depending on a rel-
atively small or moderately large number of bits, n, and a linear reinitialization
algorithm combining a k-bit secret key with an IV (initialization vector). Due
to the linearity, the input to the output function at any given time can be lin-
early decomposed into two components, one depending on the key and the other
depending on the IV. The attack then essentially consists in solving the corre-
sponding equations of the form zit = f(Xt ⊕ Ci

t), for a number of time instants
t, where Xt is a linear function of the key and Ci

t is a linear function of the IVi.

Cryptanalytic Attacks on MIFARE Classic Protocol 257

For each t, the solution is found by the exhaustive search. Accordingly, the key
can be reconstructed from about n different IVs, by observing the outputs of f
at about k/n time instants, and by evaluating f about k2n times.

Consider first the off-line stage of the differential Attack 4 [4] or Attack 4∗.
The 4 keystream bits resulting from each of 8 successful queries are the first 4
keystream bits of ks3, i.e., zi, 96 ≤ i ≤ 99. Accordingly, for each such keystream
bit zi, the following 8 equations hold simultaneously with probability π2: zi(δ3) =
f(Si ⊕Δ3,i), where δ3 is varied over all 8 possible values, Δ3,i is a 48-bit vector
depending only on i and δ3 (Δ3,i = 0 if δ3 = 0), and Si is the LFSR state at
time i for δ3 = 0, for given nT and {nR}. Due to the fact [4] that f depends
only on 20 bits of the state and that after 2 steps, f depends on the same 19
bits and 1 new bit, z96 and z98 (as well as z97 and z99) depend on 21 LFSR
bits and we have 16=8+8 nonlinear equations involving these 21 bits. As in the
resynhcronization attack, by the exhaustive search over these 21 bits, each time
evaluating f 16 times, the attacker finds and stores all 21-bit inputs that are
consistent with these 16 equations. On average, the number of possible values
for the 21 bits is thus 25 = 221−16. In the same way, the attacker gets and stores
about 25 possibilities for the other 21 LFSR sequence bits determining z97 and
z99. The two tables of 25 entries are thus computed in 222 steps, each consisting
of 16 evaluations of f , that is, almost instantly on a standard CPU.

Altogether, the attacker thus obtains about 210 possibilities for the corre-
sponding 42 successive bits of the LFSR sequence. By guessing the remaining
6 bits, the attacker thus obtains 216 possibilities for the LFSR state S99. By
exhaustively examining all 216 found states S99, for given nT and {nR}, 216
candidate keys are thus recovered via the LFSR rollback. The 216 candidate
keys are then tested on 64 = 8 · 8 keystream parity bits already collected in the
on-line stage of the attack to yield the correct key. In fact, only 24 keystream
parity bits obtained from 3 successful queries are sufficient. This can be done
almost instantly on a standard CPU. The total off-line time of the attack is thus
practically zero. The attack succeeds with probability π2 ≈ 0.821, and fails if no
candidate key survives the testing.

Consider now the off-line stage of the new differential Attack 5. For each such
keystream bit zi, 96 ≤ i ≤ 99, the following 4 equations hold simultaneously with
probability π1: zi(δ2) = f(Si⊕Δ2,i), where δ2 is varied over all 4 possible values,
Δ2,i is a 48-bit vector depending only on i and δ2 (Δ2,i = 0 if δ2 = 0), and Si

is the LFSR state at time i for δ2 = 0, for given nT and {nR}. Now, similarly
as in Attack 4, since there are 4 instead of 8 linear equations for each of these
4 keystream bits, the attacker then finds and stores 213 = 221−8 possibilities for
each of the two interleaved 21-bit parts of the state S99, in 222 steps, each step
consisting of 8 evaluations of f . The total memory required is then 42KByte. The
off-line time of this part of the attack, requiring 225 evaluations of f , is practically
zero. The attacker then exhaustively examines 232 = 226+6 possibilities for the
LFSR state S99, for given nT and {nR}, by recovering 232 candidate keys via the
LFSR rollback. The 232 candidate keys are then tested on 32 = 4 · 8 keystream
parity bits already collected in the on-line stage of the attack. This should suffice

258 J.Dj. Golić

to reduce the number of candidate keys to only 1 or a very small number. The
required 232 steps of the off-line stage can be performed in about 5 minutes or
less on a standard CPU. The attack succeeds with probability π1 ≈ 0.906, and
fails if no candidate key survives the testing.

D Nested Authentication Attacks from [6,7]

It is here explained how the attacker can effectively guess a correct value of nT

used in the authentication protocol for the next sector, in the nested authen-
tication attacks [6,7], where [6] deals with AttP scenario and [7] with AttAT
scenario. There are only 216 values of nT to start with, due to the 16-bit LFSR
used for generating 32-bit tag nonces. In fact, as pointed out in [6], the uncer-
tainty is much smaller, because nT is generated almost deterministically from
the previously reconstructed value of the tag nonce, where the only residual un-
certainty relates to the imprecision of timing. Another weakness which further
reduces the uncertainty is that any pair of ciphertext bits encrypting the parity
bit of the current byte and the first bit of the next byte reveals a linear relation
among the plaintext bits due to the fact that the two keystream bits are the
same. Each such relation reduces the plaintext uncertainty by 1 bit. Therefore,
the initial uncertainty of nT given nT ⊕ ks0 is 13 (16-3) bits.

In AttP scenario, the uncertainty of nT , given nT ⊕ks0, aR⊕ks2, and aT ⊕ks3
is only 6 (16-10) bits, so that the attacker needs to check at most 64 values of nT .
This number is effectively much smaller in practice, as pointed out above. For
any guessed value of nT , the key for the next sector can be reconstructed from the
corresponding 96-bit keystream segment (ks0, ks2, ks3) by the techniques from
Section 4, provided that the guess is correct. If the guess is incorrect, no 48-bit
key can be reconstructed, because the corresponding 96-bit keystream segment
will be incorrect. The keys of other sectors can be reconstructed analogously
from already recovered keys of the previous sectors.

In AttAT scenario, as pointed out in [7], the attack proceeds along similar
lines, with a difference that only the encryption nT⊕ks0 can be used. This implies
that at most 213 values of nT need to be checked, which may be significantly
reduced by using the measured timing between two successive authentication
rounds. For each guessed value of nT , about 216 candidate keys for the next
sector can be reconstructed from the corresponding 32-bit keystream segment
ks0 by the techniques described in Section 4. More precisely, the techniques need
to be slightly adapted to the fact that during the generation of ks0, nT ⊕ ID is
shifted in the LFSR. The correct key for the next sector is then found by using
another fake authentication session for multiple sectors initiated by the fake
reader (or at most two such sessions), by computing the intersections between
the obtained sets of candidate keys. With a high probability, only the correct
guesses of the tag nonces will result in a unique value of the key, whereas for
incorrect guesses, the intersections will be empty. The keys of other sectors can
be reconstructed analogously. This means that in AttAT scenario, the keys of
other sectors can be reconstructed much easier than for the first sector.

Asynchronous Computational VSS

with Reduced Communication Complexity�

Michael Backes1, Amit Datta2, and Aniket Kate3

1 Saarland University and MPI-SWS, Germany
backes@mpi-sws.org

2 Carnegie Mellon University, U.S.A.
amitdatta@cmu.edu

3 MMCI, Saarland University, Germany
aniket@mmci.uni-saarland.de

Abstract. Verifiable secret sharing (VSS) is a vital primitive in secure
distributed computing. It allows an untrusted dealer to verifiably share
a secret among n parties in the presence of an adversary controlling at
most t of them. VSS in the synchronous communication model has re-
ceived tremendous attention in the cryptographic research community.
Nevertheless, recent interest in deploying secure distributed computing
over the Internet requires going beyond the synchronous model and thor-
oughly investigating VSS in the asynchronous communication model.

In this work, we consider the communication complexity of asyn-
chronous VSS in the computational setting for the optimal resilience
of n = 3t+ 1. The best known asynchronous VSS protocol by Cachin et
al. has O(n2) message complexity and O(κn3) communication complex-
ity, where κ is a security parameter. We close the linear complexity gap
between these two measures for asynchronous VSS by presenting two
protocols with O(n2) message complexity and O(κn2) communication
complexity. Our first protocol satisfies the standard VSS definition, and
can be used in stand-alone VSS scenarios as well as in applications such
as Byzantine agreement. Our second and more intricate protocol satisfies
a stronger VSS definition, and is useful in all VSS applications including
multiparty computation and threshold cryptography.

Keywords: Verifiable Secret Sharing, Asynchronous Communication
Model, Communication Complexity, Polynomial Commitments.

1 Introduction

The notion of secret sharing was introduced independently by Shamir [24] and
Blakley [6] in 1979. For integers n and t such that n > t ≥ 0, an (n, t)-secret
sharing scheme is a method used by a dealer to share a secret s among a set of
n parties in such a way that any subset of t+1 or more parties can compute the
secret s, but subsets of size t or fewer cannot.

� An extended version of this paper is available [3].

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 259–276, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

260 M. Backes, A. Datta, and A. Kate

In many applications of secret sharing, parties may need to verify the cor-
rectness of the values dealt in order to prevent malicious behavior by the dealer.
To satisfy this requirement, Chor et al. [12] introduced the concept of verifiable
secret sharing (VSS). With its applicability to Byzantine agreement, multiparty
computation (MPC) and threshold cryptography, VSS has remained an impor-
tant area of cryptographic research for the last two decades [9, 13, 15, 16, 21, 22].

Although the literature for VSS is vast, the notion of VSS in the asynchronous
communication setting (no bounds on message transfer delays) has not yet re-
ceived the deserved attention in terms of practical efficiency or theoretical lower
bounds. Asynchronous VSS schemes with unconditional security have been de-
veloped [1, 5, 11, 20]; however, these schemes are prohibitively expensive for any
realistic use as they need Ω(κn5) bits of communication for κ-bit secrets. In
the computational security setting, Cachin et al. [9], Zhou et al. [25], and re-
cently Schultz et al. [23] suggested more practical asynchronous VSS schemes:
asynchronous verifiable secret sharing (AVSS), asynchronous proactive secret
sharing (APSS) and mobile proactive secret sharing (MPSS), respectively. Of
these, AVSS [9] is the most generic and practical asynchronous VSS scheme and
it forms the basis for many practical threshold cryptographic protocols such
as [17]. AVSS assimilates a bivariate polynomial into Bracha’s deterministic re-
liable broadcast protocol [8], which results into its O(n2) message complexity
(number of messages transferred) and O(κn4) communication complexity (num-
ber of bits transferred) for the optimal resiliency condition of n = 3t+1. Cachin et
al. [9] further refined the AVSS protocol to reduce the communication complexity
to O(κn3). Nevertheless, a further reduction in the communication complexity
is not possible using similar techniques, and a linear complexity gap between the
message complexity and the communication complexity still remains.

In this work, we bridge this gap. We present two efficient asynchronous VSS
schemes (eAVSS and eAVSS-SC) with different properties (and correspondingly
different utilities) with O(n2) message complexity and O(κn2) communication
complexity.

1.1 Our Contributions

Kate, Zaverucha and Goldberg [18] define the concept of commitments to polyno-
mials, and devise two schemes PolyCommitDLog and PolyCommitPed that commit
to a univariate polynomial of degree t (or less) using a single element of size
O(κ). Their schemes work in the bilinear pairing setting under the t-strong
Diffie–Hellman (t-SDH) assumption [7]. We use their PolyCommitPed scheme
and a collision-resistant hash function to achieve our goal of asynchronous VSS
with O(κn2) communication complexity. Although we choose the PolyCommitPed
scheme that provides unconditional hiding (secrecy) instead of the much sim-
pler PolyCommitDLog scheme that provides computational hiding against the dis-
crete logarithm (DLog) assumption, our protocols work with the PolyCommitDLog

scheme with no modification.
Nevertheless, the schemes we present are not a straightforward adaptation

of the PolyCommit schemes to the bivariate polynomial-based AVSS scheme [9],

Asynchronous Computational VSS 261

and not surprisingly, Kate et al. [18] left the applicability of PolyCommit to
asynchronous VSS as an open problem. The reason for that, as we elaborate in
Section 2.4, is that modifying the PolyCommit schemes to a scheme providing
constant-size commitments to bivariate-polynomials used in asynchronous VSS
seems difficult if not impossible.

We achieve our goal by taking an entirely different path, bypassing the open
problem of obtaining constant-size commitments to bivariate polynomials. We
realize asynchronous VSS in two steps: We first present a univariate polynomial-
based asynchronous VSS scheme (eAVSS), which guarantees that at least t + 1
honest parties receive proper shares of the secret, while the remaining honest par-
ties are assured that at least t+1 honest parties have received correct shares and
can reconstruct the shared secret. This construction is sufficient for stand-alone
VSS and for applications such as asynchronous Byzantine agreement (ABA).
For applications such as MPC and threshold cryptographic constructions, we
then design an efficient stronger asynchronous VSS scheme (eAVSS-SC), which
guarantees that every honest party receives its share during the sharing phase.
In principle, this is possible by running n + 1 instances of eAVSS; however, it
asks for a broadcast of commitment vectors of size O(κn) which increases the
communication complexity to O(κn3). In eAVSS-SC, we overcome this barrier
by aptly modifying the AVSS protocol flow and by hashing the commitments in
the vector using a collision-resistant hash function and running a PolyCommit
instance over the hashed values.

Our schemes have direct implications to the efficiency of all asynchronous VSS
applications. Most prominently, using our eAVSS protocol in the modular ABA
construction by Canetti and Rabin [11] it is possible to obtain the first O(κn3)
communication complexity ABA protocol, which is secure against the adaptive
adversary in the standard model.

Organization. In Section 2, we describe our system model and provide a brief
overview of the concepts of VSS, polynomial commitments and asynchronous
VSS. In Section 3, we define and prove our basic asynchronous VSS protocol
(eAVSS), while in Section 4, we define our main asynchronous VSS protocol
(eAVSS-SC). In Section 5, we discuss a few interesting applications. An in-depth
discussion of the PolyCommitPed scheme and corresponding computational as-
sumptions have been added in Appendix A.

2 Preliminaries

Our schemes work in the computational security setting. The adversary A is a
probabilistic polynomial time (PPT) algorithm with respect to a security pa-
rameter κ unless stated otherwise. A function ε(·) : N → R+ is called negligible
if for all c > 0 there exists a κ0 such that ε(κ) < 1/κc for all κ > κ0. Throughout
the rest of this paper, ε(·) denotes a negligible function.

We assume that the shared secret s lies over a finite field Fp, where p is a κ-
bit long prime. We use Shamir’s polynomial-based secret sharing approach [24],
where our polynomials belong to Fp[x] or Fp[x, y].

262 M. Backes, A. Datta, and A. Kate

2.1 Asynchronous System Model

Following the adversary and communication model of AVSS given by Cachin et
al. [9], we assume an asynchronous fully-connected network of n parties P =
{P1, P2, . . . , Pn}, where every pair of parties is connected by an authenticated
and private communication link. A special party Pd ∈ P works as a dealer. The
indices for the parties are chosen from Fp. Without loss of generality, we assume
these indices to be {1, . . . , n}.

The adversary A is t-bounded and it can coordinate the actions of up to t
out of n parties. The adversary A is further assumed to be adaptive, and may
corrupt a party of its choice at any instance during a protocol execution as long
as its total number of corruptions is bounded by t. A party is said to be honest
if the adversary has not corrupted it. In our asynchronous setting, the adversary
A controls the network and may delay messages between any two honest parties.
However, it cannot read or modify these messages, and it also has to eventually
deliver all the messages by honest parties.

2.2 Verifiable Secret Sharing—VSS

In many secret sharing applications, a dealer may behave maliciously. This led
to the conception of VSS [12].

Definition 1. An (n, t)-VSS scheme among n parties in P = {P1, P2, . . . , Pn}
with a distinguished party Pd ∈ P consists of two phases: the sharing (Sh) phase
and the reconstruction (Rec) phase.

Sh phase. A dealer Pd distributes a secret s ∈ Fp among parties in P. At the
end of the Sh phase, each honest party Pi holds a share si of the distributed
secret s.

Rec phase. In this phase, each party Pi sends its secret share s
′
i to every party in

P and a reconstruction function is applied in order to compute the secret s =
Rec(s′1, s

′
2, . . . , s

′
n) or output ⊥ indicating that Pd is malicious. For honest

parties s′i = si, while for malicious parties s′i may be different from si or
even absent.

An (n, t)-VSS scheme has the following security requirements:

Secrecy. If the dealer is honest, the adversary who can compromise t parties
does not have any more information about s except what is implied by the
public parameters.

Correctness. If Pd is honest, the reconstructed value should be equal to the
dealer’s secret s.

Commitment. Even if Pd is dishonest, there exists a value s∗ ∈ Fp ∪ {⊥} at
the end of the Sh phase, such that all honest parties output s∗ at the end of
the Rec phase.

In this paper, we consider VSS schemes where any malicious behaviour by Pd

can be identified by the honest parties in the Sh phase itself and the commitment

Asynchronous Computational VSS 263

property simplifies to the following: the reconstructed value z should be equal
to a shared secret s ∈ Fp that gets fixed at the end of the Sh phase.

Many VSS applications (e.g., threshold cryptography and MPC) avoid par-
ticipation by all parties once the Sh phase is over. It is required that messages
from any t+1 honest parties (or any 2t+1 parties) are sufficient to reconstruct
the shared secret s. For these applications, we require a stronger commitment
property that we refer as the strong commitment requirement.

Strong Commitment. Even if Pd is dishonest, there exists a value s∗ ∈ Fp at
the end of the Sh phase, such that s∗ is reconstructed regardless of the subset
of parties (of size greater than 2t) chosen by the adversary in the Rec phase.

Some VSS schemes achieve a weaker (computational) secrecy guarantee.

Weak Secrecy. A t-limited adversary who can compromise t parties cannot
compute s during the Sh phase.

We also give the following definitions for the complexity measures.

Definition 2 (Message Complexity). The message complexity is defined as
the total number of messages exchanged between the parties participating in a
scheme.

Definition 3 (Communication Complexity). The communication complex-
ity is defined as the total number of bits exchanged between the parties taking into
consideration every message that has been transmitted.

A variant of VSS considers dealer Pd to be an external party (i.e., Pd /∈ P) and
allows the adversary to corrupt Pd and up to t additional parties in P . All our
protocols also work in this stronger setting.

Assuming a broadcast channel, Feldman [15] gave the first non-interactive
and efficient VSS scheme and Pedersen [21, 22] presented a modification to it.
Both protocols obtain the strong commitment property. In terms of secrecy,
Feldman VSS achieves the weak secrecy property, while Pedersen VSS achieves
the stronger form.

2.3 Use of Commitments in VSS

A verification mechanism for a consistent dealing is fundamental to VSS. It is
achieved using distributed computing techniques in the information-theoretic
security setting. In the computational setting that we focus in this paper, the
commitment schemes provide an efficient alternative.

A commitment scheme allows an entity, the committer, to publish a value,
called the commitment (say C), which binds her to a message s (binding) without
revealing it (hiding). Later, she may open the commitment C and reveal the
committed message m to a verifier, who can check that the message is consistent

264 M. Backes, A. Datta, and A. Kate

with the commitment. In particular, the computational VSS schemes utilize the
commitments to the shared polynomials. Kate et al. [18] formalize this concept of
polynomial commitments. Here, we present a refined version of their polynomial
commitment (PolyCommit) definition for polynomial of degree ≤ t.

Definition 4. A PolyCommit scheme consists of the following algorithms:

Setup(1κ, t) generates system parameters SP to commit to a polynomial of de-
gree ≤ t. In these system parameters, let G be an algebraic structure for
commitments. Setup is run by a trusted or distributed authority. SP can also
be standardized for repeated use.

Commit(SP, φ(x)) outputs a commitment C to a polynomial φ(x) for the system
parameters SP, and some associated decommitment information d. (In some
constructions, d can be null.)

Open(SP, C, φ(x), [d]) outputs the polynomial φ(x) used while creating the com-
mitment, with decommitment information d.

VerifyPoly(SP, C, φ(x), [d]) verifies that C is a commitment to φ(x), created with
decommitment information d. If so, the algorithm outputs 1, otherwise it
outputs 0.

CreateWitness(SP, φ(x), i, [d]) outputs 〈i, φ(i), wi, di〉, where wi is a witness and
di is the decommitment information for the evaluation φ(i) of φ(x) at the
index i. This algorithm is optional.

VerifyEval(SP, C, i, φ(i), [di, wi]) verifies that φ(i) is indeed the evaluation at the
index i of the polynomial committed in C. If so, the algorithm outputs 1,
otherwise it outputs 0.

Given SP ← Setup(1κ, t), a PolyCommit scheme satisfies the following properties:

Correctness. Let C ← Commit(SP, φ(x)). For C generated by Commit(SP, φ(x)),
and all φ(x) ∈ Zp[x], any 〈i, φ(i), wi, di〉 generated using CreateWitness(SP,
φ(x), i) is correctly verified by VerifyEval(SP, C, i, φ(i), di, , wi).

Strong Correctness. ∀A : Pr{(C, 〈φ(x), d〉) ← A(SP) : deg(φ(x)) > t} = ε(κ).
Polynomial Binding. ∀A : Pr{(C, 〈φ(x), d〉, 〈φ′(x), d′〉) ← A(SP)} = ε(κ)

given
[
(VerifyPoly(SP, C, φ(x), d) = 1) ∧ (VerifyPoly(SP, C, φ′(x), d′) = 1) ∧

(φ(x) �= φ′(x))
]

Evaluation Binding. ∀A : Pr{(C, 〈i, φ(i), di, wi〉, 〈i, φ(i)′, d′i, w′
i〉) ← A(SP)} =

ε(κ) given
[
(VerifyEval(SP, C, i, φ(i), di, wi) = 1)∧(VerifyEval(SP, C, i, φ(i)′, d′i,

w′
i) = 1) ∧ (φ(i) �= φ(i)′)

]
(Unconditional) Hiding. For φ(x) ∈R Zp[x], given 〈SP, C〉 and {〈ij , φ(ij), dij ,

wφij
〉 : j ∈ [1, deg(φ)]} such that VerifyEval (SP, C, ij, φ(ij), dij , wφij

) = 1 for

each j, a computationally unbounded adversary Â has no information about
φ(ĵ) for any unqueried index ĵ.

The above strong correctness property is not present in the original PolyCommit
definition. We include it as restricting degree of the committed polynomial by a
threshold t is required for VSS. Further, a weaker form of hiding is also possible,

Asynchronous Computational VSS 265

where a computationally bounded adversary A cannot compute φ(ĵ) for any
unqueried index ĵ. We consider the unconditional hiding property in the paper.

In literature, VSS protocols utilized commitments to the coefficients or eval-
uations of shared polynomials as polynomial commitments. They used two com-
mitment schemes. Given g and h as two random generators of a multiplicative
group of order p, Feldman VSS and its variants use a commitment scheme of the
form gs with computational hiding under the discrete logarithm (DLog) assump-
tion and unconditional binding. Pedersen [21] presented another commitment of
the form gshr with unconditional hiding but computational binding under the
DLog assumption. The hiding property of the commitment scheme leads to the
secrecy property of VSS, while the binding property leads to the correctness
property of VSS. Both of these commitment schemes also trivially satisfy the
commitment property of VSS by the fact that the size of a commitment to a
polynomial φ(x) ∈ Zp[x] is equal to deg(φ) + 1. In the complexity terms, the
size of commitment is O(n) (since for optimal resiliency, deg(φ) = t = �n−1

2 �).
However, the commitment to a shared polynomial has to be broadcast to all
parties, which results in a linear-size broadcast for Feldman VSS, and a linear
complexity gap between the message and the communication complexities.

Kate et al. [18] close this gap for Feldman VSS and its variants using a com-
mitment that commits to the entire univariate polynomial using a single element.
In particular, they define two polynomial commitment (PolyCommit) schemes:
PolyCommitDLog and PolyCommitPed, both of which works in the bilinear pair-
ing setting with Θ(t) system parameters. PolyCommitDLog attains hiding un-
der the DLog assumption, binding under the t-strong Diffie-Hellman (t-SDH)
assumption [7], and strong correctness under the t-polynomial Diffie-Hellman
assumption (refer to Appendix A for references to any assumption). Using a
technique similar to Pedersen commitments, they also define PolyCommitPed,
which attains unconditional hiding and computational binding under the t-SDH
assumption. These constructions are based on an algebraic property of polyno-
mials φ(x) ∈ Fp[x] that (x − i) perfectly divides the polynomial φ(x) − φ(i) for
any i ∈ Fp.

In this work, we extend the utility of the PolyCommit concept to asynchronous
VSS. We choose the PolyCommitPed scheme for our protocol as it provides un-
conditional hiding and include the PolyCommitPed construction in Appendix A.

2.4 Asynchronous VSS

The asynchronous communication setting places no bounds on message delays.
Consequently, there is no trivially available broadcast channel, and Feldman
VSS and its variants do not guarantee a correct completion. This gives rise to
the concept of asynchronous VSS for optimal resilience of n = 3t+ 1.

An asynchronous VSS protocol requires the liveness and agreement proper-
ties along with the secrecy, correctness and commitment properties defined in
Section 2.2

Definition 5. An asynchronous VSS protocol having n ≥ 3t+ 1 parties with a
t-limited Byzantine adversary satisfies the following conditions:

266 M. Backes, A. Datta, and A. Kate

Liveness. If the dealer Pd is honest in the Sh phase, then all honest parties
complete the Sh phase.

Agreement. If some honest party completes the Sh phase, then all honest par-
ties will eventually complete the Sh phase. If all honest parties subsequently
start the Rec phase, then all honest parties will complete the Rec phase.

Correctness, Commitment and Secrecy. as defined in Section 2.2.

For VSS applications such as MPC, we need VSS that has identical secrecy,
correctness, liveness and agreement properties as in Definition 5, but a stronger
commitment property as defined in Section 2.2. In other words, there exists a
t-degree polynomial f(x) such that a share si held by every honest party Pi at
the end of the sharing phase is equal to f(i).

As discussed in the introduction, three computational VSS schemes have been
suggested for the asynchronous setting: AVSS [9], APSS [25], and MPSS [23].
Of these, AVSS [9] provides the first and the most practical asynchronous VSS
scheme. In the AVSS methodology, secret sharing is integrated into a reliable
broadcast primitive [8]. This results into its O(n2) messages complexity. Here,
the commitments to the secret and its shares are broadcast, and the shares
themselves are appropriately appended to the broadcast commitments so that
parties receive their shares while maintaining their secrecy. To overcome an ad-
versarial dealer that does not provide some honest party with its correct share,
parties send sub-shares to each other along with the broadcasted commitment.
The victim party then computes its share from the received sub-shares. AVSS
implements this using bivariate polynomial-based secret sharing, which leads to
a commitment (or broadcast) of size Θ(κn2) and correspondingly O(κn4) bits of
communication. In the same paper, Cachin et al. improve their AVSS scheme by
reducing the commitment-size to Θ(κn), which results in O(κn3) bits of commu-
nication. A linear gap between the message complexity and the communication
complexity still remains.

A Mismatch between AVSS and PolyCommit. It is tempting to consider filling
this gap for AVSS using a bivariate PolyCommit scheme that commits to an entire
bivariate polynomial using a constant-size commitment; however, this does not
seem to be possible with the existing PolyCommit methodology. PolyCommit
schemes use the algebraic property that, for φ(x) ∈ Fp[x], (x − i) perfectly
divides the polynomial φ(x) − φ(i) for any i ∈ Fp. However, such a perfect
and direct relation is not known between a bivariate polynomial φ(x, y) and its
evaluations φ(i, j) for any i, j ∈ Fp.

1 Therefore, we will have to use two-stage
properties involving univariate polynomials (e.g., (x− i)(y− j) perfectly divides
the polynomial φ(x, y)−φ(i, y)−φ(x, j)+φ(i, j) for any i, j ∈ Fp). However, this

does not work either because even though the t-SDH problem to find 〈c, g 1
α+c 〉

for any value of c ∈ Zp given 〈g, gα, gα2

, . . . , gα
t〉 is conjectured to be hard, its

exponential version to find a pair 〈gc, g 1
α+c 〉 is easy.

1 This is equivalent to derivatives in calculus, where complete derivation of a multi-
variable equation is not possible and partial derivatives are employed.

Asynchronous Computational VSS 267

A closer look at AVSS reveals that further reducing the commitment-size in
the hash-based approach of Cachin et al. using a univariate PolyCommit scheme
also does not work: Cachin et al. hash the shares (or the univariate polynomials)
for n parties and the secret. These n+ 1 hashed values sent to each party con-
stitute a polynomial of degree n instead of degree t of the underlying bivariate
polynomial. This requires an honest party to wait for (constant-size) messages
from all n parties in AVSS, which is impossible in the asynchronous setting.

As a result, we have to work towards our goal of asynchronous VSS with
O(κn2) in a different way. In the next section, we provide an asynchronous VSS
that satisfies the basic VSS definition, and extend it to a stronger version with
applicability in all known VSS applications in Section 4.

3 eAVSS: Asynchronous VSS Protocol

In this section, we present a protocol (eAVSS) with O(n2) message complexity
and O(κn2) communication complexity and that satisfies Definition 5 of asyn-
chronous VSS. The eAVSS protocol guarantees that at least t+1 honest parties
receive proper shares of the secret committed using a t-degree univariate poly-
nomial during the Sh phase, while the remaining honest parties are assured that
there are at least t+ 1 honest parties that have received correct shares and can
complete the Rec phase. The protocol is sufficient for applications such as Byzan-
tine agreement and stand-alone VSS. The protocol construction is significantly
simpler than the AVSS protocol [9] and it has a protocol flow similar to a VSS
protocol for non-homomorphic commitments [4].

3.1 Construction

We assume a PolyCommitPed commitment Setup instance SP ← Setup(1κ, t). We
choose PolyCommitPed due to its unconditional hiding property and the con-
stant size of the commitments. It can, however, be replaced by any polynomial
commitment scheme.

The dealer Pd starts off the protocol by choosing a univariate polynomial
φ(x) with φ(0) = s, and computing a commitment 〈C, d〉 ← Commit(SP, φ(x))
and corresponding witnesses wj ← CreateWitness(SP, φ(x), d, j) for j ∈ [1, n]. In
PolyCommitPed, the decommitment information d is a t-degree polynomial, which

is represented as φ̂(x) in the rest of the paper. Pd then sends (send, C, φ(j), φ̂(j),
wj) messages to all parties and the parties verify their shares against the received
commitment C. In the rest of the protocol, the parties try to agree on C. Unlike
AVSS, the parties in eAVSS do not exchange their common evaluations of a
bivariate polynomial; they only verify consistency of the received shares (if any)
with C locally. If the dealer is dishonest, some honest parties may not receive
shares consistent with C; however, they still help to reach an agreement on C
once they are assured that at least t+1 honest parties have received shares and
witnesses consistent with C. We describe the protocol in Figure 1. Note that
commitment C is set to ⊥ initially. An honest party accepts only one message

268 M. Backes, A. Datta, and A. Kate

Sh Phase
Dealer Pd with the secret s

– Select a polynomial φ(x) of degree t such that φ(0) = s.

– Compute a commitment 〈C, φ̂(x)〉 ← Commit(SP, φ(x)) and witnesses wj ←
CreateWitness (SP, φ(x), φ̂(x), j) for j ∈ [1, n].

– Send (send, C′ = C, φ(j), φ̂(j), wj) to every party Pj .

Every party Pi

– On receiving a message (send, C′, φ(i), φ̂(i), wi) from Pd, run VerifyEval(SP, C′,
i, φ(i), φ̂(i), wi). If the verification succeeds, set C = C′ and send (echo, C′) to
all parties.

– On receiving (echo, C′) messages from (n− t) parties:
• For C′ = C, send (ready, share, C′) to all parties;

• For C′ �= C, discard 〈φ(j), φ̂(j), wj〉, set C = C′, and send (ready, no-share, C′)
to all parties.

– If a ready message has not been sent, then on receiving (ready, ∗, C′) messages
from t+ 1 parties:
• For C′ = C, send (ready, share, C′) to all parties;

• For C′ �= C, discard 〈φ(j), φ̂(j), wj〉, set C = C′, and send (ready, no-share, C′)
to all parties.

– On receiving (ready, ∗, C′) messages from at least (n−t) parties such that share
flags are set in at least t+1 of those, complete the Sh phase with commitment
C = C′ (and 〈φ(i), φ̂(i), wi〉 if present).

Rec Phase
Every party Pi

– Send (rec-share, φ(i), φ̂(i), wi) to all parties, if it has sent a (ready, share, C)
message in the Sh phase.

– On receiving t + 1 rec-share messages verified using VerifyEval(SP,C, j, φ(j),
φ̂(j), wj), interpolate the secret as s = φ(0).

Fig. 1. Protocol eAVSS for Asynchronous VSS (n ≥ 3t+ 1)

of a kind from any other party, and without loss of generality, we assume that
every party chooses only the first message.

The protocol requires O(n2) messages as decided by its echo and ready mes-
sages. Use of PolyCommit ensures that all messages are of a constant size, and
results in O(κn2) communication complexity.

3.2 Analysis

Theorem 1. Given a PolyCommit scheme that satisfies Definition 4, eAVSS is
an asynchronous VSS protocol that satisfies Definition 5.

Proof. To prove the theorem, we show that protocol eAVSS satisfies liveness,
agreement, correctness, commitment, secrecy properties of asynchronous VSS

Asynchronous Computational VSS 269

according to Definition 5. Our analysis is based on the properties of the polyno-
mial commitment scheme used.

We start by proving the following two claims.

Claim. If some honest party has agrees on C, then every honest party will even-
tually agree on C.

Proof. We first prove by contradiction that if Pi be the first honest party to send
ready message containing C, then a ready message sent by every other honest
party Pj will contain C. Assume an honest party Pj sends a ready message with
C such that C �= C. Being first honest party to send a ready message with C party
Pi must have received (echo, C) from at least n− t parties of which at least n−2t
were honest. Pj can send C only after one of the following two events and in both
cases we arrive at a contradiction:

1. Pj can send (ready, C) after receiving (echo, C) from at least n− t parties. As
n ≥ 3t+1, (n− t) + (n− t)−n = n− 2t ≥ t+1 parties must have sent echo
with both C and C. This implies that at least one honest party sent echo
messages of two types, which is impossible.

2. Pj can also send (ready, C) after receiving n − 2t (ready, ∗, C) messages. For
n ≥ 3t+ 1, n− 2t ≥ t+ 1. Therefore, there is at least one honest party (say
Pk), who sent C in its ready message to Pj . This means that one of the events
(1) or (2) must have occurred with the honest party Pk. If we argue in a
recursive manner, we reach some honest party who must have experienced
event (1), which is a contradiction.

Therefore, no two honest parties will send ready messages containing different
commitments.

A honest party agrees on C only after receiving at least n− t ready messages
such that at least t + 1 contain share. Therefore, n − 2t ≥ t + 1 honest parties
must have sent ready message and at least one honest party must have sent a
ready message containing share. ready messages from t + 1 or more parties will
eventually reach all remaining honest parties and they will send ready messages
with the same C, as discussed above. As the number of honest parties is at least
n− t, every honest party will receive at least n− t ready messages.

It, however, remains to be shown that every honest party will eventually re-
ceive at least t+1 ready messages with the share flag. From the above paragraph,
we know that at least one honest party must have sent a ready message for C
after receiving n− t echo messages for C and, out of those, at least n− 2t ≥ t+1
are sent by honest parties. As an honest party sends an echo message only after
receiving a verified send message from the dealer, at least t + 1 honest parties
must have received their shares from the dealer. As every honest party eventually
sends a ready message, these t+1 parties will also certainly send ready messages
and importantly, they will contain the share flag. Therefore, every honest party
will eventually receive n− t ready messages for C and at least t+1 among them
will have share flags and thereby agree on C.

270 M. Backes, A. Datta, and A. Kate

Claim. If some honest party agrees on C, then there exists a subset of at least
n − 2t ≥ t + 1 honest parties such that each of those holds an evaluation of a
degree-t polynomial consistent with C.
Proof. From the proof of Claim 3.2, n − 2t honest parties will eventually send
out ready messages for C with share; these n − 2t honest parties have received
verifiable send messages for C from the dealer Pd. Note that these honest parties
never update C, and eventually agree on the same C by Claim 3.2. Due to the
strong correctness and polynomial binding properties of PolyCommitPed, there
is a unique t-degree of polynomial φ(x) committed by C. Therefore, evaluations
available with these n−2t ≥ t+1 parties implicitly defines φ(x) that is consistent
with C.
Liveness. If the dealer Pd is honest, then every honest party will eventually
receive verifiable send message sent by Pd and will send an echo message and
then a ready message. As there are n− t ≥ 2t+1 honest parties, they will finally
agree on C and complete the Sh phase.

Agreement. A party completes its Sh phase as soon as it agrees on a com-
mitment C. Claim 3.2 suggests that if an honest party agrees on C, then every
honest party will eventually agree on C. Therefore, if one honest party completes
the Sh phase, then every honest party will complete its Sh phase.

For agreement in the Rec phase, Claim 3.2 shows that there is a subset of at
least t + 1 honest parties each holding an evaluation of a degree-t polynomial
φ(x) that is consistent with C. As every honest party participates in the Rec
phase, t + 1 correct evaluations of φ(x) associated with C are available in the
Rec phase, and the secret s = φ(0) can be interpolated by every honest party.

Correctness. Assume that the dealer has shared a secret s using a polyno-
mial φ(x), and has remained honest throughout the execution of the Sh phase.
Let C be the commitment to φ(x) sent by the dealer. Given correctness of the
polynomial commitment scheme, all honest parties will receive correct shares
of the secret s that is consistent with C. Therefore, as we discussed above for
agreement, the same secret s will be reconstructed by the parties.

Commitment. We prove the commitment by contradiction. Assume that two
different honest parties Pi and Pj reconstruct different s′ and s′′ such that s′ �=
s′′, The maximum possible degree of the committed polynomial is t due to strong
correctness of PolyCommitPed. Therefore, each of them must have agreed upon
different commitments (say) C′ and C′′ in the Sh phase. However, this contradicts
with Claim 3.2. Therefore, a unique value s∗ ∈ Fp will be reconstructed by all
honest parties.

Secrecy. To prove secrecy, we need to show that if dealer Pd is honest, then
the adversary A gains no information about the secret s. A t-limited adversary
will be able to obtain t messages of the form (send, C, wi, φ(i)). Due to the
hiding property for polynomial commitments, given only t such messages it is
impossible to reconstruct polynomial φ(x) (of degree t) and correspondingly the
dealer’s secret s = φ(0).

Asynchronous Computational VSS 271

4 eAVSS-SC: AVSS Protocol with Strong Commitment

Although protocol eAVSS in Section 3 does not attain the strong commitment
property, it can be used as a component of a VSS protocol that satisfies it.
The most intuitive way to realize such a VSS scheme is to make Pd execute
(n + 1) correlated instances of eAVSS, where the secret s is shared using the
first instance (say) eAVSS0 and the associated shares or polynomial evaluations
for all n parties in eAVSS0 are themselves shared using n instances eAVSSj for
j ∈ [1, n]. Once all eAVSSj instances complete their Sh phases, a subset of t+ 1
or more honest parties provide every Pj its share in eAVSS0 by running the Rec
phase of eAVSSj , and by sending their verifiable shares of eAVSSj to only Pj .
It is possible to combine send, echo and ready messages for all n + 1 instances
to keep the message complexity the same as that of AVSS and eAVSS, i.e.,
O(n2). However, to broadcast all associated commitments, the communication
complexity becomes O(κn3), which is no better than that of AVSS [9]. In protocol
eAVSS-SC, we overcome this drawback using a collision-resistant hash function.

4.1 Construction

Here, the dealer Pd shares the secret s using a symmetric bivariate polynomial
φ(x, y) such thatφ(0, 0) = s. The dealer commits to this bivariate polynomial using
the univariatePolyCommit scheme twice. In Section 2.4,we observed that constant-
size commitments to bivariate polynomials seem difficult, if not impossible. Here,
we overcome this hurdle using PolyCommit over the hashed univariate PolyCommit
values.2 We provide an expository description of protocol eAVSS-SC in Figure 2.
Notice that although we use send, echo, and ready messages similar to AVSS, our
message structures and their utilities are significantly different from those ofAVSS.
These message structures are crucial to adopt a univariate PolyCommitPed scheme
to our asynchronous VSS scheme, which uses bivariate polynomials.

The protocol requires two PolyCommitPed instances: SP1 ← Setup(1κ, t) and
SP2 ← Setup(1κ, n). Pd runs n + 1 eAVSS instances with polynomials φ(x, 0),
φ(x, 1) , . . . , φ(x, n). Let C0, C1, . . . , Cn be the commitments for these n+ 1 in-
stances. Pd also computes an n-degree polynomial hC(x) from H(C0), H(C1), . . . ,
H(Cn), where H : G → Fp is a collision-resistant hash function and broad-
casts a commitment ζ to hC(x). The dealer cannot cheat with φ(x, y) as the
PolyCommitPed scheme is binding and the hash function is collision-resistant.
When all honest parties agree on ζ, they implicitly agree on C0, C1, . . . , Cn. As
t+1 or more honest parties have received all required shares φi(x) = φ(x, i) and

φ̂i(x) = φ̂(x, i), and commitments C, they can provide all parties their required
shares, commitments and witnesses in a verifiable manner using the homomor-
phic property of PolyCommitPed. We optimize this final step by attaching the
required shares, witnesses and commitments to the ready messages.

2 Note that our scheme is not a generic constant-size commitment scheme for bivariate
polynomials and some care has to be taken before applying it in other applications;
e.g., our scheme cannot be applied to themain as well as the refinedAVSS protocols [9]
without making their computational complexity exponential O

(
n
t

)
.

272 M. Backes, A. Datta, and A. Kate

Sh Phase
Dealer Pd with the secret s
– Choose a symmetric t-degree bivariate polynomial φ(x, y) such that φ(0, 0) = s

and φ(i, j) = φ(j, i).
– Commit to φ(x, y) using a vector C = {Cj}j∈[0,n], where 〈Cj , φ̂j(x)〉 ←

Commit(SP1, φj(x)), φj(x) = φ(x, j) and φ̂(x, y) is symmetric. Also, compute wit-

ness vectors
−→Wj = {wk

j }k∈[0,n] for every party Pj such that wk
j ← CreateWitness

(SP1, φk(x), φ̂k(x), j).
– Compute an n-degree polynomial hC(x) from H(C0),H(C1), . . . ,H(Cn), where H :

G → Fp is a collision-resistant hash function and commit to it 〈ζ, ĥC(x)〉 ←
Commit(SP2, hC(x))

– Send (send, ζ′ = ζ, C′ = C, ĥC(x),
−→Wj , φj(x), φ̂j(x)) to every party Pj .

Every party Pi

– On receiving (send, ζ′, C′, ĥC(x),
−→Wi, φi(x), φ̂i(x)) from Pd, verify its correctness:

• interpolate the complete C′ from any of its t+ 1 elements to assert the degree
t of the polynomial;
• compute hC(x) from C′ and VerifyPoly(SP2, ζ

′, hC(x), ĥC(x));
• VerifyPoly(SP1, C′i, φi(x), φ̂i(x));
• VerifyEval(SP1, C′j , i, φj(i)

[
= φi(j)

]
, φ̂j(i)

[
= φ̂i(j)

]
, wj

i) for every j ∈ [0, n].
Upon a successful verification, set ζ = ζ′ and C = C′, compute wit-
nesses wi

j ← CreateWitness (SP1, φi(x), φ̂i(x), j) for j ∈ [1, n] and wC
i ←

CreateWitness(SP2, hC(x), ĥC(x), i). Send a message (echo, ζ′) to all parties.
– On receiving (echo, ζ′) from at least (n− t) parties:

• If ζ′ = ζ, send (ready, ζ′, share, φi(j), φ̂i(j), w
i
j , Ci, ĥC(i), wC

i) to every party Pj ;

• If ζ′ �= ζ, discard 〈C,−→Wi, φi(x), φ̂i(x)〉, set ζ = ζ′, and send (ready, ζ′, no-share)
to all parties.

– If a ready message has not been sent, then on receiving (ready, ζ′, ∗) messages
from (t+ 1) parties:

• If ζ′ = ζ, send (ready, ζ′, share, φi(j), φ̂i(j), w
i
j , Ci, ĥC(i), wC

i) to every party Pj ;

• If ζ′ �= ζ, discard 〈C,−→Wi, φi(x), φ̂i(x)〉, set ζ = ζ′, and send (ready, ζ′, no-share)
to all parties.

– On receiving (ready, ζ′, ∗) messages from at least (n − t) parties such that
at least (t + 1) of those messages contain 〈share, φj(i), φ̂j(i), w

j
i , Cj , ĥC(j), wj

C〉
successfully verified using VerifyEval(SP1, Cj , i, φj(i), φ̂j(i), w

j
i) and VerifyE-

val(SP2, ζ
′, j,H(Cj), ĥC(j), w

j
C), interpolate

• shares φ0(i) and φ̂0(i) from respectively (t+ 1) φj(i) and (t+ 1) φ̂j(i) values,
• commitment C0, witness w0

i from respectively (t+ 1) Cj and (t+ 1) wj
i values.

Complete the Sh phase with (ζ = ζ′, C0, φ0(i), φ̂0(i), w
0
i) as output.

Rec Phase
Every party Pi

– Send a message (rec-share, φ0(i), φ̂0(i), w
0
i) to every party Pj .

– On receiving t + 1 rec-share messages that have been verified using VerifyE-
val(SP1, C0, φ0(j), φ̂0(j), w

0
j), interpolate shares φ0(j) to obtain secret s.

Fig. 2. Protocol eAVSS-SC for Asynchronous VSS with Stronger Commitment

Asynchronous Computational VSS 273

From the protocol description, it is apparent that the message complexity is
O(n2). As we use the PolyCommitPed scheme that commits to univariate polyno-
mials using a single element, the communication complexity is O(κn2). Note that
although the size of send messages is O(κn), only n such messages are delivered;
thus, the communication complexity does not exceed O(κn2).

For simplicity of the description, we define our protocol with a symmetric
bivariate polynomial. It is easily possible to avoid this symmetry requirement in
the protocol without any asymptotic increase in the complexity measures.

4.2 Analysis

Theorem 2. Given a PolyCommit scheme that satisfies Definition 4, eAVSS-SC
is an asynchronous VSS protocol that satisfies Definition 5 with the strong com-
mitment property.

Proof (Proof Outline). We have to prove that protocol eAVSS satisfies the asyn-
chronous VSS properties in Definition 5 along with the strong commitment prop-
erty. Our analysis is based on the following two claims and the properties of the
PolyCommit scheme. We present our proof sketch here, while the complete proof
appears in [3].

Claim. If some honest party agrees on ζ, then every honest party will eventually
agree on ζ.

Claim. All honest servers complete the Sh phase with the same PolyCommit
commitment C0.
Proof. Assume two honest parties terminate with C0′ and C0′′ such that C0′ �=
C0′′. From Claim 4.2, we know that all honest parties agree on the same ζ.
As ζ commits to hC(x), an n-degree polynomial interpolated by hashing n + 1
elements of C, the adversary has to break the evaluation binding property of the
polynomial commitment or the collision resistance property of hash function to
obtain two different C0 values that culminate the same ζ. This is not possible
in PPT and there is a contradiction. Therefore, we prove that all honest servers
complete the Sh phase with the same C0.
Liveness follows from the protocol flow and correctness of the PolyCommit scheme.
Agreement in the Sh phase is evident from claims 4.2 and 3.2, while agreement in
reconstruction follows from agreement during the Sh phase. Correctness follows
directly from correctness of the PolyCommit scheme and collision-resistance of
the hash function. Strong Commitment is apparent from agreement of eAVSS-SC
and Claim 3.2. Secrecy follows from the hiding property of PolyCommit.

4.3 Lower Bounds

We observe that the Ω(n2) message complexity of our eAVSS and eAVSS-SC
protocols as well as the AVSS protocol is optimal.3 This can be proved in two

3 With the stronger cryptographic assumptions such as PKI or ZK proofs more efficient
schemes can be possible; however, we only assume commitment schemes here.

274 M. Backes, A. Datta, and A. Kate

steps: first, it is known that a VSS protocol is sufficient to implement reliable
broadcast [19]; next, extending a result by Dolev and Reischuk [14] for Byzantine
agreement to reliable broadcast. The latter proves that if a reliable broadcast
protocol terminates, the number of messages exchanged by honest parties is
lower bounded by max{(n− t), (1+ t/2)2} in presence of a commitment scheme.
The above two claims show that the message complexity of asynchronous VSS
is lower-bounded by Ω(n2) for optimal resiliency condition n = 3t+1 and t > 2.
We thoroughly prove this result in the extended version of this paper [3].

Note that when the shared secret is of size κ (the computational security
parameter), the lower bound of Ω(n2) message complexity intuitively transfers
to a lower bound ofΩ(κn2) on the asynchronous VSS communication complexity.
Nevertheless, proving this thoroughly presents an interesting challenge. If proven,
it will show that our eAVSS and eAVSS-SC protocols are not only optimal in
terms of message complexity but also in terms of communication complexity.

5 Applications

Our eAVSS and eAVSS-SC schemes have direct implications to all asynchronous
VSS applications. We briefly discuss some important applications here.

Using our eAVSS-SC protocol in proactive VSS [9] reduces its communication
complexity by a linear factor to O(κn3). The same reduction also applies to
distributed key generation required for threshold cryptography, and its group
and threshold modification primitives [17]. Using our eAVSS protocol in the
asynchronous Byzantine agreement (ABA) framework of Canetti and Rabin [10,
11], it is possible to obtain the first O(κn3) communication complexity ABA
protocol, which is secure against the adaptive adversary in the standard model
without the random oracle assumption (see [9, Sec. 3.5] for details).

Finally, our commitment methodology may also find applications in some
other bivariate polynomial-based protocols; however, one has to be careful as it
is not a full-fledged bivariate polynomial commitment scheme.

