
Pseudo-scheduling: A New Approach

to the Broadcast Scheduling Problem

Shaun N. Joseph1 and Lisa C. DiPippo2

1 mZeal Communications�, Littleton MA 01460 USA
shaun.joseph@mzeal.com

2 University of Rhode Island, Kingston RI 02881 USA
dipippo@cs.uri.edu

Abstract. The broadcast scheduling problem asks how a multihop net-
work of broadcast transceivers operating on a shared medium may share
the medium in such a way that communication over the entire network is
possible. This can be naturally modeled as a graph coloring problem via
distance-2 coloring (L(1, 1)-labeling, strict scheduling). This coloring is
difficult to compute and may require a number of colors quadratic in the
graph degree. This paper introduces pseudo-scheduling, a relaxation of
distance-2 coloring. Centralized and decentralized algorithms that com-
pute pseudo-schedules with colors linear in the graph degree are given
and proved.

Keywords: broadcast scheduling, TDMA, FDMA, graph coloring, wire-
less networks, ad-hoc networks.

1 Introduction

The broadcast scheduling problem asks how an arbitrary multihop network of
broadcast transceivers operating on a shared medium may share the medium in
such a way that communication over the entire network is possible. In particular,
two or more transmissions made simultaneously (in time and space) on the same
medium should be expected to fail; ie, the transmissions conflict.

A medium access control (MAC) protocol is a practical solution to the broad-
cast scheduling problem. The predominant approach to MAC protocol design
is contention, the outstanding example of which is carrier sense multiple ac-
cess (CSMA). Examples include the wireless Ethernet standard 802.11 and the
protocol B-MAC [6] for wireless sensor networks.

The alternative to contention is explicit scheduling, such as time-division mul-
tiple access (TDMA) or frequency-division multiple access (FDMA). Regardless
of how the medium is divided, however, the allocation of quanta to network
nodes is naturally expressed as graph coloring problem; eg, a graph coloring
with ten colors might correspond to a TDMA frame with ten timeslots.

� Research done while at the University of Rhode Island.

A. Bar-Noy and M.M. Halldórsson (Eds.): ALGOSENSORS 2012, LNCS 7718, pp. 93–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

94 S.N. Joseph and L.C. DiPippo

There are a variety of graph coloring problems extant, but the obvious and
canonical model is the L(1, 1)-labeling, also known as distance-2 coloring, col-
oring of the graph square, or strict scheduling. Here a vertex must be colored
differently from any other vertex at distance one or two. The seminal results on
this coloring were obtained by McCormick [5], who found that strict scheduling
is NP-Complete as a decision problem; and that the number of colors required
is Δ2 + 1 in the worst case, where Δ is the graph degree.

This paper introduces pseudo-scheduling, a relaxation of strict scheduling.
Whereas strict schedules guarantee that every path in the graph is a valid com-
munication path, pseudo-schedules only require the existence of some commu-
nication path between any two vertices; the requisite paths may exist along the
edges of a spanning tree, in exact analogy to a network routing tree.

Pseudo-scheduling is defined formally as a graph coloring problem below.
In §2 we survey related work. A centralized pseudo-scheduling algorithm using
colors at most twice the graph degree is presented in §3, and in §4 we examine
an algorithm that is decentralized but still uses colors only linear in the graph
degree (with a reasonable multiplicative factor). We conclude in §5.

1.1 Definitions

Let us consider (vertex) coloring from the perspective of how colored vertices
do or do not “conflict.” Let G = (V,E) be a simple, undirected graph with a
coloring l : V → Z. We say that the ordered pair (u, v) ∈ V 2 is nonconflicting
iff uv ∈ E, l(u) �= l(v), and for all x �= u adjacent to v, l(u) �= l(x). A directed
path from u to v is likewise nonconflicting iff the pairs that comprise it are
nonconflicting.