References

1. Abraham, I., Dolev, D., Halpern, J.Y.: An Almost-surely Terminating Polynomial
Protocol for Asynchronous Byzantine Agreement with Optimal Resilience. In: Pro-
ceedings of ACM PODC 2008, pp. 405–414 (2008)

2. Au, M.H., Susilo, W., Mu, Y.: Practical Anonymous Divisible E-Cash from
Bounded Accumulators. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 287–
301. Springer, Heidelberg (2008)

3. Backes, M., Datta, A., Kate, A.: Asynchronous Computational VSS with Reduced
Communication Complexity. Cryptology ePrint Archive, Report 2012/619 (2012),
http://eprint.iacr.org/2012/619

4. Backes, M., Kate, A., Patra, A.: Computational Verifiable Secret Sharing Revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609.
Springer, Heidelberg (2011)

http://eprint.iacr.org/2012/619

Asynchronous Computational VSS 275

5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous Secure Computation. In:
Proceedings of ACM STOC 1993, pp. 52–61 (1993)

6. Blakley, G.R.: Safeguarding Cryptographic Keys. In: Proceedings of the National
Computer Conference, pp. 313–317 (1979)

7. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Bracha, G.: An Asynchronous [(n-1)/3]-Resilient Consensus Protocol. In: Proceed-
ings of PODC 1984, pp. 154–162 (1984)

9. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous Verifiable
Secret Sharing and Proactive Cryptosystems. In: Proceedings of ACM CCS 2002,
pp. 88–97 (2002)

10. Canetti, R.: Studies in Secure Multiparty Computation and Applications. Ph.D.
thesis, The Weizmann Institute of Science (1996)

11. Canetti, R., Rabin, T.: Fast Asynchronous Byzantine Agreement with Optimal
Resilience. In: Proceedings of ACM STOC 1993, pp. 42–51 (1993)

12. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults. In: Proceedings of IEEE FOCS
1985, pp. 383–395 (1985)

13. Cramer, R., Damg̊ard, I., Dziembowski, S.: On the Complexity of Verifiable Secret
Sharing and Multiparty Computation. In: Proceedings of STOC 2000, pp. 325–334
(2000)

14. Dolev, D., Reischuk, R.: Bounds on Information Exchange for Byzantine Agree-
ment. Journal of ACM 32(1), 191–204 (1985)

15. Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In:
Proceedings of IEEE FOCS 1987, pp. 427–437 (1987)

16. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing or:
How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

17. Kate, A., Goldberg, I.: Distributed Key Generation for the Internet. In: Proceed-
ings of 29th IEEE International Conference on Distributed Computing Systems
(ICDCS), pp. 119–128 (2009)

18. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomi-
als and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (2010)

19. Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the Round Complexity of VSS in
Point-to-Point Networks. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 499–510. Springer, Heidelberg (2008)

20. Patra, A., Choudhary, A., Rangan, C.P.: Efficient Asynchronous Byzantine Agree-
ment with Optimal Resilience. In: Proceedings of ACM PODC 2009, pp. 92–101
(2009)

21. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

22. Pedersen,T.P.:AThresholdCryptosystemwithout aTrustedParty. In:Davies,D.W.
(ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)

23. Schultz, D.A., Liskov, B., Liskov, M.: MPSS: Mobile Proactive Secret Sharing.
ACM Trans. Inf. Syst. Secur. 13(4), 34 (2010)

24. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
25. Zhou, L., Schneider, F.B., van Renesse, R.: APSS: Proactive Secret Sharing in

Asynchronous Systems. ACM Trans. Inf. Syst. Secur (TISSec) 8(3), 259–286 (2005)

276 M. Backes, A. Datta, and A. Kate

A Protocol PolyCommitPed

In this section, we instantiate the PolyCommitPed scheme that commits to a
univariate polynomial using a single group element. PolyCommitPed is based on
the algebraic property of polynomials φ(x) ∈ Fp[x]: (x − i) perfectly divides
the polynomial φ(x) − φ(i) for i ∈ Fp. Further, it uses an additional random

polynomial φ̂(x) to achieve unconditional hiding.

Setup(1κ, t) computes two groups G and GT of prime order p (providing κ-bit
security) such that there exists a symmetric bilinear pairing e : G×G → GT

and for which the t-SDH assumption holds. We denote the generated bilinear
pairing group as G = 〈e,G,Gt〉. Choose two generators g, h ∈R G. Let
α ∈R F∗

p be SK, generated by a (possibly distributed) trusted authority. Setup

also generates a (2t + 2)-tuple 〈g, gα, . . . , gαt

, h, hα, . . . , hαt〉 ∈ G2t+2 and

outputs SP = 〈G, g, gα, . . . , gαt

, h, hα, . . . , hαt〉. Note that SK is not required
by the other algorithms of the commitment scheme, and it can be discarded
by the authority if t is fixed.

Commit(SP, φ(x)) chooses φ̂(x) ∈R Fp[x] of degree t and computes the com-

mitment C = gφ(α)hφ̂(α) ∈ G for the polynomial φ(x) ∈ Fp[X] of degree

t or less. For φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =

∑deg(φ̂)
j=0 φ̂jx

j , it outputs

C =
∏deg(φ)

j=0 (gα
j

)φj
∏deg(φ̂)

j=0 (hαj

)φ̂j as the commitment to φ(x).

Open(SP, C, φ(x), φ̂(x)) outputs the committed polynomials φ(x) and φ̂(x).

VerifyPoly(SP, C, φ(x), φ̂(x)) verifies that C ?
= gφ(α)hφ̂(α).

If C =
∏deg(φ)

j=0 (gα
j

)φj
∏deg(φ̂)

j=0 (hαj

)φ̂j for φ(x) =
∑deg(φ)

j=0 φjx
j and φ̂(x) =∑deg(φ̂)

j=0 φ̂jx
j , the algorithm outputs 1, else it outputs 0. Note that this only

works when both deg(φ) and deg(φ̂) ≤ t.

CreateWitness(SP, φ(x), φ̂(x), i) computes ψi(x) =
φ(x)−φ(i)

(x−i) , ψ̂i(x) =
φ̂(x)−φ̂(i)

(x−i) ,

and outputs 〈i, φ(i), φ̂(i), wi〉. Here, the witness wi = gψi(α)hψ̂i(α).

VerifyEval(SP, C, i, φ(i), φ̂(i), wi) verifies that φ(i) is the evaluation at the index

i of the polynomial committed to by C. If e(C, g) ?
= e(wi, g

α/gi)e(gφ(i)hφ̂(i), g),
the algorithm outputs 1, else it outputs 0.

Suppose h = gλ for some unknown λ. Then VerifyEval is correct because

e(wi, g
α/gi)e(gφ(i)hφ̂(i), g) = e(gψi(α)+λψ̂i(α), g(α−i))e(g, g)φ(i)+λφ̂(i)

= e(g, g)(ψi(α)(α−i)+φ(i))+λ(ψ̂i(α)(α−i)+φ̂(i))

= e(g, g)φ(α)+λφ̂(α) = e(gφ(α)hφ̂(α), g) = e(C, g)

The hiding property of PolyCommitPed is unconditional. The polynomial binding
property is based on the DLog assumption, while the evaluation binding property
is based on the t-Strong Diffie-Hellman (t-SDH) assumption [7]. The strong
correctness property follows from the t-polynomial Diffie-Hellman (t-polyDH)
assumption [2, 18].

Proxy Re-Encryption in a Stronger Security Model
Extended from CT-RSA2012

Toshiyuki Isshiki1,2, Manh Ha Nguyen2,�, and Keisuke Tanaka2

1 NEC Corporation, Japan
t-issiki@bx.jp.nec.com

2 Tokyo Institute of Technology, Japan
{nguyen9,keisuke}@is.titech.ac.jp

Abstract. Proxy re-encryption (PRE) realizes delegation of decryption rights,
enabling a proxy holding a re-encryption key to convert a ciphertext originally
intended for Alice into an encryption of the same message for Bob, and can-
not learn anything about the encrypted plaintext. PRE is a very useful primi-
tive, having many applications in distributed file systems, outsourced filtering of
encrypted spam, access control over network storage, confidential email, digital
right management, and so on. In CT-RSA2012, Hanaoka et al. proposed a chosen-
ciphertext (CCA) security definition for PRE, and claimed that it is stronger than
all the previous works. Their definition is a somewhat strengthened variant of the
replayable-CCA one, however, it does not fully capture the CCA security notion.
In this paper, we present a full CCA security definition which is extended from
theirs. We then propose the first PRE scheme with this security in the standard
model (i.e. without the random oracle idealization). Our scheme is efficient and
relies on mild complexity assumptions in bilinear groups.

Keywords: unidirectional proxy re-encryption, chosen-ciphertext attack,
pairings.

1 Introduction

Proxy re-encryption (PRE), first introduced by Blaze, Bleumer, and Strauss in [5], al-
lows a proxy to transform ciphertexts computed under the public-key of Alice (the
delegator) into other ciphertexts for Bob (the delegatee). The proxy, however, learns
nothing about the underlying messages encrypted, and has no knowledge of the secret
keys of the delegators and the delegatees.

PRE schemes have applications in digital rights management (DRM) [22], distributed
file storage systems [3], law enforcement [15], encrypted email forwarding [5], and
outsourced filtering of encrypted spam [3]. In all these cases, the gist is that the
process of re-encryption, i.e., decrypting under one key for encryption under another
key, should not allow the re-encryptor module to compromise the secrecy of encrypted
messages.

� Supported by Ministry of Education, Culture, Sports, Science and Technology.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 277–292, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 T. Isshiki, M.H. Nguyen, and K. Tanaka

1.1 Background

According to the direction of transformation, PRE can be classified into two types: uni-
directional and bidirectional [15]. In unidirectional PRE, the proxy can only transform
ciphertexts from Alice to Bob. While in bidirectional PRE, the proxy can transform ci-
phertexts in both directions. PRE can also be categorized into multi-hop PRE, in which
the ciphertexts can be transformed from Alice to Bob and then to Charlie and so on,
and single-hop PRE, in which the ciphertexts can only be transformed once [15]. In this
work, we only consider unidirectional single-hop PRE schemes.

In 1998, Blaze, Bleumer, and Strauss [5] (whose work is sometimes dubbed BBS)
proposed the first bidirectional PRE scheme. It is based on a simple modification of
the Elgamal encryption scheme [13]. This scheme is efficient and semantically secure
under the decision Diffie-Hellman (DDH) assumption.

In 2005, Ateniese, Fu, Green, and Hohenberger [2,3] showed the first examples of
unidirectional PRE schemes based on bilinear maps. Moreover, they obtained the mas-
ter key security property in that the proxy is unable to collude with the delegatees in
order to expose the delegator’s secret. The constructions [2,3] are also efficient, seman-
tically secure assuming the intractability of decisional variants of the bilinear Diffie-
Hellman problem [7]. These PRE schemes only ensure the chosen-plaintext security,
which seems definitely insufficient for many practical applications.

In 2007, Canetti and Hohenberger [10] gave a definition of security against cho-
sen ciphertext attacks (CCA) for PRE schemes and described an efficient construction
satisfying this definition (for bidirectional schemes but easily adaptable for the unidi-
rectional case, as explained in [18]). Their security analysis takes place in the standard
model (without the random oracle heuristic [4]). Like the BBS scheme [5], their con-
struction is bidirectional and they left as an open problem to come up with a CCA-
secure unidirectional scheme.

In 2008, Libert and Vergnaud [18] partially resolved this problem by presenting a
single-hop unidirectional PRE scheme without random oracles. They proved that their
scheme is secure against the replayable chosen-ciphertext attack (RCCA) [9]. Here the
RCCA security is a weaker variant of the CCA security in the sense that a harmless
mauling of the challenge ciphertext is tolerated.

Recently, Shao, Liu, and Zhou [21] proposed a construction of PRE and claimed
that their scheme achieves key privacy without losing the CCA security in the standard
model, which is an open problem left by Ateniese et al. [1]. In this paper, however,
we will show that their scheme is vulnerable to chosen-ciphertext attack, and present a
concrete attack to break the CCA security of it (see Section 4 for more details).

In CT-RSA2012, Hanaoka, Kawai, Kunihiro, Matsuda, Weng, Zhang, and Zhao [14]
proposed a CCA security definition for PRE, and claimed that it is stronger than all the
previous works. Their definition is a somewhat strengthened variant of the replayable-
CCA one, however, it does not fully capture the CCA security notion.

1.2 Our Contributions

First, we present a CCA security definition for PRE, which naturally extends that of [8]
by giving an adversary all the possible resources as the observation in [14]. Then, we

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 279

point out why the second-level-ciphertext security of the previous works, which include
ours, is stronger than that of Hanaoka et al. [14]. Therefore, the security definition
proposed in [14] does not fully capture the CCA security notion. Moreover, our security
model is the strongest one to date. See Table 1 for details of the comparison about our
security model with related previous works.

As the main goal of this paper, we propose a unidirectional PRE scheme which is
secure in our full CCA security model without random oracles. This is also the first
CCA-secure unidirectional PRE scheme in the standard model. Our scheme is efficient
and relies on a mild complexity assumption in bilinear groups. Additionally, our scheme
also achieves the security in the sense of master secret security which is proposed by
Ateniese et al. [3].

Table 1: Comparison with the previous unidirectional PRE schemes.
(“—” means that the CCA security of the corresponding scheme is broken.)

Authors Security Model RO-free Assumption

Ateniese et al. [3] CPA × eDBDH
Libert-Vergnaud [18] RCCA © 3-wDBDHI

Canard et al. [8] CCA × CDH
Shao et al. [21] — © 5-EDBDH & DDH

Hanaoka et al. [14] weak CCA © DBDH
Ours CCA © 6-AmDBDH & 2-AmCDH

1.3 Roadmap

The paper is organized as follows: we review the properties of bilinear maps and the
intractability assumptions that our scheme relies on in Section 2. We recall the concept
of unidirectional PRE and its security model in Section 3. In Section 4, we present
a concrete attack to break the CCA security of Shao-Liu-Zhou’s scheme. Section 5
describes the main new scheme, gives the intuition behind its construction and a security
proof. We conclude the paper in Section 6.

2 Preliminaries

Notations. We use x
R←− S to denote that an element x is chosen uniformly at random

from S.

2.1 Bilinear Maps and Complexity Assumptions

Groups (G,GT) of prime order p are called bilinear map groups if there is a mapping
e : G × G → GT with the following properties: (1) bilinearity: e(ga, hb) = e(g, h)ab

for any (g, h) ∈ G×G and a, b ∈ Zp, (2) efficient computability for any input pair, (3)
non-degeneracy: e(g, h) �= 1GT whenever g, h �= 1G.

In this paper, our proposed scheme shall use a variant of the modified decisional bi-
linear Diffie-Hellman assumption (a.k.a. mDBDH assumption) [10,20] named 6

280 T. Isshiki, M.H. Nguyen, and K. Tanaka

augmented modified decisional bilinear Diffie-Hellman assumption. The details of this
assumption is as follows.

Definition 1. (6-AmDBDH Problem). Given a group G of prime order p with gener-
ator g. The 6-augmented modified decisional bilinear Diffie-Hellman (6-AmDBDH)
problem in groups (G,GT) is, given (g, ga, gb, gc, ga/c, gc

2

, gac, gac
2

, gac
3

, gac
4

, Q) ∈
G10 ×GT , where a, b, c, z

R←− Zp, decide whether Q = e(g, g)ab/c
2

. For an adversary
A, we define its advantage in solving the 6-AmDBDH problem in groups (G,GT) as

Adv6-AmDBDH
A

def
=∣∣Pr[A(g, ga, gb, gc, ga/c, gc

2

, gac, gac
2

, gac
3

, gac
4

, e(g, g)ab/c
2

) = 1|a, b, c R←− Zp]

− Pr[A(g, ga, gb, gc, ga/c, gc
2

, gac, gac
2

, gac
3

, gac
4

, e(g, g)z) = 1|a, b, c, z R←− Zp]
∣∣.

We say that the (t, ε)-6-AmDBDH assumption holds in (G,GT) if no t-time adversary
A has advantage at least ε in solving the 6-AmDBDH problem in (G,GT).

The hardness of the 6-AmDBDH problem is implied by that of the general Diffie-
Hellman problem in the generic bilinear group model [6]. In particularly, a generic
attacker’s advantage in solving the 6-AmDBDH problem (on which our CCA-secure
PRE scheme is based) is less than 16 times of that in solving the DBDH problem. The
details are given in the full version of this paper.

We also use a variant of the computational Diffie-Hellman assumption (a.k.a. CDH
assumption) named 2 augmented modified computational Diffie-Hellman assumption,
which is almost identical to the CDH assumption except the introduction of the addi-
tional terms gba

2

, g
b
a .

Definition 2 (2-AmCDH). Given a group G of prime order p with generator g. The
2-augmented modified computation Diffie-Hellman (2-AmCDH) problem is defined as
Adv2-AmCDH

A = Pr[A(g, ga, gb, gba
2

, g
b
a) = gab], where the probability is taken over

the random choices of a, b and those made by A. We say that the (t, ε)-2-AmCDH
assumption holds in G if no t-time algorithm A has advantage at least ε in solving the
2-AmCDH problem in G.

2.2 The Gap Hashed Diffie-Hellman Assumption

Let Gen be a polynomial-time algorithm that on input 1k returns the description of a
multiplicative cyclic group G of prime order p, where 2k < p < 2k+1, and a random
generator g of G. Gen furthermore outputs the description of a random hash function
H : G → {0, 1}�(k) that outputs
(k) bits for a fixed polynomial
(·). Throughout the
paper we use HG = (G, g, p,H) as shorthand for the description of the hash group
obtained by running Gen.

The gap hashed Diffie-Hellman (GHDH) assumption [16] states, roughly, that the
two distributions (gx, gy, H(gxy)) and (gx, gy, R) are computationally indistinguish-
able when x, y are drawn at random from Zp and R is drawn at random from {0, 1}�(k).
This assumption should hold relative to an oracle that efficiently solves the DDH prob-
lem (See [16] for more details).

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 281

More formally let Gen be a parameter generation algorithm. To an adversary B we
associate the following experiment.

Experiment Expghdh
Gen,B(1

k),
HG = (G, g, p,H) ←R Gen(1k),
x, y ←R Z∗

p, Q0 ←R {0, 1}�(k), Q1 ←R H(gxy),
γ ←R {0, 1},
γ′ ←R BDDHsolveG(·,·,·,·)(1k,HG, gx, gy, Qγ),
If γ �= γ′ then return 0 else return 1.

Here the oracle DDHsolveG(g, g
a, gb, gc) returns 1 iff ab = c mod p. Note that, since

we make use of bilinear map, e(·, ·) can be seen as the oracle DDHsolveG. We define
the advantage of B in the above experiment as

AdvghdhGen,B(k) =

∣∣∣∣Pr [Expghdh
Gen,B(1

k) = 1
]
− 1

2

∣∣∣∣ .
We say that the GHDH assumption relative to group generator Gen holds if
AdvghdhGen,B(k) is a negligible function in k for all polynomial-time adversaries B.

2.3 Target-Collision Resistant Hash Function

Definition 3. (Target-Collision Resistant Hash Function). Let H : X → Y be a
hash function. For an algorithm A, define its advantage as

AdvTCR
H,A = Pr[x ← X, x′ ← A(x) : x′ �= x ∧H(x′) = H(x)].

We say that H is target-collision resistant (TCR) if for any probabilistic polynomial-
time (PPT) algorithm A, its advantage AdvTCR

H,A is negligible.

2.4 Symmetric Encryption

We review the formal notion of symmetric encryption and its security definition as
follows.

Definition 4 (Symmetric Encryption). Let KD be the key space. A symmetric encryp-
tion scheme, denoted by SYM, consists of the following algorithms:

– SYM.Enc: Taking a key K ∈ KD and a plaintext M as input, this algorithm
encrypts M into a ciphertext e. We write e ← SYM.Enc(K,M).

– SYM.Dec: Taking K ∈ KD and e as input, this algorithm decrypts e into M . Note
that M can be ⊥. We write M ← SYM.Enc(K, e).

Definition 5 (IND-CCA Security of Symmetric Encryption).
Let SYM be a symmetric encryption scheme as defined in Definition 4. Consider a
game played with an attacker A:

Phase 1. The game chooses K
$←− KD.

282 T. Isshiki, M.H. Nguyen, and K. Tanaka

Phase 2. A issues encryption queries, each of which is denoted by M . On receiving

this, the game computes e
$←− Enc(K,M) and gives e to A. A also issues decryp-

tion queries, each of which is denoted by e. On receiving this, the game computes
M ← Dec(K, e) and gives M to A.

Challenge. A issues a challenge query (a pair of plaintexts) (m0,m1) such that

|m0| = |m1|. On receiving this, the game picks b
$←− {0, 1}, computes e∗

$←−
SYM.Enc(K,
mb) and gives e∗ to A.

Phase 3. A continues to issue encryption and decryption queries as in Phase 2. How-
ever, a restriction here is that A is not allowed to issue e∗ as decryption query. The
game responds to A’s queries in the same way as it did in Phase 2.

Guess. A outputs its guess b′ ∈ {0, 1}.

We define A’s advantage by AdvIND-CCA
SYM,A (n) =

∣∣∣Pr[b′ = b]− 1
2

∣∣∣.
3 Models and Security Notions

In this section, we first review the concept of unidirectional single-hop PRE. Then, we
present a new CCA security definition for PRE, which naturally extends that of [8] by
giving an adversary all the possible resources as the observation in [14]. We also discuss
the second-level-ciphertext security of Hanaoka et al. [14], and show that their security
model is strictly weaker than ours.

3.1 Unidirectional Single-Hop Proxy Re-Encryption

Definition 6. (Unidirectional Single-Hop PRE [18]). A unidirectional single-hop PRE
scheme is a tuple of algorithmsΠ = (Setup,KGen,ReKey,Enc1,Enc2,ReEnc,
Dec1,Dec2) for message space M:

– Setup(1λ) → PP . On input security parameter 1λ, the setup algorithm outputs
the public parameters PP .

– KGen(PP) → (pk, sk). On input parameters, the key generation algorithm out-
puts a public key pk and a secret key sk.

– ReKey(PP, ski, pkj) → rki→j . Given a secret key ski and a public key pkj , this
algorithm outputs a unidirection re-encryption key rki→j .

– Enc1(PP, pk,m) → CT . On input a public key pk and a message m ∈ M, the
encryption algorithm outputs a first level ciphertextCT that cannot be re-encrypted
for another party.

– Enc2(PP, pk,m) → CT . On input a public key pk and a message m ∈ M, the
encryption algorithm outputs a second level ciphertext CT that can be re-encrypted
into a first level one (intended for a possibly different receiver) using the suitable
re-encryption key.

– ReEnc(PP, rki→j , CTi) → CTj . Given a re-encryption key from i to j and an
original ciphertext for i, the re-encryption algorithm outputs a first level ciphertext
for j or the symbol ⊥.

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 283

– Dec1(PP, sk, CT) → m. Given a secret key sk and a first level ciphertext CT ,
the decryption algorithm outputs a message m ∈ M or the symbol ⊥.

– Dec2(PP, sk, CT) → m. Given a secret key sk and a second level ciphertext CT ,
the decryption algorithm outputs a message m ∈ M or the symbol ⊥.

To lighten notations, from now, we will omit the public parameters PP as the input of
the algorithms.

For all m ∈ M and all pair (pki, ski), (pkj , skj) these algorithms should satisfy the
following conditions of correctness:

Dec1(ski,Enc1(pki,m)) = m;

Dec2(ski,Enc2(pki,m)) = m;

Dec1(skj ,ReEnc(ReKey(ski, pkj),Enc2(pki,m))) = m.

3.2 Security Models for Unidirectional Single-Hop Proxy Re-Encryption

In this section, we present a CCA security definition for PRE, which naturally extends
that of [8,14].

Definition 7. (Game Framework of Chosen-Ciphertext Security).

Setup. The challenger C takes a security parameter λ and executes the setup algo-
rithm to get the system parameter PP . C executes the key generation algorithm
nun times resulting a list Lun of public/private keys PKun,SKun and executes
the key generation algorithm ncorr times resulting a list Lcorr of public/private
keys PKcorr,SKcorr. Next, C picks a challenge user’s key pair (pki∗ , ski∗) ←
KGen(PP). A gets PP , PK = (PKun,PKcorr), SKcorr, and the challenge
public key pki∗ .

Phase 1. A adaptively queries to oracles Ork,Ore, Odec1 , and Odec2:
– Ork takes (pki, pkj) and returns a re-encryption key rki→j ← ReKey(ski, pkj).
– Ore takes public keys pki, pkj , and a second level ciphertext CTi, then returns

a re-encryption of CTi from pki to pkj .
– Odec1 takes a public key pk and a first level ciphertext CT , then returns the

decryption of CT using the private key with respect to pk if pk ∈ PK∪{pki∗};
otherwise returns symbol ⊥.

– Odec2 takes a public key pk and a second level ciphertext CT , then returns the
decryption of CT using the private key with respect to pk if pk ∈ PK∪{pki∗};
otherwise returns ⊥.

Challenge. When A decides that Phase 1 is over, it also decides which type of cipher-
text is for the challenge: first level (original or re-encrypted) or second level. In the
cases that challenge ciphertext is original (first level or second level) one,A outputs
two equal-length m0,m1 ∈ M. Challenger C flips a random coin σ ∈ {0, 1}, and
sends to A a challenge ciphertext CT ∗ depending on pki∗ and mσ. In the case that
challenge ciphertext is a re-encrypted ciphertext, A outputs a (corrupted or not)
public key pki′ , and two “good messages” CT0, CT1 which can be re-encrypted
from pki′ to pki∗ . Challenger C flips a random coin σ ∈ {0, 1}, and sends to A a
challenge ciphertext CT ∗ ← ReEnc(rki′→i∗ , CTσ).

284 T. Isshiki, M.H. Nguyen, and K. Tanaka

Phase 2. A issues queries as in Phase 1.
Guess. Finally, A outputs a guess σ′ ∈ {0, 1}.

The precise conditions of the attacks to second and first level ciphertexts are described
separately as follows.

CCA Security of Second Level Ciphertext. Intuitively speaking, in this model the
adversary A challenges with an untransformed ciphertext encrypted by Enc2 for a
target user i∗. In a PRE scheme, however, A can ask for the re-encryption of many
ciphertexts or even a set of re-encryption keys. These queries are allowed as long as
they would not allow A to decrypt trivially. For examples, A should not get the re-
encryption key from user i∗ to user j if the secret key of user j has been compromised;
however, A can certainly get a re-encryption of the challenge ciphertext from user i∗ to
user j as long as j is an honest user and the decryption oracle of user j has not been
queried with the resulting transformed ciphertext. This explains the intuition behind the
notion of derivative and the associated restrictions.

Definition 8 (2nd-level-CCA Security [11]). For 2nd-level-CCA security, the adver-
sary A plays the CCA game with the challengerC as in Definition 7, where the challenge
ciphertext is formed by CT ∗ ← Enc2(pki∗ ,mσ), and A has the following additional
constraints: 1. Ork(pki∗ , pkj) is only allowed if pkj is uncorrupt key.

2. If A issues Ore(pki, pkj, CTi) where pkj is corrupted key, (pki, CTi) cannot be
a derivative of (pki∗ , CTi∗) (to be defined later).

3. Odec1 is only allowed if (pk, CT) is not a derivative of (pki∗ , CTi∗).
We defineA’s advantage in attacking the PRE scheme at level 2 as Advsecond-CCA

PRE,A (λ) =∣∣Pr[σ′ = σ]−1/2
∣∣. A unidirectional PRE scheme is defined to be 2nd-level-CCA secure,

if for any PPT adversary A, the advantage Advsecond-CCA
PRE,A (λ) is negligible.

Definition 9 (Derivative for Chosen-Ciphertext Security [11]). Derivatives of (pki∗ ,
CTi∗) in the CCA setting is defined as below:

1. Reflexivity: (pki∗ , CTi∗) is a derivative of itself.
2. Derivative by re-encryption: If A has issued a re-encryption query (pk, pk′, CT)

and obtained the resulting re-encryption ciphertext CT ′, then (pk′, CT ′) is a
derivative of (pk, CT).

3. Derivative by re-encryption key: If A has issued a re-encryption key generation
query (pk, pk′) to obtain the re-encryption key rk, and CT ′ ← ReEnc(rk, CT),
then (pk′, CT ′) is a derivative of (pk, CT).

CCA Security of First Level Ciphertext. The above definition provides adversaries
with a second level ciphertext in the challenge phase. A complementary definition of
security captures their inability to distinguish first level ciphertexts as well.

For single-hop schemes, A is granted access to all the re-encryption keys in this
definition. Since first level ciphertexts cannot be re-encrypted, there is indeed no reason
to keep attackers from obtaining all the honest-to-corrupt re-encryption keys. The re-
encryption oracle becomes useless since all the re-encryption keys are available to A.

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 285

Definition 10 (1st-level-CCA Security). For 1st-level-CCA security, the adversary A
plays the CCA-PRE game with the challenger C as in Definition 7, where the challenge
ciphertext is formed as follows.

1. In the case of original ciphertext, CT ∗ ← Enc1(pki∗ ,mσ).
2. In the case of re-encrypted ciphertext, CT ∗ ← ReEnc(rki′→i∗ , CTσ).

A has the only constraint that: Odec1(pki∗ , CT ∗) is not allowed.
We define A’s advantage in attacking the PRE scheme at level 1 as Advfirst-CCA

PRE,A (λ)

=
∣∣Pr[σ′ = σ] − 1/2

∣∣. A unidirectional PRE scheme is defined to be 1st-level-CCA
secure, if for any PPT adversary A, the advantage Advfirst-CCA

PRE,A (λ) is negligible.

Definition 11 (PRE-CCA Security). We say a PRE scheme is PRE-CCA secure if the
scheme is 1st-level-CCA and 2nd-level-CCA secure.

Master Secret Security. Master Secret Security is considered in Ateniese et al. [3] which
captures the intuition that, even if a dishonest proxy colludes with the delegatee, they
still cannot derive the delegator’s private key in full. The attack mode is quite simple and
can be covered by the nontransformable / first-level ciphertext security (see e.g. [18]).
The reason behind is easy to see there is no restriction in the re-encryption key gen-
eration queries, and decryption is easy when the adversary can derive the delegator’s
private key in full.

3.3 Discussion on the Previous Security Models [8,14]

In comparison with the security model of [8], ours is strengthened by giving an adver-
sary all the possible resources as the observation in [14]. In particular, we allow the
adversary to make both first and second level decryption queries.

In [14], Hanaoka et al. proposed a variant of the CCA security definition for unidirec-
tional PRE, which naturally extends the RCCA one given in [18]. Then, they presented
the first generic construction of a CCA-secure (in the sense of their definition) PRE
scheme. On the discussion of difference from previous security definitions they ex-
plained why theirs is stronger than that of the RCCA security in [18]. They also showed
that the observation of omitting second level decryption queries in previous definitions
is incorrect (see [14] for details). However they did not give any comparison about the
strength of those definitions with theirs. In this section, we will point out a gap between
their definition with others, which includes ours. In particular, we will show that their
security model of second level ciphertext is even weaker than ours by constructing a
PRE scheme which is secure in their security model, but insecure in ours.

Using a secure PRE scheme Π (in the sense of their definition, which we denote by
wCCA security) as a building block, we construct a PRE scheme Π′ as follows:

– The second level encryption algorithm for Π′ first runs the second level encryption
algorithm for Π, generating a second level ciphertext Ĉ, and outputs CT = (Ĉ||0)
(i.e., 0 is attached).

– The second level decryption algorithm Π′.Dec2 for Π′ with input CT = (Ĉ||a)
does: if a = 0 then decrypts Ĉ with the underlying second level decryption algo-
rithm Π.Dec2; otherwise rejects by outputting the symbol ⊥.

286 T. Isshiki, M.H. Nguyen, and K. Tanaka

– The re-encryption algorithm Π′.ReEnc with input CT = (Ĉ||a) first re-encrypts
Ĉ with the underlying second level decryption algorithm to obtain re-encrypted
ciphertext rĈ , then outputs rCT = (rĈ||a) as re-encrypted ciphertext.

– The first level decryption algorithm Π′.Dec1 for Π′ ignores the last bit and de-
crypts Ĉ with the underlying first level decryption algorithm.

– The other algorithms for Π′ are the same as those for Π.

Next, we show that an adversary A can break the 2nd-level-CCA security (the security
in the sense of our definition) of Π′ by doing as follows:

1. After receiving the challenge ciphertext CTi∗ = (Ĉi∗ ||0), A queries Ork to obtain
a valid re-encryption key rki∗→j from challenger to uncorrupted user j.

2. A re-encrypts new ciphertext CT ′
i∗ = (Ĉi∗ ||1) using the above re-encryption key,

and obtains a re-encrypted ciphertext rCTj ← ReEnc(rki∗→j , CT ′
i∗).

3. A issues a decryption oracle query under pkj to decrypt the re-encrypted cipher-
text rCTj , and the result is the message encrypted in CTi∗ . Note that, CT ′

i∗(=

(Ĉi∗ ||1)) �= CTi∗(= (Ĉi∗ ||0)), so (pkj , CTj) is not a derivative of (pki∗ , CTi∗)
and this decryption query is not restricted in our security model.

On the other hand, the wCCA-security of the underlying scheme Π guarantees that Π′

is wCCA-secure.
From the above example, it is easy to see the gap between their security definition

and ours is the restriction on the first level decryption queries that : if A has asked a
re-encryption key query (pki∗ , pki ∈ PK) previously and Dec1(ski, ĉ) ∈ {m0,m1},
then the challenger returns the special symbol test to A. This restriction covers the third
condition in definition of Derivative (Definition 9). Because of this restriction, we suc-
ceed in constructing the above PRE scheme. Therefore, the security definition proposed
in [14] indeed only captures a somewhat strengthened notion of the RCCA security.

4 Analysis of the Shao-Liu-Zhou’s Scheme

Shao, Liu, and Zhou [21] proposed a construction of PRE and claimed that their scheme
achieves key privacy without losing the CCA security in the standard model. Unfortu-
nately, this scheme is actually not CCA secure. In this section, we describe our attack to
break its CCA security (the details are showed in the full version of this paper). See [21]
for more details of Shao-Liu-Zhou’s scheme, which we denote by SLZ (due to the lack
of space, we do not show it here).

Before describing our attack, we briefly explain how the re-encryption key is gener-
ated in the SLZ scheme. There are three components in the re-encryption key, where only
the first component (rk(1)pk,pk′ = (h1/y)xr) is computed using the secret key of the del-

egator (i.e., x ∈ sk), where h1/y is from the delegatee’s the public key and r is random
chosen by the delegator. The other components (rk(2)pk,pk′ and rk

(3)
pk,pk′) are computed

using parameters, the public key of the delegatee, and randoms chosen by the proxy.
It is easy to see that, everyone can compute the re-encryption key from the delegator

to himself (i.e. rkpk,pk = (h1/x)xr) without any knowledge of the delegator’s secret

key. Specifically, the adversary first chooses random r
R←− Zp then computes the first

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 287

component as hr (because hr = h(x/x)·r). The two latter are not depend on the dele-
gator’s secret key, so it is easily computed as in the re-key generation algorithm. Using
the computed re-encryption key , the adversary can re-encrypt the challenge ciphertext,
then revokes the re-encrypted ciphertext to the decryption oracle Odec1 to obtain the
plaintext (note that, this is not restricted in the CCA security model).

5 The Proposed PRE Scheme

In this section, we first propose a new PRE scheme, and then show that it meets the
1st-level-CCA and the 2nd-level-CCA security.

5.1 Construction

To achieve the full CCA security, we start from the following observations which are im-
portant and necessary principles for designing CCA-secure unidirectional PRE schemes:

1. The validity of the original ciphertexts can be publicly verifiable by everyone in-
cluding the proxy; otherwise, it will suffer from an attack as illustrated in [12].

2. It should also be impossible for the adversary to transform the second level ci-
phertext to the first level one without knowledge of delegator’s secret key or re-
encryption key; otherwise, it will suffer from an attack as applied to the SLZ
scheme (Section 4).

3. For the first level ciphertext CTj re-encrypted from a second level ciphertext CTi,
it should not exhibit any component of CTi; otherwise, it will fail in achieving the
1st-level-CCA security.

We will explain how our scheme follows these principles in the following description
of our scheme.

Setup: (p, g,G,GT , e, H)
R←− Setup(1λ), where (G, g, p,H) is random parameters

obtained by running the parameter algorithm Gen(1λ), and H : G → {0, 1}�(n) is
a random instance of a hash function such that the GHDH assumptions holds rela-
tive to Gen. Choose g1, h, u, v, d ∈R G, and two collision-resistant hash functions
TCR : G× GT → Zp, TCR′ : G → Zp. SYM is a symmetric encryption scheme
of which the key space is {0, 1}�(n). Return PP = (p,G,GT , g, h, g1, u, v, d, e,
H,TCR,TCR′).

KGen: On input PP = (p,G,GT , g, h, g1, u, v, d, e, H,TCR,TCR′), choose

x, y
R←− Zp, and output (pk, sk), where pk = (gx, gx

2

1 , gy), sk = (x, y).
ReKey: On input a private key ski = (ski,1, ski,2) and a public key pkj =

(pkj,1, pkj,2, pkj,3), the algorithm outputs rki→j = pk
1/ski,1

j,2 (= g
sk2

j,1/ski,1

1 =

g
x2
j/xi

1).
Enc1: Given pki = (pki,1, pki,2, pki,3) and a message m ∈ GT, randomly

choose r, R, r′, s
R←− Zp and compute C2 = hr, C3 = e(g, g1)

r · m, t =
TCR(C2, C3), C4 = (utvsd)r , C5 = s, C6 = pkrRi,2 , C7 = pkRi,2, C8 = g1/R,

CT ′
i = C2||C3||...||C8, A = gr

′
, t′ = TCR′(A), B = (pkt

′
i,3 · h)r′ , C ←

SYM.Enc(H(pkr
′

i,3), CT ′
i). Finally, output CTi = (A,B,C).

288 T. Isshiki, M.H. Nguyen, and K. Tanaka

Enc2: Given pki = (pki,1, pki,2, pki,3) and a message m ∈ GT, choose r, s
R←− Zp

and compute: C1 = pkri,1, C2 = hr, C3 = e(g, g1)
r · m, t = TCR(C2, C3),

C4 = (utvsd)r, C5 = s. Finally, output CT = (C1, C2, C3, C4, C5).
ReEnc: On input ReKey rki→j , an original ciphertext CTi and a pair of public keys

pki, pkj , this algorithm does as follows:
Compute t = TCR(C2, C3), and check the validity of the ciphertext CTi by test-
ing whether the following equalities hold (if all of the verifications pass, we write
Check(CTi) = 1):

e(h,C1) = e(C2, pki,1) (1)

e(h,C4) = e(C2, u
tvsd) (2)

If one of the above verifications fail, output ⊥ indicating an invalid ciphertext.

Otherwise, choose R, r′
R←− Zp, and compute C6 = CR

1 ; C7 = pkRi,1; C8 =

rk
1/R
i→j ; CT ′

i = C2||C3||...||C8; A = gr
′
, t′ = TCR′(A), B = (pkt

′
i,3 · h)r

′
, C ←

SYM.Enc(H(pkr
′

i,3), CT ′
i). Finally, output CTj = (A,B,C).

Dec2: Given ski and a ciphertext CT , do as follows:
Parse CT = (C1, C2, C3, C4, C5), if this is not the case, output ⊥ and halt. Com-
pute t = TCR(C2, C3), and check the validity of the ciphertext CT by testing
whether Check(CT) = 1. If the verifications fail, output ⊥ and halt. Otherwise,
output m = C3

e(C1,g1)
1/ski,1

.

Dec1: Given (pkj , skj), and a ciphertext CTj , do as follows:
Compute t′ = TCR(A), if e(A, pkt

′
i,3 · h) �= e(g,B) then output ⊥ indicating an

invalid ciphertext. Otherwise, do the following.
Compute CT ′

i = SYM.Dec(H(Askj,2), C);
Parse CT ′

i = C2||C3||...||C8, if this is not the case, output ⊥ and halt.
Else, compute t = TCR(C2, C3) and check the validity of the ciphertext CTi by

testing whether the following equalities hold:

e(h,C4) = e(C2, u
tvC5d) (3)

e(C7, C8) = e(pkj,2, g) (4)

e(h,C6) = e(C2, C7) (5)

If one of the above verifications fails, output ⊥ indicating an invalid ciphertext.
Otherwise, output m = C3

e(C6,C8)
1/sk2

j,1
.

5.2 Security Analysis

The intuition of the CCA security of our scheme can be seen from the below properties.

1. The validity of the original ciphertexts can be publicly verifiable by everyone in-
cluding the proxy; otherwise, it will suffer from an attack as illustrated in [12].
For our scheme, the ciphertext component C4, C5 in the original ciphertext CT =
(C1, C2, C3, C4, C5) can be viewed as a signature signing the message C1, C2, C3,
that is how we get public verifiability.

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 289

2. It should be impossible for the adversary to transform the second level ciphertext
to the first level one without knowledge of delegator’s secret key or re-encryption
key; otherwise, it only yields the RCCA security. In our scheme, the component
C8 = rk

1/R
i→j is computed using the re-encryption key and completely hidden in

C, so the adversary cannot transform the second level ciphertext to ciphertext re-
encrypted by ReEnc if he has no knowledge of the re-encryption key. The ad-
versary also cannot transform the second level ciphertext to ciphertext encrypted
by Enc1 without any knowledge of delegator’s secret key or random component
r used in the original ciphertext, because the component C6 = pkrRi,2 is computed
independently of Enc2, and completely hidden in C.

3. It should be impossible for the adversary to compute the re-encryption key from
the target user i∗ to itself (i.e., rki∗→i∗), otherwise it will suffer from an attack as
applied to the SLZ scheme (Section 4). This follows from Lemma 1.

4. For the first level ciphertext CTj re-encrypted from a second level ciphertext CTi,
it should not exhibit any component of CTi; otherwise, it will fail in achieving the
CCA-security of ReEnc (i.e., the 1st-level-CCA security). In our scheme, all of
the components from the original ciphertext are hidden in C. Furthermore, we use
the KEM/DEM scheme of Kiltz [16] in the re-encryption algorithm to guarantee
the CCA security of re-encrypted ciphertext.

5. In our scheme, ReEnc and Dec2 use the same algorithm of checking the valid-
ity of the second-level ciphertext CTi (i.e. Check(CTi)). So in the security game,
providing the adversary with a second level decryption oracle is useless. Indeed, ci-
phertexts encrypted under public keys fromPKun can be re-encrypted for corrupted
users by using the re-encryption oracle. Besides, the second level ciphertext under
pki∗ can be translated for other honest users by using rki∗→j (where pkj ∈ PKun)
and the resulting ciphertext can be queried for decryption at the first level by using
Odec1 . This does not contradict the observation of Hanaoka et al. [14].

Lemma 1. A cannot make rki∗→i∗ = g
ski∗,1
1 without knowledge of secret key ski∗,1,

assuming the 2-AmCDH problem is hard.

Proof (Sketch). Suppose there exists an adversaryA who can compute rki∗→i∗ = gxi∗
1 .

We build an algorithm B which is, given a 2-AmCDH instance (g, ga, gb, gba
2

, g
b
a) ∈

G5, solving the 2-AmCDH problem using A.

Setup: B chooses c, u, v, d
R←− Zp, sets g1 := gb, and computes h = gc. The other

parameters are chosen as in the algorithm Setup. The public parameters are PP =
(p,G,GT , g, h, g1, u, v, d, e, H,TCR,TCR′).

– For the challenge key, B chooses randomly xi∗ , yi∗
R←− Zp, and sets pki∗ =

((ga)xi∗ , (gba
2

)x
2
i∗ , gyi∗) (meaning that ski∗ = (axi∗ , yi∗)).

– For corrupted-keys and uncorrupted-keys, B chooses randomly xi, yi
R←− Zp, and

defines pki = (gxi , (gb)x
2
i , gyi), ski = (xi, yi).

ReKey Oracle Ork(pki, pkj): B does as follows.

1. If pki, pkj ∈ PKcorr or pki, pkj ∈ PKun then B returns rki→j = g
x2
j/xi

1 .

2. If pki ∈ PKun ∧ pkj ∈ PKcorr, then B returns rki→j = g
x2
j/xi

1 .

290 T. Isshiki, M.H. Nguyen, and K. Tanaka

3. If pki ∈ PKcorr ∧ pkj ∈ PKun ∪ {pki∗} then B returns rki→j = pk
1/xi

j,2 .

4. If pki = pki∗ , pkj ∈ PKun then B returns rki∗→j = (g
b
a)x

2
j/xi∗ = g

sk2
j,1/ski∗,1

1 .

5. If pki ∈ PKun, pkj = pki∗ then B returns rki→i∗ = (gba
2

)x
2
i∗/xi = g

sk2
i∗,1/ski,1

1 .
6. If pki = pki∗ , pkj ∈ PKcorr then B outputs ⊥.

First Decryption OracleOdec1(pki, CTi): If pki �= pki∗ ,B does as theDec1 to decrypt
the ciphertext CTi using the secret key ski = (xi, yi). Otherwise, B does as follows. B
first computes t′ = TCR(A), and checks if e(A, pkt

′
i,3 ·h)

?
= e(g,B). If this verification

fails, output ⊥ indicating an invalid ciphertext. Otherwise, it does the following.
Compute CT ′

i = SYM.Dec(H(Ayi), C), and parse CT ′
i = C2||C3||...||C8. Then,

B computes t = TCR(C2, C3) and does as follows:

1. Check the validity of the ciphertext CTi as Eq. (3) - (5) in Dec1.

2. Check if (C2, C3)
?
= (C∗

2 , C
∗
3) and t �= t∗. If so, abort and output a random bit.

3. Check if t+ sxv + xd = 0. If so, B aborts and outputs a random bit.

If all of these verifications pass, then there exists r ∈ Zp such that C1 = pkri,1, C4 =
(utvsd)r, s = C5. If (C2, C3, C4, C5) = (C∗

2 , C
∗
3 , C

∗
4 , C

∗
5), B outputs ⊥ which deems

CTi as a derivative of the challenge pair (pki∗ , CT ∗). We now assume C3 �= C∗
3 . Since

C2 = hr = gcr, we have C
1/c
2 = gr. Therefore B can compute m = C3

e(gr ,g1)
, then

returns it to A.

Re Encryption Oracle Ore(rki→j , CTi): B first checks the validity of CTi, then exe-
cutes the algorithm ReEnc with the re-encryption key computed as in Ork(pki, pkj)
and the ciphertext CTi. Finally returns CTj ← ReEnc(rki→j , CTi).

Challenge. A outputs two equal-length messages m0,m1 ∈ GT . B flips a coin σ
R←−

{0, 1} and encrypts mσ using the public key pki∗ .

Whenever, A outputs rki∗→i∗ = g
ski∗,1
1 (meaning that rki∗→i∗ = gabxi∗), then B

outputs gab = k
1

xi∗
i∗→i∗ as the answer of the 2-AmCDH problem.

This completes the description of the simulation.
It is easy to see that the simulation is perfect, therefore we have the probability that

A can compute rki∗→i∗ is bound by Adv2-AmCDH
B (λ).

The Lemma follows. �

Theorem 1. Our scheme meets the 2nd-level-CCA security, assuming the hash function
H is target collision resistant, the 6-AmDBDH assumption holds in groups (G,GT),
and the 2-AmCDH problem is hard.

Proof (Sketch). We prove that our proposed scheme is 2nd-level-CCA secure under
the 6-AmDBDH assumption. We build an algorithm B which is, given a modified
6-AmDBDH instance (g, ga, gb, gc, ga/c, gc

2

, gac, gac
2

, gac
3

, gac
4

, Q) ∈ G10 × GT ,
deciding whether Q = e(g, g)ab/c

2

, using the adversary A who can break the 2nd-
level-CCA security of the scheme.

In the setup phase, B chooses ω, xv, xd, yu, yv, yd
R←− Zp, sets g1 := ga, and

computes h = (gc
2

)ω, u = g · (gc2)yu , v = gxv · (gc2)yv , d = gxd · (gc2)yd . The

Proxy Re-Encryption in a Stronger Security Model Extended from CT-RSA2012 291

others parameters are chosen as in the algorithm Setup. The public parameters are
PP = (p,G,GT , g, h, g1, u, v, d, e, H,TCR,TCR′).

For the challenge key, B chooses xi∗ , yi∗
R←− Zp, and defines pki∗ = ((gc

2

)xi∗ ,

(gac
4

)x
2
i∗ , gyi∗) (meaning that ski∗ = (c2xi∗ , yi∗)). For uncorrupted-key, B chooses

xi, yi
R←− Zp, and defines pki = ((gc)xi , (gac

2

)x
2
i , gyi) (meaning that ski = (cxi, yi)).

For corrupted-keys,B chooses xi, yi
R←− Zp, and defines pki = (gxi , (ga)x

2
i , gyi), ski =

(xi, yi). By this setting, B can easily simulate the actions of the re-key oracle Ork.
To answer re-encryption oracle queries, B does as follows.
(1) if pki �= pki∗ or pkj /∈ PKcorr: B computes re-key as above and uses it to

re-encrypt the queried message;
(2) If pki = pki∗ , pkj ∈ PKcorr: B makes use of the technique used in [17,19]

to compute gr. Using gr, B computes: C6 = (gr)xi∗R
′
(= (gc

2xi∗r)R
′/c2 = CR

1),

where R = R′/c2; C7 = gxi∗R
′
(= (gc

2xi∗)R
′/c2 = pkRi∗,1); C8 = (g

x2
j/xi∗

1)1/R
′
(=

(g
(sk2

j,1/ski∗,1)
c2/R′

1 = rk
1/R
i∗→j); CT ′

i∗ = C2||C3||...||C8; A = gr
′
, t′ = TCR′(A),

B = (pkt
′
i∗,3 · h)r

′
, C ← SYM.Enc(H(pkr

′
i∗,3), CT ′

i∗). Output CTj = (A,B,C).
To answer decryption oracle queries, B first computes gr as the above way (using

the technique used in [17,19]), then easily computes m = C3

e(gr ,g1)
.

In the challenge phase, we make use of the technique used in [17,19] to allow B to
successfully generate the challenge ciphertext for A.

The simulation is perfect, thus as long as Lemma 1, the theorem follows. �
Theorem 2. Our scheme meets the 1st-level-CCA security, assuming TCR′ is a target
collision resistant hash function, the GHDH problem is hard, and SYM is CCA-secure.

In the algorithmsEnc1 andReEnc, we make use of the encryption algorithm of Kiltz’s
KEM/DEM scheme [16] to mask all of computed components including the second
level ciphertext. Therefore, the 1st-level-CCA security of our scheme is implied by the
CCA security of Kiltz’s KEM/DEM scheme.

The detail proof of Lemma 1 and the above theorems are given in the full version of
this paper.

6 Conclusions

We have proposed a full CCA security definition for unidirectional single-hop PRE,
which naturally extends that of [8,14], and presented the first PRE scheme that is secure
in the sense of this security. Our scheme relies on mild complexity assumptions in
bilinear groups without random oracles. It would be interesting to construct a scheme
without bilinear maps in the standard model.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.

References

1. Ateniese, G., Benson, K., Hohenberger, S.: Key-Private Proxy Re-encryption. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg (2009)

292 T. Isshiki, M.H. Nguyen, and K. Tanaka

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. In: NDSS (2005)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30
(2006)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: ACMCCS 1993, pp. 62–73. ACM Press (1993)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryptography.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidel-
berg (1998)

6. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical Identity Based Encryption with Constant
Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005)

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

8. Canard, S., Devigne, J., Laguillaumie, F.: Improving the security of an efficient unidirectional
proxy re-encryption scheme. Journal of Internet Services and Information Security 1(2), 140–
160 (2011)

9. Canetti, R., Halevi, S., Katz, J.: A Forward Secure Public Key Encryption Scheme. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 254–271. Springer, Heidelberg
(2003)

10. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: ACM Con-
ference on Computer and Communications Security, pp. 185–194. ACM Press (2007)

11. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient Unidirectional Proxy Re-Encryption.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 316–332.
Springer, Heidelberg (2010)

12. Deng, R., Weng, J., Liu, S., Chen, K.: Chosen-Ciphertext Secure Proxy Re-encryption
without Pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS,
vol. 5339, pp. 1–17. Springer, Heidelberg (2008)

13. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18.
Springer, Heidelberg (1985)

14. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.: Generic
Construction of Chosen Ciphertext Secure Proxy Re-Encryption. In: Dunkelman, O. (ed.)
CT-RSA 2012. LNCS, vol. 7178, pp. 349–364. Springer, Heidelberg (2012)

15. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS. The Internet Society (2003)
16. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-

Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297.
Springer, Heidelberg (2007)

17. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Tech-
niques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Hei-
delberg (2010)

18. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-encryption. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008)

19. Nishimaki, R.: A CCA-secure proxy re-encryption scheme with short ciphertexts. In: SCIS
2011, 3F3-2 in Japanese (2011)

20. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

21. Shao, J., Liu, P., Zhou, Y.: Achieving key privacy without losing CCA security in proxy
re-encryption. J. Syst. Software (2011), doi:10.1016/j.jss.2011.09.034

22. Smith, T.: DVD jon: Buy DRM-less tracks from Apple iTunes (January 2005),
http://www.theregister.co.uk/2005/03/18/itunes_pymusique

http://www.theregister.co.uk/2005/03/18/itunes_pymusique

Solving BDD by Enumeration: An Update

Mingjie Liu1 and Phong Q. Nguyen2

1 Beijing International Center for Mathematical Research, Peking University
and Tsinghua University, Institute for Advanced Study, China

2 INRIA, France and Tsinghua University, Institute for Advanced Study, China
http://www.di.ens.fr/~pnguyen/

Abstract. Bounded Distance Decoding (BDD) is a basic lattice prob-
lem used in cryptanalysis: the security of most lattice-based encryption
schemes relies on the hardness of some BDD, such as LWE. We study
how to solve BDD using a classical method for finding shortest vectors
in lattices: enumeration with pruning speedup, such as Gama-Nguyen-
Regev extreme pruning from EUROCRYPT ’10. We obtain significant
improvements upon Lindner-Peikert’s Search-LWE algorithm (from CT-
RSA ’11), and update experimental cryptanalytic results, such as attacks
on DSA with partially known nonces and GGH encryption challenges.
Our work shows that any security estimate of BDD-based cryptosystems
must take into account enumeration attacks, and that BDD enumeration
can be practical even in high dimension like 350.

1 Introduction

There is growing interest in cryptography based on hard lattice problems (see the
survey [11]). The field started with the seminal work of Ajtai [1] back in 1996, and
recently got a second wind with Gentry’s breakthrough work [7] on fully-
homomorphic encryption. It offers asymptotical efficiency, potential resistance to
quantum computers and new functionalities. Most of the provably-secure lattice-
based constructions are based on either of the following two average-caseproblems:

– the Small Integer Solutions (SIS) problem proposed by Ajtai [1], which al-
lows to build one-way functions, collision-resistant hash functions, signature
schemes and identification schemes: see [11].

– the Learning with Errors (LWE) problem introduced by Regev [17] (see
the survey [18]), which allows to build public-key encryption [17,16], and
more powerful primitives such as ID-based encryption [8] and even fully-
homomorphic encryption [3].

Both SIS and LWE are provably as hard as certain worst-case lattice problems
(see [1,11] for SIS, and [17,16] for LWE), which allows to design many cryp-
tographic schemes with security related to the hardness of lattice problems,
without actually dealing explicitly with lattices.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 293–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

294 M. Liu and P.Q. Nguyen

Due to the importance of LWE, it is very important to know what are the best
attacks on LWE, especially if one is interested in selecting concrete parameters.
And this issue is independent of LWE (quantum or not) reductions [17,16] to
lattice problems. At CT-RSA ’11, Lindner and Peikert [10] generalized Babai’s
Nearest Plane algorithm [2] to solve Bounded Distance Decoding (BDD), and
claimed that this was the best attack known on Search-LWE. Given a lattice
and a target vector unusually close to the lattice, BDD asks to find the closest
lattice vector to the target: this basic lattice problem has many applications in
cryptanalysis (see [14]), and LWE is simply a particular case of BDD. Despite its
importance, it is not obvious at the moment what is the best algorithm for solving
BDD in practice: several parameters impact the answer, e.g. the dimension, the
size and shape of the error error. Until now, the largest BDD cryptanalytical
instances ever solved in practice were tackled using the so-called embedding
method that heuristically reduces BDD to the unique-shortest vector problem
(USVP) (see e.g. [13]). And in the past few years, there has been significant
process in practical lattice reduction [6,4].

Our Results. We present lattice attacks on Search-LWE which are significantly
better than the Lindner-Peikert attack [10]: in practice, the speedup can be
as big as 232 for certain parameters considered in [10] (see Table 1). First, we
revisit the Lindner-Peikert BDD algorithm (which turns out to be essentially
Schnorr’s random sampling [19]) by rephrasing it in the pruned-enumeration
framework of Gama-Nguyen-Regev (GNR) [6]. This allows us to present a simple
randomized variant which already performs much better than the original LP
algorithm [10] in the case of LWE, independently of the efficiency of lattice
reduction: our randomization is similar to GNR’s extreme pruning [6], i.e. we
use several random reduced bases.

Next, we consider GNR pruned-enumeration algorithms [6] to solve BDD:
this provides even better attacks on Search-LWE, and seems to be the method
of choice in practice for the general BDD case. We illustrate this point by re-
porting improved experimental results for attacks on DSA with partially known
nonces [15] and the solution of GGH encryption challenges [13,9]. Though enu-
meration is a classical method to solve BDD, it was unknown how efficient in
practice was GNR pruned-enumeration in BDD applications. In the DSA case,
pruned enumeration can recover the DSA secret key in a few hours, given each
2 least significant bits of the nonces corresponding to 100 DSA signatures: pre-
viously, the best lattice experiment [15] required 3 bits. For GGH encryption
challenges, we provide the first partial secret-key recovery in dimensions 200-
300: this is a proof-of-concept, and the rest of the secret key could easily be
recovered by simply repeating our experiments a few times. And we re-solved
the 350-dimensional message-recovery challenge using much weaker lattice reduc-
tion: in this case, enumeration is clearly preferable to the embedding method,
even in very high dimension like 350.

Solving BDD by Enumeration: An Update 295

Our work shows that any security estimate on BDD must take into account
enumeration attacks, and that the Lindner-Peikert BDD algorithm [10] does
not seem to offer any practical advantage over GNR pruning [6], despite having
appeared later.

Road Map. The paper is organized as follows. In Section 2, we provide back-
ground. In Section 3, we revisit the Lindner-Peikert algorithm and present our
randomized variant. Finally, in Section 4, we consider GNR pruned enumera-
tion [6] to solve BDD, and apply it to LWE, GGH encryption challenges and
attacks on DSA with partially known nonces. In Appendix, we provide pseudo-
code for BDD enumeration.

2 Background

We use row notation for vectors. We denote by ‖v‖ the Euclidean norm of
a vector v, and by Ballm(R) the m-dimensional closed ball of radius R, whose

volume is Vm(R) ∼ (
√

2πe
m)mRm. We use Sm−1 to denote them-dimensional unit

sphere. The fundamental parallelepiped P1/2(B) of a matrix B = (b1, . . . ,bm)

is {
∑m

i=1 xibi : − 1
2 ≤ xi < 1

2}. The volume vol(L) of a lattice L is the m-
dimensional volume of P1/2(B) for any basis B of L.

Orthogonalization. The Gram-Schmidt orthogonalization of B is denoted by
B∗ = (b∗

1,b
∗
2, . . . ,b

∗
m), where b∗

i = πi(bi), with πi being the orthogonal pro-
jection over (b1,b2, . . . ,bi−1)

⊥. Thus, πi(L) is an (m + 1 − i)−dimensional
lattice generated by the basis (πi(bi), . . . , πi(bm)) with volume vol(πi(L)) =∏m

j=i

∥∥b∗
j

∥∥.
Gaussian Heuristic. The Gaussian Heuristic provides a heuristic estimate on the
number of lattice points inside a set as follows: Given a “nice” lattice L and a
“nice” set S, the number of points in S ∩ L is heuristically ≈ vol(S)/vol(L).

Lattice reduction. Lattice reduction algorithms aim at finding bases with short
and nearly orthogonal vectors. Their output quality is usually measured by the
Hermite factor ‖b1‖/(vol(L))

1
m , where b1 is the first vector of the output basis.

The experiments of Gama and Nguyen [5] show that the Hermite factor of the
best algorithms known is exponential δm in the dimension m in practice, and
the recent work of Chen and Nguyen [4] provides a correspondence between the
exponentiation base δ (the root Hermite factor) and the running time of the
best state-of-the-art implementation (BKZ 2.0). This is related to the geometric
series assumption (GSA) proposed by Schnorr [20]: for fixed parameters, the
norms of the Gram-Schmidt vectors b∗

i decrease roughly geometrically with i,
say ‖b∗

i ‖ /
∥∥b∗

i+1

∥∥ ≈ q, in which case the root Hermite factor δ is ≈ √
q. In [10],

Lindner and Peikert used different running-time estimates of lattice reduction
than [4]:

296 M. Liu and P.Q. Nguyen

– One is a numerical extrapolation based on their experiments with the BKZ
implementation of the NTL library. However, NTL’s implementation of BKZ
dates back from 1997 and does not take into account recent progress, such as
extreme pruning [6]. The state-of-the-art implementation of BKZ developed
by Chen and Nguyen [4] achieves several exponential speedups compared to
NTL’s implementation.

– The other one is used in the tables of [10]. It is simply a conservative lower
bound of the first one. They divide the running time by some arbitrary
(large) constant, and change (conservatively) the slope of the curve.

We believe it is preferable to use the Chen-Nguyen estimates [4], but any com-
parison with the LWE algorithm of [10] must also take into account the lattice
reduction estimates of [10] for completeness.

Discrete Gaussian Distribution. Let s > 0 be real. The discrete (centered) Gaus-

sian distribution over L has density DL,s(x) = ρs(x)
ρs(L) where x ∈ L, ρs(x) =

e−π‖x/s‖2

and ρs(L) =
∑

y∈L ρs(y). Over Zn, most of the mass is within the

ball of radius O(s
√
n).

Bounded Distance Decoding (BDD). Given L and a target t very “close” to L,
BDD asks to find u ∈ L minimizing ‖u− t‖. There are many ways to formalize
what is meant by very “close”: here, we assume that there exists a unique u ∈ L
such that ‖u− t‖ ≤ γvol(L)1/m for some small given γ > 0: the smaller γ, the
easier BDD. The vector u− t is called the BDD error.

The Learning with Errors problem (LWE). The input of LWE is a pair (A, t =
sA+ e) where A ∈ Zn×m

q and s ∈ Zn
q are chosen uniformly at random, e ∈ Zm

q

is chosen according to some public distribution χ depending on a parameter α ∈
(0, 1). In the original LWE article [17], χ is the integral rounding of a continuous
Gaussian distribution: namely, χ is the distribution of the random variable �qX�
mod q, where X is a (continuous) normal variable with mean 0 and standard
deviation α/

√
2π reduced modulo 1. The Lindner-Peikert article [10] uses instead

the discrete Gaussian distribution χ = DZm,αq, and mention (without proof)
that LWE hardness results also hold for this LWE variant.

Given (A, t), Search-LWE asks to recover s, while Decision-LWE asks to dis-
tinguish (A, t) from a uniformly random (A, t). Regev [17] proved that if αq ≥
2
√
n, Search-LWE is at least as hard as quantumly approximating (Decision)-

SVP or SIVP to within Õ(n/α) in the worst case for dimension n. Under
suitable constraints on LWE parameters, Search-LWE can be reduced to
Decision-LWE [17,16].

Search-LWE can be viewed as a BDD-instance in the m-dimensional lattice
Λq(A) = {y ∈ Zm : y = sA mod q for s ∈ Zn

q }, and with BDD error e (provided
that α is sufficiently small). With overwhelming probability overA, vol(Λq(A)) =
qm−n. This standard lattice attack can be improved using the so-called sublattice
attack (see [5,11]), which replaces m by some m′ ≤ m to optimize the use of
current reduction algorithms. Given a root Hermite factor δ, we expect to achieve

Solving BDD by Enumeration: An Update 297

‖b∗
m′‖ ≈ δ−m′q

m′−n
m′ , where m′ =

√
n log q/ log δ maximizes the norm of b∗

m′ .
As long as m′ < m, one applies a lattice attack to the sublattice with dimension
m′, otherwise one uses the full lattice.

Beta distribution. The density function of the Beta distribution of parameters

a, b > 0 is xa−1(1 − x)b−1/B(a, b), where B(a, b) is the beta function Γ (a)Γ (b)
Γ (a+b) .

The corresponding cumulative distribution function is the regularized incomplete
beta function Ix(a, b) =

1
B(a,b)

∫ x

0
ua−1(1−u)b−1du, x ∈ [0, 1]. If (u1, u2, . . . , um)

is chosen uniformly at random from the unit sphere Sm−1, then
∑k

i=1 u
2
i has

distribution Beta(k/2, (m− k)/2).

3 Lindner-Peikert’s NearestPlanes Algorithm Revisited

In this section, we revisit the Lindner-Peikert NearestPlanes algorithm [10] (NP),
which is a simple variant of Babai’s algorithm [2] to solve BDD, and which turns
out to be similar to Schnorr’s random sampling [19]. We establish a connection
with Gama-Nguyen-Regev’s pruned enumeration [6], which allows us to random-
ize and generalize the NP algorithm.

3.1 Babai’s Nearest Plane Algorithm

Since LWE (A, t = sA+e) is a BDD instance for the lattice Λq(A), the simplest
method is Babai’s (deterministic polynomial-time) Nearest Plane algorithm, see
Alg. 1.

Algorithm 1. Babai’s Nearest Plane algorithm [2]

Input: A basis B = (b1, . . . ,bm) ∈ Qm of a lattice L and a target point t ∈ Qm.
Output: v ∈ L such that v − t ∈ P1/2(B

∗).
1: v ← 0
2: For i← m, ..., 1
3: Compute the integer c closest to 〈b∗

i , t〉/〈b∗
i ,b

∗
i 〉

4: t← t− cbi,v ← v + cbi

5: Return v

Babai’s algorithm outputs a lattice vector v relatively close to the input target
vector t. More precisely, v is the unique lattice vector such that v−t ∈ P1/2(B

∗).
If the input is a BDD instance such that the closest lattice point to t is v ∈ L,
then Babai’s algorithm solves BDD if and only if v − t ∈ P1/2(B

∗), i.e.

∀i ∈ {1, . . . ,m} |〈e,b∗
i 〉| < 〈b∗

i ,b
∗
i 〉/2. (1)

In the LWE case, we can rigorously define a success probability, even though
Babai’s algorithm is deterministic: the probability of v − t ∈ P1/2(B

∗) is with

298 M. Liu and P.Q. Nguyen

respect to LWE parameter generation, i.e. the generation of t. Unfortunately, one
does not know how to compute this probability efficiently. Instead, Lindner and
Peikert [10] compute the success probability in an idealized model (which we call
CLWE for “continuous” LWE) where the LWE error distribution χ is replaced by
a continuous Gaussian distribution with mean 0 and standard deviation αq/

√
2π,

and claim (without proof) that the actual probability is very close.
By definition of CLWE, the distribution of the error e is spherical, which

implies because B∗ has orthogonal rows:

Pr[e ∈ P1/2(B
∗)] =

m∏
i=1

Pr[|〈e,b∗
i 〉| < 〈b∗

i ,b
∗
i 〉/2] =

m∏
i=1

erf

(
‖b∗

i ‖
√
π

2s

)
,

where erf(x) = 2√
π

∫ x

0 e−y2

dy. Typically, b∗
m is exponentially shorter than b1,

which makes the probability of e ∈ P1/2(B
∗) very small.

3.2 The NearestPlanes Algorithm

Lindner and Peikert [10] presented a simple generalization of Babai’s nearest
plane algorithm, by adding some exhaustive search to increase the success prob-
ability, at the expense of the running time. Instead of choosing the closest plane
in every i-th level, the NearestPlanes algorithm (Alg. 2) enumerates di distinct
planes.

Algorithm 2. NearestPlanes Algorithm [10]

Input: A lattice basis B = (b1, . . . ,bm), a vector d = (d1, d2, . . . , dm) ∈ Zm, a target
point t ∈ Qm.

Output: A set of
∏m

i=1 di distinct lattice vectors in L(B) close to t.
1: if m = 0 then
2: Return 0
3: else
4: Compute the dm integers c1, c2, . . . , cdm ∈ Z closest to 〈b∗

m, t〉/〈b∗
m,b∗

m〉
5: Return

⋃
i∈[dm]

(cibm+NearestP lanes({b1, . . . ,bm−1, (d1, . . . , dm−1), t− cibm})

6: end if

Compared to Babai’s nearest plane algorithm, the NearestPlanes algorithm
is also deterministic, its running time is essentially multiplied by

∏
di, and its

CLWE success probability (i.e. under the assumption that the LWE distribution

is continuous) increases to:
∏m

i=1 erf
(

di‖b∗i ‖
√
π

2s

)
. In fact, the algorithm succeeds

if and only if e ∈ P1/2(diag(d) ·B∗), where diag(d) is the m×m diagonal matrix
formed by the di’s.

Lindner and Peikert [10] briefly compared their algorithm to the distinguisher
of Micciancio and Regev [11]. Their data suggests that their algorithm is better
for most parameters and success probability, with larger improvements in the
high-advantage regime.

Solving BDD by Enumeration: An Update 299

3.3 Connection with Schnorr’s Random Sampling

We note that the NP algorithm is very similar to Schnorr’s random sampling [19]
from STACS ’03. Schnorr’s method aims at finding short vectors, but it can eas-
ily be adapted to BDD: in the BDD setting, there is an integer parameter u ∈
{1, . . . ,m}, and one computes all lattice vectors v ∈ L such that v−t ∈ P(ΔB∗))
whereΔ is them×m diagonal matrix formed bym−u coefficients equal to 1, fol-
lowed by u coefficients equal to 2. In other words, Schnorr’smethod corresponds to
the particular case of NP where (d1, . . . , dm) = (1, 1, . . . , 1, 2, 2, . . . , 2), the num-
ber of 2’s being exactly u. However, Schnorr’s analysis is very different from [10]
and uses a more debatable model: it assumes that the 2u vectors v − t are uni-
formly distributed over P(ΔB∗)), which cannot actually hold.

3.4 Connection with Lattice Enumeration

We note that both Babai’s algorithm and the NP algorithm can be viewed as
a pruned enumeration but with a different kind of pruning rule than Gama et
al. [6]. Let us recall what is lattice enumeration. Given a target t ∈ Qm, a basis
B = (b1, . . . ,bm) of a lattice L and a BDD radius R, an enumeration algorithm
enumerates all lattice vectors v ∈ L such that ‖v − t‖ ≤ R, and selects the
closest one to solve BDD. This is done by searching over a huge tree defined
as follows: for each level k ∈ {0, . . . ,m} where k = 0 corresponds to the root
and k = m corresponds to the leaves, the tree nodes of level k are all vectors
v ∈ L such that ‖πm+1−k(t− v)‖ ≤ R. This means that the number of nodes
at level k is exactly the number of points in the projected lattice πm+1−k(L)
which are within distance R of πm+1−k(t), which can be heuristically estimated
as Hk = Vk(R)/vol(πm+1−k(L)) by the Gaussian Heuristic: such estimates seem
to be fairly accurate in practice [6].

Pruned enumeration was first proposed by Schnorr and Euchner [21] to cut
down some branches in the enumeration tree to decrease the time complexity, at
the cost of potentially missing the solution vector. It was hoped that the over-
all cost (taking into account failure probability) would decrease. An algorithmic
description of pruned enumeration for BDD is given in Appendix A. The first rig-
orous analysis of pruned enumeration was only recently given by Gama, Nguyen
and Regev [6], where a framework generalizing [21] was proposed. For every tree
level k, they used a variable enumeration radius ‖πm+1−k(v − t)‖ ≤ Rk such
that R1 ≤ R2 ≤ · · · ≤ Rm. This means that the pruned tree is a subset of the
enumeration tree.

Babai’s algorithm and the NP algorithm also only consider a subset of the
enumeration tree, but it is a different subset than [6]. More precisely, Babai’s
algorithm looks at a single branch of the enumeration tree with radius R =

1
2

√
m∑
i=1

‖b∗
i ‖

2
. Since the NP algorithm enumerates all lattice points inside the

(orthogonal) parallelepiped P1/2(diag(d) · B∗) centered at t, it actually consid-

ers the radius R = 1
2

√
m∑
i=1

d2i ‖b∗
i ‖

2
. Then, among all the nodes v ∈ L of the

300 M. Liu and P.Q. Nguyen

enumeration tree at level k, it only considers those such that |ξi(v − t)| ≤
di‖b∗

i ‖/2 for all i ≥ m + 1 − k, where ξi(x) denotes the i-th coordinate of x
in the normalized Gram-Schmidt basis (b∗

1/ ‖b∗
1‖ , · · · ,b∗

m/ ‖b∗
m‖), i.e. ξi(x) =

〈x,b∗
i 〉/‖b∗

i ‖.
In other words, GNR pruning [6] only keeps the nodes with bounded pro-

jections ‖πm+1−k(v − t)‖ ≤ Rk, whereas NP [10] only keeps the nodes with
bounded coordinates |ξi(v − t)|. In some sense, NP can be viewed as a sec-
ondary pruning of GNR: if the coordinates are all bounded, then so are the
projections, which means that the NP tree is a subset of some GNR tree.

3.5 Randomizing the NearestPlanes Algorithm

This connection of NP with enumeration allows us to revisit and improve NP.
First, NP can be generalized by selecting arbitrary bounds on coordinates,
namely |ξi(v − t)| ≤ Ri instead of |ξi(v − t)| ≤ di‖b∗

i ‖/2, where the bounds
R1, . . . , Rm are parameters which are not necessarily multiples of the ‖b∗

i ‖/2’s.
Second, we perform a randomization similar to the one of extreme pruning [6]

compared to basic pruning. More precisely, we randomize the algorithm by re-
peating several times the basic algorithm with different randomized reduced
bases. If we use
 different bases, then the running time is roughly multiplied
by
 (depending on the exact reduction time compared to the NP exhaustive
search), but the success probability is also heuristically multiplied by
. This
gives rise to Alg. 3, and allows more optimization. In particular, the numerical
data from [10, Table 3] is far from optimal, since the running times of basis re-
duction and enumeration are not totally balanced. When the enumeration time
is longer than the reduction time, we can decrease the total cost by decreas-
ing the number of enumerations. We can obtain better trade-offs because the
randomized algorithm has more freedom than the original one.

This can be proved by the simple analysis below. Since erf(a) < erf(c·a)
c (c < 1),

and we use cdi instead of di, the algorithm is 1/c times faster than the original
one, while the success probability is higher than a c-fraction of the original one.
Thus, by choosing different bases to repeat the algorithm several times, the
total cost will actually decrease. In [10], no information was given on how to
choose the di’s. We performed an exhaustive search in the proper range to find
an optimal (d1, d2, . . . , dm) for the randomized algorithm, which yielded a much
more efficient attack.

Algorithm 3. Our Randomized NearestPlanes Algorithm

Input: A lattice basis B, a vector d = (d1, d2, . . . , dm), a target point t ∈ Qm, and a
number � of iterations.

Output: A set of candidate lattice vectors in L(B) close to t.
1: Repeat � times
2: Randomize the input basis, and apply lattice reduction to obtain a (random) re-

duced basis B′

3: Run the NearestPlanes algorithm on (B′,d, t)

Solving BDD by Enumeration: An Update 301

A numerical comparison between the NP algorithm [10] and our randomized
variant is given in Table 1 below. This shows that randomization can provide
significant speedups, as high as 232 e.g. n = 320. Basis reduction time estimates
are taken from [10], where it is estimated that lg(Trecd) =

1.8
lg(δ) − 110. Columns

marked with ”NearestPlanes” are from [10], while columns with ”Randomized-
NP” correspond to our randomized variant. When we search for the best root
Hermite constant, we increment by 0.0001 each time as in [10]. Because the
estimates of [10] for lattice reduction are debatable, we use the estimates of
Chen and Nguyen [4] to update the cost estimates of the attack in Table 2.

Table 1. NP vs. randomized NP. δ is the root Hermite factor. Adv is the target suc-
cess probability. log(Nb of bases) is the number of bases needed to reach the target
success probability in base-2 logarithm. Red and Cost indicate the lattice reduction
time (using [10]) and total time in base-2 logarithm seconds respectively. Enum and Pr

are respectively the number
∏n

i=1 di of enumerations and success probability, in base-2
logarithm.

Adv NearestPlanes [10] Randomized-NP Log
n q s (log) δ Red [10] Enum Cost δ Red [10] Enum Pr log(Nb Cost spe-

of bases) edup
0 1.0089 30.8 47 32 1.0104 10.6 27 −9.6 9.6 21.2 10.8

128 2053 6.7 −32 1.0116 < 0 13 < 0 1.0114 < 0 17 −25.5 0 < 0
−64 1.013 < 0 1 < 0
0 1.0067 76.8 87 78 1.0077 52.6 68.9 −12 12 65.6 12.4

192 4093 8.9 −32 1.0083 40.9 54 42
−64 1.0091 27.7 44 29
0 1.0052 130.5 131 132 1.006 98.6 115 −11.8 11.8 111.3 20.7

256 4093 8.3 −32 1.0063 88.7 87 90 1.0065 82.6 99 −34 2 85.6 4.4
−64 1.0068 74.1 73 75 1.007 68.9 85 −67 3 72.9 2.1
0 1.0042 187.7 163 189 1.005 140.2 156.9 −15.7 15.7 156.9 32.1

320 4093 8 −32 1.0052 130.6 138 132 1.0053 126 143 −34.7 2.7 129.7 2.3
−64 1.0055 117.5 117 119 1.0056 113.4 127 -61.6 0 114.4 4.6

4 Solving BDD by (GNR) Pruned Enumeration

In this section, we study how BDD can be solved in practice using the pruned
enumeration algorithm of Gama, Nguyen and Regev [6] (GNR). Timings given
are for a single 3-Ghz Intel-Core2 core. First, we consider a theoretical appli-
cation to LWE, to compare GNR pruning with our randomized NP algorithm.
Then, we report improved experimental results on two well-known cryptana-
lytical applications of BDD: attacks on DSA with partially known nonces [15]
and attacks on the GGH encryption challenges [13]. In these settings, the best
method known in practice was to use the heuristic embedding method that
transforms BDD into a Unique-SVP instance. Our experiments show that the
embedding method is now outperformed by pruned enumeration, even without
taking into account past improvements in lattice reduction algorithms [4]; and
we did not find any application where Randomized-NP was better than pruned
enumeration.

302 M. Liu and P.Q. Nguyen

4.1 Further Background on GNR Pruned Enumeration

We recall additional information on GNR pruned enumeration, to complete the
description of Sect. 3.4. Given a target t ∈ Qm, a basis B = (b1, . . . ,bm) of
a lattice L and a BDD radius R, GNR aims at finding the supposedly unique
lattice vector u ∈ L such that ‖u − t‖ ≤ R. To this aim, GNR [6] selects
a bounding function determined by radius R1 ≤ R2 ≤ · · · ≤ Rm = R, and
performs a depth-first search of the pruned-enumeration tree defined as follows:
for each level k ∈ {0, . . . ,m} where k = 0 corresponds to the root and k = m
corresponds to the leaves, the tree nodes of level k are all vectors u ∈ L such
that ‖πm+1−i(t− u)‖ ≤ Ri for all 0 ≤ i ≤ k. By assumption, there is at most a
single leaf in the tree.

The complexity of the pruned enumeration is equal to the total number of
nodes in the pruned-enumeration tree, up to some polynomial-time factor. To
estimate this number of nodes, GNR [6] introduced the k-dimensional cylinder
intersection defined by R1 ≤ R2 ≤ · · · ≤ Rm as follows:

CR1,R2,...,Rk
= {(x1, x2, ..., xk) ∈ Rk, ∀j ≤ k,

j∑
l=1

x2
l ≤ R2

j}.

GNR apply the Gaussian heuristic to (heuristically) estimate the number of

nodes at depth k by Hk =
vol(CR1,R2,...,Rk

)
∏

m
i=m+1−k‖b∗i‖ . GNR [6] provide efficient algorithms

to estimate vol(CR1,R2,...,Rk
), and therefore Hk. This can be used to find good

bounding functions by numerical optimization. In practice, one considers either
the linear bounding function defined by Rk =

√
k/mRm, or numerical functions

found by numerical optimization.
GNR [6] rigorously defined a success probability, by assuming that the input

basis is a random reduced basis. This probability psucc is the probability that the
closest lattice vector u to t remains in the enumeration tree. They explained how
to compute this probability in practice, if one assumes that the BDD error vector
t − u is a vector chosen uniformly at random in the sphere (or ball) of radius
R. And they also give theoretical estimates for certain bounding functions: for
instance, psucc = 1/m for linear bounding. The total cost of pruned-enumeration
is roughly equal to:

Tredu + Tnode ·N(R1, . . . , Rm,b∗
1, . . . ,b

∗
m)

psucc(R1, . . . , Rm)
,

where Tredu is the basis reduction time, Tnode is the time for enumerating one
node, and N(R1, . . . , Rm,b∗

1, . . . ,b
∗
m) =

∑m
k=1 Hk is the (approximate) number

of nodes.
Though GNR [6] presented the first rigorous framework to analyzed pruned-

enumeration algorithms, it must be stressed that the GNR analysis only holds
for certain settings. For instance, when one wants to solve BDD in practice, it
is often the case that we do not know the exact value of ‖t−u‖, which makes a
theoretical analysis difficult. In this case, we may take for R the expected value

Solving BDD by Enumeration: An Update 303

of ‖t − u‖, or an upper bound satisfied with high probability; then pretending
that t − u is a vector chosen uniformly at random in the sphere (or ball) of
radius R will only provide a rough estimate of psucc. However, the distribution
of t− u is often known, which allows to compute experimentally (by sampling)
the probability that t−u satisfies a given bounding function, provided that the
probability is not too small. This is the method we used in our experiments, and
this is what we mean by success probability.

4.2 Application to LWE

In this subsection, we provide numerical evidence that pruned enumeration is
better than NP for solving LWE. As mentioned previously, the analysis of [6]
must be adapted, because the LWE noise distribution does not fit the GNR
model: in particular, the exact norm of the noise is not known.

If we assume the CLWE model, the error vector e has continuous Gaussian
distribution, then all the coordinates of e with respect to the normalized Gram-
Schmidt basis (b∗

m/ ‖b∗
m‖ , · · · ,b∗

1/ ‖b∗
1‖), have Gaussian distribution. It follows

that the success probability is:

psucc = psucc(R1, . . . , Rm) = Pre∼χ(∀j ∈ [1,m],

j∑
i=1

u2
i ≤ R2

j),

where χ is the (continuous) noise distribution of CLWE. If psucc is high, we can
use Monte Carlo sampling to compute it numerically. But for extreme prun-
ing, where probabilities are voluntarily chosen very small, this is impractical.
However, we notice that e/ ‖e‖ is uniformly distributed in the unit sphere, by
definition. Hence, if we use a bound Rm such that Pr(‖e‖ > Rm) is negligible,

the probability Pru∼Sm−1(∀j ∈ [1,m],
∑j

i=1 u
2
i ≤ R2

j

R2
m
) can be used as a lower

bound of the actual success probability.
Table 2 provides numerical comparisons between Randomized-NP and linear

pruning (where the success probability is lower-bounded, with optimized enu-
meration radius around the expected length of error). As opposed to Table 1,

Table 2. Randomized-NP vs. Linear Pruning. δ is the root Hermite factor. Red indi-
cates approximate lattice reduction times from Chen-Nguyen [4] in base-2 logarithm
(in seconds). The rest of the data is organized as in Table 1, except that the enumera-
tion radius chosen for linear pruning is the expected error length times he square root
of Radius factor.

Red [4] Adv Randomized-NP Linear Pruning Log
n q s δ (log) (log) Enum (log) Pr (log) Nb. Cost Enum Pr (log) Radius Cost Spe-

(log) of bases factor edup
1.01 18.4 0 35.3 −7.1 7.1 26.6 35.4 −3.9 1.01 23.6 3

128 2053 6.7 1.012 8.2 −32 25.1 −34.5 2.5 11.7
1.013 < 0 −64 10.10 −63.1 0 < 0
1.007 61.8 0 78.7 −3.7 3.7 66.5 74.1 −0.9 1.5 62.8 3.7

192 4093 8.9 1.008 42 −32 48.6 −32 0 42
1.009 28 −64 44.9 −66.1 2.1 31
1.006 95.3 0 112.2 −15.1 15.1 111.4 113 −8.5 0.9 105.5 5.8

256 4093 8.3 1.006 95.3 −32 71.9 −31.6 0 95.3
1.007 62.2 −64 79.2 −77.7 13.7 76.9

304 M. Liu and P.Q. Nguyen

Table 2 uses Chen-Nguyen estimates [4] for lattice reduction times. Indepen-
dently of reduction time estimates, linear pruning is better in practice than
NearestPlanes (even randomized).

4.3 Application to GGH

In this subsection, we apply pruned-enumeration on the encryption challenges for
the Goldreich-Goldwasser-Halevi cryptosystem [9] (GGH). The lattice dimension
is either 200, 250, 300, 350 and 400. There are two types of challenges: key-
recovery and message-recovery. Key-recovery can be viewed as solving m BDD-
instances with error vector chosen uniformly at random from [−4, . . . ,+3]m. To
the best of our knowledge, none of these key-recovery challenges was ever solved.
Each message-recovery challenge is a BDD instance where the error vector is
chosen uniformly at random from {−3,+3}m: Nguyen [13] solved the message-
recovery challenges in dimensions 200,250,300 and 350 by showing how to reduce
each such BDD instance to a small number of BDD instances with error in
{−1/2,+1/2}m, and solving these easier BDD instances using the embedding
strategy and lattice reduction: BKZ-20 was enough for dimensions 200-300, but
dimension 350 required pruned-BKZ with higher blocksize 60.

Table 3. Key-recovery for GGH Challenges

Dimension 200 250 300 300
BKZ blocksize 60 60 90 90

Bounding function linear linear linear optimized
Estimated Nb of Nodes 800 5.84 × 108 7.58 × 1010 1.33 × 109

Average Nb of Nodes 666 5.93 × 108 - 1.35 × 109

Success probability 0.0418 0.0409 0.0371 0.0185
Nb of Success 4 11 - 2

First, we re-solved the GGH-350 message-recovery challenge by using only a
BKZ-20 reduced basis and high-probability pruning, which shows that pruning
is better than the well-known embedding method. In this case, the BDD radius

is exactly Rm =
√
m
2 , after applying Nguyen’s trick [13], and the BDD factor γ is

≈ 0.125. We used a high-probability bounding function defined as follows: R2
k =

min{E(Xk)+3σ(Xk), 1}R2
m where E and σ denote respectively the expectation

and standard deviation of the distribution Beta(k/2, (m− k)/2), namely k
m and√

k(m−k)
m2(m

2 +1) . The pruned tree contained 1.76 × 1011 nodes, very close to the

Gaussian heuristic estimate 1.73×1011. The error behaved as if it was uniformly
distributed in the sphere of radiusRm: indeed, in both our experiments and in the
uniform model, the success probability was ≈ 0.92. Note that the largest GNR
experiments [6] used a lattice dimension of 110. Because enumeration (pruned
or not) has a super-exponential running time, one may have thought that much
larger dimensions would be unreachable. However, our experiments show that

Solving BDD by Enumeration: An Update 305

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

Pr
ob

ab
ili

ty

Gauss distribution
Actual distribution

(a) Success probability for GGH-250
key-recovery

 32.5

 33

 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 37

 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

lo
g(

N
od

e/
p)

Gauss distribution
Actual distribution

(b) Total cost for GGH-250 key-
recovery

Fig. 1. Here, the x-coordinate is the ratio between the (squared) enumeration radius
with the (squared) expected length of the error vector. In (b), the y-coordinate is
log2(Number of enumeration nodes/Success probability).

dimensions as high as 350 are reachable, provided that the BDD enumeration
radius is sufficiently small.

Next, we recovered several secret-key vectors in dimensions 200, 250 and 300,
using pruned-enumeration and BKZ 2.0 [4] as the reduction algorithm: the ex-
periments are summarized in Table 3, where the Gaussian heuristic is used to
estimate the number of nodes.

In these BDD instances, the exact BDD radius is unknown, but the factor

γ is approximately

√
11
2 m

4
√
m

≈ 0.59, which is more difficult than for the message-

recovery challenges. For each dimension, we computed only one BKZ-reduced
basis, and tried to recover as many secret-key vectors with the same basis: be-
cause the success probability is much lower than 1 for one pruned enumeration,
we actually only recovered a fraction of all secret-key vectors, but of course,
our experiments show that one could recover all secret-key vectors simply by
repeating our experiments a small number of times. For dimension 300, linear
bounding was not sufficient, so we tried another bounding function by optimiza-
tion, using the GNR method [6]: we start with the linear bounding function, then
randomly modify it by small perturbation successively. Using this bounding func-
tion, one pruned-enumeration only takes several minutes. In these experiments,
the enumeration radius was chosen as the expected error length. However, there
is clearly a trade-off if one wants to optimize the total running time: by selecting
a smaller radius, one can decrease the running time of a single enumeration, at
the expense of the success probability. Fig 1 shows the impact of varying the
enumeration radius around the expected length, on the success probability and
the total cost: here, one obtains slightly better results by increasing the radius.
Fig 1 also compares experimental probabilities and costs with that of a Gaussian
modelization where the error vector is chosen with Gaussian distribution of ex-

pectation
√

11
2 m: we see that it is better to compute experimental probabilities

(by sampling the error distribution).

306 M. Liu and P.Q. Nguyen

We also tried to solve GGH challenges using Randomized-NP but the perfor-
mances were worse than pruned enumeration.

4.4 Application to DSA

In this subsection, we apply pruned-enumeration to attack the Digital Signature
Algorithm [12] (DSA) with partially known nonces. Each DSA signature gener-
ation require the use of a one-time key k modulo q, where q is usually a 160-bit
prime number. It is well-known (and obvious) that disclosing the full one-time
key k of a single (message,signature) pair allows to recover the DSA secret key
in polynomial time. It is also well-known (but not obvious) that disclosing
 bits
of each one-time key k for several (message,signature) pair allows to recover the
DSA secret key, see e.g. [15]. More precisely, this cryptanalytical problem can
be reduced to the so-called hidden number problem (HNP), which can itself be
reduced to BDD. For any real z, let the symbol | · |q be |z|q = minb∈Z |z − bq|.
APP�,q(n) denotes any rational number r satisfying |n− r|q ≤ q

2�+1 . The HNP
asks to recover α ∈ Zq, given many approximations ui = APP�,q(αti) where
each ti is known and chosen uniformly at random, for 1 ≤ i ≤ d. The reduction
to BDD works as follows. One constructs the (d+1)-dimensional lattice spanned
by the following row matrix: ⎛⎜⎜⎜⎜⎜⎜⎝

q 0 · · · 0 0

0 q
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 q 0
t1 · · · · · · td 1

2l+1

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

The target vector is u = (u1, u2, . . . , ud, 0). There exists a lattice vector h =
(αt1 + qh1, . . . , αtd + qhd,

α
2�+1), such that ‖ h− u ‖≤

√
d+ 1 q

2�+1 . And finding
h discloses α.

Nguyen and Shparlinski [15] used this attack to recover the DSA secret key in
a few hours, given the
 = 3 least significant bits of each one-time key for about
100 signatures, but the attack failed for
 = 2. By using BKZ-90 reduction [4] and
linear pruning, we were able to attack the
 = 2 case given about 100 signatures,
within a few hours, but the lattice needs to be slightly changed: indeed, for
the GNR analysis to hold, one needs that the error vector looks like a random
vector in the Gram-Schmidt basis; because the shape of reduced bases is special
for these HNP lattices, one needs to modify the right-bottom coefficient of the
row matrix by some scaling factor.

We constructed 100 instances to check the cost and success probability. The
average number of nodes was 1.37 × 1010, slightly smaller than the estimated
number of nodes 1.5 × 1010. The average actual running time is about 4185
seconds per enumeration. Our experiments solved 23 out of 100 instances, which
means that the running time of a single enumeration needs to be multiplied
by roughly 4, which is a few hours at most. Because the exact length of the

Solving BDD by Enumeration: An Update 307

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

Pr
ob

ab
ili

ty

(a) Success probability for DSA

 33.2

 33.4

 33.6

 33.8

 34

 34.2

 34.4

 34.6

 34.8

 35

 35.2

 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

lo
g(

N
od

e/
p)

(b) Total cost for DSA

Fig. 2. Here, the x-coordinate is the ratio between the (squared) enumeration ra-
dius and the (squared) expected length the error vector. In (b), the y-coordinate is
log2(Number of enumeration nodes/Success probability)

error vector is not known, like in the GGH case, there is a trade-off for choosing
the enumeration radius: Fig. 2 shows the impact when varying the enumeration
radius around the expected length, like Fig. 1. Here, the optimal enumeration
radius is about

√
0.8 ≈ 0.89 smaller than the expected length.

Acknowledgements. Part of this work is supported by the Commission of the
European Communities through the ICT program under contract ICT-2007-
216676 ECRYPT II, the European Research Council, and by China’s 973 Pro-
gram (Grants 2013CB834201 and 2013CB834205).

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

2. Babai, L.: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem
(Shortened Version). In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp.
13–20. Springer, Heidelberg (1984)

3. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

4. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

5. Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

6. Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. STOC
2009, pp. 169–178. ACM (2009)

308 M. Liu and P.Q. Nguyen

8. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proc.STOC 2008, pp. 197–206. ACM (2008)

9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice
Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

10. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

11. Regev, O.: Lattice-Based Cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006)

12. National Institute of Standards and Technology (NIST). Fips publication 186:dig-
ital signature standard (1994)

13. Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem
from Crypto’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–
304. Springer, Heidelberg (1999)

14. Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryp-
tography. Contemporary Mathematics, vol. 477, AMS–RSME (2009)

15. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. J. Cryptology 15(3), 151–176 (2002)

16. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proc. STOC 2009, pp. 333–342. ACM (2009)

17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proc. STOC 2005, pp. 84–93. ACM (2005)

18. Regev, O.: The learning with errors problem (invited survey). In: Proc. IEEE
Conference on Computational Complexity, pp. 191–204 (2010)

19. Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods.
In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

20. Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods.
In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003)

21. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Programming 66, 181–199 (1994)

Solving BDD by Enumeration: An Update 309

A Description of Pruned Enumeration for BDD

Algorithm 4. Pruned Enumeration for BDD (BDD version of [6])

Input: A basis B = (b1, . . . ,bm), a target vector t =
∑m

i=1 tibi, a bounding func-
tion R2

1 ≤ · · · ≤ R2
m, the Gram-Schmidt matrix μ and the (squared) norms

‖b∗
1‖2, . . . , ‖b∗

m‖2.
Output: Nothing or the coefficients of a lattice vector v such that the projections of

v− t have norms less than the Ri’s, i.e. ‖πm+1−k(v − t)‖ ≤ Rk for all 1 ≤ k ≤ m.
1: σ ← (0)(m+1)×m; r0 = 0; r1 = 1; · · · ; rm = m;ρm+1 = 0
2: for k = m downto 1
3: for i = m downto k + 1 do σi,k ← σi+1,k + (ti − vi)μi,k endfor
4: ck ← tk + σk+1,k // ck ← tk +

∑m
i=k+1(ti − vi)μi,k, centers

5: vk ← �ck� // current combination;
6: wk = 1 // jumps;
7: ρk = ρk+1 + (ck − vk)

2 · ‖b∗
k‖2

8: endfor
9: k = 1;
10: while true do
11: ρk = ρk+1 + (ck − vk)

2 · ‖b∗
k‖2 // compute norm squared of current node

12: if ρk ≤ R2
m+1−k (we are below the bound) then

13: if k = 1 then
14: return (v1, . . . , vm); (solution found; program ends)
15: else
16: k ← k − 1 // going down the tree
17: rk−1 ← max(rk−1, rk) // to maintain the invariant for j < k
18: for i = rk downto k + 1 do σi,k ← σi+1,k + (ti − vi)μi,k endfor
19: ck ← tk + σk+1,k // ck ← tk +

∑m
i=k+1(ti − vi)μi,k

20: vk ← �ck�; wk = 1
21: end if
22: else
23: k ← k + 1 // going up the tree
24: if k = m+ 1 then
25: return ∅ (there is no solution)
26: end if
27: rk−1 ← k // since vk is about to change, indicate that (i, j) for j < k and

i ≤ k are not synchronized
28: // update vk
29: if vk > ck then vk ← vk − wk else vk ← vk + wk

30: wk ← wk + 1
31: end if
32: end while

The k-BDH Assumption Family:

Bilinear Map Cryptography from Progressively
Weaker Assumptions

Karyn Benson1, Hovav Shacham1,�, and Brent Waters2,��

1 University of California, San Diego
{kbenson,hovav}@cs.ucsd.edu
2 University of Texas at Austin

bwaters@cs.utexas.edu

Abstract. Over the past decade bilinear maps have been used to build
a large variety of cryptosystems. In addition to new functionality, we
have concurrently seen the emergence of many strong assumptions. In
this work, we explore how to build bilinear map cryptosystems under
progressively weaker assumptions.

We propose k-BDH, a new family of progressively weaker assumptions
that generalizes the decisional bilinear Diffie-Hellman (DBDH) assump-
tion. We give evidence in the generic group model that each assumption
in our family is strictly weaker than the assumptions before it. DBDH
has been used for proving many schemes secure, notably identity-based
and functional encryption schemes; we expect that our k-BDH will lead
to generalizations of many such schemes.

To illustrate the usefulness of our k-BDH family, we construct a family
of selectively secure Identity-Based Encryption (IBE) systems based on
it. Our system can be viewed as a generalization of the Boneh-Boyen
IBE, however, the construction and proof require new ideas to fit the
family. Our methods can be extended to produce hierarchical IBEs and
CCA security; and give a fully secure variant. In addition, we discuss the
opportunities and challenges of building new systems under our weaker
assumption family.

1 Introduction

Since the introduction of the Boneh-Franklin [1] Identity-Based Encryption (IBE)
system a decade ago, we have seen an explosion of new cryptosystems based on
bilinear maps. These systems have provided a wide range of functionality in-
cluding: new signature systems, functional encryption, e-cash, “slightly” homo-
morphic encryption, broadcast encryption and oblivious transfer to name just

� Supported by the MURI program under AFOSR Grant No. FA9550-08-1-0352.
�� Supported by NSF CNS-0915361 and CNS-0952692, AFOSR Grant No: FA9550-08-

1-0352, DARPA PROCEED, DARPAN11AP20006, Google Faculty Research award,
the Alfred P. Sloan Fellowship, and Microsoft Faculty Fellowship.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 310–325, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The k-BDH Assumption Family: Bilinear Map Cryptography 311

a few. The focus of many of this work was to develop new (and often not re-
alized before) functionality. While Boneh-Franklin and many first IBE systems
used “core” assumptions such as the Bilinear Diffie-Hellman or decisional vari-
ants, over time there has been a trend in bilinear map based work to employ
stronger assumptions in order to obtain these functionalities. Examples of these
assumptions range from “q-type” [2] assumptions, assumptions in composite or-
der groups [3], interactive assumptions [4] and proofs that appealed directly on
the generic group model [5,6]

Interestingly, even some work that focused on tightening security (versus
achieving new functionality) have had to employ relatively strong assumptions.
For example, Gentry and Halevi [7] and Waters [8] proposed two different ap-
proaches for solving the problem of achieving adaptive security for Hierarchical
Identity-Based encryption. To achieve this the former used a q-type assumption
where the strength of the assumption depends on the number of attacker private
key queries. The latter used the decisional-Linear assumption, where the target
of the assumption is in the source element of the bilinear group versus the tar-
get element. Both of these assumptions are potentially stronger than the classic
decisional-BDH prior IBE and related systems were built upon.