Observe that a strict schedule can be defined as a coloring such that every path
in the graph is nonconflicting. Immediately we conceive of a natural relaxation:
instead of requiring that every path be nonconflicting, demand only the existence
of at least one nonconflicting path from u to v for every u, v that are connected
in G. Such a coloring we call a pseudo-schedule.

It is convenient to work with edges uv such that both (u, v) and (v, u) are
nonconflicting (under some coloring); such an edge is said to be bidirectional. A
subgraph is bidirectional iff its edges are bidirectional. A pseudo-schedule with
a bidirectional subgraph H is an H-pseudo-schedule.

A (symmetric link) network with a routing tree can be represented by a graph
G with spanning tree T . A T -pseudo-schedule s of G is then a very interesting
structure, as it ensures nonconflict along the routing tree but allows it elsewhere.

For the remainder of this paper, we assume that all graphs are simple; they
may also be taken as connected without loss of generality. V (G) and E(G) denote
the vertex and edge sets of G, respectively. ΔG denotes the degree of graph G,
degG(v) the degree of a vertex in G, and NG[v] the closed neighborhood, that
is, the set comprised of v and all vertices adjacent to v in G. Finally, distG(u, v)
is the graph distance between vertices u, v in G.

Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem 95

2 Related Work

Although contention remains the most common approach to solving the broad-
cast scheduling problem, a number of explicit scheduling algorithms and
protocols have been proposed. These can be separated into two categories: node-
oriented scheduling, which is naturally modeled by vertex coloring, and link-
oriented scheduling, modeled by edge coloring. We consider only the former, in
particular because we wish to exploit one-to-many broadcast transmissions.

Node-oriented scheduling has been held back by its approach to conflict avoid-
ance, which has hitherto taken strict scheduling as its starting point. This is
explicit in DRAND [9], which implements the greedy algorithm for strict schedul-
ing. Alternately, conflicts are tolerated in Z-MAC [8] and Funneling-MAC [1],
but only inasmuch as these protocols combine TDMA with CSMA; the TDMA
part of the protocol is strict. TSMA [2] and RIMAC [3] also permit conflicts, but
this is aimed primarily at making the schedule easier to compute via decentral-
ized, probabilistic methods, rather than reducing the division of the medium;
indeed, the division tends to increase.

In his work on RAC-CT [7], Ren exhibits and implements what is basically the
greedy algorithm for pseudo-schedules. Although Ren gives empirical evidence
that the algorithm uses a number of colors very close to the graph degree on
random grid graphs, the general upper bound is quadratic in the graph degree,
giving no asymptotic improvement over strict scheduling.

3 Twice-Degree Algorithm

If conditions permit the use of a centralized algorithm, and we are more or
less indifferent to the choice of spanning tree, the algorithm presented in this
section will produce a pseudo-schedule of any graph G in no more than 2ΔG

colors. The user chooses a root vertex r, most likely corresponding to a base
station/access point; the algorithm selects the spanning (routing) tree to its
convenience, although this tree will minimize distances to r.

For any tree T rooted at r, we say that u is the parent of v and v is a child of
u iff uv ∈ E(T) and distT (u, r) < distT (v, r); we write u = parT,r(v). (It will be
convenient to let parT,r(r) = r.) We also henceforth permit ourselves the follow-
ing abuse of notation: given a coloring s, which may be only partially defined,
for any set U of vertices let s(U) denote the set {s(u);u ∈ U, s(u) is defined}.

3.1 Analysis

It is fairly obvious that the algorithm will use at most 2ΔG colors; the only
difficulty is to show that it actually produces a pseudo-schedule.

Theorem 1. Let s be the coloring produced by the twice-degree algorithm with
input (G, r); then s is a T -pseudo-schedule, where T is the tree generated inter-
nally by the algorithm.

96 S.N. Joseph and L.C. DiPippo

Input: G, a graph; and r, a distinguished vertex of G.
Output: A pseudo-schedule on G.

1 VT ← {r}, ET ← ∅
2 T ← (VT , ET)
3 Q← {r}, Q′ ← ∅ // Q,Q′ are queues

4 s← ∅
5 repeat
6 foreach v ∈ Q (FIFO) do
7 N ← NG[v]− VT

8 append N to Q′ (in any order)
9 VT ← VT ∪N

10 ET ← ET ∪ {vx;x ∈ N}
11 K ← s(NG[parT,r(v)])

12 foreach x ∈ NG[v] do
13 if x �= v and vx /∈ ET then
14 add s(parT,r(x)) to K

15 k ← min(Z+ −K)
16 add v �→ k to s

17 Q← Q′, Q′ ← ∅
18 until Q = ∅
19 return s

Algorithm 3.1: The twice-degree algorithm

Proof. Observe that T is produced by a breadth-first search process and that
every vertex at r-distance i is colored before any vertex at r-distance i + 1. We
can also see that if vertices u, v have distinct parents pu, pv respectively, then if
pu was colored before pv, u was colored before v.

Take uv ∈ E(T) such that u = parT,r(v). First we show that (u, v) is noncon-
flicting. s(u) �= s(v) clearly. Consider next any child x of v; since u is adjacent to
v = parT,r(x), we have s(u) �= s(x). The only vertices left to check are those in
NG[v]−NT [v]; let y be such a vertex. Now if distG(r, u) < distG(r, y), then y was
colored after u, so s(u) �= s(y). If, on the other hand, distG(r, u) = distG(r, y),
then u “adopted” v before y could (line 10), which implies that u was colored
before y, hence s(y) �= s(x).

Let us now establish that (v, u) is nonconflicting. Obviously s(v) �= s(x) for
any x ∈ NG[u] with distG(r, x) < distG(r, v) since in this case x must have been
colored before v. Turning to x ∈ NG[u] with distG(r, x) = distG(r, v), clearly
s(v) �= s(x) if x is a child of u, since v will be checked before coloring x and
vice-versa. If, on the other hand, parT,r(x) = w �= u, it must be that w was
colored before u since the former adopted x, thus s(x) was defined when the
algorithm computed s(NG[u]) (line 11) before coloring v, and s(v) �= s(x). ��

4 d-Band Algorithm

The twice-degree algorithm employs a very small number of colors in the worst
case, but the requirements for central control and user indifference to the resulting

Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem 97

spanning tree may not be reasonable in network applications. The d-band algo-
rithm does away with these requirements, albeit at the cost of raising the worst-
case number of colors used, although this remains linear in the graph degree (with
a reasonable coefficient).

Let G be a graph with a spanning tree T rooted at r. Intuitively, the algorithm
divides the graph into d bands based on vertices’ T -distance from r modulo d,
with each band being colored from its own palette, disjoint from every other.
The idea is that, if d is sufficiently large, we can rule out many conflicts a priori,
greatly reducing the number of vertices that have to be checked.

The d-band algorithm is decentralized, with each vertex acting as an au-
tonomous agent passing the following messages:

– REQ-COL(L), where L is a set of excluded colors;
– PUT-COL(x,k), where x is a vertex being assigned color k;
– RPT-COL(k,w), where k is the sender’s color (if known) and w is a vertex

that must be colored before the sender is colored; or, in a “reverse report,”
where k is a color excluded for the sender;

– RPT-PAR(k,w), where k is the color of the sender’s parent (if known) and
w is a vertex that must be colored before the sender’s parent is colored; or,
in a “reverse report,” where k is the color of w, a stepparent of the sender;

– DEP-REQ(w), where w is a vertex whose color must be assigned before the
sender can issue REQ-COL; and

– DEP-PUT(w), where w is a vertex whose color must be assigned before the
sender can issue PUT-COL.