Our Goals. In this work, we move in the opposite direction of this trend. We
will build bilinear map systems that depend on weaker assumptions than the
decisional-BDH assumption. In particular, we want to create a suitable family of
assumptions that becomes progressively weaker as some parameter k is increased.
Therefore one can increase k as a hedge against potential future attacks such as
an n-linear map for n > 2.

A natural starting point for our investigation is the k-Linear family of assump-
tions [9,10], which generalizes the decisional Diffie-Hellman assumption (DDH)
and the decisional Linear assumption of Boneh, Boyen, and Shacham [11]. For
k ≥ 1, a k-Linear problem instance is a tuple (g, g1, . . . , gk, g

r1
1 , . . . , grkk , T), where

the generators are random in the group G, the exponents in its support Zp, and
the goal is to determine whether T is equal to gr1+···+rk or random. DDH is
1-Linear, and the Linear assumption is 2-Linear.

The k-Linear assumption family has been successfully used to build chosen ci-
phertext secure encryption [9,10]; to construct pseudorandom functions [12,13];
to construct public-key encryption secure in the presence of encryption cy-
cles [14,15] and public-key encryption resilient to key leakage [16,17]; to construct
lossy trapdoor functions [18]; to construct leakage-resilient signatures [19].

While the k-Linear family has been successful in the above contexts, we de-
sire an assumption that can be used in bilinear map cryptosystems in place of
where DBDH has typically been applied. Here using the k-Linear family does
not appear well suited for two reasons. First, since the assumption of the family
operates solely in the source group, the assumption is not even “aware” of bilin-
ear groups. Therefore it is not clear how it might be applied in certain systems
(e.g. an variant of Boneh-Boyen IBE) where we are hiding a message in the tar-
get group. Second, the Linear assumption family has an inconsistent interaction
with the DBDH assumption: the 1, 2-Linear assumptions are actually stronger

312 K. Benson, H. Shacham, and B. Waters

than DBDH, but the the k-Linear assumptions for k > 2 are generically incom-
parable to DBDH. One reason that the (2-)Linear assumption has proved so
useful is that it gives DBDH “for free,” but this is lost as soon as one increases k
beyond 2. If a new IBE system were based on k-Linear and DBDH, it is not
clear that this would provide an improvement in security.1

Our goals, then, are to find an assumption family that meets the following
criteria:

– As we increase the assumption family parameter k, we should become more
confident in the security of our assumption. In particular, we would argue
that our k parameterized assumption is in some sense more secure than both
existing decisional assumptions in bilinear groups and more secure than the
k − 1 instance.

– Our family of assumptions should be amenable to building cryptographic
systems. Ideally, for any system built using the DBDH assumption, one could
find a variant built using our family.

The k-BDH Family of Assumptions. Our main contribution is a new family of
assumptions that can serve as a weaker generalization of DBDH.

We propose a family of progressively weaker assumptions, the k-BDH as-
sumptions, that generalizes the DBDH assumption. The 1-BDH assumption is
equivalent to DBDH. More generally, the k-BDH assumption is as follows:

given g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , vrkk in G,

decide whether T = e(g, g)(xy)(r1+···+rk) or random in GT .

Here g and {vi} are random generators of G and x, y, and {ri} are random
elements of its support Zp. We consider only the decisional versions of these
problems; as with k-Linear, the computational versions are all equivalent to
each other. (This is also why we refer to our assumption family as k-BDH and
not k-DBDH; there is no interesting family of computational assumptions from
which our decisional assumptions must be distinguished.)

We remark that discovering and choosing such a family turned out to be chal-
lenging. Initially, we considered the assumption family in which the adversary,
given the same input values in G, must distinguish

∏
i e
(
g, vi

)xyri
from random

in GT . This assumption family is easier to use than our k-BDH because the
values vi and vrii are available to pair with gx or gy, the way that in DBDH
we can use the pairing to compute any of e(g, g)xy, e(g, g)xz, e(g, g)yz. However,
it turns out that every member of this alternative assumption family is equiva-
lent to DBDH.2 The fact that the values {gri} are not supplied in the k-BDH
challenge make constructing an IBE from k-BDH more challenging.

1 Similarly, for attribute-based encryption, if attribute-hiding were established based
on k-Linear, but payload-hiding were established based on DBDH, then one the
assumption for one property would be weakened while the assumption for the other
property would remain strong.

2 The reduction makes use of the DBDH tuple (g,
∏

i v
ri
i , gx, gy, C

?
=

∏
i e

(
g, vi

)xyri).

The k-BDH Assumption Family: Bilinear Map Cryptography 313

We justify our choice by arguing both that the k-BDH assumptions are no
stronger than existing (decisional) assumptions in bilinear groups and that it
is plausible that they are strictly weaker. The former follows in a relatively
straightforward by finding appropriate reductions. We can show that in a given
group the k-BDH assumption is no stronger than DBDH and for a given k the
k-BDH assumption is no stronger than the k-Linear assumption, for all values
of k.

Arguing that the assumptions are weaker is more nuanced. Whether certain
assumptions hold or do not hold might vary with the choice of a group and clearly
if P = NP all assumptions are equally false. We give evidence that, for each k,
the (k+1)-BDH assumption is strictly weaker than the k-BDH assumption (i.e.,
the (k + 1)-BDH problem is strictly harder to solve than the k-BDH problem).
As in previous proofs of this sort for Linear [11] and k-Linear [9], we rely on
an argument in the generic group model [20,21]. We show that the k + 1-BDH
problem is generically hard even in the presence of an oracle that solves k-BDH.

We demonstrate the utility of our assumption family, by constructing a family
of IBEs secure under k-BDH. The size of the public parameters, secret keys, and
ciphertexts are all linear in the parameter k. One can view our family as a
generalization of the Boneh-Boyen selectively secure IBE system [22].

In the full version of the paper [23], we extend our construction family to
a family of hierarchical IBEs. These yield CCA-secure schemes via standard
transformations [24,25]. In addition, we show how to produce a Waters-IBE–
style variant [26] that is fully secure in the standard model.

Looking Ahead. In the future, we expect that one will be able to build cryptosys-
tems from our k-BDH assumption where DBDH was previously used. However,
as our experience with IBE has taught us, this might require new insights or
techniques.

One interesting challenge is whether one can build more complex systems
using the k-BDH assumption where the performance overhead is additive in
k versus a multiplicative factor (which seems more natural). For instance, in
existing (Key-Policy) Attribute-Based Encryption [27,28] systems, the size of a
private key is proportional to a policy expressed as a boolean formula. If, the cost
of using the k-BDH assumption only required adding ≈ k more group elements,
this could be a relatively small key size overhead for reasonably chosen k. This is
in contrast to blowing up the entire key size by a factor of k. A similar argument
holds for other parameters such as ciphertext size and decryption time. In one
datapoint suggesting that this might be possible, Freeman et. al. [18] recently
built Lossy Trapdoor Functions in a novel way from the k-linear assumption
which were rather efficient relative to the “natural” extension of the Peikert and
Waters [29] DDH construction.

There also exist currently exist several functionalities where there are no known
systems that reduce to DBDH. These include systems that appear to inherently on
assumption related to source group elements such as Decision Linear. Examples
of these include Groth-Sahai NIZKs [30], dual system encryption proofs [8], and
the Boneh-Goh-Nissim [3] slightly 2-homomorphic encryption system.

314 K. Benson, H. Shacham, and B. Waters

Finally, an interesting question is which k values one might use in practice.
For very large k, it might turn out that bit by bit encryption systems built from
using hard core bits [31] and Computational Diffie-Hellman or Computational
Bilinear Diffie-Hellman have comparable efficiency. When proposing systems,
it is important to keep in mind where these lines cross. However, we believe
for most practical choices of k the k-BDH assumption will yield more efficient
systems.

2 The k-BDH Assumption and Relationships

Throughout this paper we work in a cyclic group G of order p where p is a large
prime. g is a generator of G. e : G × G → GT denotes an admissible bilinear
map where GT is another cyclic group of order p. The standard definitions of
bilinear maps and well known complexity assumptions BDH, DBDH, Linear [11]
and k-Linear [10] are used.

Definition 1. The k-BDH problem in 〈G,GT , e〉 asks given (g, gx, gy, v1, . . . ,
vk, v

r1
1 , . . . , vrkk , T) for x, y, r1, . . . , rk, c ∈ Z∗

p, g, v1, . . . , vk ∈ G and T ∈ GT

does T = e(g, g)xy(r1+···+rk) or is it the case that T = e(g, g)c. An adversary,
B outputs 1 if T = e(g, g)xy(r1+···+rk) and 0 otherwise. B has advantage ε in
solving k-BDH if

|Pr[B(g, gx, gy, v1, . . . , vk, vr11 , . . . , vrkk , e(g, g)xy(r1+···+rk)) = 1]−
Pr[B((g, gx, gy, v1, . . . , vk, vr11 , . . . , vrkk , e(g, g)c) = 1]| ≥ 2ε.

Where the probability is taken over the random choice of x, y, r1, . . . , rk, c ∈ Z∗
p,

g, v1, . . . , vk ∈ G and the random bits consumed by B.

The k-BDH Assumption is that if no t-time algorithm can achieve advantage
at least ε in deciding the k-BDH problem in G and GT .

This is only a decisional problem. We show that, as a corollary of Theorem 4,
the computational version is equivalent to the computational BDH problem.

2.1 k-BDH’s Relationship to Standard Assumptions

In this subsection we state k-BDH’s relationship to standard cryptographic as-
sumptions; the proofs are straightforward and given in the full version [23].We
also note that k-BDH is a member of the (R,S,T ,f)-Diffie Hellman uber- assump-
tion family [6]. Namely: R = S = {1, x, y, a1, . . . , ak, a1r1, . . . , akrk}, T = {1}
and f = xy(r1 + · · · + rk) where vi = gai for 1 ≤ i ≤ k. Being part of this
family tells us that it is generically secure, however, the focus on our work is to
understand the relative strengths of assumptions (discussed in Section 4).

The k-BDH Assumption Family: Bilinear Map Cryptography 315

k-BDH’s Relationship to k-Linear. We will use the notation Lk to denote
the k-Linear problem. If we wish to specify the k-Linear assumption in a specific
group G we write LG

k , and similarly for GT .

Theorem 1. If the LG

k assumption holds, then so does the k-BDH assumption.

Theorem 2. If the k-BDH assumption holds, then so does the LGT

k assumption.

Evidence that k-BDH is not equivalent to either LG

k or LGT

k . From the above the-
orems, the natural question arises: Is k-BDH equivalent to the linear assumption
in either G or GT ? Such an equivalence would imply that k-BDH assumption is
neither a new assumption nor a new tool to construct a family of IBEs. Fortu-
nately, separation of the assumptions appears to be related to the hard problem
of inverting a bilinear map [32,33]. We show separation results for these assump-
tions in the full version of this paper [23] in the generic group model.

k-BDH’s Relationship to BDH

Theorem 3. If the DBDH assumption holds, then so does the k-BDH assump-
tion.

Theorem 4. If the Computational k-BDH assumption holds, then so does the
Computational BDH assumption.

Corollary 1. The Computational k-BDH assumption is equivalent to the BDH
assumption.

Corollary 2. The DBDH assumption is equivalent to the 1-BDH assumption.

3 A Selectively Secure IBE System from the k-BDH
Assumption

The standard definitions of IBE [1] and the selective-ID model [34] are used.
Using the k-BDH assumption in to create an IBE system is not straight-

forward. The main technical difficulty arises because the target in the k-BDH

assumption, (e(g, g)xy
∑k

i=1 ri), is naturally an embedding of k Computational
BDH problems: Given (g, gx, gy, gri) find e(g, g)xyri. However, we do not have
the value gri for each i. Instead, we have the pair (vi, v

ri
i), where vi is a generator

not used elsewhere.
We use a cancellation trick to effectively switch the base of the vrii . The setup

algorithm will provide the values e(gx, vrii) and vi which are both taken to the
same power in the encryption algorithm, namely yi. The challenge needs to be
crafted so that it takes e(gx, gri) to the power y instead of taking e(gx, vrii) to the
power yi. To do this, we provide gy in place of vyi

i . Since vi = gsi for some value
of si we implicitly set yi = y/si. Using the bilinear property of e, this effectively

changes the value of the other term to e(gx, vrii)yi = e(g, g)
xrisi

y
si = e(gx, gri)y .

The product of these values is exactly the target of the k-BDH assumption.

316 K. Benson, H. Shacham, and B. Waters

To ensure the challenge has the proper distribution in the view of the adver-
sary it is required to randomize gy for every value of k.

Our IBE construction is related to the Boneh-Boyen scheme in the selective-
ID model [22], which is proven secure under the DBDH assumption. To prove
our scheme is secure under the k-BDH assumption requires an alteration to the
“Boneh-Boyen trick” for generating the private key for identities other than the
target identity.

The “Boneh-Boyen trick” raises elements of the DBDH instance to cleverly
selected random values to obtain a valid private key. However, constructing the
same private key with the KeyGen(ID) algorithm is impossible as the random
selections are unknown. Our construction uses the same idea but using multiple
bases (g, vi) requires three components instead of two for the first term of the
private key.

Specifically, we use (vr̂ii)−ti/dvtimi

i (gx)dmi for the first term. vr̂ii is the random-
ization of vrii that permits the challenge have the proper distribution. The value
d is a function of the target identity and the identity associated with the private
key; ti is used to randomize a public parameter; and mi randomizes the private
key. The first term is dependent on both gx and vrii from the k-BDH assumption.

The IBE system works as follows:
Setup : The public parameters are (g, u = gx, v1 = gs1 , . . . , vk = gsk , vr̂11 , . . . ,

vr̂kk , w1, . . . , wk). The values s1, . . . , sk, r̂1, . . . , r̂k, x (chosen uniformly and inde-
pendently at random) are kept as the master-key.

KeyGen(ID) : Select random n1, . . . , nk ∈ Z∗
p. For each 1 ≤ i ≤ k output

(KA,i,KB,i)=((gxr̂i(wiu
ID)ni , vni

i).

Encrypt(m, ID) : Select random y1, . . . , yk ∈ Z∗
p. Output C0 = m

∏
1≤i≤k

e(gx, vr̂ii)yi

and for each 1 ≤ i ≤ k output (CA,i, CB,i)=(vyi

i , (wiu
ID)yi) for a total of 2k + 1

values.

Decrypt(c) : Output

C0 ·
∏

1≤i≤k

e(KB,i, CB,i)∏
1≤i≤k

e(KA,i, CA,i)
=

m
∏

1≤i≤k

e(gx, vr̂ii)yi ·
∏

1≤i≤k

e(vni

i , (wiu
ID)yi)∏

1≤i≤k

e(gxr̂i(wiu
ID)ni , vyi

i)
= m

3.1 Proof of Security

Theorem 5. Suppose the k-BDH assumption holds in G and GT (precisely, no
t-time algorithm has advantage at least ε in solving the k-BDH problem in G and
GT). Then the previously defined IBE system is (t − Θ(τkq), q, ε)-Selective-ID
IND-CPA secure where τ is the maximum time for an exponentiation in G.

The k-BDH Assumption Family: Bilinear Map Cryptography 317

Proof. Suppose A has advantage ε in attacking the IBE system. We build algo-
rithm B to solve a decisional k-BDH instance (g, gx, gy, v1, . . . , vk, v

r1
1 , . . . , vrkk ,

T
?
= e(g, g)xy(r1+···+rk)). Algorithm B works by interacting with A in a selective

identity game as follows: Init: The selective identity games begins with A out-
putting an identity to attacked ID∗.

Setup: Algorithm B first selects random ai, ti for 1 ≤ i ≤ k. It then sets the public
parameters to: (g, u = gx, v1, . . . , vk, v

r̂1
1 = (vr11)1/a1 , . . . , vr̂kk = (vrkk)1/ak , w1 =

vt11 (gx)−ID∗ , . . . , wk = vtkk (gx)−ID∗). These parameters are are all independent
of ID∗ in the view of A. The ai terms will serve as the way to randomize the
challenge.

Phase 1: A issues queries for the private key of an identity, ID. It must be the case
that ID �= ID∗. B’s response is generated as follows for each value of 1 ≤ i ≤ k:

Select random mi. Let d = ID− ID∗. Output (KA,i, = (vr̂ii)−ti/dvtimi

i (gx)dmi ,

KB,i = (vr̂ii)(−1/d)vmi

i . For ni = −r̂i/d+mi, which implies mi = r̂i/d+ ni, this
is the expected value:

((vr̂ii)−ti/dvtimi

i (gx)dmi , (vr̂ii)(−1/d)vmi

i)

= ((vr̂ii)−ti/dv
ti(r̂i/d+ni)
i (gx)d(r̂i/d+ni), (vr̂ii)(−1/d)v

(r̂i/d)+ni)
i)

= (vtini

i (gx)r̂i+dni , vni

i) = (gxr̂i(vtii g
xd)ni , vni

i)

= (gxr̂i(vtii g
x(ID−ID∗))ni , vni

i) = (gxr̂i(wig
xID)ni , vni

i)

The second term is uniformly distributed among all elements in Z∗
p due to the

selection of mi. Private keys can be generated for all identities except ID∗.

Challenge(m0,m1) : B picks random bit b ∈ {0, 1}. The response is: (C0, (CA,1,
CB,1), . . . ,(CA,k, CB,k)). B sets C0 = mbT and for each i from 1 to k it sets:

CA,i = (gy)ai , CB,i = (gy)ai·ti .

We observe that (gy)ai = vyi

i and that (gy)aiti = vtiyi

i = (w1u
ID∗)yi from which

correctness follows. The simulator’s ability to construct the second term in this
manner follows directly from the fact that the encrypted identity is ID∗ and no
gx term appears in w1u

ID∗ .
For each value of i, this implicitly sets yai = siyi or yi = yai/si. If the input

is a valid k-BDH tuple then the response is drawn from a uniform distribution
and mbT is the expected value:

mbT = mb

∏
1≤i≤k

e(g, g)xyri = mb

∏
1≤i≤k

e(gx, gsiri/ai)yai/si

= mb

∏
1≤i≤k

e(gx, v
ri/ai

i)yi = mb

∏
1≤i≤k

e(gx, vr̂ii)yi

If T is not a valid k-BDH tuple then the distribution is uniform and independent
of b.

318 K. Benson, H. Shacham, and B. Waters

Phase 2: A issues more private key queries. It is exactly the same as Phase 1.

Guess: A outputs a guess of b′ ∈ {0, 1}. If b = b′ then B outputs 1 meaning T is
a valid k-BDH tuple. Otherwise, it is not a valid k-BDH tuple and the output
is 0.

When the input is a valid k-BDH instance, A must satisfy |Pr[b = b′]− 1
2 | ≥

ε. When the input is not a valid k-BDH instance, the input is uniform and
independent and Pr[b = b′] = 1

2 . Therefore, we have, as required:

|Pr[B(valid k-BDH) = 1]− Pr[B(not valid k-BDH) = 1]| ≥ |(1
2
+ ε)− 1

2
| ≥ ε.

3.2 Efficiency

Assume that the value e(gx, vrii) is precomputed for all values 1 ≤ i ≤ k. Each
encryption takes k exponentiations and k group operations in GT , 2k + 1 ex-
ponentiations and k group operation in G. Decryption requires 2k bilinear map
computations, one inversion and 2k + 2 group operations in GT .

3.3 Extensions

This construction fits in Boneh-Boyen framework. We give the natural extension
to a hierarchical IBE and to a fully secure IND-CPA scheme in the style of [26]
in the full version of the paper [23].

4 Relationship between k-BDH Problems

In this section we prove that the k-BDH family of problems becomes progres-
sively weaker. Informally, this means that an oracle for k-BDH does not help in
solving a (k + 1)-BDH instance.

The proof uses the generic group model [35,20,21]. This idealized version of a
group retains the important properties of the group while facilitating reasoning
about its minimal possible assumptions. If a statement cannot be proven in the
generic group model then it is impossible to find a group for which the state-
ment holds. The generic group model has been used to reason about complexity
assumptions both with bilinear maps [5,6] and without bilinear maps [21].

The closely related proof for the separation of k-Linear family of assump-
tions [10] could not be used directly. This stems from the fact that a standard
multilinear map [36] cannot be used to solve k-BDH. We create a modified k-
multilinear map that takes as input k elements in G and 1 element in GT (which
is the result of a bilinear map on two elements in G) and produces an output
in a third group GM (the target group of the k-multilinear map). The modified
k-multilinear map acts as an oracle for k-BDH. The main technical difficulty is
showing that all inputs to the k-multilinear map fail to produce a multiple of
the target element in the (k + 1)-BDH instance.

The k-BDH Assumption Family: Bilinear Map Cryptography 319

Theorem 6. If the k-BDH assumption holds, then so does the (k + 1)-BDH
assumption.

Proof. Informally, this means that if (k + 1)-BDH is easy, then k-BDH is also
easy. Suppose we have an oracle A for (k + 1)-BDH. A can be used to solve an
k-BDH instance (g, gx, gy, v1, . . ., vk, v

r1
1 , . . ., vrkk , T). Select random vk+1 ∈ G

and rk+1 ∈ Z∗
p and run A on input (g, gx, gy, v1, . . ., vk, vk+1, v

r1
1 , . . ., vrkk ,

v
rk+1

k+1 , T · e(gx, gy)rk+1). By returning the same value as A, the simulation is
perfect.

As in the k-Linear generic group separation proof [10], we prove a stronger re-
sult by means of a multilinear map [36,37] in Theorem 7. A k multilinear map
is an efficiently computable map ek : Gk → GM such that ek(g

a1
1 , . . . , gak

k) =

ek(g1, . . . , gk)
∏k

i=1 ai for all g1, . . . , gk ∈ G and a1, . . . , ak ∈ Zp; and ek(g, . . . , g) �=
1. Here, we consider a modified k-multilinear map: êk : GT × Gk → GM where
GT is the group resulting from a bilinear map e : G × G → GT . We define

êk : (e(gx, gy)
aT , ga1

1 , . . . , gak

k) = êk(e(gx, gy), g1, . . . , gk)
aT

∏k
i=1 ai .

Lemma 1. Given a modified k-multilinear map there is an efficient algorithm
to solve k-BDH.

Proof. On input a k-BDH instance (g, gx, gy, v1, . . . , vk, v
r1
1 , . . . , vrkk , T) output

“yes” if êk(T, v1, . . . , vk)
?
=

k∏
i=1

êk(e(g
x, gy), v1, . . . , vi−1, v

ri
i , vi+1, vk) and “no”

otherwise. This is correct because

k∏
i=1

êk(e(g
x, gy), v1, . . . , vi−1, v

ri
i , vi+1, vk) =

k∏
i=1

êk(e(g, g), v1, . . . , vk)
xyri

= êk(e(g, g), v1, . . . , vk)
xy

∑k
i=1 ri

and when T = e(g, g)xy
∑k

i=1 ri equality holds as required.

In the generic group model, elements of G, GT and GM are encoded as opaque
strings such that only equality can be tested by the adversary. To perform op-
erations in the group the adversary queries oracles. The oracles map the opaque
string representations to elements of G, GT and GM using ξG,ξT and ξM re-
spectively. In our case, we provide the adversary with oracles to perform Group
Action in each group, Inversion in each group, Bilinear Map for G × G → GT

and Modified k-Multilinear Map for GT ×Gk.

Theorem 7. Let A be an algorithm that solves (k+1)-BDH in the generic group
model making a total of q queries to the oracles computing the group action in
G, GT and GM , the oracles computing inversion in G, GT and GM , the bilinear
map oracle and an oracle for modified k-multilinear map. Then A’s probability
of success is bounded by

ε ≤ (k + 5)(q + 2k + 5)2

p
.

320 K. Benson, H. Shacham, and B. Waters

Proof. Consider an algorithm B that interacts with A as follows.
Let g be a randomly selected generator of G. Select random x, y, v1, . . ., vk+1,

r1, . . . , rk+1, c ∈ Zp as well as random bit d ∈ {0, 1}. Set Td = e(gx, gy)
∑k+1

i=1 ri

and T1−d = e(g, g)c. A is given (ξG(g), ξG(g
x), ξG(g

y), ξG(g
v1), . . ., ξG(g

vk+1),
ξG(g

v1r1), . . ., ξG(g
vk+1rk+1), ξT (T0), ξT (T1)) with the goal of guessing d.

B keeps track of the elements known to A as three lists: LG = {(FG,i, ξG,i)},
LT = {(FT,i, ξT,i)} and LM = {(FM,i, ξM,i)}. The first element of each list
is the internal representation kept by B- represented as a polynomial in the
ring Zp[1, x, y, v1, . . . , vk+1, r1, . . . , rk+1, c]. The set of all elements in these rings
are denoted FG, FT and FM . The second element is the opaque representation
known to A. B handles oracle queries from A by calculating the correct value
and checking to see if a the corresponding external representation already exists.
If so, the corresponding known representation is returned; otherwise B generates
a distinct random string to serve as the external representation and adds it to
the respective list. We assume that the domains of ξG, ξT and ξM are sufficiently
large so that the probability that algorithmAmakes queries for an element other
than one obtained through B is negligible.

Oracle queries from A are handled by B as follows:
Group Action: Given elements in G with internal representations FG,i and FG,j

compute F ′ = FG,i + FG,j . If there does not already exist an external repre-
sentation of the value F ′ then generate ξG(F

′) and add (F ′, ξG(F
′)) to LG .

Return ξG(F
′). Group Action for GT and GM are handled analogously. Denote

the number of Group Action queries made in G as qGg , the number of Group
Action queries made in GT as qTg and the number of Group Action queries made
in GM as qMg .
Inversion: Given an element in G with internal representation FG,i set F ′ =
−FG,i. If there does not already exist an external representation of the value F ′

generate ξG(F
′) and add (F ′, ξG(F

′)) to LG . Return ξG(F
′). Inversion for GT

and GM are handled analogously. Denote the number of Group Action queries
made in G as qGi , the number of Group Action queries made in GT as qTi and
the number of Group Action queries made in GM as qMi .
Bilinear Map (e): Given elements in G with internal representations FG,i and
FG,j calculate F ′ = FG,i · FG,j . If there does not already exist an external rep-
resentation of the value F ′ generate ξT (F

′) and add (F ′, ξT (F
′)) to LT . Return

ξT (F
′). Let qB denote the number of bilinear map queries made.

Modified k-Multilinear Map (êk): Given elements in G with internal representa-
tions FG,v1, . . ., FG,vk, and an element in GT with internal representation FT,j .

Compute F ′ = FT,j

∏k
i=1 FG,vi. If there does not already exist an external repre-

sentation of the value F ′ generate ξM (F ′) and add (F ′, ξM (F ′)) to LM . Return
ξM (F ′).

Elements in FG have at most degree 2; elements of FT have at most degree 4;
elements in FM have degree at most 2k + 4. The input elements that are in G
have corresponding elements in FG with degree at most 2 and the elements in
GT have corresponding elements in FT with degree at most 3. The group action
and inversion operations cannot increase the degree of the polynomials in FG,FT

The k-BDH Assumption Family: Bilinear Map Cryptography 321

or FM . The Bilinear Map operation uses elements in G to produce elements of at
most degree 2 + 2 = 4 in FT . The Modified Multilinear Map produces elements
of at most degree 4 + k(2) in FM .

Finally, A halts and outputs a guess of d′ for d. B now selects random g∗ ∈ G
and x∗, y∗, v∗1 , . . ., v

∗
k+1, r

∗
1 , . . ., r

∗
k+1, c

∗ ∈ Zp. Tb is set to e(g∗, g∗)x
∗y∗

∑k+1
i=1 r∗i

and T1−b = e(g∗, g∗)c
∗
. All elements besides Tb are independent of each other.

Therefore the simulation engineered by B is consistent with these values unless
one of the following events occur:

– Two values in FG have the same representation in G
– Two values in FT have the same representation in GT

– Two values in FM have the same representation in GM

– Using a bilinear map on values in FG, it is possible to find a multiple of

e(gx, gy)
∑k+1

i=1 ri in FT .
– Using a modified k-multilinear map on values in FG, it is possible to find a

multiple of e(gx, gy)
∑k+1

i=1 ri in FM .

The input elements are all chosen independently. Since A makes qGg +qGi group
actions or inversion queries for group G the corresponding elements in FG are

at most degree 2 and the probability of a collision is
(qGg+qGi

+2(k+1)+3
2

)
2
p . For

the elements in GT there qTg + qTi + qB group actions or inversion or bilinear
map queries are made resulting in elements in GT . Since elements in GT have
corresponding polynomials in FT with degree at most 4 the probability of a
collision is

(qTg+qTi
+qB+2

2

)
4
p . For each of the group actions in GM , inversion in

GM and k-Modified Multilinear Map queries the probability of a collision is(qMg+qMi
+qK

2

)
2k+4

p .

Next, we show the probability of finding a multiple of e(gx, gy)
∑k+1

i=1 ri from
the terms in FG is zero. If a multiple exists, it must be formed using at least
one bilinear map operation. Since x, y, ri all appear in Tb then the product of at
least two of these values must appear in the same element in FG for each value
of i, 1 ≤ i ≤ k + 1. This is impossible by the following claim:

Claim: It is impossible for any two of x, y, ri to appear in the same monomial
in FG:

Proof. We show that each way to choose two of the three values to appear in
the same term is impossible:

– x and y appear in the same term. This requires creating a multiple of the
polynomial xy. We are initially given the polynomials x and y each of degree
1 (and polynomials that are independent of x and y). This means from
polynomial of degree 1 we must create a polynomial of degree 2 also in
FG. Only the group action and inversion oracles result in new elements in
FG. However, the output of these oracles cannot increase the degree of a
monomial. Thus we cannot create monomials of degree greater than 1 from
x and y. In particular, xy cannot be created by the adversary.

322 K. Benson, H. Shacham, and B. Waters

– x and ri appear in the same term. This requires creating a multiple of xri
namely axri. Since the term ri never appears without vi it follows that vi | a
and we can rewrite axri as a′xrivi. This is a polynomial of degree 3. It is
impossible to create a polynomial of degree greater than 2 in FG. So x and
ri cannot appear in the same term.

– y and ri appear in the same term. This follows from a symmetric argument
that x and ri cannot appear in the same term.

Finally, we claim that it is impossible to find a multiple of e(gx, gy)
∑k+1

i=1 ri in
FM . In order to use the modified k-multilinear map to find a multiple of a target

value, Td
?
= e(gx, gy)

∑k+1
i=1 ri , at least one êk operation involving a multiple of Td

is required. The only option is to use Td as the input element in GT . The modified
k-multilinear map produces a multiple of xy

∑k+1
i=1 ri, namely Axy

∑k+1
i=1 ri. A

must then use combination of oracle calls, denoted F , using only values in FG

to form Axy
∑k+1

i=1 ri so that it can test equality.3

All inputs in FG containing ri also contain vi. As a result, any monomial
divisible by ri is also divisible by vi. Every type of oracle call preserves this
property. In particular, consider the polynomial Axy

∑k+1
i=1 ri constructed by

the adversary in F . It is required that each monomial in the expansion of Axyri
must be divisible by vi. It follows that for each of the k+1 values of vi it is the
case that vi|A.4 Specifically, A is divisible by

∏k+1
i=1 vi.

For a given value i, the value Axyri is divisible by k + 4 values: x, y, v1,
. . ., vk+1, and ri. Producing such a term requires taking the product of at least
k + 3 terms available to the adversary (x and y only appear on their own and
it is impossible to produce a multiple of vivj in FG using the group action
and inversion oracles). However, the bilinear map can only take the product of
2 values and the modified k-multilinear map can only take the product from
a bilinear map and k additional values for a total of k + 2. Consequently, we
deduce that the adversary cannot synthesize a multiple of xy

∑k+1
i=1 ri in FM to

cause a collision.
The probability of finding a collision is bounded by

ε ≤
(
qGg + qGi + 2(k + 1) + 3

2

)
2

p
+

(
qTg + qTi + qB + 2

2

)
4

p

+

(
qTm + qTi + qk

2

)
(2k + 4)

p

<
(q + 2k + 5)2 + 2(q + 2)2 + (k + 2)q2

p
<

(k + 5)(q + 2k + 5)2

p

The combination of these two theorems implies: DBDH=1-BDH � 2-BDH �
· · · � k-BDH � (k + 1)-BDH � · · · .
3 A could first perform êk(CTd +D, n1, . . . , nk) for constant C and a polynomial D
that does not contain Td. It would then perform some combination of oracle calls,F ,
to produce a value equal to êk(CTd +D, n1, . . . , nk). However, an equivalent test is
to first perform êk(CTd, n1, . . . , nk) and then test equality with F/êk(D, n1, . . . , nk).

4 For a more detailed argument see [10].

The k-BDH Assumption Family: Bilinear Map Cryptography 323

4.1 Relationship between k and the Group Size

From Theorem 7, we know that increasing k increases security. The generic
attack on k-BDH appears to require O(k) discrete logarithm calculations, and
that solving t discrete logarithm problems on a given curve appears to require
O(t) times solving one problem; assuming that, the generic attack scales linearly
with k.

Another means of increasing security is to increase the group size. An inter-
esting question is, “what is the equivalent increase in group size if we increase
k to k + 1.” We assume finding the discrete log is a function, f , of the order
of the group. Then in the generic attack on k-BDH where G has prime order
p increasing k to k + 1 is approximately equivalent to increasing the group size

from p to f−1((k+1)f(p)
k).

5 Conclusions and Future Work

We have proposed k-BDH, a family of assumptions generalizing the DBDH as-
sumption. We have given evidence, using the generic group model, that assump-
tions in the k-BDH family become strictly weaker with increasing values of the
parameter k. Unlike the k-Linear family of assumptions, k-BDH makes a natu-
ral tool for constructing pairing-based cryptosystems, including IBEs. We have
demonstrated this by constructing a family of IBEs in which the kth member
is secure based on k-BDH. Our IBE family fits in the Boneh-Boyen framework.
Our k-BDH family allows IBEs to be instantiated with an assumption safety
buffer for the first time.

We hope that, like k-Linear, our k-BDH assumption family will see widespread
use. We believe that it will be especially well suited for constructing attribute-
based encryption and other forms of functional encryption. In addition, we be-
lieve that dual system encryption techniques could be applied to k-BDH, yielding
more efficient cryptosystems with tighter security reductions.

An important open problem arises from the fact that the k-BDH assumptions
are all no weaker than computational BDH (just as the k-Linear assumptions
are all no weaker than CDH). Because the components of our IBE grow with k,
there may be a crossover point beyond which an IBE based on hard-core bits of
the computational BDH problem is more efficient than one based on k-BDH.

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Computing 32(3), 586–615 (2003); Extended abstract in Proceedings of Crypto
2001

2. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

324 K. Benson, H. Shacham, and B. Waters

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Appli-
cations to Password-Based Authentication. In: S. Patrick, A., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boyen, X.: The Uber-Assumption Family – A Unified Complexity Framework for
Bilinear Groups. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

7. Gentry, C., Halevi, S.: Hierarchical Identity Based Encryption with Polynomially
Many Levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

8. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

9. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

10. Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/

11. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

12. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional
linear assumption and weaker variants. In: ACM Conference on Computer and
Communications Security, pp. 112–120. ACM (November 2009)

13. Boneh, D., Montgomery, H., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Keromytis, A.,
Shmatikov, V. (eds.) Proceedings of CCS 2010, pp. 131–140. ACM Press (October
2010)

14. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryp-
tion from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

15. Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme Se-
cure against Key Dependent Chosen Plaintext and Adaptive Chosen Ciphertext
Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368.
Springer, Heidelberg (2009)

16. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg
(2009)

17. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: Trevisan, L. (ed.) Proceedings of FOCS 2010, pp.
511–520. IEEE Computer Society (October 2010)

18. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions
of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

http://eprint.iacr.org/

The k-BDH Assumption Family: Bilinear Map Cryptography 325

19. Boyle, E., Segev, G., Wichs, D.: Fully Leakage-Resilient Signatures. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer,
Heidelberg (2011)

20. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

21. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

22. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

23. Benson, K., Shacham, H., Waters, B.: The k-bdh assumption family: Bilinear map
cryptography from progressively weaker assumptions. Cryptology ePrint Archive,
Report 2012 (2012), http://eprint.iacr.org/

24. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

25. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) Proceedings of CCS
2005, pp. 320–329. ACM Press (November 2005)

26. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

27. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACM Conference on
Computer and Communications Security 2006, pp. 89–98. ACM (November 2006)

28. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

29. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork,
C. (ed.) Proceedings of STOC 2008, pp. 187–196. ACM (May 2008)

30. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

31. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of STOC 1989, pp. 25–32. ACM (1989)

32. Verheul, E.R.: Evidence that XTR Is More Secure than Supersingular Ellip-
tic Curve Cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 195–210. Springer, Heidelberg (2001)

33. Moody, D.: The diffie hellman problem and generalization of verheuls theorem.
Designs, Codes and Cryptography 52, 381–390 (2009)

34. Canetti, R., Halevi, S., Katz, J.: A Forward-secure Public-key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

35. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Pro-
ceedings of FOCS 1984, pp. 229–240. IEEE Computer Society (October 1984)

36. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. In:
Topics in Algebraic and Noncommutative Geometry: Proceedings in Memory of
Ruth Michler. Contemporary Mathematics, vol. 324, pp. 71–90. American Mathe-
matical Society (2003)

37. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices
and applications. Cryptology ePrint Archive, Report 2012/610 (2012)

http://eprint.iacr.org/

Accountable Authority Identity-Based

Encryption with Public Traceability

Junzuo Lai1, Robert H. Deng1, Yunlei Zhao2,3, and Jian Weng4,5

1 School of Information Systems, Singapore Management University, Singapore
{junzuolai,robertdeng}@smu.edu.sg

2 Software School, Fudan University, China
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, China
yunleizhao@gmail.com

4 Department of Computer Science, and Emergency Technology Research Center of
Risk Evaluation and Prewarning on Public Network Security, Jinan University, China
5 Shanghai Key Laboratory of Integrate Administration Technologies for Information

Security, China
cryptjweng@gmail.com

Abstract. At Crypto’07, Goyal introduced the notion of accountable
authority identity-based encryption (A-IBE) in order to mitigate the in-
herent key escrow problem in identity-based encryption, and proposed
two concrete constructions. In an A-IBE system, if the private key gen-
erator (PKG) distributes a decryption key or produces an unauthorized
decryption box for a user maliciously, it runs the risk of being caught
and sued in the court of law with the help of a tracing algorithm. Subse-
quent efforts focused on constructions of A-IBE schemes with enhanced
security. In these A-IBE constructions, the tracing algorithm needs to
take a user’s decryption key as input. If the user lost his key or is delib-
erately uncooperative in court, then we cannot implicate the PKG or the
user. An interesting open problem left by Goyal et al. at CCS’08 is to
consider the possibility of tracing a decryption box using only a public
tracing key, or with the assistance of a tracing authority. In this paper,
we address this problem positively. We first extend the original model of
A-IBE to accommodate public traceability, and then propose an A-IBE
scheme in the new model. To the best of our knowledge, the proposed
scheme is the first A-IBE with public traceability.

Keywords: Accountable Authority, Identity-Based Encryption, Public
Traceability.

1 Introduction

Identity-based encryption (IBE), first introduced by Shamir [30], simplifies pub-
lic key and certificate management in a traditional public key infrastructure
(PKI). In an IBE system, the public key of a user may be an arbitrary string
such as an e-mail address or an IP address belonging to a network host; the cor-
responding private key is generated by a trusted authority called a private key

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 326–342, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Accountable Authority Identity-Based Encryption with Public Traceability 327

generator (PKG). In this way, a certificate for a public key is implicitly provided
and it is no longer necessary to explicitly authenticate the public key. Although
the notion of IBE was introduced in 1984 [30], it took nearly two decades for
the problem of designing an IBE scheme to be solved by Boneh-Franklin [9]
and Cocks [11]. Since then, various extensions have been proposed, such as hi-
erarchical IBE [22,14], anonymous IBE [8,1], fuzzy IBE [28] and attribute-based
encryption (ABE) [20,6].

In spite of its appealing advantages, IBE suffers from the key escrow problem.
The PKG is able to generate and distribute decryption keys for any identity
without any risk of being caught and sued in a court of law; thus the security of
an IBE system relies heavily on trusting the PKG. One approach to reduce this
trust is to employ multiple PKGs [9]. In this approach, multiple PKGs share
the master secret key for the IBE system; and the private key for an identity is
generated in a threshold manner. However, this approach inevitably entails extra
communication and infrastructure cost, and the problem of collusion among
collaborating PKGs remains.

Goyal [18] introduced the notion of accountable authority IBE (A-IBE) as a
new approach to mitigate the key escrow problem in IBE. In an A-IBE system, a
user gets his decryption key from the PKG using a key generation protocol which
allows the user to obtain a single decryption key while concealing to the PKG
which key he obtained. Now, if the PKG generates a decryption key for a user for
malicious usage, it runs the risk of being caught and sued in the court of law with
the help of a tracing algorithm. Goyal [18] formalized the security requirements
for A-IBE using three games: IND-ID-CPA, DishonestPKG and DishonestUser. The
first one is the standard security requirement for IBE schemes. The latter two
model the usefulness of the tracing algorithm. DishonestPKG requires that if a
dishonest PKG generates a decryption key for a user maliciously, the tracing
algorithm could implicate the PKG. On the other hand, if a decryption key
is generated maliciously by colluding users, DishonestUser could implicate the
users.

Goyal [18] presented two constructions for A-IBE. The first construction,
which we denote as Goyal-1, builds on Gentry’s IBE scheme [13] and depends on
seeing the actual maliciously issued decryption key, and as such it is referred to
having white-box traceability. Specifically, white-box traceability only provides
the guarantee that given a well-formed decryption key for a user, the tracing
algorithm could implicate its source. As noted by Goyal, this kind of white-box
traceability is insufficient in practice. For example, instead of distributing a de-
cryption key itself in the clear, the PKG could release a decryption box which
allows decryption of ciphertexts encrypted for a user and yet does not contain a
decryption key in any canonical form. Since the exact information used to cre-
ate this decryption box is assumed hidden, A-IBE schemes that can deal with
this type of decryption boxes are referred to as having black-box traceability.
A natural question is how to construct A-IBE with black-box traceability in
which, seeing a decryption box for a user, the tracing algorithm could impli-
cate its source. The second construction of [18] (denoted as Goyal-2), which is

328 J. Lai et al.

based on the IBE scheme proposed by Waters [31] and the fuzzy IBE scheme
proposed by Sahai and Waters [28], achieves security guarantees according to a
weak black-box traceability model in which the malicious PKG has no access to
a decryption oracle in the attack game.

Subsequently, Goyal et al. [19] improved Goyal-2 to obtain full black-box trace-
ability in the DishonestPKG security game. An A-IBE scheme has full black-box,
or simply black-box, traceability if the malicious PKG is given access to decryp-
tion queries and no assumptions are made regarding how the decryption box
works. However, DishonestUser security of the A-IBE scheme in [19] is only sat-
isfied in the selective-ID setting, where the adversary must choose an identity as
its target before seeing the public parameters. Since a real-world adversary has
the ability to pick target adaptively, selective-ID is not a reasonable requirement
for security. Libert and Vergnaud [25] proposed an adaptive-ID DishonestUser
secure A-IBE scheme at the cost of only obtaining weak black-box traceability.
Recently, Sahai and Seyalioglu [27] presented the first A-IBE scheme which has
adaptive-ID DishonestUser security and full black-box traceability.

In all existing A-IBE schemes, in order to trace the source of a decryption
box for a user, the tracing algorithm needs to take the user’s decryption key as
input. If the user lost his key or is deliberately uncooperative, then the tracing
algorithm cannot implicate the PKG or the user. One interesting open problem
left by Goyal et al. at CCS’08 is to consider the possibility of tracing a decryption
box using only a public tracing key, or with the assistance of a tracing authority.
This paper is motivated by the task of resolving the problem.

1.1 Our Contributions

In this paper, we first extend the original definition of A-IBE [18] to account for
public traceability. In our definition, at the end of the key generation protocol,
a user obtains a single decryption key without letting the PKG know which key
he obtained, and the PKG obtains a public tracing key corresponding to the
user’s decryption key. Thus, the responsibility of the PKG includes maintaining
a public tracing key list T K in addition to issuing decryption keys to users. The
PKG is required to ensure the integrity of T K. In case a user’s public tracing
key in T K is modified by the PKG intentionally or otherwise, with the help of an
augmented algorithm Judge, the user can prove to a judge that his public tracing
key has indeed been tampered with. We require that this proving process do not
leak additional information about the user’s decryption key except the tracing
key itself. We also extend the original security model of A-IBE [18] due to the
introduction of the public tracing key which is derived from a user’s decryption
key.

Then, we present the first A-IBE scheme with public traceability that com-
bines Goyal-1with a public weak black-box tracing mechanism. We prove that our
scheme is IND-ID-CPA secure, weak black-boxDishonestPKG secure and adaptive-
ID DishonestUser secure. An overview comparing our A-ABE scheme with other
A-IBE schemes is given in Table 1.

Accountable Authority Identity-Based Encryption with Public Traceability 329

Table 1. Comparison of A-IBE schemes

Scheme IND-ID-CPA DishonestPKG DishonestUser Public Traceability

Goyal-1 [18] IND-ID-CPA white-box white-box no

Goyal-2 [18] IND-ID-CPA weak black-box selective-ID no

[19] IND-ID-CPA black-box selective-ID no

[25] IND-ID-CPA weak black-box adaptive-ID no

[27] IND-ID-CPA black-box adaptive-ID no

Ours IND-ID-CPA weak black-box adaptive-ID yes

1.2 Related Work

Au et al. [3] extended the work of Goyal [18] by introducing a retrieval algo-
rithm while causes the PKG’s master secret key to be revealed if more than one
decryption key for a user are released. Their security proofs require the PKG to
release a well-formed decryption key; thus traceability and retrievability remain
only in the white-box model. Certificateless public key encryption (CL-PKE) [2]
and certificate-based encryption (CBE) [12] were introduced in order to remove
the key escrow problem in IBE. In these paradigms, every user has a traditional
public key (though not explicitly certified); thus these solutions come at the
cost of losing the benefit of human-memorizable public keys (such as an e-mail
address).

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we review some stan-
dard notations and cryptographic definitions. In Section 3, we describe the formal
definition and security model of A-IBE with public traceability. The proposed
A-IBE scheme with public traceability and its security analysis are presented in
Section 4. Finally, we state our conclusion in Section 5.

2 Preliminaries

If S is a set, then s
$← S denotes the operation of picking an element s uniformly

at random from S. Let N denote the set of natural numbers. If λ ∈ N then 1λ

denotes the string of λ ones. Let z ← A(x, y, . . .) denote the operation of running
an algorithm A with inputs (x, y, . . .) and output z. A function f(λ) is negligible
if for every c > 0 there exists a λc such that f(λ) < 1/λc for all λ > λc.

2.1 Bilinear Groups

Let G be an algorithm that takes as input a security parameter 1λ and outputs
a tuple (p,G,GT , e, g), where G and GT are cyclic groups of prime order p, g is
a generator of G, and e : G×G → GT is a bilinear map such that

330 J. Lai et al.

1. (Bilinearity:) ∀g1, g2 ∈ G, a, b ∈ Zp, e(g
a
1 , g

b
2) = e(g1, g2)

ab;
2. (Non-degeneracy:) e(g, g) �= 1.

We say that (p,G,GT , e, g) is a bilinear group system if multiplication in G and
GT , as well as the bilinear map e, are computable in time polynomial in λ.

2.2 Complexity Assumptions

We state the complexity assumptions we use below.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption Let (p,G,GT ,
e, g) be a bilinear group system and a, b, c, z ∈ Zp be chosen at random. The
DBDH assumption [7] in the bilinear group system (p,G,GT , e, g) is that no
probabilistic polynomial-time (PPT) algorithm A can distinguish the tuple (ga,
gb, gc, T = e(g, g)abc) from the tuple (ga, gb, gc, T = e(g, g)z) with non-negligible
advantage. The advantage of A is defined as∣∣Pr[A(ga, gb, gc, T = e(g, g)abc) = 1]− Pr[A(ga, gb, gc, T = e(g, g)z) = 1]

∣∣
where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by A.

Decisional Truncated q-ABDHE Assumption Let (p,G,GT , e, g) be a bi-
linear group system and g′ ∈ G, α, z ∈ Zp be chosen at random. The decisional
truncated q-ABDHE assumption [13] in the bilinear group system (p,G,GT , e, g)

is that no PPT algorithmA can distinguish the tuple (g′, g′(α
q+2), g, gα, g(α

2), . . .,

g(α
q), Z = e(g, g′)(α

q+1)) from the tuple (g′, g′(α
q+2), g, gα, g(α

2), . . . , g(α
q), Z =

e(g, g′)z) with non-negligible advantage. The advantage of A is defined as∣∣∣Pr[A(g′, g′(α
q+2), g, gα, g(α

2), . . . , g(α
q), Z = e(g, g′)(α

q+1)) = 1]−

Pr[A(g′, g′(α
q+2), g, gα, g(α

2), . . . , g(α
q), Z = e(g, g′)z) = 1]

∣∣∣
where the probability is taken over the random bits consumed by A, the random
choices of g′ ∈ G and α, z ∈ Zp.

Modified DDH-1 Assumption. Let (p,G,GT , e, g) be a bilinear group system
and a, b, z ∈ Zp be chosen at random. The modified DDH-1 assumption in the
bilinear group system (p,G,GT , e, g) is that no PPT algorithmA can distinguish
the tuple (ga, e(g, g)b, T = e(g, g)ab) from the tuple (ga, e(g, g)b, T = e(g, g)z)
with non-negligible advantage. The advantage of A is defined as∣∣Pr[A(ga, e(g, g)b, T = e(g, g)ab) = 1]− Pr[A(ga, e(g, g)b, T = e(g, g)z) = 1]

∣∣
where the probability is over the randomly chosen a, b, z and the random bits
consumed by A.