The sending vertex is implicitly included in any message, along with information
about the intended receiver. We let ∞ denote an unknown color and let

Palette(v) = {distT (r, v) mod d+ id; i ≥ 0}. (1)

Along with the definitions of parent and child as in §3, we say also that u is a
stepparent of v iff distT (u, r) = distT (v, r)− 1 and uv ∈ E(G)−E(T); and that
x is a stepchild of y iff distT (x, r) = distT (y, r)+1 and xy ∈ E(G)−E(T). Each
vertex is assumed to know its parent, children, stepparents, and stepchildren.
Additionally, each vertex knows its T -distance from r. Finally, we assume that
V (G) admits a strict total order ≺ that can be efficiently computed at any
vertex.

The flow of the algorithm about a vertex v can be sketched roughly as follows:

1. v listens for RPT-PARs from all of its stepchildren, building a list of excluded
colors L.

2. v sends REQ-COL(L) to its parent u.
3. u listens for RPT-COLs from all of its stepchildren, building a list of forbid-

den colors K.
4. u sends PUT-COL(v,kv) to v (and all stepchildren of u), where kv is the

smallest color in the palette of v not in K ∪ L.

98 S.N. Joseph and L.C. DiPippo

5. v broadcasts RPT-COL(kv,v).
6. Each child of v sends RPT-PAR(kv,v) to all its stepparents.

(In this sketch, for the sake of simplicity we have ignored the DEP facility.) In
general, the d-band algorithm colors the leaves of T first and proceeds towards
the root, although significant parallelism is possible.

The root vertex r assigns itself the color 0, making this known by sending
RPT-COL(0,r) to its children. Any vertex besides r must acquire its color as
per AcquireColor (Algorithm 4.1). Any vertex with children must assign colors
to its children as per AssignColors (Algorithm 4.2). Finally, any non-root vertex
must receive and relay reports as per ReportColors (Algorithm 4.3). The ensem-
ble of these procedures, running independently and in parallel on every vertex
simultaneously, constitutes the d-band algorithm.

(We assume fully reliable transmission with synchronous communication prim-
itives send and listen. AssignColors uses the primitive ack-send M to x by which
is meant: send M to x and wait until M is sent back as confirmation, queuing
any messages that arrive in the meanwhile for retrieval by the next call to listen.)

4.1 Analysis

We say that the d-band algorithm terminates on a particular graph with rooted
spanning tree iff AcquireColor returns on every vertex.

Theorem 2. The d-band algorithm terminates on any graph with any choice of
root and spanning tree.

Proof. Let G be a graph with spanning tree T rooted at r. AcquireColor (Al-
gorithm 4.1) on vertex v does its main work in the loop beginning at line 6. As
this loop is bypassed when v has no stepchildren, assume that it does. We say
that v has a request dependence on u when u is the parent of a stepchild of v;
and just as v depends on u, u may depend on t, and so on. If we can follow the
dependency chain to some terminal a that has no stepchildren, there is no prob-
lem, since we can inductively work back to v. However, the dependency chain
may in fact be a cycle, in the sense that v has request dependence on u, u has
request dependence on t, and so on up to a, but then a has request dependence
on v. This we call a dependency cycle of type I.

Given C, a dependency cycle of type I, let v = min≺ C. Assume, for the time
being, that C is the only dependency cycle in the graph. v issues DEP-REQ(v)
to its children, and via ReportColors (Algorithm 4.3) one of the children sends
RPT-PAR(∞,v) to x, which depends on v. But since v ≺ x, x issues DEP-
REQ(v) to its children, one of which then sends RPT-PAR(∞,v) to y, which
depends on x, and so on.

Let u be the vertex in C on which v depends, creating the cycle. u issues DEP-
REQ(v) to its children, and one of them transmits RPT-PAR(∞,v) to v. At this
point v can detect the dependency cycle, and v breaks the cycle by ignoring its
dependence on u (see line 12 of AcquireColor). As per our assumptions, v is now
free of request dependencies, or at worst sits in linear dependence chains that

Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem 99

are naturally resolved; that is, v (eventually) acts as if it has no stepchildren,
and proceeds to issue REQ-COL to its parent p.