Accountable Authority Identity-Based Encryption with Public Traceability 331

Modified DDH-2 Assumption. Let (p,G,GT , e, g) be a bilinear group system
and a, b, z ∈ Zp be chosen at random. The modified DDH-2 assumption in the
bilinear group system (p,G,GT , e, g) is that no PPT algorithmA can distinguish
the tuple (ga, g1/a, e(g, g)b, T = e(g, g)b/a) from the tuple (ga, g1/a, e(g, g)b, T =
e(g, g)z) with non-negligible advantage. The advantage of A is defined as∣∣∣Pr[A(ga, g1/a, e(g, g)b, T = e(g, g)b/a) = 1]−

Pr[A(ga, g1/a, e(g, g)b, T = e(g, g)z) = 1]
∣∣∣

where the probability is over the randomly chosen a, b, z and the random bits
consumed by A.

Modified DDH-1 and DDH-2 assumptions can be viewed as two variants of the
traditional DDH assumption in GT . It is easy to show that these assumptions
hold in the generic group model by applying the theorems of Katz et al. [23].

2.3 Zero-Knowledge Protocol and Proof of Knowledge Protocol

Informal, a zero-knowledge (ZK) protocol (or ZK proof) enables a prover to prove
to a verifier that a statement is true, without revealing anything other than the
veracity of the statement [17,16]. Let (p,G,GT , e, g) be a bilinear group system.
We use the term

ZK{(a, h2) : A = e(g, g)a ∧ e(h1, h2) = A · B}

to denote the ZK protocol, on common input ((p,G,GT , e, g), h1, A,B) for the
statement that there exist a and h2 such that A = e(g, g)a and e(h1, h2) = A ·B.
Efficient ZK protocols for bilinear groups are known (see [21]). A protocol is
zero-knowledge if there exists a simulator which is able to simulate the view of
any (possibly malicious) PPT verifier in the protocol from scratch (i.e., without
being given the witness as input).

We also require a zero-knowledge proof of knowledge (ZK-PoK) of discrete
log protocol that enables a prover to prove to a verifier that it possesses the
discrete log of a given group element in question. Efficient ZK-PoK of discrete
log protocols can be found in [29]. A ZK-PoK protocol has the proof of knowledge
property besides the zero-knowledge property. The proof of knowledge property
implies the existence of a knowledge-extractor which interacts with the prover
and extracts the witness using rewinding techniques [4,5].

3 Formal Definition and Security Model

We extend the original definition of A-IBE [18] to account for public traceability.
An A-IBE with public traceability consists of the following six algorithms:

Setup. This randomized algorithm takes as input the security parameter λ and
outputs the public parameters PK and a master secret key MSK.

332 J. Lai et al.

KeyGen. This is an interactive protocol between the public parameter genera-
tor PKG and a user U. The common input to PKG and U are the public
parameters PK and the identity ID of U. The private input to PKG is the
master secret key MSK. Additionally, PKG and U may use a sequence of
random coin tosses as private input. At the end of the protocol, U receives
a decryption key dID as its private output; PKG gets a tracing key tID for ID
and adds it to a public tracing key list T K.

Encrypt. This randomized algorithm takes as inputs the public parameters PK,
an identity ID and a message M and outputs a ciphertext C.

Decrypt. This algorithm takes as inputs the public parameters PK, the cipher-
text C that was encrypted under the identity ID and the decryption key dID
for ID. It outputs a message M .

Trace. This is a randomized algorithm that takes as inputs the public param-
eters PK, an identity ID, the public tracing key list T K, and has black-box
access to an ε-useful decryption box DID

1 for the identity ID. It outputs PKG
or User.

Judge. This is an interactive protocol between a user U and a judge. The com-
mon input to U and the judge are the public parameters PK, the identity ID
of U and the tracing key tID for ID in T K. The private input to U is his/her
decryption key dID. Additionally, U and the judge may use a sequence of
random coin tosses as private input. At the end of the protocol, the judge is
able to decide whether tID is the tracing key for ID or not.

In our definition, the duty of the PKG includes maintaining a public tracing
key list T K besides helping users get their decryption keys. Now, the tracing
algorithm uses the public tracing key list T K (not the user’s decryption key) to
trace the source of a decryption box for a user.

Correctness. Correctness requires that, firstly, for any outputs (PK, MSK)
of Setup, any message M and any identity ID, whenever dID is the user ID’s
private output of KeyGen, we have Decrypt(PK, Encrypt(PK, ID,M), dID) = M .
Secondly, if the public tracing key tID for ID in T K is modified by the PKG
intentionally or otherwise, the user U with ID can use the algorithm Judge to
convince a judge that his public tracing key has indeed been tampered with.

Zero-Knowledge of Judge Algorithm. One can design a trivial Judge al-
gorithm in which, the user sends his/her decryption key to the judge directly
and the judge can use the decryption key to decide whether the user’s public
tracing key has indeed been tampered with or not. However, since the goal of
A-IBE with public traceability is to avoid exposing the user’s decryption key to a
third party, this trivial design is clearly unacceptable. Zero-knowledge of Judge
algorithm requires that, at the end of the Judge algorithm, the judge cannot
obtain any additional information about the user’s decryption key except that
whether the tID in T K is the tracing key for the user or not.

1 For non-negligible ε, a PPT algorithm DID is an ε-useful decoder box for the identity
ID if for any message M , Pr[DID(Encrypt(PK, ID,M)) = M] ≥ ε.

Accountable Authority Identity-Based Encryption with Public Traceability 333

Security. An A-IBE scheme is deemed secure if it satisfies the following three
requirements. First, it must satisfy the standard security notion for IBE schemes:
IND-ID-CPA. Second, it is intractable for the PKG to create a decryption box
DID such that the tracing algorithm outputs User. Finally, it is infeasible for
users to create a decryption box such that the tracing algorithm implicates the
PKG. Goyal et al. [19] captured these security requirements by three games:
the IND-ID-CPA game, the DishonestPKG game and the DishonestUser game.
Since in our A-IBE definition, the tracing key for a user could contain partial
information of the user’s decryption key and is publicly available, we make a
critical enhancement of the three games to account for public traceability.

The IND-ID-CPA game for A-IBE with public traceability is defined as follows.

Setup. The challenger runs the Setup algorithm of A-IBE to obtain the public
parameters PK and a master secret key MSK. It gives the public parameters
PK to the adversary A and keeps MSK to itself.

Phase 1. The adversary A runs the KeyGen protocol with the challenger for
adaptively chosen distinct identities ID1, . . . , IDqID , and receives the decryp-
tion keys dID1

, . . . , dIDqID
. The challenger gets the tracing keys tID1

, . . . , tIDqID

and adds them to a public tracing key list T K.

Output a challenge identity. The adversary A outputs an identity ID∗ as
his challenge identity which it did not query during Phase 1. The challenger
sends the public tracing key tID∗ for the identity ID∗ to A.

Phase 2. This is identical to Phase 1 except that the adversary is not allowed
to ask for a decryption key for ID∗.

Challenge. The adversaryA submits two (equal length) messagesM0,M1. The
challenger flips a random coin β, sets C∗ = Encrypt(PK, ID∗,Mβ) and sends
C∗ to the adversary as its challenge ciphertext.

Phase 3. This is identical to Phase 1 except that the adversary is not allowed
to ask for a decryption key for ID∗.

Guess. The adversary A outputs its guess β′ for β and wins the game if β = β′.

The advantage of the adversary in this game is defined as |Pr[β = β′]− 1
2 | where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 1. An A-IBE scheme with public traceability is IND-ID-CPA secure if
all probabilistic polynomial time adversaries have at most a negligible advantage
in the IND-ID-CPA game.

The DishonestPKG game for A-IBE with public traceability is defined as follows.
The intuition behind this game is that an adversarial PKG attempts to create
a decryption box which will frame a user.

Setup. The adversary (acting as a malicious PKG) generates public parameters
PK. Then, it sends the public parameters PK and an identity ID∗ to the
challenger. The challenger checks that PK and ID∗ are well-formed and aborts
if the check fails.

334 J. Lai et al.

Key Generation. The challenger and the adversary engage in the key gener-
ation protocol KeyGen to generate a decryption key for the identity ID∗. If
neither party aborts, the challenger receives the decryption keys dID∗ ; and
the adversary gets the tracing keys tID∗ for ID

∗.
Output. The adversaryA outputs an ε-useful decryption box DID∗ for the iden-

tity ID∗, and succeeds if TraceDID∗ (PK, ID∗, T K = {tID∗}) = User.

The advantage of the adversary in this game is defined as |Pr[A succeeds]| where
the probability is taken over the random coins of Trace, the adversary and the
challenger.

Definition 2. An A-IBE scheme with public traceability is weak black-box Dis-
honestPKG secure if all probabilistic polynomial time adversaries have at most a
negligible advantage in the above game.

One can define a full black-box DishonestPKG game where the adversary adap-
tively queries the challenger with a sequence of ciphertexts C1, . . . , CqC . The
challenger decrypts the ciphertexts with its key dID∗ and sends the results to the
adversary.

The DishonestUser game for A-IBE with public traceability is defined as
follows. The intuition behind this game is that some colluding set of users
ID1, . . . , IDqID attempts to create a decryption box which will frame the PKG.

Setup. The challenger runs the Setup algorithm of A-IBE to obtain the public
parameters PK and a master secret key MSK. It gives the public parameters
PK to the adversary A and keeps MSK to itself.

Phase 1. The adversary A runs the KeyGen protocol with the challenger for
adaptively chosen distinct identities ID1, . . . , IDqID , and receives the decryp-
tion keys dID1

, . . . , dIDqID
. The challenger gets the tracing keys tID1

, . . . , tIDqID

and adds them to a public tracing key list T K.
Output a decryption box. The adversary A outputs an ε-useful decryption

box DID∗ for an identity ID∗ queried during Phase 1, and succeeds if TraceDID∗

(PK, ID∗, T K) = PKG.

The requirement that ID∗ was queried during Phase 1 does not weaken security,
since outputting a key for an identity which has not been queried would con-
tradict the IND-ID-CPA security requirement. The advantage of the adversary in
this game is defined as |Pr[A succeeds]| where the probability is taken over the
random coins of Trace, the adversary and the challenger.

Definition 3. An A-IBE scheme with public traceability is adaptive-ID Dishon-
estUser secure if all probabilistic polynomial time adversaries have at most a
negligible advantage in the above game.

We note that one can also define a selective-ID DishonestUser game where the
adversary has to declare ID∗ in advance (i.e., before the setup phase).

4 Our Construction

In [25], Libert and Vergnaud proposed a weak black-box tracing mechanism in
their A-IBE scheme which is close to the one used by Kiayias and Yung [24] in

Accountable Authority Identity-Based Encryption with Public Traceability 335

2-user traitor tracing schemes. In this tracing algorithm, the decryption box D
for a user with identity ID is fed with n ill-formed ciphertexts for n random mes-
sages and ID. Given an ill-formed ciphertext C for a random message M and ID,
D outputs M ′ such that M ′ �= M with overwhelming probability if D is gener-
ated by the PKG; otherwise, M ′ = M with overwhelming probability. However,
computing the ill-formed ciphertext for a message and ID needs to use the user’s
decryption key dID; thus their A-IBE scheme does not have the property of public
traceability. We observe that the ill-formed ciphertext in [25] can be computed
only using partial information of dID, which can be published as a tracing key for
the user ID. Thus, we obtain a public weak black-box tracing mechanism. Based
on Goyal-1 and the public weak black-box tracing mechanism, we propose a new
A-IBE scheme. In our scheme, we also make a important modification in the key
generation protocol of Goyal-1 in order to achieve DishonestPKG security.

Our proposed A-IBE scheme with public traceability consists of the following
algorithms:

Setup. Given a security parameter λ, the PKG runs G(1λ) to obtain a bilinear
group system (p,G,GT , e, g). It chooses α, β ∈ Zp uniformly at random. The
public parameters are published as PK = (g, g1 = gα, h = gβ). The master
secret key is MSK = (α, β).

KeyGen. The PKG and a user U with identity ID interact in the following key
generation protocol. (We assume that the identity ID is an element in Z∗

p.
One can easily to extend the construction to arbitrary identities in {0, 1}∗
by using a collision-resistant hash H : {0, 1}∗ → Z∗

p.)
1. U first chooses r ∈ Zp uniformly at random. Next, U sends R = gr to

the PKG and runs an interactive ZK-PoK of the discrete log of R with
respect to g with the PKG.

2. PKG checks that the ZK-PoK is valid and aborts if the check fails.
Otherwise, the PKG picks a random r′ ∈ Zp and sends (R′, (r′, h′)) to
U, where

R′ = Rβ = hr, h′ = (R′ · g−r′)1/(α−ID).

3. U checks whether the following equalities hold or not:

e(g,R′) = e(R, h) and e(g1 · g−ID, h′) = e(g,R′g−r′).

If no, U aborts. Otherwise, U sets his decryption key dID = (rID, hID),
where rID = r′/r and hID = h′1/r = (hr·g−r′)1/r(α−ID) = (hg−rID)1/(α−ID).

4. U sends RID = e(g, g)rID to the PKG and runs an interactive zero-
knowledge proof ZK{(rID, hID) : RID = e(g, g)rID ∧ e(g1 · g−ID, hID) =
e(g, h) · R−1

ID } with the PKG.
5. PKG checks that the ZK proof is valid and aborts if the check fails.

Otherwise, PKG adds the tracing key tID = (ID, RID) for the identity ID
to a public tracing key list T K.

Encrypt. Given the public parameters PK, an identity ID and a message M ∈
GT , the encryption algorithm chooses random s ∈ Zp and computes the
ciphertext C = (C1, C2, C3), where

C1 = gs1g
−s·ID, C2 = e(g, g)s, C3 = M · e(g, h)−s.

336 J. Lai et al.

Decrypt. Given the public parameters PK, a ciphertext C = (C1, C2, C3) and
a decryption key dID = (rID, hID) for ID, the decryption algorithm outputs
M = e(C1, hID) · CrID

2 · C3.
Trace. Given the public parameters PK, an identity ID, the public tracing key

list T K and an ε-useful decryption box DID for the identity ID, the tracing
algorithm first finds the tuple (ID, RID) in the public tracing key list T K.
If such tuple does not exist, it aborts. Otherwise, it performs the following
steps.
1. Set a counter ctr = 0 and repeat the following experiment n = 8λ/ε

times:
– Pick two distinct elements s, s′ ∈ Zp at random.
– Choose a random message M ∈ GT and compute C1 = gs1g

−s·ID,

C2 = e(g, g)s
′
, C3 = M · e(g, h)−s ·R(s−s′)

ID .
– Feed the ε-useful decryption boxDID with the ciphertext C = (C1, C2,

C3). The decryption box DID outputs a message M ′. If M ′ = M , in-
crement ctr.

2. If ctr = 0, output PKG. Otherwise, output User.
Judge A user U with identity ID and a judge interact in the following protocol.

1. Let dID = (rID, hID) be the user’s decryption key. U first sets RID =
e(g, g)rID . Next, U sends RID to the judge and runs an interactive zero-
knowledge proof ZK{(rID, hID) : RID = e(g, g)rID ∧ e(g1 · g−ID, hID) =
e(g, h) · R−1

ID } with the judge.
2. The judge checks that the ZK proof is valid and aborts if the check fails.

Otherwise, the judge accepts tID = (ID, RID) as the user’s public tracing
key.

Correctness. If the ciphertext C = (C1, C2, C3) is well-formed for ID, then

e(C1, hID) · CrID
2 · C3 = e(gs·(α−ID), (hg−rID)1/(α−ID)) · e(g, g)s·rID · C3

= e(g, h)s · C3 = e(g, h)s ·M · e(g, h)−s = M.

Zero-knowledge of Judge algorithm. Obviously, because of the zero-knowledge
property of the ZK proof, at the end of the Judge algorithm, the judge cannot
obtain any additional information about the user’s decryption dID except the
tracing key itself.

4.1 Discussion

In the key generation protocol of Goyal-1, a user first sends hr to the PKG; but
in our scheme, the user sends gr to the PKG, which enables us to prove that our
A-IBE with public traceability is weak black-box DishonestPKG secure.

The IND-ID-CPA security and DishonestUser security of our scheme require a
strong q-ABDHE assumption inherited from Gentry’s IBE scheme [13]. However,
combining the A-IBE scheme proposed by Libert and Vergnaud [25] with our
public tracing mechanism, we can obtain a new A-IBE scheme with public trace-
ability, in which the IND-ID-CPA security and DishonestUser security require the
DBDH assumption, instead of the strong q-ABDHE assumption.

Accountable Authority Identity-Based Encryption with Public Traceability 337

CCA-security can be obtained by applying the Canetti-Halevi-Katz trans-
formation [10] to a two receiver variant of the Gentry-Waters identity-based
broadcast encryption (IBBE) scheme [15] that does not affect our tracing
algorithm.

4.2 IND-ID-CPA Security

Theorem 1. The above A-IBE scheme with public traceability is IND-ID-CPA
secure under the decisional truncated q-ABDHE and modified DDH-1 assumption
in the bilinear group system (p,G,GT , e, g).

Proof. The proofs will be given in the full version of the paper due to the space
limitation.

4.3 DishonestPKG Security

Theorem 2. The above A-IBE scheme with public traceability is weak black-box
DishonestPKG secure under the modified DDH-2 assumption in the bilinear group
system (p,G,GT , e, g).

Proof. To prove the weak black-box DishonestPKG security of our A-IBE scheme,
we consider the following two games.

Game0. The original weak black-box DishonestPKG game. Note that, in the end
of the original weak black-box DishonestPKG game, the adversary outputs
an ε-useful decryption box DID∗ for an identity ID∗; and in the tracing algo-
rithm, DID∗ is fed with n ill-formed ciphertexts for n random messages and
the identity ID∗. The ill-formed ciphertext C = (C1, C2, C3) for a random
message M and the identity ID∗ is set as C1 = gs1g

−s·ID∗ , C2 = e(g, g)s
′
,

C3 = M · e(g, h)−s · R(s−s′)
ID∗ , where tID∗ = (ID∗, RID∗) is the tracing key for

ID∗, s, s′
$← Zp and s �= s′.

Game1. The same as Game0 except that in the tracing algorithm, the ill-formed
ciphertext C = (C1, C2, C3) for a random message M and the identity ID∗

is set as C1 = gs1g
−s·ID∗ , C2 = e(g, g)s

′
, C3 = M · e(g, h)−s · e(g, g)r, where

s, s′, r
$← Zp and s �= s′.

We prove this theorem by the following two lemmas. Lemma 1 states that Game0
and Game1 are indistinguishable; and Lemma 2 states that the advantage of the
adversary in Game1 is negligible. Therefore, we conclude that the advantage of
the adversary in Game0 (i.e., the original weak black-box DishonestPKG game)
is negligible. This completes the proof of Theorem 2.

Lemma 1. Game0 and Game1 are computationally indistinguishable under the
modified DDH-2 assumption in the bilinear group system (p,G,GT , e, g).

338 J. Lai et al.

Proof. Suppose there exists an adversary A who can distinguish between Game0
and Game1 with non-negligible probability. Then we can build an algorithm B
that makes use of A to break the modified DDH-2 assumption in the bilinear
group system (p,G,GT , e, g).

B receives (ga, g1/a, e(g, g)b, Z) and tries to decide if Z = e(g, g)b/a. B runs A
as a subroutine and proceeds as follows.

Setup. The adversary A sends the public parameters PK = (g, g1, h) and an
identity ID∗ to B. B checks that g, g1, h are elements in G and ID∗ is a element
in Z∗

p, and aborts if the check fails.
Key Generation. B engages in the interactive key generation protocol with A

to get a decryption key for the challenge identity ID∗ as follows. It sends
R = ga and now has to give a ZK-PoK of the discrete log of R with re-
spect to g to A. Note that, the zero-knowledge property of the proof system
implies the existence of a simulator which is able to successfully simulate
the view of A in the protocol (by rewinding A) with overwhelming prob-
ability; and B can use the simulator to simulate the required proof even
without knowledge of a. Then, B receives (R′, (r′, h′)) from A. B checks

if e(R, h)
?
= e(R′, g) and e(g1g

−ID∗ , h′)
?
= e(g,R′g−r′). If the test fails, B

aborts. Otherwise, the decryption key dID∗ for ID∗ is defined (but unknown
to B) as (rID∗ = r′/a, hID∗ = h′/a). Next, B sends RID∗ = e(g, g)rID∗ =
e(g, g)r

′/a = e(g1/a, gr
′
) to A and now has to give a zero-knowledge proof

ZK{(rID∗ , hID∗) : RID∗ = e(g, g)rID∗ ∧ e(g1 · g−ID∗ , hID∗) = e(g, h) · R−1
ID∗}.

Similarly, B can use the simulator of the zero-knowledge proof to simulate
the required proof even without knowledge of (rID∗ , hID∗). Finally, A adds
the tracing key tID∗ = (ID∗, RID∗) for the identity ID∗ to a public tracing key
list T K.

Output. At this point, the adversaryA outputs an ε-useful decryption box DID∗

for the identity ID∗. In the tracing stage, B proceeds as follows.
1. Choose n messages M1, . . . ,Mn ∈ GT uniformly at random. For i = 1

to n, compute the ciphertext C(i) = (C
(i)
1 , C

(i)
2 , C

(i)
3) as

C
(i)
1 = gsi·(α−ID∗), C

(i)
2 =

(
e(g, g)b

)δi · e(g, g)ai ,

C
(i)
3 = Mi · e(g, h)−si · Rsi−ai

ID∗ · Z−r′·δi ,

where si, δi, ai
$← Zp.

2. DID∗ is fed with n ciphertexts C(1), . . . , C(n).

Observe that, ifZ = e(g, g)b/a, thenZ−r′·δi =e(g, g)−(b/a)·r′·δi =
(
e(g, g)r

′/a
)−b·δi

= R−b·δi
ID∗ ,

C
(i)
1 = gsi·(α−ID∗), C

(i)
2 = e(g, g)s

′
i , C

(i)
3 = Mi · e(g, h)−si ·Rsi−s′i

ID∗ ,

where s′i = b · δi+ai is uniformly random; B has properly simulated Game0. If Z
is a random element in GT , B has properly simulated Game1. Hence, B can use
the output of A (i.e., the ε-useful decryption box DID∗) to distinguish between
these possibilities for Z.

Accountable Authority Identity-Based Encryption with Public Traceability 339

Lemma 2. In Game1, the advantage of the adversary is negligible.

Proof. In the end of Game1, the adversary A outputs an ε-useful decryption box
DID∗ for an identity ID∗. The advantage of the adversary is the probability that
the tracing algorithm outputs User.

The tracing algorithm points to the User if it ends up with ctr �= 0. In an iter-
ation of the tracing stage of Game1, DID∗ is given a ciphertext C = (C1, C2, C3)
for a random message M and the identity ID∗, where

C1 = gs1g
−s·ID∗ , C2 = e(g, g)s

′
, C3 = M · e(g, h)−s · e(g, g)r,

and s, s′, r
$← Zp and s �= s′; DID∗ returns M ′ such that M ′ = M with the

probability 1/p since s, s′, r are uniformly random and independent from the
adversary’s view. Therefore, we conclude that the advantage of the adversary in
Game1 is negligible since Pr[ctr �= 0] = Pr[ctr ≥ 1] ≤ n/p = 8λ/(εp) ≤ 8λ/(2λε).

As noted in [26], a decoder box DID∗ for ID∗ generated by the malicious PKG
is able to recognize invalid ciphertexts in the tracing stage (as it may contain
the master secret key MSK). However, as long as DID∗ is assumed stateless, it
cannot shutdown or self-destruct when detecting a tracing attempt. Moreover,
with overwhelming probability, DID∗ will never be able to decrypt such invalid
ciphertexts in the same way as the owner of dID∗ would.

In the proof of Lemma 1, the decryption key dID∗ for ID∗ is unknown to
the challenger B; thus it is not able to provide the decryption oracle to the
adversary (i.e., the malicious PKG). Hence, we can only prove that our scheme
is weak black-box DishonestPKG secure. One future direction is to construct
A-IBE schemes with public and full black-box traceability.

4.4 DishonestUser Security

Theorem 3. The above A-IBE scheme with public traceability is adaptive-ID
DishonestUser secure under the decisional truncated q-ABDHE assumption in
the bilinear group system (p,G,GT , e, g).

Proof. The proofs will be given in the full version of the paper due to the space
limitation.

5 Conclusions

In this paper, we studied the public traceability problem of A-IBE. We first ex-
tended the original A-IBE model [18] to account for public traceability. Then, we
presented the first A-IBE scheme with public traceability that combines the first
A-IBE construction proposed by Goyal in [18] with a public tracing mechanism.
A limitation of our scheme is that it only allows for weak black-box traceability.
It remains an open problem to construct an A-IBE scheme with public trace-
ability while has the properties of IND-ID-CPA security, black-box DishonestPKG
security and adaptive-ID DishonestUser security.

340 J. Lai et al.

Acknowledgement. The authors thank the anonymous reviewers for their
helpful comments. The first and second authors are supported by the Office
of Research, Singapore Management University. The third author is supported
by National Science Foundation of China (No. 61070248, 61272012) and In-
novation Project (No.12ZZ013) of Shanghai Municipal Education Commission.
The fourth author is supported by the National Science Foundation of China
under Grant Nos. 60903178, 61005049, 61133014, 61272413 and 61272415, the
Fok Ying Tung Education Foundation under Grant No. 131066, the Fundamen-
tal Research Funds for the Central Universities under Grant No. 21610204,
the Guangdong Provincial Science and Technology Project under Grand No.
2010A032000002, the Opening Project of Shanghai Key Laboratory of Inte-
grate Administration Technologies for Information Security under Grand No.
AGK201100,and the R&D Foundation of Shenzhen Basic Research Project un-
der Grand No. JC201105170617A.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consis-
tency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Au, M.H., Huang, Q., Liu, J.K., Susilo, W., Wong, D.S., Yang, G.: Traceable and
Retrievable Identity-Based Encryption. In: Bellovin, S.M., Gennaro, R., Keromytis,
A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 94–110. Springer, Heidel-
berg (2008)

4. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

5. Bellare, M., Goldreich, O.: On Probabilistic versus Deterministic Provers in the
Definition of Proofs of Knowledge. In: Goldreich, O. (ed.) Studies in Complexity
and Cryptography. LNCS, vol. 6650, pp. 114–123. Springer, Heidelberg (2011)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

7. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

9. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

10. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

Accountable Authority Identity-Based Encryption with Public Traceability 341

11. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf., pp. 360–363 (2001)

12. Gentry, C.: Certificate-based Encryption and the Certificate Revocation Problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

13. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

14. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

15. Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with
Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

16. Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1. Cam-
bridge University Press (2001)

17. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in np have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

18. Goyal, V.: Reducing Trust in the PKG in Identity Based Cryptosystems. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidel-
berg (2007)

19. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: ACM Conference on Computer and Communications Secu-
rity, pp. 427–436 (2008)

20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

21. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

22. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. Cryptology ePrint Archive, Report 2007/404
(2007), http://eprint.iacr.org/

24. Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

25. Libert, B., Vergnaud, D.: Towards black-box accountable authority IBE with short
ciphertexts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 235–255. Springer, Heidelberg (2009)

26. Libert, B., Vergnaud, D.: Towards practical black-box accountable authority ibe:
Weak black-box traceability with short ciphertexts and private keys. IEEE Trans-
actions on Information Theory 57(10), 7189–7204 (2011)

27. Sahai, A., Seyalioglu, H.: Fully Secure Accountable-Authority Identity-Based En-
cryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 296–316. Springer, Heidelberg (2011)

http://eprint.iacr.org/

342 J. Lai et al.

28. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

29. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg
(1990)

30. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

31. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

Efficient Delegation

of Key Generation and Revocation
Functionalities in Identity-Based Encryption

Jae Hong Seo and Keita Emura

National Institute of Information and Communications Technology, 4-2-1,
Nukui-kitamachi, Koganei, Tokyo, 184-8795, Japan

{jaehong,k-emura}@nict.go.jp

Abstract. In the public key cryptosystems, revocation functionality is
required when a secret key is corrupted by hacking or the period of a con-
tract expires. In the public key infrastructure setting, numerous solutions
have been proposed, and in the Identity Based Encryption (IBE) setting,
a recent series of papers proposed revocable IBE schemes. Delegation of
key generation is also an important functionality in cryptography from
a practical standpoint since it allows reduction of excessive workload for
a single key generation authority. Although efficient solutions for either
revocation or delegation of key generation in IBE systems have been
proposed, an important open problem is efficiently delegating both the
key generation and revocation functionalities in IBE systems. Libert and
Vergnaud, for instance, left this as an open problem in their CT-RSA
2009 paper. In this paper, we propose the first solution for this problem.
We prove the selective-ID security of our proposal under the Decisional
Bilinear Diffie-Hellman assumption in the standard model.

1 Introduction

Shamir introduced the concept of the Identity-based Encryption (IBE) scheme,
a public key encryption scheme allowing any bit-string (e.g., e-mail address) to
be a public key of a user that chooses such a bit-string [23]. Since Boneh and
Franklin’s first realization of IBE using bilinear pairings over elliptic curves,
IBE systems have been applied in numerous applications. Several variations
of IBE systems have also been proposed for adding other functionalities. In
particular, the hierarchical identity-based encryption (HIBE) scheme allows the
key generation center (KGC) to delegate the key generation functionality to
users [11] and the revocable IBE (RIBE) scheme allows the KGC to efficiently
revoke users for each time period [2].

Revocation Functionality in IBE. In public key cryptosystems, we need
revocation functionality when a secret key is corrupted by hacking or the pe-
riod of a contract expires. In the public key infrastructure setting, numerous
solutions have been proposed, and in the IBE setting, a series of recent papers
has proposed scalable RIBE schemes since Boldyreva et al. [2]. In fact, Boneh

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 343–358, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

344 J.H. Seo and K. Emura

and Franklin [5] already proposed a trivial solution for revocation functionality,
wherein new decryption keys are issued for each time period. However, their
solution introduces huge overheads for the KGC that are linearly increased in
the number of users. Boldyreva et al. and all subsequent works were aimed at
constructing a scalable RIBE scheme, that is, the KGC’s overhead increases log-
arithmically in the number of users. All proposed scalable RIBE schemes used
the same methodology for revocation by using a binary tree structure. Each user
ID is assigned to a leaf node ζID of the binary tree structure and has keys corre-
sponding to the nodes on the path between the assigned leaf node and the root
node. By using the technique called the Complete Subtree (CS) method [20],
which is widely accepted for broadcast encryption, the KGC broadcasts the key
update for each time period (i.e., no secure channel is required in this phase)
such that only non-revoked users can generate the decryption key for that time
period from their secret key and the key update. For a non-revoked user, there is
at least one subkey among the logN size key, where N is the maximum number
of users. Since the CS method is secure against colluding and allows short key
updates, the resulting RIBE scheme is well scalable and secure1.

Delegation Functionality in IBE. For a large network, a single KGC has
an excessive workload for performing computationally expensive key generation
and establishing secure channels to transmit each user’s secret key. To miti-
gate this problem, Horwitz and Lynn [14] introduced the concept of HIBE such
that the responsibility for key generation is distributed to the lower-level KGC
by delegating key generation functionality. Numerous constructions for HIBE
schemes and variants with additional properties have subsequently been pro-
posed [11,3,4,6,10,22,24,16].

Delegation of Both Key Generation and Revocation Functionalities
in IBE. Although IBE schemes with either efficient revocation or efficient del-
egation for key generation functionality have been proposed, it is non-trivial to
achieve both functionalities at the same time, and in fact Libert and Vergnaud
left this as an open problem at CT-RSA 2009 [18]. We simply call such a scheme
having both functionalities a Revocable HIBE (RHIBE) scheme. There are some
difficulties in achieving RHIBE.

1. Trivial approaches will lead to exponentially large secret keys in the corre-
sponding hierarchical level.

2. Key generations and key updates are recursively defined: this leads some
difficulty in the security proof.

All existing scalable RIBE schemes utilize binary tree structures, that is the CS
method, for revocation. In the scalable RIBE scheme using the CS method, a
secret key of each user consists of logN subkeys, where N is the number of all

1 The security model for the RIBE scheme is almost equal to that of the conventional
IBE scheme. The only difference is that the adversary of the RIBE scheme is allowed
to query for the challenge identity ID∗, but in this case the challenge identity should
be revoked on the challenge time T∗.

Efficient Delegation of Key Generation and Revocation Functionalities 345

users and at least one subkey of a non-revoked user ID can be used to generate a
decryption key dkID,T from the key update kuT on a time period T. If we extend
the RIBE scheme for the RHIBE scheme in a natural way, the second-level user
has to have (logN)2 subkeys since one of the subkeys of the paraent’s key can
be used in each time period so that a child should have a logN subkey for each
parent’s subkey. In general,
-level users have (logN)� subkeys, so the size of the
secret key exponentially grows in the corresponding hierarchical depth.

For constructing RHIBE, if we follow the same strategy used by all scalable
RIBE schemes, KGC may not be able to directly generate secret keys of descen-
dants (except for the first-level user). Each intermediate-level user’s secret key is
generated according to the shape of the binary tree structure, which is managed
by its parent. However, the KGC does not know such a binary tree, so the KGC
cannot create secret keys of intermediate-level users. (Note that the KGC can
generate decryption keys for all descendants.) Therefore, the secret key and key
updates have to be recursively defined. This makes the situation more compli-
cated. In particular, in the security model the adversary can query secret keys of
descendants of the challenge identity, but it is non-trivial to recursively generate
such secret keys without knowing the challenge identity’s secret key. We explain
the detailed difficulty in Section 4.

Our Contribution. In this paper, we study a way to efficiently delegate both
key generation and revocation functionalities in the IBE system. In particular,
we propose the first realization of RHIBE. Our RHIBE construction is based
on the Boneh-Boyen HIBE (BB-HIBE) scheme [3]. We carefully deal with the
difficulties mentioned above. The ciphertext size of our RHIBE is almost the
same as that of the BB-HIBE (only one additional group element is required) and
the revocation cost of each user is the same as that of the Boldyreva et al. one.
Nevertheless, our scheme enables hierarchical structures of identities. Moreover,
a user (of a level
) needs to manage O(
2 logN)-size secret key (polynomial in
the hierarchical depth). Our RHIBE is selective-ID secure under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption in the standard model.

Related Work. Boldyreva et al. [2] proposed the first RIBE by applying the
fuzzy IBE scheme [21]. Thanks to the collusion resistance of the underlying
fuzzy IBE, no revoked users can compute a decryption key from their own secret
key and publicly available key update information. Moreover, by applying the CS
method [20], the Boldyreva et al. scheme is scalable in the sense that the costs of
the KGC logarithmically depend on the number of users. Although their scheme
is secure under a relatively weaker notion, called selective-ID security, Libert
and Vergnaud [18] proposed adaptive-ID secure RIBE by applying a variant of
the Waters IBE scheme [19]. In the proof of the Libert-Vergnaud RIBE scheme,
the simulator can construct all the secret keys (as in the Gentry IBE [9]) to
answer the secret key query for the challenge user. Recently, a RIBE scheme
from lattices [7] was proposed.

In R(H)IBE, each decryption key is computed from the long-term secret key
and key update information. Dodis et al. considered a similar functionality which

346 J.H. Seo and K. Emura

we call key-insulated PKE [8,1,17] and IBE [13,12,25]. A user computes its de-
cryption key from the long-term secret key and a helper key served in physically
insulated storage. A difference between key-insulated PKE and RIBE is that the
former requires a secure channel between a user and the storage for every key
update, but the latter needs a secure channel only once for transmitting each
user’s secret key from its ancestor. Moreover, since each helper key is generated
for each user, the total size of the helper key linearly depends on the number
of total users, whereas it logarithmically depends on the number of total (i.e.,
non-revoked) users in RIBE.

Outline. This paper is organized as follows. The next section gives preliminaries.
In Section 3, we define a syntax and a security model for the RHIBE scheme and
we propose our RHIBE construction in Section 4. Lastly, we analyze the security
of the proposed scheme and give a conclusion with interesting open problems.

2 Preliminaries

This section gives the definition of the bilinear groups, the DBDH assumption,
and the KUNode algorithm [2].

Definition 1 (Bilinear Groups). The bilinear group generator G(·) is an al-
gorithm that takes as input a security parameter λ and outputs a bilinear group
(p,G,Gt, e), where p is a prime of size 2λ, G and Gt are cyclic groups of order
p, and e is an efficiently computable bilinear map e : G×G → GT with

– Bilinearity : for all u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) =
e(u, v)e(u, v′),

– Non-degeneracy : for a generator g of G, e(g, g) �= 1Gt , where 1Gt is identity
element in Gt.

Definition 2 (Decision Bilinear Diffie-Hellman (DBDH) Assumption).
Given a bilinear group (p,G,Gt, e) generated by G(λ), define two distributions

D0(λ) = (g, ga, gb, gc, e(g, g)abc) and D1(λ) = (g, ga, gb, gc, e(g, g)z), where g
$←

G and a, b, c, z
$← Zp. The DBDH problem in the bilinear group (p,G,Gt, e) is

to decide a bit b from given Db, where b
$← {0, 1}. The advantage of A in solving

the DBDH problem in the bilinear group (p,G,Gt, e) is defined by

AdvDBDH
G,A (λ) =

∣∣∣Pr[A(D0(λ)) → 1]− Pr[A(D1(λ)) → 1]
∣∣∣.

We say that the DBDH assumption holds in the bilinear group (p,G,Gt, e) if no
Probabilistic Polynomial Time (PPT) algorithm has a non-negligible advantage
in solving the DBDH problem in the bilinear group (p,G,Gt, e).

Our RHIBE scheme is based on the BB-HIBE scheme [3], which is IND-sID-
CPA secure under the DBDH assumption. The formal definition of IND-sID-
CPA security and description of the BB-HIBE scheme are provided in the full

Efficient Delegation of Key Generation and Revocation Functionalities 347

765

2

root

8 9 10 12 13 14 15

4

11

3

Fig. 1. Example of KUNode(BT, RL, T): We revoke the user u4 (that is assigned to
x11). Then, all users, except u4, have a node x ∈ Y = {x3, x4, x10} (we checked these
nodes) that is contained in the set of nodes on the path from each user’s assigned node
to root.

version of this paper. The revocation method in each level of our construction
follows Boldyreva et al.’s way using binary tree structure. The following KUNode
algorithm is essentially used for revoking users in our construction.

Definition 3 (The KUNode Algorithm [2]). This algorithm takes as input a
binary tree BT, revocation list RL, and time T , and outputs a set of nodes. A
formal description of this algorithm is as follows: If x is a non-leaf node, then
xleft and xright denote the left and right child of x, respectively. Each user is
assigned to a leaf node. If a user (that is assigned to ζ) is revoked on time T ,
then (ζ, T) ∈ RL. Path(ζ) denotes the set of nodes on the path from ζ to root.
The description of KUNode is given below.

KUNode(BT, RL, T) :

X, Y← ∅;
∀(ζ, Ti) ∈ RL

If Ti ≤ T then add Path(ζi) to X

∀x ∈ X

If xleft �∈ X then add xleft to Y

If xright �∈ X then add xright to Y

If Y = ∅ then add root to Y

Return Y

We give a simple example of KUNode in the fugure 1.

3 Syntax and Security Model of RHIBE

We give formal definitions of the hierarchical identity-based encryption with ef-
ficient revocation scheme, which is simply called the Revocable Hierarchical
Identity-Based Encryption (RHIBE) scheme, and its security by extending those
of the revocable IBE in [2]. An RHIBE scheme consists of seven algorithms: Setup,
KeyGen, KeyUp, DKG, Enc, Dec, and Revk. Roughly speaking, the Setup algo-
rithm is run by the trusted authority called the Key Generation Center (KGC)

348 J.H. Seo and K. Emura

Fig. 2. The Hierarchical Structures: Each user (except the last level user) in the hier-
archy of IBE system has his own binary tree for revocation functionality

for system parameters and a corresponding master secret key. When a user (pos-
sibly the KGC) generates a child’s key, it can run the KeyGen algorithm with its
secret key (the master secret key for the KGC) and a child’s identity. If some
users are revoked, the identities of revoked users should be updated along with
each user’s revocation time period. A (
−1)-th level user ID|�−1 issues key update
information kuID|�−1,T at every time period T by running the KeyUp algorithm.
This information is managed by the binary tree BTID|�−1

which is served in the
state stID|�−1

. While performing revocation, senders do not need to be updated
and can encrypt a message using the receiver’s identity, a time period that the
receiver can decrypt, and the Enc algorithm. Every user ID|� that is not revoked
on time T can create a decryption key dkID�,T from kuID|�−1,T by running the
DKG algorithm, so that only a non-revoked user ID|� (on time T) can decrypt
an encrypted message for the identity ID|� and the time period T by using the
decryption key dkID|�,T and the Dec algorithm. Figure 2 explains the hierarchical
structure with binary tree structures and we also provide the formal syntax of
the RHIBE scheme below.

Definition 4. An RHIBE scheme consists of seven algorithms: Setup, KeyGen,
KeyUp, DKG, Enc, Dec, and Revk. The specification of each algorithm is as
follows:

Setup(λ,N,L): It takes a security parameter λ, maximum number of users in
each level N , and maximum length of the hierarchy of identity L as input. It
then outputs a master public key mpk, a master secret key msk, initial state

Efficient Delegation of Key Generation and Revocation Functionalities 349

st0, and an empty revocation list RL. We assume that the message space M
and the identity space I (which is a union of all levels of identities), time
space T , and ciphertext space CT are contained in mpk.

KeyGen(skID|� , stID|� , ID|�+1,mpk): On input of a private key skID|� and state
stID|� , children’s identity ID|�+1 and the master public key mpk, it outputs a
private key skID|�+1

and updates state stID|� .
KeyUp(skID|� ,T,RLID|� , stID|� , kuID|�−1,T,mpk): It takes a private key skID|� of

ID|� ∈ I, key update time T ∈ T , a revocation list RLID|� , state stID|� of
ID|�, key update kuID|�−1,T published by ID|�−1, and the master public key
mpk as input, and outputs a key update kuID|�,T or ⊥ (when ID|� is revoked).

DKG(skID|� , kuID|�−1,T,T,mpk): Given private key skID|� , key update kuID|�−1,T,
and the master public key mpk, it outputs a decryption key dkID|�,T that can
be used during a time period T or ⊥ that means the identity ID|� is revoked
for some time period T′ ≤ T.

Enc(ID|�,T,M,mpk): This algorithm takes an identity ID|� ∈ I, time T ∈ T ,
a message M ∈ M, and the master public key mpk as input, and outputs a
ciphertext CT ∈ CT .

Dec(dkID|�,T,CT,mpk): Given a decryption key dkID|�,T, a ciphertext CT ∈ CT ,
and the master public key mpk, it outputs a message M ∈ M or ⊥ (invalid
ciphertext).

Revk(ID|�,T,RLID|�−1
, stID|�−1

): It takes an identity ID|� ∈ I, time T ∈ T , the
revocation list RLID|�−1

managed by ID|�−1 and state stID|�−1
, and updates the

revocation list RLID|�−1
by adding ID|� as a revoked user at time T.

Note that two algorithms KeyGen and Revk are stateful, and if ID|� is revoked at
time period T, then all descendants should be revoked at the time T. For rigorous
definition, if
 = 0, then let skID|0 = msk, stID|0 = st0, RLID|0 = RL0, kuID|−1,t be
msk, and kuID|0,T = ku0,T.

We require the following correctness condition: For any output (mpk,msk) of
Setup, any message M ∈ M, any identity ID|� (of length
 ≤ L), any time T ∈ T ,
all possible states {stID|i}i∈[0,�−1] and revocation lists {RLID|i}i∈[0,�−1], if ID|� is
not revoked (and so all ancestors of ID|� are not revoked) by time T, the following
probability should be 1.

Pr
[
Dec(dkID|� ,Enc(ID|�,T,M,mpk),mpk) = M

∣∣∣
for i ∈ [1, �], KeyGen(skID|i−1

, stID|i−1
, ID|i,mpk)→ skID|i ,

KeyUp(skID|i−1
,T,RLID|i−1

, stID|i−1
, kuID|i−2,T,mpk)→ kuID|i−1,T;

DKG(skID|� , kuID|�−1,T,mpk)→ dkID|�,T.

]
We provide the security definition for a revocable HIBE scheme by extending
Boldyreva et al.’s security definition for a revocable IBE scheme [2]. Our security
definition allows the adversary to access several oracles: KeyGen, KeyUp, and
Revk. We provide the precise definition of the oracles and new security notion
for RHIBE using such oracles.

Definition 5 (IND-sRID-CPA). Let RHIBE=(Setup, KeyGen, KeyUp, DKG,
Enc, Dec, Revk) be an RHIBE scheme. First, we define three oracles.

350 J.H. Seo and K. Emura

KeyGen(·) is the private key generation oracle. It takes an identity ID|� of length

 as input, runs the KeyGen algorithm to get the private key skID|� , and
returns skID|� .

KeyUp(·, ·) is the key update oracle that takes time T and an identity ID|� of
length
 as input, runs the KeyUp algorithm to obtain the key update kuID|�,T,
and returns it.

Revk(·, ·, ·) is the revocation oracle. It takes an identity ID|� of length
, its child
identity ID|�+1, and time T as input, runs the the Revk algorithm to revoke
ID|�+1, and updates RLID|� .

We assume that all oracles share a state. Next, we define the security of RHIBE,
called IND-sRID-CPA security.

ExpIND-sRID-CPA
RHIBE,A (λ)

(ID∗
|�∗ ,T

∗, state) ← A(state)

(mpk,msk,RL0, st0) ← Setup(λ,N,L)

(M∗
0,M

∗
1, state) ← AKeyGen(·),KeyUp(·,·),Revk(·,·,·)(state,mpk)

b
$← {0, 1}

CT∗ ← Enc(ID∗
|�∗ ,T

∗,M∗
b ,mpk)

b′ ← AKeyGen(·),KeyUp(·,·),Revk(·,·,·)(state,mpk,CT∗)

Return

{
1 if b = b′

0 otherwise
.

There are three conditions that A should follow.

1. The challenge messages M∗
0 and M∗

1 should have the same length.
2. KeyUp(·, ·) and Revk(·, ·, ·) can be queried at a time that is greater than or

equal to the time of all previous queries; i.e. the adversary is allowed to query
only in non-decreasing order of time. Also, Revk(·, ·, ·) cannot be queried on
a time T if KeyUp(·, ·) was queried on T.

3. If KeyGen(·) is queried on ID∗
|�, which is an ancestor’s identity of the chal-

lenge identity (that is,
 <
∗), then Revk(·, ·, ·) must be queried to revoke
ID∗

|� at a time T for some T ≤ T∗; hence, ID∗
|�∗ is also directly revoked on

the time T < T∗.

The advantage of the adversary A is defined as

AdvIND-sRID-CPA
RHIBE,A (λ) =

∣∣∣Pr[ExpIND-sRID-CPA
RHIBE,A (λ) = 1]− 1

2

∣∣∣.
If the function AdvIND-sRID-CPA

RHIBE,A is negligible in the security parameter λ, we say
that the scheme RHIBE is IND-sRID-CPA secure.

4 Our Construction

In this section, we propose our main construction for the RHIBE scheme. For
revocation, we use the same methodology using binary structures as that used in

Efficient Delegation of Key Generation and Revocation Functionalities 351

Table 1. Quick notations

Preparation Notation Meaning

For g ∈ G and −→r = (r1, . . . , rm) ∈ Z
m
p , g

−→r (gr1 , . . . , grm) ∈ G
m

For (g1, . . . , gm) ∈ G
m

and −→r = (r1, . . . , rm) ∈ Z
m
p , (g1, . . . , gm)

−→r ∏m
i=1 g

ri
i ∈ G

For g
−→r = (gr1 , . . . , grm)

and g
−→s = (gs1 , . . . , gsm) ∈ G

m, g
−→r ◦ g

−→s (gr1 · gs1 , . . . , grm · gsm) ∈ G
m

For g
−→r 1 , . . . , g

−→r m ∈ G
m,

⊗m
i=1 g

−→r i g
−→r 1 ◦ · · · ◦ g−→r m ∈ G

m

For g1, h0, . . . , hL ∈ G and ∀i ∈ [0, L], Fi(x) gx1hi ∈ G

For T ∈ T and ID|� = (I1, . . . , I�) ∈ I,
−→
F (T, ID|�) (F0(T), F1(I1), . . . , F�(I�)) ∈ G

�+1

For ID|� = (I1, . . . , I�) ∈ I,
−→
F (∗, ID|�) (1G, F1(I1), . . . , F�(I�)) ∈ G

�+1

all prior scalable RIBE schemes. In the RHIBE scheme, each intermediate level
user ID|�−1 has its own binary tree BTID|�−1

for revoking capabilities and issues
the key update kuID|�−1,T at each time period T. Then, a non-revoked child user
ID|� can generate dkID|�,T from the key update kuID|�−1,T and its secret key skID|� .

Before providing our construction, we first define several notations for simple
description of the proposed construction, which is given in Table 1. Our RHIBE
scheme is based on the BB-HIBE scheme [3]. As we mentioned before, a trivial
approach for delegation of revocation functionality will end up with exponential
secret key size in the hierarchical level. Therefore, our main contribution is to
propose an efficient way of dealing with delegation of revoking capabilities and
show that the proposed methodology does not harm the semantic security of the
underlying BB-HIBE scheme; that is, in the security proof, we give a reduction
to the IND-sID-CPA security of the BB-HIBE scheme.

For a decryption key of a user ID|� at a time period T, we use a hierarchical
extension as follows:

dkID|�,T =
(
gα2 · (gT1 h0)

s0 ·
∏

i∈[1,�]

(gIi1 hi)
si , gs0 , gs1 . . . , gs�

)
∈ G�+2,

where g, g1, g2, h0, . . . , h� are public parameters, gα2 is a master key, ID|� =
(I1, . . . , I�), and s0, . . . , s� are random integers chosen from Zp. If we use the
notation in Table 1, then

dkID|�,T =
(
gα2 · −→F (T, ID|�)

−→s , g
−→s
)
where −→s = (s0, . . . , s�).

Note that
−→
F (T, ID|�) is a vector in G�+1 so that

−→
F (T, ID|�)

−→s is a group element
in G. Information about decryption keys are divided into secret keys and key
updates. In particular, the master key gα2 is randomly divided into two parts
Rθ and gα2 /Rθ, where we will explain θ later. The secret key of ID|� contains
information about(

Rθ ·
∏

i∈[1,�]

(gIi1 hi)
si , 1G, g

s1 . . . , gs�
)
=
(
Rθ

−→
F (∗, ID|�)

−→s ′ , g
−→s ′
)
,

352 J.H. Seo and K. Emura

where −→s ′ = (0, s1, . . . , s�) ∈ Z�+1
p , and the key update for a time T, which is

managed by ID|�−1, contains information about(
(gα2 /Rθ) · (gT1 h0)

s0 ·
∏

i∈[1,�−1]

(gIi1 hi)
si , gs0 , . . . , gs�−1 , 1G

)

=
(
(gα2 /Rθ) ·

−→
F (T, ID|�−1)

−→s ′′ , g
−→s ′′
)
,

where −→s ′′ = (s0, s1, . . . , s�−1, 0) ∈ Z�+1
p . Let Rθ be assigned in the node θ in

BTID|�−1
, ζID|� be the leaf node assigned for ID|� in BTID|�−1

, and Path(ζID|�) be
the path from ζID|� to the root node in BTID|�−1

. If skID|� contains the above form
for all θ on Path(ζID|�) and key update on time T contains the above form for
all θ in KUNode(BTID|�−1

,RLID|�−1
,T), then a non-revoked user ID|� can generate

the corresponding decryption key by a simple product of the above two forms
since there exists at least one θ in Path(ζID|�) ∩ KUNode(BTID|�−1

,RLID|�−1
,T).

If we consider revocable IBE schemes, the above method is sufficient. However,
when constructing the RHIBE scheme, we should consider the fact that users
can generate valid key updates for children only during the time period in which
they are not revoked. This implies that both secret keys and key updates should
contain information about all ancestor’s secret keys and key updates. To this end,
we recursively define children’s secret keys and key updates from parents’ secret
key and key update. Note that if we use binary tree structures for revocation,
the KGC cannot directly generate secret keys of descendants (except for the
first-level user) since the master key parts of decryption keys of descendants
are randomly divided into two parts (each for the secret key and key update)
according to the binary tree structure managed by their parents, which are
also intermediate-level users, but the KGC does not know of such a binary
tree structure. Therefore, the secret key and key updates have to be recursively
defined, which makes the situation more complicated.

A simple example helps to explain our construction for delegating the revo-
cation functionality. Assume that a user ID|1 = I1 is not revoked on time T. The
secret key of ID|1 and the key update ku0,T generated by the KGC are

{(Rθ·(gI11 h1)
γ1 , gγ1)}θ∈Path(ζID|1)

and {((gα2 /Rθ)·(gT1 h0)
γ0 , gγ0)}θ∈KUNode(BT0,RL0,T),

respectively, where ζID|1 is a leaf node assigned for ID|1 by the KGC. The user
ID|1 has its own binary tree structure BTID|1 for revocation functionality. The
revocation methodology used by ID|1 is the same as for the KGC. Whenever a
child ID|2 registers in the system, it randomly assigns a leaf node ζID|2 of BTID|1
for ID|2. For all nodes θ

′ in Path(ζID|2), assign random values Rθ′ . Assume that

the secret key of ID|1 is {(d′θ, dθ) := (Rθ · (gI11 h1)
γ1 , gγ1)}θ∈Path(ζID|1)

. The secret

key skID|2 of a child ID|2 := (I1, I2) is generated as

{(d′θ · (g
I2
1 h2)

γ2 , 1G, dθ, gγ2)}θ∈Path(ζID|1)

and {(Rθ′ ·
∏

i∈[1,2](g
Ii
1 hi)

γ′i , 1G, gγ
′
1 , gγ

′
2)}θ′∈Path(ζID|2)

.

Efficient Delegation of Key Generation and Revocation Functionalities 353

We use notation
−→
d

(1,j)
ID|2 to denote a vector (d′θ · (gI21 h2)

s2 , 1G, dθ, gs2) ∈ G4,

where θ is the j-th level node, and notation
−→
d

(2,j)
ID|2 to denote a vector (Rθ′ ·∏

i∈[1,2](g
Ii
1 hi)

γi , 1G, gγ1 , gγ2) ∈ G4, where θ′ is the j-th level node.
The key update on T is computed as follows. Assume that ID|1 is not revoked

on time T. Then, ID|1 can choose a node θ in Path(ζID|1)∩KUNode(BT0,RL0,T).
Let Lv1 be the level of θ in BT0. Note that all nodes in Path(ζID|1) have different
levels, so we can identify nodes from their corresponding levels. Then, (f1, f2) :=
((gα2 /Rθ) · (gT1 h0)

s0 , gs0) is a valid key update for the first level users including
ID|1, and the key update for children of ID|1 is generated as

{({Lv1}, (f1/Rθ′)(g
I1
1 h1)

δ, f2, gδ, 1G)}θ′∈KUNode(BTID|1 ,RLID|1 ,T)
.

We use notation
−→
f ID|1,θ′ to denote a vector ((f1/Rθ′)(g

I1
1 h1)

δ, f2, g
δ, 1G) ∈ G4.

The decryption key of ID|2 on time T is generated as follows. First, it iden-
tifies the subkey part of skID|1 that is used by its parent for delegation on time
T. (It can see from Lv1 in kuID|1,T.) Let θ be the level Lv1 node on Path(ζID|1).
Next, if ID|2 = (I1, I2) is not revoked, it can choose a node θ′ on Path(ζID|2) ∩
KUNode(BTID|1 ,RLID|1 ,T). Let Lv2 be the level of θ′. It then generates the de-
cryption key as⊗2

i=1(
−→
d

(i,Lvi)
ID|2) ◦ −→f ID|1,θ′

=
((

d′θ(g
I2
1 h2)

γ2
)(

Rθ′
∏

i∈[1,2](g
Ii
1 hi)

γ′i
)(

f1/Rθ′(g
I1
1 h1)

δ
)
, f2, dθg

γ′1gδ, gγ2gγ
′
2

)
.

A simple calculation shows that the above decryption key has the desired form(
gα2 · (gT1 h0)

s0(gIi1 h1)
γ1+γ′1+δ(gIi1 h2)

γ2+γ′2 , gs0 , gγ1+γ′1+δ, gγ2+γ′2
)
.

In a similar way, we can define the secret keys and key updates for users from
other levels. However, the security of the above construction is not easy to prove
since descendants have a great deal of information about the ancestors’ secret
keys. In particular, in the security model the adversary can query skID∗|�∗+1

,

but the simulator may not generate such a secret key without knowing skID∗|�∗
since secret key generation algorithm is recursively defined. (When the challenge
identity ID∗

|�∗ is not revoked on the challenge time T∗, the simulator cannot
generate skID∗|�∗ . If not, the simulator can generate the dkID∗|�∗ ,T∗ by itself from

skID∗
�∗ and kuID�∗−1,T so that the simulator can solve the underlying problem

without a help of the adversary.) To circumvent this obstacle, we slightly modify
the above construction by adding re-randomization processes in the KeyGen and
KeyUp algorithms. Hence, the simulator can generate skID∗|�∗+1

even when it does

not know skID∗|�∗ since all randomness used in skID∗|�∗+1
is independent from skID∗|�∗ .

Now we describe our RHIBE construction. In our construction, each user
ID|� keeps state information stID|� including a binary tree BTID|� . We sometimes
use BTID|� to precisely indicate the state information associated with the bi-

nary tree. stID|� contains the randomness {R̃(i,j)}(i,j)∈[1,�−1]×[1,n] used for the
re-randomization process as well. All states are initialized as empty sets.

354 J.H. Seo and K. Emura

Setup(λ,N,L): We assume, without loss of generality, that N = 2n for some

n. Randomly choose group elements g, g2, h0, . . . , hL
$← G and an integer

α
$← Zp. Set mpk = {g, g1 = gα, g2, h0 . . . , hL} and msk = {gα2 }.

KeyGen(skID|� , stID|� , ID|�+1,mpk): According to the value
, this algorithm is
differently defined.

 = 0 : Note that skID|0 = msk and stID|0 = st0. Randomly choose an unas-
signed leaf ζ from BT0, and store ID|1 in the node ζ. We sometimes use a
notation ζID to precisely indicate that the node ζ is associated with ID.
For all θ ∈ Path(ζID|1) ⊂ BT0,

1. Recall Rθ from θ in BT0 if it is defined. Otherwise, Rθ
$← G and store

it in the node θ ∈ BT0.

2. Choose γθ
$← Zp and compute

−→
d

(1,j)
ID|1 := (Rθ · F1(ID|1)

γθ , 1G, gγθ) ∈
G3, where j is the level of θ on the path Path(ζID|1).

Return skID|1 = {−→d (1,j)
ID|1 ∈ G3}j∈[1,n].

 > 0 : Randomly choose an unassigned leaf ζ from BTID|� , and store ID|�+1

in the node ζID|�+1
. Parse skID|� = {−→d (i,j)

ID|� ∈ G�+2}(i,j)∈[1,�]×[1,n].

For all (i, j) ∈ [1,
]× [1, n],

1. Recall R̃(i,j) from stID|� if it is defined. Otherwise, R̃(i,j)
$← G and

store it in stID|� .

2. Choose −→γ (i,j)
$← {0} × Z�+1

p and compute
−→
d

(i,j)
ID|�+1

:= (
−→
d

(i,j)
ID|� , 1G) ◦ (R̃(i,j) ·

−→
F (∗, ID|�+1)

−→γ (i,j) , g
−→γ (i,j)) ∈ G�+3.

For all θ ∈ Path(ζID|�+1
) ⊂ BTID|� ,

1. Recall Rθ from the corresponding node θ in BTID|� if it is defined.

Otherwise, Rθ
$← G and store it in the node θ.

2. Choose −→γ θ
$← {0} × Z�+1

p and compute
−→
d

(�+1,j)
ID|�+1

:= (Rθ ·
−→
F (∗, ID|�+1)

−→γ θ , g
−→γ θ) ∈ G�+3, where j is the level

of θ in the tree BTID|� .

Return skID|�+1
= {−→d (i,j)

ID|�+1
∈ G�+3}(i,j)∈[1,�+1]×[1,n].

KeyUp(skID|� ,T,RLID|� , stID|� , kuID|�−1,T,mpk): According to the value
, this al-
gorithm is differently defined.

 = 0 : Note that skID|0 = msk, RLID|0 = RL0, stID|0 = st0, and kuID|−1,T =
msk. For all nodes θ ∈ KUNode(BT0,RL0,T),
1. Recall Rθ from the node θ ∈ BT0. Note that Rθ is already defined

during the key generation process.

2. Choose δθ
$← Zp and compute

−→
f 0,θ by

((gα2 /Rθ)F0(T)
δθ , gδθ , 1G) ∈ G3.

Return ku0,T = {∅, −→
f 0,θ ∈ G3}θ∈KUNode(BT0,RL0,T).

 > 0 :

Efficient Delegation of Key Generation and Revocation Functionalities 355

1. Parse kuID|�−1,T as

{{Lvi}i∈[1,�−1],
−→
f ID|�−1,θ ∈ G�+2}θ∈KUNode(BTID|�−1

,RLID|�−1
,T).

Note that if
 = 1, then {Lvi}i∈[1,0] means ∅.
2. Identify one node θ̃ ∈ KUNode(BTID|�−1

,RLID|�−1
,T)∩Path(ζID|�) and

set Lv� to be the level of θ̃.
3. For all i ∈ [1,
], recall R̃(i,Lvi) from stID|� .
For all nodes θ ∈ KUNode(BTID|� ,RLID|� ,T),
1. Recall Rθ from θ ∈ BTID|� . Note that Rθ is already defined during

the key generation process.

2. Choose
−→
δ θ

$← Z�+1
p and compute

−→
f ID|�,θ by

(
−→
f ID|�−1,θ̃

, 1G) ◦ ((Rθ

∏�
i=1 R̃(i,Lvi))

−1−→F (T, ID|�)
−→
δ θ , g

−→
δ θ , 1G).

Return kuID|�,T = {{Lvi}i∈[1,�],
−→
f ID|�,θ ∈ G�+3}θ∈KUNode(BTID|� ,RLID|� ,T)

.

DKG(skID|� , kuID|�−1,T,T,mpk):

1. Parse skID|� = {−→d (i,j)
ID|� ∈ G�+2}(i,j)∈[1,�]×[1,n] and

kuID|�−1,T = {{Lvi}i∈[1,�−1],
−→
f ID|�−1,θ ∈ G�+2}θ∈J.

2. If J ∩ Path(ζID|�) = ∅, then return ⊥. Otherwise, choose a node θ ∈
J ∩ Path(ζID|�) and let Lv� be the level of θ in Path(ζID|�) ⊂ BTID|�−1

.

3. Compute and output dkID|�,T :=
⊗�

i=1(
−→
d

(i,Lvi)
ID|�) ◦ −→

f ID|�−1,θ ∈ G�+2.

Enc(ID|�,T,M,mpk): Choose a random value t
$← Zp and return

CT = (M · e(g1, g2)t, gt, F0(T)
t, F1(I1)

t, . . . , F�(I�)
t).

Dec(dkID|�,T,CT,mpk): Parse CT = (A,B,C0, C1, . . . , C�) and dkID|�,T = (D′,
D0, . . ., D�) and return

A ·
∏�

i=0 e(Ci, Di)

e(B,D′)
= M.

Revoke(ID|�,T,RLID|�−1
, stID|�−1

): Let ζ be the leaf node in BTID|�−1
associated

with ID|�. Update the revocation list by RLID|�−1
← RLID|�−1

∪ {(ζ,T)} and
return the updated revocation list.

Efficiency. For encrypting to the
-th level user, the ciphertext consists of
+2
group elements in G and an element in Gt. The decryption algorithm requires

 + 2 pairings and
 + 3 multiplications in Gt. Each user in the
-th level keeps
(
+ 2)(
+ 1) logN group elements in G as its secret key.

5 Security Analysis

We provide a series of lemmas to thoroughly explain the forms of secret keys,
key updates, and decryption keys well, and then give a theorem for the IND-
sRID-CPA security of the proposed construction. The proofs of the lemmas and
the theorem are given in the full version of this paper.

356 J.H. Seo and K. Emura

Lemma 1. If a secret key skID|� is normally generated, it has the following form:

skID|� =
{−→
d

(i,j)
ID|� ∈ G�+2 for (i, j) ∈ [1,
]× [1, n]

}
,

where

1.
−→
d

(i,j)
ID|� =

(
R′

(i,j)

−→
F (∗, ID|�)

−→r (i,j) , g
−→r (i,j)

)
for a uniformly distributed vector

−→r (i,j) ∈ {0} × Z�
p and uniformly distributed value R′

(i,j) ∈ G. (This implies
that all randomness used in a secret key is independent from the parent’s
secret key.)

2. For i ∈ [1,
− 1]× [1, n], all children of ID|�−1 have the same value R′
(i,j).

3. R′
(�,j) is an associated value with the j-th level node on Path(ζID|�) ⊂ BTID|�−1

.

Lemma 2. If a key update kuID|�−1,T is normally generated, it has the following
form:

kuID|�−1,T =
{
{Lvi}i∈[1,�−1],

−→
f ID|�−1,θ ∈ G�+2

}
θ∈KUNode(BTID|�−1

,RLID|�−1
,T)

,

where for−→s θ ∈ Z�
p and

−→
f ID|�−1,θ =

(
gα2 (R

′
θ

∏�−1
i=1 R

′
(i,Lvi)

)−1−→F (T, ID|�−1)
−→s θ , g

−→s θ ,

1G

)
,R′

θ is an associated value with a node θ in BTID|�−1
, andR′

(i,j) is a value defined

in the secret key
−→
d

(i,j)
ID|� of Lemma 1, which is the same for any children ID|� of ID|�−1.

Moreover, for some ID|�, if θ ∈ KUNode(BTID|�−1
,RLID|�−1

,T) ∩ Path(ζID|�), then
R′

θ = R′
(�,Lv�)

, where Lv� is the level of θ on Path(ζID|�) ⊂ BTID|�−1
, and R′

(�,Lv�)
is a

value defined in the secret key
−→
d

(�,Lv�)
ID|� of Lemma 1.

Lemma 3. If a decryption key dkID|�,T is normally generated, it has the follow-
ing form:

dkID|�,T = (gα2
−→
F (T, ID|�)

−→s , g
−→s) ∈ G�+2,

where −→s is a vector in Z�+1
p .

Even though our KeyGen algorithm (KeyUp algorithm, respectively) is recursively
defined, the above lemmas dictate that the secret key (key update, respectively)
in each level has the same format and the randomness used in each level is to-
tally independent from those in the other levels. This fact gives us an essential
advantage when we construct a simulator in the security proof; when the sim-
ulator generates a secret key (key update, respectively), it is not necessary to
generate all ancestor’s secret keys (key updates, respectively), though KeyGen
(KeyUp, respectively) is recursively defined in the real scheme. Instead, in the
proof, the simulator can directly simulate with fresh randomness.

Theorem 1. Assume that the original BB-HIBE scheme is IND-sID-CPA se-
cure. Then, the proposed RHIBE scheme is IND-sRID-CPA secure.

Corollary 1. The proposed RHIBE scheme is IND-sRID-CPA secure under the
DBDH assumption.

Efficient Delegation of Key Generation and Revocation Functionalities 357

6 Summary and Open Problems

We proposed the first construction for efficient delegation of both key generating
functionality and revocation functionality in the IBE system.

There are interesting open problems. Our construction is based on the BB-
HIBE scheme and we proved only selective-security of our construction. Natural
open problem is to construct RHIBE scheme based on more efficient (in the sense
of the ciphertext size) and secure (in the sense of satisfying adaptive-security)
HIBE scheme (e.g.,[15]). Another open problem is to combine HIBE scheme
with so-called Subset Difference (SD) method [20] (instead of CS). It seems not
easy to combine SD with (H)IBE scheme since the SD method requires more
complicated key distributing method than CS method.

Acknolwdgement. We thank anonymous reviewers of CT-RSA 2013 and mem-
bers of Shin-Akarui-Angou-Benkyou-Kai for their helpful comments.

References

1. Bellare, M., Palacio, A.: Protecting against key exposure: strongly key-insulated
encryption with optimal threshold. In: IACR Cryptology ePrint Archive 2002:064
(2002)

2. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In: ACM CCS 2008, pp. 417–426 (2008)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

7. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable Identity-Based
Encryption from Lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012)

8. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

9. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

10. Gentry, C., Halevi, S.: Hierarchical Identity Based Encryption with Polynomially
Many Levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

358 J.H. Seo and K. Emura

11. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

12. Hanaoka, G., Weng, J.: Generic Constructions of Parallel Key-Insulated Encryp-
tion. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 36–53.
Springer, Heidelberg (2010)

13. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-Based Hierarchi-
cal Strongly Key-Insulated Encryption and Its Application. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005)

14. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer,
Heidelberg (2002)

15. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

16. Lewko, A., Waters, B.: Unbounded HIBE and Attribute-Based Encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

17. Libert, B., Quisquater, J.-J., Yung, M.: Parallel Key-Insulated Public Key En-
cryption Without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 298–314. Springer, Heidelberg (2007)

18. Libert, B., Vergnaud, D.: Adaptive-ID Secure Revocable Identity-Based Encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009)

19. Libert, B., Vergnaud, D.: Towards Black-Box Accountable Authority IBE with
Short Ciphertexts and Private Keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 235–255. Springer, Heidelberg (2009)

20. Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless
Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

21. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous Hierarchical
Identity-Based Encryption with Constant Size Ciphertexts. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 215–234. Springer, Heidelberg (2009)

23. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

24. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

25. Weng, J., Liu, S., Chen, K., Zheng, D., Qiu, W.: Identity-Based Threshold Key-
Insulated Encryption without Random Oracles. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 203–220. Springer, Heidelberg (2008)

The Low-Call Diet: Authenticated Encryption

for Call Counting HSM Users

Mike Bond1, George French2, Nigel P. Smart3, and Gaven J. Watson3

1 Cryptomathic A/S, Cambridge, UK
2 Barclays Bank Plc, London, UK

3 University of Bristol, UK

Abstract. We present a new mode of operation for obtaining authen-
ticated encryption suited for use in environments, e.g. banking and gov-
ernment, where cryptographic services are only available via a Hardware
Security Module (HSM) which protects the keys but offers a limited API.
The practical problem is that despite the existence of better modes of
operation, modern HSMs still provide nothing but a basic (unauthenti-
cated) CBC mode of encryption, and since they mediate all access to the
key, solutions must work around this. Our mode of operation makes only
a single call to the HSM, yet provides a secure authenticated encryption
scheme; authentication is obtained by manipulation of the plaintext be-
ing passed to the HSM via a call to an unkeyed hash function. The scheme
offers a considerable performance improvement compared to more tradi-
tional authenticated encryption techniques which must be implemented
using multiple calls to the HSM. Our new mode of operation is provided
with a proof of security, on the assumption that the underlying block
cipher used in the CBC mode is a strong pseudorandom permutation,
and that the hash function is modelled as a random oracle.

1 Introduction

Authenticated symmetric encryption, namely an encryption scheme which is
both IND-CPA and INT-CTXT secure [3], is regarded as the goal for symmetric
encryption. There is no shortage of constructions in the literature for such au-
thenticated encryption (AE) schemes. The most famous of these is the Encrypt-
Then-MAC construction, which first encrypts the message using an IND-CPA
encryption scheme and then appends a secure MAC to the ciphertext. Over
the last decade various special modes of operation have been defined which im-
plement authenticated encryption such as OCB [17], CCM [19], EAX [5] and
GCM [12]. However, while these modes have been optimised for modern use and
parallel services, there are some situations in which generic constructions (like
Encrypt-Then-MAC) or special modes cannot be used.

In the financial and government sectors, a common industrial deployment of
cryptography is for keys to reside within a special piece of hardware known as a
Hardware Security Module or HSM. Such HSMs store the keys and manipulate
sensitive data on behalf of applications, and offer a measure of assurance that

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 359–374, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

360 M. Bond et al.

neither a lone corrupt insider manipulating his own systems nor an external
hacker will be able to steal or abuse cryptographic keys. Another benefit of
utilizing HSMs is that they define the point at which any abuse of the key
material may occur; so whilst a given HSM may not be truly secure (e.g. it may
be susceptible to API attacks [6,8]), nor may they require authentication of the
caller, they do from a pragmatic point of view provide the location where any
abuse by an attacker will occur.

In practice the dominant characteristic of HSMs is their compliance and cer-
tification against security standards such as NIST FIPS 140-2, PCI HSM, and in
certain business areas common criteria evaluation (e.g. against the Secure Sig-
nature Creation Device (SSCD) profile). These standards have varying levels of
practical applicability – for instance FIPS 140 has relatively little to say about
software API security but is widely depended upon as a measure of all round
security. The standards are completely entrenched and not just adherence but
certification is required in order to do business. Certification against such stan-
dards is expensive and applies to each version of HSM firmware and hardware
released. Consequently the focus on security compliance and certification has
slowed the rate of software change on HSMs, and it is rarely cost effective for a
supplier to speculatively add new modes of operation in the hope they will be
adopted.

To compound the matter, in a chicken-and-egg situation, the banking industry
has been reluctant to specify authenticated encryption as part of standards for
core HSM activities such as manipulation of customer PINs in banking networks
and EMV1, since in making this demand they will be requiring implementers
to change their HSM firmware or radically increase their HSM load by making
multiple calls per encrypt/decrypt.

Finally, for software vendors implementing softwarewhich use HSMs for crypto,
different HSMs are dominant and are demanded in different regional markets2.
Supporting a variety of vendors is both required by the market and is wise to en-
able price competition, hence the algorithm chosen for crypto must be the lowest
common denominator across all these platforms.

Thus creation of more complex cryptographic construction is usually done
via multiple API calls to the HSM. For example an HSM may provide an API
call to perform CBC Mode with AES. To call this operation the user passes the
plaintext to the HSM and specifies the key to use. The HSM recovers the key
(usually looking it up in an internal store by name, or possibly by unwrapping
a supplied encrypted key via some other internal key), applies CBC Mode to
the message and then passes the ciphertext back to the caller. If Encrypt-then-
MAC is required the whole process is then repeated again to obtain the MAC
on the ciphertext. Thus traditional ways of obtaining authenticated encryption
are computationally expensive.

1 EMV is the major international smartcard based payment scheme named after its
founders Europay Mastercard and Visa.

2 Since the USA reclassification of crypto hardware in 2000 as no longer a munition the
market is consolidating, but this takes time.

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 361

The whole process is also very expensive in terms of latency; nowadays HSMs
are network attached remote computers and thus are often orders of magnitude
slower than using local crypto in the CPU of the calling machine. In addition
HSMs are also rate-limited and price differentiated by supported number of
transactions per second. Thus minimizing calls to an HSM is a major application
requirement.

Note that considering the lowest common denominator across HSMs, CBC
Mode may only be available with the all-zero IV, thus the HSM does not even
provide an IND-CPA encryption scheme. This can be fixed by using the HSMs
ability to generate random numbers, or using some other random number source,
to produce a random IV and then xor-ing the first block of the plaintext with
the IV before calling the HSM, but with a naive implementation this introduces
an extra call to acquire randomness - yet again incurring a performance penalty.

Fundamentally HSM APIs were designed before the need for authenticated
encryption was properly understood. Yet the cryptographic community has de-
veloped new modes for authenticated encryption which focus on squeezing all
data fields including randomisation into a single blockcipher block; as well as
obtaining authentication with only a single pass of the data. In particular, the
specific new modes of operation for authenticated encryption (such as Galois
Counter Mode) are not supported by such HSMs; and are unlikely to be so
universally in the near future.

As the financial industry and local and national government come under
greater pressure to protect data such as Personally Identifying Information (PII),
there is a problem using existing HSM approaches, since this new data is much
larger than the size of a single blockcipher block (unlike bank card PINs or
cryptographic keys). The generic construction such as Encrypt-Then-MAC, uti-
lizing two keys within the HSM (one for the encryption algorithm and one for
the MAC), are not suitable for the reasons already described, so an efficient
mode is required which operates on larger data, but within the constraints of
lowest-common-denominator HSM support.

It is to solve this real world cryptographic issue that we turn our attention. The
summary requirement is therefore to design a mode of operation which provides
a service of authenticated encryption which has the following properties:

– All secret keys used by the mode should reside on the HSM.
– Only one call to the HSM is allowed, i.e. only one application of key material

is allowed.
– The only modes of operation available are ECB or CBC-Encrypt with zero

IV.

The mode of operation described in this paper has been deployed in several
scenarios;

– By major European banks to protect sensitive customer data in transit and
storage that does not fall under the existing frameworks for banking PINs
or crypto keys.

– By vendors of customised HSM firmware that need a way of offloading cryp-
tographic keys under a master key, held together with access control and

362 M. Bond et al.

usage information. Code which runs internally within an HSM is often sub-
ject to the same limitations of crypto primitive availability as that which
make external calls.

Yet this paper represents the first time it has been described publicly and has
been provided with a full security analysis:

The main idea is to “authenticate” the message using a “MAC-like” function
and then encrypt the result; i.e. to apply a MAC-Then-Encrypt methodology.
The encryption is performed using CBC Mode with a zero IV, but a random
first block (to achieve probabilistic encryption). This is equivalent to CBC Mode
with a random IV given by the first block of ciphertext. However, our MAC-like
function must be key-less (to avoid another call to the HSM). So we use a hash
function on the message sent to the CBC Mode encryption, this is like applying
the hash function as a “MAC” with key given by the initial random plaintext
block we added before encryption. However, such a MAC on its own is not secure
as it suffers from length extension attacks. Amazingly, despite the use of MAC-
Then-Encrypt with an insecure keyless MAC and an insecure encryption scheme
(zero-IV CBC mode is not even IND-CPA) the whole construction can be proved
secure, assuming the hash function is modelled as a random oracle.

2 Preliminaries

Notation We let x‖y denote the concatenation of two strings x and y. |x| denotes
the length of the string x. We use x

r← X to denote the random selection of an

element x from the set X . We denote the addition of x to the set X by X ∪← x.

Pseudorandom Functions and Permutations We define pseudorandom functions
and permutations as follows. We also provide a definition for strong PRPs.

Definition 1. [Pseudorandom Function/Permutation (PRF/PRP)]
Let F = {FK : K ∈ {0, 1}k} where FK : {0, 1}l → {0, 1}l′ for each K ∈ {0, 1}k.
Let P = {PK : K ∈ {0, 1}k} where for each K ∈ {0, 1}k, PK : {0, 1}l → {0, 1}l
is a permutation. Let Rand be the set of all functions mapping l-bit strings to
l′-bit strings. Let Perm be the set of all permutations mapping l-bit strings to
l-bit strings. The prf and prp advantage of an adversary A are defined as:

Advprf
F (A) = Pr[K

r← {0, 1}k : AFK ⇒ 1]− Pr[f
r← Rand : Af ⇒ 1]

Advprp
P (A) = Pr[K

r← {0, 1}k : APK ⇒ 1]− Pr[π
r← Perm : Aπ ⇒ 1]

A function family F (permutation family P resp.) is said a prf (prp resp.) if

Advprf
F (A) (Advprp

F (A) resp.) is “small” for all adversaries A running in time
t making at most qf queries.

Definition 2. [Strong Pseudorandom Permutation (SPRP)] Let P =
{PK : K ∈ {0, 1}k} where for each K ∈ {0, 1}k, PK : {0, 1}l → {0, 1}l is a
permutation with corresponding inverse permutation P−1

K : {0, 1}l → {0, 1}l. Let

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 363

Perm be the set of all permutations mapping l-bit strings to l-bit strings. The
sprp advantage of an adversary A is defined as:

Advsprp
P (A) = Pr[K

r← {0, 1}k : APK ,P−1
K ⇒ 1]− Pr[π

r← Perm : Aπ,π−1

⇒ 1]

A permutation family P is said to be an sprp if Advsprp
F (A) is “small” for all

adversaries A running in time t making at most qf queries to both oracles.

In our analysis we will use PRP/PRFs and SPRPs to represent the block cipher
used in our scheme. We will also make use the following lemma to relate PRF
to PRP.

Lemma 1. [PRF→ PRP, [2, Proposition 8]] For any permutation family
P = {PK : K ∈ {0, 1}k} over l-bit strings.

Advprf
P (A) ≤ Advprp

P (B) +
q2f
2l+1

Hash function. Let hash : {0, 1}∗ → {0, 1}l be a hash function with outputs
truncated to l-bits (where l is the blocksize of the block cipher used in the
scheme). When we denote the hash function with input as hash(X,Y, Z) we
simply compute the hash on the concatenation of the input i.e. hash(X‖Y ‖Z).

CBC mode. An HSM allows us an API call to CBC mode with a zero IV.
We therefore define CBC mode accordingly. Let E-CBC0[F](K,M) denote the
CBC encryption of message M (with all zero IV) using the function family F
under key K, i.e. E-CBC0[F] : {0, 1}k × {0, 1}ln → {0, 1}ln, (n ∈ N), where for
M = M [1]M [2]...M [n] we have that C[i] = FK(M [i]⊕C[i−1]) and C[0] = 0l. Let
D-CBC0[F](K,C) denote the CBC decryption of ciphertext C using the function
family F under key K, i.e. D-CBC0[F] : {0, 1}k × {0, 1}ln → {0, 1}ln, (n ∈ N),
where for C = C[1]C[2]...C[n] and C[0] = 0l we haveM [i] = F−1

K (C[i])⊕C[i−1].
It is very important to note that CBC mode with a zero IV is not secure. To

achieve even IND-CPA security we need to use a random initialisation vector
(IV). CBC mode with random IVs was proven secure by Bellare et al. [2]. The
scheme that we present will prepend a random block to the plaintext before the
CBC call to achieve security. This random block will effectively replace the zero
IV of the API encrypt call to make a random IV. The choice of this random block
is internal to the scheme and so the adversary should/will not have control over
it (this fact is crucial to the schemes security). The random block will either be
generated by the HSM or will be prepended to (or xored with) the first plaintext
block prior to being called to the HSM.

Padding scheme. When working with arbitrary length messages we need to pad
the message before sending it to the blockcipher/CBC mode. Let pad : {0, 1}∗ →
{0, 1}ln be the padding function which pads the message to a multiple of the
blocksize. Let dpad : {0, 1}ln → {0, 1}<ln ∪ {⊥} be the associated depadding
function which depads the message, if the message is invalid it returns the symbol

364 M. Bond et al.

⊥. The padding scheme used with the Managed Encryption Format is PKCS#7
padding [11] (add p bytes each of value p). Note that in our analysis we assume
that uniform error reported is used so that no padding oracle attacks exist.
This is the case in the implementation of the scheme in all known deployed
instantiations.

2.1 Security Models

An authenticated encryption scheme is secure if it achieves both the IND-
CPA and INT-CTXT notions of security [16,3]. As padding should only pad
to the next block boundary and is not variable in length (i.e. we cannot have
multiple blocks of padding) we do not consider length-hiding to be a security
goal [14]. In implementations of the scheme we stress that uniform error re-
porting must be used. This will be vital for the scheme’s security otherwise a
padding oracle attack similar to that against SSL/TLS by Canvel et al. [7] may
be possible. As a result our analysis we only considers one error type, ⊥. Let
Π = (KeyGen,Encrypt,Decrypt) be an encryption scheme and A be an adversary.

IND-CPAA(Π)
K ← KeyGen
b

r← {0, 1}
b′ ← AEnc

return (b′ = b)

Enc(A,M0,M1)
C0 ← Encrypt(K,A,M0)
C1 ← Encrypt(K,A,M1)

C ∪← Cb

return Cb

INT-CTXTA(Π)
K ← KeyGen
win← false
(A∗, C∗)← AEnc,Test

return win

Enc(A,M)
C ← Encrypt(K,A,M)

C ∪← (A,C)
return C

Test(A∗, C∗)
M∗ ← Decrypt(K,A∗, C∗)
if M∗ �=⊥ and (A∗, C∗) �∈ C then

win← true
return (M∗ �=⊥)

Fig. 1. The IND-CPA and INT-CTXT experiments

The security experiment for IND-CPA is found in Figure 1. Note, that the
encryption scheme semantics are defined to encrypt messages M as well as (pos-
sibly public) associated data A. We define the advantage of an adversary A
against the IND-CPA security of Π as:

Advind−cpa
Π (A) = 2Pr[IND-CPAA(Π) ⇒ true]− 1,

We say that the scheme Π is IND-CPA secure if for all adversaries A the ad-
vantage Advind−cpa

Π (A) is “small”, where the adversary A makes qe queries to
the encryption oracle Enc(A,M0,M1), totaling at most μe bits in each of the
left M0 and right M1 inputs.

The security experiment for INT-CTXT, is found in Figure 1. We define the
advantage of an adversary A against the INT-CTXT security of Π as:

Advint−ctxt
Π (A) = Pr[INT-CTXTA(Π) ⇒ true]

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 365

We say that Π is INT-CTXT secure if for all adversaries A the advantage
Advint−ctxt

Π (A) is “small”, where A makes qe queries to the encryption ora-
cle Enc(A,M), totaling at most μe bits in the M input and qt queries to the
test oracle Test(A,C) totaling at most μt of ciphertext bits.

3 Description of the Scheme

The Managed Encryption Format combines CBC mode encryption and a hash
function in a MAC-then-Encrypt style configuration. We shall denote the Man-
age Encryption Format scheme by Π [F]. The scheme Π [F] consists of three
algorithms: key-generation KeyGen, encryption Encrypt and decryption Decrypt.
The function F signifies the underlying blockcipher (i.e. the permutation fam-
ily). We use the following notation: K is a key, N denotes a random IV, A
is the header (associated data which is always the same fixed length), M is a
(unpadded) message and C is a ciphertext.

To encrypt a message M with associated data A, a random N is first chosen.
Then a hash is calculated over N,A,M . Following this CBC encryption (using
the block cipher FK and zero IV) is performed on the (padded) message M ,
prepended with N and the hash value. Effectively, N ensures that we will have
a random IV despite our API crypto call being to CBC mode with a zero IV.

N

C[0] = FK(N)

FK FK FK

hash(N,A,M)

hash

M [1]

C[1] C[2]

A

FK

M [2]

C[3]

FK

M [n]

C[n+ 1]

KeyGen(k)

K
r← {0, 1}k

return K

Encrypt(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[F](K,N‖h‖pad(M))
return C

Decrypt(K,A,C)

N‖h‖M ′ ← D-CBC0[F](K,C)
M ← dpad(M ′)
if M �=⊥ then

h← hash(N,A,M)
if h �= h then M =⊥
return M

Fig. 2. Managed Encryption Format Π [F] = (KeyGen,Encrypt,Decrypt)

366 M. Bond et al.

Decryption is the obvious inverse operation of encryption. The diagram and
description in Figure 2 are given for aid of analysis.

4 Links with Prior Constructions

4.1 Analysis of the Underlying Message Authentication Code

If we look at the underlying MAC we see that it is of the Wegman-Carter style
[18] and is particularly similar to VMAC [9,10]. The VMAC algorithm uses a
keyed hash function hash and a prf F . Tags are constructed on a message M
together with a nonce N and keys K1 and K2 as follows:

τ = hashK1(M) + FK2(N)

Notice that when K1 = N this is almost exactly the MAC we have in the above
mode of operation, i.e.

τ = hashN (M)⊕ FK(N)

In VMAC we return the nonce N , message M and tag τ but in our MAC we
cannot return N since this would break the schemes security instead we must
return FK(N), message M and tag τ . Effectively this means we simply return
the message M and hashN (M). We now require unforgeability properties from
hashN (M) but since key N is simply a secret-prefix of the hash function input
this falls to extension attacks when used with an iterated hash function [15]. The
underlying MAC is therefore not secure on its own.

4.2 Encryption with Redundancy

Bellare and Rogaway [4] and An and Bellare [1] have previously study the prob-
lem of how to achieve a secure AE scheme by appending some redundancy to
the data before encryption. We shall review the results of An and Bellare [1]
here and discuss how to relate these to our work.

A redundancy function may simple take the form of a hash function, as in our
scheme. An and Bellare consider two types of redundancy function; one with
a secret key and the other where any keying material is public. Perhaps the
most important result that they show from our perspective, is that an IND-CPA
scheme when combined with either a secret or a public redundancy function is
not secure in general. Further to this, they describe an attack on the generic
construction which combines CBC mode with a public redundancy function.

Despite this, An and Bellare are able to provide a construction for an en-
cryption scheme which when combined with a secret key redundancy function
would achieve INT-CTXT [1, Theorem 6.5]. This construction is called Nested
CBC or NCBC. The encryption procedure followed for this scheme is to proceed
with CBC encryption as normal until the last block. When encrypting the last
block a different key shall be used for the block cipher. This means that NCBC

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 367

requires two keys and therefore, in the setting of HSMs, would require two key
unwrap operations. As a result this construction would not meet the single key
requirement of our setting.

The Managed Encryption Format can be viewed within the context of the
Encryption with Redundancy paradigm with one main difference. Due to the
encryption algorithm’s selection of a new N upon each encryption call, this ef-
fectively means we are choosing a new random “key” for each hash function
call. As a result we can view the Managed Encryption Format as an encryp-
tion scheme with secret redundancy, where the redundancy function is chosen
anew upon each encryption call. Looking at a general construction of any IND-
CPA secure encryption scheme and one time redundancy functions, we would
still not necessarily achieve INT-CTXT security. An IND-CPA secure encryp-
tion scheme can be constructed, as in the attack presented by An and Bel-
lare in the normal setting [1, Theorem 5.1], that when combined with one time
secret redundancy functions, would not achieve INT-CTXT security. Despite
this, in the next section we show that when we use a construction based on
CBC mode (as in the Managed Encryption Format) we will obtain a secure AE
scheme.

5 Security Analysis

In this section we shall prove that the Managed Encryption Format does achieve
both IND-CPA security and INT-CTXT security and is therefore a secure au-
thenticated encryption scheme. Note that to simplify our analysis we do not
formally discuss the padding which is added to messages. This will not affect
our security analysis since uniform-error reporting is used. We will therefore
assume that all messages are already padded and omit the padding procedure
from our proofs. In practice however the scheme could fall to a padding oracle
attack of the style in [7] if uniform-error reporting is not present. Our proof is
in the random oracle model (although this is only necessary for the proof of
INT-CTXT). We denote by qh the number of queries the adversary makes to
the random oracle (not including those made through encryption, decryption or
test queries).

Theorem 1. [IND-CPA] Let F = {FK : K ∈ {0, 1}k} be a permutation fam-
ily. Let Π [F] be the encryption scheme for the Managed Encryption Format
using the permutation family F . Let A be an adversary against the IND-CPA
security which runs in time t; making qe encryption queries totalling at most μe

bits. Then there exists an adversary B such that:

Advind−cpa
Π[F] (A) ≤ 2Advprp

F (B) +
q2f
2l

+
1

2l

((μe

l
+ 2qe

)2
−
(μe

l
+ 2qe

))
where B runs in time t+O(μe) asking at most qf = μe

l + 2qe queries.

368 M. Bond et al.

Encrypt0(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[F](K,N‖h‖M)
return C

Encrypt1(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[F](K,N‖h‖M)
return N‖C

Encrypt1rand(K,A,M)

N
r← {0, 1}l

h← hash(N,A,M)
C ← E-CBC0[R](K,N‖h‖M)
return N‖C

Fig. 3. Encryption Algorithm Hops in Proof of Lemma 1

Proof. This can be proven by extension to the existing proof of security for
CBC mode by Bellare et al. [2]. Since N is chosen uniformly at random by the
encryption algorithm this gives us the necessary randomness for the existing
CBC mode proof to still hold. Our proof follows a series of game hops. The
different encryption algorithms used in each hop are shown in Figure 3.

Let Game0 be the normal IND-CPA game where A has access to a left-or-right
oracle that uses algorithm Encrypt0(K,A,M) to encrypt Mb.

Let Game1 be the same as Game0 but replace the encryption algorithm
Encrypt0(K,A,M) used by the left-or-right oracle with Encrypt1(K,A,M). In
Encrypt1(K,A,M) the value of N is now returned with the ciphertext. Knowl-
edge of N allows the adversary to recalculate any hash values hash(N,A,M).
This means that in the left-or-right indistinguishability game the adversary now
has retrospective knowledge of his query, i.e. his left-or-right encryption is effec-
tively (0l‖hash(N,A,M0)‖M0, 0

l‖hash(N,A,M1)‖M1), which will be encrypted
by CBC mode with random IV N . Since N is chosen at random for each call, giv-
ing the adversary knowledge of a previously used N will not allow the adversary
to predict any future N ′. We therefore have that

Pr[Game1 ⇒ true] = Pr[Game0 ⇒ true].

Now we effectively have normal CBC encryption with a random IV given by N ,
plus an encryption query of the form 0l‖h‖M (note that in Figure 3 we have
already xored on the IV N to the first block, as the internal algorithm called is
CBC mode with zero-IV).

It therefore remains to analyse A’s success probability in Game1. This can be
proven by extension to the existing proof of security for CBC mode by Bellare et
al. [2]. Note that we cannot perform a direct reduction because prior knowledge of
N is necessary to calculate the hash. We begin the proof of security by switching
to consider F as a random function. Let Game1rand be exactly the same as Game1
but we now replace FK with a function drawn uniformly at random from the set

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 369

of all functions mapping l-bit strings to l′ = l-bit strings (i.e. f
r← Rand = R).

We can then construct a distinguisher B as in [2] such that:

Pr[Game1 ⇒ true]− Pr[Game1rand ⇒ true] ≤ 2Advprf
F (B)

We shall later use Lemma 1 to consider the prp advantage.
We now examine Pr[Game1rand ⇒ true]. Game1 proceeds as in the original

proof for CBC mode by Bellare et al. [2], the encryption algorithm randomly
chooses the IV N , and then proceeds with CBC encryption. Bellare et al.’s proof
shall therefore remain almost as is and we just give a brief summary here. Note
now that we simply treat the hash h like an additional plaintext block.

We denote the left and right encryption queries as follows:

Let M̃L = 0l‖hash(N,A,M0)‖M0 denote the left query and let M̃R =
0l‖hash(N,A,M1)‖M1 denote the right query. We also let Cj [k] denote the k-th

block of the j-th ciphertext, M̃L
j [k] denote the k-th block of the j-th left query

and M̃R
j [k] denote the k-th block of the j-th right query. For a fixed adversary

A we define the event Di,u, where i ∈ [qe] and u ∈ [ni + 2], to be when the
following two events occur:

Cj [k − 1]⊕ M̃L
j [k] �= Cj′ [k

′ − 1]⊕ M̃L
j′ [k

′]

Cj [k − 1]⊕ M̃R
j [k] �= Cj′ [k

′ − 1]⊕ M̃R
j′ [k

′]

for all (j, k), (j′, k′) ∈ {(j, k) : j ∈ [qe] and k ∈ [nj + 2]} satisfying (j′, k′) ≺
(j, k) 0 (i, u), where nj denotes the number of blocks in the j-th encryption
query, note the addition of 2 here due to the extra all-zero block and hash block.
Here ≺ denotes an ordering on the blocks queried to the encryption oracle. With
(j′, k′) ≺ (j, k) implying that the k′-th block of the j′-th ciphertext was queried
before the k-th block of the j-th ciphertext.

We now wish to study the probability of the event D = Dq,nq , i.e. that a
collision occurs at some point in the output ciphertexts. Bellare et al. prove that
Pr[D|b = 0] = Pr[D|b = 1], i.e. this probability is independent of whether we are
observing left queries or right queries, the analysis is therefore the same for both
b = 0 and b = 1. This probability is then denoted p = Pr[D|b = 0] = Pr[D|b = 1]
and was proved to be bounded as follows.

p =

qe∑
i=1

ni∑
j=1

Pr[Di,u|Di,u−1]

≤ 1

2l

((μe

l
+ 2qe

)2
−
(μe

l
+ 2qe

))
Note that we adjust slightly from the original bound since we must account
for the additional plaintext blocks caused by the hash and the initial all-zero
block.

370 M. Bond et al.

Combining the above and following similar arguments to the original CBC
proof by Bellare et al. (along with Lemma 1) we obtain the following:

Advind−cpa
Π[F] (A) = Pr[Game0 ⇒ true]

≤ Pr[Game1 ⇒ true]

≤ 2Advprf
F (B) + Pr[Game1rand ⇒ true]

≤ 2Advprf
F (B) + 1

2l

((μe

l
+ 2qe

)2
−
(μe

l
+ 2qe

))
≤ 2Advprp

F (B) +
q2f
2l

+
1

2l

((μe

l
+ 2qe

)2
−
(μe

l
+ 2qe

))
.

Theorem 2. [INT-CTXT] Let F = {FK : K ∈ {0, 1}k} be a permutation
family. Let Π [F] be the encryption scheme for the Managed Encryption Format
using the permutation family F . Let A be an adversary against the INT-CTXT
security which runs in time t; making qe encryption queries totalling at most μe

bits, qt test queries totalling at most μt bits and qh random oracle queries. Then
there exists an adversary B such that:

Advint−ctxt
Π[F] (A) ≤ Advsprp

F (B) + qt
2l

+
qhμe

l2l

where B makes qf = μe

l + 2qe +
μt

l queries and runs in time t+O(μe + μt).

Proof. We assume we have an adversary A against INT-CTXT and we use it to
construct an adversary B against SPRP. This is done as follows:

– When A makes an encryption query A,M , the algorithm B chooses N at
random and calls the random oracle on N,A,M . Following this B makes
calls to its π oracle for the appropriate CBC encryption (making a total of
μe/l+2qe queries (where 2qe accounts for the queries π(N) and π(h⊕π(N))).
Finally B returns the ciphertext to A.

– When A makes a test query, the algorithm B calls its π−1 oracle for the
appropriate CBC decryption (μt/l queries). Then B verifies whether M is
new or not. Next B calls the random oracle to verify the hash. The result of
the whole verification is returned to A.

– The random oracle maintains a list H of all queries.
– If A outputs a successfully forgery then B guesses it has access to the real

permutation.
– If A is unsuccessful then B guesses it has access to the random permutation.

The following inequality then holds (where Perm is the set of all l-bit permuta-
tions):

Advsprp
F (B) ≥ Pr[Bπ,π−1

⇒ 1|π r← F]− Pr[Bπ,π−1

⇒ 1|π r← Perm].

= Pr[INT-CTXTA(Π [F]) ⇒ true]

− Pr[INT-CTXTA(Π [Perm]) ⇒ true]

= Advint−ctxt
Π[F] (A)− Pr[INT-CTXTA(Π [Perm]) ⇒ true].

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 371

If Decrypt(K,A∗, C∗) = M∗ then the probability that this message is a valid
forgery is bounded by the probability that the hash verifies on M∗. The de-
crypted hash value to be verified will be given by h∗ = π−1(C∗[1]) ⊕ C∗[0] =
π−1(C∗[1])⊕ π(N∗). We therefore obtain the following bound:

Pr[INT-CTXTA(Π [Perm]) ⇒ true] ≤ Pr[hash(N∗, A∗,M∗) = h∗|π r← Perm]

We shall now consider this probability in two parts. First we study the case where
N∗, A∗,M∗ was never a random oracle query, i.e. (N∗, A∗,M∗, h∗) /∈ H. The
actual hash value will now be chosen at random when the random oracle is called
upon decryption. The probability that this hash collides with the decrypted value
h∗ = π−1(C∗[1])⊕ C∗[0] is 1

2l
(for a single test query). We therefore obtain the

following bound:

Pr[(hash(N∗, A∗,M∗) = h∗) ∧ ((N∗, A∗,M∗, h∗) /∈ H)|π r← Perm] ≤ qt
2l

Next consider the case when N∗, A∗,M∗ has been previously called to the ran-
dom oracle. We shall prove the following bound:

Pr[(hash(N∗, A∗,M∗) = h∗) ∧ ((N∗, A∗,M∗, h∗) ∈ H)|π r← Perm] ≤ qhμe

l2l
.

Since (N∗, A∗,M∗, h∗) ∈ H, the query was already a call to hash but it cannot
have been made by a previous encryption query. This is because a hash called
previously by Encrypt on (N∗, A∗,M∗) would imply that C∗ was already output
by Encrypt, breaking the restrictions of the INT-CTXT game. The query must
have therefore been made by a separate call to hash.