Let us assume that p eventually assigns a color to v via PUT-COL. v then
broadcasts RPT-COL, resolving the now-linear dependency chain. (The resolu-
tion is a little unusual at u, where we have registered a “reverse dependence” on
v—but this will be cleared by the RPT-COL broadcast from v, which causes a
“reverse report” RPT-PAR to be sent to u from one of its children.) Hence every
vertex in C gradually becomes free to issue REQ-COL, and if we assume that
every one of their parents replies with PUT-COL, then AcquireColor terminates
on every vertex in C.

We now shift our attention to AssignColors (Algorithm 4.2). A vertex v with
parent pv is said to have a put dependence on any stepchild of pv. (It is convenient
for the dependence to be registered at pv.) Just like request dependencies, put
dependencies can be chained and may form a cycle; this we call a dependency
cycle of type II. It is not hard to see that a type II cycle is broken by essentially

Input: v, “this” vertex.
Output: A color.

1 L← ∅
2 fW ← {x �→ v;x is a stepchild of v}
3 W ← Image(fW)
4 w≺ ← v
5 send RPT-COL(∞,v) to children of v
6 while W �= ∅ do
7 listen for messageM
8 if M = RPT-PAR(k,w) from (step)child x of v then
9 if k �=∞ then

10 remove x �→ fW (x) from fW
11 add k to L

12 else if w = v then remove x �→ fW (x) from fW
13 else add/replace x �→ w in fW
14 W ← Image(fW)

15 else if M = DEP-REQ(w) from a child of v then
// Reverse dependence

16 add/replace w �→ w in fW

17 if w≺ �= min≺(W ∪ {v}) then
18 w≺ ← min≺(W ∪ {v})
19 send DEP-REQ(w≺) to children of v
20 send RPT-COL(∞,w≺) to stepparents of v

21 send RPT-COL(∞,v) to children of v
22 send REQ-COL(L) to the parent of v
23 listen for PUT-COL(v,kv) from the parent of v
24 send RPT-COL(kv,v) to children, stepchildren, and stepparents of v
25 return kv

Algorithm 4.1: The d-band algorithm: AcquireColor

100 S.N. Joseph and L.C. DiPippo

Input: v, “this” vertex.
1 K, fL, fW ,W ← ∅
2 X ← stepchildren of v, Z ← children of v
3 fR ← {z �→ ∅; z ∈ Z}
4 w≺ ← v
5 while Z �= ∅ do
6 if X = ∅ then
7 foreach z �→ L ∈ fL such that fR(z) = ∅ do
8 kz ← min(Palette(z)−K − L)
9 send PUT-COL(z,kz) to z and stepchildren of v

10 remove z from Z
11 add kz to K

12 else if W �= ∅ and w≺ �= min≺ W then
13 w≺ ← min≺ W
14 send DEP-PUT(w≺) to children of v

15 listen for messageM
16 if M = REQ-COL(L) from child z of v then
17 if fL(z) defined then L← L ∪ fL(z)
18 add/replace z �→ L in fL
19 else if M = RPT-COL(k,w) from (step)child x then
20 if x ∈ X then
21 if k �=∞ or w is a child of v then
22 remove x from X
23 remove x �→ fW (x) from fW
24 add k to K
25 if w is a child of v then ack-send DEP-PUT(v) to x

26 else add/replace x �→ w to fW
27 W ← Image(fW)

28 else if x is a child of v then
29 if k �=∞ then
30 L← (fL(x) defined ? fL(x) : ∅)
31 add k to L
32 add/replace x �→ L in fL
33 else remove w from fR(z)

34 else if M = DEP-PUT(w) from child z of v then
// Reverse dependence

35 add w to fR(z)

36 send PUT-COL(∞,v) to stepchildren of v

Algorithm 4.2: The d-band algorithm: AssignColors

Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem 101

Input: v, “this” vertex.
1 p← parent of v
2 WI ,WII ← ∅
3 listen for messageM from (step)parents
4 if M = DEP-REQ(w) from p then
5 if w is a stepparent of v then