Consider the query N∗, A∗,M∗ which A makes to hash (receiving h∗). A can
choose N∗ such that it has seen its encryption π(N∗) in a previous encryption
query, i.e. N∗ = Ci[j] ⊕ Mi[j] for some i ∈ [qe] and j ∈ [ni], where qe is the
total number of encryption queries and ni is the number of blocks in query i.
(Note here that it may look odd that Ci[j] and Mi[j] both have the same block
index j but we stress this is still a normal CBC encryption step. The apparent
difference is due to the hash h shifting the block indices of Mi; to see this more
easily we refer the reader to Figure 2.)

To forge a valid ciphertext A must first ensure that the first ciphertext block
is correct, i.e. C∗[1] = π(h∗ ⊕ π(N∗)). Since π is a random permutation A will
choose C∗[1] correctly only if it has seen π(h∗ ⊕ π(N∗)) before, i.e. there exists
a call to π where Ci[j]⊕Mi[j] = h∗ ⊕ π(N∗) for some i ∈ [qe] and j ∈ [ni].

If A makes qe encryption queries totaling μe bits, then the probability that
h∗ is generated by the random oracle such that Ci[j]⊕Mi[j] is queried to π for

some i ∈ [qe] and j ∈ [ni], is
μe/l
2l . The above probability bound then follows.

Combining all of the above we obtain our result.

Advint−ctxt
Π[F] (A) ≤ Advsprp

F (B) + Pr[INT-CTXTA(Π [Perm) ⇒ true]

≤ Advsprp
F (B) + Pr[hash(N∗, A∗,M∗) = h∗|π r← Perm]

≤ Advsprp
F (B) + qt

2l
+

qhμe

l · 2l .

372 M. Bond et al.

KeyGenc(k)

K
r← {0, 1}k

ctr
r← {0, 1}l

return K

Encryptc(K,A,M)
h← hash(ctr, A,M)
C ← E-CBC0[F](K, ctr‖h‖pad(M))
ctr ← ctr + 1
return C

Decryptc(K,A,C)

ctr‖h‖M ′ ← D-CBC0[F](K,C)
M ← dpad(M ′)
if M �=⊥ then

h← hash(ctr,A,M)
if h �= h then M =⊥
return M

Fig. 4. Man Enc Format with Counter, Πc[F] = (KeyGenc,Encryptc,Decryptc)

6 Further Discussions

6.1 Using a Counter

We also introduce a stateful version of the Managed Encryption Format as de-
fined in Figure 4. Here we now replace the value N with a counter ctr. It is
possible to prove CBC mode is IND-CPA secure with a ctr in this way [2], when
a maximum of 2l encryptions are permitted. Security is ensured by the fact that
a collision ctr∗ = Ci[j − 2]⊕Mi[j] which reveals the value of FK(ctr∗) for some
future ctr∗, occurs with small probability. Furthermore, if ctr is initialised as
a random string then an adversary must first determine the current version of
ctr in order to mount an attack based on the above collision. We omit further
details of the proof but it can be seen that we will be able to extend this to prove
that the stateful version of the Managed Encryption Format would be a secure
AE scheme. The application of such a scheme to the setting of HSMs would of
course depend on an HSM’s ability to maintain state.

6.2 Parameter Choices

We note that the security bounds in our Theorems come with error terms of the
order of

q2f
2l

and
qf · qh
2l

.

We recall that l is the block length of the underlying block cipher, qf is the
number of queries to the underlying PRP and qh is the number of hash function
queries. These bounds mean that if we wish to guarantee security against the
probability of an adversary breaking the scheme not exceeding 2−40 (say), and
we assume breaking the underlying PRP F is hard, then the number of queries
made to the hash function and managed encryption scheme needs to be bounded.

If using DES as the underlying block cipher, where l = 64, this means that
we need to ensure that qf , 212 = 4096. Thus use with DES can be deemed to
be insecure, unless underlying block cipher keys are updated relatively quickly.
When used with a block cipher such as AES, where l = 128, the number of
queries to the underlying block cipher needs to be bounded by 244 if one wishes
to make the probability of breaking the scheme be bounded by 2−40; whilst the

The Low-Call Diet: Authenticated Encryption for Call Counting HSM Users 373

product of the number of block cipher calls multiplied by the number of hash
function calls needs to be bounded by 288 to obtain a similar probability bound.
Thus the scheme can be considered secure in practice when instantiated with
AES, but needs to be used with care when instantiated with DES.

7 Conclusion

We have presented a new provably secure mode of operation for authenticated
encryption. This mode has been designed for use in environments where keys
are protect by an HSM but the API offers limited cryptographic functions. The
scheme is built around an HSM which provides an API call to CBC mode with
zero IV. To minimise expensive HSM calls the scheme uses only one key and
hence makes a single call to the HSM.

Acknowledgements. The first author thanks his colleagues at Cryptomathic
and the Computer Laboratory in Cambridge for useful conversations during
the design process. The second author thanks his employers Barclays PLC for
their support The third and fourth author were supported by Prof Smart’s ERC
Advanced Grant ERC-2010-AdG-267188-CRIPTO. The third author was also
partially supported by a Royal Society Wolfson Merit Award.

The work in this paper arose from a discussion held during eCrypt-2 sponsored
workshop “Is Cryptographic Theory Practically Relevant?” held at the Newton
Institute in January 2012. The authors thank eCrypt-2 and the Newton Institute
for hosting this workshop. The authors also thank Kenny Paterson and Jean Paul
Degabriele for helpful discussions.

References

1. An, J.H., Bellare, M.: Does Encryption with Redundancy Provide Authenticity? In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 512–528. Springer,
Heidelberg (2001)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)

3. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto [13], pp. 531–545

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto [13], pp. 317–
330

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.K.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

6. Bond, M.: Attacks on Cryptoprocessor Transaction Sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

7. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password Interception in
a SSL/TLS Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

374 M. Bond et al.

8. Focardi, R., Luccio, F.L., Steel, G.: An Introduction to Security API Analysis. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 35–65. Springer,
Heidelberg (2011)

9. Krovetz, T.: Message Authentication on 64-Bit Architectures. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 327–341. Springer, Heidelberg
(2007)

10. Krovetz, T., Dai, W.: Vmac: Message authentication code using universal hashing.
CFRG Working Group INTERNET-DRAFT (April 2007),
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt

11. RSA Laboratories. PKCS #7: Cryptographic message syntax standard, Version
1.5 (November 1993)

12. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

13. Okamoto, T. (ed.): ASIACRYPT 2000. LNCS, vol. 1976. Springer, Heidelberg
(2000)

14. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag Size Does Matter: Attacks and
Proofs for the TLS Record Protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)

15. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

16. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM Conference on Computer and Communications Security, pp. 98–107. ACM
(2002)

17. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

18. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

19. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC
3610 (Informational) (September 2003)

http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt

A Fully Homomorphic Cryptosystem

with Approximate Perfect Secrecy

Michal Hojśık� and Veronika Půlpánová

Department of Algebra, Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Abstract. We propose a new fully homomorphic cryptosystem called
Symmetric Polly Cracker (SymPC) and we prove its security in the in-
formation theoretical settings. Namely, we prove that SymPC approaches
perfect secrecy in bounded CPA model as its security parameter grows
(which we call approximate perfect secrecy).

In our construction, we use a Gröbner basis to generate a polyno-
mial factor ring of ciphertexts and use the underlying field as the plain-
text space. The Gröbner basis equips the ciphertext factor ring with
a multiplicative structure that is easily algorithmized, thus providing an
environment for a fully homomorphic cryptosystem.

Keywords: Polly Cracker, Fully homomorphic encryption, Gröbner bases.

1 Introduction

In 1994 Fellows and Koblitz presented a general outline for a construction of
a public-key cryptosystems based on NP-hard problems in [1]. As an exam-
ple, they described a cryptosystem based on the ideal membership problem and
named it Polly Cracker. A whole family of cryptosystems based on this con-
struction has been developed over the following years ([2],[3]). Polly Cracker has
also played a critical role in the development of homomorphic encryption theory,
mostly serving as a base stone on which more sophisticated systems were built.
For instance, Craig Gentry’s seminal work on fully homomorphic encryption
system [4] was inspired by Polly Cracker. Ever since Gentry’s paper has been
published, there has been an extensive research in the area, e.g. [5], [6]. Majority
of the schemes that followed the outbreak of fully homomorphic encryption have
its security based on problems over lattices, such as Learning with Errors (LWE)
[7] and most of the research focuses on the public key encryption.

In 2011, Albrecht et al. published a paper “Polly Cracker Revisited” [8]. It for-
mally treats the security of certain classes of Polly Cracker-based cryptosystems
and suggests particular transitions between public-key and symmetric versions
of Polly Cracker-based systems. In the same paper, Albrecht et al. introduce the
Polly Cracker with Noise (CPN) cryptosystem. Only recently, Herold has shown

� The author was supported by grant VF20102015006.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 375–388, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

376 M. Hojśık and V. Půlpánová

in [9] that the CPN with zero-degree noise from [8] is either insecure or does not
offer any security benefit compared to Regev’s LWE-based scheme [7].

Our Contribution. In our work, we take a different approach. We propose
a new fully homomorphic cryptosystem called Symmetric Polly Cracker (SymPC)
and we prove its security in information theoretical settings - we prove that
SymPC approaches perfect secrecy in bounded CPA model as its security pa-
rameter grows. More precisely, we define approximate perfect secrecy as the se-
curity of a cryptosystem CS(t) = (P , C,K, E ,D) with security parameter t for
which the probability Pr[P = p | C = c] approaches Pr[P = p] for all p ∈ P , all
probability distributions on P and almost all c as t grows to infinity. Then we
prove that SymPC has approximate perfect secrecy in bounded CPA model.

In our construction, unlike in the previous classical Polly Cracker construc-
tions, we use a Gröbner basis G to generate a zero-dimensional ideal 〈G〉 of a
polynomial ring IF[x1, . . . , xn] over a finite field IF. Then we use the factor ring
IF[x1, . . . , xn]/〈G〉 as the ciphertext space and the field IF as the plaintext space.
The Gröbner basis G equips the ciphertext factor ring with a multiplicative
structure that is easily algorithmized, thus providing an environment for a fully
homomorphic cryptosystem. The fully homomorphic property of our cryptosys-
tem is achieved by a simple decryption operation - evaluation homomorphism.

This paper is organized as follows. In Sect. 2 we introduce our notation and
state some known facts. In Sect. 3 we describe one instantiation of Polly Cracker
cryptosystem. Then we describe our cryptosystem SymPC in Sect. 4 where we
also prove that it is fully homomorphic. This is followed by the complexity
analysis in Sect. 5. Finally, in Sect. 6, we define the approximate perfect secrecy,
give the security proof of SymPC in bounded CPA model and briefly analyze
SymPC in other attack scenarios.

2 Preliminaries and Notation

Let q be a prime power. By IF we will denote the finite field GF(q). In this paper,
we will work with the multivariate polynomial ring R = IF[x1, . . . , xn], n ∈ IN
and operations +,− and · on polynomials will always denote operations in R.
Later on, we will define a factor ring C = R/I for an ideal I. We will denote
the operations in this factor ring as +C ,−C and ·C . Furthermore, we endow R
with an admissible monomial ordering <. For f ∈ R, deg(f) will denote the
total degree of f , i.e. degree of the leading term of f with respect to <. The
maximum degree of variable xi in any term of f will be denoted degxi

(f).
Let G be a basis of an ideal I in R, i.e. 〈G〉 = I. Recall that G is a Gröbner

basis, iff for all f ∈ R, the remainder on division of f by G is unique. For
f, g ∈ R define the s-polynomial as spol(f, g) = lcm(lt(f), lt(g)) · f/lm(f) −
lcm(lt(f), lt(g)) · g/lm(g), where lt(f) denotes the leading term of f and lm(f)
the leading monomial of f with respect to <. The following theorem is employed
in Buchberger’s algorithm and we will use it to prove that a given set is a Gröbner
basis. The proof can be found in [10].

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 377

Theorem 1. G ⊂ R is a Gröbner basis of an ideal I = 〈G〉, iff the remainder
on division of spol(f, g) by G equals zero for all f, g ∈ G, f �= g.

A Gröbner basis G is called reduced, iff for all g ∈ G it holds g mod G \ {g} = g
and it is called normed, iff all g ∈ G are monic. A well known theorem states,
that for every ideal I in R, there exists a unique normed reduced Gröbner basis
G of I.

In descriptions of algorithms, we will use x
R←− X to denote that x is chosen

uniformly at random from a finite set X .
In this paper, we propose a fully homomorphic probabilistic cryptosystem.

By fully homomorphic we mean the usual concept where both the plaintext
and the ciphertext sets are equipped with addition and multiplication, they
both form rings and the decryption operation is a ring homomorphism (i.e.
dk(f(c1, . . . , cl)) = f(dk(c1), . . . , dk(cl)) for any polynomial f):

Definition 2. Let (P , C,K, {ek}, {dk}) be a probabilistic cryptosystem, where
P(+,−, ·, 0, 1) is the plaintext ring and C(+,−, ·, 0, 1) is the ciphertext ring. We
call the cryptosystem fully homomorphic, iff for all k ∈ K, the decryption oper-
ation dk : C → P is a ring homomorphism.

3 Polly Cracker

In this section, we will describe one instantiation of Polly Cracker. This scheme
has inspired our cryptosystem, which we present in the next section. We denote
S = 〈xq

1 − x1, . . . , x
q
n − xn〉.

Algorithms 1, 2 and 3 describe the Polly Cracker cryptosystem. The set of
messages is P = IF, the set of ciphertexts is C = R/S and the keys K ∈ K
are pairs (s, PK), where the secret key s is a vector in IFn and the public key
PK = {f1, . . . , fk} is a set of polynomials in R/S of degree at most ν, such that
in s they all evaluate to zero, as described in the SETUP by Algorithm 1.

Algorithm 1. Polly Cracker: SETUP

Input: n, k, q, ν ∈ IN, q prime power, ν < q − 1
Output: (s, PK) , s ∈ IFn, PK ⊂ R

1 set IF := IFq

2 set R := IF[x1, . . . , xn]

3 set the secret key s = (s1, ..., sn)
R←− IFn

4 for j = 1 to k do

5 fj
R←− R s.t. ∀i degxi

(fj) ≤ ν and fj(s) = 0

6 set the public key PK := {f1, ..., fk}
7 set C := R/S
8 return (s, PK)

378 M. Hojśık and V. Půlpánová

Algorithm 2 describes encryption. A random subset of the polynomials from
PK is added to a message m ∈ IF to get a ciphertext polynomial c ∈ R/S.

Algorithm 2. Polly Cracker: ENCRYPT

Input: message m ∈ IF, public key PK = {f1 . . . , fk} ⊂ R
Output: ciphertext c ∈ R

1 select I ⊆ {1, .., k} uniformly at random
2 set the ciphertext c := m+

∑
j∈I fj ∈ R

3 return c

The decryption is given by Alg. 3. It evaluates the ciphertext polynomial c
in the secret key s. It is easy to see, that if c = ePK(m), then c(s) = m, as
f(s) = 0 for all f ∈ PK.

Algorithm 3. Polly Cracker: DECRYPT

Input: ciphertext c ∈ R, secret key s ∈ IFn

Output: message m ∈ IF
1 set m := c (s)
2 return m

Using the Fundamental theorem on homomorphism and the fact that eva-
luation of polynomials is a ring homomorphism, one can show that decryption
operation is a ring homomorphism on R/S. Hence Polly Cracker is a fully ho-
momorphic cryptosystem. A disadvantage is, that the size of a ciphertext grows
rapidly with the number of multiplications, which is not practical. However, we
work with the ring R/S, which is finite, so after about q

ν multiplications the
resulting ciphertexts stop growing.

Nevertheless, the size of a random polynomial in R/S is O (qn) bits. (The size
of a random polynomial in R/S is log2(|R/S|) = log2

(
qq

n)
.) Hence one needs to

keep the number of variables very low in order to get a reasonable ciphertext size.
Unfortunately, the Polly Cracker cryptosystem can be attacked by calculating

the Gröbner basis of the ideal generated by PK. If an adversary has a set
{g1, . . . , gl}, the Gröbner basis of 〈PK〉, then for any c ∈ C he can calculate
c mod {g1, . . . , gl} and as a result he will get ds(c) = c(s), i.e. the plaintext.

4 Symmetric Polly Cracker (SymPC)

In this section, we propose a new fully homomorphic probabilistic symmetric
cryptosystem called Symmetric Polly Cracker - SymPC.

The cryptosystem SymPC is described by Algorithms 4, 5, 6, 7 and 8. Algo-
rithm 4 describes SETUP, which takes security parameters n, q, ν and returns a

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 379

pair (s, G), where s ∈ IFn is the secret key and G = {g1, . . . , gn} ⊂ R is the
multiplication key. This is a special kind of key, that is only used in the mul-
tiplication of ciphertexts. It provides information about the ring of ciphertexts
R/〈G〉 and we will assume that it is public. Furthermore SETUP defines the set
(field) of plaintexts as IF and the set (ring) of ciphertexts C as the factor ring
R/〈G〉. The choice of polynomials gi in Step 8 has some important consequences.
First, as we shall see in Sect. 6, this choice maximizes the size of V (G), the al-
gebraic set of G. This leads to optimal security for a given security parameter.
Second, G is the reduced normed Gröbner basis of 〈G〉 (the proof can be found
in Appendix A):

Theorem 3. Let R and G be defined by Alg. 4. Then G is the reduced normed
Gröbner basis of the ideal 〈G〉.

Algorithm 4. SETUP

Input: n, ν, q ∈ IN, ν < q − 1, q a prime power
Output: s ∈ IFn, G ⊂ R

1 set IF := IFq

2 set R := IF[x1, . . . , xn]

3 set the secret key s := (s1, ..., sn)
R←− IFn

4 for i = 1 to n do
5 for l = 1 to ν do

6 t
(i)
l

R←− IF \
{
t
(i)
1 , . . . , t

(i)
l−1

}
7 for i = 1 to n do

8 set gi := (xi − si) ·
∏ν

l=1

(
xi − t

(i)
l

)
9 set the multiplication key G := {g1, . . . , gn}

10 set C := R/〈G〉
11 return (s, G)

Finally, the special choice of polynomials gi allows us to use the set {f ∈
R | degxi

(f) ≤ ν, i = 1, . . . , n} as the support set of C.
Algorithm 5 describes the encryption procedure. In Step 1, we choose a poly-

nomial f ∈ R uniformly at random, s.t. degxi
(f) ≤ ν for all i, hence f ∈ C and

also c ∈ C. Note, that according the our notation the operations used in Step 2
are the operations in R and not in C. We will comment on this later on.

Decryption is described by Alg. 6. Let s be a secret key and m ∈ IF a message.
Then, by Step 2 of Alg. 5, es(m) = c = f − f(s) +m for some random f and
ds(es(m)) = ds(c) = c(s) = f(s)− f(s) +m = m.

Algorithm 7 describes the addition operation +C in C. From the definition of
polynomials gi in Alg. 4 it follows, that the addition in the factor ring C = R/〈G〉
is the same as the addition in the polynomial ring R used in Step 1 of Alg. 7.
This also clarifies the operations used in Step 2 of Alg. 5.

380 M. Hojśık and V. Půlpánová

Algorithm 5. ENCRYPT

Input: message m ∈ IF, secret key s ∈ IFn

Output: ciphertext c ∈ C
1 f

R←− {h ∈ R | degxi
(h) ≤ ν, ∀i = 1, . . . , n}

2 set c := f − f(s) +m ∈ C
3 return c

Algorithm 6. DECRYPT

Input: ciphertext c ∈ C, secret key s ∈ IFn

Output: message m ∈ IF
1 set m := c(s)
2 return m

Finally, Alg. 8 describes multiplication in C. It follows from Theorem 3, that
for c1, c2 ∈ C, c1 · c2 mod G is uniquely determined.

Algorithm 7. ADD, +C
Input: ciphertexts c1, c2 ∈ C
Output: ciphertext c ∈ C

1 set c := c1 + c2
2 return c

From the random choice of f in Step 1 of Alg. 5 it follows, that SymPC is
a probabilistic cryptosystem. Now we prove that it is fully homomorphic.

Theorem 4. The cryptosystem SymPC is fully homomorphic.

Proof. Let s be a secret key. Let ϕ : R → IF be the evaluation homomorphism
defined as ϕ(f) = f(s). By definition, Ker(ϕ) = {f | f(s) = 0}. Since gi(s) = 0
for all i = 1, . . . , n, we get that 〈G〉 ⊆ Ker(ϕ). By the Fundamental theorem on
homomorphisms, ds : C → IF, ds(c) = c(s) is a ring homomorphism. �

From now on, we will use SymPC(n, ν, q) to denote the cryptosystem SymPC
with security parameters n, ν, q.

Algorithm 8. MULTIPLY, ·C
Input: ciphertexts c1, c2 ∈ C, multiplication key G
Output: ciphertext c ∈ C

1 set c := c1 · c2 mod G
2 return c

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 381

5 Complexity

We evaluate the complexity of each function of SymPC(n, ν, q). We denote α the
number of terms in C, α = (ν + 1)n.

SETUP The most complex operation is generation of the polynomials gi. For
each gi we need to perform ν multiplications of a polynomial of degree one
with a polynomial of degree at most ν in IF[xi]. The complexity is O(n · ν2)
operations in IF.

ENCRYPT The most complex operation is the evaluation of f in s ∈ IFn. The
algorithm performs log2 q · α assignments of random bits to coefficients of
f and α evaluations of monomials in C. Each of these evaluations consists
of at most deg(f) ≤ ν · n multiplications in IF. Then it adds evaluations in
the monomials. The overall complexity is O

(
n · (ν + 1)n+1

)
operations in

IF. We calculated the complexity of a naive evaluation algorithm. We can
see, that the complexity of this algorithm could be optimized by the use of
sparse polynomials. We will comment on that later.

DECRYPT The complexity is the same as the complexity of ENCRYPT, that is
O
(
n · (ν + 1)n+1

)
operations in IF.

ADD The function performs α additions in IF, so the complexity is O ((ν + 1)n)
operations in IF.

MULTIPLY The function consists of two parts: multiplication and reduction. The
first part is more complex and involves α2 multiplications in IF. The overall
complexity is O

(
(ν + 1)2n

)
operations in IF.

6 Security

We start the section with a few simple observations.

Proposition 5. The cryptosystem SymPC(n, ν, q) is not CCA secure.

Proof. If an attacker can use the SymPC decryption oracle, he can ask for the
decryption of the ciphertexts c1 = x1, c2 = x2, . . . , cn = xn and he will obtain
the points of the secret key s1, s2, . . . , sn. �

Proposition 6. For the SymPC(n, ν, q) cryptosystem, the CPA security is
equivalent to the KPA security.

Proof. CPA-security implies KPA-security in general. To prove the other impli-
cation we need to realize, that if an attacker has a known plaintext-ciphertext
pair (m, c), he can get a valid plaintext-ciphertext pair (m′, c′) for any m′ by
setting c′ = c −m +m′, as ds(c

′) = c′(s) = c(s) −m +m′ = m′. Hence, from
any known plaintext-ciphertext pair, he can devise a chosen plaintext-ciphertext
pair, so SymPC needs to be CPA-secure to achieve the KPA-security. �

382 M. Hojśık and V. Půlpánová

6.1 Approximate Perfect Secrecy in Bounded CPA Model

In this section, we will prove that SymPC has approximate perfect secrecy (Defi-
nition 7) in the so-called k-bounded chosen plaintext attack (k-bounded CPA)
model. In k-bounded CPA, an attacker can obtain at most k plaintext-ciphertext
pairs for some given k ∈ IN. This can be ensured by allowing at most k plaintexts
to be encrypted with a single key. As we will see, this limitation corresponds to
the limitation that the size of the keyspace has to be larger or equal to the size
of the plaintext space in order to reach perfect secrecy.

Similarly to perfect secrecy, we also assume that the attacker has unbounded
computational power.

Definition 7. Let CS(t) = (P , C,K, {ek}k, {dk}k) be a cryptosystem with a se-
curity parameter t and P,C random variables on P , C. Let F = {f : C → IR}
be the set of all functions from C to IR and let δ : F × F → IR be a metric
(distance) on F . For m ∈ P, Pr[P = m|C = c], Pr[P = m] ∈ F (the later
one is a constant function in c). We say, that CS(t) has approximate perfect
secrecy, iff for all probability distributions on P and all m ∈ P

lim
t→∞

δ(Pr[P = m | C = c],Pr[P = m]) = 0 . (1)

In other words, CS(t) has approximate perfect secrecy, iff for all m ∈ P the
probability Pr[P = m | C = c] approaches Pr[P = m] for almost all c ∈ C as t
grows.

We will prove the approximate perfect secrecy of our cryptosystem with re-
spect to the following simple metric.

Definition 8. Let f, g ∈ F = {f : C → IR}. Define a metric δ : F × F → IR as

δ(f, g) =
1

|C| ·
∑
c∈C

(f(c)− g(c))
2

.

Theorem 9. Let 1 < ν < q − 1, a = q/(ν + 1) and l > loga(q)/(loga(q) − 1).
Then the cryptosystem SymPC(n, ν, q) achieves approximate perfect secrecy in
k-bounded CPA model for k = n/l− 1.

First, let us comment on the choice of parameters. ν is the restriction on degrees
of polynomials in C so naturally ν < q − 1 otherwise there is no need for ν. We
assume that a is fixed. The number of plaintext-ciphertext pairs is limited by
k = n/l− 1. Clearly, l goes to one as q grows. Hence k goes to n− 1 as q grows.

Note 10. Assume that we allow (at most) k plaintexts to be encrypted with a
single key. Then we can define our plaintext space as P ′ = IFk. Our keyspace
equals to K = IFn. We see that our asymptotical bound k ≤ n− 1 is similar to
the condition |K| ≥ |P| on perfect secrecy.

Consider Alg. 4. The choice of gi’s in Step 8 implies that for the algebraic set
V (G) of the ideal 〈G〉 it holds

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 383

V (G) = {(a1, . . . , an) | ai ∈ {si, t(i)1 , . . . , t(i)ν } ∀i = 1, . . . , n} , (2)

and thus |V (G)| = (ν +1)n. Set t = |V (G)| and denote the elements of V (G) as
V (G) = {r(1), . . . , r(t)}.

Note 11. Although the multiplication key G is to be known only to the owners
of the secret key and to a computational party, we assume that G is also known
to the attacker. Since gi ∈ IF[xi], he can successively find all the roots of gi, i.e.

{si, t(i)1 , . . . , t
(i)
ν }, i = 1, . . . , n and he can compute V (G). Indeed, the knowledge

of the multiplicative key G is equivalent to the knowledge of V (G).

Note 12. As we will see later on, we would like to maximize the size of the
algebraic set V (G). In the proof of Theorem 13 in Appendix A we show, that
dimIF(R/〈G〉) = (ν+1)n. For any ideal I in R and its algebraic set V (I) it holds

|V (I)| ≤ dimIF(R/I) . (3)

(Proof of a version for polynomial rings over complex numbers can be found in
[10] and it will hold for rings over finite fields as well.) We see that |V (G)| =
(ν + 1)n is the best we can do, hence our choice of gis in Alg. 4 is optimal.

The proof of the following theorem can be found in Appendix A. It implies
that choosing a ciphertext c ∈ C is equivalent to choosing a vector u ∈ IFt.

Theorem 13. The mapping

ϕ : R/〈G〉 −→ IFt (4)

f �−→
(
f(r(1)), . . . , f(r(t))

)
is a ring isomorphism.

Corollary 14. Choose c ∈ C uniformly at random. Then for all u ∈ IFt it holds

Pr[ϕ(c) = u] =
1

|IF|t =
1

qt
, (5)

i.e. ϕ(c) is distributed uniformly over IFt. In particular, for r ∈ V (G) and any
a ∈ IF, it holds

Pr[c(r) = a] =
1

|IF| = q−1 . (6)

Consider the probability distribution Pr[C = c] on C given by Alg. 5. We see,
that the polynomial f in Step 1 of Alg. 5 is chosen uniformly at random from C
and then in Step 2 it is “shifted” by a scalar value m−f(s). Hence Pr[C = c] de-
pends on the probability distribution on P and it is not necessarily the uniform
distribution. However, if we define equivalence ∼ on C by c1 ∼ c2 iff c1 − c2 ∈ IF

384 M. Hojśık and V. Půlpánová

and denote the equivalence class of c by [c]∼ (i.e. [c]∼ = {c+ a | a ∈ IF}), then
Pr[C ∈ [c]∼] = 1/qt−1 is the uniform distribution on C/ ∼.

In the following, we will assume that Pr[C = c] is the uniform distribution
on C. This assumption will make it easier for us to evaluate the security of our
cryptosystem in the general case. We claim that the security of SymPC can be
proved also without this simplification, but we leave it for the extended version
of the paper.

Proof of Theorem 9

Proof. (Theorem 9) We want to prove security of SymPC(n, ν, q) in k-bounded-
CPA model. Let us assume that the attacker knows the multiplicative key G (or
equivalently its algebraic set V (G)) and polynomials c1, . . . , ck ∈ Es(0) = {c ∈
C | c(s) = 0}, i.e. k encryptions of zero for some unknown s. Recall that by
Proposition 6 for SymPC CPA equals KPA.

We start with evaluation of the conditional probability Pr[P = m | C =
c, c1, . . . , ck] for some fixed k ∈ IN, c, c1, . . . , ck ∈ C, i.e. the probability that the
plaintext equals m if we know that the ciphertext equals c and c1, . . . , ck are
encryptions of zero.

By definition of conditional probability

Pr[P = m | C = c, c1, . . . , ck] =
Pr[P = m,C = c, c1, . . . , ck]

Pr[C = c, c1, . . . , ck]
, (7)

which we can rewrite as

1

Pr[C = c, c1, . . . , ck]

∑
r∈V (G)

Pr[P = m,C = c, c1, . . . , ck | r] · Pr[r] . (8)

First note, that Pr[C = c, c1, . . . , ck] = Pr[C = c] ·
∏k

i=1 Pr[ci] as these are
independent events and Pr[C = c] = 1/qt = Pr[ci] for all i by our assumption.
The secret key is chosen uniformly at random and we know it belongs to V (G),
so Pr[r] = 1/|V (G)| = 1/t. Clearly if c(r) �= m or ci(r) �= 0 for some i, then
Pr[P = m,C = c, c1, . . . , ck | r] = 0. Hence we can sum in (8) only over vectors
r from the set A = {r ∈ V (G) | c(r) = m, c1(r) = 0, . . . , ck(r) = 0}. Now for a
fixed r ∈ A the choice of c is equivalent to choice of the equivalence class [c]∼
which is independent of m and uniformly distributed with probability 1/qt−1.
The same is valid for all ci. Finally, we will use the fact that the message and
the secret key are independent to obtain

Pr[P = m | C = c, c1, . . . , ck] =

=
qt(k+1)

t
·
∑
r∈A

Pr[M = m] · Pr[C = c | r] ·
k∏

i=1

Pr[ci | r]

=
qk+1

t
·
∑
r∈A

Pr[M = m] . (9)

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 385

Set γ(m, c, c1, . . . , ck) = |{r ∈ V (G) | c(r) = m, c1(r) = 0, . . . , ck(r) = 0}| = |A|.
Then

Pr[P = m | C = c, c1, . . . , ck] =
qk+1

t
· Pr[P = m] · γ(m, c, c1, . . . , ck) . (10)

For r ∈ V (G) consider a random variable Yr which equals 1 iff r ∈ A and equals
0 otherwise. We get

∑
r∈V (G) Yr = γ(m, c, c1, . . . , ck) and Corollary 14 implies,

that it has the binomial distribution with parameters t and 1/qk+1, which is
denoted by B(t, 1/qk+1). It is well known, that B(t, 1/qk+1) has the expected
value E[γ] = t/qk+1 and variance Var[γ] = t/qk+1 · (qk+1 − 1)/qk+1.

Now we can calculate the distance between Pr[P = m | C = c, c1, . . . , ck]
and Pr[P = m] with respect to δ from Definition 8 to show that SymPC(n, ν, q)
achieves approximate perfect secrecy in k-bounded CPA model.

δ(Pr[P = m | C = c, c1, . . . , ck],Pr[P = m]) =

=
1

|C| ·
∑
c∈C

(Pr[P = m|C = c, , c1, . . . , ck]− Pr[P = m])2

=
1

|C| ·
∑
c∈C

(
qk+1

t
· Pr[P = m] · γ(m, c, c1, . . . , ck)− Pr[P = m]

)2

=Pr[P = m]2 · q
2(k+1)

t2
·
∑
c∈C

1

|C| ·
(
γ(m, c, c1, . . . , ck)− t/qk+1

)2

=Pr[P = m]2 · q
2(k+1)

t2
·
∑
c∈C

1

|C| · (γ(m, c, c1, . . . , ck)− Ec(γ(m, c, c1, . . . , ck)))
2

︸ ︷︷ ︸
Var(γ(m,c,c1,...,ck))=t(qk+1−1)/q2(k+1)

=Pr[P = m]2 · q
k+1 − 1

t
.

We assumed 1 < ν < q − 1, a = q/(ν + 1) and l > loga(q)/(loga(q) − 1). To
finish the proof, we need to show that for k = n/l − 1 and a fixed a we have
limn→∞(qk+1 − 1)/t = 0. We have

qk+1 − 1

t
=

q
n
l − 1

(ν + 1)n
=

qn · q n
l −n − 1

(ν + 1)n
=

(
q

ν + 1

)n

· qn·(1
l −1) − 1

(ν + 1)n
=

=

(
a

q1−
1
l

)n

−
(

1

ν + 1

)n

.

Clearly, (1/(ν +1))n goes to zero as n grows (recall that a = q/(ν +1) is fixed).
We assumed l > loga(q)/(loga(q)−1), which implies 1 < (1−1/l)· loga(q). Hence
a < q1−1/l and (a/q1−1/l)n goes to zero as n grows. The speed of convergence is
linear with a rate of convergence μ = a

q1−
1
l
. Altogether, we have shown that

δ(Pr[P = m | C = c, c1, . . . , ck],Pr[P = m])
n−→∞−−−−−−−→ 0 ,

386 M. Hojśık and V. Půlpánová

i.e. SymPC(n, ν, q) achieves approximate perfect secrecy in k-bounded CPA
model. �

6.2 Security in KPA Model

In this section, we analyze the security of SymPC in the (unbounded) KPA
model. Namely, we present a known plaintext attack that computes the secret
key s and we estimate the required number of plaintext-ciphertext pairs.

Let s ∈ IFn be a secret key and assume that the attacker knows k plaintext-
ciphertext pairs. By Prop. 6, we can assume that he knows c1, c2, . . . , ck ∈ C such
that ci(s) = 0, i = 1, . . . , k. Following Note 11, we also assume that he knows
the algebraic set V (G) (recall that |V (G)| = (ν+1)n), the set of key candidates.

Now for each r ∈ V (G), the attacker can test whether ci(r) = 0 for all
i = 1, . . . , k with complexity O((ν + 1)n). Set

V = {r ∈ V (G) | ci(r) = 0, i = 1, . . . , k} .

We will calculate the expected size of V , i.e. the expected number of secret key
candidates given k know plaintext-ciphertext pairs.

Let ϕ be the mapping from Theorem 13 and assume that s = r(1). Then
by Corrolary 14, the vectors ϕ(c1), . . . , ϕ(ck) are independent and uniformly
distributed over {0}× IFt−1. In particular, the j-th coordinates of vectors ϕ(ci)
are independent uniformly distributed elements of IF. Hence for a random r ∈
V (G), r �= s we have Pr[ci(r) = 0, i = 1, . . . , k] = 1/qk and the random variable
|V | − 1 has the binomial distribution B((ν + 1)n − 1, 1/qk). We get that

E[|V |] = 1 +
(ν + 1)n − 1

qk
.

Set (as in Theorem 9) a = q/(ν + 1). Then E[|V |] < 1 + (ν + 1)n/qk = qn−ka−n

and so if qn−ka−n ≤ 1 then E[|V |] ≤ 2. This implies k ≥ n · (loga(q)−1)/ loga(q)
and we see that the bound for k in Theorem 9 is tight.

6.3 Security in COA Model

Here we briefly analyze the security of SymPC in COA model. Again, let s ∈ IFn

be a secret key and assume that the attacker knows ciphertexts c1, . . . , ck ∈ C but
not the corresponding plaintextsmi = c(s), i = 1, . . . , k. Furthermore we assume
that he knows V (G) = {r(1), . . . , r(t)}, t = (ν+1)n and also Pr[P = m], m ∈ IF
the probability distribution on the plaintext space.

By Corrolary 14, the values of ci(r) for r �= s are uniformly distributed over IF.
So the goal of the attacker is to distinguish the plaintext distribution Pr[P = m]
from (ν + 1)n − 1 independent uniform distributions given a sample of size k of
each. Clearly, if Pr[P = m] is also uniform, then the attacker cannot determine
s regardless of k. The other extreme distribution on P is the distribution with
Pr[P = m] = 1 for some m ∈ IF. In this case we get the known plaintext attack.

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy 387

7 Sparse Version of SymPC

Back in Sect. 5 we noted, that the complexity of ENCRYPT is O(n · (ν+1)n+1). If
we modify Alg. 5 in such way, that in Step 2 it will choose a sparse polynomial
(say number of non-zero coefficients will be bounded by some fixed ξ ∈ IN),
the complexity of ENCRYPT will go down to O(ξ · n · ν). We believe, that the
distribution of evaluations of these polynomials in V (G) will stay close to the
uniform distribution on IFt and the proof of Theorem 9 will go through even
with this modification.

References

1. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Mullen, G.L.,
Shiue, P.J.-S. (eds.) Finite Fields: Theory, Applications, and Algorithms. Contem-
porary Mathematics, vol. 168, pp. 51–61. AMS (1994)

2. Steinwandt, R., Geiselmann, W., Endsuleit, R.: Attacking a polynomial-based cryp-
tosystem: Polly cracker. International Journal of Information Security 1(3), 143–
148 (2002)

3. Caboara, M., Caruso, F., Traverso, C.: Lattice polly cracker cryptosystems. J.
Symb. Comput., 534–549 (2011)

4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

5. Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog
Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V. (leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM
(2012)

7. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM 56(6) (2009)

8. Albrecht, M.R., Farshim, P., Faugère, J.-C., Perret, L.: Polly Cracker, Revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 179–196.
Springer, Heidelberg (2011)

9. Herold, G.: Polly Cracker, Revisited, Revisited. In: Fischlin, M., Buchmann, J., Man-
ulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 17–33. Springer, Heidelberg (2012)

10. Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms - an introduction
to computational algebraic geometry and commutative algebra, 2nd edn. Under-
graduate texts in mathematics, pp. 1–536. Springer (1997)

A Proofs

Theorem 3. Let R and G be defined by Alg. 4. Then G is the reduced normed
Gröbner basis of the ideal 〈G〉.

Proof. By Alg. 4, G = {g1, . . . , gn}, gi := (xi − si) ·
∏ν

l=1(xi − t
(i)
l) ∈ IF[xi].

According to Theorem 1, we need to show that for all gi, gj ∈ G, i �= j the
remainder on division of spol(f, g) by G equals zero. Clearly, lt(gi) = xν+1

i and

388 M. Hojśık and V. Půlpánová

lt(gj) = xν+1
j , hence lcm(lt(gi), lt(gj)) = xν+1

i xν+1
j . Define hi = gi − xν+1

i and

hj = gj − xν+1
j . We obtain

spol(gi, gj) = lcm(lt(gi), lt(gj)) · gi/lm(gi)− lcm(lt(gi), lt(gj)) · gj/lm(gj)

= xν+1
j (xν+1

i + hi)− xν+1
i (xν+1

j + hj)

= xν+1
j hi − xν+1

i hj .

Now, if we reduce spol(gi, gj) by gi and gj we get

spol(gi, gj) mod gi = xν+1
j hi + hihj

(spol(gi, gj) mod gi) mod gj = −hihj + hihj = 0 .

�
Theorem 13. The mapping

ϕ : R/〈G〉 −→ IFt

f �−→
(
f(r(1)), . . . , f(r(t))

)
is a ring isomorphism.

Proof. As for all i = 1, . . . , t, r(i) ∈ V (G), each of the mappings f �→ f(r(i)) is
a ring homomorphism. Hence ϕ is also a ring homomorphism.

Let i ∈ {1, . . . , n} and ui = (0, . . . , 1, . . . , 0) ∈ IFt be a vector with a 1 at the
i-th position. We show that we can find f ∈ R/〈G〉, such that ϕ(f) = ui. As i
has been chosen arbitrarily and ϕ is linear, the surjectivity of ϕ will follow.

The desired f needs to satisfy f(r(i)) = 1 and f(r(j)) = 0 for all j �= i.
For j �= i it holds r(j) �= r(i), therefore we can find an l = l(j) ∈ {1, . . . , n},
such that r

(j)
l(j) �= r

(i)
l(j). For j = 1 . . . , i − 1, i + 1, . . . , t we set bj := r

(j)
l(j) and

hj := (xl(j) − bj)/(r
(i)
l(j) − bj). We have hj(r

(i)) = 1 and hj(r
(j)) = 0. Set

f̃ :=
∏t

j=1, j �=i hj ∈ R. We obtain

f̃(r(i)) =

t∏
j=1, j �=i

hj(r
(i)) =

t∏
j=1, j �=i

1 = 1 ,

f̃(r(j)) = hj(r
(j)) ·

t∏
k=1, k �=i,j

hk(r
(j)) = 0, j = 1 . . . , i− 1, i+ 1, . . . , t .

Set f := f̃ +G ∈ R/〈G〉. As r(j) ∈ V (G) for j = 1, . . . , t, we get that f(r(i)) =
f̃(r(i)) = 1 and for all j �= i, f(r(j)) = f̃(r(j)) = 0. So we have found f ∈
R/〈G〉, such that ϕ(f) = ui.

In order to finish the proof, it is sufficient to show that dimIF(R/〈G〉) =
dimIF(IF

t) as both rings are finite. Clearly, dimIF(IF
t) = t = (ν + 1)n. As G

is a Gröbner basis, R/〈G〉 is as a vector space generated by all the terms in R
irreducible by 〈G〉. By our choice of gi in Alg. 4, these are xj1

1 · · ·xjn
n , j1, . . . , jn ∈

{0, . . . , ν} and there are (ν + 1)n such terms. �

Weak Keys of the Full MISTY1 Block Cipher

for Related-Key Differential Cryptanalysis�

Jiqiang Lu1, Wun-She Yap1,2, and Yongzhuang Wei3,4

1 Institute for Infocomm Research,
Agency for Science, Technology and Research

1 Fusionopolis Way, Singapore 138632
lvjiqiang@hotmail.com, {jlu,wsyap}@i2r.a-star.edu.sg

2 Faculty of Information Science and Technology, Multimedia University,
Melaka 75450, Malaysia

3 Guilin University of Electronic Technology,
Guilin City, Guangxi Province 541004, P.R. China

4 State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, P.R. China

walker−wei@msn.com

Abstract. The MISTY1 block cipher has a 64-bit block length, a 128-
bit user key and a recommended number of 8 rounds. It is a Japanese
CRYPTREC-recommended e-government cipher, a European NESSIE
selected cipher, and an ISO international standard. Despite of consider-
able cryptanalytic efforts during the past fifteen years, there has been
no published cryptanalytic attack on the full MISTY1 cipher algorithm.
In this paper, we present a related-key differential attack on the full
MISTY1 under certain weak key assumptions: We describe 2103.57 weak
keys and a related-key differential attack on the full MISTY1 with a data
complexity of 261 chosen ciphertexts and a time complexity of 290.93 en-
cryptions. For the first time, our result exhibits a cryptographic weakness
in the full MISTY1 cipher (when used with the recommended 8 rounds),
and shows that the MISTY1 cipher is distinguishable from an ideal ci-
pher and thus cannot be regarded to be an ideal cipher.

Keywords: Block cipher, MISTY1, Differential cryptanalysis, Related-
key cryptanalysis, Weak key.

1 Introduction

The MISTY1 block cipher was designed by Matsui [26] and published in 1997.
It has a 64-bit block length, a 128-bit user key, and a variable number of rounds;

� An earlier version of this work appeared in 2012 as part of Cryptology ePrint Archive
Report 2012/066 [25]. This work was partially supported by the Natural Science
Foundation of China (No. 61100185), Guangxi Natural Science Foundation (No.
2011GXNSFB018071), the Foundation of Guangxi Key Lab of Wireless Wideband
Communication and Signal Processing (No. 11101), and China Postdoctoral Science
Foundation Funded Project.

E. Dawson (Ed.): RSA 2013, LNCS 7779, pp. 389–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

390 J. Lu, W.-S. Yap, and Y. Wei

the officially recommended number of rounds is 8. We consider the version of
MISTY1 that uses the recommended 8 rounds in this paper, which is also the
most widely discussed version so far. MISTY1 has a Feistel structure with a
total of ten key-dependent logical functions FL — two FL functions at the
beginning plus two inserted after every two rounds. It became a CRYPTREC [7]
e-government recommended cipher in 2002, and a NESSIE [27] selected block
cipher in 2003, and was adopted as an ISO [11] international standard in 2005
and 2010.

MISTY1 has attracted extensive attention since its publication, and its secu-
rity has been analysed against a wide range of cryptanalytic techniques [1, 6, 9,
10,18,19,22,24,29–31]. In summary, the main previously published cryptanalytic
results on MISTY1 are as follows. In 2008, Dunkelman and Keller [10] described
impossible differential attacks [3, 16] on 6-round MISTY1 with FL functions
and 7-round MISTY1 without FL functions. In the same year, Lee et al. [22]
gave a related-key amplified boomerang attack [13] on 7-round MISTY1 with
FL functions under a class of 273 weak keys1, and Tsunoo et al. [30] presented
a higher-order differential attack [15, 20] on 6 and 7-round MISTY1 with FL
functions (without making a weak key assumption). In 2009, Sun and Lai [29]
presented an integral attack on 6-round MISTY1 with FL functions, building on
Knudsen and Wagner’s integral attack [17] on 5-round MISTY1. Following Lee
et al.’s work, in 2011 Chen and Dai [6] presented a 7-round related-key amplified
boomerang distinguisher with probability 2−118 under a class of 290 weak keys
and gave a related-key amplified boomerang attack on the 8-round MISTY1 with
only the first 8 FL functions; and subsequently Dai and Chen [8, 9] described
a 7-round related-key differential characteristic with probability 2−60 under a
class of 2105 weak keys and finally presented a related-key differential attack on
the 8-round MISTY1 with only the last 8 FL functions.2 By now, there has been
no published (non-generic) cryptanalytic attack on the full 8 rounds of MISTY1
yet.

Related-key cryptanalysis [2,14] assumes that the attacker knows the relation-
ship between one or more pairs of unknown keys; certain current real-world ap-
plications may allow for practical related-key attacks, for example, key-exchange
protocols [12]. Related-key differential cryptanalysis [12] is a combination of dif-
ferential cryptanalysis [4] and related-key cryptanalysis; it takes advantage of how
a specific difference in a pair of inputs of a cipher or function can affect a differ-
ence in the pair of outputs of the cipher or function, where the pair of outputs are
obtained by encrypting the pair of inputs using two different keys with a specific
difference. Remarkably, under certain weak key assumptions the related-key dif-
ferential cryptanalysis technique was used in 2009 by Biryukov et al. [5] to yield

1 A class of weak keys is defined as a class of keys under which the concerned cipher
is more vulnerable to be attacked.

2 Our work is based on the version of Dai and Chen’s paper that we requested from
Dai in February 2012 [8]. However, we note that the post-proceedings version [9] of
their paper appeared in the LNCS website a few days ago, acknowledging us, where
the results were modified as given in Table 1.

Weak Keys of the Full MISTY1 Block Cipher 391

Table 1. Main cryptanalytic results on MISTY1 with FL functions

#Rounds #KeysAttack Type Data Memory Time Source

6 (1− 6) 2128 Impossible differential 251CP not specified 2123.4Enc. [10]

6 (1− 6) 2128 Higher-order differential 253.7CPnot specified 264.4Enc. [30]

6 (3− 8) 2128 Integral 232CC not specified 2126.1Enc. [29]

7 (1− 7) 2128 Higher-order differential 254.1CPnot specified 2120.7Enc. [30,31]

7† (2− 8) 273 Related-key amplified boo. 254CP 259Bytes 255.3Enc. [22]

8† (1− 8) 290 Related-key amplified boo. 263CP 265Bytes 270Enc. [6]

8† (1− 8) 2105‡ Related-key differential 263CC 237Bytes 286.6Enc. [8]

2102.57 Related-key differential 261CC 235Bytes 284.6Enc. [9]

full 2103.57 Related-key differential 261CC 299.2Bytes 290.93Enc. Sect. 4§

†: Exclude the first/last two FL functions; ‡: There is a flaw, see Section 3 for detail;
§: Complexity is only for one class of weak keys.

the first cryptanalytic attack on the full version of the AES [28] block cipher with
256 key bits.

In this paper, we show for the very first time that the full MISTY1 cipher can
be distinguished from an ideal cipher (in the related-key model), mainly from a
theoretical perspective: Building on Dai and Chen’s work described in [8, 9], we
present a related-key differential attack on the full MISTY1 cipher under certain
weak key assumptions. First, we spot a flaw in Dai and Chen’s differential crypt-
analysis results from [8], and find that there are only about 2102.57 weak keys in
their weak key class such that their 7-round related-key differential holds, but
with probability 2−58. Then, we use the 7-round related-key differential with
probability 2−58 to break the full MISTY1 under the class of 2102.57 weak keys.
Finally, we observe that there also exists a different class of 2102.57 weak keys un-
der which similar results hold. Table 1 summarises our and previously published
main cryptanalytic results on MISTY1, where CP and CC refer respectively to
the numbers of chosen plaintexts and chosen ciphertexts, and Enc. refers to the
required number of encryption operations of the relevant version of MISTY1.

We would like to mention that the original version of this paper, entitled “weak
keys of the full MISTY1 block cipher for related-key cryptanalysis”, contained a
set of 292 weak keys of the full MISTY1 for a related-key amplified boomerang
attack [25], but we remove it from this proceedings version, because of page
constraints.