// Type I cycle breaking: reverse dependence

6 add w to WI

7 send DEP-REQ(w) back to p

8 send RPT-PAR(∞,w) to stepparents of v

9 else if M = RPT-COL(k,w) from x then
10 if x = p then
11 send RPT-PAR(k,w) to stepparents of v
12 else if x ∈WI and k �=∞ then

// Type I cycle breaking: reverse report

13 remove x from WI

14 send RPT-PAR(k,x) to p

15 else if M = DEP-PUT(w) from x then
16 if x = p then
17 send RPT-COL(∞,w) to children and stepparents of v
18 else

// Type II cycle breaking: reverse dependence

19 add x to WII

20 send DEP-PUT(x) to p and x

21 else if M = PUT-COL(u,k) from x ∈WII then
// Type II cycle breaking: reverse report

22 if k =∞ then remove x from WII

23 send RPT-COL(k,x) to p

Algorithm 4.3: The d-band algorithm: ReportColors

the same method used for the type I cycle, with DEP-PUT and RPT-COL
standing in for DEP-REQ and RPT-PAR, respectively. (Once again, there is a
special “reverse dependence” facility. Let pv have stepchild u with parent pu. If
a type II cycle is broken at pv, then pu will register the reverse dependence of
u on the children of pv. Resolution comes when pu finishes coloring its children,
with “reverse report” RPT-COLs being sent to pu via u.) Hence the d-band
algorithm terminates in the presence of a dependency cycle of type II, provided
that REQ-COL is issued.

Finally, a dependency cycle of mixed type is possible. AcquireColor handles
the transition from request to put dependency by repackaging RPT-PAR as
RPT-COL (line 20), while ReportColors handles the reverse transition by first
repackaging DEP-PUT as RPT-COL (line 17) and then relaying the latter as
RPT-PAR (line 11). But observe that a cycle of mixed type can be broken by
the methods previously described; it is treated exactly as if it were a cycle of
type I or type II if it is broken by AcquireColor or AssignColors, respectively.

102 S.N. Joseph and L.C. DiPippo

The same mechanisms then assure that the resolution proceeds across the cycle.
We conclude that the d-band algorithm terminates if there is no more than one
dependency cycle in the graph (of whatever type).

Given a dependency cycle C (of any type), observe that there exists l such
that distT (v, r) = l for all v ∈ C; call l the level of C. Clearly cycles with different
levels cannot affect each other; additionally, disjoint cycles do not interact. Thus
the d-band algorithm terminates given any number of disjoint dependency cycles
per level of T .

Unfortunately a graph may contain many overlapping dependency cycles; we
claim the algorithm terminates regardless. Let C be a family of intersecting
dependency cycles. As there is a strict total order ≺ on vertices, there exists
some

v = min≺

⋃

C∈C
C.

Observe that AcquireColor must terminate on v, since all dependency cycles in C
containing v will be broken at v, if not elsewhere. After breaking all such cycles
and resolving all newly-linear chains, let C′ be the remaining cycles. Obviously
|C′| < |C|, and we can apply the same argument to C′ inductively. We conclude
that the d-band algorithm terminates. ��

Because the d-band algorithm terminates, we can treat the color output by
AcquireColor on every vertex as a coloring of the whole graph. However, d must
be taken sufficiently large for coloring to be a pseudo-schedule, as made precise
by the following theorem, the proof of which appears in §3.4.1 of [4]. Note that
an immediate consequence of this is that d = 3 suffices if T is a shortest path
tree.

Theorem 3. Let G be a graph with spanning tree T rooted at r. The d-band
algorithm yields a T -pseudo-schedule provided that

d ≥ max
uv∈E(G)

| distT (u, r)− distT (v, r)| + 2 (2)

or d is greater than the height of T .

We will consider the number of colors used by a d-band pseudo-schedule s to be
the greatest integer color appearing in s plus one; this forces us to account for
“gaps” of unused colors.

Theorem 4. Let h denote the number of colors used by the d-band algorithm
on graph G with spanning tree T rooted at r, where d meets the conditions of
Theorem 3. If d ≤ height(T) + 1 and ΔG ≥ 2, then

d(ΔT − 1) + 1 ≤ h ≤ 2d(ΔG − 1) (3)

except possibly when ΔT = 2, in which case the lower bound falls to d.

Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem 103

Proof. The lower bound for ΔT = 2 is established by any path graph. For
ΔT ≥ 3, let v be the vertex on which T achieves its maximum degree. Then any
child of v uses a palette containing at least the colors a, a+d, . . . , a+d(ΔT − 1).
With a = 0, we obtain the lower bound.

For the upper bound, consider a vertex v with distT (v, r) = d− 1. Its parent
pv has at most ΔG − 2 neighbors distinct from v but at the same T -level as v.
Additionally, v has at most ΔG − 1 stepchildren, each of which could have a
distinct parent. This is a total of 2ΔG − 2 vertices (including v), so

Palette(v) ⊆ {d− 1, 2d− 1, . . . , d− 1 + d(2ΔG − 3)}
which yields the upper bound. ��

5 Conclusion

This work has introduced and motivated pseudo-scheduling as a new approach
to the broadcast scheduling problem. The algorithms exhibited here prove that
pseudo-scheduling can result in asymptotic improvements in medium division
relative to strict scheduling. This would correspond concretely, for instance, to
TDMA frames that grow only linearly with the neighborhood size, improving the
network throughput, especially in ad-hoc wireless networks in which the neigh-
borhood size cannot be tightly bounded in advance. Although the concepts have
yet to be put to the test in practical network applications, a strong theoretical
foundation now exists for implementers.

References

1. Ahn, G., Miluzzo, E., Campbell, A.T., Hong, S., Curomo, F.: Funneling-MAC: A
localized, sink-oriented MAC for boosting fidelity in sensor networks. In: Fourth
ACM Conference on Embedded Network Sensor Systems (SenSys 2006), pp.
293–306 (November 2006)

2. Chlamtac, I., Faragó, A., Zhang, H.: Time-spread multiple access protocols for mul-
tihop mobile radio networks. IEEE/ACM Transactions on Networking 5(6), 804–812
(1997)

3. DiPippo, L., Tucker, D., Fay-Wolfe, V., Bryan, K.L., Ren, T., Day, W., Murphy,
M., Henry, T., Joseph, S.: Energy-efficient MAC for broadcast problems in wireless
sensor networks. In: Third International Conference on Networked Sensing Systems
(June 2006)

4. Joseph, S.N.: Relaxations of L(1, 1)-labeling for the broadcast schedul-
ing problem. Ph.D. thesis, University of Rhode Island (2011),
http://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=2382&context

=dissertations

5. McCormick, S.T.: Optimal approximation of sparse Hessians and its equivalence to
a graph coloring problem. Mathematical Programming 26, 153–171 (1983)

6. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sen-
sor networks. In: Second ACM Conference on Embedded Network Sensor Systems
(SenSys 2004), pp. 95–107 (November 2004)

http://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=2382&context=dissertations
http://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=2382&context=dissertations

104 S.N. Joseph and L.C. DiPippo

7. Ren, T.: Graph Coloring Algorithms for TDMA Scheduling in Wireless Sensor Net-
works. Ph.D. thesis, University of Rhode Island (2007)

8. Rhee, I., Warrier, A., Aia, M., Min, J.: Z-MAC: a hybrid MAC for wireless sen-
sor networks. In: Third ACM Conference on Embedded Network Sensor Systems
(SenSys 2005), pp. 90–101 (November 2005)

9. Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: distributed randomized TDMA
scheduling for wireless ad-hoc networks. In: Seventh ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc 2006), pp. 190–201 (May
2006)

	Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem
	Introduction
	Definitions

	Related Work
	Twice-Degree Algorithm
	Analysis

	d-Band Algorithm
	Analysis

	Conclusion
	References