The remainder of the paper is organised as follows. In the next section, we give
the notation and describe the MISTY1 cipher. In Section 3 we review Dai and
Chen’s class of weak keys and their 7-round related-key differential characteristic,
and give our corrected class of weak keys and 7-round related-key differential.
We present our attack on MISTY1 in Section 4. In Section 5 we describe another
class of weak keys. Section 6 concludes this paper.

392 J. Lu, W.-S. Yap, and Y. Wei

2 Preliminaries

In this section we give the notation and briefly describe the MISTY1 cipher.

2.1 Notation

The bits of a value are numbered from left to right, starting with 1. We use the
following notation throughout this paper.

⊕ : bitwise logical exclusive OR (XOR) of two bit strings of the same length
∩ : bitwise logical AND of two bit strings of the same length
∪ : bitwise logical OR of two bit strings of the same length
|| : bit string concatenation

2.2 The MISTY1 Block Cipher

MISTY1 [26] employs a complex Feistel structure with a 64-bit block length and
a 128-bit user key. It uses the following three functions FL,FI, FO, which are
respectively depicted in Fig. 1-(a), Fig. 1-(b) and Fig. 1-(c) with their respective
subkeys to be described below.

– FL : {0, 1}32×{0, 1}32 → {0, 1}32 is a key-dependent linear function. If X =
(XL||XR) is a 32-bit block of two 16-bit words XL, XR, and Y = (Y1||Y2) is
a 32-bit block of two 16-bit words Y1, Y2, then

FL(X,Y) = (XL ⊕ ((XR ⊕ (XL ∩ Y1)) ∪ Y2), XR ⊕ (XL ∩ Y1)).

– FI : {0, 1}16 ×{0, 1}16 → {0, 1}16 is a non-linear function. If X = (XL||XR)
and Y = (Y1||Y2) are 16-bit blocks, here XL, Y2 are 9 bits long and XR, Y1

are 7 bits long, then FI(X,Y) is computed as follows, where XL0, XR0, · · · ,
XL3, XR3 are 9 or 7-bit variables, S9 is a 9 × 9-bit bijective S-box, S7 is a
7× 7-bit bijective S-box, the function Extnd extends from 7 bits to 9 bits by
concatenating two zeros on the left side, and the function Trunc truncates
two bits from the left side.
1. XL0 = XL, XR0 = XR;
2. XL1 = XR0, XR1 = S9(XL0)⊕ Extnd(XR0);
3. XL2 = XR1 ⊕ Y2, XR2 = S7(XL1)⊕ Trunc(XR1)⊕ Y1;
4. XL3 = XR2, XR3 = S9(XL2)⊕ Extnd(XR2);
5. FI(X,Y) = (XL3||XR3).

– FO : {0, 1}32×{0, 1}64×{0, 1}48 → {0, 1}32 is a non-linear function. If X =
(XL||XR) is a 32-bit block of two 16-bit words XL, XR, Y = (Y1||Y2||Y3||Y4)
is a 64-bit block of four 16-bit words Y1, Y2, Y3, Y4, and Z = (Z1||Z2||Z3) is
a 48-bit block of three 16-bit words Z1, Z2, Z3, then FO(X,Y, Z) is defined
as follows, where XL0, XR0, · · · , XL3, XR3 are 16-bit variables.
1. XL0 = XL, XR0 = XR;
2. For j = 1, 2, 3:

XLj = XRj−1, XRj = FI(XLj−1 ⊕ Yj , Zj)⊕XRj−1;
3. FO(X,Y, Z) = (XL3 ⊕ Y4)||XR3.

Weak Keys of the Full MISTY1 Block Cipher 393

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KIij2

KIij1

⊕
⊕

∩
∪

KLi1

KLi2

⊕ ⊕

KOi1

FIi1 ⊕ ⊕

KOi2

FIi2 ⊕ ⊕

KOi3

FIi3 ⊕

KOi4

(a) : FLi (b) : FIij

(c) : FOi

Extnd Trunc Extnd

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

FL9 FL10

...

(d) : MISTY1

Fig. 1. MISTY1 and its components

MISTY1 uses a total of ten 32-bit subkeys KL1,KL2, · · · ,KL10 for the FL
functions, twenty-four 16-bit subkeys KIij for the FI functions, and thirty-two
16-bit subkeys KOil for the FO functions, (1 � i � 8, 1 � j � 3, 1 � l � 4), all
derived from a 128-bit user key K. The key schedule is as follows.

1. Represent K as eight 16-bit words K = (K1,K2, · · · ,K8).
2. Generate a different set of eight 16-bit words K ′

1,K
′
2, · · · ,K ′

8 by

K ′
i = FI(Ki,Ki+1), for i = 1, 2, · · · , 8,

where the subscript i + 1 is reduced by 8 when it is larger than 8, (similar
for some subkeys in the following step).

3. The subkeys are as follows.

KOi1 = Ki,KOi2 = Ki+2,KOi3 = Ki+7,KOi4 = Ki+4;

KIi1 = K ′
i+5,KIi2 = K ′

i+1,KIi3 = K ′
i+3;

KLi = K i+1
2
||K ′

i+1
2 +6

, for i = 1, 3, 5, 7, 9; otherwise,KLi = K ′
i
2+2||K i

2+4.

MISTY1 takes a 64-bit plaintext P as input, and has a variable number
of rounds; the officially recommended number of rounds is 8. Its encryption
procedure is as follows, where L0, R0, · · · , Li, Ri are 32-bit variables, KOj =
(KOj1||KOj2||KOj3||KOj4), and KIj = (KIj1||KIj2||KIj3), (j = 1, 2, · · · , 8);
see Fig. 1-(d).

1. (L0||R0) = (PL||PR).
2. For i = 1, 3, 5, 7:

394 J. Lu, W.-S. Yap, and Y. Wei

Ri = FL(Li−1,KLi), Li = FL(Ri−1,KLi+1)⊕ FO(Ri,KOi,KIi);
Ri+1 = Li, Li+1 = Ri ⊕ FO(Li,KOi+1,KIi+1).

3. Ciphertext C = FL(R8,KL10)||FL(L8,KL9).

We refer to the 8 rounds in the above description as Rounds 1, 2, · · · , 8, respec-
tively.

3 A Related-Key Differential for 7-Round MISTY1
under a Class of 2102.57 Weak Keys

In this section, we first review Dai and Chen’s class of 2105 weak keys and their
7-round related-key differential characteristic with probability 2−60 under the
class of weak keys. Then, we show that there are actually only 2102.57 weak keys
such that the 7-round related-key differential characteristic holds, and it has a
probability of 2−58.

3.1 A Class of 2105 Weak Keys Owing to Dai and Chen

First define three constants which will be used subsequently: A 7-bit constant a =
0010000, a 16-bit constant b = 0010000000010000, and another 16-bit constant
c = 0010000000000000, all in binary notation. Observe that b = (a||02||a) and
c = (a||09), where 02 represents a binary string of 2 zeros, and so on.

Let KA,KB be two 128-bit user keys defined as follows:

KA = (K1,K2,K3,K4,K5,K6,K7,K8),

KB = (K1,K2,K3,K4,K5,K
∗
6 ,K7,K8).

By the key schedule of MISTY1 we can get the corresponding eight 16-bit words
for KA,KB, which are denoted as follows.

K ′
A = (K ′

1,K
′
2,K

′
3,K

′
4,K

′
5,K

′
6,K

′
7,K

′
8),

K ′
B = (K ′

1,K
′
2,K

′
3,K

′
4,K

′∗
5 ,K ′∗

6 ,K ′
7,K

′
8).

Then, the class of weak keys is defined to be the set of all possible values for
(KA,KB) that satisfy the following 10 conditions, where K6,12 denotes the 12-th
bit of K6, and similar for K7,3,K7,12,K8,3,K

′
4,3,K

′
4,12, K

′
7,3.

K6 ⊕K∗
6 = c; (1)

K ′
5 ⊕K ′∗

5 = b; (2)

K ′
6 ⊕K ′∗

6 = c; (3)

K6,12 = 0; (4)

K7,3 = 1; (5)

K7,12 = 0; (6)

K8,3 = 1; (7)

K ′
4,3 = 1; (8)

K ′
4,12 = 1; (9)

K ′
7,3 = 0. (10)

Weak Keys of the Full MISTY1 Block Cipher 395

Now let us analyse the number of the weak keys. First observe that when Con-
dition (1) holds, then Condition (2) holds with certainty.

Note that K ′
4 = FI(K4,K5),K

′
6 = FI(K6,K7), K

′∗
6 = FI(K∗

6 ,K7),K
′
7 =

FI(K7,K8). By performing a computer search, we get

|{(K4,K5)|Conditions (8) and (9)}| = 230;

|{(K6,K7,K8)|Conditions (1), (3), (4), (5), (6), (7) and (10)}| = 227.

Therefore, Dai and Chen [8] concluded that there are a total of 2105 possible values
for KA satisfying the above 10 conditions, and thus there are 2105 weak keys.

3.2 Dai and Chen’s 7-Round Related-Key Differential
Characteristic

Under the class of 2105 weak keys (KA,KB) described in Section 3.1, Dai and
Chen described the following 7-round related-key differential characteristicΔα →
Δβ: (b||032||c) → (032||c||016) with probability 2−60 for Rounds 2–8. In Fig. 3
in the Appendix we illustrate the related-key differential characteristic in detail,
where R4,3 denotes the 3-rd bit of R4 (the right half of the output of Round 4),
and R4,12 denotes the 12-th bit of R4.

As a result, Dai and Chen presented a related-key differential attack on 8-
round MISTY1 without the first two FL functions, by conducting a key recovery
on FO1 (in a way similar to the early abort technique for impossible differential
cryptanalysis introduced in [24] as well as in Chapter 4.2 of [23]).

3.3 A Corrected Class of Weak Keys and Improved 7-Round
Related-Key Differential

We first focus on the FI73 function in Dai and Chen’s 7-round related-key dif-
ferential characteristic, where the probability is 2−16. Observe that KI73 = K ′

2.
Dai and Chen assumed a random distribution when calculating the probability of
the differential Δc → Δc for FI73, and thus obtained a probability value of 2−16,
(An alternative explanation is to consider the two S9 S-boxes, each having a prob-
ability value of 2−8). However, intuitively we should make sure that a weak key
(KA,KB) should also satisfy the condition that the differentialΔc → Δc is a pos-
sible differential for FI73; otherwise, the differential Δc → Δc would have a zero
probability, and the 7-round differential characteristic would be flawed. Thus, we
should put the following additional condition when defining a set of weak keys:

PrFI(·,K′2)(Δc → Δc) > 0. (11)

Motivated by this, we perform a computer program to test the number of K ′
2

satisfying Condition (11), and we find that the number ofK ′
2 satisfying Condition

(11) is equal to 215. As a consequence, we know that the number of (K2,K3)
satisfying Condition (11) is 231, thus not all 232 possible values for (K2,K3) meet

396 J. Lu, W.-S. Yap, and Y. Wei

Condition (11), so this is really a flaw in Dai and Chen’s results.3 Furthermore,
we find that for each satisfying K ′

2, there are exactly two pairs of inputs to
FI73 which follow the differential Δc → Δc, that is to say, the probability
PrFI(·,K′2)(Δc → Δc) = 2−15, twice as large as the probability value 2−16 used
by Dai and Chen.

Next we focus on the FI21 function in Dai and Chen’s 7-round related-key dif-
ferential characteristic, where the probability is 2−16, and KI21 = K ′

7. Likewise,
we should make sure that a weak key (KA,KB) should also satisfy the condition
that the differential Δb → Δc is a possible differential for FI21; otherwise, the
differential Δb → Δc would have a zero probability, and the 7-round differential
characteristic would be flawed. Similarly, we should put another condition when
defining a set of weak keys:

PrFI(·,K′7)(Δb → Δc) > 0. (12)

By performing a computer program we find that the number of K ′
7 satisfying

Condition (12) is 24320 ≈ 214.57; on the other hand, the number of K ′
7 satisfying

Conditions (1), (3), (4), (5), (6), (7) and (10) is 215 (and for each satisfying K ′
7

there are 212 possible values for (K ′
6,K8)), so not all the possible values of K ′

7

satisfying Conditions (1), (3), (4), (5), (6), (7) and (10) satisfy Condition (12).
After a further test, we get that the number of K ′

7 satisfying Conditions (1),
(3), (4), (5), (6), (7), (10) and (12) is 12160 ≈ 213.57. As a result, we know
that the number of (K6,K7,K8) satisfying Conditions (1), (3), (4), (5), (6), (7),
(10) and (12) is 213.57 × 212 = 225.57, so this is another flaw in Dai and Chen’s
results. Furthermore, we have that PrFI(·,K′7)(Δb → Δc) is 2−15 for each of 9600

satisfying values for K ′
7, 2

−14 for each of 2432 satisfying values for K ′
7, and

6
216 ≈ 2−13.42 for each of 128 satisfying values for K ′

7.
In summary, there are approximately 2102.57 weak keys satisfying Conditions

(1)–(12), and the 7-round related-key differential Δα → Δβ has a minimum
probability of 2−58 under a weak key (KA,KB). In particular, we have the
following result.

Proposition 1. In the class of 2102.57 weak keys satisfying Conditions (1)–(12),

1. there are 216 possible values for K1, 216 possible values for K3, and 216

possible values for K5;

2. there are 225.57 possible values for (K6,K7,K8); in particular there are a
total of 213.57 possible values for K ′

7, and for every possible value of K ′
7

there are 212 possible values for (K ′
6,K8);

3. there are a total of 28 possible values for K ′
2,8−16, 2

16 possible values for K ′
3,

and 28 possible values for K ′
4,8−16, where K ′

2,8−16 denotes bits (8, · · · , 16) of
K ′

2 and K ′
4,8−16 denotes bits (8, · · · , 16) of K ′

4;

4. PrFI(·,∀K′7)(Δb → Δc) ≥ 2−15,PrFI(·,∀K′2)(Δc → Δc) = 2−15.

3 Note that this is not a mistake under the stochastic equivalence hypothesis for dif-
ferential cryptanalysis given in [21], although it contradicts the fact.

Weak Keys of the Full MISTY1 Block Cipher 397

4 Related-Key Differential Attack on the Full MISTY1
under the Class of 2102.57 Weak Keys

In this section, we devise a related-key differential attack on the full MISTY1
under a weak key from the class of 2102.57 weak keys, basing it on the 7-round
related-key differential with probability 2−58.

4.1 Preliminary Results

We first concentrate on the propagation of the input difference α(= b||032||c) of
the 7-round differential through the preceding Round 1, including the FL1 and
FL2 functions, under (KA,KB); see Fig. 2.

Under (KA,KB), by the key schedule of MISTY1 we have

ΔKO11 = ΔK1 = 0, ΔKO12 = ΔK3 = 0,

ΔKO13 = ΔK8 = 0, ΔKO14 = ΔK5 = 0,

ΔKI11 = ΔK ′
6 = c,ΔKI12 = ΔK ′

2 = 0, ΔKI13 = ΔK ′
4 = 0,

ΔKL1 = Δ(K1||K ′
7) = 0, ΔKL2 = Δ(K ′

3||K5) = 0.

As depicted in Fig. 2, the right half of α is (016||c), so the FI11 function has
a zero input difference; however since ΔKO11 = 0 and ΔKI11 = c, the output
difference ofFI11 is b with probability 1. The input difference of the FI12 function
is c, thus the first S9 function in FI12 has an input difference a||02, and we assume
its output difference is A ∈ {0, 1}9; the S7 function in FI12 has a zero input and
output difference. The second S9 function in FI12 has an input difference A, and
we assume its output difference is B ∈ {0, 1}9. As a result, the FI12 function has
an output difference X = (Trunc(A)||(B⊕ (02||Trunc(A)))). A simple computer
program reveals that Trunc(A) can take all 27 possible values, and thus we
assume that X can take all values in {0, 1}16.

Since the input difference of the FI13 function is 09||a, the first S9 function in
FI13 has a zero input difference. The S7 function in FI13 has an input difference
a, and we assume its output difference is D ∈ {0, 1}7, which can take only 26

possible values. The second S9 function in FI13 has an input difference 02||a, and
we assume its output difference is E ∈ {0, 1}9. Consequently, the FI13 function
has an output difference Y = ((a ⊕ D)||(E ⊕ (02||(a ⊕ D)))), and it can take
about 215 values in {0, 1}16; we denote the set of 215 values by Sd.

The FL1 function has an output difference (016||c), so its input difference

can only be of the form

32 bits︷ ︸︸ ︷
00?0000000000000||00?0000000000000, which will be

denoted by η = (ηL, ηR) in the following descriptions, where the question marker
“?” represents an indeterminate bit; and when the first question marker takes a
zero value, the second question marker can take only 1, that is η has only three
possible values, (The specific form depends on the values of the two subkey bits
K1,3 and K ′

7,3). The FL2 function has an output difference (X ⊕ c)||(X ⊕ Y ⊕
(09||a)), so its input difference is indeterminate, denoted by “?” in Fig. 2.

398 J. Lu, W.-S. Yap, and Y. Wei

⊕
⊕
∩
∪

K1

K′
7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

ΔKI112 = 0

ΔKI111 = a

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122

KI121

K3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132

KI131

K8

⊕

K5 ⊕

⊕
⊕
∩
∪

K′
3

K5

η =

32 bits︷ ︸︸ ︷
00?0000000000000||00?0000000000000 ?

b X

c

0

b||016 016||c

09||a X ⊕ (09||a)

Y X ⊕ (09||a)

X ⊕ Y ⊕ (09||a)

016||c (X ⊕ c)||(X ⊕ Y ⊕ (09||a))

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122

KI121

X = (Trunc(A)||(B ⊕ (02||Trunc(A))))

0

a||02 A

A

0

Trunc(A)

B S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132

KI131

Y = ((a ⊕D)||(E ⊕ (02||(a ⊕D))))

0

a

D

02||a

E

a ⊕D

0

Fig. 2. Propagation of α through the inverse of Round 1 with FL1 and FL2

From the above analysis we can see that the subkeys KI121 and KI131 do
not affect the values of X and Y , and thus they are not required when checking
whether a candidate plaintext pair generates the input difference α = (b||032||c)
of the 7-round related-key differential. Further, as K ′

3 = FI(K3,K4),K
′
4 =

FI(K4,K5), K
′
6 = FI(K6,K7) and K ′

7 = FI(K7,K8), we obtain the following
result.

Proposition 2. Only the subkeys (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) are re-

quired when checking whether a candidate plaintext pair produces the input dif-
ference α = (b||032||c) of the 7-round related-key differential.

4.2 Attack Procedure

We first precompute two hash tables T1 and T2. Observe that from the left halves
of a pair of plaintexts we only need (K1,K3,K

′
2,8−16) when computing the output

difference X of the FI12 function and only need (K1,K
′
6,K

′
7,K8,K

′
4,8−16) when

computing the output difference Y of the FI13 function. To generate T1 and T2,
we do the following procedure under every 32-bit value x = (xL||xR).

1. For every possible K1:
(a) Compute Z = (xL ∩K1) ⊕ ((xL ⊕ ηL) ∩K1) ⊕ ηR, and proceed to the

following steps only when Z = c.
(b) For every possible (K3,K

′
2,8−16), compute the output difference of FI12

as X .

Weak Keys of the Full MISTY1 Block Cipher 399

2. Store all satisfying (K1,K3,K
′
2,8−16) into Table T1 indexed by (x, η,X).

3. For every possible K ′
7:

(a) Compute W = ηL⊕(((xL∩K1)⊕xR)∪K ′
7)⊕(((xL∩K1)⊕xR⊕c)∪K ′

7),
and proceed to the following steps only when W = 0.

(b) For every possible (K ′
6,K8,K

′
4,8−16), compute the output difference of

FI13 as Y .
4. Store the values of (K6,K7,K8) corresponding to all satisfying (K ′

6,K
′
7,K8)

into Table T2 indexed by (x, η, Y,K1,K
′
4,8−16).

There are 216 possible values for K1, 2
16 possible values for K3, 2

8 possible
values for K ′

2,8−16, and 3 possible values for η. For a fixed (x, η,X), on average
there are 216×2−1×216×28×2−16 = 223 satisfying values for (K1,K3,K

′
2,8−16)

in T1. The precomputation for T1 takes about 232 × 3 × 216 × 216 × 28 ≈ 273.59

FI computations, and T1 requires a memory of about 224 × 232 × 3 × 216 ×
16+16+8

8 ≈ 275.91 bytes. There are 213.57 possible values for K ′
7, 2

12 possible
values for (K ′

6,K8), 2
8 possible values for K ′

4,8−16, and 215 possible values for Y .
For a fixed (x, η, Y,K1,K

′
4,8−16), on average there are 213.57×2−1×212×2−15 =

29.57 satisfying values for (K ′
6,K

′
7,K8) in T2. The precomputation for T2 takes

about 232×3×216×213.57×212×28×2 ≈ 284.16 FI computations, and T2 requires
a memory of about 29.57 × 232 × 3× 215 × 216 × 28 × 6 ≈ 284.74 bytes. Note that
we can use several tricks to optimise the procedure to reduce the computational
complexity for generating the two tables, but anyway it is negligible compared
with the computational complexity of the following online attack procedure.

We devise the following attack procedure to break the full MISTY1 when a
weak key is used.

1. Initialize zero to an array of 295.57 counters corresponding to all the 295.57

possible values for (K1,K
′
2,8−16, K3,K4,K5,K6,K7,K8).

2. Choose 260 ciphertext pairs (C,C∗ = C⊕(032||c||016)). In a chosen-ciphertext
attack scenario, obtain the plaintexts for the ciphertexts C,C∗ under
KA,KB, respectively, and we denote the plaintext for ciphertext C encrypted
under KA by P = (PLL||PLR, PRL||PRR), and the plaintext for ciphertext
C∗ encrypted under KB by P ∗ = (PL∗

L||PL∗
R, PR∗

L||PR∗
R).

3. Check whether a plaintext pair (P, P ∗) meets the condition (PLL||PLR)⊕
(PL∗

L||PL∗
R) = η by first checking the 30 bit positions with a zero difference

and then checking the remaining two bit positions. Keep only the satisfying
plaintext pairs.

4. For every remaining plaintext pair (P, P ∗), do the following sub-steps.
(a) Guess a possible value for (K ′

3,K5), and compute (X,Y) such that

(X ⊕ c)||(X ⊕ Y ⊕ (09||a)) = FL(PRL||PRR,K
′
3||K5)⊕

FL(PR∗
L||PR∗

R,K
′
3||K5).

Execute the next steps only if Y ∈ Sd; otherwise, repeat this step with
another subkey guess.

(b) Access Table T1 at entry (PLL||PLR, η,X) to get the satisfying values
for (K1,K3, K

′
2,8−16).

400 J. Lu, W.-S. Yap, and Y. Wei

(c) For each satisfying value for (K1,K3,K
′
2,8−16), retrieve K4 from the

equationK ′
3 = FI(K3,K4), computeK ′

4 = FI(K4,K5), and access Table
T2 at entry (PLL||PLR, η, Y,K1,K

′
4,8−16) to get the satisfying values for

(K6,K7,K8).
(d) Increase 1 to each of the counters corresponding to the obtained values

for (K1, K
′
2,8−16,K3,K4,K5, K6,K7,K8).

5. For a value of (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8) whose counter number

is equal to or larger than 3, exhaustively search the remaining 7 key bits
with two known plaintext-ciphertext pairs. If a value of (K1,K2, · · · ,K8) is
suggested, output it as the user key of the full MISTY1.

4.3 Attack Complexity

The attack requires 260 × 2 = 261 chosen ciphertexts. In Step 3, only 260 ×
2−30 × 3

4 ≈ 229.58 plaintext pairs are expected to satisfy the condition, and
it takes about 260 memory accesses to obtain the satisfying plaintext pairs.
Step 4(a) has a time complexity of about 229.58 × 216 × 216 × 2 = 262.58 FL
computations. In Step 4(b), for a plaintext pair and a possible value for (K ′

3,K5),
on average we obtain 223 possible values for (K1,K3,K

′
2,8−16), as discussed in

the precomputation phase; owing to the filtering condition in Step 4(a), Step

4(b) has a time complexity of about 229.58 × 215

216 × 232 × 223 = 283.58 memory
accesses (if conducted on a 64-bit computer). In Step 4(c), for a plaintext pair
and a possible value for (K1,K3,K5,K

′
2,8−16,K

′
3), on average we obtain 29.57

possible values for (K6,K7,K8), (as discussed in the precomputation phase),
thus Step 4(c) has a time complexity of about 228.58 × 232 × 223 × 29.57 = 293.15

memory accesses. Step 4(d) has a time complexity of about 293.15 × 2 = 294.15

memory accesses, where the factor “2” represents that it requires two memory
accesses for a single access to an entry whose length is between 65 and 128 bits
when conducted on a 64-bit computer.

The probability that the counter for a wrong (K1,K
′
2,8−16,K3,K4,K5,K6,

K7,K8) has a number equal to or larger than 3 is approximately
∑260

i=3[
(
260

i

)
·

(2−64)i · (1 − 2−64)2
60−i] ≈ 2−14.67. Thus, it is expected that there are a total

of 295.57 × 2−14.67 = 280.9 wrong values of (K1,K
′
2,8−16,K3,K4,K5,K6,K7,K8)

whose counters have a number equal to or larger than 3. Thus it requires 280.9×
27 + 280.9 × 27 × 2−64 ≈ 287.9 trial encryptions to check them in Step 5. In Step
5, a wrong value of (K1,K2, · · · ,K8) is suggested with probability 2−64×2 =
2−128, so the number of suggested values for (K1,K2, · · · ,K8) is expected to be
287.9 × 2−128 = 2−40.1, which is rather low. Thus, the time complexity of the
attack is dominated by Steps 4(c), 4(d) and 5.

The question that how many memory accesses (table lookups) are equiva-
lent to one MISTY1 encryption in terms of time depends closely on the used
platform and MISTY1 implementation as well as the storage location of the
hash table. In theoretical block cipher cryptanalysis, it is usually assumed by
default that a hash table is stored in an ideal place, RAM say, like an S-box
table; and it takes an almost constant time to access an entry in a hash table,

Weak Keys of the Full MISTY1 Block Cipher 401

independently of the number of entries. Thus, an extremely conservative esti-
mate is: 16 memory accesses equal a full MISTY1 encryption in terms of time,
assuming that in every round, Round i say, the FIi1 and FIi2 functions are
implemented in parallel, equivalent to one memory access, and the subsequent
FIi3 function is equivalent to one memory access, (neglecting the computational
complexity for other operations and the key schedule); that is, one round is equiv-
alent to 2 memory accesses. Therefore, the attack has a total time complexity

of about 293.15+294.15

16 + 287.9 ≈ 290.93 MISTY1 encryptions.
The counter for the correct key has an expected number of 260 × 2−58 = 4,

and the probability that the counter for the correct key has a number equal to

or larger than 3 is approximately
∑260

i=3[
(
260

i

)
· (2−58)i · (1 − 2−58)2

60−i] ≈ 0.76.
Therefore, the related-key differential attack has a success probability of 76%.

The memory complexity of the attack is dominated by the space for the array
of 295.57 counters, which is 295.57 × 95.57

8 ≈ 299.2 bytes.
It is worthy to note that there exist time–memory tradeoff versions to the

above attack.

5 Another Class of 2102.57 Weak Keys

We have described a class of 2102.57 weak keys and a related-key differential
attack on the full MISTY1 under a weak key. However, we observe that there
exists another class of 2102.57 weak keys under which similar results hold. The
new weak key class is obtained by setting K ′

7,3 = 1, which is further classified
into two sub-classes by the possible values of the subkey bit K1,3. This will
affect only the FL10 function in the 7-round related-key differential, but the
output difference of FL10 will be fixed once K1,3 is given, that is, the right half
of the output difference of the resulting 7-round related-key differential will be
c||c when K1,3 = 1, and 016||c when K1,3 = 0. Thus, by choosing a number of
ciphertext pairs with a corresponding difference we can conduct a similar attack
on the full MISTY1 under every sub-class of weak keys.

In total, we have 2103.57 weak keys under which a related-key differential
attack can break the full MISTY1 cipher algorithm.

6 Conclusions

The MISTY1 block cipher has received considerable attention and its security
has been thoroughly analysed since its publication, particularly the European
NESSIE project announced that “no weaknesses were found in the selected de-
signs” when making the portfolio of selected cryptographic algorithms including
MISTY1. In this paper, we have described 2103.57 weak keys for a related-key
differential attack on the full MISTY1 cipher algorithm.

For the very first time, our result exhibits a cryptographic weakness in the
full MISTY1 cipher algorithm, mainly from an academic point of view: The
cipher does not behave like an ideal cipher (in the related-key model); thus it

402 J. Lu, W.-S. Yap, and Y. Wei

cannot be regarded to be an ideal cipher. From a practical point of view, our
attack does not pose a significant threat to the security of MISTY1, for it works
under the assumptions of weak-key and related-key scenarios and its complexity
is beyond the power of a general computer of today. But nevertheless our result
means that a large fraction of all possible 2128 keys in the whole key space of
MISTY1 is weak in the sense of related-key differential cryptanalysis, roughly,
one of every twenty-two million keys, and thus the chance of picking such a weak
key at random is not trivial; in this sense, the presence of these weak keys has
an impact on the security of the full MISTY1 cipher.

Acknowledgments. The authors thank Prof. Wenling Wu for her help, Yibin
Dai for providing the final version of their paper at INSCRYPT 2011, and several
anonymous referees for their comments on earlier versions of the paper.

References

1. Babbage, S., Frisch, L.: On MISTY1 Higher Order Differential Cryptanalysis. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)

2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

5. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

6. Chen, S., Dai, Y.: Related-key amplified boomerang attack on 8-round MISTY1.
In: Li, C., Wang, H. (eds.) CHINACRYPT 2011, pp. 7–14. Science Press USA Inc.
(2011)

7. CRYPTREC — Cryptography Research and Evaluatin Committees, report 2002
(2003)

8. Dai, Y.: Personal communications (February 2012)
9. Dai, Y.-b., Chen, S.-z.: Weak-Key Class of MISTY1 for Related-Key Differential

Attack. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537,
pp. 227–236. Springer, Heidelberg (2012)

10. Dunkelman, O., Keller, N.: An Improved Impossible Differential Attack on
MISTY1. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454.
Springer, Heidelberg (2008)

11. International Standardization of Organization (ISO), International Standard –
ISO/IEC 18033-3, Information technology – Security techniques – Encryption al-
gorithms – Part 3: Block ciphers (2005/2010)

12. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

Weak Keys of the Full MISTY1 Block Cipher 403

13. Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.: Related-
key boomerang and rectangle attacks: theory and experimental analysis. IEEE
Transactions on Information Theory 58(7), 4948–4966 (2012)

14. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

15. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

16. Knudsen, L.R.: DEAL — a 128-bit block cipher. Technical report, Department of
Informatics, University of Bergen, Norway (1998)

17. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

18. Kühn, U.: Cryptanalysis of Reduced-Round MISTY. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 325–339. Springer, Heidelberg (2001)

19. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

20. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography, pp. 227–233. Academic Publishers (1994)

21. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

22. Lee, S., Kim, J., Hong, D., Lee, C., Sung, J., Hong, S., Lim, J.: Weak key classes
of 7-round MISTY 1 and 2 for related-key amplied boomerang attacks. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences 91-A(2), 642–649 (2008)

23. Lu, J.: Cryptanalysis of block ciphers. PhD thesis, University of London, UK (2008)
24. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible

Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

25. Lu, J., Yap, W.S., Wei, Y.: Weak keys of the full MISTY1 block cipher for related-
key cryptanalysis. Cryptology ePrint Archive, Report 2012/066 (2012)

26. Matsui, M.: New Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

27. NESSIE — New European Schemes for Signatures, Integrity, and Encryption, final
report of European project IST-1999-12324 (2004)

28. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES), FIPS-197 (2001)

29. Sun, X., Lai, X.: Improved Integral Attacks on MISTY1. In: Jacobson Jr., M.J., Ri-
jmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 266–280. Springer,
Heidelberg (2009)

30. Tsunoo, Y., Saito, T., Shigeri, M., Kawabata, T.: Higher Order Differential Attacks
on Reduced-Round MISTY1. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS,
vol. 5461, pp. 415–431. Springer, Heidelberg (2009)

31. Tsunoo, Y., Saito, T., Shigeri, M., Kawabata, T.: Security analysis of 7-round
MISTY1 against higher order differential attacks. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences 93-A(1), 144–152
(2010)

Appendix: Dai and Chen’s 7-Round Related-Key
Differential Characteristic

404 J. Lu, W.-S. Yap, and Y. Wei

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI412

KI411

K4

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

ΔKI422 = (02||a)

ΔKI421 = a

ΔK6 = c

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI432

KI431

K3

⊕

K8 ⊕

⊕
⊕
∩
∪

K2

K′
8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI312

KI311

K3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI322

KI321

K5

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

ΔKI332 = 0

ΔKI331 = a

K2

⊕

K7 ⊕

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI612

KI611

ΔK6 = c

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI622

KI621

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI632

KI631

K5

⊕
K2

⊕

⊕
⊕
∩
∪

K3

K′
1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI512

KI511

K5

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

ΔKI522 = 0

ΔKI521 = a

K7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI532

KI531

K4

⊕

K1 ⊕

⊕
⊕
∩
∪

ΔK′
5

= b

K7

⊕
⊕
∩
∪

K4

K′
2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI712

KI711

K7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI722

KI721

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI732

KI731

ΔK6 = c

⊕

K3 ⊕

⊕
⊕
∩
∪

ΔK′
6

= c

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI212

KI211

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI222

KI221

K4

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

ΔKI232 = (02||a)

ΔKI231 = a

K1

⊕
ΔK6 = c

⊕

⊕
⊕
∩
∪

K′
4

ΔK6 = c

0

b

0

c

c

c

c

0

Pr = 2−16 Pr = 1 Pr = 2−8

b||016

Pr = 2−1K′
4,3

= 1, K′
4,12

= 1, K6,12 = 0

016||c

Pr = 1

0

0

0

Pr = 1 0

0

Pr = 1 0

0

Pr = 1 b

0

0

0

0

0

0

Pr = 1 0

0

Pr = 2−8 Pr = 1 0

0

02||a

0

0

Pr = 1
Pr = 2−2

09||a||b

R4,3 = 1, R4,12 = 1, K7,3 = 1, K7,12 = 0

0

0

0

0

0

b

b

b

Pr = 1 Pr = 1 Pr = 1

c||016
0

0

0

0

0

0

Pr = 1 Pr = 1 Pr = 1

0

0

Pr = 1 K8,3 = 1

c||c

Pr = 2−1

c

c

0

0

0

0

0

0

0 0

Pr = 1 Pr = 1 Pr = 2−16 c

c||0160

0

⊕
⊕
∩
∪

K5

K′
3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

ΔKI812 = (02||a)

ΔKI811 = a

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI822

KI821

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI832

KI831

K7

⊕

K4 ⊕

⊕
⊕
∩
∪

K′
7

K1

c||016

Pr = 1 Pr = 1
K′

7,3
= 0

0

0 0

0

Pr = 2−8
Pr = 1

0

0Pr = 10

c

0

0

02||a

016||b

Fig. 3. Chen and Dai’s related-key differential characteristic for Rounds 2–8

Author Index

Arnaud, Cyril 18

Backes, Michael 259
Bauer, Aurélie 1
Benson, Karyn 310
Bond, Mike 359
Buchmann, Johannes 189
Bulygin, Stanislav 189

Camacho, Philippe 34
Chen, Cheng 50
Chen, Jie 50

Datta, Amit 259
Deng, Robert H. 326

Emura, Keita 343

Feng, Dengguo 50
Fouque, Pierre-Alain 18
Freire, Eduarda S.V. 101
French, George 359

Golić, Jovan Dj. 239

Hojśık, Michal 375
Holzer-Graf, Severin 145

Isshiki, Toshiyuki 277

Jaulmes, Eliane 1

Kate, Aniket 259
Khazaei, Shahram 115
Korak, Thomas 207
Krinninger, Thomas 145

Lai, Junzuo 326
Lim, Hoon Wei 50
Ling, San 50
Liu, Mingjie 293
Liu, Shengli 84
Lu, Jiqiang 389

Mendel, Florian 162, 174
Meyer, Christopher 129
Michaelis, Kai 129

Nad, Tomislav 174
Nguyen, Manh Ha 277
Nguyen, Phong Q. 293

Paterson, Kenneth G. 101
Pernull, Martin 145
Plos, Thomas 207
Poettering, Bertram 101
Prouff, Emmanuel 1
Půlpánová, Veronika 375

Rijmen, Vincent 162

Schläffer, Martin 145, 174
Schwabe, Peter 145
Schwenk, Jörg 129
Seo, Jae Hong 343
Seurin, Yannick 68
Seywald, David 145
Shacham, Hovav 310
Smart, Nigel P. 359
Standaert, François-Xavier 223

Tanaka, Keisuke 277
Toz, Deniz 162
Treger, Joana 68

Varıcı, Kerem 162

Walter, Michael 189
Wang, Huaxiong 50
Waters, Brent 310
Watson, Gaven J. 359
Wei, Yongzhuang 389
Weng, Jian 84, 326
Wieser, Wolfgang 145
Wikström, Douglas 115
Wild, Justine 1

Yap, Wun-She 389
Yu, Yu 223

Zhang, Zhenfeng 50
Zhao, Yunlei 84, 326

	Title
	Preface
	Organization
	Table of Contents
	Side Channel Attacks I
	Horizontal and Vertical Side-Channel Attacksagainst Secure RSA Implementations
	Introduction
	A Comprehensive Study of Side-Channel Analyses
	A General Framework for Side-Channel Analyses
	Leakage Measurements and Observations
	Taxonomy

	RSA Context
	Operation Flows in RSA Exponentiations
	Attacks Targets
	Horizontal Attacks

	Existing Countermeasures
	Attacks against Horizontal SCA Countermeasures
	New Countermeasure
	References

	Timing Attack against Protected RSA-CRTImplementation Used in PolarSSL
	Introduction
	Background
	Montgomery Multiplication
	Modular Exponentiation Algorithm: Sliding Window
	Decryption of RSA with Chinese Remainder Theorem

	PolarSSL's Implementation of RSA-CRT Decryption
	Montgomery Multiplication Multi-precision
	Timing Variation in PolarSSL's Montgomery Multiplication Multi-precision
	The Probability of an Extra Bit
	Sliding Window Exponentiation

	A Timing Attack on PolarSSL
	Two-Sample Hypothesis Testing
	Our Attack Method

	Experimental Results
	Time Measurement
	Experimental Results
	Network Attacks

	Defences
	Blinding
	Alternatives to Blinding

	Conclusion
	References

	Digital Signatures I
	Fair Exchange of Short Signatureswithout Trusted Third Party
	Introduction
	Preliminaries
	Notations
	Non-interactive Zero-Knowledge Proofs of Knowledge
	Bilinear Maps
	Assumptions
	Digital Signatures
	Simultaneous Hardness of Bits for Discrete Logarithm

	A New Argument to Prove a Commitment Encrypts a Bit
	Base Equivalence Argument
	Fair Exchange of Short Signatures without TTP
	Conclusion and Future Work
	References

	Fully Secure Attribute-Based Systems with Short Ciphertexts/Signaturesand Threshold Access Structures
	Introduction
	Predicate Encryption and Signatures
	Predicate Encryption
	Predicate Signatures

	Generic Constructions
	Generic Construction of tKP-ABE from IPE
	Generic Construction of tCP-ABE from IPE
	Generic Construction of tABS from IPS

	Concrete Constructions of tABE and tABS
	Fully Secure tKP-ABE with Constant-Size Ciphertexts
	Fully Secure tABS with Constant-Size Signatures

	Extensions
	Constructions in Prime Order Groups
	Large Universe Constructions
	More General Access Structures

	References

	Public-Key Encryption I
	A Robust and Plaintext-Aware Variantof Signed ElGamal Encryption
	Introduction
	Preliminaries
	Basic Definitions
	Plaintext Awareness in the ROM

	Chaum-Pedersen-Signed ElGamal Encryption
	Minimality of CPS-EG Regarding Plaintext Awareness
	Anonymity and Robustness of CPS-EG
	References

	Efficient Public Key Cryptosystem Resilientto Key Leakage Chosen Ciphertext Attacks
	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Notations and Assumptions
	Statistical Distance, Min-Entropy, and Leftover Hash Lemma
	Key Leakage Chosen-Ciphertext Security (KL-CCA2)
	 Key-Leakage Resilient Cramer-Shoup PKE (KL-CS-PKE)

	New Variant of Cramer-Shoup Cryptosystem with IND-KL-CCA2 Security
	 Performance Analysis
	Conclusion
	References

	Cryptographic Protocols I
	Simple, Efficient and Strongly KI-SecureHierarchical Key Assignment Schemes
	Introduction
	Hierarchical Key Assignment Schemes
	Basic Definitions
	Security of Key Assignment Schemes

	Security Analysis of the Chain Partition Construction
	A Scheme Based on PRFs
	A PRF-Based Key Assignment Scheme for Totally Ordered Hierarchies

	A Scheme Based on Forward-Secure PRGs
	The FS-PRG-Based Scheme for a Single Chain

	References

	Randomized Partial Checking Revisited
	Introduction
	Motivation and Contribution

	Notation
	Randomized Partial Checking
	Key Distribution
	Ballot Preparation and Encryption
	Initial Ballot Checking
	Permutation Commitment
	Mix-Net Processing
	Correctness Check
	Selection Strategy
	Ballot Decryption

	Pfitzmann's Attack and a Generalization
	On the Need for Duplicate Removal Everywhere
	Inconsistent Commitments Are Dangerous
	Breaking Privacy without Detection
	Rigging an Election without Detection

	What Is the Best We Can Hope for?
	On the Universal Verifiability of RPC
	An Improved Attack
	When Checking Is Performed at the End of the Mixing

	On the Provable Security of RPC
	Homomorphic Mix-Net with RPC
	Chaumian Mix-Net with RPC

	Interpretation and Discussion
	References

	Secure Implementation Methods
	Randomly Failed! The State of Randomness in Current JavaImplementations
	Introduction
	Related Work
	Contribution

	Implementations and Algorithms
	Apache Harmony - Android's Version of SecureRandom
	GNU Classpath
	OpenJDK
	The Legion of Bouncy Castle

	Methodology
	Results
	Apache Harmony
	GNU Classpath
	OpenJDK
	The Legion of Bouncy Castle
	Vulnerabilities Summary

	Conclusion
	References

	Efficient Vector Implementations of AES-Based Designs: A Case Study and New Implemenations for Grøstl
	Introduction
	Description of Grøstl
	The Hash Function
	The Permutations

	Implementation Methods for AES-Based Designs
	T-Table Approach
	Bytesliced Implementation
	Bitsliced Implementation

	Implementing Grøstl Using AVX2
	Byteslicing Grøstl-512 Using AVX2 and AES-NI Instructions
	Parallel T-Table Lookups for Grøstl-256 Using VPGATHERQQ

	ARM NEON Implementations of Grøstl
	T-Table Implementation of Grøstl Using NEON
	Bitsliced Implementation of Grøstl-256 Using NEON
	Bytesliced Vperm Implementation of Grøstl-256

	Low-Memory Vector Implementation of Grøstl
	32-Bit Bytesliced Implementations of Grøstl-256 for Cortex-M0
	Results

	Conclusions
	References

	Symmetric Key Primitives I
	Collisions for the WIDEA-8 CompressionFunction
	Introduction
	Description of WIDEA
	Key Schedule

	Weak Keys for IDEA
	Weak Key Classes
	Application to Hashing Modes

	Collision Attack on WIDEA-8
	Basic Attack Strategy
	Collision Attack on 7 Rounds
	Extending the Attack to Full WIDEA-8

	Conclusion and Discussion
	References

	Finding Collisions for Round-Reduced SM3
	Introduction
	Description of SM3
	Message Expansion
	State Update Transformation

	Basic Attack Strategy
	Automatic Search Tool
	Generalized Conditions
	Defining a Starting Point
	Efficient Condition Propagation
	Increasing the Propagation Performance
	Search Strategy

	Results for Reduced SM3
	Collision Attack
	Free-Start Collision

	Conclusions
	References

	Many Weak Keys for PRINTcipher: Fast KeyRecovery and Countermeasures
	Introduction
	The Block Cipher PRINTcipher
	Description of the Cipher
	Invariant Coset Attack of Leander et al.

	Obtaining and Exploiting Invariant Projected Subsets
	Defining Sets of Invariant Projected Subsets
	Defining Sets via Polytopes in Zn
	Families and Classes of Weak Keys

	Related and Future Work
	References

	Side Channel Attacks II
	Applying Remote Side-Channel AnalysisAttacks on a Security-Enabled NFC Tag
	Introduction
	Remote SCA Attacks
	Device under Attack
	Measurement Setup and Preprocessing
	Side-Channel Analysis Results
	Verification of the Parasitic Load Modulation
	Remote SCA-Attack Results

	Summary of the Results and Discussion
	Conclusion
	References

	Practical Leakage-Resilient PseudorandomObjects with Minimum Public Randomness
	Introduction
	Background
	The CCS 2010 Stream Cipher
	The CHES 2012 Stream Cipher

	Natural PRNG with Minimum Public Randomness
	A New Proposal
	Security Analysis
	Alternative Proof of [lemm:round]Lemma 2

	Leakage-Resilient PRFs
	References

	Cryptographic Protocols II
	Cryptanalytic Attacks on MIFARE ClassicProtocol
	Introduction
	Description of MIFARE Classic Protocol
	Attacks on Genuine Session and Genuine Tag
	Attacks on Genuine Session or Genuine Reader
	Attacks on Genuine Tag
	Multiple Sector Attacks
	Conclusions
	References

	Asynchronous Computational VSSwith Reduced Communication Complexity
	Introduction
	Our Contributions

	Preliminaries
	Asynchronous System Model
	Verifiable Secret Sharing—VSS
	Use of Commitments in VSS
	Asynchronous VSS

	 eAVSS: Asynchronous VSS Protocol
	Construction
	Analysis

	eAVSS-SC: AVSS Protocol with Strong Commitment
	Construction
	Analysis
	Lower Bounds

	Applications
	References

	Public-Key Encryption II
	Proxy Re-Encryption in a Stronger Security ModelExtended from CT-RSA2012
	Introduction
	Background
	Our Contributions
	Roadmap

	Preliminaries
	Bilinear Maps and Complexity Assumptions
	The Gap Hashed Diffie-Hellman Assumption
	Target-Collision Resistant Hash Function
	Symmetric Encryption

	Models and Security Notions
	Unidirectional Single-Hop Proxy Re-Encryption
	Security Models for Unidirectional Single-Hop Proxy Re-Encryption
	Discussion on the Previous Security Models CDL:11,HKK+:12

	Analysis of the Shao-Liu-Zhou's Scheme
	The Proposed PRE Scheme
	Construction
	Security Analysis

	Conclusions
	References

	Solving BDD by Enumeration: An Update
	Introduction
	Background
	Lindner-Peikert's NearestPlanes Algorithm Revisited
	Babai's Nearest Plane Algorithm
	The NearestPlanes Algorithm
	Connection with Schnorr's Random Sampling
	Connection with Lattice Enumeration
	Randomizing the NearestPlanes Algorithm

	Solving BDD by (GNR) Pruned Enumeration
	Further Background on GNR Pruned Enumeration
	Application to LWE
	Application to GGH
	Application to DSA

	References

	Identity-Based Encryption
	The k-BDH Assumption Family: Bilinear Map Cryptography from Progressively Weaker Assumptions
	Introduction
	The k-BDH Assumption and Relationships
	k-BDH's Relationship to Standard Assumptions

	A Selectively Secure IBE System from the k-BDH Assumption
	Proof of Security
	Efficiency
	Extensions

	Relationship between k-BDH Problems
	Relationship between k and the Group Size

	Conclusions and Future Work
	References

	Accountable Authority Identity-BasedEncryption with Public Traceability
	Introduction
	Our Contributions
	Related Work
	Organization

	Preliminaries
	Bilinear Groups
	Complexity Assumptions
	Zero-Knowledge Protocol and Proof of Knowledge Protocol

	Formal Definition and Security Model
	Our Construction
	Discussion
	IND-ID-CPA Security
	DishonestPKG Security
	DishonestUser Security

	Conclusions
	References

	Efficient Delegation of Key Generation and RevocationFunctionalities in Identity-Based Encryption
	Introduction
	Preliminaries
	Syntax and Security Model of RHIBE
	Our Construction
	Security Analysis
	Summary and Open Problems
	References

	Symmetric Key Primitives II
	The Low-Call Diet: Authenticated Encryptionfor Call Counting HSM Users
	Introduction
	Preliminaries
	Security Models

	Description of the Scheme
	Links with Prior Constructions
	Analysis of the Underlying Message Authentication Code
	Encryption with Redundancy

	Security Analysis
	Further Discussions
	Using a Counter
	Parameter Choices

	Conclusion
	References

	A Fully Homomorphic Cryptosystemwith Approximate Perfect Secrecy
	Introduction
	Preliminaries and Notation
	Polly Cracker
	Symmetric Polly Cracker (SymPC)
	Complexity
	Security
	Approximate Perfect Secrecy in Bounded CPA Model
	Security in KPA Model
	Security in COA Model

	Sparse Version of SymPC
	References

	Weak Keys of the Full MISTY1 Block Cipherfor Related-Key Differential Cryptanalysis
	Introduction
	Preliminaries
	Notation
	The MISTY1 Block Cipher

	A Related-Key Differential for 7-Round MISTY1 under a Class of 2102.57 Weak Keys
	A Class of 2105 Weak Keys Owing to Dai and Chen
	Dai and Chen's 7-Round Related-Key Differential Characteristic
	A Corrected Class of Weak Keys and Improved 7-Round Related-Key Differential

	Related-Key Differential Attack on the Full MISTY1 under the Class of 2102.57 Weak Keys
	Preliminary Results
	Attack Procedure
	Attack Complexity

	Another Class of 2102.57 Weak Keys
	Conclusions
	References

	Author Index

